AD=-AO64 872

UNCLASSIFIED
or2

GENERAL RESEARCH CORP SANTA BARBARA CALIF
JOVIAL AUTOMATED VERIFICATION SYSTEM, (U)

DEC 78 C GANNON

RADC=TR=78-247

F/6 9/2
F30602=77=C=0115

RADC-TR-78-247
Final Technical Report
Nov. 1978

N
N
0
<t JOVIAL AUTOMATED VERIFICATION SYSTEM
| O
§ & General Research Corporation
3
c’:‘ % C. Gannon
: g%
<
& A
AR
‘ 2 % APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
B <
s
=
1S
—_—
=

|

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344l

€9 02 21 @0

—————

B ———

nations.

APPROVED:

APPROVED:

s) e e

rgers

-
T ———

W e

DR

T, S T T S aa g L n

-

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign

RADC-TR-78-247 has been reviewed and is approved for publication.

.J/M—Mé)& % Iﬂam'c&

FRANK S. LAMONICA
Project Engineer

ot Aoimra)

WENDALL C. BAUMAN, COL, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: %Mﬂ%&

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIE) Griffiss AFB NY 13441, This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

S!CURITVMI'ICAYION OF THIS PAGE (When Date Entered)

/', REPORT DOCUMENTATION PAGE AR e Lo ronE

N { 2. GOVYT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADCYTR- 78- 247 (/
 TATAE ¢and Stbilile)--— - '&..m-f REPORT & PERID® RED
JOVIAL AUTOMATED VERIFICATION ststM, 7 [Final Fechnical Kepewt .,

Junes#®77 - Julpwd®78 .

L

o

|6 PERFORWMING ORO:-REPORT NUMBER
N/A

e ——————

3. - |8 CONTRACT GRGAMNTNUMBER(*)
1(/‘? c. /Gannon / ¥ / F30602-77-C~f115 /y1
3 el ,

9. PERFORMING ORGANIZATION NAME AND ADDRESS

10. PROGRAM ELEMENT, PROJECT, TASK
General Research Corporation

AREA & WORK UNIT Ny

l
P.0. Box 6770 , 63728F \ } /
Santa Barbara CA 93111 v ('!7:]"-2_5—3 o203 ~—1 7
11. CONTROLLING OFFICE NAME AND ADDRESS B
Rome Air Development Center (ISIE) Decﬂ l/
Griffiss AFB NY 13441 e

. MONITORING AGENCY NAME & ADDRESS(#f dUWMrO“-c.) 15. SECURITY CLASS. (of this report)
!

4 ’?[| | UNCLASSIFIED

Same

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE
N/A

6. DiSTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Frank S. LaMonica (ISIE)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer Software JAVS
Software Testing JOVIAL J3
Software Verification Automated Verification System

Sof tware Documentation

20. A'?ACT (Continue on reverse side If neceseary and {dentify by block number)

JAVS, for JOVIAL Automated Verification System, provides measurements of
testing thoroughness, retesting assistance, and automated software documenta-
tion for JOVIAL J3 programs.

This report describes the design, implementation and testing of a new
JAVS syntax analyzer. Background information regarding all JAVS contracts is

provided in this report, as are procedures for 1nsta111ngihe com lete JAVS
Cont'

=

DD %' 1473 EoiTion OF 1 NOV 83 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

N\ e 5, BRI T

.
-

(}k?

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

& Item 20 (Cont'd)

sof tware package.

Familiarity with the JOVIAL language and with software verification
terminology is assumed. (\

2
A
)
-
{ALEA G _]
? P | L LUPIR CLHTAY
1 # GN feeteyy [
[T SARPER =
e Th LT * A !
s i
L/ e }

STV AR bgEs
W T

e

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e et i et i

REFERENCES

CONTENTS
SECTION PAGE
¥ 1 INTRODUCTION 1
1.1 JAVS Capabilities 1
1.2 Background 4
1.3 Objectives of the Current Contract 6
1.4 JAVS Technical Reports 7
2 JAVS SYNTAX ANALYZER 9
2.1 Effect on Users 10
2.2 Design of the Syntax Analyzer 19
3 ACCEPTANCE TESTING 26
3.1 Functional Test 26
3.2 Operational Tests 30
3.3 Path Coverage Tests 34
4 FUTURE EFFORT 46
4.1 JAVS Workshop 46
4.2 Static Data Flow Analysis 47
4.3 Physical Units Checking 47
4.4 Automatic Assertion Generation 49
4.5 Coverage of Program Functions 52
4.6 Reduction of Processing Time 55
APPENDIX A INSTALLATION INSTRUCTIONS 57
APPENDIX B UPDATES TO USER'S GUIDE
APPENDIX C UPDATES TO REFERENCE MANUAL

Pages 5-39 thru 5-42 are left blank

intentionally

iii

L T AR N R0

. —

el ki

2.3(a)
2.3(b)

2.4
2.5
2.6

2.7
2.8
2.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8(a)
3.8(b)
3.9
3,10

3.11

ILLUSTRATIONS

JAVS Processing Sequences

OUTPUT from Former Synatx Analyzer (BASIC, CARD
IMAGES = ON.)

Output from Former Syntax Analyzer (BASIC, CARD
IMAGES = OFF.)

Output fron New Byntax Analyzer (BASIC, CARD IMAGES =
ON)

Output from the New Syntax Analyzer (BASIC, CARD
IMAGES = ON.)

Module Statement Listing for TSTLBL
Structural Analysis Output for TSTLBL

Executable Statements Contained on Each Decision~to-
Decision Path

Module Statement Listing for CLOSEEX

JAVS Memory Layout

Flow of Text Data

Module Summary Information

JAVS Commands for Functional Test

Statement Description

Control Symbol Description

DD-Path Information

Flow Diagram of Path Coverage Tests

Source Code for Testcase 1

Path Coverage Summary Report for JAVS-2C (Testcase 1)
Path Coverage Summary Report for JAVS-2D (Testcase 1)
Path Coverage Summary Report for JAVS-2D (Testcase 7)

Partial Listing of DD-path Coverage Report for Module
MAKE

Partial Listing of DD-paths not Executed in JAVS-2D
Modules

iv

PAGE

13

14

15

16
17
18

18
19
22
25
28
29
31
32
33
35
37
38
39
40

42

43

Illustrations (Continued)

NO. PAGE
3.12 Partial Listing of Statement Coverage for Module MAKE 44
4.1 Listing of Subroutine SETUSE 48 b
4.2 Static Analysis of Subroutine SETUSE 48
4.3 Physical Units Checking 50
4.4 Module Listing for Automatic Assertion Generation
Example 51
4.5 Execution Statement Coverage Report 53
4.6 Execution DD-path Coverage Raport 54
4.7 Excerpt of DD-path Execution Trace 55 [3
|
v

EVALUATION

The primary purpose of this effort was to develop an efficiency
enhanced version of the JOVIAL Automated Verification System (JAVS).
The enhancements provided include a re-written syntax analyzer component
which has significantly reduced the run-time primary memory requirement,
resulting in a system with a higher throughput characteristic. The new
system was installed and acceptance tested on the RADC H6180/GCOS
Computer System. Following acceptance testing, the system was released
to Hq SAC, Offutt AFB, Nebraska.

Lo L Bl

Project Engineer

vi

1 INTRODUCT ION

JAVS, for JOVIAL Automated Verification System, provides measurements of
testing thoroughness, retesting assistance, and automated software documenta-
tion for JOVIAL J3 programs.

This report describes the design, implementation and testing of a new
JAVS syntax analyzer. Background information regarding all JAVS contracts is
provided in this report, as are procedures for installing the complete JAVS
software package.

Familiarity with the JOVIAL language and with software verification term—
inology is assumed.

The primary purpose of this contract was to design and implement a new
JOVIAL J3 syntax analyzer for the JOVIAL Automated Verification System (JAVS)
with a main memory requirement of fewer than 60,000 words on the HIS 6180.
This design allowed a number of former JAVS constraints which dealt with the
syntax and semantics of JOVIAL J3 programs to be removed. Several minor en-
hancements were made to the control path analysis in the course of designing
the interface of this new syntax analyzer with the rest of JAVS.

This report contains a brief overview of JAVS capabilities and background
information on the evolution of JAVS. Section 2 describes the newly imple-
mented syntax analyzer. Section 3 contains the procedures and results of ac-
ceptance testing for the syntax analyzer and other software components which
it affected. Section 4 presents recommendations for additional capabilities
and modifications.

Appendix A contains instructions for installing the JAVS software at
sites other than RADC, Griffiss AFB, New York, and SAC Headquarters, Offutt
AFB, Nebraska. Appendices B and C of this report contain the updated pages to
the JAVS User's Guidel and the JAVS Reference Manual?. The changed pages are
provided in this report to ensure their distribution to holders of the 1976
edition of the referenced documents (since they will not be reprinted in their
entirety by the Government under this contract).

1.1 JAVS CAPABILITIES

JAVS is a software tool to be used during the testing of JOVIAL J3 pro-
grams to aid in recognizing unexercised program paths, assist in developing
additional test cases so as to improve test execution coverage, and automati-
cally document the program. JAVS' documentation features can also be applied
during software development and debugging stages as long as complete control
structures are provided.

Program verification is based on analyzing control flow structures, in-
strumenting the program by inserting software probes to measure testing cover-
age during execution, and comprehensive reports which pinpoint unexercised
paths in the program structure. Retesting guidance is provided identifying
program paths leading to untested program areas and by reports describing mod-
ule and symbol interaction.

o B R PG TR o -

e g o o

B ot i ‘“*‘\-’k

As a testing tool, JAVS provides coverage and trace reports showing pro-
gram behavior during a test. Test performance coverage reports showing
statements and/or decision outways (conditional branches) can be obtained on
a per-module, per-test-case, and per-test-run basis. These reports allow the
user to focus on untested modules, program paths, and statements. Tracing can
be performed, at user option, to show module invocations and returns or to
show which outway was taken for each conditional operation in the program. In
addition, the user can trace "important" events, such as overlay link loading,
by invoking one of the JAVS data collection routines.

If the testing target is determined to be a set of modules which received
little or no coverage during the test execution, JAVS reports can be obtained
to list all invocations (and the statement numbers of the calls) to the mod-
ules and to show the modules' interactions with the rest of the system in
terms of calling trees and interaction matrices. If the testing target is a
segment of code within a module, the user can request a JAVS report showing
the statements that lead up to the target. Armed with this '"reaching set" re-
port, the user can spot key variables whose values affect the flow through the
program paths and locate all instances of the variables in the system-wide
cross reference.

Retesting may necessitate code changes in some of the modules in the sys-
tem to remove dead code or coding errors found during the test analysis. To
facilitate determining all modules in the system which could be affected by
the code changes, a JAVS report will show the interaction between the selected
set of modules and the rest of the system.

JAVS uses a data base to store information about the test program. The
availability and management of this information form the basis for a variety
of services in addition to the primary task of testing assistance. Computer
program documentation, debugging through JAVS computation directives, and re-
ports useful for code optimization are the major side benefits of JAVS.

Computer documentation requirements for the Air Force typically specify
flow charts anu lists of program variables and constants. In the JAVS devel-
opment and implementation contracts these requirements were replaced by speci-
fying certain JAVS reports, i.e., self-documentation. It was found that the
module liscings (enhanced by indentation and identification of decision
points), module control flow pictures, module invocation reports (showing for-
mal and actual parameter lists), module interdependence reports, and a cross-—
reference report for each JAVS component are more meaningful documentation and
are generated automatically by JAVS.

Software development can be assist:d by using JAVS to document and test
the system as it {s built. To aid in data flow analysis and checking of array
sizes and variable execution values, JAVS offers computation directives. The
directives are a special form of JOVIAL comment, recognized by JAVS and ex-
panded into executable code (using the JOVIAL monitor statement) during the
instrumentation phase. The user can check logic expressions with an ASSERT
directive, check boundaries of selected variables with an EXPECT directive,
and turn on and off the standard monitor tracing with TRACE and OFFTRACE di-
rectives. Code optimization is aided by the post-test reports, which show the

S S b

:
]
?

number of times each statement is executed and the execution time spent in the
modules (in milliseconds of central processor time). Modules which are never
called and should be removed are listed in another JAVS report.

Testing coverage results indicate what parts of the program were executed.
It is up to the user to determine if the program's output is reasonable. One
JAVS post-test analysis report lists the execution coverage during the test
run in terms of the percentage of decision outways taken. A decision outway
(decision-to-decision path, or DD-path) is the set of statements executed as
the result of the evaiuation of a predicate (conditional operation). A good
standard for the testedness of a program is to exercise every decision outway
at least once. This level of testing is more rigorous than testing every pro-
gram statement at least once. However, it should be emphasized that certain
combinations of DD-paths may contain errors which are not detected in merely
executing each outway one time.

JAVS reads the user's JOVIAL program as data and performs syntax, struc-
tural, and instrumentation analyses on the source code. JAVS communicates
with the user through a command language and utilizes a data base to store the
information about the program. The user is provided with an instrumented file
of the selected program modules with which the user supplies test data for
execution. The execution results are written to a file from which JAVS' post-
test analyzer issues execution tracing and coverage reports.

Six functional processes, in addition to execution with test data, make
up the substance of software validation provided by JAVS. The organization of
JAVS is defined by these six tasks. To reduce the burden of the user, JAVS
exists as an overlay program at RADC with a macro command language supplement-
ing a large, versatile standard command language. Figure 1.1 shows a block
diagram of the processes and the four macro commands (BUILD LIBRARY, PROBE,
TEST, and DOCUMENT) which drive the processes. The processing steps and their
basic functions are listed below:

BASIC, Source Text Analysis: Source text input, lexical analysis, and
initial source library creation

STRUCTURAL, Structural Analysis: Structural analysis and execution path
identification; library update with structure and path information

INSTRUMENT, Module Instrumentation: Program instrumentation for path
coverage analysis and program performance directed by the user; library
update with probe test instrumentation

ASSIST, Module Testing Assistance and Segment Analysis: Testing assis-
tance for improved program coverage

DEPENDENCE, Retesting Guidance and Analysis: Retesting requirements anal-
ysis for changed modules

TEST EXECUTION: Execution of instrumented code and analysis of directed
program performance

EST QUALITY PRACTLCABLR

AGE 1S B
. TO LDC —

YROM COEY FURNILSHED

B S——

SOURCE
TEXT
ANALYSTS

BUILD LIBRARY 1

STRUCTURAL
ANALYSTS

I
5 3 1 1

MODULE MODULE TESTING RETESTING
ASSISTANCE AND GUICANCE
ARineE I SEGMENT ANALYSIS AND ANALYSIS

TEST DOCUMENT

EXECUTION OF
INSTRUMENTED
CODE

L3
TEST TEST

EFFECTIVENESS
MEASUREMENT

PROBE

Figure 1.1. JAVS Processing Sequences

ANALYZER, Test Effectiveness Measurement: Detailed analysis of program
path coverage; execution traces and summary statistics

The user must provide three major types of input to JAVS: (1) the source
code to be tested, (2) a set of commands to direct JAVS processing, and (3)
test data for program execution.

1.2 BACKGROUND

JAVS was developed under Air Force contract F30602-73-C-0344 with RADC to
engineer workable and practical first-level solutions to the task of automat-
ing the measurement of JOVIAL computer program test effectiveness. Other
tasks to be included in the test tool were the capabilities of assisting the
manual process of test case design and selection and automating certain as-
pects of software system maintenance. The tool which resulted from that ef-
fort in 1973-1975 was a system of six programs which performed the functional
processes shown in Fig. 1.1. The common thread between the projrams was a
database library which contained tables of syntactical, semantic, and struc-
tural information describing the user's JOVIAL program. This system required
84,000 words of central memory to execute the largest program (source text an-
alysis) and 56,000 words to execute the smallest. As part of the JAVS accep-
tance test, all of the JAVS software had to be processed by JAVS itself and
demonstrate overall statement execution coverage of 857%.

TR o

The syntax analyzer portion of the source text analysis program was de-
veloped by GRC's subcontractor, System Development Corporation (SDC), as an
extensive modification to the existing GEN1 phase of the SAM-D ED JOVIAL com-
piler for the UNIVAC 1108. Although this syntax analyzer was fast, it had
the following disadvantages, many of which made it inconsistent with JOVIAL
J3 constructs:

1.

w
.

aliSvispa SRR

10.

11.

It required 84,000 words to load and execute in the JAVS environment
(which is the same for all JAVS functional processors) and, as de-
signed, could not be overlayed.

Improper generation of pointers dealing with labels defined in one

module and called from another module (within the rules of JOVIAL J3).

This constraint was primarily due to the "one-pass" analysis per-
formed on the JOVIAL source.

Only one COMPOOL could be analyzed in a single execution of the ana-
lyzer.

Special characters, such as '"<", ":", etc. were considered illegal
and blanked out, thereby affecting consistency of the instrumented
code with the original source code (which could result in differing
execution output) and completeness in the JAVS documentation reports.

A JOVIAL CLOSE subprogram {external CLOSE) could not be analyzed
without redefining it as a main program.

A single prime was ignored; thus 'LOC and other primitives were in-
correctly processed without the prime.

A comment could not be terminated by a dollar sign.

Labels could not be appended to BEGIN statements (they were dis-
carded) .

Certain keywords, such as PROC, in comments caused erroneous parsing
of the text.

Nested DEFINE statements would not be expanded properly.

The same status variables used in more than one status list would
produce numerous unnecessary warnings.

Subsequent effort was directed at JAVS under Air Force Contract F30602-
76-C-0233 with RADC. The major tasks were to convert the six programs into a
single overlay program, add a macro command language, stress and evaluate JAVS'
performance by implementing a systematic software test on a large, complex pro-
gram not written for Automated Verification System (AVS) testing in mind, cor-
rect any JAVS errors found during the effort, and improve the existing testing
methodology.3

e e ——

g v

Py

The overlay configuration reduced the main memory requirement only by
3,000 words to 81,000 for complete JAVS analysis and 54,000 for all analyses
except syntax analysis. The main advantage in the overlay structure was the
ability to incorporate a simple command language using four command keywords:
BUILD LIBRARY, DOCUMENT, PROBE, and TEST to perform most of JAVS' activities.

The JAVS "stress and evaluate'" activity provided much-needed experience
in attempting to determine the value of a path-testing AVS. The fact that
JAVS underwent systematic functional and path coverage testing and subse-
quently was used extensively to analyze '"real world" unstructured JOVIAL
source code permitted evaluation of the utility of program path testing using
functional data.

The outcome of this evaluation was that of the over 28,000 statements
(366 modules) comprising the JAVS source, ten errors were found after its de-
livery. These errors fell into three major categories: structural, design,
and logic. Of the structural errors (there were three), one was detected dur-
ing the coverage self-test, but the code was not corrected before delivery;
another structural error manifested itself in the output (i.e., the output was
incorrect), but the output was not detected as erroneous; the third was simply
one of the untested paths. More thorough path testing would have uncovered
this infinite loop error.

The remaining seven errors probably would not have been detected by using
JAVS' path-testing capability. Judicious use of JAVS computation directives
(especially ASSERT and EXPECT) may have detected the three logic errors. The
design errors were primarily in the syntax analyzer, and reconfirmed the wide-
ly held belief that extra emphasis should always be placed on the design phase
of software development and that functional test data should be designed from
the specifications concurrently with the design of the software.

One of the documents delivered under contract F30602-76-C~0233 was the
Methodology Regort.4 The section of that document entitled "Application of
Systematic Testing Methodology' addresses the role of an AVS (JAVS in particu-
lar) in applying the formally defined general testing methodology and provides
practical techniques for particular situations. The JAVS evaluation experi-
ence provided additional insight into the design of the new syntax analyzer,
not only in terms of better understanding of the language specification, but
also in terms of designing AVS-testable software. The description and results
of acceptance testing for the new syntax analyzer are given in Sec. 3.

1.3 OBJECTIVES OF THE CURRENT CONTRACT

The above background information sets the stage for describing the objec-
tives of the current contract. As previously stated, the primary objective
was to design a new syntax analyzer which had a smaller appetite for central
memory. Other important considerations, some of which had a bearing on the
design, were:

@ Eliminate many of the JAVS-imposed restrictions on JOVIAL source
° Report possible structural infinite loops and dead code
6

e ——— - mE————
r . S =g

o Store comments differently so as to improve certain JAVS reports
° Include loop control variables in the symbol cross reference |
) Remove the incorrect generation of control cards ($ in column 1 on ;

Honeywell equipment) in the instrumented source code.

e Allow comments to be imbedded anywhere within statements or between f
statements |
X @ Permit direct analysis of the executable source text (i.e., without

the user's insertion of JAVSTEXT header statements between START-
TERM sequences, although this practice is still recommended)

] Construct the syntax analyzer to be easily modified and maintained

1.4 JAVS TECHNICAL REPORTS |

The following list of documents describe the current software for JAVS,
its utilization and recommended testing methodology.

® JAVS Technical Report: Vol. 1, User's Guide. This report is an in-
troduction to using JAVS in the testing process. Its primary pur-
pose is to acquaint the user with the innate potential of JAVS to
aid in the program testing process so that an efficient approach to
program verification can be undertaken. Only the basic principles
by which JAVS provides this assistance are discussed. These give
the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is pre-~
sented in the order normally followed by the beginning JAVS user.
Adequate testing can be achieved using JAVS macro commands and the
job streams presented in this guide. The Appendices include a sum-
mary of all JAVS commands and a description of JAVS operation at
RADC with both sample command sets and sample job control state-
ments. (General Research Corporation CR-1-722, November 1976;
available as RADC~-TR-77-126, Vol. I; updated as General Research
Corporation CR-1-722/1, June 1978. Updated pages available in Ap-
pendix B of this report.)

° JAVS Technical Report: Vol. 2, Reference Manual. This report de-
scribes in detail JAVS processing and each of the JAVS commands.
The Reference Manual is intended to be used along with the User's
Guide which contains the machine-dependent information such as job
control cards and file allocation. Throughout the Reference Manual,
modules from a sample JOVIAL program are used in the examples. Each
JAVS command is explained in detail, and a sample of each report
produced by JAVS is included with the appropriate command. The re-
port is organized into two major parts: one describing the JAVS
system and the other containing the description of each JAVS command
in alphabetical order. The Appendices include a complete listing of
all error messages directly produced by JAVS processing. (General
Research Corporation CR-1-722, November 1976; available as RADC-TR-

77-126, Vol. II; updated as General Research Corporation CR-1-772/1,
June 1978. Updated pages available in Appendix C of this report.)

JAVS Technical Report: Vol. 3, Methodology Report. This report de-
scribes the methodology which underlies and is supported by JAVS.
The methodology is tailored to be largely independent of implementa-
tion and language. The discussion in the text is intended to be in-
tuitive and demonstrative. Some of the methodology is based upon
the experience of using JAVS to test a large information management
system. A long-term growth path for automated verification systems
that supports the methodology is described. (RADC-TR-77-126, Vol.
ITI, April 1977)

JAVS Computer Program Documentation: Vol. 1, System Design and Im-
plementation. This report contains a description of JAVS software
design, the organization and contents of the JAVS data base, and a
description of the software for each JAVS component: its function,
each of the modules in the component, and the global data structures
used by the component. The report is intended primarily as an in-
formal reference for use in JAVS software maintenance as a companion
to the Software Analysis reports described below. Included in the
appendices are the templates for probe code inserted by instrumenta-
tion processing for both structural and directive instrumentation
and an alphabetical list of all modules in the system (including
system routines) with the formal parameters and data type of each
parameter. (GRC, CR-1-782, Vol. I, June 1978)

JAVS Computer Program Documentation: Vol. 2, Software Analysis.
This volume is a collection of computer output produced by JAVS
standard processing steps. The source for each component of the
JAVS software has been analyzed to produce enhanced source listings
of JAVS with indentation and control structure identification, in-~
ter-module dependence, all module invocations with formal and actual
parameters, module control structure, a cross reference of symbol
usage, tree report for each leading module, and report showing size
of each component. It is intended to be used with the System Design
and Implementation Manual for JAVS software maintenance. The Soft-
ware Analysis reports, on file at RADC, are an excellent example of
the use of JAVS for computer software documentation.

JAVS Final Report. The final report for the project describes the
design, implementation and testing of the JAVS syntax analyzer.
Background information regarding all JAVS contracts is provided as
well as procedures for installing the complete JAVS software package.
This report contains, as appendices, the June 1978 updated pages for
the User's Guide and Reference Manual published as RADC-TR-77-126,
Vols. I and II, April 1977.

SRR . R AT

hE

2 JAVS SYNTAX ANALYZER

The function of the syntax analyzer (called JAVS2) is to read the JOVIAL
source text stream and generate the lexical and semantic information needed by
subsequent phases of JAVS. Each START-TERM sequence is treated as a separate
unit and may be either a COMPOOL text or executable text. The sequence of
text characters is separated into JOVIAL symbols, the symbols are collected
into statements, and the statements are grouped into modules. Symbols are
classified according to type, and tables of identifiers essential to structur-
al analysis are built.

The source text presented to JAVS is assumed to be free of syntax er-
rors; i.e., it must have been successfully processed by the JOVIAL compiler
without errors. Since the structural properties of executable text are wholly
contained within the START-TERM sequence, JAVS2, unlike the JOVIAL compiler,
does not require that the text for a referenced COMPOOL be processed together
with the executable text.

The new JAVS2 code uses substantially less central memory (29,000 words),
creates only that information about symbols needed for structural analysis
(with a corresponding savings in auxiliary storage), and fits into the overlay
structure of the remainder of the JAVS system. The overall design has this
JAVS software component separated into three distinct processes:

1. An initialization process which sets initial data into JAVS2 data
structures.

2. A text-recognition process which reads the source text, identifies
symbols, statements, and modules, expands text for DEFINES, con-
structs initial entries in the permanent tables Module Descriptor
Block (MDB), Statement Blocks (SB), and Statement Descriptor
Blocks (SDB), and constructs temporary tables necessary for the
text analysis process which follows.

3. An analysis process which uses the tables prepared by the text-rec~
ognition processing to construct the permanent tables Symbol Table
Blocks (STB) and Symbol Locator Blocks (SLT) as well as final en-
tries in the MDB, SB, and SDB.

The text-recognition process is concerned primarily with analyzing the
text stream for JOVIAL syntactical constructs (i.e., symbols, statements, and
modules); the analysis process is concerned with transforming JOVIAL syntacti-
cal constructs into the JAVS structural description, a form which defines the
basic structural properties of the source text.

The initialization process (1) executes once for a single file of text.
The text recognition process (2) and analysis process (3) execute once for
each START-TERM sequence in the file of text. With this design, each process
can be a secondary overlay in the JAVS system memory layout.

In implementing this design, the JAVS2 code retains characteristics of
other JAVS components: it is highly modular and well-structured, makes use of

the JAVS data manager for both permanent and temporary tables, and utilizes
the JAVS nucleus support routines for basic services. Syntactic units are to
the same specifications as those currently processed by the JOCIT JOVIAL/J3
computer, and the syntax analysis uses a statement recognition algorithm which
identifies well-defined statement initiation and statement termination con-
structs in context.

2.1 EFFECT ON USERS

2.1.1 Resource Requirements

Execution of JAVS with the new syntax analyzer requires 53,000 words of
primary memory and 5% less secondary memory for the database library. Pro-
cessing time and file space estimations are provided in the JAVS User's Guide .
JAVS syntax and structural analyses require approximately 50%-70% additional
central processor time than was required by the older version. The extra CP
time is primarily due to using the JAVS database manager for information stor-
age and to the multi-pass design of the syntax analyzer. One of the reasons
for a multi-pass syntax analyzer is to properly handle all references to glo-
bal labels.

2.1.2 Constraints

The former JAVS constraints listed in Sec. 1.2 have all been removed.
In addition, the following structural rules are no longer required: the exe-
cutable text must be a compound statement (JOVIAL makes this a requirement on-
ly for PROCs); a declaration statement with an END (e.g., an ARRAY or TABLE
declaration) must not be located immediately preceding a TERM statement.

The following implementation constraints are the current ones which must
be observed during source text processing:

1. Each module placed on the same library must have a unique module
name for a given JAVSTEXT name. For this purpose, only the first

eight characters of any name are used. The first six characters
should be urique (a compiler restriction).

& A PROC must contain at least one executable statement (e.g.,
RETURN) .

3. Statement labels in direct code are not analyzed. A reference to
such a label in JOVIAL code 1s treated as a reference to an exter-
nal undefined label.

4. The maximum number of nested modules is 150.

5. The maximum number of unique symbols (names and constants) is 4,096.

6. A basic element may not exceed 500 characters (does not include
literals).

74 A JOVIAL symbol may not exceed 4,095 characters.

10

8. A comment, if saved, will be truncated to the maximum JOVIAL symbol
length if it exceeds that length.

9. BASIC guarantees that saved comments terminate with a double prime
(i.e., a double prime will be generated).

—

10. Only the first 72 columns of source text line are analyzed. L

11. COMPOOLs must have a JAVSTEXT directive stating the PRESET type.

12. A statement name following a TERM (main program only) will not de-
termine the first executable statement.

2.1.3 Error Messages

The former syntax analyzer had a repertoire of approximately a hundred
error messages, many of which would never occur if the user's source code was
properly compiled. The complete list of error messages emanating from the new
syntax analyzer are listed below:

Error
Number Explanation
1 Basic element contains too many characters. Element truncated
in saved text. Resubmit with corrected text.
2 Illegal internal text character. System error.*
3 Illegal external text character. System error.*
4 Recursive DEFINE reference. Reference partially expanded. Re-
submit with recursive DEFINE definition corrected.
5 JOVIAL symbol too long. Symbol truncated in saved text. Resub-
mit with corrected text.
6 Too many symbols (names and constants) in text. Fatal error.
Resubmit with text partitioned into more START-TERM sequences.
7 Module nesting exceeds limit. Change module nesting structure.
8 Too many ENDS. Resubmit with corrected text.
9 Loop in basic element analysis. System error.*
10 Loop in internal text character analysis. System error.*
11 Loop in JOVIAL element analysis. System error.* 1
12 Loop in external character analysis. System error.*
*System errors should be reported with output listing card images processed.
1 i
a4

- "J‘;""_"“‘“-H---u-u-n.-...ﬁ.-.-..i_“_.__ﬂ_ﬂ_u_‘ﬁmM_HJ ‘

2.1.4 Syntax Analysis Commands

Several JAVS syntax analysis commands have been removed. These are:

BASIC, ERRORS = ON/OFF/LIMIT/TRACE.
BASIC, SYMBOLS = ON/OFF/PARTIAL.
BASIC, TEXT = PRESET/COMPUTE/BOTH/JAVSTEXT.

leaving only three commands. These are:
BASIC, CARD IMAGES = ON/OFF.
BASIC, COMMENTS = ON/OFF.
BASIC, DEFINES = ON/OFF.

where the default values are underlined. The JAVS macro command BUILD LIBRARY
specifies the default values for syntax analysis.

When the DEFINES option is ON, JAVS expands the DEFINE references (to
any level of nesting) but leaves the DEFINE declaration in the text. The for-
mer syntax analyzer removed the DEFINE declaration after expansion, making
documentation ambiguous. Compilation of the instrumented source text will be
unaffected by the presence of the DEFINE and the expansion.

2.1.5 JAVS Output

The computer listing output by the source text analysis process under-
went minor change as a result of the new syntax analyzer. The former output
is shown in Figs. 2.1 and 2.2. The message:

<module name> (<JAVSTEXT name>) COMPLETED

was written upon completion of each module's analysis, rather than at the end
of each START-TERM sequence.

The new syntax analyzer performs an initialization process once, then
makes two passes through each START-TERM sequence. One pass reads the source
and builds text-recognition tables; the other pass uses the tables and com-
pletes the entries. At the end of each START-TERM sequence, the modules in
that sequence (called TEXT) are listed. Figures 2.3(a) and (b) show the out-
put: the user's card-image input source with the card count printed at the
rightmost column and module and JAVSTEXT identification following the TERM
statement.

If the user does not provide the JAVSTEXT identification directive at the
beginning of each executable START-TERM, JAVS will assign one using the last
JAVSTEXT's name for the module's name (or JAVS0001 if the START-TERM sequence
is the first one). If the module is a PROC, its own name will be used. The

text's name will be assigned JAVS000i where "i" is the number of the module

12

g e ——— e

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COFY FURNISHED 10 DOC o

00, JAVSTERY EXCOMPL PRESETee

STaRTS
SUCOMPOOL EXAMPLE CONTAINING PRESET OUTPUT MESSAGES oo
COMMON MESAGES

[[{}L]
JTEM MSGY M 18 P 18M(]1JAVS TEST CASE '8
BTEM MSG2 M 18 P 1AMIORESULY LT o 13
STEM MSGI M 18 P 18M(ORESULT €3 o 'S
STEM MSGO W 18 P JBH(ORESULT GT & 1]

BYEM MESSAG W 188

END

A{{ {13

CRCOMPL (EXCOMPL) COMPLETED
00000000 “o gqaoﬂs .(ﬁ['ouuo .1 JAVS-! e0oeee

S8, JAVSTEXT EXPROGM COMPUTE (EXCOMPL)eSe
STARTS
##JOYIAL SIMPLE TEST PROGRAM 8
DEFINE INTG 221 24 S wss
OEFINE MLL 22 H o 283
DEFINE N3YTWD #2 o #2§
JVEM JD “LLS
JTEM 1TE) INTGS
JTEM ITEQ2 INTGS
BYEM ITER]A HLLS
TVEM LTER2A wLLS
OVERLAY ITER)] = [TER1AS
OVERLAY ITER? = [TER2aS
STEM CARD ™ B80S
FILE READER M 0 R 84 VIOK) V(EOF) TaAPESS
FILE PRINTR 4 0 R 128 VIOK) V(EOF) TAPEeS
MONITOR 10e¢ ITER)1As ITER2AS
MESSAG = »SG1 ¢
OUTPUT PRINTR wESSAGS
88s INPUT READER CARDS
IF READER NO VIEOF)S
SESIN
SYTE(S0.NAYTWDS) (1D) = BYTEISONBYTUDS) (CARD)S
BYTE(SO0NARYTWOS) (ITERIA)e HYTE(SQNAYTWDS) (CARD)S
BYTE(SONAYTWDS) (1TERZ2A)® BYTE(S]19.NBYTWDS) (CARDIS
CAMPL) (ITER)VITERP)S
CLOSE ExwPL 2% #2 MAIN CLOSE ve
sLelN
1T7ERY = 18
1TER2 = 13
CND 9PEXuPL248

CRNPL2 (ERXPROGM) COMPLETED

Figure 2.1. Output from Former Syntax Analyzer
(BASIC, CARD IMAGES = ON.)

13

S e R AN

EXCOMPL (EXCOMPL) COMPLETED
ee0etcer NO ERRORS WERE FOUND BY JAVS=2 eecace

EXMPL2 (EXPROGM) COMPLETED
ExmMPLY (EXPROGM) COMPLETED
€xmnPL] (EXPROGM) COMPLETED

ERPROGM (EXPROGM) COMPLETED
essecsce NO ERRORS WERE FOUND BY JAVS=2 eeocces

Figure 2.2. Output from Former Syntax Analyzer
(BASIC, CARD IMAGES = OFF.)

which is being processed. Figure 2.3(b) shows an example of the way JAVS as-
signs the module and JAVSTEXT name, if they are not supplied by the user.

Structural analysis was enhanced to take advantage of the proper global
label information now provided by the new syntax analyzer. Figure 2.4 shows
the module statement listing for module TSTLBL. During structural analysis,
several messages are printed regarding possible structural errors, as shown in
Fig. 2.5. The UNDEFINED GOTO messages refer to Statements 12 and 18, since
LITTLE and ELABEL are ndt defined in the entire START-TERM sequence [see Fig.
2.3(a)]. At Statement 19, LITTLE {s referenced again. An infinite loop is
detected starting at statement 23 for the switch label CLABEL. JAVS can de-
tect only structural infinite loops. Control transfers can be made which JAVS
does not detect, such as the result of an invocation, which modify the control
flow, thereby making the infinite loop warning superfluous.

Another program structure anomoly is reported in the documentation output
generated by the JAVS command:

ASSIST, STATEMENT.

Figure 2.6 shows four statements in module CLOSEEX (see statement listing in
Fig. 2.7) which cannot be executed. The JOVIAL JOCIT compiler does not detect
unreachable code. Details of these and all other JAVS reports are given in
the JAVS Reference Manual.?

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COFY FURNWISHED TO DDC e

**y JAVSTEXT LABEL COMPUTEZ (CoOMPOL)’°’
** TEST CASE T0 TEST LABEL PROBLENS °°
START
PROC TSTLBL (IDUMMY)$
ITEM IDUMMY I 24 S$
ITEM INDX I 2uU S$
AAAAAAAAAAA, BEGIN
INDX = =18
ALABEL.
INDX = INDX+1$
GoTO LABELES
GOoTO LITTLES
IF INDX EQ 3$
GOTO CLABELS
GOTO BLABELS
GOTO SWTCH (SINDXS) §
[r I¥DX 2Q 5§
GOTO ELABELS
SWITCH SWTCH = (ALABEL,SBLABEL,LITTLE)S
LLABEL,
INDX = INDX+1$
CLOSE LABELE $
BEGIN
GOoTo CLABELS

END
GOTO ALABELS
CLABEL.
INDX = =1§

GOTO CHOICE ($INDX+1$)$

SWITCH CHOICE = (DLABEL,BLABEL.CLABZL,DLABEL)S
DLABEL,

INDX = INDX+1$

GOTO ALABELS

END

TERNS

HODULES DEFINED IN TEXT
1 TSTLBL (LABEL)
4 LABELE (LABEZL)

Figure 2.3(a). Output from New Syntax Analyzer
(BASIC, CARD IMAGES = ON)

15

R A AN e

TEST
TEST
7zsT
TEST
TEST
TEST
TEST
TEST
72s?
TEST
T8ST
TEST
TEST
TEST
TEST

.TEST

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
78sT
TEST
TEST
TEST
TEST
T8SsT
T0ST
TEST
TEST

COdOOVMEWN

NAaBbbd st tcaar.aa
CQUVUOBANYOVMEWN 20OV IONEWN-

[SWSESEASHSE NS
AV EWN -

WWwNON
-0 wVwoe

Wwie w
BEWN

ssalt ¢

A=33,$

PROC ZTILCK §

ARRAY ABCDPEFr I s §

BEGIN
23,4,5E3A2 END
BEGIN
I=1$
Ce=2$
ITEN AAAA I S 1,u4$
ITENM AAAA I 5 1,,4%
ITEM AAAA I 8§ 1,,.4$
ITEM AAAA I 5 1,,..48
ITBH Aklk I 5 1..0..“’
ITEN AAAA I S 194 $
ITEM AAAA I S ,u$
ITEM AAAA I S .48
ITEMN AAMA I S ,,.,U8
ITEN AAAA I 5 ,,,.4$
ITEM AMAA I S ,e,00,.048
DIRECT
ASSIGN AS OR A7 AND S
A ASSIGE B
[D ASSIGN B
JovIal
BBR=AAAS
BEB==AAAS
END

DEFINE BEG '’ BEGIN *° §
BEG
END

"INVOKE § LABEL,

FOR I = AABB(C),DD(E)oFF(G)$

PROC MANYPARAMNETERS(IN,O0UT,CROSSSHATCHN ,AGAIN,)S

BEGIN
A=3$
END
TERAS

MODULES DEFINED IN TEXT
3 LABEL (JAYS0003)
& gIlcH (JAVS0003)
$ NANYPARA(JAYS0003)

Figure 2.3(b). Output from the New Syntax Analyzer

(BASIC, CARD IMAGES = ON.)

16

[P A
COBDLAONE WN 2O0OVEIOMEWN-

«>
-

LSS RS NSNS
oOWVnME WN

wwoouN
-~ OOV

w W
EwNn

- W w
eagdowm

T411SL 103 BUFISTT IUsWAIBIS STNPOK

~n
W

PRACIL

TO pDC /

LITY

‘7 92an31yg

T QU AL
N L SHED

S

BE

QY Ul

™
%

THIS PAGE IS

$ wuzL (0) 82
ana (L) 22
$ 12gY1vY 0109 () 9z
$) ¢ xQRI = xOnl
"138y10 (t) 52
s (728Y7Q ¢ 736V¥1) ¢ qI6V7Q ¢ 92Q8Y7Q) = Z5I0RD HIIIKS (L) 92
¢ ($ L + xao8r $) 3d10MI 01GH9 (v) ¢
$ L - = XQNI
“12E¢1) () z2Z
$ 128Y1Y 0109 (t)12z
$ b ¢ XAKI = xaul
*13av1q L) o2
® (ZTII2T ° 12QY10 ¢ 73EY1Y §j = KOInS HOLIIAS (1) 61
$ 118v13 0109 (z) e
$ S 01 xany 2T (L) s
$ ($ XQgT §) HOIms €209 (1) 9t
$ 138v18 0109 (L) st
$ 130Y¥73 o1gY {z) ot
$ £ Bz xaur 41 () et
$ 37111171 01909 (L) 2
$ 8T28Y1 0109 (L) st
$ L ¢ XARI = xONI
“1IE71V (L) o0
$ | - = xoar (L)6
3918 (L)
CYYYYYNYYYYY (o) ¢
$ S§ " 1 xasy Waix ()9
$ S % I 1MNNQGI N3LT 0y ¢
$ (2uknar) 1€1181 doua (0) n
vEs (¢ 3¢
+o $HITGO¥E T28YT 1S3 Ol 25V 1531 ,. (0) ¢
oo { 10dH0D) 210dWOD 128YT IXILSAYC °,. 0y 4
ININILYIG A1 *On

< TR11S1> ITnG0W INagYa ‘< T2QYT) IXIISAYP < T87251> z1p00%

ONI1SIT IN2WFlyis g1pdoN

17

L g

% &
i e A ALl i e S5

e0e® ERROR Cete UNDEFINED GOTO,

P ——-— v

UNDEFIYED GOTO,

* A Bk

BT S ® - - - - - -
STATEMENT DESCRIPTOR BLOCKS UPDATED.
MODULE N NE = TSTLpL , EXTERu,L l,BEL = LITTLE AT STATEMENT NUNBEIR = 19,

THL FOLLOWING STATEMENTS CONSTITUTY , POSSISLE INFINITE LOOP , ,
| 23 24 22 23

®0e® IRROR e POSSIBLZ INFINITE LOOP DETECTID,

Figure 2.5. Structural Analysis Output for TSTLBL

STATEMENT/DDPATH LISTING
HODVULE <CLOSEZX >, JAVSTEXT CEXTERNALD, PARENT MODULE <EXTERNALD

DD=PATHS BEIGUN

STMT TYPE BY STATEMENT DD=PATHS CONTAINING STATEMENT
1 cLoS (1 18
BEGN 1

3 ASHMT 1

" FOR1 1 |
5 NULL] 3 {
6 BEGN 1 3 ;
7 FOR2 1 3 5 |
8 BEGN 1 3 5

9 FOR3 1 3 4 L]

10 BEGN 1 3 & L]

1 IF (2- 3) 1z 28 3B k) | ("3 1 SE

12 TEST 2

+3 GOTO : 3

14 ASHT *#%% POTENTIALLY UNREACHABLE STATEMENT #*#

15 ASMT **% DOTENTIALLY UNREACHABLE STATEMENT ##e

16 END (b= 5) P L)} 58

17 ASNT L}

18 END 5

19 END #&# POTENTIALLY UNREACHABLE STATENENT eee
20 E¥D *¢* POTENTIALLY UNREACHABLE STATEMENT *#e

- > e an--

Figure 2.6. Executable Statements Contained on
Each Decision-to-Decision Path

18

S —
Smdbxis

RODULE STATEMENT LISTING
KODULE <CLOSEEX >, JAVSTEXT <EXTERNAL>, PARENT MODULEZ <CEXTERNALD

N0, 1VL STATEMENT DD=PATHS
1(0) CLOSE CLOSEEX § (1
| 2 (1 BEGIN
I3 (1N AP = 1 §
s b1 FOR J = 2 §
S (2) FORLAB.
6 (2) BEGIN
7 (2) FOR K = 1 , 10 ¢
8 (3) BEGIN
9 (3 YOR I = 4, 1, 38§
10 (4) BEGIN
11 (4) IF REAL LQ 0.0 $ (2= 3)
12 (5) TEST I §
13 (4) GOTO FORLAR $
W W REAL = I §
15 (U4 I =4S
16 (4) END ([T S)
17 (3) REAL = ‘ABS (J) $
18 (3) END
19 (2) END
| 20 (1) END

Figure 2.7. Module Statement Listing for CLOSEEX

2.2 DESIGN OF THE SYNTAX ANALYZER

The Syntax Analysis component (known as JAVS-2) reads JOVIAL/J3 source
text and creates the MDB, SDB, SB, SLT, and STB tables for each module in the
input file. The input file contains one or more START-TERM texts; each of
which may be either a COMPOOL text or program text. The type of text is de-
clared in the JAVSTEXT directive used to identify the text; this directive must
appear at the beginning of the START-TERM text of a COMPOOL and should be pres-
ent for executable START-TERM texts as well. Each text is processed as a sep-
arate unit and no specific relationships between units (i.e., a program text
referencing names declared in a COMPOOL text) are assumed or identified.

JAVS-2 produces three major classes of information:
ks The Module Descriptor Block (MDB)

2 The Statement Block (SB) and Statement Descriptor Block (SDB)

19

SR

3. The Symbol Locator Table (SLT) and the Symbol Table Block (STB)
The JAVS-2 processor is organized into three distinct processes:

1. An initialization process (FINIT) which sets initial data into
JAVS-2 data structures. This process is executed once for the in-
put file.

2 A text recognition process (FONE) which reads the source text, cap-
tures DEFINE declarations, expands the text for references to
DEFINE, identifies JOVIAL symbols, statements, and modules, creates
entries in the permanent tables MDB, SDB, and SB, and constructs
other temporary tables necessary for the text analysis process
which follows. This process is executed once for each START-TERM
text in the input file.

3 An analysis process (FTWO) which uses the tables prepared by the
text-recognition process to construct the permanent tables SLT and
STB and to complete related entries in the MDB, SDB and SB. This
process is executed once for each START-TERM text in the input file.

The initialization process (1) defines values for entries in key items
and arrays which describe the JOVIAL/J3 language elements (e.g., character set,
primitives, ideograms) and JAVS descriptive elements (e.g., statement types
and token types). Since many of these values are interrelated, initialization
is better done by executing code rather than by using preset values. This al-
so permits machine dependencies to be isolated within a set of DEFINEs con-
tained in all JAVS-2 compilation units.

The text recognition process (2) is concerned primarily with analyzing
the source text stream for elementary JOVIAL syntactical constructs (i.e.,
JOVIAL symbols, statements, and modules) and recording the syntactic descrip-
tion in the JAVS data base.

The analysis process (3) 1is concerned with transforming JOVIAL syntacti-
cal constructs which pertain to program flow, or control, into the JAVS struc-
tural descriptfion, a form which defines the basic structural properties of the
source text. Since JAVS has no capability for data flow analysis, the result-
ing data base description contains only control symbols (i.e., modules, labels,
and switches) and does not contain other symbols such as items, tables, and
arrays.

The modules of JAVS-2 are hierarchically arranged. At the highest level,
STEP1 sets BASIC default options, interprets each BASIC command for user-speci-
fied options, and invokes JAVS2 to process a source file. JAVS2 processes the
options and invokes the lower-level driver FRONTEND. FRONTEND first calls
FINIT, then alternately invokes FONE and FTWO for each START-TERM text until
an end-of-file is encountered. At the lowest level, FINIT and FONE both in-
voke modules which clear core-resident work areas (e.g., AZAP, BZAP, ectc.),
and all three major processors invoke modules (MGET and MPUT) to fetch and
store the MDB entry. In its overlay form, the primary link for the component
(JAVS-2A) should consist of STEP1, JAVS2, FRONTEND and the low-level modules.

20

Secondary links are (1) JAVS2-B, other modules executed with FINIT (e.g.,
INIT, etc.), (2) JAVS2-C, other modules executed with FONE (e.g., SGET, etc.),
and (3) JAVS2-D, other modules executed with FTWO (e.g., SYMDEF and SYMREF,
etc.). The memory layout in Fig. 2.8 shows each JAVS-2 link along with the
remainder of JAVS.

2.2.1 JAVS2-A (Primary Overlay)

In the hierarchy of modules, the top is STEP1l which sets processing op-
tions to default values upon first execution, interprets each BASIC command
for user-defined options, and invokes JAVS2 for the BASIC execution command.
JAVS2 interprets the designated processing options, sets flags for these op-
tions and invokes FRONTEND. FRONTEND drives all JAVS-2 processing for an in-
put source text file. After an initializing call to FINIT, FONE and FTWO are
called for each START-TERM sequence until an end-of-file is encountered on the
input file. The remainder of JAVS2-A consists of '"zap'" routines which clear
the various workspaces and modules to handle table structures (MGET and MPUT).

2.2.2 JAVS-2B Initialization Process Modules (Secondary Overlay)

FINIT drives initialization processing for one input file. It presets
initial module values and invokes INIT to initialize values used for internal
processing of JOVIAL/J3 language texts. The remainder of JAVS2-B consists of
the initialization modules called by INIT.

2.2.3 JAVS-2C Text Recognition Process Modules (Secondary Overlay)

FONE drives text recognition processing for one START-TERM text. It be-
gins by invoking STZAP and JGET for the first JOVIAL symbol. If there is not
an end-of-file encountered at the first symbol, then it invokes MODZAP to cre-
ate the first module and LPUSH to put the module on the module nesting stack.
Thereafter it invokes SGET for each statement in the START-TERM sequence until
the module stack is empty (a condition signifying the end-of-file or a TERM
statement) .

2.2.4 JAVS-2D Analysis Process Modules (Secondary Overlay)

FTWO drives analysis processing for one START-TERM text. The objective
of the analysis process 1is to construct the SLT and STB entries for control
symbols (i.e., module names, statement labels, and switch names) defined or
referenced in the text and to place SLT pointers for these symbols in the SB
entries. At the conclusion of FONE, the SB contains the hash index for all
names and constants; the hash index is used to access the appropriate entry in
the temporary spelling table. FIWO replaces the hash index in the SB by the
appropriate SLT index for control symbols, by the token descriptor NAME for
any other name, or by the token descriptor CNST for a constant.

Specialized algorithms are used to scan the SB for control symbols only.
These algorithms permit scanning to terminate as soon as possible in each
statement scanned, and only statements of types which are permitted to contain
control symbols are scanned. The analysis algorithms permit processing to be
further divided into two sub-processes: one for symbol declaration and one

21

B e 3

o

!

20K

40K

60K

100K

120K

140K

e

T e

K = 1000 octal

Load Module
LINKO
LINKI
LINKB
LINKC
LINKD
L INKCM
LINKS
LINKP
L INKM
LINK2
LINK3
LINKA
LINKS
L INK6

Figure 2.8.

CONTENTS

LINKO
User's Library
System Library
LINK) LINKCM
LINKB| LINKD|] LINKS [LINKP) LINK2 | LINK3 LINK4 | LINKS | LINK6
LINKC LINKM

Some utility COMMONs, JAVS-0, part of JAVS-1, -10, -11
JAVS-2A, JAVS-2 COMMONSs
JAVS-28, MAKTAB from JAVS-1

JAVS-2C
JAVS-20

Some COMMONs, part of JAVS-1, -10, -11
STSTOP from JAVS-]
STPROP from JAVS-10

JAVS-M
JAVS-3
JAVS-5
JAVS-7
JAVS-9
JAVS-6

22

JAVS Memory Layout

AN-5T1580

for symbol reference. All modules for a single START-TERM are first processed
for control symbol declaration; the same modules are then processed for con-
trol symbol references. Undeclared control symbols are treated as external
(to the START-TERM text) undefined symbols which are assumed to be declared in
a COMPOOL. This eliminates the need for processing a referenced COMPOOL.

FTWO contains two successive loops, each of which selects the modules in
the order encountered in the original source text. The first loop invokes
SYMDEF to capture the declared control symbols for a particular module. The
second loop invokes SYMREF to resolve references to control symbols and cap-
ture any undeclared control symbols referenced by the modules. SYMDEF and
SYMREF process all the entries in the SB for the designated module. FIWO con-~
trols substitution of the hash index in the SB by the SLT index through a pro-
cessing flag FLTOKEN which is set FALSE for the first loop and TRUE for the

second.

Scope of declaration and reference is handled by module nesting informa-
tion captured in the MDB during FONE processing. This information is added to
the spelling table together with a symbol category when a symbol is declared.
If more than one control symbol is declared for a particular spelling entry, a
new spelling entry is made and linked to the original entry. When a reference
to a control symbol is encountered, the information in the spelling table
(which is now a symbol table) is used to resolve the reference according to
symbol category, scope of reference, and scope of declaration.

2.2.5 JAVS2 Data Structures

The data structures in JAVS~2 are organized into a number of categories:

° DEFINE declarations which establish dimensions, types, and machine
dependencies

° Text buffers and descriptive data for text elements

° Processing flags to control analysis

] Error indicators and loop counts

° Temporary variables

° Tables managed by the Data Management Component

@ JAVSTEXT, Module, and statement information
o Symbol dictionary, including a hash table and spelling table
All declarations appear in the JAVS-2 COMPOOL except for local temporary vari-

ables. There are no preset values in the COMPOOL; instead, each constant used
in processing is declared in a DEFINE or is set during execution of FINIT.

23

R e

c——

” . ¥ B s = i oo
A e i s e A G MR <. ' 3 el R o

2.2.6 JAVS-2 Text Buffers and Descriptive Data

Source text being processed by JAVS-2 moves through a series of buffers
or workspaces in the course of transforming card lines to JAVS statement
blocks. An overview of this process is shown in Fig. 2.9.

GTCARD reads the source text a card line at a time from the input file,

places it in the input line workspace IS, and sets the number of characters in
IL. The input line pointer IP is initialized to the first character in IS and
is incremented as each character is drawn from IS by TGET. Whenever the line
is exhausted, TGET invokes GTCARD for the next line. If the end-of-file is
encountered by GTCARD, 1L is set to a large default value (e.g., 81).

TGET always moves the current input character into the external input
text workspace TS. If DIRECT code is being processed, each new line is moved
directly to the JAVS Statement Block. The type of input text character is set
to one of the following: TTEMPTY, TTCHAR, TTENDFILE, or TTENDLINE.

CGET interprets the input character in TS and converts it to an internal
JOVIAL sign CS. The type of internal JOVIAL sign is set to one of the follow-
ing: CTEMPTY, CTBLANK, CTLETTER, CTNUMERAL, CTSPECIAL, or CTOTHER. End-of-
line and end-of-file characters are included in the set of permitted values

for CS.

CBMOVE adds a character from CS into the basic JOVIAL element workspace
BS as directed by BGET. BGET also assigns the type of basic element BT to one
of the following: BTEMPTY, BTALPHABETIC, BTALPHANUMERIC, BTASIS, BTIDEOGRAM,
BTNUMBER, BTSPACE, BTTEXTBREAK, and BTUNKNOWN. If JOVIAL text is being pro-
cessed, BGET ignores end-of-line characters; if DIRECT text is being processed,
BGET recognizes end-of-line as a basic element.

BJMOVE adds a basic JOVIAL element from BS to the JOVIAL symbol JS. A
JOVIAL symbol consists of one or more basic elements. When processing a com-
ment or a string of characters in a textual literal, CIJMOVE adds each charac-
ter to JS from CS, bypassing the use of BS. JGETSYM and JGETCOM control the

construction of JS. The type of symbol JT is also set.

Text from JS is added to the JAVS Statement Block workspace by JSMOVE
and from there it ultimately goes into the data base. While processing a
DEFINE declaration, text from JS is added to the DEFINE descriptor workspace
DS by JAMOVE. Symbols of type JTNAME and JTCONSTANT are also entered into the

spelling workspace SS by JSAVE.

When expanding a DEFINE reference AGET replaces the referenced DEFINE
name in JS by the sequence of symbols previously saved in DS. Nested DEFINE
references are permitted, although recursion is not allowed.

S

N T

WORKSPACE DATA FLOW SYMBOLS IN SOFTWARE S
b3
=

g <
I~
5ooE B c
— (<) x w s b4
SOURCE DECK r = 3 8 E =2 E
— - a - (=) -
GTCARD
INPUT SOURCE LINE T T B IS L 1P IT N
/ /I’GET
EXTERNAL TEXT CHARACTER 0 s 1 ™ '
= CGET (JOVIAL)
(&)
&l »
INTERNAL JOVIAL SIGN 3| 2 0 5 @ cr
ad
| E C3MOVE
8l S~
=l =2
BASIC JOVIAL ELEMENT w=! (T B BL 8T
2%
58 AJMOVE
JOVIAL SYMBOL o el T s w @
/anovs
W
JAVS STATEMENT BLOCK { ‘ l lg s8
3
-
)
* -
DEFINE DESCRIPTION »—E:« $ o0s o op ON OF

DEFINE TOKEN —:-ﬂ AL AP AT AF
SPELLING ::-— S sL SP ST

Figure 2.9, Flow of Text Data

25

3 ACCEPTANCE TESTING

Formal acceptance testing had three distinct phases: a functional test,
several operational software tests, and path coverage tests. Prior to instal-
lation of the new syntax analyzer and the other modified components at RADC,
the JAVS-2 component underwent extensive debugging tests.

JAVS-2 was developed at GRC in Santa Barbara using the CDC JOVIAL J3
compiler. When each of the two processors [text recognition (JAVS2-C) and
analysis (JAVS2-D)] were designed and coded, they were executed with large
quantities of JOVIAL compiler-validation code. First, JAVS2-C was interfaced
with the syntax analysis driver and JAVS utility and data manager components.
This subset of the syntax analyzer was then tested for its proper functions,
such as breaking START-TERM sequences into modules, identifying JOVIAL symbols
and statements, expanding DEFINEs, etc. Output for this process came from
JAVS's capability of printing all internal permanent tables.

After JAVS-2C performed all its functions properly, JAVS-2D was designed,
coded, added to syntax analyzer subset, and tested the same way. Following
proper performance of both processors, interface and testing with the other
JAVS functional components was performed. Isolating and testing the software
in this manner provided speedy detection of errors. The operational version
of JAVS was used to obtain indented module listings and symbol cross refer-
ences as an aid in implementing the new version of the syntax analyzer.

A source input file was created which contained all JOVIAL J3 module
types, statements, control constructs and JAVS directives for usage as the
test object for the functional and path coverage tests. The functional test
was performed on the CDC 6400 to be used as the standard for the test on the
HIS 6180.

Transfer of the syntax analyzer and other modified components (structur-
al, instrumentation, and retesting assistance) to the HIS 6180 which uses the
JOVIAL JOCIT compiler required about 30 source line changes, some of which
were machine dependencies (e.g., word size in bits and characters).

3.1 FUNCTIONAL TEST

The purpose of the functional test was to demonstrate correct processing
of all JOVIAL J3 constructs, verify the reduced primary memory requirement,
and demonstrate all enhanced JAVS features.

For a variety of reasons, the new syntax analyzer was designed to per-
form a few operations differently than the former syntax analyzer. Some of
these operations are: (1) store only control symbols in the Svmbol Locator
Table (SLT), (2) parse labels on BEGIN and END statements as separdate state-
ments of type NULL, (3) do not distinguish (as far as statement type is con-
cerned) between an item and a table item, (4) parse comments as a single token,
(5) collect all comments which follow a JOVIAL statement (i.e., follow a §)
other than a BEGIN or END and store them as part of that statement, (6) store
a comment which follows a BEGIN or END as a separate statement of tyvpe COMT.

In addition to these differences, the new syntax analyzer removed all ot the

26

S ——

former restrictions listed in Sec. 1.2. Thus each of these specific design
changes were considered as areas for stress testing.

In order to demonstrate functional correctness with a minimal amount of
computer resources and printout, these procedures were followed:

1. Develop test object

~ Include at least one of each type of JOVIAL construct with the
least amount of duplication of types.

~ Include constructs that would invoke JAVS error processing but not
cause a fatal error.

~ Include JAVS computation directives to ensure proper parsing of
these constructs

as Generate JAVS Command Set
4 ~ Print syntax and structural tables following syntax and structural
analyses

- Perform full instrumentation to demonstrate proper expansion of
JAVS computation directives as well as structural. instrumentation.

ﬂ - Include commands which would invoke each JAVS overlay load module.

- Use a mixture of macro and standard commands.

3. Execute the testing using the job control card setup provided in
the JAVS User's Guidel

4, Analyze the output
- Verify all JOVIAL J3 module, statement, and control symbol types
- Verify correct generation of DD-paths
- Verify all generated JAVS error messages
- Verify proper instrumentation
- Verify correct execution of all enhancements
- Verify reduced primary core requirements
The test object consisted of approximately 600 JOVIAL source lines. The
JAVS report (which concludes all JAVS execution runs) in Fig. 3.1 summarizes

some of the characteristics of the test object. The JAVS command sequence,
after expansion into standard commands, is shown in Fig. 3.2.

27

TR R TR e

UOTIBWIOJU] Aleuming I[NPOK "[°¢ 2IAndT14

0 113 L9 0zZooni LisO i Ligo riv isiz ¢
esQIgT20 10x4e 3
SININOV g4 $32T000K aasn SQEOM QZEZZ1Y QUy71TIY 231V¥3gd §52000¢ 24¥Yn *QK
FRAR TS ET Xuvulrt $ANITT 1¥102 Is¥1 Sasrr 31vcC da1: FCAFTPE]
Lb50 40 NNE=-NOILIYLUEOJIgI JgvgEIl
g 14 1) (114 829 LT 1v202
0 o o020 o € 0 0 [} 1 ég " n 9cHM4 THIITII CZHIYIIY TMITZ QI S€
0 0 ono 0 3 0 z 2z 6l (14 S {4 oL 1¥3 O5dq dc73x1 2C44x1 ng
(] 0 ono 0 ' b b ' (14 (13 € 4 0L LIRF LV RS 4 1] c24IVa EF
] 0 oo 0 ' b T z nl (44 L] 3 oL 13 Xs1d ANTI42 AsTgd Z¢
0 0 osZ 3 € 1 4 9 9 (413 9S [4 $ € I92 Dois 2012 33 i€
[] (T 1] 0 3 [[13 (] 'S] L]) L 1¥3 Hs1d 2012 211> 0O¢
0 0 040 0 S 0 14 4 $9 sL € 93 (14 1879 ASTO TYNAIIXT TVNgTIx3 X33IcO1s €2
0 0 ouz z %Y [4 119 . ne 6L T ol 6L INI Op+id4 TYNRLIXYd TYNETIXT Jxidiea g2
0 0 og0 0 Lh 4 34 [€04 ani S (3 (1] 9044 TYKESIXT TVAQIIxXT TYREIIyT (2
0 0 cs0 0 3 0) b 6 L € ‘ 6 1619 Hs1d Yy YYio4z ad 92
[} 0 o210 0 S 3) 4 b 61 62 4 ' by 1x3 30142 Yy YY.04z Y gz
o 0 (o7 -] (] ' [) } 6 e € L 6 7301 4512 13 ¥35013 11 =2
Q [} cso) L} 3) T s [] 93 € 3 6 INT 3ScHe ¥3s012 v3:01 iz €2
(] [} ouo 0] ' 0)) 6 (91 € i 6 1919 3§11 Y3212 Y3501 03 Tt xX
0 0 ck0 [} S 3 0 {4 z zi 9l (] 1 (] INI Jcia ¥3€212 v3501) 2O iz o
) 0 0 oNd 0 L1} b g 1) 9 L 1] e [] Ty X3 Xs1d ¥2s012 ¥3scs vas.1d Oz
0 0 040 0 [} € 0 4 ! 6L [+ 4 € (4 %4 1201 451> 24721 T1IVASIy 29xve €.
(] (] o4l) sz, €2) €} zZ) 134 06z /]9 13 (993 8T D023 TIN1s3i1 TIN:SA: 9dIlel 9L
0o ° oxo b (24 2Y] t " (1) 00¢ (24] 114 TL 6€2 INI DJod44 T1¥1§31 TIVIc33 glilsl (i
4 0 0 Cit= 0 € € 3] z €L 904 [] [] €2 INT 2044 TTIVIs$3IL 11VISII mM3i-nC 9.
— 0o o0 (] 1} [} 0 0 (]) b 1} ni 0 0 0 7819 MHSTd 71V1$23 qIVIcA 72131 St
o) (TT] 0 S 3 0 3 ’ 43 L (] z zi IKI O0%4 11¥ISIl 1Ivis3y Ci:21 W
; m 0 0 oso0 0 S 3 14 19 3 (114 09¢€ 1] € ‘i 90M4 TI¥I§3IL 1TVISHL TIVITIL €U
§ >] 0 -1 §] 0]) 0] ' 14 0z €) 6 1201 ds1> L1442 W9D4axz €T44x2 2y
4 wu w [} 0 (T &) T Lo 6l 4 L [(144 L9€ oL (%4 {14} IKI D044 LOCEIYZ WUoc¥X3l 17222 1L
b ! [] os0 ¢ S b 0 b 3 L €2 € t 6 1879 AST) KWTO24¥A WU0Z2YT TTi4x1 0L
£t 4 m [} oo 0 |4 . 1) 14 1] e een L) (24 L 904¢ LT0IIXYT KU04IXT WOCH X2 €
b & 0 0 oso0 0 0 0 0 0 [(L] 00b 0 0 9 T442 14n03Xd 1dHOOYZ 1T4R0IX7 €
1 = 6 0 o0 0 0 0 0 0 0 "t 66z 0O 0 0 2044 ey Yy Yy L
&~ 0 (] ond 0 0 0 0 0 0 '14 oie 0 0 0 9cia EQOQOTAYL 9000SAYL EOO0SAYS 9
th N 9 0 (T34 (4 L] 3 0 4 z 12 (14 € l [INr Doids 123YT €000SAYL VEVEINYW §
= (] 0 $210 0 [] ' 0 b b (393 ozt 9 L] }14 6 IR Scde T3dYT £000SAYD H2112
Fe o 0 040 1§ - k1 € " ' s T3 LI - € U L 9042 12avl €000s.ve T1evt €
B - 0 0 ono 0 L] ’ 0 T 3 [} (2 € ! L Y 1919 Us1> %3738 13911 2728y 2
«@ “ 0 [} 0K0 ' 99 "l L L ol sEL 0Lz L Lt (14 0L 13 Scps4 181282 1791 181252 4
=) PR S S SR R e RS, e i A 00 i 0 050 0 0222 R i B M 05 SO
b M 429 102 3CCO 100 AT sATE $d4QQ $2IW@ §11S gWIS SAOZ SMIVE 2ZxT SlIWiS SrWls SAIT 24008 7aiy 3472 L F IS E “ON
W dW0> 33710 sWUY4 sa Q¥4CA 1SwId 53x3 qe0da 0w U ELE lxay amne «
mw **tS¥3573 WOLl2IEOS2Q IT1nCo~ NpOmY !

*rtendvdn gavl

.&‘ﬂ%‘%»w. WD OOARARES 'y o Topls o S g e ¥l Sl 0

Aty ¢

THIS PAGE TS BEST AV
FROM COFY Fuils

CREATE LIBXARY=TEST.

START,

BASIC,ZOMMENTS= ON,

Baslc,

FCR LIBRARY,

STRUCTURAL,

END FOR,

FOR LIBRARY,

PRINT,MODULE,

PRINT,SDB.

PRINT,SLT.

PEINT,STB.

PRINT,DDP,

PRINT,DDPATHS,

END FOR,

FOR LIBRARY,

INSTRUMENT,MODE=FULL,

INSTRUMENT,

END FOR.

PRINT, JAVSTEAT=TESTALL,INSTRUMEZNTED=ALL,
PRINT,JAVSTEXT=E)YPROGM,INSTRUMFNTED=ALL,
PRINT,JAVSTEXT=EXTERNAL,INSTRUMENTED=ALL,
A55IST,CROSSREF,JAVSTEXTREXTERNAL,
‘ASSIST.CROSSREF,LIBRARY,
JAVSTEXT=EXTERNAL.

FCR JAVSTEXT,

ASSIST,STATEMENTS.

END FOR,

DEPENDENCE,GROUP, LIBRARY,
DZPENDENCE,GROUP,AUXLIB.
DEPENDENCE, SUMMARY,

E3D.

Figure 3.2. JAVS Commands for Functional Test

29

i e

e & - T Tl s st o e & S

The report in Fig. 3.1 was used to verify recognition of all module
types. Statement type recognition was verified by analyzing the "STMT CLASS"
and "TYPE CODE" columns of the table printed in Fig. 3.3 for several modules
in the test object. Verification of control symbol recognition was performed
by analyzing SLT and STB tables for several modules in the test object, such
as those in Figs. 3.4(a) and (b).

DD-path generation was demonstrated by printing the DD-path table and
definition reports, shown in Figs. 3.5(a) and (b), for several modules.

Reduced core requirement was evident on the computer dayfile for the
functional test. Proper instrumentation and implementation of enhancements
was demonstrated by analyzing JAVS reports produced by the functional test
run. Comparison of execution time and secondary storage requirements between
JAVS with the new syntax analyzer and the former one was not possible in this
particular functional test, since the test object quickly produced a fatal er-
ror when the attempt was made to run with the former version of JAVS,)

Two errors stemming from the syntax analyzer were uncovered during the
functional test. One error was the improper number of elements being initial-
ized in an array. This would have been detected during debugging, except that
debugging took place using the non-overlay version of JAVS on the CDC 6400.
The extra elements being initialized were harmlessly resident in unused core.
The other error was caused by correct module classification for functions as
type "FUNC." The former syntax analyzer classified functions as '"PROC."

Thus, during structural analysis, modules of type FUNC were not recognized.
This was not detected before transfer to RADC because a function example had
not been included in the test object. These errors required only five source
line changes in the syntax and structural analyzers. The functional test was
repeated on the corrected JAVS execute (*H) file.

3.4 OPERATIONAL TESTS

The operational tests took the form of running a small computational
program (used by RADC for installation checkout), JAVS self-documentation
runs, and analysis of "foreign" JOVIAL code supplied by RADC.

The operational program's analysis helped provide data to compare com-
puter resource differences between the former and new versions of JAVS and
verify that the functional performance was the same.

JAVS documentation runs were made for each modified JAVS software com-
ponent. These components were: the syntax analyzer (JAVS-2), structural anal-
yzer (JAVS-3,-4), instrumentor (JAVS-5), and retesting assistant (JAVS-7).
Each documentation run produced the listings specified for computer documenta-
tion in the Statement of Work. This and the self-documentation runs generated
under the previous contract, together with the System Design and Implementa-
tion Manual.5 make up the complete computer program documentation for JAVS.
These runs provided additional data for comparing computer resources between
the former and new versions. i

30

P T = VT R 5% v el Rl e L ¥ St

uor3idridseg Juswalelg °g°¢ 2IndTg

D L L L L T T T T T e e

0 0 0 0 Sih £ Z¢ b W¥EL 82
0 0 0 0 ELn L LE 001 aNg L2
0 0b 0 0 E0n S o¢ 004 0109 92
9 0 £ 3 L8E (23 ¥4 001 lusy %4
S 0 0 0 Eng 6t 82z 0014 MSNI n2
0 L24 0 0 LZE Ll Lz 004 MS19 £
9 0 € } €0€ 6 92z 001 IuSY z2z
0 0b 0 0 €62 S SC 001 0109 L2
9 0 £ 8 (WA 4 L 0z 00t LiSY 0z
S 0 0 0 6€2 9l 51 001 MSNI 61
0 8z 0 0 (Y44 S 8L 001 Xzl9 81l
0 0z 0 0 L 9 L 002 az L
0 64 0 0 661 6 91 004 MS19 91
0 0z 0 0 681l S Si o0t 0109 St
0 Tt Q 0 8Lb S L1S Q04 (R deL.) " —
0 Sk 0 0 L9l 9 £l 002 ar £1 =3
0 82 0 0 LSl S 4 8 004 X3lo ZL
0 0 0 0 Lot S b 004 1019 b
9 0 € b (14} b 0L 001 LuSY 0L
3 0 0 0 E€Lb 9 6 001 lusy 6

0 0 0 0 604 4 8 0014 Nodg]

0 0 h l 104 L} L 001 T110R L

0 0 0 0 g8 8 9 b Wiall 9
0 0 0 0 69 8 S b Hall S
0 0 0 0 LS 6 L} 001 2048 n

0 0 0 0 Ln 4 £ b 141s €
0 0 0 0 Lz ot z 0 1W0D z
0 0 0 0 ¢ €l 9 0 ldIa i
4ld HiW 41d HINW Syd=-am s138Y1 X3ANI s¥d=am KaN 028 3302 ss¥13 ‘oN
-Y¥INI “4IINI T38V1 *oN gs 1axg Inls

< T811S1> I1ndou INTEYI ‘¢ 738YT> IXZISAVL ‘< 1911sl> 3T1adoW

ONIZISIT 8014I¥DS3T IRINIALYIS

o b

SYMBOL TABLE LISTING
HM2DULE <TSTLBL >, JAVSIEXT CLASBEL >, FARCNT MODULE <TSTLBL >

| ¥, Syns0L 1 2 3 " S 6 7 (] 9 10 11 12 13 14 15 16 1T 18 19 20 22
{ 1 TSTLBL 3 GLBL PAOC 0 o 900 0 00 0 0 0 o0 &
2 AAAAAAAL 1 LoCL LaBL 0 0 g5 08— 0h 00 0 0 0 0 7
3 ALABEL 1 LoCL LABL 0 o o ¢ 0 ¢ 0 0 o 0 10
L SNTCH 3 LoCL INSW 3 0 0@ 9 0.0 O 60 g e
S alyazl 1 loclL LABL 0 o 0 0 0 0 ¢ 0 0o 0 0o 22
) 6 CLaBEZL 1 LOCL LaBL 0 0 0o 0 o 0 o 0 o 0 0 22
1 7 CHOICE 3 LoCL INSW “ 0 o 0o 0 0 0 0 0o 0 0 24
‘ 8 pLasrl 1 LOCL LABL 0 0 0 o o 0 0 o o0 0 0 3§
| 9 LITTLE 3 CMEL Calt 0 0 0 0 0 9 ¢ 0 9 © g 12
{ 10 IlaB:l 3 CrPL CaATs 0 0 0 0 o 0 o 0 o 0 0 18
1}
|
(a) |
|
STMBOL LOCATIOXK TABLE LISTING
MODULE <TSTLBL >, JAVYSIEXT CL2BEL >, PARENT MODULE <TSTLBL)
¥0, SyMaoL MODULE JAVSTEXT STB rIas? LAST FUNBER
1 TSTLEL TSTLAL LABYL 1 “ 1 {] L] -
3 AAAAAAAA TSTLAL LASEL 2 7 7 1 (] [}
k] ALABEL TsTLel L)BEL 3 19 26 [10 10
L SWICH TSTLLL Ladel 4 16 19 2 16 16
) BLABIL TSTLIL LABEL S 18 24 e 15 15
(] CLABEL TSTLSL L1285l 6 14 24 3 14 14
7 CHOICE TSTLEL LABEL 7 23 24 2 19 19
] DlaBIL TSTLIL LABFL 8 24 25 3 20 20
9 LA3ELE LABELE LABEL 1 11 11] 11 1"
10 LITTLE TSTLLL LABEL 9 12 19 2 12 12
11 ZLABZL TsTL3L LABZL 10 18 18) 18 AL
(b)

Figure 3.4. Control Symbol Description

i e 2 e R S

DD-path generation was demonstrated by printing the DD-path table
and definition reports, shown in Figs. 3.5(a) and (b), for several modules.

DD=PATH TABLE LISTING

MODULZ <TSTLBL >, JAVSTEXT <LABEL >, PARENT MODULE <TSTLBL >

. 1sT END PRD TOP PAR X NO, DS
MO, ST ST EDG cOM IND LVL pp TST ST, INDEX STATEMENTS ON DD=FPATH
1 4 28 7 0 1 0 0 0 8 1 4 7 8 9 10 11 12 28
2 13 23 3 0 1 0 0 0 [9 13 14 22 23
3 13 28 7 0 2 0 0 0 8 13 13 15 20 21 10 11 12 28
4 16 28) 0 1 0 0 0 6 21 16 19 10 11 12 28
8 16 28 7 0 2 0 0 0 8 27 16 19 20 21 10 11 12 28
6 16 28 2 0 3 0 0 0 3 35 16 19 28
7 16 17 2 0 u 0 0 0 3 38 16 19 17
8 17 28 2 0 1 0 0 0 3. Wy 17 18 28
9 17 28 6 0 2 0 0 0 7 44 17 20 21 10 11 12 28
10 23 28 7 0 1 0 0 0 8- 51 23 24 25 26 10 11 412 28
11 23 28 7 0 2 0 0 0 8 59 23 24 20 29 10 11 12 28
12 23 23 3 0 3 0 0 0 u 67 23 24 22 23
13 23 28 7 0 n 0 0 0 8 71 23 24 25 26 19 11 12 28
14 23 28 T 0 5 0 0 0 8 79 23 24 25 26 10 11 12 28

e e L el L el el b ettt LT L Pl P L P L DD T T L el L AL L T T

(a)

EODULE DD=PATH DEFINITICWN LISTING
RODULE <TSTLBL >, JAVSTEXT <LABEL >, PABZFT MODULEZ <TSTLBL >

50, 1VL STATZMENT OD~PATHS GENERATED
3o sTartT
& (0) pROC TSTLBL (IDUNMNY) §
*® DD=PATH <« IS PROCEDURE ENTIRY
oL we
LN I? INDX 20 3 $
*¢ DD=PATM 2 IS TRUE BRANCH
*% DD=PATH 3 IS FALSZ BRANCH
v e o e
1¢C1N GOTO SVICK ($ InpX §) ¢
*® DD=PATN 4 IS SWITCK OUTWAY 1
*® DD=PATH 5 IS SWITCK QUTWAY 2
*® DD=-PATH & IS SWITCH OQUTWAY 3
#® DD=PATH 7 IS SWITCN QUTWAT)
17 € 1) IP InpX 20 5 ¢
*® DD=PATN 8 IS TRUE BRANCH
®® DD-PATN 9 IS FALSE BRANCK
O
19 (1) SWITCN SWICK = (ALABEL , BLABEL , LITTLE) ¢
..
2 (1) GOTO CHMCICE ($ INDX + 1 8) ¢
*® DD=PATK 10 IS SWITCN OUTWAY]
¢ DDePATN 11 IS SVWITCH OUTWAY 2
*® pp=PATH 12 IS SWITCN OUTWAY 3
®® DD=PATN 13 IS SWITCN OUTINAY .
®® pD=PATK t4 IS SWITCK QUTNAY)

LI B SWITCN cNOIcE = (DLADEL , BLABEL , CLABEL , pDLABEL) §

2000 1tIan's

(b)

Figure 3.5. DD-path Information

33

R

’ . R S —— . oty A O
I SR G e IR e by s

Additional operational tests were made on JOVIAL source supplied by
RADC. In these tests, the test objects were subsets of programs. The test
objects were processed throupgh instrumentation and the instrumented files
passed to the JOCIT compiler. At this stage, instrumentation errors became
evident. The errors were due to the presence of long tokens (comments, in ¢
this case) which continued onto the next line. The problem arose only in IF ‘ ,
statements, where the instrumented control keyword changes to an 1FEITH. | 4
| Along this same line of proper extraction of source, an error in building a 1
| sotrce line tor indented printing was detected. Both errors required a very
select set of circumstances to manifest themselves. The new syntax analyzer's
characteristic of parsing a comment as a single token was the catalyst.

These errors were corrected, the operational tests rerun with no com=
piler errors, and the modified JAVS component was redocumented by JAVS,

33 PATH COVERAGE TESTS

The path coverage goal was to determine what parts of the syntax analy-
zer had not yvet been exercised by a data set which should represent a full
range of JOVIAL syntax. Any control paths not executed were to be analyzed.

The self=documentation output for JAVS-2 was reviewed to help choose the
test objects. The syntax analyzer (JAVS-2) consists of 121 modules in 20
START=-TERM sequences, including the COMPOOL. Many of these START-TERMs are
low=level routines which contain only one to three DD-paths and arve invoked
many times. The computer and human resources required in analyzing these
routines, the inconvenience of adding the JOCIT-required control cards to
cach instrumented START-TERM sequence, and the knowledge that the higher level
JAVS-2C and JAVS-2D subcomponer, invoke most of the low-level routines were
the justifications for choosing J\VS2-C and JAVS-2D as test objects.

Figure 3.6 shows the overall flow of activities performed to obtain path
coverage results for the two subcomponents. The first step in obtaining path
coverage results was to build a database library and instrument JAVS2-C. Both
test objects were put on the database library for efficiency purposes. Each

% software subcomponent was then tested separately since JAVS2-C and JAVS2-D are
functionally distinct and do not reside in core at the same time.

The 600-1ine source program used in the functional test was to be the
JOVIAL program used as one of the two inputs to the test execution phase. The
other input was the JAVS command sct:

CREATE LIBRARY = TEST.
START.
BASIC.

END.

The tull source program required too much computer time and AUDIT file space
for realistic analysis of JAVS=2C. JAVS-2C performs syntax analysis at the

34

JAVS2-C
JAVS2-D

INSTRUMENTED

SOURCE
- DATA
JAVS EneE
BUILD LIBRARY
PROBE, JAVS2-C
COMMANDS
INSTRUMENTED
JAVS2-C
COMPILER s — i o o e i s
b
REMAINDER
OF JAVS s LOADER
BINARIES :
|
!
BASIC — — - TEST
COMMAND EXECUTION |
i
I i |
SOURCE I L Y
PROGRAM [_
OUTPUT s

ACTIVITIES FOR JAVS2-C ———a
ACTIVITIES FOR JAVS2-D — — —=

Figure 3.6.

35

TEST
COMMANDS

COVERAGE
REPORTS

Flow Diagram of Path Coverage Tests

AN-52311

character and symbol level and thus executes slowly in its instrumented form.
To reduce resource requirements, the source program was cut to 200 lines,
leaving out such JOVIAL constructs as item switch, function, input parameter,
nested DEFINE, exponentiation, and octal constant.

JAVS analysis of the two execution trace files, generated from using
the 200-line source program as data, showed that an overall 697% of the 1,203
DD-paths in JAVS-2C and JAVS2-D were exercised. The overall statement execu-
tion coverage was 78% out of 3,055 executable statements (3,622 total source
statements) .

During instrumentation, the user specifies a testcase boundary via a
JAVS command. For the two coverage tests, the boundary was placed in the
driver modules for each subcomponent. This caused the execution of each
START-TERM sequence to be a separate testcase. Thus, the effects of specific
JOVIAL statement types could be analyzed in terms of what DD-paths were or
were not hit. Judicious testcase boundary definition can aid in the process
of modifying input data for subsequent testing.

The source code for the first testcase (i.e., the START-TERM source in-
put) is shown in Fig. 3.7. This listing was part of the output generated dur-
ing the test execution phase of the two coverage tests. The modules invoked
and DD-paths exercised by JAVS' processing of this small START-TERM sequence
are summarized in Figs. 3.8(a) and (b). Since subcomponent JAVS-2C, identi-
fied as the J2C JAVSTEXT name in Fig. 3.8(a), is the text recognition proces-
sor, it repeatedly invokes the character analysis modules (CGET, CSIGN, CTYPE,
and TGET). JAVS-2C handles the flow of text data shown in Fig. 2.9, starting
with extraction from the input source line into characters, through symbol and
statement recognition and building of text-related tables.

After al’ input START-TERM sequences were processed, the cumulative sum-
mary results showed 737% DD-path coverage of the invoked JAVS-2C modules. Only
JGETFACT (containing 15 DD-paths) was not invoked during the test. JGETFACT
adds the scale factor to the current JOVIAL symbol; there were no scale fac-
tors in the input source data.

Of the JAVS-2D modules invoked during processing of the first START-TERM
sequence, Fig. 3.8(b) shows that 64% of the DD-paths were exercised. The
JAVS-2D cumulative results from processing the complete 200-line input source
are shown in Fig. 3.9. The uninvoked modules (10 for JAVS-2D), are reported
by JAVS following the summary results. In this test the uninvoked modules
dealt with JOVIAL statement types which were not present in the test coverage
input source but which had been present in the complete input source used for
the functional test.

The summary DD-path coverage report is intended to provide a concise
overall picture of the level of exercise attained by the program's execution
of test data. It is usually the first path coverage report analyzed by the
tester and focusses his attention on modules that were not invoked at all or
those with poor path coverage.

36

g

S o W)

. " o " ., - .,-1»'«‘:"M’ T,

e°, JAVSTEXT LABEL COMPUTE (CorPoL)°* TesST 2 1

1 ** TEST CASE 10 TEST LABEL PROBLEYS °° TEST 3 2

i START TzsT 4 3

; PROC TSTLBL (IDUKMY)S TEST S M

ITEN ICUMMY I 24 S$ TEST 6 3

ITENM INDX I 2u S$ TEST 7 6

AAAAAAAAAAA, BEGIN TSST 8 7

INDX = =1$ TEST 9 8

! ALABEL, T%sT 10 9

! INDX = THDX+1$ TCST 14 10

1 GoTO LABELES TSST 12 11
i GoTO LITTLES TEST 13 12)

Ir INDX EQ 3§ TEST 14 13

GOTO CLABELS TEST 15 14

GOTO BLABFLS TEST 16 15

GOTO SWTCH (SINDXS) § TEST 17 16

IF INDX EQ 5§ TSST 18 17

GOTO ELABELS TEST 19 18

SWITCH SWTCH = (ALABEL,BLABEL,LITTLE)S TCST 20 19

BLABEL, TEST 21 20

INDX = INDX+1$ TEST 22 21

CLOSEZ LABELE § TEST 23 22

BEGIN TEST 24 23

GOTO CLABELS TZST 25 24

END TEST 26 25

GOTO ALABELS TEST 217 26

CLABEL. TSST 28 27

j INDX = ~1$ TEST 29 28

3 GOTO CHOICE (SINDX+1$)$ TEST 30 29

% SWITCK CHOICE = (DLABEL.BLABELGCLABIL,DLABEL)S TSST 31 30

¥ DLABEL, TEST 32 31

i INDX = INDX+1$ T8ST 3 32

] GOTO ALABELS TCST 34 33

J END TEST 39 34

Q TERNS rZST 36 35S

(41

i NODULES DEFINED IN TEXT
1 TSTLBL (LABEL)
d LABELE (LABEL)}

abioninc e A

Figure 3.7. Source Code for Testcase 1

37

T P

a s ——————— A —

(T @se2183]))Z-SAV[103J 310day Lieummng 33e13A0) Yied “(B)g'c 31nZ1j

e pvme g gues

b4 1
({14 “ (1] b4 L6 evses 117
1
Ci \ b 4 (4} (4314 1 of atr 13%1
L) T £l ” 1 (14 22r amgigz:is
111) PO]] ot 1 16 oTr Atriass
°] T 0 0 1 st oz wrapie
.) I of ot 1] Jee 3398
13) I 0N 143 g st ozr aN1$
1) b 1 €l 143 1 St Jer ewMzigiid
14}) : A 143 b4 114 Jr %3eicIiM
b 1 1] 111 b4 1 aze
b 1 0 1 1 t Jze
) T 9 4 1 € ozr
) b ST} ' 1 S 3z isSnrsizv
) b 4 004 ' J i 220 aN1s
4 b S 1Y " z € e Leaw
3 2 4 of t b4 (] e xsres
) b ST | b 1 s e 1541
) 4 ot (11 1 S 2zr b1 R4
s b b3 (1] L 4 14} oz 279Mse
) b4 (1] Y14 1 114 oze qwaLisre
= 1) } b 4 %3 (%1 1 " Sz 2405
(]) T 9 (" 1 "ot 276 M33272
» 1 0 0 1] 2r arase
) I ¢ o 1 141 oy dyxz:iace
04 [} 1 111] b4 11 orr Weapac
(13) b S 41 414 b4 (1} Sre geof e
L1 b 1t €04 1 6 Jzr calir el
®] I 0 0 0 1 € oze qacAve
(4) 2 %4 € 113 b 4 L1 Jzr L+
] ' 1 0 (] (] 1 € o
[}) b4] 0 1] 1 £ e
0 \ b 4] 0 0 T " aze
0] 1 0 0 0 b 4 € Jee
|) I o00L ‘ (1314 1 Y oze
L] ' b S 1 . (114 b [] =144
0) 1 (] 0 ¢ 1 t orr
° ') 0 0 1 ‘ aer
14 [} I 1 14 14 113 ¢ L aer
143 \ 1 oL 143 (YA 14 1 (33 144
4) T 0§ t (£41 1 " ozr
L \ b4 €9 [3 L 1 133 =144
11] ’ b S 14 9 152 2 L oz
(] \ b ¢ [} Q L] 1 € oL
9 b 1 se 9) ¢ 1 L ar
3Cv83402 G25¥IAYRL SHOTIVO0ARZ 1523 40 I 25Vi240D Q2§¢7AVE: SNOIlY¥JOANMR I SHi1vdean F LR
1m0 3¢ ghlvg=-0q 40 ¢aeuNge waduAr 1 1N2d wle gHlva=00a 40 ¥ieuad @ 40 e2eMnm LYILgEaAC
r 1 I
LaveuNAs 3ATlYTAMAD I 21222 S$INI --1RYNENDRDESTI BL/62/9¢ i 1 2531
|
eL/82/%¢ 2111 210a¥ IMI 40 A273711003%7 $3177Q0M QILXIDILS 1Y
(s)agved ¢ "1AYEKAS Mlvd-Qo w07 IXodat save

S W—

T

(T @S®e213sd1) (z-SAV[103 3ioday Axeumng a8ei12a0) yied °(q)g8°¢ 2andTg

emecdoomon

b ¢ I
L1 602 I "9 602 1 LT43 o 11Y gesee
T 1
1) 143 ’ b 4 1] (1} 143 I (44 aze 22¢V18
[114 b 1 LL L [1 1 6 aze a3ul3s
€ 143) b 4 00t € 43 I € ozr 1708338
L S) I Le (1 S T 6 azc 148v733%
0 0) I 0 0 0 1 [14 dze IVSCEL]
143 [3 T s 4} 4 1 12 oz MSHIslY
"l 4 3 I 9 nt 14 b4 (4 azc x3asydad
S (13 ’ b4 73 S ot 1 L azr 0109432
ot (] 3 b 7 ot 8 b4 € eze 2¥233%
€ [} b 1 09 € 3 1 S aze 7501243
ot 92) I 9L oL (14 1 €L azr dgHoIVMW
ot (14 3 I o0t ot L14 b 04 aze 115201
(] 14 3 I 08 (] 4 I S dze EEFLTS
[$ b 1 ‘L S S b4 L azr 1:=avidaag
[} (<] 1 ot L] 4 1 €1 azr k211439
" 4 b I LS L] z b4 L azr assrdaa
") b A n 3 1 L aze 3so1>43q
(43 te 3 b 4 9 €t 43 b4 St ezr 433V18
(] z) 1 0e (] 4 I S Qe FEEL P
S 98 ’ T 001 S 981 1 S aze NY3iau0l
3 (14 3 z oM) (14 1 ' azer 1pdgvYal
) (1] Y T 001 3 €n 1 l azr 139:¥32
€ 13 b 1 00L € (9% 1 € azr avze1s
€ §04) I 004 £ (1% b ¢ € azr mnavis
14 4% 3 T on [4 143 1 S aqze nravis
Y ") T o0l ' h9 b4 i aze 1a9v1S
€ X ' I 004 £ Y 1 € qze avziis
T LE [} I (14 14 LE I L aze 03si13s
L) Le [} 1 (1] n L€ I S Qze 1v¥oi3s
S 1 1% 4 3 b O Y St 1% 4 I (%4 azer NoliX3w
€ (] 3 b S 1 € (] I 9 qQzr MzdcdoM
(14 b) 1 L1] 0z 1) b4 13 aze vl
€ b) T 09 €]} 1 S aze 11suN1l
9)) b S | 9 3 1 L aQzr ondd
2cv1240d @2su3aVl SHOIIVI0ANT S$15323 20 I 395YN2A0D G7S¥ZAYEI SNOIIVOOARI I SHIvd-0a anYN IHYN
3413 w4 sH1va-aa 20 ¥zune wzeuAR T IN3D ¥AL gNlva-aq 40 ¥aeuaX Y 20 ¥3IGEAN IXIISAVL F1nq0M
b4 T
TeYRNNNNS ZAXIIVTITAWNANDSD w 1821 SIH3I -=xRVYHNARDST 8L/4L/7L0 S s
1

(s)asvd ¢

w/rL/L0 2124 110AY SK1 MO QZWZIMNOONZ SIInAOM GZIi1734S 19V

*ZNYUNNS Hlvd-0Q €0 1¥042X saVP

39

W NG

RS

x

(L @se23183]) (Z-SAVL 103 2310day Aieumng a3e12A0) YiBd ‘6°¢ 2IndT4g

B e

T 1
113 1114 b 4 Lh 9 I L1413 es 11V o
1 1
6L (1] 9 b 1 | 6 [4 1 144 qaze FELAFE]
3 'S 9 T 0 0 0 1 6 aze 223118
€ (11} 9 1 (11 € 4 > ¢ € azr 110x43¢
L 6 9 T 0 0 0 b 6 azr 12evyiad
9l z 9 I o 0 0 1 82 aze Adrigd
zi € 9 r o [0 T 12 Qzr reardai
" € 9 b 0 0 1 %4 azr xaetrdgd
S L1} 9 b g 0 0 0 I L azr 010933¢
i b LS 9 T 0 0 0 1 €L azr axzzu
5 € € 9 b4 0 0 0 " S azr 3s01333%
=3 b % 9 T 0 0 0 1 €L azr dSHolyM
WM oL (L} 9 T 0 0 0 ¢ oL azr 115501
P (] z 9 T 00 " ' 1 S ozt 217r41S
= S 6 9 : S 0 0 1 L aze 13v1i1q
b " (14 9 T o0 0 0 I €L ger Halriza
umw . € 9 I 0 0 0 1 L qzr esspiza
s » £ 9 T o0 [0 1 L «2r 35013230
A € 11 9 T €5 8 3 1 St aze a4qvis
i " 143 9 X (1] n) & S azer FRELTEY
£ s (141} 9 1 09 € 9 4 S azr nviiagvol
] VEL 9 T 0 0 0 1 L azr lndrxal
’ e 9 I 001 b z 1 3 azr 129:x3l
€ 24 9 r o 0 0 b¢ € azr av241s
€ $S9] T 99 z 9 1 € azr 2nivis
L 961} 9 1 on 14 T 4 S azr NIgv:s
] 96¢ 9 > § 001 t " 3 L aze 135v1S
€ %4 9 I 0 0 0 b4 £ azr &v211S
["w 9 g 0 0 0 1 L azr 81513S
" oL 9 4 (] 0 0 S azr 1¥513S
L nsel 9 T LS 143 9 1 %4 aze Nolrxaw
9 nZ 9 1 0§ € z 4 9 azr Ngdp0Q0=s
114 Lz 9 b ¢ 0 0 0 1 LE azr oL
€ Lt 9 1 0 0 0 1 S azr 19S8Nt
9] 9 T 1S L] i b4 L aze onrd
coe™ . - - Rt et . e
22v81402 QaSUZAVEL SNOIIVOOARX §1S2I 40 T 29YEZAOD @ZS47AVEL SNOIIVOO0ANI I SHIvE=-aq tUAT IHYN
1135 w12 sN1vg-aq 40 ¥zaung gzeuAN T 187D wadL sHiva-aa 40 27840 1 40 ¥3dkAR IYIISAYL RB10Q0W
elecas come - caw —ee - ————- ——- caman
b4 1
L e vYHNHNS a4 VvVTOHKRAD T 252zt S$IRI =¥ YWRNEONSI 8L/ /L0 L €2
T 1

cabaea D L e et L T e e e e e et et

40

Subsequent to the summary report, the tester may want to review the
single module reports which show the number of executions of each DD-path and
each statement (separate reports) accumulated from the entire test input data,
along with the report showing DD-paths .ot executed during each separate test
case for all invoked modules. Additional execution performance information
can be obtained by requesting module invocation and/or DD-path tracing re-
ports, a report showing execution time spent in each module during the test,
and reports showing the DD-path execution count by module and testcase.

To demonstrate the usage of JAVS path coverage reports, consider the
following analysis. The DD-path summary for JAVS-2D in Fig. 3.9 showed that
module MAKE achieved 807% path coverage and has the most DD-paths in the sub-
component. The functional description for MAKE states that it creates the
symbol table and symbol locator table entries (control symbols only) of desig-
nated symbol types. A partial listing of the cumulative DD-path coverage re-
sults is shown in Fig. 3.10. The cumulative execution counts are given in
the far right column. In the partial listing, five DD-paths were never exer-
cised. This report includes the first statement of each DD-path and shows
the importance of including an informative comment at decision points. Re-
testing can be particularly aided when comments refer to characteristics of
the input data.

The DD-path coverage listing should be analyzed along with a functional
description of the module, a listing of the input data used (identified by
testcase boundaries), the program's execution output, and the JAVS '"not hit"
and statement coverage reports.

For the JAVS-2D test, the 'mot hit" report in Fig. 3.11 shows which DD-
paths in module MAKE were not executed by the testcases. Paths 4, 10, 12, 17,
20 and 27 were never hit. Each of these paths should be analyzed to determine
if they can be executed and whether additional test data should be derived.

DD-path 4 depends upon the current module in the input data being a
COMPOOL. A COMPOOL was provided, but it did not contain any control symbols
(such as a PROC declaration). Thus the addition of a PROC declaration to the
COMPOOL should execute Path 4.

Proper analysis of DD-path 10 requires review of the statement coverage
(or other JAVS module) listing in Fig. 3.12 and the functional description
document. This review shows that DD-path 10 cannot be executed since the con-
ditions leading up to path 10 are (1) the symbol is global (DD-path 2 is
true), (2) the module is not a COMPOOL (DD-paths 5 and 6 are true), and (3)
the symbol is being referenced, not declared (DD-patii 9 is true).

DD-path 12 is also an example of a DD-path which cannot be hit. This
one, however, can be analyzed merely by looking at Paths 2, 3, and 11, 12, at
statements 16 and 32, respectively. If FLLOCAL equals 0, then DD-path 2 is
true, and neither paths 11 or 12 will be executed. If FLLOCAL is not 0, then
DD-paths 3 and 11 will be executed. In neither case will Path 12 be hit.

The last two untested paths in Fig. 3.10 deal with control symbols in
formal parameter lists. The two general types of JOVIAL parameters allowed

41

e e —— T T——

IAVW 2INPOK 103 Jiaoday adeaaao) yied-qq jo Burasy] [eIIIed °‘Q['f 2in314g

e 0 NONYEE ISIVZ ST 0Z MHIVd-AQ o,
1 HORYER 208D ST 6) HIV3-QQ o»
,,0213UVEvE Inazno,. ¢ T 02 -4um~ ~m-m (L 1 oS
' WONYEE 251V SI 8b HIVd-aQ e
e 0 HONYEG Z0NI ST Lb MNH1Vd=aQd s
».8232UVEYE lp4aaI,. $ | 01 -4mm- uugw (v) oS
' WONYNE 251V ST 94 -HIVA-QQ o4
" HORYHQ 204Y SI Sb HIVA-aQd s
. UIIINVEYS TYNEOI IoM,. § O 02 8Yd1d HIIZ4I (L) 9
Rl
" NONVEE 251V ST WL HIV-aQ o6
Pt HORYEE 204l ST €4 HIVA=AQ oo
$ 002 (81 $) Tadu Guv (Tdud)He OX ($ Z $) s@au J4I (v Y €
asa (L) o€
. . . .
e 0 HONY4E 251VZ ST Z) H1IVd-ad 6
z HONY¥@ 204l SI bb HIVA-QQ es
$ 0 ON T¥D0114d 4140 (L) 2€
. - . .
a1 (z v of
. . - -
0%3 (€ g2
LI
.0 NONYEE ZS1V2 ST O0) M1VA-QQ &8 -
L HOAYER 2033 ST 6 HIVA-Ad o -
i ..8100202128,. $ | 02 X0l IIM0 (e) 92
s in e
w L MONYEE 3STYL ST 8 KHIVE-Ad o6
g ' HORYEd 3N4Z ST L HIV4-QQ es
: .+$HOIIVIV1IZA.. § 0 0F 0114 MII3dl (€) aZ
i
$ $) HOAYEE 2043 ST 9 HIVA-QQ oo
- $ 4 4100 (z 9 22
m. . e . .
: st WONYYE 3ST¥L ST § Hivd-ad
3 o 0 HORVHd 2041 ST & HIVd-AQ o
¥ | $ (T4aud)Hn D7 (¢ T &) SEAN H1l3JI (z1re
11 NONYHG 2S1Y2 ST € NiVvd-aq :
11} HOHYed 2041 ST 2 HIVd-aq
$ 0 02 1¥2011d HIIzal () 9
(t LEI%T 2¥nAZ3044 ST L HIVA-QQ e
,.QIT4I023s 1421 20 T0GHXS ¥ 2A¥W.. $ (2dXIIS) ZAYW D0md oy 4
Tove1a05 a31Y¥INZ9 SHIvd-aq INIWALVIS A1 *Ox
< OAll> 21nQ0W 1RIEVE °¢ Qze> 1XZISAVE °< IAYH> 3Tnd0M

ONILISIT Z9VEIA0)d WIVd-QQ 3Tad0N ¥

SITNPON AZ-SAVL UT paindaxy 3ou syjed-qq Jo SUTISTT TeIIIed ‘[I'¢ 2ind1g

L T T T e T Ty

8 LV 9 6 b 4 h b 4 IINR loa 1v10l 1
I T1TVY I 8L/ML/LO L asvo 1
LT 8L LL 9 SL €L 6 0 9 I 6 I 8LYLL/(LO 9 asvo 1
b Lt 9 6 9 9 r 9 I 8L/LL/(0 S 2Svo 1
8L LL 9 6 9 9 I 9 I 8L/LL/ (0) asvys> 1
b2 8L LL 9L S EL 6 : T 8L/VL/L0 € asvo 1
0L LL 9 6 8 9 I 9 T 8L/LL/LO z asvo 1
8L Lt 9 6 8 9 b S I 8L/LL/L0 i asvo 1 qzr xolrxam
I T1TVY 1 8L/LL/LO L asvo 1
9 L] € I 3 I 8L/VL/L0 9 asvo r
9 € I [4 I 8L/VL/(O S as¥a
S "y XK I 8L/bL/¢0 " asyo 1
9 n £ T € T 8L/LL/L0 € asvo 1
9 € r 2 I 8L/LL/¢0 4 as¥o ¥
9 & € . € 1 8L/VL/L0 ‘ isvd> 1 Qzr wN3doQo¥
- - -owe - -- S N P MBS - - - -
LT 0T Ly TV O0L 0 I 9 1 1IN Ion 1v401 T
I T1TVY I 8L/LL/L0 L asvy 1
I T1TY¥ 1 8L/01/7L0 9 asyo 1
LT LT OZ 6L @1 LL 9L TL OL I oL T 8L/LL/(0 S asvo 1
I T1TVY I 8L/LL/(L0 0 isvo 1
I T1TVY I 8L/WL/LO € asvo r
o0t LT O Ly TV OV » T @ T 8L/LL/L0 z asv> *
0C LT 1T OCT 6L 8L LL 9L ZL OL I L T 8L/LL/L0 3 asys 1 aze AN
L I 4 b S 4 1 IIK ION 7V10I b¢
I T1TVY 1 8L/LL/O L asvar 1
I T1VY 1 8L/L4/L0 9 asvo r
LI 4 r T BL/LL/L0 [asvo 1
I T1TVY 1 8L/LL/L0 n asva 1
I T1TVY 1 8L/LL/L0 € asyo
L) z I z T 8L/4L/¢0 14 asvo 1
8 ¢ ¥ T I 8L/bV/L0 ! IsY> 1 aze 11synr1l
€ I L I IIN Lod 7vi0l £
I T1TVY 1 8L/LL/L0 L asvo 1
9 n ¢ T € T 8L/LL/L0 9 asvo
€ 1 3 X 8L/vi/L0 1 asvo 1t
9 L] € I € I 8L/LL/L0 L] asvo 1
9 n ¢ Y € I 8L/VL/L0 € asvo 1
€ T 1 T 8L/LL/L0 T 2SYDd 3
£ b4 3 I 8L/LL/L0 i 1svy 1 aze oA1d
; 1 ROTIVOTIILINZAL T N Ny
G32003X2 208 SNIVS ROISIDIQ~01=N0X§I02¢ 10 3ISIT I 1833 I IXJLSAVC 31nqom
/ML /L0 (S)IsYd ¢ *@21N53xd ION SHIvd-0Q ¥OZ INOdZ¥ SavVe

43

S

TV 2TNPOW 10j 28BI8A0) IUBW23IBIS JO gurisT] [RIIABR4 “CZI°¢ 2An314

(84 a2
¢ an3
. ¢ (€410)ke = (8 9Z §) sais
‘ n1o19
3 ({14) L.UglaUvEvd 108100, 8 T 02 ¥vad 4I
« 0 an1
.0 $ (€4sIjun = (8 8Z §) Seis
« 0 n1s1c
180 3 (0 =L) ,.0310uvevd 1naaI,. $ ¢ 07 ¥Avd1l 110
114 cul
ST $ (Jun = (¢ 92 §) SEi°
1 14 X103
1342 124 (9 =54) ,,0222WYAYE 1Yugod 10N, . $ O 07 Evdd H11341
134 8 (6 (L §) regM = (S 52 §) 184S
£t $ (s i€ §) seaW = (S €7 &) SE1S
34 $ (¢ 0f §) sagW = ($ ZZ §) S3iS
134 ¢ 1SAoMON = (S 4T $) 18.S
(34 $ 34115 = (§ T §) snls
() cd3
] ,.0.310000 $T 315 ISYIZ IUOSSY.. $ (8 Li 8) I90K = (s 4 8) 1804
6 i 132
it 34 b6) e 002 (s 1 8) TEAW QHY (TIud)Kn Cr (§ T 8) §d0d 4I
134 aua
s CK3
Th $ (7507)Hn = ($) §) 5315
T N1938 ?
d180 Th sy =k) $ 0 Or TY20114 410
3 LTT i
s ol ¥
st axa =
13 a41
L ¢ (T4ud)um = ($ | §) sels
L (ot) ..S7o878742%,. § | 01 x0I1d I14d0
L} ¢ (1819)un = ($ L 8) Sels
S (¢ ~L) L. SA0T1VEY1330,. ¢ O 07 40174 Hirail
(1) FREET
s 9) $ 4 41
« 0 gal
«.0 ¢ (14u3)Hn = ($ L 8) sais
« 0 w1018
1141 st (s =0) ¢ (14ud)¥n 07 (8 T §) sd04 KiIddl
13 k1928
1112 134 113) ¢ 0 03 1vJ011d #1134l
34 $ L ¢ 201Sk0E = ($ 0 ¢} IRIS
24 § (5 % &) Ie2u = (§ g ¢ 1175
Lz $ 1 % (¢ L1 8) 78QK = ($ Ly 8) 1eck
X 4 1 o (8 ni &) 180k = (S % &) Iad¥
L $ (6 cc &) sedi, = ($ 5 §) S11S
14 $ (526 §) SeC. = (8§ » §) 8IS
144 $ (5 LE §) Sedk = ($ £ 8) SIS
134 $ ($ 0C §) sadL = I8 z 8) si1f
34 ¢ Uss) (o v * a8 33Re = ((s 8) <115) (8" * 0 8) aL1e
Lt s (s) (s 08 22k =t ($05) 5215) ($ % *¢c sl an®
124 $ dYgels
Lt $ 4va11s
Lt %1030
L.10841S 40 adil.. § % W T2x15 wWILT
Lt () ,.Q21417245 3431 40 TOEKES v F¥wu,. § [24335) PEAT IS L
SHivdsaa ininains

U -

are input or output. In the source input text, there was an occurrence of a

label output parameter (the only allowable control symbol output parameter).

To exercise DD-path 17, the source text must include a CLOSE name as an input
parameter,

The analysis described in the above paragraphs is the type of procedure
undertaken to evaluate the thoroughness of a program's execution. Sometimes
additional JAVS documentation reports, such as the module invocation, reach-

ing set or symbol cross reference, are needed to understand the conditions
required to execute specific paths.

i An integral part of program path testing is the knowledge of the proper
| and complete function of the program. As was seen in the step-by-step analy-
l sis of paths in module MAKE, some paths cannot logically or functionally be
executed. In addition, it is often the case that certain combinations of
paths should be tested, rather than merely striving for the minimal set of

i combinations covering a set of DD-paths. These considerations should be made
| with respect to the module or program's proper function.

45

s i i Yo T e b Rz e e o A

>

e s e il

FUTURE EFFORT

JAVS is currently a powerful software tool for providing static and dy-
namic analyses for JOVIAL J3 programs that would be impractical or impossible
Its design and implementation allow extensions in syn-

to achieve manually.
The modularity and clear defini-

tax recognition and functional capability.
tion of processors allow interchange of software components when new tech-
niques prove themselves better (as demonstrated by the implementation of the

new syntax analyzer).

We feel that the capabilities JAVS now has offer a valuable asset in
the testing, maintenance and design of high quality JOVIAL software. Effort
should be expended in further disseminating the tool and training JOVIAL pro-
grammers in its usage. An iwmportant part of improving the acceptance of JAVS
as a useful JOVIAL software tool would be the development of a document on
how to design high quality software with JAVS' assistance. A workshop which
covers software development, testing and maintenance should be conducted to
stimulate current and new users of JAVS to take advantage of the tool's capa-

bilities.

Several static and dynamic testing techniques can be added to JAVS' cur-
rent features which would increase its automation and provide more stringent
Static data flow analysis, available in GRC's

measures of software testing.
can locate use-before-set er-

Fortran Automated Verification System (FAVS),
rors (uninitialized variables), a common source of program errors which can
be difficult to find manually in large programs. Physical units consistency
checking can be very useful in mathematical programs using engineering units.
This static analysis feature is available in the SQLAB tool’ and can be effi-
ciently included in JAVS along with set/use checking, since both analyses re-
quire much of the same software. Automatic generation of certain types of
assertions and coverage measurement of program functions as specified through
comments are two dynamic testing techniques which can be incorporated into

JAVS,

The above-described added capabilities for JAVS would continue the pur-

suit of increasing testing thoroughness. Without ignoring that goal, we feel

that computer resources should be kept to a minimum. JAVS now operates in
53,000 words of primary core storage, which is not excessive. We have found
that processing time can be greatly reduced in FAV. | without any loss of capa-
bility. Since the two systems (FAVS and JAVS) have similar designs, we are
confident that JAVS' processing time can also be reduced.

4.1 JAVS WORKSHOP

A two- or three-day workshop for JOVIAL programmers which integrates the
concepts of good software design and testing in the JAVS environment would be
very beneficial in increasing the utilization of the tool. A workshop would
also provide the opportunity to coordinate and formalize quality programming
practices and their effect on AVS-supported testing while getting immediate

feedback from workshop participants.

46

e T

s el R tusoset v il i . i Fi R
|
| The collectfon of JAVS documents [isted (n Sec. 4.1 inclade gaidel ines J .
} for using JAVS (User's CGuide) and a demonstrative testing methodology which i

L,, - me eme lUgatUPRALLC] by JAVS (Methodolo ,\'-li.v;u.\-r.(.\-. -vallh;ln:;‘:;, wh._l(seems Lo h.'...
lacking {s a discussion ot how JAVS contributes and shoulT bé used in the™ Tl T

! range of software life-cycle activities.
4,2 STATIC DATA FLOW ANALYSI1S

Most JOVIAL 03 compilers pertorm rigorvous checks on the consistency be
tween declared and actual usage of svmbols and parameters. Other control
tlow anomolies, not detected by the compiler but reported by JAVE, are struc
tural fnfinite loops and unreachable code. One common source of crvors which
is currently undetected by cither compiler or JAVS is the usage of uninitial
fzed varfables. These "use-betore-set' ervors can be very difficult to de
tect manually in programs with complex control structures.

A small tunction containing the uninftialized vaviable SUM s shown in !
Fig. 4.1 along with the static analysis in Fig. 4.2. The type of static anal
vsis recommended tor JAVS is the set/use checking demonstrated in the lower
A}

half of Fig. 4.2.
Static analysis {s already available in FAVS, which was developed by GRC

under RAMRC sponsorship. Most of the rvequired soltware for JAVS set/use analy

sis could be supplied by the FAVS~translat ed=-FORTRAN source code. Two ap

proaches can be taken to incorporate the enhancement into JAVS: the svotax
analvzer can make a thivd pass to supply the vequirved svmbol information on
the current symbol cross-reference table intormation can be adapted. In
cither case, the static set/use checking can be performed in a separate over
lav load module, thereby not increasing the current core storvage requirement .

R R L B

&3 PHYSTCAL UNITS CHECKING
"

Requirving that local and global vaviables be specitied in terms of the
physical units they rvepresent (£t any) allows comprehensive checking ot the
consistency of unfts. This tvpe of checking is particularvly relevant to tech
nical software where many physical properties are represented and theve ave
many possibilitices of contusion over units. Units can be checked on a multi

module basis {1t cach nodule contains a description of the units tor cach phys
fcal varifable to which it reters. The form of the description tor JAVS would

be:

"LUNITS (<vartable list=1> = <units expression=1>,
4 <varfable list-=2> = units-expressfon=2>, ...)"

The units divective would be placed in the source code by the user.
JAVS would, it directed by user commands, pertorm the tollowing analvais dm
fng the static set/use checking. An inconsfistency in units s indicated it
unlike unfts arve added, subtracted, or compared. The phyvsical-units analvsis
compares the right and left sfde of assfpnment statements, the vight and lett
side of relatfonal operatifons, and actual and tormal parameters. For conven
fence In stating UNITS assertions, all constants are assumed to be unitless,

ML L SR — et A~

47

§
§
i
|

Fhips =, g

s e MR i e
Do . RN o o BPPNENPRSIR .o et -l ;‘.".ffff‘f.’.‘j‘ E s R S o

THIS PAGE IS BEST QUALITY PRACTLCABLE
FROM COPY FURNISHED TQ DOC o

!
|
i

- e@msi aecse “ e e

SUBROUTINE SETUSE

C |
RADIUS = DIAMIR / 2
AREA = PI » RADIUS s 2
PRINT 1, (RACIuUS., AREA)
1 FORMAT (2 (FEe2))
RETURN
END

Figure 4.1. Listing of Subroutine SETUSE

; STATIC ANALYSIS CONT.oe SUBROUTINE SETUSE
-
1ST TOTAL LAST ASSFRTED ACTUAL PHYSICAL
NAME CLASS MCDE STMT USES STWT USE USE UNITS
b RACILS LOCAL REAL 3 3 s
CIANTR LacAL REAL 3 1 3
- SET/USE ERROR
- VARIABLE DIAMTR UsED BEFQRE BEING ASSIGNED A VALyE
1 AREA LOCAL REAL 4 2 H)
-y Pl Locat REAL “ 1 “
- SET/USE ERROR
;1 - VAKIABLE PI UsED BLFORE BEING ASSIGNED A VALUE
j SYMBCL ARALYSIS SUMMARY ERRCRS WARNINGS
SET/USE ChECKING 2 0
! |
| |
!‘ ¥
e
2]
?’ Figure 4.2. Static Analysis of Subroutine SETUSE |
£ 4
|
| 48
]

except for zero, which will match any units expression.

A variable is de-

clared unitless by stating that its units expressior is the constant 1, as in

| . - - -
- @ - @ o mwr e dNBSa{PRe]) Pigurt ueSesmy a W™ prBeran™ b rdttiife Tottaining spec-

ified units. An inconsistency was detected in which area was computed as:

FEET * FEET = INCHES * INCHES

Note that the user's units "FEET**2'" was changed to "FEET * FEET" in the units
error message. Units checking is capable of simplifying terms for cancella-

tion of units.

This output was generated by SQLAB,7 a GRC-developed software tool which
provides software quality measurements, dynamic and static testing, and veri-
fication through symbolic execution for PASCAL and FORTRAN. The techniques
and software used for SQLAB's units checking can be implemented in JAVS.

4.4 AUTOMATIC ASSERTION GENERATION

situation is best described by example.

automatically generate a JAVS computation directive:

into executable code.

name and statement number of array or table overflow.

Y/,

cuted once for each disjunctive term. For example,

R

et i) A A i L

49

".EXPECT, <name> = <low value>, <high value>

Two types of dynamic assertion statements can increase the thoroughness
of testing and quality level of the software. Both types of assertion could
be generated automatically by JAVS with a small amount of modification. The
assertions are array bounds checking and compound predicate analysis. The

Figure 4.4 is a module listing which contains several JOVIAL statements
which lend themselves to analysis via assertions. In Statements 3, 10, 12,
14, 16, and 17 are array or table references with computed subscripts. If any
of the subscripts are out of the boundaries declared in this module's COMPOOL,
the adjacent core locations will be erroneously over-written. JAVS could

at each array or table reference. JAVS would pick up the low and high values
from the declaration statement and instrumentation would expand the assertion

The effect of the assertion is that during the program's execution, any
occurrence of an out-of-bounds subscript would produce a line of output giving
the subscript's name and computed value. JAVS could also provide the module

Statements 20 and 24 in Fig. 4.4 contain numeric subscripts. These
would be less prone to error than computed subscripts, but it might be wise to
automatically generate the EXPECT assertions for numeric subscripts as well.

For thorough testing, JOVIAL statements which contain compound predi-
cates such as those in Statement 3, 10, 14, and 24 in Fig. 4.4 should be exe-

IFEITH ZT EQ PD ($PPBEGINSS) OR ZT EQ PD (SPPIFEITHS) §

THIS PAGE IS BEST
FROM COPY FURNISHED TO bDC

QUALITY PRACTICABLE

L@t e wmee B, WY te @

STATIC ANALYSIS SUBROUTINE CIRCLE (RACIUS. AREA)
STHT ICENTLINE SOURCE...

L] AREA = Pl o RADIUS®e2
- UNITS EWRQOR .
- = OPERATION wITH INCONSISTENT UNITS *
- (FEET o TECT)
- ¢ ILCHES o INCHES)

D e . Py

B L

erc s acec et e av g R e I el Lk T L T T r T .

STATEMENT ANALYSIS SUMMARY ERRORS WARNINGS

GRAPH CHECKING] Q
CALL CHECKING Q Q
UNITS CONSISTENCY 1 0
MOCE CHECKING 0 0

NANME SCOPE TYPE MOCE USF OTHER INFORMATINN,,.

SYMCOL AANALYSIS SUMMARY ERRORS WARNINGS

INPUT/CLTPUT CHECCKING] 0
SET/USE ChECKING 0 0

THE FOLLCWING NONLOCAL VARIABLES ARE SET.s.
AREA

The above report resulted from this routine:

STATIMENT LISTING SLEKCUTING CINKCLE (RADIUS. AREA)
ST IOENT,LINE SOURCE...

SUBROUTINE CIRCLE (RACIUS, AREA)

CATA Pl 7 34lvie 7/

UNITS (RADIUS=INCHES. aRFaczFEETee2, PIZ1)
INPUT (/R/ RADIUS)

AREA = Pl e KACLUS@®e2

OVUTFUT (/R/ AKEA)

RETUNN

END

R e T

PNV EUN-

Figure 4.3. Physical Units Checking

50

¥ 9
WJ i Tduexy uorjeiauas UOT313ssy OTJewoliny 10J SUuTISTT S[NPOK ‘%% 2an31yg
- (]
&~
(&]
m nwu_, :
i
-
3 & :
% m .— - cecarheteloNacercnracaarrntcanteanaerlocanenvacnalecthtlttrcrrtarTatolot o mmagmen T T T T T Y X T e
& : an3 (S 38 IS
m m.w Cn3 (v) ¢g¢
= H N3 tz 12
0 ¢ UN3 (2 ! 3¢
— e an3 (g ? O¢
M > — an3 (v 1 62
=53 N3 v) g2
aN D an3 (g) ¢2
) ANl $ ON3A (g) 92
— N1938 (s 1 se
8 i 1135012 ¥ NI_Q3NVIVE Ch3-N19364)
Jd1v0 (ST =»T) $ (dST0)HP B3 (S 2 $) SEaw ¥0 (WSII)xP 03 IS Z $) Seau J1x0 MM .. .w.
aN3 <1 ¢
—r. s On3y (s) 22
W1938 te 1 12
_mt (£ =2t) 143137dH09 3G0I 378vIND3x3 44 S O 9 (B 0T ¢) 180N HII3JI te 4 9¢
" ¥ns07d 37000k 030036WI ¥03 1831 1 (1 ¢} ¢
3 NID38 (» » gt -
el (3T =0T) $ 0 49 YIS QNY 1SQOW EN 37NCOK GNvY G B (S %iSTY $) 9337 41 (£) L3 " s
' $ T « (S %IST $) 93E1 & ($ X181 §) 9281 (£) 91 ¢
. Niyag (€) ¢t 3
4p¥0 (6 =8) $ 1SEdLS 03 12 ¥Cc 1S CNSdd $) Ud 03 1Z 3100 (2) st
! QN3 (£) €3
¢ s Vo (S X187 §) 9387 = (§ ¥iST1 3) 9331 (g 2t ;
N1938 (¢) 1t
1341 (2 =9 S (S H11331dd $) Od ©3 12 ¥O (S NID3Bdd $) Ud 03 LZ WiIl3s] (2) ot
' N1938 (2) ¢
3180 (¢ =y) $ 0 £3 1004vCI14 3140 (T g
2 an3 2)
NI $ dv1) (2) g
i $ ISNYHX3W (2) g
N1D38 (23
1341 13 -2) $ 371308315 03 12 ¥O (8 WN31de $! 04 D3 127 H11341 (v ¢
5 N1D38 (v 2
[x 11ON3 3T700K ;63594 8 ON3 g3 H J0)d (01
" 7 —egoe comocccbed®a R P B e e e T Y L el
041N0D SH1vd4=da FUELE TR BT A1 ON
i < 3N0J4> 37NQOW 1N3IYvd ‘< J2r3 L1x31SAYE °*<CN31831W> 3naoK

ONIISIT INIW3LVLS SnaoN

A i

—_—-SuDerl ST -

oot

S —— o oo b B

S NUNNIESUPCIY A%

should be exercised for both

ZT PD ($PPBEGINS) and

ZT = PD (SPPIFEITHS) e e ®e oo
JAVS could automatically generate three assertions for the above IFEITH
statement:

"".ASSERT, ZT EQ PD (SPPBEGINS) AND ZT NQ PD (SPPIFEITHS)"
" .ASSERT, ZT NQ PD ($PPBEGINS$) AND ZT EQ PD (SPPIFEITHS)"
".ASSERT, ZT EQ PD ($PPBEGINS$) AND ZT EQ PD (SPPIFEITHS)"

In this example, the third assertion would never be true, but that may not be
the case in general. The currently implemented computation directive instru-
mentation would translate the assertions into executable code. During execu-
tion, the message:

JAVS' ASSERT = ZT EQ PD (SPPBEGINS) AND
ZT NQ PD (SPPIFEITHS) AT
STMT. xxxx IS TRUE

would be printed. The current JAVS' ASSERT message is printed when the condi-
tion is not true, but for compound predicates, it would be more efficient to
print the message for the true condition.

For both array/table and compound predicate automatic assertion genera-
tion, the user would request the capability via a command, thus being able to
turn the option on or off and being able to select one or more modules as tar-
gets. Current instrumentation would require modest modification for implemen-
tation of these assertions.

4.5 COVERAGE OF PROGRAM FUNCTIONS

Execution coverage reports currently available in JAVS measure DD-path
and statement executions. Also available are the module invocation and DD~
path trace reports. A combination of these two current features in terms of
descriptive functions would be very useful.

Figures 4.5 and 4.6 are execution coverage reports for statements and
DD~paths, respectively, for one module in the new JAVS syntax analyzer. Note
how useful it is to include descriptive functional comments at each decision.
It may be functionally important in a program that a specific sequence of DD-
paths be executed. JAVS DD-path coverage analysis may report that each DD-
path of interest was executed, but the order of the paths may be crucial to
the correctness of the program.

52

- ey o

e e J s =
\
.
]
» L 31oday 98e12A0) JUDWAIEIS UOTINDIXY ‘G 2an3tyg
.
~ .
“ ‘ g azindzxz 1430 uzd
= i 9% Q71033X7 SININIIVIS
m 114 SINIWILYLS 2TQviNO3XT
B Wv ok AR
i ¢ 0 auz (L) g€
ao ' " ana (L) e€
< & ' L an1 (Z) (€
= ; n anz (z) g€
x { t o132 (€) g€
n A ALZ z ¢ (218 ° 276007 ¢ rTsAYI ° I10Q0W) X1€iad (€) of
=) 4 $0s=($68) 1115 (€) €€
" z $0s=1($88) 1115 (€) ZE
= - t $0= (8L $) 1115 (€) 1€
£ 2 4 ¢ ($ L1 ¢) Igaw = 115501 (e) of
8 > u t $ 1 + ($ L1 8) zaad = (§ L1 §) Igaw (€) 62
<3 t KI938 (e) 92
a S 2180 z s) ..318 140> 05 ‘aQAnOd 10u,. $ t JINO (z) o2
[2) i s qua (e) o2
- [an3 (e) st
m s 0 ax3 (n) a2
(14 $ 1T 0109 (n) g2
(14 $1 ¢+ 00 =rp (n) 22
114 nxoig (n) 42
(14) +.270Q0K MT 371§ IXx3u IAIMVXZ.. $ 4 JINO (€) o2
1 ana (n) 614 ™
3 $ Or = 115501 (n) gt v
1 R19138 (n) ¢} it
1€ (¢ -t) fod.. $ (8 41 ¢) I31s 03 ¥ HiIddx (€) 9t X
14 ¢ (o4 ¢ pp ° 3T8QVE ¢ 31000W) CHAIOI = XX (€) sb #
’ 14 1191 (€) ol A
..310Q00 BT ISVT I0M,. $ II D01 Or HIIZJX A
eess)1112 (14 9 =5) ‘i1 (z e :
\ L $t = o0 tzre
’ L $ (8 L1 $) 1804 = II (z))
L 1930 2) ot
i1go L (v) ..318 40 2400 §OJ 210Q0W HOUVES,. $ | JTINO (L) s
L anz (Z1re
Le $ 218§ = 115201 (2)¢
. Le nI19329 (zyoe
12 o € -z) +.00XIVEVIOIQ 20 EINAOW SI ITnA0W.. $ GOWS DI 2TndoW HirdiX (L) s
(1] $ 0 = 3155071 (¢) o
. " R1938 (hye
J $ S 92 T 1150071 WIsX L I 4
._ (1} “w) ,.030338 41 114448 QaY 2TNAOW HI IT1S 21VI01., $ 115301 J0wd 0
1082892 sHivdeaq IuaNagvis A1 *On
' < OAld> 2T0Q0W lxIEvd °¢ agr> IX3ISAVE °C 31$501> 211ad0M
[}

9433 $IT IAZUILVIS 3T1300R

- - " e e

P e = 02 o= -

310day a8eaaao) yied-gg uoTINOIXY

*9'y @andry

¢ oot 0X1n33x3 1M33¥3zd
. ot QIIADIXT SHivdad
ot SHiydae 1ylol
»
' axa (L) gt
Sl
, a7 tz) 9¢
4 NOHYEE 2081 ST O) NIVd=QQ o
s +.11S 1405 0$ ‘QNNOJ 10M,. $ | IR0 ‘T e
. . . .
‘ anz (¢ y 82
[T HORYEE 2Nd3 ST 6 HIVI-QAd o
+.2T0QON AT 27§ XN ZMIWVXZ.. $ | dINO (€) o2
sz ¢ HORVEE 2S1VZ ST @ HIVA-Ad 46
3 HOAvEd Indz ST L H1Y3a-aa o
. ..,Q800d.. $ ($ L1 §) IZT1s 02 -x.xuumum (€ 9
g HONYEE 2S1YZ ST 9 HIVA-Qd 46
i€ HORYEQ 3NdL ST § HIVA=Ad «»
..,27NQOW AI ISYT ION,. § II BT (C H2I13aX
’] 184 £
S
L HONYHEE 2042 ST 0 H1Vd=AQ 46
..11S 40 X400 w04 Z10A0MW HOEVZS,. $ 4 JIWO (t e
. . . -
L NONYHE 3STIVZ ST € HIVd=-QQ 4o
Le o HOaY¥d 3Indg st 2 HiVd=aQ 4,
.. ROILVEVTIOZA 20 ZTNAOM SI 21naoMW,. $ doWs £2 2TndoW H11ziX (L) s
. . . -
LU IUINT 249NQAZO044 ST L HIVA=QQ 44
..02022N 4T 21240S QNY I1MH00K NI 1S Z1¥d01,, § 115301 d0ud
- = R S % e AT S s R O e B R O RO S
19V42205 Q31V¥IN39 SHIVI-AQ INIHIIVLS 1AT *oOn

¢

<

OMld> 2Tnd0W In2dVQ

e,

Qer> 1XIISAYE °¢ 31s201> 21adcM

ONIISIT 49YEIA0) HIVd-AQ ZTIndoON

54

z

Therefore, if t

THIS PAGE IS BEST QUATTTY PRACTICABLY
FROM COrY FURNLSHED TO LDC g A

he user can assert that:

1 Locate SLT in module and supply if needed
s - wwy Y. e o L R c- w e

2. Search module for copy of SLT

3. Found
& Return
is the specific flow

should translate the
compare the sequence

of interest for the module

in the figures, then JAVS

supplied functional comments into DD-path numbers and

against the actual DD-path

execution. A sample DD-path trace report for a
Fig. 4.7. Currently, it is left to the user to
of paths. JAVS could be modified to report the

specified functional

sequence. The only burden

concise, functional comments at all DD-paths to

trace that occurred during
different program is shown in
find the appropriate sequences
existence or omission of the
on the user would be to supply
be analyzed.

4.6

REDUCTION OF PROCESSING TIME

GRC is currently investigating the possibility of substantially reducing
This experience convinces us that JAVS'

the computer processing time of FAVS.

processing time can also be reduced.

Substantial reductions can probably be
made in the syntax and structural analyses and in the algorithms used to gen-
erate documentation reports.

........

TEsTocase sarPLl 2 2200 00/0a’78
B PP RO SR S B T e
1wt 19 17 9CA0EP NI v (EOF) § 200-PATN 2 TRUE BRANCH
®6 INVOXED wOOULF IS Eav®L1 (L¥PROGw)
STut 1 PR0C FRWPL) (LINIT) o LINITR 3 8 *00-Patn] PPOCLOURE ENTRY
STuY 0} IF LIMIT) GQ 100 8 e00-PATH) FALSE SRANCN
STy H 1f€1TH J L 3 8 *0D-PATN . TRUE BRANCH
ST FL) GITO PICr (% INDAS = | $) 8 0(-PATH 4 Sultim OUTwRY !
$Tuy 32 01F KFSULT €O ¢ 8 epC-PATH 1% FaLsSt BRANCN
STT 30 Lastil. e0D-PATH 1) FaLSE 8RANCH
IPCITH RESULY S & §
L0 p L} oelr 1 % e0D=PATH 186 TRUE BRANCH
STHY A FOR U w) o) o LINITR § e0D-PaTn 18 ESCAPE FOR LoOP
sTRT > FIR 1 &) o) o LINIT) 8 *00-PaTH 20 €8CaPE rom 00
o® ACTUNN FEOM MODULE CRPL] (ExPROGM)
STHT 28 17 17CP) 60 100 8 *00-PATH 8 FALSE BRANCN

Figure 4.7.

55/56

Excerpt of DD-path Execution Trace

Sou, g g AT R T

L T T 2

Nl alale -
A .) . . - - . als
L £ 2L TS -8 L & e .+ - < e.e -@- < S

i APPENDIX A

INSTALLATION INSTRUCTIONS

This appendix describes procedures for installing JAVS on the HIS 6180
-0 T O Comp Ut aunal -CE0S-and Jfgr building the, JAVS absolute file from source text
for non-HIS installations. Arhiate eneas

A.) HIS-INSTALLATIONS
The following files should be copied from magnetic tape:
1 1 HSTAR/JAVSHS - random H* file containing linked JAVS program
24 JAVSXQ - BCD sequential select stream for using JAVS H*file
s PRPOOL - BCD source for data collection COMPOOL

4. JPROBESX - BCD sequential select stream for loading data collection
rout ine

5 i MAKBINPX - ASCII sequential job stream for compiling data collec-
tion routines (files 6~10)

6. PRCMPL-X - BCD source for data collection COMPOOL
i PROBE-X -~ RCD source for data collection
8. PROBI-X -~ BCD source for data collection
9. PROBM-X ~ BCD source for data collection
10. PROBD-X ~ BCD source for data collection

Filenames 1-4 listed above are the ones described in the JAVS User's
Guide. Files HSTAR/JAVSHS and JAVSXQ are used during JAVS processing; PRPOOL,
JPROBESX and the binary files generated by executing the job stream MAKBINPX
are used during Test Execution.

The purpose for installing the JAVS data collection routines from
source is to allow compilation of these routines using the installation's
standard version of the JOCIT JOVIAL compiler. Once the data collection rou-
tines are compiled (by executing the job control stream MAKBINPX), all .JAVS
users can utilize the object form of the routines, as described in the JAVS
User's Guide.

A.2 NON-HIS INSTALLATTONS

For non-HIS facilities, the installation tape consists of BCD source
code for the JAVS processor and data collection routines. Figure A.l shows a
top~down overview of the JAVS software system. Source code for COMPOOLs and
executable text is compiled into binaries for the JAVS components and data
collection group. The binary files are arranged into overlay links, as shown
in Fig. A.2, to build an absolute file. Table A.l1 identifies the overlay
links by name and the functional kevword known by JAVS,

58

e f'<'.~'|7¢7§'l'-"L\»isaﬂ.”m@‘i‘” 2

.8 f4:r 8 me. se.g

JAVS

i

B |

~ -h s -

BASIC-=—ANALYZER TEST
FROCESSING TEST EXECUTION
MEMORY
LINKS COMPILE LOAD
JAVS DATA COLLECTION| | DATA COLLECTION
COMPONENTS COMPOOL BINARIES
SOURCE
[§ o]
START-TERM START-TERM DATA COLLECTION
BINARIES S BINARIES SOURCE
START-TERM e START-TERM
SOURCE SOURCE

Figure A.1l.

Overview of JAVS Installation

AN-523]12

- % .

g 52 i ooy . —_
- 340 8l o . 2y
SR e SR s 2 KRR S 11 i M s NG e 0 s g 4 B e M - i

o 3fid o i S

- - - e J’I_" e @ oa c R REARN R R A - e ~—‘- - v - - o '?{9—- ~. o
-
J
=
20K - <
LINKO
40K
| F
60K -
User's Library
System Librar
100K |- : Y
3 LINK] LINKCM
120K |-
L INKB ‘ LINKD] LINKS LINKP) LINK2 L INK3 LINK4 LINKS | LINK6
LINKC LINKM
140K L

K = 1000 octal

Load Module CONTENTS

LINKO Some utility COMMONs, JAVS-0, part of JAVS-1, -10, -11
LINK] JAVS-2A, JAVS-2 COMMONSs

LINKB JAVS-2B, MAKTAB from JAVS-1

LINKC JAVS-2C

LINKD JAVS-2D

L INKCM Some COMMONs, part of JAVS-1, -10, -11
L INKS STSTOP from JAVS-1

L INKP STPROP from JAVS-10

L INKM JAVS-M

LINK2 JAVS-3

LINK3 JAVS-5

LINK4 JAVS-7

L INKS JAVS-9

L INK6 JAVS-6

Figure A.2. JAVS Memory Layout on HIS 6180

JAVS-0
1 JAVS-1
JAVS-2
JAVS-1
JAVS-4
JAVS-5
JAVS-o
JAVS-7

JAVS-8

P

JAVS-9

L JAVS-10

JAVS-11

JAVS-M

IDENTIFIER

TABLE A.1l

JAVS COMPONENTS

i @ - - «

NAME

Command & Control

Storage Manager

Primary Module Analysis
Secondary Module Analysis
Structural Analysis
Instrumentation

Data Collection and Reduction
Testcase Assistance

Segment Analysis

Program Modification Analysis
Data Base Services

Support Subroutines

Macro Command Processor

T O N TR =

FUNCTIONAL KEYWORD

BASIC

STRUCTURAL

STRUCTURAL

INSTRUMENT

ANALYZER

ASSIST

ASSIST

DEPENDENCE

The source tape contains the COMPOOLs and executable source code for all

JAVS components including the data collection routines.
to have an end-of-file mark following each START-TERM sequence or with a sin-

The tape can be made

gle end-of-file mark terminating the entire source (preferable for installa-

tions with CDC UPDATE or similar maintenance program).
gle- or multi-file source tape, the arrangement of source code is as follows:

61

In either case, sin-

e " - - g - R T o
PRRSEESRERS o P SRR S e - S et e Ce. LaBTR T

TABLE A.2
SOURCE CODE ARRANGEMENT
Description JAVS Component
COMPOOL, JAVS-0
| 3 START-TERMs JAVS-0
;N I START-TERM JAVS=M (Uses JAVS~0 COMPOOL)
L COMPOOL, JAVS-1
‘ 49 START-TERMs JAVS-1
COMPOQL, JAVS-2
19 START-TERMs JAVS-2
COMPOOL, JAVS=3, -4
1 START-TERM JAVS=-3, -4
COMPOOL, JAVS -5
1 START-TERM JAVS=5
IL COMPOOL, JAVS-6
q 1 START-TERM JAVS-6
COMPOOL, JAVS-7, -8
1 START-TERM JAVS-7, -8
H COMPOOL, JAVS-9
1 START-TERM JAVS-9
COMPOOL, JAVS-10, =11
58 START-TERMs JAVS-10, =11
COMPOOL, JAVS-10 Installation Dependent
4 START-TERMs JAVS-10
I FORTRAN routine JAVS~10
COMPOQOL, Data collection
4 START=TERMs Data collection

Modules containing machine dependencies, in addition to those noted in
Table A.2, are the JAVS=2 COMPOOL and ISCLAS, I1TSDHL and [TSHOL in the JAVS-10
component . The machine dependencies in the JAVS=2 COMPOOL deal with the num-
ber of bits per character and the aumber of characters per word. EFach declar-
ation is commented. The JAVS-10 modules ISCLAS, TTSDHL and ITSHOL depend on
the internal charvacter representation. The JAVS=10 COMPOOL, START-TERMs
(LSETUP, LBREAD, LBWRIT, LEND) and FORTRAN module listed in Table AJ2 arve van-
dom 1/0 routines.

62

The JAVS System Design and Implementation Manual® contains functional
descriptions of each JAVS component and module. System routines, such as
those providing date and time, which are directly invoked by JAVS are listed
in Appendix C and in the module index of that document. The computer listing
in the remaining pages of this appendix are included to show the suggested
load sequence of the compiled JAVS software. Each binary file name is
Bxxxxxx, where xxxxxx is the JAVSTEXT name supplied at the beginning of
each START-TERM sequence on the source tape.

. o

4
|
; |

ICENT
USERID
LOWLOAD
OPTION
LIBRARY
SELECT
ObJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBRJECT
DKEND
SELECT
0BJECT
DKEND
SELECT
0OBJECT
DXEND
SELECT
OBJECT
DKEND
SELEcT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
03JECT
DKEND
SELECT
OBJECT
DXEND
SELECT
OBJECT
DKEND
SELECT
ORBJECT
DKEND
SELECT
OBJECT
DANEND
SELECT
OSJECT
DKEND
SELECT
QBJECT
DKEND
SELECT
0OBJECT
PDKEND
SELECT
OBRJECT
CREND

i

BFCBGACY,JAVS GRC ,555020030115,HSTAR/JAVSALL

BFCBGRC1S#nny

FORTRAN,NOGO
Z'
BFCBGRC2/BPOOL1

BFC3GRC2/BCHPL1O

BFCBGRC2/B10/BDSTEPO

BFCBGRC2/B10/BIHVALU

BFCBGRC2/B10/BISCLAS

BFCBGRC2/B10/BoUTBUrF

RFCBGRC2/B1/BACTDAT

BFCBGRC2/B1/BACTDMP

BFCRGRC2/B1/BACTFRG

BFCBGRCZI/B1/BACTICH

BFCEGRCZ/B1/BACTNOD

BFCEGRCZ/BY/RACTOLD

B8FCBAGRC2/B1/BCRTFRG

BFCRGRC2/81/8DNPPRG

BFCBGRC2/B1/BDMFNMOD

BFCBGRC2/81/BGETHLK

BFCRGRC2/B1/EGETFRG

64

€16,353040578P00LY €0
POOL1 04

€20,230051878G10CPLOO
G10CPLOG

J17,906040877DSTEPQOO
DSTEPQO3

J17,749040877IHVALUOO
INVALUOG

J17,753040877ISCLASO0Q
ISCLASO6

J17,8760408770UTBUF00Q
ouTBUros

J13,834902276ACTDATOD
ACTDATO9

J13,839102276ACTDNPOO
ACTDMPOg

J13,845102276ACTrRGOO
ACTFRG11

J13,850102276ACTICHOO
ACTICHOU

J13,857102276ACTMODOO
ACTMOD14

J13,866102276ACTOLDOO
ACTOLDOS

J13,870102276CRTFRGO0O
CRTFRGOS

J13,874102276DNPFRGO0
DMPFRG11

J14,128902276DMPHODOO
DMPMODCY

J13,884102276GETBLKOO
GETBLK11

J13,9064102276GETFRGOO
GETPRG14

SELECT BICBGRC2/B1/BGETLBT
: OBJECT J14,004102276GETLBTO0
| DKEND GELTLBT24
; SELECT BFCBGRC2/BY/BGETLST
| OBJECT J14,041102276GETLSTO0
| DKEND GETLSTIS
| SELECT BFCBGRC2/B1/BGETMOD
| OBJECT J14,064102276GETMODOO
{ DKEND GETMOD12
| SELECT BFCBGRC2/B1/BGETTAB
| OBJECT JI4,069102276GETTABOO
: DKEND GETTABOS
SELECT BFCBGRC2/B1/BICHFRG
0BJECT J14,085102276ICHFRGO0
DKEND ICHFRG17
SELECT BFCBGRC2/B1/BIFNDEP
OBJECT JI4,095902276IFNDEPOO
DKEND IFNDEPYS
SELECT BFCBGRC2/B1/BIGTLIT
OBJECT J14,104102276IGTLITO00
DKEND IGTLITO4
SELECT RFCBGRC2/B1/BIGTWRD
OBJECT J164,109102276IGTWRDOO
DKEND IGTWRD13
SELECT BFCBGRC2/B1/BINAKEP
QBJECT J14,114102276IMAKERPOO
DKEND INAKERPO4
SELECT BFCBGRC2/BY1/BISRTAB
OBJECT J164,1246102276ISRTAROOQ
DKEND ISRTABY7
SELEcT BFCBGRC2/B1/BLBFREE
OBJECT J14,135102276LBFRERQQ
DKEND LBFREEOG
SELECT BFCBGRC2/B1/BLBMOVE
OBJECT J14,168102276LgNOVEOO
DKEND LBMOVEOG
SELECT pFCBGRC2/B1/BLBTIGET
OBJECT J14,154102276LBTGET00
DXEND LBTGETO06
SELECT B@BFCBGRC2/B1/BLBTPUT
OBJECT Ji14,161102276LBTPUTOO
PKEND i LBTRUTO6
SELECT BFCBGRC2/B1/BLBZERO
OBJECT J14,166102276LBZ2R000
DKEND LBZERQOS
SELECT BFCBGRC2/B1/BLGTBLK
OBJECT J14,171102276LGTBLKOO
DKEND LGTBLXOS
SELECT BFCBGRC2/B1/BLGTWRD
OBJECT J14,176102276LGTWRDCO
DKEND LGTWRDOS
SELEcT BFCBGRC2/B1/BLPTBLK
OBJECT J14,181102276LPTBLKOO
PKEND LPTBLKO9
SELECT @FCRGRC2/p1/BLPTWRD
OBJEeT JI4,186902276LPTWRDOO
DKEND LPTWRpOS
SELECT BFCBGRC2/B1/BMAKFRG
OBJECT JI14,1931022764AKFRGOOQ
DKEND MAKFRG 10
SELECT BFCBGRC2/B1/BMAKNMOD
0BJECT J14,197102276MAKM0DO0O
DKEND MAKNOD 14
SELECT @FCS8GRC2/BY1/BMDBGET
OBJECT JY4,2079022764D8GET00
65

S et S e

-
|
i
i
|

o w ol itk ke
e R s v s A

SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
0BJECT
OKEND
SELECT
OBJECT
DKEND
SELECT
OBJEET
DKEND
SELECT
OBJECT
DKEND
SELECT
O0BJECT
DKEND
SELECT
OBJEcT
DKEND
SELET
OBJECT
DKEND
SELEcT
0BJECT
pKEND
SELECT
O0BJECT
DKEND
SELECT
OBJECT
DKEZND
SELECT
OBJECT
DKEND
SELECT
QbJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
O0BJECT
DKEND
sELECT
OPJECT
DREND
SELECT
028JEcT
rKEND
SELEGT
OBJECT
DXEND

BFCBGRC2/F1/BMDBPUT

BFCBGKC2/B1/BPUTBLK

BFCBGRC2/B1/BPUTLIT

BFCBGRC2/B1/BPUTLST

3FCBGRC2/51/BPUTHRD

BFC3GRC2/51/BUPDEPT

BFCBGRC2/B1/BWRAPUP

BFCBGRC2/B1/BWSGFRG

BFcBGRC2/81/BWSGWRD

BFCBGRC2/B1/BWSPFRG

BFCBGRC2/B1/BWSPWRD

gFCRGRC2/810/8MDRDAD

BFCBGRC2/B10/BMDBMOD

BFCBGRC2/B1C/BMDBTXT

BFCBGRC2/B10/BERROR

BFCBGRC2/B10/BFATAL

BFCRGRC2/B10/BGTCARD

BFCAGRC2/B10,/BITSFRG

RFCRGRC2/810/BITSHOL

BrCBGRC2/R10/BLENTAB

BFCEGRC2/B10/BNOVEWD

BFCJGRC2/910/BNFRGSZ

66

J14,213102276MDBPUTO0
MDBPRUTO?

JY4,236102276PUTBLKO0
PUTBLK 14

J14,2641102276PUTLITOO
PUTLITON

J14,267402276PUTLSTO0
PYTLST2?

J14,254102276PUTWRDOO
PUTWRD 16

J14,261102276UPDEPTOQ
UPDEFPT16

J14,268102276WRAPUPOO
WRAPUPOU

J14,277102276NSGFRGOO
WSGFRGO7

J14,281102276WSGWRDOO
WSGWRDO7

J94,286102275WSPFRGOO
WSPFRGO7

J14,335102276WsSPWRpOO
WSPWRpO7

J17,672040877TMDBDADOO
MDBDADOS

J17,6990408774DBMODO0
¥DBHODOS

J17,70304087TMDBTXTO0
MDBTXTOS

J20,245051878ERROR 00
BERROR 06

J17,736040877FATAL 00
FATAL 06

J17,7400408T7GTCARDOO
GTCARDOS

J17,761040877ITSFRGOO
ITSFRGOW

J17,766040877ITSHOLOO
ITSKOLOY

J17,775040877LENTAS00
LENTABO]

J17,77904087THOVEWDOOQ
HOVEWDO6

J17,7840u4087TNPRGSZ00
NPRGSZ03

SELRCT
0BJECT
DKEND
SELECT
OBJUECT
DKEND
SELECT
0BJECT
DKEND
SELECT
GBJECT
DKEND
SELECT
0BJECT
DKEND
SELECT
0BJECT
DKEND
SELECT
0BOECT
DKEND
SELB¢T
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
0BJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
QBJECT
PKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
LINK
ENTRY
SELECT
OBJEGT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT

BFCPGRC2/B10/BNUNNDB

BPCAGRC2/B10/BNUNSB
B8PCBGRC2/310/BNUMSDB
BFCBGRC2/B10/BNUMSLT
®8FCBGRC2/B10/BNUNSTB
BFCBGRC2/B10/BPRDBG
BFCBGRC2/B10/BSPRYWD
BFCBGRC2/B10/BLBCMPL
BFCBGRC2/B10/BLSETUP
BFCBGRC2/B10/BLBREAD
BFCBGRC2/B10/BLBWRIT
8YCBGRC2/B10/BLBIO
BFCBGRC2/B10/BLEND
BFCBGRC2/B10/BSHDATE
BFCBGRC2/BCHMPLOL
BFCBGRC2/BSRCEOL
BFCBGRC2/BCCRACK
BPCBGRC2/BGTLIN

LINKA1
STEP1
BFCBGRC2/NB2/BJ2)

BFCBGRC2/NB2/BAZAP

BFCBGRC2/NB2/BBZAP

J17,845040877NUMNDBOO
NUMMDBO3

J17,860040877NUMSB 00
NUMSB 03

J17,864040877NUMNSDBOO
NUMSDBO3

J17,86804087TNUMSLTO0
NUMSLTO3

J17,872040877NUKSTBOO
NUHMSTBO3

J17,885040877PRDBG 00
PRDBG 07

J17,901040877SPRYWpOO
SPRYWDO4

C17.914040877LBCHPLOO
LBCMPLO3

J17,918040877LSETUPO0O
LSETUP1S

J17,923040877LBREADOO
LBREADOS

J17,927040877LBWRITO0
LBWRITY1

¥17,928040877LBI00000
LBI00006

J17.933040877LERD 00
LEND Ou4

J17,869040877SHDATEOQ
SHDATEO4

C15,534051678GOCHMPLOO
GOCMPLO3

J15.539°5167a|.'0|.°°

tevsee92

J15,542051678CCRACKO0
CCRACK18

J15,544051678GTLIN 00
GTLIN 14

J22,44205187832A 00
J2A 15

J22,444059878AZAP 00
AZAP 03

J22,4U6051878BZAP 00

-

g b o

s

‘3
|

stLEcT
0BJECT
DKEND
SELECT
OBJECT
DKEND
SELEGT
OBJECT
DKEND
SELEET
QBJECT
LKEND
SELECT
OBJECT
DXEND
SELECT
0BJECT
CKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT
0OBJECT
DKEND
LINK
ENTRY
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
LINK
ENTRY
SELECT
OBJECT
DKEND
LIKK
ENTRY
SELECT
OBJECT
DKEND
INK
ENTRY
SELECT
OBJECT
DKEND
SELECT
OBJECT
DKEND
SELECT

b o
AT MR CR RU oibt i e NG s P

BPC3GRC2/NB2/BCIAD
BPCBGRC2/NB2/BDIAP
BFCBGRC2/NB2/BEZAP
BFCOGRC2/NB2/BIZAP
BFC3GRC2/NR2/BIAVIAP
BFCBGRC2/NB2/BJI)AP
BFCBGRC2/NB2/BLZAP
BFCSGRC2/NB2/BNODZAP
BFCBGRC2/NB2/BSTZAP
BFC3GRC2/NB2/BSZAP
BFCBGRC2/NB2/BTZAP
8FCBGRC2/NB2/BNGET
BFCBGRC2/NB2/BNPUT

LINKB
FINIT
BFCBGRC2/NB2/BJ2B

BFCEGRC2/81/5MAKTAB

LINKC,LINKS
FONE
BFCBGRC2/NR2/BJ2C

LINKD,LINKC
FIvo
BFCBGRC2/NE2/BJ2D

LINKCHM, LINK1
GETWRD
BFCBGRC2/NRPOOL3

BFCBGRCZ/NBPOOLS

BFCBGRCI/NBPOOLT

68

St (e A i gl

N

J22,44B051878CZAP 00
CZAP 03
J22,450051878DZAP 00
DIAP 0S5
J22,452051878EZAP 00
EZAP 03
J22,454051878IZAP 00
IZAP 0S5
J22,456051878IAVZAPOO
JAVIAPOS
J22,458051878JZAP 00
JZIAP 05
J22,460059878LIZAP 00
LZIAP 05
J22,462051878M0DZAPO0O
MODZAP10
J22,464051878STZAP 00
STZAP 06
J22,466051878SZAP 00
SZAP 0%
J22,468051878TZAP 00
TZAP 03
J22,470051878NMGET 00
MGET 04
J22,472051878MPUT 00
MPUT 04
J22,479051878328 00
J2B 8%
J14,202102276NAKTABOO
MAKTABOS
J22,49405187832C 00
J2c 80
J22,503051878320 00
Japo 89
C16,686051078P00L3 00
POOLI 07
C17,267040578P00LS 00
POOLS 08

i
0BJECT C15,19105167gP00LT 00 i
DKEND y POOLY 03 {
| SELECT BFCBGRC2/BPOOLY
| OBJECT C13,453060377P00LY 00
| DKEND i POOLY 03
| SELECT BPCBGRC2/BPOOLS
| 0BJECT €19,963101376P00L6 00
ﬂ‘ DKEND POOL6E 03
SELECT pBICBGRC2/B1/BGETWRD
OBJECT J14,074102276GETWRDOO
DKEND GETWRDO&
SELEcT BIZCBGRC2/B1/BITABEP
OBJEET JI4,119102276ITABEPOO
DKEND ITABEPOU
SELECT 8BFCBGRC2/B1/BLRNERG
OBJECT JY14,330102476LBMNERGOO
DKEND LBMERGYS
SELBCT BFCBGRC2/B1/BMAKTAB
0BJECT J14,202102276MAKTABOO
DKEND MAKTABOS
SELECT BFCBGRC2/B1/BMKVTAB
6BJECT J14,220102276MKVTAB00
DKEND : MKVTABOS
SELEcCT BIFCBGRC2/B10/BPRDVAL
0BJECT J18,00304087T7TPRDYALOO
DKEND 5 PRDVAL12
SELECT pFcCBGRC2/B10/BPREMTH
OBJECT J17,982040877PRENTHOO
DKEND PRENTHO?
SELECT BFCBGRC2/B10/BPRSKEL
0BJECT J17,998040877PRSKELOO
DKEND PBSKEL26
SELECT BFCBGRC2/B10/BPRTMTH
OBJECT J20,232059878PRTMTHOOQ
DKEND PRTMTH18
SELECT BFCBGRC2/B10/BPSTMTH
0BJECT J17,992040877PSTMNTHOO
DKEND PSTMTH22
SELECT BFCBGRC2/B10/BGETVAR
OBJECT J17,937040877GETVAROOQ
DKEND GETVAROG
SELECT 3gFCBGRC2/B10/BMTHDDP
OBJECT J17,94204087THTHDDPOO
DKEND MTHDDPOO
SELECT BFCBGRC2/B10/BSORTAB
OBJECT J17,947040877SORTABOO
DKEND SORTABOS
SELECT BPCBGRC2/B10/BIGTBIT
OBJECT J17.953040877IGTRITO0
DKEND IGTBITOS
SELECT BFCBGRC2/B10/BPUTBIT
OBJECT J17,961040877PUTBITO0Q
DKEND PUTBITO6
SELECT BFCBGRC2/B10/BISELEM
0BJECT J17,957040877TSELEINOO
DKEND ISELENOG
SELECT BFCBGRC2/B10/BFNDLB
OBJECT J17,966040877PNDLY 00
DKEND FNDLB Og
SELECT BFCBGRC2/B10/BNXTEX
OBJECT J17,972040B87INXTEX 00
DKEND NXTEX 919
SELECT BFCBGRC2/B10/BSCANSS
o8JICT J17.977040877SCANSBO0Q
69

SELECT BFCBGRC2/B10,BpRuBUP

0BJECT J17,707040877PRUBUPOO

DXEND PRMBUPOY

SELECT BFCEGRC2/B10/BPRnODL

0BJECT J17.712040877PRMODLOO

DXEND PRMODL16

SELECT BFCBGRC2/R10/BFRSTMT

OBJECT J17,717040877PRSTETOO

DKEND PRSTNT Y4

SELECT BFCBGRC2/810/BANALEX

OBJECT J17.910040877ANALEXOO

DKEND ANALEX 1S

SELECT BFCBGRC2/B10/BBALPAR

OBJECT J17,72204087T7BALPAROD

DKEND BALPAROG

SELECT BFCBGRC2/510/BBLDLIN

OBJECT J20,235051878BLDLINOO
9 DKEND BLDLIN20

SELECT BFCBS8GRC2/B10/BIGTSTB

OBJECT JI17,.745040877IGTSTROO

DKEND IGTSTROS

SELECT BFCEGRC2/B10/BITSDHL i

OBJECT J17,757040877ITSDHLOO

DKEND ITSDHLOS

SELECT BFCBGRC2/B10/BJDINT

CBJECT J17,771040877IDENT 00

DKEND JDENT 14

SELECT BFCBGRC2/B10/BNUNDNT

OBJECT J17,812040877NUMDMTOO

CKEND NUMDMTO3

SELECT pBFCBGRC2/B10/BNUNDDP

CBJECT J17,788040877NUMDDPOO

PKEND NJMDDPO3

SELECT BFC5GRC2/8B10/BNUMDS

OBJECT J17,825040877NUMDS 00

DKEND NUNDS 03

SELECT BFC3GRC2/B10/BNUNMEPT

OBJECT J17,829040877NUNEPTO0

CKEND NUMEPTO3

SELECT PBFCBGRC2/810/BNUMEDT

0BJECT J17,333040877NUNEFDTOO :

DKEND NUMEDTOI 1

SELECT BECBGRC2/p10/3NUMNLT

OBJECT J17,84904087TNUMMLTOO

nKEND NUMMLTO3

SELEcT pFcaGRC2/810/8NUNMODS

OBJECT J917,855040877NUMODSO0

DKEND NUMODSO3

SELEcT pgFceGRC2/B10/BNUNPRB

08JECT J17,840040877NUMPRBOO

PKEND NUMPRRBO3

SELECT pFCRGRC2/81C/BPCKBUF

OBJECT J17,881040877PCHBUPOO

PKEND PCHBUPOW

SELECT BFCRGRC2/p10/BSLTSTH

OBJECT J17,893040877SLTSTR00

DKEND SLTSTBO?

SELECT RFCBGRC2/B10/8BSORT

0BJECT J17.,898040877SORT 00

DKEND SORT 08

LINK LINKS

ENTRY sTsTOP

SELECT BFCBGRC2/B1/BSISTOP

OBJECT J16,395040578STSTOPOO

DKEND STSTOPUY

LINK LINKP,LINKS

70

VIS —— - e A e e St *i-ﬂ"

ENTRY
SELEC?T
OBJECT
DKEND
LINK
ENTRY
SELECT
OBJECT
DKEND
LINK
ENTRY
SELECT
OBJECT
DKEND
LINK
ENTRY
SELECT
0BJECT
DKEND
LINK
ENTRY
sELECT
0BJECT
DKEND
LINK
ENTRY
SsELECT
OBJECT
DKEND
INK
ENTRY
SELECT
OBJECT
DKEND
EXECUTE
PRAPL
LIMITS
PRNFL
FILE
rIiLe
PILE
FILE
FILE
FILE
FILE
rILE
ENDJOB

STPROP
BFCBGRC2/B10/BSTPROP

LINKM,LINKP
MACROC
BFCBGRC2/BMACRO

LINK2.LIRKN
sTEP2
BPCBGRC2/NBINRY]

LINK3,LINK2
sTEP3
BFCBGRC2/NBINRYS

LINK4,LINK3
STEPY
BPCBGRC2/NBINRY?

LINKS,LINKA
STEPS
BFCBGRC2/BINARYY

LINKG6,LINKS
sTEP6
BFCBGRC2/BSORCEG

3*,R,S,BFCBGRC1/JOVLIB
10,55K.,=5K
H*.R/W,R,BFCBGRC1/HSTAR/JAVSHS
1°.c1R.L i
01,X1R,R

°2.x2!.‘

03.133.‘

OQ.X“RnL

07,X7Rs1

08,x8R,L

09,X9R,L

J20,243051878STPROPOO
STPROPUY

J16,64g040578MACROCO0
MACROCS9

J16,736051078SO0RCE300
SORCES 14

J17,297040578SORCES00
SORCEB80

J15,205051678S0RCET00
SORCEQ3Y

J13,482060377S0RCEQ00
SORCEQ86

J9,997109376SORCE600
SORCEgu2

Ry e

APPENDIX B

UPDATES TO USER'S GUIDE

er—

.

AU e 0

——

e AT bz pragem N W)
o £/ o e ot 3 el IR 0 Vi

Appendix B consists entirely of updated pages to the November 1976 Edi-
tion of the JAVS Technical Report: Vol. 1, "User's Guide," available as
RADC-TR-77-126, Vol. I. Replacement of the modified pages in this appendix
will make the November 1976 guide identical with the JAVS Technicallgjyy}:

Vol. 1, "User's Guide," General Research Corporation CR-1-722/1, June 1978.

~J4
o

ey A

ABSTRACT

The JOVIAL Automated Verification System (JAVS) is a control-path
testing tool which analyzes source programs written in the J3 dialect of
the JOVIAL language. From the user's viewpoint, JAVS consists of a sequence
of processing steps which (1) builds a database containing syntactical and
structural information about his JOVIAL source text, (2) prepares documenta-
tion reports describing inter- and intra-module characteristics of the
source code, (3) measures control-path coverage during program execution,
and (4) assists in pinpointing untested source code and preparing additional
test data.

The purpose of this document is to introduce the tester to JAVS and to
the process of software testing supported by JAVS. The information provided
in this guide on JAVS usage is intentionally limited to the beginning user.
The appendixes provide the information necessary for operating JAVS at RADC
and can be referenced by the sophisticated as well as the beginning user.
The information presented on the testing methodology which JAVS supports is
applicable to both the beginning and sophisticated user of JAVS.

] PREFACE

The purpose of this guide is to introduce the user into the realm of
automated testing. Software testing supported by an automated verification
system requires knowledge of two inseparable factors: the verification tool
and the testing methodology which the tool supports. The information concern-
ing the usage of JAVS is intentionally limited to the beginning user. The
only prerequisite information is a knowledge of the JOVIAL language. The
casual user should have good success in analyzing the hehavior of his programs
using the description of JAVS capabilities and a few commands set forth in
this guide. All job control and file information is presented in appendixes,
along with estimates of processing time and core requirements.

The testing methodology which JAVS supports 1is described in this guide
because of its importance to JAVS users at all levels of expertise. Although
there is no single general methodology which applies to all testing situations,
there are a number of important issues that even the beginning verification
tool user should recognize in order to make the testing experience successful.
Section 10 ol this guide focuses on software preparation for JAVS-supported
testing, testing goals, resources required, and testing strategy.

In the series of JAVS reports, this guide should be read first. The
information presented should enable the tester to become a new user of JAVS

at RADC. Once the user has experienced some of the capabilities that JAVS
offers, the JAVS Reference Manuall should be used to supply the complete
details of JAVS features and command language.

For more comprehensive treatment of software testing methodology not
restricted solely to JAVS-supported testing, the reader is referred to the
Methodology Report.” This.report describes experiences with using current
Automated Verification Systems, approaches to software quality, and advanced
AVS capabilities.

SPECIAL INSTRUCTIONS:

This User's Guide supersedes the JAVS User's Guide, dated November 1976.
Change bars in the page margins indicate additions and changes to the 1976
guide; asterisks denote deletions.

ii

LIST OF JAVS REPORTS

o Revised Methodology for Comprechensive Software Testing. This report de-
scribes the methodology which underlies and is supported by JAVS. The method-
ology is tailored to be largely independent of implementation and language.

The discussion in the text is intended to be intuitive and demonstrative. Some
of the methodology is based upon the experience of using JAVS to test a large
information management system. A long-term growth path for automated verifica-
tion systems that supports the methodology is described.

e JAVS Technical Report: Vol. 1, User's Guide. This report is an intro-
duction to using JAVS in the testing process. Its primary purpose is to acquaint
the user with the innate potential of JAVS to aid in the program testing pro-
cess so that an efficient approach to program verification can be undertaken.
Only the basic principles by which JAVS provides this assistance are discussed.
These give the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is presented in the
order normally followed by the beginning JAVS user. Adequate testing can be
achieved using JAVS macro commands and the job streams presented in this guide.
The Appendices include a summary of all JAVS commands and a description of JAVS
operation at RADC with both sample command sets and sample job control state-
ments.

L] JAVS Technical Report: Vol. 2, Reference Manual. This report describes
in detail JAVS processing and each of the JAVS commands. The Reference Manual
is intended to be used along with the User's Guide which contains the machine-
dependent information such as job control cards and file allocation. Through-
out the Reference Manual, modules from a sample JOVIAL program are used in

the examples. Each JAVS command is explained in detail, and a sample of each
report produced by JAVS is included with the appropriate command. The report
is organized into two major parts: the first four sections describing the JAVS
system and the fifth section containing the description of each JAVS command in
alphabetical order.

The Appendices include a complete listing of all error messages directly
produced by JAVS processing.

° JAVS Computer Program Documentation: Vol. 1 ,_System Design and Implemen-
tation. This report contains a description of JAVS software design, the oryani-
zation and contents of the JAVS data base, and a description of the sotftwarce
for each JAVS component: its function, each of the modules in the component,
and the global data structures used by the component. The report is intended
primarily as an informal reference tor use in JAVS sof tware maintenance as a
companion to the Software Analysis reports described below. Included in the
appendices are the templates for probe code inserted by ipstrumentation pro-
cessing for both structural and directive instrumentation and an alphabetical
list of all modules in the system (including system routines) with the formal
parameters and data type of each parameter.

< JAVS Computer Program Documentation: Vol. 2, Software Analysis. This

volume is a collection of computer output produced by JAVS standard processing
steps. The source for each component of the JAVS software has been analyzed

114

to produce enhanced source listings of JAVS with indentation and control struc-
ture identification, inter-module depencence, all module invocations with formal
and actual parameters, module countrol structure, a cross reference of symbol
useage, tree report for each leading module, and report showing size of each
component. It is intended to be used with the System Design and Implementation
Manual for JAVS software maintenance. The Software Analysis reports, on file

at RADC, are an excellent example of the use of JAVS for computer software
documentation.

e JAV5 Final Report. The final report for the project describes the design,
implementation and testing of the JAVS syntax analyzer. Background information
regarding all JAVS contracts is provided as well as procedures for installing
the complete JAVS software package. This report contains, as appendices,

the June 1978 updated pages for the User's Guide and Reference Manual published
as RADC-TR-77-126, Vols. I and II, April 1977.

NS e

TH1S PAGE 15 BEsST QL
FROM COFY Fuh

2 USING JAVS

ALI

L5t T DDC

The process oi program verification is best described by example. One
purpose of this User's Guide is to present an overview of JAVS capabilities
through example programs processed by the JAVS execution steps. It is impor-
tant to note that while there are six processing steps a given validation
effort may require use of only a few of these. The selection of zppropriate

processes is largely a user decision, based upon his
information that the various steps provide. As each
through example, the user will gain insight into its
needs. In order to develop a basic understanding of
to be utilized in the examples, Fig. 2.1 illustrates
flows in terms of step interdependencies.

requirement for the

step 1s described,

utility for his particular
the processing sequences

the potential JAVS processing

SOURCE
TEXT
ANALYSIS

BUILD LIBRARY [}

STRUCTURAL
ANALYSIS

|
3 1 |

MODULE TESTING RETESTING
PROBE (OOt nTATION| |ASSISTANCE A%D GUIDANCE
; lSEGH[NY ANALYSIS AND ANALYSIS
TEST DOCUMENT
EXECUTION OF
INSTRUMENTED
CODE

TEST
TEST | eFrecTIVENESS
MEASUREMENT

Figure 2.1. JAVS Processing Sequences

The user must provide three major types of input to JAVS: (1) the source
code to be tested, (2) a set of commands to direct JAVS processing, and (3)
test data for program execution. Section 2.2 describes the preparation of the
source code for input to JAVS. Section 2.3 describes the rules for inputting

commands.

2=1

P S S s NS USERON

2.1 TYPICAL PROCESSING SEQUENCE

This guide is organized to lead the user through the following sequence
of steps:

1. Build a data base library containing source text and structural
analyses (Sec. 3).

2 Document the source text (Sec. 4).

3. Instrument the modules (Sec. 5).

4 Execute the program (Sec. 6).

5. Measure the test's effectiveness (Sec. 7).
6. Retest the program (Sec. 8).

These steps provide the primary assistance needed to generate test cases
and measure the extent of program testing coverage as each test case is input
to the system.

242 PRELIMINARY STEPS

Before the source text to be verified is submitted to JAVS, the user
should take certain preliminary steps:

Lo The source text should be compiled by a JOVIAL compiler to confirm
that it is free of any syntactical errors.

2. The program to be tested should have been previously executed with
test data necessary to ensure proper execution.

3. JAVS text identification directives should be inserted in the source
if there is more than one START-TERM sequence in the program.

4, JAVS computation directives should be inserted in the source if the
performance testing capability is utilized.

Both types of JAVS directives (a speciil form of JOVIAL comment) are described

in detail in the JAVS Reference Manual™, The JAVS text identification directive
is used to assign a unique name to a JOVIAL START-TERM sequence (program, sub-
program, or COMPOOL). If no text directive is assigned to a START-TERM sequence,
a text name is assigned as a default. The computation directives are

used to make assertions about the behavior of the program and to verify the

value of specified variables without altering the logic of the program. These
directives can make valuable contributions in debugging and boundary conditions
testing. It is suggested that the user acquire some familiarity with JAVS before
utilizing the computation directives. The Reference Manual (Sec. 1.5) describes
their capability and utilization.

The following sections describe the recommeuded sequence of step
executions to be utilized by the beginning user. Although JAVS is capable
of processing very large JOVIAL programs, we recommend that the tester select
a modest program (several hundred JOVIAL statements or less) to use in his
first experience with JAVS processing.

2.3 COMMAND STRUCTURE

The user directs JAVS processing by a set of commands. There are four
"macro" commands which can be used with the JAVS 3.0 overlay program, in
addition to a variety of standard commands. Each macro command expands into
a set of commonly used standard JAVS commands. While both types of commands
can be used together, the user 1s advised to be aware of the expansion of
the macros before combining commands. Table 2.1 shows the relationship
between macro commands, standard commands, and the processing tasks. Sections
3-8 describe each task, as well as the appropriate commands to use, and the
process of executing the test program is described in Sec. 6.

All commands are input one per card. Blanks are ignored, so the
commands are free-form. The card scan ends with a period or with the end
of a card. If a command requires more than one card, a comma must appear
at the last non-blank character of each card preceeding the continuation
card. Up to three continuation cards may be used. Each command consists of
a sequence of terms separated by a comma or an equals sign.

TABLE 2.1

RELATIONSHIP BETWEEN COMMANDS AND TASKS

Macro Command Standard Command
Keyword Keyword Task
BUILD LIBRARY BASIC Syntax analysis
STRUCTURAL Structural analysis
PROBE INSTRUMENT Structural and
computation
instrumentation
DICUMENT ASSIST Module and inter-
PRINT module reports
DEPENDENCE
TEST ANALYZER Post-test coverage

and trace analysis

REPE———

" o e o
TR T T ek S e SR

N P

s

3 PRIMARY ANALYSI1S

Prior to instrumentation, documentaticn, testing, or retesting, a set
of primary analyses must be performed. Syntax analysis is performed on the
JOVIAL source program, transforming it into a format appropriate for storage
on a random-access data base (library file). Using the information on the
data base, structural analysis is performed on the executable modules, up-
dating the tables in the data base library. Structural analysis includes
building a directed program graph which is the basis for instrumentation and
testing analyses. The subject matter of this section, primary analysis, is
shown in the context of the testing process in Fig. 3.1.

3 TASKS

Syntax analysis consists of breaking-down each START-TERM sequence of
the JOVIAL source text into invokable modules. A data base library is
created containing internal tables representative of program text, statement
descriptions and symbol classification.

Structural analysis adds to the data base library a description of pro-
gram structure in terms of decision-~to-decision paths. These paths represent
a unique and systematic ordering of all decision outways. Figures 3.2 and
3.3 illustrate the concept of DD-paths. A DD-path consists of all the
executable statements from a conditional st2tement to the next conditional
statement. Figure 3.2 shows the statement membership for each DD-path in
module EXAMPL. This module contains 12 DD-paths. Below each DD-path number
(listed across the page) is the order in which the statements are placed on

each DD-path. For example, DD-path 2 consists of statements 15, 16, 29, 30,
and 31 in that order.

3ie2 PRIMARY ANALYSIS INPUT

JAVS requires two input files for syntax analysis: the JOVIAL source
program in BCD mode on file READER (09) and the JAVS commands in BCD mode on
file COMMAC (05). If the source program contains more than one START-TERM
sequence, or if the source text is a COMPOOL or requires a COMPOOL to compile,
the user must insert a JAVS text identification directive as the first state-

ment. This statement is described in Sec. 1.4 of the Reference Manual and
is shown in Figs. 3.2 and 3.4.

Input for structural analysis are the JAVS commands and the data base
library created during the syntax analysis.

3.3 COMMANDS
Primary analysis can be accomplished by the single JAVS command:

BUILD LIBRARY [=<name>].

This command expands into the set of standard commands on page 3-5.

3=1

R RS2 AL AT

THIS PAGE IS BEST QUALITY

el i mwmcnm&u

c-—-’

L YOUR JOVIAL }eo— JOVIAL source code is input for processing and

SOURCE analysis. A special form of comment (optional) E
i. inserted by the user directs JAVS processing for ¥
| program performance analysis. 3
P |
| SOURCE TEXT le=— JAVS analyzes the code and generates a directed
i ANALYSIS, graph of the control structure.
BUILD STRUCTURAL The possible flows through the program are
LIBRARY ANALYSIS determined. All pertinent data is stored in a 1
data base for later use. Additional or

changed source code causes an existing data
base to be updated.

L efe e Trpe. e on. . AT A Qv S st

Figure 3.1. The Role of Primary Analysis in the Testing Process

3-2

e AT I A e S R I s,
SRR CIEE RO SVELE oo E O AONESRPR IS |\ syt e U Gl W R o BT eoe TR

T _— Lo ok o A

Y *

i
|

"o JAVSTEXT EXAMPL COMPUTE (COMPOL)''
START
PROC EXAMPL (AA=BH)S
ITEM AAF §
I1TEM BB F$
ARRAY CC 2 2 F$
BEGIN BEGIN)

BEGIN)

«0 1.0 END
«0 1.0 END ENOD
BEGIN

MONITOR BB+ CCS
IFEITH AA LS 0.08
BB = -AAS

ORIF AA EO 0,08
BEGIN

88 = 0.0

FOR 12041,19

BEGIN

FOR J=041,1$8
CC(S1.JU8) = 0,08
END

RETURNS

END

ORIF 1%

BB = AAS

END

FOR K=0+1419%
CC(SK+0%) = BB/2.0$
END

TERMS

MODULES DEFINED IN TEXT
1 EXAMPL (EXAMFL)

Figure 3.4. BASIC Output

CREATE LIBARY=<name>. (default name is TEST)
START. *
BASIC.
FOR LIBRARY.
STRUCTURAL.
END FOR.
END.
The actions taken by the macro command (or equivalent set of standard
commands) is to initialize the JAVS system with a library whose name is
<name> (or TEST 1if none is specified), process syntax analysis (BASIC) re-

moving JOVIAL comment statements, and perform structural analysis for all
modules on the newly created library.

There are several BASIC processing options, all described in the
Reference Manual. If the user wishes to exercise any of the options, to delete

.

the JOVIAL comments in the source text from the library, or to perform struc-
tural analysis on a subset of the modules, he cannot use the BUILD LIBRARY
macro command; instead, the desired sequence of BASIC commands must be

supplied. Section 5 of the Reference Manual contains sample command sets
for each command description.

3.4 PRIMARY ANALYSIS OUTPUT

The main output is a data base library file containing the source text
transformed into invokable modules and tables for other functional processing
and reports. Printed output consists of the card image listing of the JOVIAL
source code (this can be turned off with a BASIC option) along with JAVS
error messages, if any, and a few descriptive lines for each module stating
the number of DD-paths generated. If any syntax errors are printed adjacent
to the offending source text line, they should be scrutinized. A complete
list of JAVS errors is in Appendix B of the Reference Manual. Some errors
will require source code changes before further processing, and some errors
are syntactical warnings.

Figure 3.4 shows the syntax analysis output and Fig 3.5 shows struc-
tural analysis output for module EXAMPL.

JOVIAL AUTOMATED VERIFICATION SYSTEM ®se SECONDARY MODULE ANALYSIS ees

MODULE EXAMPL > OF JAVSTEXT <EXAMPL >
MONULE DEPENDENCE TABLE CONSTRUCTED.
STATEMENT DESCRIPTOR BLOCKS UPDATED.
DD-PATH TABLE CONTAINS 12 ENTRIES.

Figure 3.5. STRUCTURAL Output

3-6

et 5ot . G n e T r“-«?%;hm_-s..:& LT IPSICE SR

AR S A T

9 COMMAND SUMMARY

The subset of JAVS commands which will enable the first~time user to
process his source code are summarized in Table 9.1. The command streams in
Table 9.2 show the natural order of processing and a typical selection of
commands. Instrumentation, activity 2 in Table 9.2, is shown as a separate
activity so that the user can obtain the statement numbers needed by the
| PROBI commands. Instrumentation can be performed as part of the first
activity following the BUILD LIBRARY operation if the user wishes to manually
insert (through a text editor) the necessary invocations to the PROBI data
collection routine.

‘ The rules for JAVS macro command usage and the default option values
1 are described in Appendix B. For a complete description of all JAVS commands
and sample output each command produces, see the Reference Manual.

3
|
:
TABLE 9.1 - J
i Y
9 COMMAND SUMMARY
!
TASK COMMAND OPTIONS]
1) Perform syntax and BUILD LIBRARY =<library name>.]
structural analyses ‘ i
create data base
| library
|
- (2) Generate reports for DOCUMENT ,JAVSTEXT = <text name>,
documentation MODULE = <name-1>,...,
<name-n>.
) Insert test case PROBI,STARTTEST = ,<test case name>,
initiation <module name>, <tracing level>.
<text name>,
<statement no.>
(4) Insert test PROBI,STOPTEST =
termination <module name>, !
<text name>,
<gtatement no.>.
* () Instrumentation PROBE, JAVETIXT = ,MODULE = <name-1>,...,
<text namg> <name-n>.
(6) Post-test analysis TEST yMODULE = <name-1>,...,
<name-n>.
) Retesting ASSIST,REACHING SET, ,<initial>,ITERATIVE,
<target> PICTURE
E
TABLE 9.2
§ SAMPLE COMMAND SETS ﬂ
ACTIVITY COMMANDS
i 1 BUTLD LIBRARY.
o DOCUMENT .
| e N T R O
£ 2 OLD LIBRARY = TEST. i
f{ START.
| PROBL,STARTTEST = <module name>,
1 <JAVSTEXT name>,<statement no.>,
!
PROBI,STOPTLST = <module name>,
<JAVSTFXT name>,<statement no . >.
PROBE, JAVSTFXT = <JAVSTEXT name>.
3 Perform Test Execution
4 OLD LIBRARY « TEST.
START.
ANALYZER ,MODLST.
ANALYZLR, DDPATIS . H
TEST.

9-2

agigoi e ot i R

-

-

4 ‘wkmwﬂi?‘yy%u .

APPENDIX A
JAVS COMMAND SUMMARY

JAVS COMMANDS (DEFAULTS UNDERLINED)

ALTER LIBRARY = <libname>.
ANALYZER.
4 ANALYZER,ALL.
l ANALYZER,ALL MODULES.
|

ANALYZER,CASES = <number>.
ANALYZER,DDPATHS.

ANALYZER,FACTOR = <percent-increase>.

1

w ANALYZER,DDPTRACE.
|
l
|

ANALYZER,HIT.
| ANALYZER ,MODLST.
ANALYZER ,MODTRACE.

ANALYZER,NOTHIT.
ANALYZER, SUMMARY .
ANALYZER,TIME.

<text-name-n>.

ASSIST,CROSSREF,LIBRARY.

ASSIST,PICTURE.
ASSIST,PICTURE{,CONTROL}{ ,NOSWITCH}.

ANALYZER,MODULE = <name-1>,<name-2>,...

,<name-n-.

ASSIST,CROSSREF ,JAVSTEXT = <text-name-1>,<text-name-2>,..

ASSIST,REACHING SET,<number-to>{,<number-from>’

{ ,PICTURE{ ,ITERATIVE}},
ASSIST ,STATEMENTS.

BASIC.

BASIC,CARD IMACES = ON/OFF.

! BASIC,COMMENTS = ON/OFF.
BASIC,DEFINES = QX/OFF.

BUILD LIBRARY (= <library name>!,

CREATE LIBRARY <libname>.

A-2

STEP

(Universal)
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER

ASSIST
ASSIST
ASSIST

ASSIST

ASSIST

ASSIST

BASIC

BASIC,
STRUCTURAL

(Universal)

JAVS COMMANDS (DEFAULTS UNDERLINED)

DEPENDENCE, BANDS.
DEPENDENCE, BANDS = <number>.
DEPENDENCE, GROUP, AUXLIB.
DEPENDENCE, GROUP, I TBRARY .

DEPENDENCE, GROUP ,MODULES = <name-1>,<name-2>,...,<name-n>.

DEPENDENCE, PRINT, INVOKES.

DEPENDENCE, SUMMARY .

DEPENDENCE, TREE.

DESCRIBE = ON/OFF.

DOCUMENT{ ,JAVSTEXT=<text-name>{ ,MODULE=<name~1>,...}}.

END.
END FOR.

FOR JAVSTEXT.
FOR LIBRARY.

FOR MODUILE = <rame-1>,<name-2>,...,<name-n>.

INSTRUMENT.

INSTRUMENT,MODE = INVOCATION/DDPATHS/DIRECTIVES/FULL.
INSTRUMENT,PROBE, DDPATH = <probe-name>.
INSTRUMENT,PROBE,MODULE = <invocation-name>.
INSTRUMENT, PROBE, TEST = <test-name>.

INSTRUMENT,STARTTEST = <modname>,<textname>,<stmt. no.>
{ s«TESNAM> } { ,<TFLAG>}.

INSTRUMENT,STOPTEST = <modname>,<textname>,
<stmt. no.>,

JAVSTEXT = <text-name>.

MERGE.
MODULE = <name>.

OLD LIBRARY = <libname>.

STEP

DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
(Universal)

ASSITST
DEPENDENCE,
(Universal)

(Universal)

(Universal)

(Universal)
(Universal)

(Universal)

INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT

INSTRUMENT

(Universal)

(Universal

(Universa

(Univer

N

AD=AO64 872

UNCLASSIFIED

G6ENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2

JOVIAL AUTOMATED VERIFICATION SYSTEM.(U)

DEC 78 C GANNON F30602=77=C=0115
RADC=TR=78=247 NL

END

DATE
FILMED

4-79

poc

5 Ao K AR Y

JAVS COMMANDS (DEFAULTS UNDERLINED)

PRINT, DDP.
PRINT, DDPATHS.

PRINT,DMT.

PRINT,JAVSTEXT = ‘text-name-1>, INSTRUMENTED = ALL.

PRINT,JAVSTEXT = <text-name>,INSTRUMENTED = <name-1>,
<name-2~,...,<name-n>.

PRINT,JAVSTEXT = <text-name>.

PRINT,MODULE.

PRINT, SB.

PRINT,SDB.

PRINT,SLT.

PRINT,STB.

PROBE, JAVSTEXT = <text-name>{,MODULE = <name-1>,...}.
PROBI,STARTTEST = <modname>,<textname>,<stmt. no.>
{,TESNAM} {, TFLAG }.

PROBI,STOPTEST = <modname>, <textname> 6 <stmt. no.>,

PUNCH, JAVSTEXT = <text-name>.

PUNCH,JAVSTEXT = <text-name>, INSTRUMENTED = ALL.
PUNCH,JAVSTEXT = <text-name>,INSTRUMENTED = <pame-1>,
<name-2>,...,<name-n>.

PUNCH,MODULE.

START.

STRUCTURAL.

STRUCTURAL,PRINT = SUMMARY/DEBUG.

TEST{,MODULE = <name-1>,<name-2>,...<name-n>}.

STEP

(Universal)
(Universal)
(Universal)
(Universal)

(Universal)

(Universal)
(Universal)
(Universal)
(Universal)
(Universal)
(Universal)

INSTRUMENT,
(Universal)

INSTRUMENT,
(Universal)

INSTRUMENT,
(Universal)

(Universal)
(Universal)

(Universal)

(Universal)

(Startup)
STRUCTURAL
STRUCTURAL

ANALYZER,
(Universal)

S —

i bl e b o

APPENDIX B

JAVS MACRO COMMANDS

ki

B.1l INTRODUCTION

To facilitate the use of JAVS, four new commands were added to the
existing set of processing commands. These "macro" commands combine the
most commonly used commands from the standard set. The macro commands may
be used one at a time, all together, or in combination with the standard
set of commands. The combination of commands requires understanding the
expansion of commands which each macro generates; thus, the user is urged
to review Sec. B.2 carefully. The four macro commands are:

) BUILD LIBRARY [=<name>].

2 PROBE ,JAVSTEXT = <text-name>[,MODULE = <name-1>, <name-2>,
. <name-n>]

3 TEST{ ,MODULE = <name-1>, <name-2>, ..., <name-n>].

4. DOCUMENT |[,JAVSTEXT = <text-name>[,MODULE = <name-1>, <name-2>,
.. <name-n>]].

Brackets [] indicate optional information. Each option generates a
different set of standard commands.

B.2 EXPANSION OF MACRO COMMANDS

Unless the user supplies the library identification and start commands,

the first occurrence of a macro command in the command set generates the
standard commands:

CREATE LIBRARY = TEST.
START.
or

OLD LIBRARY = TEST.
START.

All macros except BUTLD LIBRARY generate the OLD LIBRARY command.

B.2.1 Syntax and Structural Analysis

BUILD LIBRARY. generates commands:

CREATE LIBRARY = TEST.
START.

BASIC.

FOR LIBRARY.
STRUCTURAL.

END FOR.

BUILD LIBRARY = <name>. generates commands:

CREATE LIBRARY = <name>.
START.

BASIC.

FOR LIBRARY.

STRUCTURAL.

END FOR.

B.2.2 Documentation Reports

DOCUMENT. generates commands:

ASSIST, CROSSREF, LIBRARY.
DEPENDENCE. GROUP, LIBRARY.
DEPENDENCE, GROUP, AUXLIB.
DEPENDENCE, SUMMARY.

FOR LIBRARY.

PRINT,MODULE.

DEPENDENCE, BANDS=5
DEPENDENCE, PRINT, INVOKES.
END FOR.

DOCUMENT, JAVSTEXT = <text name>. generates commands

ASSIST, CROSSREF, LIBRARY.
DEPENDENCE, GROUP, LIBRARY.
DEPENDENCE, GROUP, AUXLIB.
DEPENDENCE, SUMMARY.
JAVSTEXT = < text name>.

FOR JAVSTEXT.

PRINT, MODULE.

DEPENDENCE, BANDS = 5.
DEPENDENCE, PRINT, INVOKES.
END FOR.

DOCUMENT, JAVSTEXT = <text-name>, MODULE = <name-1>,

<name-n>. generates commands:

ASSIST, CROSSREF, LIBRARY.

DEPENDENCE, GROUP, LIBRARY.

DEPENDENCE, GROUP, AUXLIB.

DEPENDENCE, SUMMARY.

JAVSTEXT = <text name>.

FOR MODULE = <name-1>, <name-2>, ..., <name-n>.
PRINT, MODULE.

DEPENDENCE, BANDS = 5.

DEPENDENCE, PRINT, INVOKES.

END FOR.

B-3

o R vt

B.2.3 Instrumentation

PROBE, JAVSTEXT = <text name>. generates commands:

JAVSTEXT = <text name>.

FOR JAVSTEXT.

INSTRUMENT .

END FOR.

PUNCH, JAVSTEXT = <text name>, INSTRUMENTED = ALL.

PROBE, JAVSTEXT = <text names, MODULE = .name-1,, cname-2, .

<name-n>. generates commands:

o

JAVSTEXT = <text name>,.

E FOR MODULE = <name-1>, ..., <name-n>.

' INSTRUMENT.

K END FOR.

PUNCH, JAVSTEXT = <text name>, INSTRUMENTED = <name-1>,
., <name-n>,

B.2.4 Test Boundary Insertion (quasi-macro commands)

In order to identify test cases and control the recording of data on
the AUDIT file, the user must supply invocations to the data collection
routine, PROBI. The invocations can be manually inserted prior to Test
Execution, or they can be automatically inserted during instrumentation.

The PROBI commands cause JAVS to insert an invocation to PROBI for
identifying a new test case or terminating the test. The commands are of
the form:

PROBI,STARTTEST = <m-name>, <t-name>, <no.>{,<TESNAM>,6 <TFLAG>!.
PROBI ,STOPTEST = <m-name>, <t-name>, <no.>.

where

m-name = module name

t-name = Javstext name
no. = statement number
TESNAM = test case identifier DEFAULT = 8H(CASE)
TFLAG = tracing level DEFAULT = 2
B-4

oA e i

APPENDIX C

JAVS FILES

C.1 INTRODUCTION

The files used in JAVS processing are listed in Table C.l together
with important characteristics about each file. On systems which allocate
files by number (e.g., GCOS) the file number 1is used; on those which allocate
the file by name (e.g., GOLETA), the file name is used. The data structure
column indicates the contents of the file. The mode indicates how JAVS
references the file. The storage form and record format describe how the
data is recorded. The recommended allocation suggests an appropriate type
of system file, keeping in mind that random files must be on direct access
devices and sequential files may be on either direct access devices or serial
devices. The usage indicates how each file is utilized for different types
of JAVS processing.

The JAVS Reference Manuall contains a detailed description of file usage
for each processing step.

€:2 RANDOM FILES

LIBOLD and LIBNEW are used for the JAVS data base library. LIBWSP
is always used for working space. On all of these random files, the JAVS
Storage Manager allocates space for each JAVS table in contiguous groups
of 500 words called "fragments.'" Each file is treated internally as a word-
addressable file, although it may be recorded in another form (e.g., as
fixed~length records). The wrapup summary at the end of each JAVS execution
contains the current size for each of these files.

€.3 SEQUENTIAL FILES

COMMAN, COMMAC and COMAUX are used for JAVS commands. COIMMAC and
COMMAN have a card image record for each command line; COMAUX (always
shorter than COMMAN) is used to store the commands within an iteration
sequence., COMMAN and COMMAC must always be allocated for any processing
step. COMAUX must be allocated whenever any FOR command is used.

LOUT contains all JAVS reports destined for the line printer. The
number of records on LOUT depends on the number and types of reports produced.
The example reports in the JAVS Reference Manual are useful in estimating
the size of LOUT. LOUT is always needed in any processing step.

LPUNCH contains instrumented (or non-instrumented) source (in card image
form) destined for the JOVIAL compiler. The card image source can be written
at any time as long as it was saved on the database library. Usually, LPUNCH
is written during the instrumentation activity.

AUDIT contains the Test Execution probe data. It is possible to record
three types of records on AUDIT. The types of records actually recorded can
be controlled during INSTRUMENT processing by the MODE option and during
Test Execution by an argument value to PROBI. Clearly, for a fully instru-
mented program with complete tracing and a large number of DD-path executions,
the number of records on AUDIT can become very large (to say nothing about
the added processing time). AUDIT is used in Test Execution and ANALYZER.

Cc-2

W i i 45 S e

S Gtk s 4 i

e ————

©oaas

Sewuod HONd Aue yarm paignbaa (1)

pie

puramc s ¥o4 Aue yitm paznbai (g1)
4T3} Yoiels 3103 3de301s sswwm (g

16430067 10 [enues 2Iuaiajal

2 Ojaa3d aq 1sSnm ATy; Iusuewsad (g)
2113 3uyad piepuels uo andinc ()
iuapuadap usriepreIsuy (g)
i i1vIn) yitm paznbaz (g
im paiynbax (v)
' 120 pea1 « ¥ ()
reyiuantas « ¢ ‘mopuel « ¥ (Z)
178 = H 'AJPUTY « § (1) :isalog
spurmwo
- -/ n/ “/n "/ /A “ry (4) agrEt pres u 1a8n NVIAOD o1
(&) ¥ EEPLULY
0 pae 5 H IVIAOL A30YTY (3
" viep
a - v spirom AU) . Fl 1523 aqoad 1100V &
(") 211t Aaninos
" Al sdemy S H paiuawniisuy HONNGT an ¢
wnwyxew Auty
. (2)m - - - - - - 1211 134 wayrhe /5331 vaRYD) g 5 H s310daz 1nm 9
spuUPEBOD
% 4 ¥ u " P A 19prag . AWy pavo o H 1380 IVIHOT) I3
SPUPERICD
-/ -/ A -y R/H /A (6) A1) Yoavaos adeny pavo 5 H uojIe1a1Y XAVHOD wr) »
n/4 ./ /4 "4 . u "4 "4) DT HMIIIS (9) pirpuels waishs “ q aoedsnion 4smg11 £
-4 “/d /¥ /% M/ H -/ E38 SRR U E T (9) piepuris waisds " q Kaeiqyt mINE1T <) 2
4 A 4 4] A " (W) Ar1. Juauvaa (4) pavpuris waishs o 9 faeaqry a10811 () 1
4 =
/ \ \\ IVRatid (2) Wao4) TUALINALS TWYN LEL (i
/ / A SO / et
\ ~ . 2 5 (4 i 30044 ADVAOLS 0w viva 114 14
h.. v ol >/
/ o n.,. .w.
(b / s il
el / i
g
% %m
\ \ \
p— v
| (€£) 39vsn uanSex_
.
1°0 3149Vl
g i

In general there {s no way to estimate the size of the AUDIT file, since
it depends on the execution behavior of the program being analyzed.

READER contains the JOVIAL source (in card image form) to be analyzed
by JAVS. READER i{s used bv the Syntax Analvzer (BASIC),

C=4

APPENDIX D
SAMPLE JOB STREAMS FOR RADC

D.1

PERFORM SYNTAX AND STRUCTURAL ANALYSES {

Notes:

$ IDENT <userid>,<user name>,<acc't. no.>

$ USERID <userid>$ <password>

$ SELECT BFCBGRC1/JAVSXQ

$ PRMFL 02, R/W,R,<userid>/<library file name>
$ PRMFL 09, R,S,<userid>/<source file name>
BUILD LIBRARY,

$ ENDJOB

(1) The LIMITS control card imbedded in the SELECT stream
specifies .99 CP hour and 40,000 lines of output. The !
user can modify these limits by placing the following
control card before the JAVS command:

$ LIMITS <time>,53K,-5K,<1ines>

(2) To obtain the JAVS enhanced listing for each module during
this activity, follow BUILD LIBRARY with:

FOR LIBRARY.
PRINT ,MODULE.
END FOR.

(3) To obtain JAVS documentation reports within the same
activity, follow BUILD LIBRARY with:

DOCUMENT.

(4) The default library name is TEST. The user may provide any
library name (up to eight characters) but in doing so must
provide the library identification and start commands in
subsequent JAVS processing jobs to reflect the non-default
library name. See page B+2 for more information.

D.2 OBTAIN JAVS DOCUMENTATION REPORTS

$ IDENT <userid>,<user name>,<acc't. no.>

3 USERID <userid>$<password>

3 SELECT BFCBGRC1/JAVSXQ

$ PRMFL 01, R,R,<userid>/<library file name>
DOCUMENT.

$ ENDJOB

Notes:

(L) The LIMITS control card imbedded in the SELECT stream
specifies .99 CP hour and 40,000 lines of output. The
user can modify these limits by placing the following
control card before the JAVS command:

$ LIMITS <time>,53K,-5K,<1ines>

(2) To obtain the JAVS control flow picture for each module,
in addition to the other documentation reports, follow
the DOCUMENT command with:

FOR LIBRARY.
ASSIST,PICTURE.
END FOR.

or precede the DOCUMENT command with:
OLD LIBRARY = TEST."
START.
FOR LIBRARY.

ASSIST,PICTURE.
END FOR.

¥ The default library name is TEST. The user may provide any library name
(up tc eight characters) but in doing so must provide the library identifi-
cation and start commands in subsequent JAVS processing jobs to reflect the
non-default library name. See page B-2 for more information.

D-3

e —

s ———.. ..

RS
D.3 INSTRUMENT A START-TERM SEQUENCE (JAVSTEXT)

$ IDENT <userid>,<user name>,<acc't. no.>

$ USERID <userid>$<password>

$ SELECT BFCBGRC1/JAVSXQ

$ PRMFL 01, R,R,<userid>/<library file name>

$ PRMFL 07, .W,S,<userid>/<instrumented source file name>
OLD LIBRARY = TEST.

START.

PROBI,STARTTEST = <options>.
PROBI,STOPTEST = <options>.

PROBE ,JAVSTEXT = <text name>.
$ ENDJOB

! Notes:

{ (1) See D.2 note (1).

(2) Library identification and start commands are required
for PROBI commands.

(3) To manually insert the PROBI test case boundary calls,
remove the first four commands.

(4) To obtain a listing of the instrumented modules, follow
the PROBE command with:

1 PRINT,JAVSTEXT = <text name>,INSTRUMENTED = ALL.

This job stream does not save the probed code on the database library.

i

4

lThe default library name is TEST. The user may provide any library name

3 (up to eight characters) but in doing so must provide the library identifica-
tion and start commands in subsequent JAVS processing jobs to reflect the
non-default library name. See page B-2 for more information.

D=4

. > oA eI - o O
M 1o e i R b Y

D.4 INSTRUMENT A START-TERM SEQUENCE (JAVSTEXT)'

$ IDENT <userid-,<user name>,<acc't. no.>
§ USERID <userid~$.password>

PRMFL H* ,R,R,BFCBGRC) /JAVSX(‘
$ PRMFL 02, R/W,R,<userids/<library file name> f
$ PRMFL 07, W,S,<userid~/<instrumented source file name> -
s LlMlTS \time\.bJJ\'.-SK.\HneSS

ALTER LIBRARY = TEST.!:
START. 1
PROBI,STARITEST = <options-. |
PROBI,STOPTEST = <options-. |
PROBE ,JAVSTEXT = . text name:.
$ ENDJOB

T Py ——

See D.3 notes.

B 1 e DA sl i e

}
This job stream saves the probed code on the database library which
can substant {ally {ncrease the libravv's tile size.

i .

The default l{brary name {s TEST. The user may provide any library name
(up to efght characters) but {n dofing so must provide the library identiti-
catfon and start commands ln subsequent JAVS processing fobs to reflect the

non=detault {brary name. See page B=2 tor more intormation.

| D=5

D.5

Notes:

COMPILE INSTRUMENTED SOURCE TEXT

IDENT
USERID
LOWLOAD
OPTION
JOVIAL
FILE
SELECT
LIMITS
SELECT
JOVIAL
ETC
FILE
SELECT
LIMITS
PRMFL
PRMFL

C PR AP PAPOIPEA P

<userid>,<user name>,<acc't. no.>
<userid>$<password>

FORTRAN

NOPT ,NDECK,NAME/PRPOOL / ,POOLOU/JP/
JP,X1S,2L

BFCBGRC1/COMPILEB

1,49K

BFCBGRC2/PRPOOL

POOLIN/JP{ ,user COMPOOLS}/,NOPT,
NAME/<name>/

JP,X1R,2L

BFCBGRC1/COMPILEB

<time>,<size>,,<lines>
S*,R,S,<userid>/<instrumented source file>
C*,W,S,<userid>/<instrumented object file>

user COMPOOL perm files

$ ENDJOB

(1) Currently the backup JOCIT compiler (version 042275) is being
the user wishes to use another version of the JOCIT
the JAVS data collection routines must be recompiled
same version.

used. If
compiler,
using the

(2) The CP time in the second LIMITS control card should be

approximately 1.5 times the CP time required to compile the

uninstrumented text.

(3) The core size in the second LIMITS control card should be
approximately 1.25 times the size required to compile the

uninstrumented text.

D.6 TEST EXECUTION AND POST-TEST ANALYSIS £

$ IDENT <userid>,<user name>,<acé¢'t. no.>
$ USERID <userid>$<password>

$ LOWLOAD

$ OPTION FORTRAN

$ SELECT BFCBGRC1/JPROBESX

$ SELECT <userid>/<instrumented object file>
$ SELECT BFCBGRC1/EXECUTEB

$ LIMITS <time.,<size>,,<lines>

$ PRMFL 08, W,S,<userid>/<AUDIT file>

. user files and data

$ SELECT BFCBGRC1/JAVSXQ

$ LIMITS <time>, 53K,-5K,<1ines>

$ PRMFL 01, R,R,<userid>/<library file>

$ PRMFL 08, R,S,<userid>/<AUDIT file>

OLD LIBRARY = TEST.+

START.

ANALYZER,MODLST.

ANALYZER,DDPATHS.

TEST.

$ ENDJOB

Notes:
(1) To obtain a printed listing of the input data, if the data
were on a perm file, insert the following control cards
before selecting JAVSXQ:

$ CONVER

$ INPUT NMEDIA

$ PRMFL IN,R,S,<userid>/<data file>
$ PRINT oT

; (2) The EXECUTEB select stream supplies JOVIAL system routines
i used by the backup JOCIT compiler. This can be changed
: to EXECUTE if all software modules were compiled using

a newer version of JOCIT.

(3) Additional instrumented files can be loaded.

(4) 1In an overlay environment, JPROBESX must be loaded in
the main link.

(5) The AUDIT file can be a scratch disk file or magnetic
tape, instead of a perm file.

' The default library name is TEST. The user may provide any library name
(up to eight characters) but in doing so must provide the library identifi-
| cation and start commands in subsequent JAVS processing jobs to reflect the
' non-default library name. See page B-2 for more information.

D-7

=

o

D.7 RETESTING ASSISTANCE (REACHING SETS)

$ IDENT <userid>,<user name-»,<acc't. no.>
$ USERID <userid-$<password>
$ SELECT BFCBGRC1 /JAVSXQ

$ PRMFL 01, R,R,<userid>/<library file name>
OLD LIBRARY = TEST.¢
START.

ASSIST ,REACHING SET,<target>,{options}.

$ ENDJOB

lJ'I'hAeud-efault library name {s TEST. The user may provide any library narmc

(up to eight characters) but in doing so must provide the library identifi-
cation and start commands in subsequent JAVS processing jobs to reflect the r
non-default library name. See page B-2 for more information.

D-8 *

LI T B

D.8 SELECT STREAMS

In the event that the user wishes to modify the control cards nested in
the two JAVS SELECT control cards, the expansions are as follows:

SELECT BFCBGRC1/JAVSXQ contains

PROGRAM RLHS

PRMFL ~ H*,R,R,BFCBGRC1/HSTAR/JAVSHS
LIMITS 99,53K,-5K,40000

FILE 03,X3R,10R

FILE 10,CIR, 1L

FILE 04,X4R,2L

FILE 02,X2R,20R

A OO 53

SELECT BFCBGRC1/JPROBESX contains

SELECT BFCBGRC2/BPRCMPL
SELECT BFCBGRC2/BPROBE

SELECT BFCBGRCZ2/BPROBI-X
SELECT BFCBGRC2/BPROBM-X
SELECT BFCBGRC2/BPROBD-X

R R o

D-9 !

———————

APPENDIX E
TIME AND SIZE ESTIMATIONS

. e =

TABLE E.1
FILE SIZE ESTIMATION

File # File LE = Wnkcr o) _.__f:ﬁti@i£@19.i~ RS ISR
01, 02 Library 15-20 1llinks/module
(LIBOLD, 300 111nks/1000 source statements
LIBNEW) 4-5 times source file size (1links)
03 LIBWSP 10 1links
04 COMAUX 2 1links
5; LPUNCH 8 1links/module
(instrumented 100 11inks/1000 source statements
source)

2 times uninstrumented source file size (1links)

Instrumented .3 times LPUNCH (1links)
object file 2 times uninstrumented object file size
08 AUDIT Minimum size (no execution tracing' is:

(number of probed DD-paths x number of
test cases x .2 llinks)

Maximum size {s dependent upon execution

behavior and level of tracing

09 READER .04 1links/source card |
ORIy, et P O S N e i
10 COMMAN I Tlink |
*
These estimations are derived from testing the SAC Force Management Information
System,
E-2

S — ——

S (T L e AT g S v = R

Task/Command

BUILD LIBRARY

DOCUMENT

PROBE

Compile instrumented code

Test Execution

*
TEST

TABLE E.2
CP Time Estimation

CP Hour/
CP_Hour/Module 1000 Statements
.010 L7/
.006 ool
.005 .07
.001 .02

1.5 times execution time for uninstrumented

program

3-6 times Test Execution time
.01 CP hour/module

*
Very rough estimates, since TEST CP time depends
heavily on the size of the AUDIT file.

APPENDIX F

JAVS INSTALLATION REQUIREMENTS

i . B . =

TABLE F.1
JAVS INSTALLATION AT RADC

DATE June 1978

VERSION 3.0 overlay

COMPUTER HIS 6180

OPERATING SYSTEM GCOS version G update 3

COMPILER JOCIT JOVIAL/J3 version 042275
NON-STANDARD FEATURES JOVIAL MONITOR, FORTRAN random I/0
CONFIGURATION batch, linked

PROCESSING CORE REQUIREMENTS:

Program File Type Load Size Process
LR 1 ~Ype 40ad oilze LT LOCESS

HSTAR/JAVSHS H* 53K Complete JAVS overlayv
JPROBESX select 4K Test Execution
JAVSXQ select select H* and work files
FILES:
Number Name Allocation Usage o Description (1)
1 LIRQLD save R/W 300 W/records, R, U, F
2 LIBNEW save R/W 300 W/record, R, U, F
3 LIBWSP scratch R/W 300 W/record, r, U, F
4 COMAUX scratch R/W BCD, card image
5 COMMAC card reader R system input, BCD
6 LOUT printer W system output
7 LPUNCH compile W BCD, card image
] AUDIT save R/W Binary, 8 W/record
9 READER source R BCD, card image
10 COMMAN scratch R/W BCD, card image
Note: - e
(1) W = words, R = random, U = unpartioned, F = fixed length
|
F-2

TABLE F.2
JAVS INSTALLATION AT SAC HEADQUARTERS

DATE July 1978 I
VERSION 3.0 overlay
COMPUTER HIS 6180
OPERATING SYSTEM WWMCCS
COMPILER JOCIT JOVIAL/J3 version 042275
NON-STANDARD FEATURES JOVIAL MONITOR, FORTRAN random 1/0
CONFIGURATION batch, linked
PROCESSING CORE REQUIREMENTS:
Program File Type Load Size Process
HSTAR /JAVSHS H* 53K Complete JAVS overlay |
x
JPROBESX select 4K Test Execution)
JAVSXQ select select H* and work files I
FILES:
Number Name Allocation Usage Description (1)
1 LIBOLD save R/W 300 W/records, R, U, F
2 LIBNEW save R/W 300 W/record, R, U, F
3 LIBWSP scratch R/W 300 W/record, R, U, F
4 COMAUX scratch R/W BCD, card image
5 COMMAC card reader R system input, BCD
6 LOUT printer %) system output
7 LPUNCH compile W BCD, card image 3
8 AUDIT save R/W Binary, 8 W/record -
9 READER source R BCD, card image
10 COMMAN scratch R/W BCD, card image
|
|
|
Note: |

(1) W = words, R = random, U = unpartioned, F = fixed length.

F-3

{
i
1

]
APPENDIX G
JAVS UTILIZATION CHECKLIST

Prepare source code:

a.

a.

Insert JAVSTEXT directive as the first statement of each START-TERM
sequence.

If the START-TERM 1is a program, CLOSE, or PROC use:
"".JAVSTEXT <name> COMPUTE (<COMPOOL name>)"

The parenthetical name informs JAVS that one or more COMPOOLs are
referenced, although the COMPOOL name is not checked for validity.

If the START-TERM is a COMPOOL use:
".JAVSTEXT <name> PRESET"

See page 3-5 in the User's Guide and page 1-7 in the Reference Manual
for examples.

If JAVS computation directives (ASSERT, EXPECT, TRACE, OFFTRACE) are
to be used, insert them into the source code following normal JOCIT
programming rules for placement and expression svntax. See Sec. 1.5
in the Reference Manual for description of these direcrives,

Create files

Complete JAVS processing of the source code will require creation of
the following files:

File code Name Type Contents
01,02 LIBNEW Random JAVS data base library
LIBOLD
07 LPUNCH Sequential Instrumented source
08 AUDIT Sequential Execution Trace

See page E-2 of the User's Guide for size estimations of these files.

Additional files which the user may wish to use are the sequential
C* file containing the instrumented object code (see page D-6,
User's Guide) and a random access H* file containing the user's
program with instrumented code.

3. Perform syntax and structural analyses

a. Execute the job stream on page D-2, User's Guide (or one which
employs BASIC and STRUCTURAL keywords; see Sec. 5 of the Reference
Manual under these keyword headings).

b. Check JAVS output for any errors. The complete list of errors is in
Appendix B of the Reference Manual.

c. If necessary, modify source and reprocess this step.

4. Obtain JAVS documentation reports
) Execute the job stream on page D-3, User's Guide or

° Use any of the PRINT, ASSIST and DEPENDENCE commands to produce the
desired documentation reports. See Sec. 5 of the Reference Manual
under the appropriate keyword headings for sample commands and
output.

5. Instrument the source code

a. For each START-TERM (JAVSTEXT) execute the job stream on page D-4,
User's Guide.

b. The PROBI commands direct JAVS to insert calls to the PROBI data
collection routine to initiate and terminate test cases at specified
statements in the source code (statement numbers appear in the JAVS
module listings). See Sects. 5.3 and 6, User's Guide and page 2-15,
Reference Manual for PROBI description. The test case initiation
and termination PROBI calls can be inserted manually (e.g., under
the GCOS EDIT system) in the instrumented or uninstrumented source
code, or they can be inserted at the direction of the PROBI command.
See page 2-17, Reference Manual for a sample listing of probed code.

6. Corpile the instrumented source text

Use the job stream on page D-6, User's Guide, supplying any COMPOOLs
(in addition to the JAVS PRPOOL) required for compilation.

7o Load, execute and analyze program coverage

a. Use the job stream on page D-7, User's Guide as a basis for determining
the control cards needed for executing and analyzing the program.

Y Faniie o et 0 = od -4 TR

— o (s R et b i e
o o PETTRRIMIS SR e e S ..y-u._‘.(‘:— BT S e s PR e

b. The job control cards required for loading and executing
the program differ from the user's normal sequence as follows:

(1) The JAVS data collection routines must be loaded
(JPROBESX). If the user's program is in overlay form,
load JPROBESX in the main link.

(2) Load the instrumented object code instead of the original
object code (in the appropriate link, if overlaid).

(3) Supply the AUDIT file (file code 08) for the execution
trace results.

c. The JAVS post-test analysis (following user files and data) control
cards include the AUDIT file (written during execution) and the JAVS
data base library (LIBOLD on file code 01).

Figure G.l1 shows the typical flow of operations in using JAVS. JAVS
commands and the data base library are used in all activities except the

3 compilation. The files used in the figure are the library (02,01), LPUNCH

e (07), object (C*), and AUDIT (08).

e

G=4

i

a
i
?, |
|
|

REFERENCES

C. Gannon and N. B. Brooks, JAVS Technical Report, Vol. 2: Reference
Manual, General Research Corporation CR-1-722/1, June 1978.

N. B. Brooks and C. Gannon, JAVS Technical Report, Vol. 3: Methodology
Report, General Research Corporation CR-1-722, December 1976.

L sy A.wﬁa;\w:‘w!;,

. O, o
0 nvu.‘..,' PRI | by

APPENDIX C

UPDATES TO REFERENCE MANUAL

ABSTRACT

The JOVIAL Automated Verification System (JAVS) is a control-path
testing tool which analyzes source programs written in the J3 dialect of
the JOVIAL language. From the user's viewpoint, JAVS consists of a sequence
of processing steps which (1) builds a database containing syntactical and
structural information about his JOVIAL source text, (2) prepares documenta-
tion reports describing inter- and intra-module characteristics of the source
code, (3) measures control-path coverage during program execution, and (4)
assists in pinpointing untested source code and preparing additional test

data.

The purpose of this document is to describe in detail JAVS processing
and each of the JAVS commands. The organization of the Reference Manual
follows a top-down approach. Starting with a system level description in the
first section; each subsequent section describes a subset of the total system

in detail.

) — . v BN t i o g A ,;_4-_;‘;;.'1'.~..~"-'L‘"'-‘;§ " Tl .
f"“"""»”'gr““‘”." Hovies prves: ¥ ’

Li
|
}
!

PREFACE
This Reference Manual supersedes the JAVS Reference Manual, dated L
November 1976.

Change bars in the page margins indicate additions and
changes to the 1976 manual; asterisks denote deletions.

T ——

b 8.1

s

i L e i vt il w vy e it o b e N AR

LIST OF JAVS REPCRTS

e Revised Methodology for Comprehensive Software Testing. This report de-
scribes the methodology which underlies and is supported by JAVS. The method-
ology is tailored to be largely independent of implementation and language.

The discussion in the text is intended to be intuitive and demonstrative. Some
of the methodology is based upon the experience of using JAVS to test a large
information management system. A long-term growth path for automated verifica-
tion systems that supports the methodology is described.

° JAVS Technical Report: Vol. 1, User's Guide. This report is an intro-
duction to using JAVS in the testing process. Its primary purpose is to acquaint
the user with the innate potential of JAVS to aid in the program testing pro-
cess so that an efficient approach to program verification can be undertaken.
Only the basic principles by which JAVS provides this assistance are discussed.
These give the user a level of understanding necessary to see the utility of
the system. The material on JAVS processing in the report is presented in the
order normally followed by the beginning JAVS user. Adequate testing can be
achieved using JAVS macro commands and the job streams presented in this guide.
The Appendices include a summary of all JAVS commands and a description of JAVS
operation at RADC with both sample command sets and sample job control state-
ments.

® JAVS Technical Report: Vol. 2, Reference Manual. This report describes
in detail JAVS processing and each of the JAVS commands. The Reference Manual
is intended to be used along with the User's Guide which contains the machine-
dependent information such as job control cards and file allocation. Through-
out the Reference Manual, modules from a sample JOVIAL program are used in

the examples. FEach JAVS command is explained in detail, and a sample of each
report produced by JAVS is included with the appropriate command. The report
is organized into twec major parts: the first four sections describing the JAVS
system and the fifth section containing the description of each JAVS command in
alphabetical order.

The Appendices include a complete listing of all error messages directly
produced by JAVS processing.

[JAVS Computer Program Documentation: Vol. 1, System Design and Implemen-

tation. This report contains a description of JAVS software design, the organi-

zation and contents of the JAVS data base, and a description of the software

for each JAVS component: its function, each of the modules in the component,

and the global data structures used by the component. The report is intended
primarily as an informal reference for use in JAVS software maintenance as a

companion to the Software Analysis reports described below. Included in the

appendices are the templates for probe code inserted by instrumentation pro-

cessing for both structural and directive instrumentation and an alphabetical
list of all modules in the system (including system routines) with the formal
parameters and data type of each parameter.

. JAVS Computer Program Documentation: Vol. 2, Software Analysis. This
volume is a collection of computer output produced by JAVS standard processing
steps. The source for each component of the JAVS software has been analyzed

iii

b ol SRR A

o

ecam

to produce enhanced source listings of JAVS with indentation and control struc-
ture identification, inter-module depencence, all module invocations with formal
and actual parameters, module control structure, a cross reference of symbol
aseage, tree report for each leading module, and report showing size of each
component. It is intended to be used with the System Design and Implementation

Manual for JAVS software maintenance. The Software Analysis reports, on file
at RADC, are an excellent example of the use of JAVS for computer software
documentation.

. JAVS Final Report. The final report for the project describes the design,
implementation and testing of the JAVS syntax analyzer. Background information

regarding all JAVS contracts is provided as well as procedures for installing

the complete JAVS software package. This report contains, as appendices,

the June 1978 updated pages for the User's Guide and Reference Manual published !
as RADC-TR-77-126, Vols. 1 and II, April 1977.

iv

JAVS TEST CASE

S08e MONITORED MHOLLERITH
®0® MONITOREN HOLLERITH
@8e MONITOREN HOLLERITH

RESULT GT o

@80 MONITOREND HOLLERITH
®0e MONITORED HOLLERITH
@00 MONITORED HOLLERITH

RESULT GT &

Figure 1.4. Output from Execution of Sample Program

DaTa
DATA
VUATA

DATA
VDATA
DATA

10
ITER]A
ITER2A

10
ITER]A
ITER2A

= TwO
= 300
= 199
= ONE
= 45
L] 1e

1.4 [EXT IDENTIFICATION

JAVS automatically separates a START-TERM sequence of JOVIAL source
which contains executable JOVIAL statements (i.e., not a COMPOOL) into modules
ot invokable code (e.g., a PROC, a CLOSE). After the source code has been
instrumented, it is reassembled into the START-TERM sequence in preparation
tor compilation and Test Execution. If more than one START-TERM sequence is
contained on the library, it is necessary to identify each sequence separately
with a unique name. JAVS has provision for naming a START-TERM sequence and
distinguishing between types of text through the use of a special form of
comment called a JAVSTEXT directive:

".JAVSTEXT<name><type>[(<related-text-list>)][<description>]"

where

<pname> is the name given to the START-TERM sequence (name
must be 8 or less characters, in which the first 6
characters must be unique among. the JAVSTEXT names)

<tvpe> is COMPUTE for an executable START-TERM text (e.g.,
a program) or PRESET for nonexecutable text (e.g.,
a COMPOOL)

<related-text-1list> is an optional list of related text names separated
by commas (e.g£., the name of a COMPOOL text used
during compilation with a program text)

<description> is optional descriptive information

Ihe JAVSTEXT directive should be used with each START-TERM sequence as the

first line of text in the START-TERM sequence.

In the example program, the JAVSTEXT directive
", JAVSTEXT EXCOMPL PRESET"
is used to inform JAVS that a COMPOOL is being processed. The JAVSTEXT direc-
tive

", JAVSTEXT EXPROGM COMPUTE (EXCOMPL)"

[

is used to inform JAVS that an executable START-TERM sequence which references
a COMPOOL (EXCOMPL) is being processed. This directive is required for a
COMPOOL text, but mav be omitted for executable text.

1-10

2.3 MODULE INSTRUMENTATION

This step performs the instrumentation of modules which have been pro-
cessed through BASIC and STRUCTURAL. The primary result of this step is a
set of probed modules which can then be compiled in instrumented form for use
in Text Execution (see Sec. 2.4). Only modules which hae executable state-
ments (e.g. modules other than COMPOOLS) are instrumented. The instrumented
modules are logically identical to the original source code. The probe state-
ments are saved on the library along with data generated by BASIC and STRUC-
TURAL (e.g., the source text, etc.). INSTRUMENT processing is shown in Fig.
255 :

from
STRUCTURAL
™~
\\\\\‘\ :;
<
DATA '
USER MODULE BASE <
COMMANDS INSTRUMENTATION LIBRARY
l l TEST EXECUTION
INSTRUMENTED
INSTRUMENT
REPORTS SOURCE

*FROM STRUCTURAL

Figure 2.5. INSTRUMENT Processing

There are two types of instrumentation generated during INSTRUMENT:

Structural Instrumentation. Software probes are automatically
inserted into the source text at each invocation point, each
return point, and each statement which begins a DD-path. Each
probe includes a call to special auditing routines which cap-
ture and record information concerning flow of comtrol in the
executing module(s).

JAVS Directive Instrumentation. Software probes are manually
inserted inthe source text for JAVS directives (Sec. 1.5) which
are automatically expended into JOVIAL code to monitor the re-
sults of assignment and exchange statements during Test Execution.
Each directive controls execution-time output which is inter-
spersed with normal program output.

I e N T D R .‘_M"_'. i L. AN IS R

!

3 JAVS CONSTRAINTS

JAVS imposes certain restrictions on the size of the database library,
the command language, and the source text to be analyzed. Most of the limita-
tions based on size are generous (e.g., the maximum number of nested IF state-
ments is 100). Some of the limitations, su-h as those in the Test Execution
process, can be raised by recompiling parts of JAVS. Some of the restrictions
are based upon computer page dimensions and cannot be changed.

e

A number of the constraints which affect the incoming JOVIAL source code
are founded in the principle of analyzing invokable modules separately. The
dialects of JOVIAL recognized by JAVS allow certain constructs involving jumps
to global labels, invocations of externally declared switches, and TEST state-
ments where the FOR variable is external to the module. Some of these con-
structs require modification of the JOVIAL source code, and some cause a 3
warning message to be issued to make the user aware of limitations in the DD~
path test measurement report and execution tracing.

The constraints are listed in sections (Sec. 3.2 through 3.8) appropriate
to a particular JAVS processing step. Universal constraints (Sec. 3.1) affect
all of JAVS processing. The terminology used in describing the constraints
requires knowledge of JOVIAL and JAVS. The user should refer to the JOCIT
Compiler Users Manual3 for JOVIAL terms and to the index in this manual for
direction to the descriptions and references to JAVS terms.

3.1 UNIVERSAL CONSTRAINTS

e g e —

' Maximum 3 continuation cards for any given JAVS command.

2 Maximum 24 commas in any given JAVS command.

3¢ Maximum 150 modules selected for any given JAVS command iteration i
loop.

. e : : *
Maximum 250 word-pairs in a statement block.

o

|
.i S Maximum 100 statements on any DD-path.
| 6. Maximum 25 internal data base tables during any JAVS execution.
| 7. 100 JAVS errors produce a fatal error.
8. Maximum 250 known modules during any one JAVS execution (i.e.,
total modules in one or both libraries).
9 In order to change a previously made library, the name specified
for an ALTER LIBRARY must be the same as when it was a CREATE
LIBRARY.
A iy £ Maximum 150 modules per JAVSTEXT.
11. Maximum 80 characters per card image read.
12. Maximum 128 characters per line of output.

13 No analysis is performed on a DIRECT code sequence.

{58 The recognized dialects of JOVIAL include JOCIT JOVIAL, JOVIAL/J3,
CDC JOVIAL, and Honeywell JOVIAL. The combination of these is
processed by JAVS.

e isain

5%
BASIC automatically separates long source statements into a sequence of state-
ments. The first statement is given the statement type according to the

: original JOVIAL source statement. Subsequent statements are of type continua-
3 tion (CONT).

3=2

3.2 JAVS

BASIC vrocessing is capable of handling quite large source text files.
Unusually large programs may have to be processed by several successive execu-

BASIC CONSTRAINTS

tions of BASIC, each operating on a separate file of START-TERM texts.

The following implementation constraints are the cu.rent ones which must
g |

be observed during BASTIC orocessing:

10,

11

12

Each module placed on the same library must have a unique
module name for a given JAVSTEXT name. For this purpose

only the first eight characters of any name are used. The
first six characters should be unique (a compiler restriction).

A PROC must contain at least one executable statement (e.g.
RETURN) .

Statement labels in direct code are not analyzed. A reference
to such a label in JOVIAL code is treated as a reference to an
external undefined label.

The maximum number of nested modules is 150.

The maximum number of unique symbols (names and constants)
is 4096.

A basic element may not exceed 500 characters (does not include
literals).

A JOVIAL symbol may not exceed 4095 characters.

A comment if saved will be truncated to the maximum JOVIAL
symbol length if it exceeds that length.

BASIC guarantees that saved comments terminate with a double
prime (i.e., a double prime will be generated).

Only the first 72 columns of source text line are analyzed.

COMPOOLS must have a JAVSTEXT directive stating the PRESET
type.

A statement name following a TERM (main program only) will not
determine the first executable statement.

3

JAVS STRUCTURAL CONSTRAINTS

RO

Control should not transfer trom one module to a label or
switch declared in another module. Control transfers of
this type are treated as RETURNs

A TEST statement must not appear in the range of a single factor
FOR statement sequence.

Function calls with side effects (i.e., two successive calls to
the function which produce different results) are not permitted in

FOR, IF, IFEITH, and ORLF statements.

Fhe maximum depth of nesting of control or compound statements
(LFEITH, OREF, LF; FOR, BEGIN) is 100,

[he maximum number of DD-paths which can begin at a statement
is 100.

The maximum number of statements on a single DD-path is 100.

CLOSE invocations which appear as switch points in SWITCH
declarations are treated as null switch points.

SWITCH invocations which appear as switch points (nested switches)
in SWITCH declarations are treated as null switch points.

Invocations of externally declared switches are treated as
RETURNSs.

Ihe first three factor FOR statement in a parallel FOR {is
assumed to be the controlling FOR. If there are no three
factor FOR statements in the parallel FOR, the first FOR state-
ment is chosen as the controlling FOR for the purpose of con-
structing interstatement pointers in the JAVS statement de-

scriptor blocks.

CLOSE declarations within a FOR statement may not use a TEST
statement to reference the active FOR variable.

PP

'g
i
%

AR SR A S e SRR, Stk Sttty 0 e i e I

3.4 JAVS INSTRUMENT CONSTRAINTS

)i

10.

11.

12.

The first three factor FOR statement in a parallel FOR is
assumed to be the controlling FOR and is instrumented.

Invocations of externally declared switches are not instrumented.
The maximum number of nested IF statements is 100.

Subscript expressions in SWITCH invocations are limited to 72
characters.

Item names and switch names are limited to 30 characters in
length.

The maximum number of variables allowed in a single TRACE
directive is 18.

The maximum number of variables in TRACE directives is limited
to 999 per module.

The maximum number of nested IFEITH and/or IFEITH/ORIF statements
is 100.

The maximum DD-path number is 9999.

The maximum length of the TEXT in an ASSERT directive is 72
characters.

The functional modifiers BIT, CHAR, MANT, NENT, POS and BYTE
may not appear in the numeric formulas for FOR statements;

i.e., no side-effects are allowed in the initial value formula.

FOR variables may not appear in TRACE or EXPECT directives.

3-5

i
:

3.5 JAVS ASSIST CONSTRAINTS

’ 1. Maximum of 100 DD-paths per reaching set path.

2. Maximum of 100 outways per decision.

3 Maximum of 1200 DD-paths per analyzed module for reaching set.
4. Maximum of 2400 statements per analyzed module for reaching set.
G Maximum of 200 statements in reaching set.

6. Maximum 100 JAVSTEXTs specified for cross-reference mapping.

7. Maximum of 125 modules specified for cross-reference mapping.

e

3-6

i
i
{
{
i
?
|
|
:

L3 i W

"ﬁ.«}é« .

E7 S e TS T e

/

B3.3 Multiple Module lteration

In many applications, the user will want to repeat a command for a num-
ber of different modules. The three forms of command iteration structure
are described below.
4.3.3.1 Selected Module Iteration.

The following sequence selects a number of modules, by name, and itera-

tes a block of commands (which cannot contain another iteration) once for
each specified module:

FOR MODULE = <name-1>,<name-2>,...,<name-n>.
(any set of commands)

END FOR.

.3.3.2 ALL-Modules Iteration for Specified JAVSTEXT (START-TERM Text).

The following sequence selects each known module within the "current
text" and iterates a block of commands (which cannot contain another iteration)
once for each known module of that text:

-

FOR JAVSTEXT.
: (any set of commands)

END FOR.

4.3.3.3 ALL-Modules Ilteration for Library.

The tollowing sequence selects each known module on the library and
iterates a block of commands (which cannot contain another iteration) once
tor each known module:

e T L e -

FOR LIBRARY.

':'

|

| (any set of commands)

END FOR.
“ 4.3.4 Module Selection Constraint
3 The maximum number of modules which may be specified by a single itera-
tion is 150 (see Sec. 3).

4

!

i

, 4=9
|

|

|

- : ———

GG PROCESS OPTION COMMANDS

Processing steps BASIC, STRUCTURAL, INSTRUMENT and ANALYZER have option
I commands which detine the action taken when the process execution command is
given. The option commands follow the START command and precede the
appropriate execution command (see Sec. 4.5).

“.4.1 BASIC Option Commands

Fhe BASIC options are specified by the following commands (with the
default value assumed in case the option command is not given prior to the w
appearance of the BASIC execution command):

BASIC, CARD IMAGES = ON/OFF. DEFAULT = ON.
BASIC, COMMENTS = ON/OFF. DEFAULT = ON.
BASIC,DEFINES = ON/OFF. DEFAULT = ON.

BASIC options which have been selected in the command sequence remain in
] etfect until they are reset by a later command. See Sec. 5 for a complete
g & detinition and example of each BASIC option command.

]

‘ lhe user will note that module selection commands do not apply until
after a module has been added to a librarv during BASIC processing by the BASIC
verb. The name assigned to a module when it is added to a library is the first

i eight characters of the program name, procedure name, or close name of the

F module. The tirst six characters of the names should be unique.

It is important that the command sequence involving one or more occur-
rences ot the BASIC execution command be terminated with the END command so that
LIBNEW is closed properly. The user may employ the standard print and punch

o ST
E commands (Sec. 5) atter the BASIC command and after module or JAVSTEXT speci-
B ? R LA
o 1 fication (Sec. 4.3).
I8 +.4.0 STRUCTURAL Option Command
Fhe STRUCTURAL print option is specitied by the following command (with
the specitied detault value assumed in case the command i{s not given prior to
the appearance of the STRUCTURAL verb):
¥
8

STRUCTURAL,PRINT SUMMARY /DEBUG . (DEFAULT = SUMMARY)

— . B AN e, S MRS
e ——————_

5 JAVS COMMANDS

This section contains a complete list of JAVS commands, in alphabetical |
| order, along with the JAVS processing step in which each command is used.

The term "universal" indicates that the command can be used in any processing
| *
t step.

Following the list of commands is a description,

accompanied with sample
output and command sets, of each JAVS command.

-

IR

The overlay version of JAVS allows all commands to be "universal."

=

‘;
{

JAVS COMMANDS (DEFAULTS UNDERLINED)

ALTER LIBRARY = <libname>.

ANALYZER.

ANALYZER,ALL.

ANALYZER,ALL MODULES.

ANALYZER,CASES = <number>,
ANALYZER,DDPATHS.

ANALYZER,DDPTRACE.

ANALYZER,FACTOR = <percent-increase>.
ANALYZER,HIT.

ANALYZER,MODLST.

ANALYZER ,MODTRACE.

ANALYZER,MODULE = <name-1>,<name-2>,...,<name-n>.
ANALYZER ,NOTHIT.

ANALYZER, SUMMARY .

ANALYZER,TIME.

ASSIST,CROSSREF,JAVSTEXT = <text-name-1>,<text-name-2>,.

<text-name-n>.
ASSIST,CROSSREF,LIBRARY.
ASSIST,PICTURE.
ASSIST,PICTURE{,CONTROL}{ ,NOSWITCH}.

ASSIST,REACHING SET,<number-to>{,<number-from>}
{,PICTURE{,ITERATIVE}}.

ASSIST,STATEMENTS.

BASIC.

BASIC,CARD IMAGES = ON/OFF.
BASIC,COMMENTS = ON/OFF.
BASIC,DEFINES = ON/OFF.

BUILD LIBRARY {= <library name>!}.
CREATE LIBRARY = <libname>.

’

STEP

(Universal)
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER
ANALYZER

ASSIST
ASS1ST
ASSIST
ASSIST

ASSIST
ASSIST

BAST(

BASIC
BASIC
BASIC

BASIC,
STRUCTURAI

(Universal)

JAVS COMMANDS (DEFAULTS UNDERLINED)

DEPENDENCE, BANDS.

DEPENDENCE, BANDS = <number>.

DEPENDENCE, GROUP,AUXLIB.

DEPENDENCE, GROUP,1 1BRARY.
DEPENDENCE, GROUP ,MODULES = <name-1>,<name-2>,..
DEPENDENCE, PRINT, INVOKES.

DEPENDENCE, SUMMARY .

DEPENDENCE, TREE.

DESCRIBE = ON/QEE.

DOCUMENT{ ,JAVSTEXT=<text-name>{ ,MODULE=<name-1>

END.
END FOR.

FOR JAVSTEXT.
FOR LIBRARY.

FOR MODULE = <name-1>,<name-2>,...,<name-n>.

INSTRUMENT.

. ,<name-n>.

SO

INSTRUMENT,MODE = INVOCATION/DDPATHS/DIRECTIVES/FULL.

INSTRUMENT,PROBE, DDPATH = <probe-name>.
INSTRUMENT,PROBE ,MODULE = <invocation-name>.
INSTRUMENT,PROBE, TEST = <test-name>.

INSTRUMENT,STARTTEST = <modname>,<textname>,<stmt. no.>

{ »«TESNAM> } { ,<TFLAG> }.

INSTRUMENT,STOPTEST = <modname>,<textname>,
<stmt. no.>.

JAVSTEXT = <text-name>.

MERGE.
MODULE = <name~>.

OLD LIBRARY = <libname>.

STEP

DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
DEPENDENCE
(Universal)

ASSIST,
DEPENDENCE,
(Universal)

(Universal)

(Universal)

(Universal)
(Universal)

(Universal)

INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT
INSTRUMENT

INSTRUMENT

(Universal)

(Universal)

(Universal)

(Universal)

= <.--..v&~>.:~._';“£“"*...,.v--. e

JAVS _COMMANDS (DEFAULTS UNDERLINED)

PRINT,DDP.
PRINT, DDPATHS.
PRINT,DMT.
PRINT, JAVSTEXT
PRINT, JAVSTEXT

<name-2>,..

text-name-1>, INSTRUMENTED =

<text-name >, INSTRUMENTED =
.y “name-n>.

ALL.

]

~name-1>,

N

PRINT, JAVSTEXT = <text-name>.
PRINT,MODULE.

PRINT, SB.

PRINT,SDB.

PRINT,SLT.

PRINT,STB.

PROBE, JAVSTEXT = <text-name>{,MODULE =

PROBI,STARTTEST =
{ ,TESNAM}{,TFLAG!.

<modname >, <textname>, <stmt. no.>

PROBIL,STOPTEST = <modname>,6 <textname>, <stmt. no.>,

PUNCH, JAVSTEXT

<text-name>.
<text-name>, INSTRUMENTED = ALL.

<text-name>, INSTRUMENTED
., <name-n>.

PUNCH, JAVSTEXT

i

PUNCH, JAVSTEXT =
<name-=2>,..

= <name-1>,

PUNCH,MODULE.

START.

STRUCTURAL.
STRUCTURAL,PRINT = SUMMARY/DEBUG.
TEST{ ,MODULE =

<name-1>,<name-2>,...<name-n>}.

<name-1>,...}.

o

e
A g

e

STER

(Universal)
(Universal)
(Universal)
(Universal)

(Universal)

(Universal)
(Universal)
(Universal)
(Universal)
(Universal)
(Universal)

INSTRUMENT,
(Universal)

INSTRUMENT,
(Universal)

INSTRUMENT,
(Universal)

(Universal)
(Universal)

(Universal)

(Universal)

(Startup)
STRUCTURAL
STRUCTURAL

ANALYZER,
(Universal)

ALTER LIBRARY = <pame>. ALTER LIBRARY = <name>.

Description

This option specifies that LIBNEW is a previously generated library to
be modified during the current run. LIBNEW is used as a read/write library.

Rule
The name of LIBNEW must be the same one used when it was first created.

Example Command Sets

(1) ALTER LIBRARY = REFMAN.
START .
FOR LIBRARY.
STRUCTURAL.
END FOR. .
END.

This command set will medify the library created by the BASIC processing
step and add the STRUCTURAL data to the library for each module on the
library.

(2) ALTER LIBRARY = REFONE.
START.
BASIC.
END.

This command set augments a previously built library with the BASIC pro-
cessing of additional source text.

ANALYZER. ANALYZER.

Description

The ANALYZER execution command causes processing of the post-test analy-
sis. If no ANALYZER report options are present, no report is produced.

For a single ANALYZFR command,

1) Either option MODTRACE or DDPTRACE can be used, but not both.
(2) A maximum of 100 test cases is analyzed.

(3) Only one ANALYZER execution command can be used per set of

commands.

Example Command Sets

(1) OLD LIBRARY = REFMAN.
START.
ANALYZER,ALL MODULES.
ANALYZER,ALL,
ANALYZER.
END.

This set of commands will produce the SUMMARY, HIT, NOTHIT, TIME,
DDPATHS, MODLST, DDPTRACE post-test analysis reports for all modules on the
library.

(2) OLD LIBRARY = TRFMAN.
START.
ANALYZER,CASES = 50.
ANALYZER ,MODULE = EXPROGM,EXMPL1.
ANALYZER, SUMMARY .
ANALYZER,NOTHIT.
ANALYZER,DDPATHS .
ANALYZER, DDPTRACE.
ANALYZFR.
END,

i TR . R TR e e e S ey PHBEEES gy -
- ey f R R R R e A o N e .]
T e BT s it ¢ e st B R e M = B

e —

BASIC,COMMENTS = <option>. BASIC,COMMENTS = <option>.

Description

BASIC,COMMENTS = ON/OFF. (DEFAULT = ON.)

This command allows user control over the treatment of comments in the
module source text. The default action is to include all comments in the
library. Comments may be excluded from the statement text table of all
modules by the command

BASIC,COMMENTS = OFF.

If comments are included, more space is required on the library and all subse-
quent processing of the statement table requires more computer time,

Sample Command Set

CREATE LIBRARY = REFMAN,
i START.

BASIC,COMMENTS = OFF,
BASIC.

END.

=37

BASIC,DEFINES = <option>. BASIC,DEFINES = <option>.

Description
BASIC,DEFINES = ON/OFF. (DEFAULT = ON.)

This command allows the user control over BASIC usage of DEFINE vari-
ables. The default option is to replace the occurrence of each DEFINE vari-
able with its definition just as the JOVIAL compiler does. Subsequent BASIC
processing utilizes the results of that definition both in statement analysis
and in the text stored for each statement on the library. It is essential
that the default option be used if the modules are to be processed by any
other JAVS standard processing step.

Replacement of DEFINE variables by their definition may be suppressed
with the command:

BASIC,DEFINES = OFF.

Text so processed mav be written to LPUNCH in the structured (i.e.

, indented)
format with the command:

PUNCH,JAVSTEXT = <text-name>.

This is useful in using JAVS to punch a copy of reformatted source text. To

get a reformatted listing of the source text, the PRINT,JAVSTEXT command can
be used.

5-38

I T O e i e S e T T R R N Ty R T LT 1V S

e e MR i

B o S

P

BUILD LIBRARY. BUILD LIBRARY.

Description
This macro command has two forms:
BUILD LIBRARY. or

BUILD LIBRARY = <name>.

In the first command form, the library name given to LIBNEW is TEST. In the
second form, the user specifies the library name. Both command forms generate
the following JAVS standard commands:

CREATE LIBRARY <name>. (oxr TEST)
START.
BASIC,COMMENTS
BASIC.

FOR LIBRARY.
STRUCTURAL.
END FOR.

ON.

The macro command processor generates the JAVS "END" command if it is not
present as the last command.

(1) See BASIC and STRUCTURAL constraints in Sec. 3.2 and 3.3.
(2) The library name should be 8 or less characters.
(3) This macro command should not be used if the source program includes

a COMPOOL (constraint 2 on page 3-3).

Example Command Sets

(1) BUILD LIBRARY = REFMAN.
DOCUMENT.

This command set will create a new library, perform syntax and structural
analyses and produce a series of JAVS reports for all modules in the JOVIAL
source program. These reports are useful for documentation, maintenance,
testing and retesting the source program.

(2) BUILD LIBRARY.

PKOBE, JAVSTEXT
PRINT,JAVSTEXT

EXPROGM.
EXPROGM, INSTRUMENTED = ALL.

i

]

* ;
Can be used only with the overlay version of JAVS.

5-43

s T T ST i Pl otz o o y AN e

BUILD LIBRARY. (Cont.)

This command set shows a mixture of JAVS macro and st

andard commands.
The first macro command will create a

new library called TEST and perform

syntax and structural analyses on all modules in the JOVIAL source program.
The PROBE macro command will instrument JAVSTEXT EXPROGM, using the default
instrumentation options, and write the instrumented text onto file LPUNCH.
The last command will print the instrumented text.
1
E i
!
:
]

5«44

g

o L. Ty S ! T) r T T
g et RN SUE U S S SIS <

DOCUMENT . DOCUMENT.

b | Description
This macro command has three forms:
(1) DOCUMENT.

(2) DOCUMENT,JAVSTEXT = <text-name-~.

\

1 (3) DOCUMENT,JAVSTEXT = <text-name>,
MODULE = <name-1>,<name-2>,...<name-n>.

Each torm of the DOCUMENT macro command generates a series of JAVS standard
commands which produce reports useful for program documentation, maintenance,
and testing.

The expansion of each form of the DOCUMENT macro command is as follows:

(1) ASSIST,CROSSREF,LIBRARY.
DEPENDENCE ,GROUP, LIBRARY .
DEPENDENCE, GROUP ,AUXLIB.
DEPENDENCE , SUMMARY .

FOR LIBRARY.
PRINT,MODULE.

DEPENDENCE, BANDS = 5.
DEPENDENCE, PRINT, INVOKES.
END FOR.

IS 1S 3 B

This form (DOCUMENT.) is for locumenting the entire library.

o (2) ASSIST,CROSSREF,LIBRARY.
DEPENDENCE , GROUP , LIBRARY .
DEPENDENCE ,GROUP , AUXLIB.
DEPENDENCE , SUMMARY .

T JAVSTEXT = <text-name>.
& FOR JAVSTEXT.
1 PRINT,MODULE.

9 DEPENDENCE , BANDS = 5.
DEPENDENCE, PRINT, INVOKES.
END FOR.

This form (DOCUMENT,JAVSTEXT = <text-name>.) 1is for documenting module
interdependencies for the entire library, producing a library-wide 5
reference of symbols, and generating module documentary reports for the
fied JAVSTEKXT.

;!‘
[

)~59

DOCUMENT .

ted only

Note

(Cont.)

(3) ASSIST,CROSSREF,LIBRARY.
DEPENDENCE, GROUP , LIBRARY .
DEPENDENCE , GROUP , AUXLIB.
DEPENDENCE , SUMMARY .
JAVSTEXT = <text-nar *
FOR MODULL <name- sename—2> ;. 00y
PRINT ,MODULE.
DEPENDENCE , BANDS)

L END FOR.
This form (DOCUMENT,JAVSTEXT t ext-nan
produces the same report as in 2), except that

for the specified modules in the

e,

cpname=ns .

MODULI RChc oA

moedule

the reports ard

genera

AVSTEXT .

Ihe macro command processor will generate the commands:
OLD LIBRARY LEST.
START.
if the first JAVS command is a macro command (keyvwords BULLD LIBRARY,
DOCUMENT, PROBE, TEST) . The macro command processor will generate the "END"
command, if it is not present.
iles
(1 A maximum of 10 ¢an be used in a cross reference mapping.
2) of 100 modules can be used in the GROUP reports.
£ 3) { modules can be specified in the second form ot the
) fhe DOCUMENT ma ynmand requires that syntax and structural
imalvses have already beer performed on the ent ire library.
his command set will create a new library called TEST and produce JAVS
documentation reports for all medules on the library.
$ (2) OLD LIBRARY
START.
DOCUMENT , JAVSTEXT EXPROGM , MODULE EXMPL1,EXMPL2,EXMPL3.
FOR MODULE EXMPL 1, EXMPL2, EXMPLJ.
PRINT,DDPATHS .
END FOR
y=t0
ibya LN ’ "

END. (Cont.)

S

10.

11.

12.
3

14.

Type of module where
CMPL is a COMPOOL
PROG is a Program
PROC is a Procedure
CLSM is a CLOSE of global scope

CLSP is a CLOSE of local scope

Scope of an executable module where
EXT is a program or an external procedure

INT is an internal procedure (i.e., within a program or
external procedure)

GLBL is a CLOSE within a program or external procedure
LOCL is a CLOSE within an internal procedure
Number of lines of probed text inserted in the module by INSTRUMENT
Number of statements in the module
Number of executable statements
The statement number of the first executable statement

Word pairs which measure the amount of library space occupied by
the source text

Number of tokens in the module
Number of symbols defined in module

Number of symbols referenced in module

The remainder of the statistics are more applicable to users who wish to
follow a testing strategy of analyzing the complexity of their codes and
applying testcases to more comprehensively exercise those modules which exhi-
bit a greater tendency to be error prone. These statistics are listed below:

5-63

FND._ (Cont.)

1S5. Number of other modules invoked by module
16. Number of DD-paths

17. Number of DD-path/statement block entries
18 Number of formal input parameters

19. Number of formal output parameters (-1 if the module is a
function)

20. YES i{f DIRECT code is present in module; NO otherwise

A Statement-based complexity is a summation of the complexity of all
statements in the module.’

ro
ro

DD-path based complexity is a summation of the complexity of all
DD-paths in the module. This is used as an indicator of the
structural complexity of the module.’

These statistics can be used bv the tester to develop a rational
approach to program verification of modules which have the greatest tendency
toward error (i.e., those which are most complex).

The Library Information report shown in the sample output includes the
name for each library, the type of access, the date created, the total size
and other useful information.

These items are provided for future extensions to JAVS and are not presently

computed.

SN=6a

PRINT,STB. PRINT,STB.

Description

This command produces a listing of the detailed, internal symbol table
(STB) descriptors for each symbol defined in the current module. Normally the
list includes only those symbols essential to structural analysis of the
module. A BASIC processing option causes all symbols defined in the module to
be entered in the STB (see BASIC SYMBOLS = ON). The properties of each symbol
and pointers to other JAVS-internal tables are included. This output is in-
tended for JAVS system maintenance only.

Sample Output

SYMBOL TABLE LISTING

MODULE <EXMPL] >4 JAVSTEXT <EXPROGM >+ PARENT MODULE <EXPROGM >

NO. SYMBOL 1 [3 4 s 6 7 L] 9 10 11 1213 1s 1S 16 1Y 18 19 20 22 2y 2« 7 29
1 PICcx 2 LOCL INSW 4 0 [I 0 o 0 0 o o 0 27 ExmPL]
2 LARELL 1 LOCL LA3L 4 1 L I} 0 L 2} 0 o 0 0 30 ExmPLI
3 LAREL2 1 LOCL LA3L 4 15 ¢ 0 L e ¢ ° o 0 0 29 EXmMPL]

Example Command Set

OLD LIBRARY = REFMAN.
START.

FOR LIBRARY.

PRINT, STB.

END FOR.

END.

=97

P IR

- i

e TSRS

.t U B 4 AT A

PROBE . PROBE .

Description

The PROBE macro command has two forms:

(1) PROBE,JAVSTEXT = <text name>.
(2) PROBE,JAVSTEXT = <text name>, MODULE = <name-1>,<name-2>,..
<name-n>.

Each form of the PROBE macro command generates a series of JAVS standard
commands which cause instrumentation to be performed.

The expansion of each form of the PROBE macro into JAVS standard commands
is as follows:

(» JAVSTEXT = <text-name>.
FOR JAVSTEXT.
INSTRUMENT.
END FOR.
PUNCH,JAVSTEXT = <text name>,INSTRUMENTED = ALL.

Ihis torm (PROBE,JAVSTEXT = <text name>.) should be used for instrumen-
tation of a specified JAVSTEXT.
(2) JAVSTEXT = <text name>.
FOR MODULE = <name-1>,.
INSTRUMENT.
END FOR.
PUNCH,JAVSTEXT = <text name>,INSTRUMENTED = <name-1>,.

.. g<name-n>.

« .y <name-n>.

This form (PROBE,JAVSTEXT =
be used if

<text name>, MODULE = <name-1>....) should
only selected modules of a given JAVSTEXT are to be instrumented.

PROBE. (Cont.)

With all forms of the PROBE macro, the user can specify automatic séew.e
sertion of the PROBI (test case initiation and test termination data collec-
tion routine) calls by preceding the PROBE command with:

PROBI,STARTTEST = <modname>,<textname>,<stmt. no.>,{,TESNAM}{,TFLAG}.

PROBI,STOPTEST = <modname>,<textname>,<stmt. no.>.

These commands are described in Sec. 5 under their own heading. They
perform the same function as the INSTRUMENT,STARTTEST and INSTRUMENT,STOPTEST
commands. The existence of the PROBI commands aids the macro command processor
which will insert the STARTTEST and STOPTEST commands in the generated series
of commands.

Note

The macro command processor will generate the commands:

OLD LIBRARY = TEST.
START.

if the first JAVS command is a macro command (keywords BUILD LIBRARY,DOCUMENT,
PROBE,TEST). The macro command processor will generate the "END'" command, if
it is not present.

Rules

(1) See INSTRUMENT constraints in Sec. 3.4.

(2) Maximum of 150 modules selected in the first form of the
PROBE macro command.

(3) Maximum of 23 modules selected in the second form of the PROBE
macro command.

(4) Use PROBI (not INSTRUMENT,STARTTEST and STOPTEST) commands with
the PROBE macro.

Example Command Sets

(1) BUILD LIBRARY.
PROBE,JAVSTEXT = EXPROGM.
DOCUMENT .
PRINT, JAVSTEXT = EXPROGM,INSTRUMENTED = ALL.

This command set will create a new library, perform syntax and structural
analyses, instrument the JAVSTEXT EXPROGM, document an entire library, and

5-99

s A e e

2

PROBE. (Cont.)

. eo. - » e LONC YO SRR G . - .
*print the insffumentéd JAVETEXY So that “the user can see where the PROBI calls
should be manually placed.
(2) OLD LIBRARY = TEST.

START.

PROBI, STARTTEST = EXPROGM, EXPROGM, 0.

PROBI,STARTTEST = EXMPL1,EXPROGM,9.

PROBL,STOPTEST = EXPROGM,EXPROGM,O0.

PROBE, JAVSTEXT = EXPROGM.

This command set will instrument JAVSTEXT EXPROGM in the existing lib-
rary TEST. 1n addition, the PROBI calls will be automatically inserted. The
first PROBI,STARTIEST command will cause an invocation to PROBI to be inserted
pricr to the rirst executable statement in module EXPROGM. The second PROBI,
STARTTEST command will cause a PROBI invocation to be placed immediately before
statement 9 of module EXMPLL. These two PROBI invocations will initiate a
new test case whenever the PROBI call is executed.

The PROBI,STOPTEST command will cause the test termination PROBI invoca-
tion to be placed at all exits from module EXPROGM. The PRUBE macro command
will instrument the JAVSTEXT EXPROGM and write the instrumented text,

including
the invecations to> PROBI, onto file LPUNCH.

Note that tho librarvy definition and startup commands are included in
Zven though the default library name is specified, these com-
mands are required because PROBI is not a macro command.

this example.

—————————

Rules

—————

PROBI,STARTTEST = <options>. PROBI,STARTTEST = <options>.

- - . - e - - . et -a» o - T - . aspe -

Description

This command performs the same function as:

INSTRUMENT,STARTTEST = <options>.

Refer to this heading for the commind description and example command ,
sets.

(1) This command is to be used only in conjunction with the PROBE macro :
command and must precede the PROBE command.

(2) Maximum of 10 PROBI,3TARTTEST commands with a single PROBE macro
command.

(3) Command options must be given in the order shown in the command
description.

(4) Modules specified in PROBI,STARTTEST commands must be selected by
the PROBE macro command.

(5) Library identification and startup commands must be included in the
command set.

PROBI,STOPTEST = <options>. PROBI,STOPTEST = <options>.

‘e OB - -
= 2 - - e - @m - Smm s emes

. - S . TEER S S BB ® - R S @ TS A - - Aey

C e G WA W ERSemme W

Description
This command performs the same function as:

INSTRUMENT, STOPTEST = <options>.

Refer to this heading for the command description and example command sets.

(1) This command is to be used only in conjunction with the PROBE
macro command and must precede the PROBE command.

(2) Only one PROBI,STOPTEST command with a single PROBE macro command.

(3

Command options must be given in the order shown in the command
description.

(4) The module specified in the PROBI,STOPTEST command must be selected
by the PROBE macro command.

Library identification and startup commands must be included in the
command set.

LEST. TEST.

Description
I'he TEST macro command has twe forms:
Gl FEST.
(2) TEST,MODULE = <name-1>,<name-2>,...,<name-n>.

lhe TEST macro command generates a series of JAVS ANALYZER commands for post-
test analysis.

The expansion of the two forms of TEST is as follows:

| (1) ANALYZER,ALL MODULES.
| ANALYZER, SUMMARY .
ANALYZER,NOTHIT.
ANALYZER ,MODTRACE.
ANALYZER.

(2) ANALYZER,MODULE = <name-1>,...,<name-n>.
ANALYZER, SUMMARY .
ANALYZER,NOTHIT.
ANALYZER,MODTRACE.
ANALYZER.

: Additional posc-test analysis reports can be produced by preceding the
[EST macro with ANALYZER process option commands. In this case, library iden-
tification and startup commands must be included in the command set.

Note

The macro command processor will generate the commands:

OLD LIBRARY = TEST.
START.

it the first JAVS command is a macro command (keywords BUILD LIBRARY,DOCUMENT,
PROBE,TEST). The macro command processor will generate the "END" command, if
| it is not present.

fg Rules

(1) The ANALYZER,DDPTRACE standard command cannot be used in conjunction
with the TEST macro.

e S »de e i b S oine o JENEE

B i g I T

TEST. (Comt.)

(2) ANALYZER option commands must precede the TEST macro, if they
are used.

(3) See ANALYZER constraints in Sec. 3.8.

Example Command Sets

CEl BEST.
FOR LIBRARY.
PRINT, DDP.
END FOR.

(2) OLD LIBRARY = REFMAN.
START.
ANALYZER,MODLST.
ANALYZER, DDPATHS .
TEST,MODULE = EXPROGM,EXMPLI1.

5-110

2 BASIC ERROR MESSAGES

The error messages resulting from BASIC source code analysis are:

Error

Number Explanation
1 Basic element contains too rany characters. Element truncated

in saved text. Resubmit with corrected text.

*
2 Illegal interval text character. System error.
*

3 Illegal external text character. System error.

4 Nested DEFINE reference. Reference partially expanded Re~—
submit with nested DEFINE reference corrected.

S JOVIAL symbol too long. Symbol truncated in saved text.
Resubmit with corrected text.

6 Too many symbols (names and constants) in text. Fatal error.

Resubmit with text partitioned into more START-TERM sequences.

7 Module nesting exceeds limit. Change module nesting structure.
8 Too many ENDs. Resubmit with corrected text.

S Loop in basic element analysis. System error.*

10 Loop in internal text character analysis. System error.*

11 Loop in JOVIAL element analysis. System error.*

12 Loop in external character analysis. System error.*

System errors should be reported with output listing card images processed.

VN, e e e

B-4 to B-10

3=39

iz

B-11

Error

Message
Nested switch call treated as fall
through case

Never found PROC statement

Pointer LQ 0

Possible infinite loop detected

Stack overflow

Stack underflow

Switch name missing<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>