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SUMMARY

In this paper we consider the time-dependent behaviour of a single-server
queue with Poisson input and constant service time, where the input rate equals

the reciprocal of the service time. Formulae for the probabilities associated

with different queue-lengths have been derived by an empirical method which

included inspection of some numerical results. These formulae are now proved

correct by induction.
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I INTRODUCTION

The problems studied in this paper were raised by Attwooll when preparing

1 ; : .
a lecture on time-dependent queues. It is well known that a single-server queue

with Poisson arrivals and constant service time (an M/D/l queue) has a steady-

state queue~length distribution if and only if the arrival rate is less than the

service rate. (The service rate is the reciprocal of the service time.) If the

arrival rate equals (or is greater than) the service rate the queue is 'unstable'
and the average queue length increases indefinitely with time. The steady-state
solution for the M/D/! queue was published2 in 1909. The time-dependent solution
for the M/M/1 queue (exponential distribution of service times) was first published

in 1953 3. '

In this paper we consider the case where the arrival rate is exactly equal
to the service rate. Without loss of generality we define unit time to equal the

service time (therefore equal also to the mean time between arrivals).

Let q(n) be the probability that there are 1 customers in the queue at

time n . We shall only consider integer values of n . The "number in the

system'" includes the customer being served, if there is one.

The number of arrivals during a unit interval has a Poisson distribution

with mean )], so the probabilities of 0, 1, 2, j arrivals are respectively
exp(-1), exp(=1), exp(~1)/2!, exp(=1)/j! . The number of departures during a
unit interval is | (if there is a customer in the system at the start of the
interval) or 0 (if the system is empty at the start of the interval). It is
easy to write down equations giving the queue-length probabilities at time (n + 1)

in terms of the probabilities at time n :

qo(n +1) = {qo(n) + ql(n)} exp(-1) (1)
a0+ 1) = {qy() + q; () + q(m} exp(-1) @
a,(m + 1) = {q,(n)/2! + q (n)/2! + q,(n) + a5} exp(=1) (3)

q.(n + 1)

; {qo(n)/i! + q‘(n)/i! + qz(n)/(i = M ---qi(n) + qi+1(“)} exp(=1).

O.....(A)
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We consider the case where the system starts empty, so qO(O) = 1 and all

the other initial probabilities equal 0 . Values of the different probabilities
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for n =1, 2, 3, etc can then be obtained numerically by repeated solution of the
above set of equations, using a computer. Attwooll did this and noticed that the ‘

probability of no customers waiting was given by the formula: {

n+l
g +q,m = LU enp-n) . (5)

He was unable to prove this formula. We shall proceed by assuming its correctness
in order to deduce results for other queue-lengths, then verify our results by

induction.

2 DERIVATION OF FORMULAE

Using (5) to substitute in equation (1):

n+l
qo(n + 1) jELi;Jl———-exp(— n-1)
(n + 1)!
so obviously
a0
qo(m) = T exp(-n) . (6)

This expression is undefined for n = 0. We assume q,.(0) = | , Ze the system
0

starts empty.

To simplify the equations we introduce the notations

Qi(n) = qi(n) exp (n) (7)

and

[nl = n"/n!
o] = 1
so equation (6) can be put in the form

Qo(n) = n] . (8)

L08L O-K

From equations (1) to (4) we can derive the system of equations:
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Qo(n +1) = Qo(n) + Ql(n) 9)

Qi+ 1) = Qyn) +Q(n) + Q, (n) (10)
Q,(n+ 1) = Q,(n)/2! + Q,(n)/2! + Q,(n) + Q4 (n) (rn
Qj(n * 1) = Qm A+ Q,(m)/jt + Qz(n)/(j w JH K aun ¥ Qj(n) + Q(jﬂ)(“)‘
...... (12)
Using equation (8) to substitute for both Qo(n) and Qo(n + 1) 1in
equation (9), and re-arranging terms, we find:
Q = [+ 1] - [l (1)

Using equations (8) and (13) to substitute for Ql(n R Ql(n) and
Qo(n) in equation (10):

Q,(n) = [n+2] =2[n+ 1] (14)
Proceeding, in the same way, to substitute into equation (11), we find:
Qy(n) = [n +3] - 3[n+ 2] +% [n + 1] (15)

and it can also be shown that:

Q,(n) = ln+41-4[n+3]*%[n+2]-%—[n+l! (16)
L
G = m+sl=5hs+dl +32 a3l 2L ez v 2ol (7
2 3
Qg = o+ 6l = 6lns sl + Sblar 4l L6 oy 5 820,y Sle t]
...... (18)
i-1 3}
Q) = -iz—u—_—;-%—[n+i~jl @ > 0. (19)

1=0




The distribution of queue lengths can now be calculated, using equation (7) to

transform equations (8), (13) and (19) back into the original variables q; *

n
qp(m) = %T exp(- n) = [n] exp(- n) (20)
5+ l)n<l'l ot
ql(n) | R exp(-n) = [[n+ 1] - [n]) exp(- n) (21)
i=1 3
qi(“) -‘iexp('n)Z(J-l) J'&"l_‘]l @a>1m. (22)
=0

By assuming the correctness of Attwooll's empirical formula (equation (5))
we have generalised his result and obtained formulae (equations (20), (21), (22))

for all queue lengths.

3 PROOF OF CORRECTNESS

We shall prove these formulae by induction, ie we shall prove first that the
formulae are correct for n = 0, and secondly, provided the formulae are true for
all times up to and including some value n they are also correct for time

(n+1).

For n = 0, straightforward substitution in equations (20) and (21) gives:
qO(O) T S q](O) = 0 . (23)

Putting n = 0 in equation (22) gives:

i-] . :
; ixd=l s o]
REJAcE™ =37 G -J)
9; (0) g 71 AL % >
j=0
hence
i1
= | el o skt £
%O = T Z A e (J)
j=0

writing k for (i - j) and summing in the reverse order:

LO8L O-K
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q (0 = —(—;—l—,)—.z - |)i-kki-l(li()

= k-l o
a, (0 (i_,),2< ¥k (k) (w13 s

In the Appendix it is shown that

i
k d=8iN
Z (- 1)k (k) 0

k=1

so that
qi(o) = 0 (> 1) . (24)

Together with equations (23) this completes the first part of the proof.

Now assuming equations (20) to (22) are correct for some value n , the
probabilities at time (n + I) are found by substituting for the qi(n) on the

right-hand side of equations (1) to (4). Thus we find that

tn + l)n+l

T L i exp(= n - 1)

qo(n * 1)
and this is obviously of the correct form, so equation (20) holds at time (n + 1).
ql(n +1) = ([n] + n+1] = [n]l + [n+2] ~2[n+ l» exp(- n = 1)

= ([n+2]-[n+l|) exp(- n = 1)

and this is also of the correct form, so equation (21) holds at time (n + 1).

Equation (3) is just a special case of equation (4) which can be written as:

W™  q,m T .
s bt T (e ¢ el ; Z T o T(eee D e

=2




Using equations (20) to (22) to substitute for the q(n) on the right-hand

side of equation (25)

il kel
qi(n +1) = exp(-n-1) [n] [n +(l])' (al _ j Lk'_fg)_'—[n*'j'k]
Wt i=2 k=
it] j=! k-1
qi(n+l) = exp(=n -1) sz'g_-_k'}l_[“+j'k] : (26)
j=1 k=0

Now let m=1i+ 1 -3j+k sothat j=1i+k +1~-m. To transform the
summation it is helpful to draw up a table, showing which combinations of j and
k are to be summed over, and the value of m for each summable combination

see Fig 1. Substituting for j , and summing over m and k instead of over

j and k :
i m e

gn* 1) = Epi=n =i Zz (1+k+l-m|)($m—i-l) [n+1+i-m
m=0 k=0

i
q;(n+ 1) = exp(-n~-1) Z {[n-ﬁl+1-mlz(“'k+“m)(m‘1-l) }
m=0

k=0
000000(27)
but
m k=1 m
1L1+k+1l-mm=-1i-1) - s 4 )k 1l @+ 1 -m+k){d+1 - m)
k! k!
k=0 k=0

k! k = 1!

m
- z {= |)k-li(i 2 [ m)k % (u-]-m)k (k;&g)l
k=0

m1 G+1-m"
m!

= =N (28)

substituting this last expression for the inner sum in equation (27) we obtain:

L08L O-R




1
5 m-1 :
g+ 1) = -eXP(-n"l)Z cppEoiel) T helsicul

m!
m=0

By comparing equations (29) and (22), it can be seen that the formula is correct

for time (n + 1). This completes the second part of the proof.

We have now shown that, provided equations (20), (21) and (22) are correct
up to time n , they are also true for time (n + 1). But we showed earlier that
the equations are correct for time O , therefore they are also correct for time I,
therefore they are also correct at time 2, and so on. Thus equations (2) to (22)

are true for all integer values of the time n .

We have thus proved the correctness of equations (20) to (22). Attwooll's
empirical result, equation (5), can easily be proved by adding equation (20) to

equation (21).

4 MEAN QUEUE LENGTH

The mean queue length may be defined as

an) = Z (- Dg;(m (30)

(the customer being served is not included). By multiplying each of equations (1)
to (4) by an appropriate factor, and summing over i , Attwooll obtained the

result
q@+ 1) = qm + {gp + q e . 31

Using equation (5), which we have proved in section 3

& _ 5 + l)n+1
q(n + 1) = q(n) = N TR exp(- n - 1) (32)
hence
n
q(n) = z;—,—exp(- m) . (33)
m=1
~
§ For large values of m , the value of m! is given approximately by Stirling's
© formula
=
— i i

kb




m! = (2wm)0'5mm exp( - m) .

Thus for large values of n

| g ~aa = 1) & @m0, (34)

PPV

Hence it may be shown that

@ = ‘/ﬁ‘—;—i - (35)

Comparing approximate numerical values obtained from equation (35) with the

corresponding exact values obtained from equation (33), it was found that a very

good approximation is given by the equation 1

am = /-2—“-‘%'—‘-3 - 0.66 (36)

The following results (except for the last equation (A-2)) relate to the

o) SUMMARY OF RESULTS

queue system M/D/1 with arrival rate equal to service rate.

The probability of i customers in the system (including the customer

being served) at time n 1is given by the formulae

qo(n) = [n] exp(- n) (20)

q,(n) = (fn + 1] = [n]) exp(- n) (21)
= j=1

qi(n) R exp(_ n) z (L_ 1) j![n s - J] (22)
3=0

where (r]l = r¥/rt
and fo] = 1.

The expected queue-length (excluding the customer being served) at time n

L08L O-W

is given by the formula
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n
q(n) = Z[m] exp (- m) (3'3)
m= |

and by the approximate formula

2 /zl-.:'——ﬁ-o.ss ) (36)

Also we have proved the interesting combinatorial identity

n
Z(‘ l)kkr({:) = 0 0 < < n. (A-2)

k=1

|

i




Appendix

SUMMING A FINITE SERIES

f From (A-1) it follows that

Z S(n!r)zr

Z S(n!r)zr

r=0

By equating coefficients of

S(n,r)

In this Appendix we find the sum of the series:

Z( l)k(). (A-1)

= L rr
L el KiVZE fin
:E: G h) r! (k)
r=0 | k=1
= =~ rr
= okefn |
el (k)z !
k=1 r=0
n
Z (= l)k(:) exp(kz)

[
(a-g-g- -]

(- )" l+i+-z—2+ ;
2! 3! o 5

| e
z it can be seen that

S(n,r) = 0 0Ot <n

0Osr<n . (A~2)
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i The special case S(n,1) = 0 is included in Ref 4, on page 4 as formula
! 0.154.2.
§
% The special case S(n, n - 1) =0
i te
3 n -
o) - o
. F
k=1 |
|
is used in section 3 of this Memorandum,
It can also be easily shown that ‘
|
n
H Z - 5" (L‘) = (- D! (A-4)
b
' k=1
and that
n
z (- l)kan(E) = ¢ D%+ Din/2 . (A-5)

k=1
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Fig 1 Values of m for combinations of j and k that are summed over
(see equation 26)
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