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SUMMARY

In this paper we consider the time—dependent behaviour of a single—server

queue with Poisson input and constant service time , where the input rate equals

the reci procal of the service time . Formulae for the probabilities associated

with differen t queue—lengths have been derived by an empirical method which

included inspection of some numerical, results . These formulae are now proved

correc t by induc tion.
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I INTRODUCTION

The problems studied in this paper were raised by A ttwooll when preparing

a lec ture 1 
on time—dependent queues. It is well known that a single—server queue

wi th Poisson arrivals and constant service time (an M/D/I queue) has a steady—

state queue—length distribution if and only if the arrival rate is less than the

service rate. (The service rate is the reciprocal of the service time.) If t h e

arrival rate equals (or is greater than) the service rate the queue is ‘unstable ’

and the average queue length increases indefinitely with time . The steady—state

solution for the MID/I queue was published
2 

in 1909. The time—dependent solution

for the M/M/ I queue (exponential distribution of service times) was first published

in 1953

In this paper we consider the case where the arrival rate is exactly equal

to the service rate . Without loss of generality we define unit time to equal the

service t ime (therefore equal also to the mean time between arrivals).

Let q(n) be the probability that there are i customers in the queue at

t ime n . We shall only consider integer values of n . The ttnumber in the
sys tem” incl udes the customer being served , if there is one .

The number of arrivals during a unit interval has a Poisson distribution

wi th mean 1, so the probabilities of 0, 1 , 2, j arrivals are respective ly

exp(—I), exp(—I), exp(—I)/2!, exp(—1)/j! . The number of departures during a

unit interva l is I (if there is a customer in the system at the start of the

interval) or 0 (if the system is empty at the start of the interval). It is

easy to write down equations giving the queue—length probabilities at time (n + 1)

in terms of the probabilities at time n

q0
(n + I) = ~q0

(n) + q
1
(n)~ exp (-1) (I)

q 1
(n + I) = ~q0

(n) + q
1
(n) + q

2
(nt)} exp(—l) (2)

q2
(n + 1) ~q0

(n)/2! + q
1
(n)/2 ! + q

2
(n) + q

3
(n)~ exp (—1) (3)

q.(n + I) - 
{~0

(n)/ . ! + q
1
(n)/.! + q

2
(n)/U - I)! + ...q.(n) + q.~~1

(n)~ e~~~(-I). 

(4)

We consider the case where the system starts empty, so q
0
(0) — I and all

the other initial probabilities equal 0 . Values of the different probabiliti es
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for n = I, 2, 3, etc can then be obtained numerically by repeated solution of the
above set of equations, using a computer. Attwooll did this and noticed that the

probabili ty of no customers waiting was given by the formula:

n+1
q0

(n) + q
1
(n) = exp(— n) . (5)

He was unable to prove this formula. We shall proceed by assuming its correctness

in order to deduce results for other queue—lengths , then verify our resul ts by

induction.

2 DERIVATION OF FORMULAE

Using (5) to substitute in equation (I):

n+I
(n + I)

q
0

(n + I) = — exp(— n — I)
(n + 1)!

so obviously

n
q 0

( r i )  = 
~

-j
~’ 

exp (— n) . 
(6)

This expression is undefined for n 0. We assume q
0

(O) I , ie the sys tem
starts empty.

To simplify the equations we introduce the notations

Q.(n) q.(n) exp(n) (7)

and

m l  =

t o) = i

so equation (6) can be put in the form

C-,
Q
0

(n) = In) . (8)

From equations (1) to (4) we can derive the system of equations :



— ~~ ,—
, 4~~~~~~~~~W 

‘
~~~~~‘~~~~~~~~~~~~~~~~ 

~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -

5

+ I) — Q0(n) + Q
1
(n) (9)

Q 1
(n + I) Q0(n) + Q (n) + (10)

+ 1) Q0(n)/2! + Q 1
(n)/21 + Q2(n) + Q3(n) ( I I )

Q.(n + I) = Q0(n)/j! + Q 1 (n)/j! + Q2(n)/(j 
- I)! + ... + Q.(n) + Q (. 1)(n). 

( 1 2 )

Using equation (8) to substitute for both Q0(n) and Q
0

(n + I) in
equation (9), and re—arranging terms, we find :

Q 1
(n) En + I I — En] (13)

Using equations (8) and (13) to substitute for Q 1
(n + I) , Q 1 (n) and

Q0
(n) in equation (10):

Q2
(n) = En + 2 1 - 2En + i i  ( 14 )

Proceeding, in the same way , to substitute into equation (II), we find :

Q3
(n) = in + 3] — 3[n + 21 + [n + 1] (15)

and it can also be shown that:

Q4
(n) - En + 41 - 4En + 31 + 4.2 

~ + 21 - [n + 11 (16)

Q5
(n) — in + 51 — Sin + 4] + En + 3] — ~j -~--. En + 21 + En + I I  (17)

Q6(n) - In + 6) - 6[n + 51 + 6.4 En + ~~ - 

T~T In + 3] + ±f~
3

Ln + 2] - 6(n + II 

(18)

Q1 (n) — — 

~ 
Li — i) In + i jJ (i > I )  • (19)

- -
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The distribution of queue lengths can now be calculated , using equation (7) to F
transform equations (8), (13) and (19) back into the original variables q.

q0
(n) = ~~~~~ exp (— n) = In] exp(- n) (20)

q 1 (n)  = 

~ 
- !~ -~ exp(- n) = (En + I] - in]

) 
exp(- n) (21)

q~ ( n) — i exp ( n) U — + 
~ 

— (i > I )  . (22)

By assuming the correctness of Attwooll’s empirical formula (equation (5))

we have generalised his result and obtained formulae (equations (20), (21), (22))

for  a ll queue lengths.

3 PROOF OF CORRECTNESS

We shall prove these formulae by induction , ie we shall prove first that the

formulae are correct for n = 0, and secondly, provided the formulae are true for

all times up to and including some value ii they are also correct for time

(n + I).

For n — 0, strai ghtforward substitution in equations (20) and (21) gives:

q0
(O) = I , q 1

(O) = 0 . (2 3)

Putting n — 0 in equation (22) gives:

i—I . .
q~~(O) — i (.1 _ j ) )~~I (i—J (i I )

hence

= 
(i I)! ~ii: 

~~
- I )~~(i - 

~~~~~~~~ (
~
)

writing k for (i — j) and suimning in the reverse order:
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q1
(O) 

(1 1)! 

~~I 
~ I)

i_k
ki_I (~
)

q.(0) (_ 1)k~~~1(~
) 

(i > i~

In the Appendix it is shown that

( 1)k;.i_I(1) =

so that

= 0 (i > I )  • (24 )

T~~ etber with equations (23) this comp letes the first part of thic proof.

Now assuming equations (20) to (22) are correct for some value n , the

probabilities at time (n + I) are found by substituting for the q.(n) on the

right—hand side of equations (I) to (4). Thus we find that

n+1
(n + I)

q0
(n + I )  = 

(n + I)! 
exp(— n — 1)

and this is obvious ly of the correct form, so equation (20) holds at time (it + I).

q 1
(n + I) = (En] + in + 11 — EnI + En + 21 —2 1n + h])exp(_ n — I)

= (E n + 2 — E n + ii ) exp(—n— 1)

and this is also of the correct form, so equation (21) holds at time (n + I).

Equation (3) is just a special case of equation (4) which can be written as:

i+I
q
0
(n) q

1
(n) q.(n)

q~ (n + I) — + + 
(I — ~~ exp(— 1) . (25)

U
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Using equations (20) to (22) to substitute for the q (n) on the right—hand

side of equation (25)

q1(n 
+ I) = exp(- n - + 

(1)! 
En] 

- 
(k _ j)

k_i
i . k ] ~

1+1 j=I

q.(n + 1) - exp(-n - 1)~ ~~ 
(k 

k I  En + j - kJ~ . (26)

j—I k=0

Now let m i + I — j + k so that j — j + k + I — in • To transform the

summation it is helpful to draw up a table, showing which combinations of j and

k are to be summed over, and the value of in for each suninable combination

see Fig I. Substituting for j , and summing over m and k instead of over

j and k :

q.(n + I) exp (— ~ 
- 1) 

(i + k + I - m)(m - L - 1 )
k_ I i n + i + i _ m i I

m=0 k-0

q.(n + 1) — exp(— n — 1) {E {En + I + j — m]’~~~ 
(i+k + I_ m ) (m_ i_ 1 )

~~ i~m—0 k—0 
(27)

but

(i + k + I — m) (m — i — 1 )
k_I 

— (_ 1)
k_ 1 (i + I — m + k)(i + I — m)1~~

k—0 k—0

- ( 1) k~~1 (i + I - m)k 
+ 
(i+ I - m~~~(k#~~

(k-I)!
k—0

— (_ ~) nI~ I (1 — )m (28)

substituting this last expression for the inner sum in equation (27) we obtain:
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q.(n + I) = - exp(- n — 1) ( ~
)
in (in - I - 1)i

n_I
(~ + I + 1 - ml 

• (29)

m~’O

By comparing equations (29) and (22), it can be seen that the formula is correct

for time (n + I). This completes the second part of the proof.

We have now shown that, provided equations (20), (21) and (22) are correct

up to time n , they are also true for time (n + I). But we showed earlier that

the equations are correct for time 0 , therefore they are also correct for time I ,

therefore they are also correct at time 2, and so on. Thus equations (2) to (22)

are true for all integer values of the time n

We have thus proved the correctness of equations (20) to (22). Attwooll’s

empirical result, equation (5), can easily be proved by adding equation (20) to

equation (2!).

4 MEAN QUE UE LENGTH

The mean queue length may be defined as

~ (n) = 

~~2 

(1 - 1)q.(n) (30)

(the customer being served is not included). By multip lying each of equations (I)

to (4) by an appropriate factor, and summing over i , Attwooll obtained the

result

+ I )  = q(n)  + {q
0
(n) + q

1
(n)}e

1 
. (31)

Using equation (5), which we have proved in section 3

n+I
q(n + I) — q(n) = 

(n+ i)’ 
exp (— ii — I )  (32)

hence
n

~(n) ~
j- exp(— in) • (33)

For large values of in , the value of ml is given approxima tely by Stirling ’s

formula
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0.5 in
nih (2imm) in exp( — in)

Thus for large values of n

q(n) — q(n — I) (2rn) 05 ( 34)

Hence it may be shown that

— /2 n + I
q(n) .

~~,f ~ 
(35)

Comparing approximate numerical values obtained from equation (35) with the

corresponding exact values obtained from equation (33), it was found that a very

good approximation is given by the equation

q(n) ~~2n + 1.2 
- 0.66 . (36)

5 SUMMARY OF RESULTS

The following results (except for the last equation (A—2)) relate to the

queue system M/D/I with arrival rate equal to service rate.

The probability of i customers in the system (including the customer

being served) at time n is given by the formulae

q0
(n) = En] exp(— n) (20)

= (En + I] — in]) exp(— n) (21)

q1 (n) = - I exp (- n) (j - i)~~~~In + 1 - (22)

j=0

where IrE — rrfrl

and 10] — I

The expected queue—length (excluding the customer being served) at time n

is given by the formula



I I

~(n) Em] exp(- m) (3
•
3)

and by the approximate formula

q(n )  J~
+ 1.2 

- 0.66 . (36)

Also we have pr oved the interesting combinatorial identity

~~~~~
(_ 1)

k~r(n) = 0 0 ~ r < n . (A—2)

I

0

C
i~z

_______ A
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Appendix

SUMMING A FINITE SERIES

In this Appendix we find the sum of the series:

S(n,r) - (~ 1)k~r(n
) 

. (A-I)

From ( A — I )  i t  follows that

S(n ,r ) z~ = 

~i (~ I ) k k~~Z r (~)Ir=0 r=0 k = I  j

= 

Z1 

[ (_ I)k~((~)
~~~ 

kr r ]

= (_ 1)k(fl)

r r in
= 

~
I — exP(z)J

/ 2 3 PI z z
= Z — - - ...

V
~II 

8(i~ = (— z)’1 (i + _
~~
.. + + •..)n

r—O

By equating coefficients of ~
r can be seen that

S(n,r) = 0 0 ~ r n

~I:~— I) kk r(n) — 0 • 0 r n .

k— I

k 
- -~~~~~~~~~~~~~~~~~~ -- - —~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ __~~~ A
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14 Append ix

The spec ial case S( n , I )  = 0 is included in Ref 4 , on page 4 as formula

0.154.2.

The special case S(n, n — I )  0
j e

(
~ 

I ) k
k

n_
~
(

~~
) 

= 0 (A—3)

is used in section 3 of this Memorandum.

It can also be easily shown that

( I ) kkf l ( f l )  = (_ I ) nn! (A-4)

and that

( I ) kkfl+I(fl) = (- 1)~~(n + I ) ! n / 2  . (A 5)

_____________________________________________________~~~~~~~~~ 
_ _ _ _ _ _ _  
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Fig

j = I  j = 2  j = 3  j = i + I

k = i  m = i

k = i — I  m = i — I
k = i — 2  m = i — 2

k = 2  m = i  m = 2
k = I  m = i  m = i — 1  m = I

k = O m = i  m = i — 1  m = i — 2  m = 0

I

0

Fig 1 Values of m for combinations of i and k that are summed over
(see equation 26)
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