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CHAPTER 1
INTRODUCTION

This study deals with the problem of determining whether an
observed object is or is not a member of a listed class of objects.
The technique developed classifies the observed object as listed
or unlisted based on a priori information regarding the listed
class alone. The technique assures that the misclassification
probability of a listed object as an unlisted one is kept under
a specified threshold while attempting to minimize the reverse,
“type 11" probability of error.

In most identification processes the signatures of an object,
e.g9., light, sound or temperature etc., are assumed to be measur-
able and can be converted into electric signals, which are called
the responses of the object. The basic assumption in statistical
classification is that the response of each object has a probabil-
ity distribution. Some algorithms[1,2,3] were developed to iden-
tify each object by using the available information, which ranges
from complete statistical knowledge of the distribution to no
knowledge except that which can be deduced from the measured
response.

More specifically, when the statistics of all the listed
objects are known, the response of an observed object is compared

with the responses of these known objects. The object is then
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classified as one of the known objects by a predetermined criterion.

The set of known objects is catalogued beforehand and 1is called
the catalogued (or listed) class. Conventional classification
procedures assume that the object to be identified is in the list
of the known objects. However, since the list of the <atalogued
objects is very often not exhaustive, this assumption is not
always valid.

Another often encountered problem is that the functional
forms of the distributions of the listed objects are known, but
some parameters of these distributions are unknown. A great deal
of effort[4,5] has been devoted to solve these kinds of problems,
namely, classification of the objects without knowing the para-
meters of the distributions. Two procedures are usually employed
in solving this problem:

(1) Estimation of the parameters and their use to do the
classification as ordinary parametric classification,
and

(2) Classification of the object directly without knowing
the parameters of all distributions.

The first procedure turns out to be a learning process,
supervised or unsupervised depending on the labeling of the ob-
served samples. Both learning processes are themselves another
form of the statistical estimation. The supervised process
labels each sample "to be learned" as an object in the catalogued
class and the unsupervised process assigns a priori probabilities

for all the objects in the catalogued class although it does not




label any of the samples. Both processes possess an underlying
assumption that all the learned samples originate from the list-
ed class, which is, as stated before, not always complete and
exhaustive.

The second procedure is a classification which does not use
the parameters of the distributions and is called non-parametric
classification. It does not require any information about the
distribution of each object in the catalogued class but the
number of the objects and their deterministic responses have to
be known before an algorithm can be devised to do the classifi-
cation.

The problem studied in this work is different from the
ordinary parametric classification problem in that it includes
an additional alternative, the presence of an uncatalogued class.
[t is also different from a non-parametric proolem in an obvious
way. The alternatives in a non-parametric problem are clearly
defined while they are incompletely defined in this problem.

The parameters of the distributions are not known in a non-
parametric problem but are not necessarily unknown in our problem.

The fact that all the classification schemes ignore the
existence of the unlisted objects is due to the difficulty in
handling the problem, not because of its insignificance. Since
the unlisted objects are usually unknown to a system designer, it
is very difficult to predict the performance of a system classify-
ing the unlisted class as distinct from the listed class. Also

since the statistics of the unlisted class are unknown, there is
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no way that an "optimum" criterion can be set up to quide the
design of such a system. However, for some classifiers it is
important to identify an unexpected or unknown object. For in-
stance, the radar detectors in air surveillance are developed to
detect airborne objects. There are many schemes developed to
identify an object after a radar detects some response from a
target. A conventional aircraft classifier detects the electro-
magnetic scattering return from an airplane and compares it with
the Tist of the responses of all the known aircraft targets and
attempts to classify an observed target into one of them[6,7].
Yet, the stored data of the responses are by no means complete
and exnaustive. When a target is present and its response looks
"odd" on the radar, it is extremely important not to exclude the
possibility of its being an unknown airborne target, perhaps
newly developed. Therefore, it is essential to determine at the
very beginning stage of classification if the observed target is
in the list. Once it is decided that the target is in the listed
class, one can use a conventional scheme to classify it as one
of the known targets. If it is not, the target is designated as
a new one and a learning process is employed to estimate its
response.

Another example is the Electrocardiogram (EKG) used to
diagnose a disease. A person can be classified into nine differ-
ent states[8] which include the normal state. However, a peculiar

disease not described by any of these nine states may never be

|
|
|
|
{
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recognized. 1t would be desirable to develop a scheme to identify
unexpected or unknown diseases.

[t is therefore the purpose of this work to develop a method
to distinguish whether an object is in the listed or unlisted
class before one can use any conventional method to do the classi-
fication. This 1s referred to as a problem of identifying uncata-
logued objects as distinct from catalogued objects.

Our main effort will be devoted to solve the above problem.
The method devised is based on the idea that an optimum classifier
is the one which minimizes the probability of classification
error. The developed approach tends to minimize the error proba-
bility of identifying an uncatalogued object into the catalogued
one while fixing the probability of the other kind of classifica-
tion error, viz., identifying a catalogued object as an uncata-
logued one. The reasoning for this approach is described in
Chapter II, and a criterion proposed to guide the design of a
classifier is described. Chapter III discusses some of the
special properties of this classifier which is applied to several
examples. The scheme is shown to be effective in distinguishing
the Tisted objacts from unlisted ones. The algorithm is simple
in terms of implementation and computation time. In Chapter IV,
the scheme is applied to an aircraft identification problem and

the results are presented.




CHAPTER 11
MODEL DISCUSSION AND THE PROPOSED CRITERION

In this chapter, the basic philosophy of the algorithm is
discussed. Due to its similarity to the Neyman-Pearson rule, the

latter is reviewed. The proposed model is then introduced.

A. General Discussion

A classifier measures a set of N features from the response
of an observed object to form a point in an N-dimensional space.

The N-dimensional space is referred to as the observation space.

In other words, every observation can be represented as a point
in the observation space. Every observation is assumed to be a
measurement of the response of an object, which is corrupted by
some kind of noise. This noisy signal is then used to determine
to which class the observed object belongs.

In building an optimum classification scheme, it is necessary
to define what an optimum performance is for a system. An
appropriate criterion for judging the performance of a classifi-
cation system is the error probability in making decisions.
Minimizing this error probability is our ultimate goal in design-
ing a classification system. An optimum system is therefore the
one which minimizes the probability of error in the identification

process. In the problem considered, there are two kinds of errors




one can make in performing the classification, namely, classify-
ing a catalogued object as an uncatalogued one, and identifying

an uncatalogued object as a catalogued one. A reasonable approach
is to make the overall probability of misclassification as small
as possible, as is the case for a Bayes classifier. This requires
that

(1) the a priori probabilities for each class be given, and

(2) the probability density functions of the observation

vector be known when any of the classes are present.

The first one can be easily met by assigning each class an
a priori probability. The second condition, however, will never
be satisfied since no knowledge about the unlisted class is avail-
able. A different approach is therefore taken as follows.

In making a decision, the observation space is divided into
two regions, say Zy and Zy, corresponding to the catalogued class
N and uncatalogued class X, respectively. The observed object is
classified to N (or X) if the measured resronse falls into Zy (or
Zx). Therefore, the probabilities of making errors in the identi-

fication are

=
n

PixeZy(X} " (M

~
i

PixeZy [N} (2)

where x is the observed vector, « represents the probability of
error when N is true, ¢ represents the error probability when X

is true.
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In terms of the distributions of the observed vector x, these

two equations can be expressed as

6= PXIX)dX : (3)
JZN
and
a = J P(x|N)dx " (4)
Zy

where P(x|X) (or P(x|N)) is the probability distribution when X

(or N) is true. The integral is the probability that x falls

into Zy (or Zy) when X (or N) is true.

It is clear that g8 cannot be computed since the class X is
unknown and neither is P(x|X). In designing a classifier, one
can try to minimize the second error probability « by minimizing
ZX if P(x|N) is known beforehand. However, when Zy shrinks, Zy
expands, tending to increase 8- This is contrary to the main
purpose of minimizing the overall probability of misclassification.
One way of solving the above difficulty is to fix a instead
of minimizing it while trying to minimize Zy, i.e., to make Zy as
large as possible. This is similar to the basic assumption in
the Neyman-Pearson classification: minimizing one kine of error

probability while fixing the other one. This leads us to intro-

duce the Neyman-Pearson rule.




Y
B. Conventional Classifiers
In the case of two classes, both of the two conventional
criteria, Bayes' and Neyman-Pearson's, classify the observed |

object into one of the two known classes, say L and K. The two
classes L and K are sometimes called a learning class and an

exterior class respectively. We refer to the error made when L
is true as a type one error (or false alarm) and the other as a

type two error (or miss). And we express their probabilities as

= P{xcK|L} ; (5)

ol
I

= P{xeL]K} (6)

=™
I

where x is the observed vector, and a«, g represent the probabili-
ties of type one and type two errors, respectively.

The Bayes classifier, using the knowledge of the a priori
information and the statistical characteristic of the corrupting
noise, minimizes the average weighted error (or risk) by adjust-
ing the decision process. An ordinary system governed by this
rule sets up a threshold to which all the received signals are
compared. The observed is then assigned to one of the two classes.
The probability of misclassification of this scheme is minimum.

When the a priori probabilities of the two Tisted classes
are not known, a Neyman-Pearson criterion is usually used. The
basic idea is to specify one kind of error, whichever is consider-
ed more important, say the first one a, while minimizing the

other. Very often, the method turns out to be a threshold test




and the threshold depends upon the first kind of error only. The
characteristic, that the detector functions without knowledge

about K, is called uniformly most powerful (UMP)[5].

€ Neyman-Pearson Rule

We first apply the Neyman-Pearson rule to a special example

below.

1. One dimensional case

Suppose that there is only one object in each of the two
known classes and that the noise added to the signal is Gaussian
with zero mean and variance o¢. In the absence of noise, the
signals from L and K are Sy and Sy respectively. The conditional

probabilities are therefore

1 ‘(X‘S])Z

P(x|L) = 72-==2exp B : (7)
-(x-$,)2
gl Ky

P(x[K) = = exp( o2 ) , (8)

where x is the observed signal.

Again, L and K represent the two known classes.

We want to keep the probability of making a type one error
at some fixed value, say a, while minimizing the probability of

making a type two error. That is, we want to have

Pe s [ZL Px|L)dx =« (9)

(i ST e

10




and minimize
Py gf P(x|K)dx = 8 . (10)
L
7 and ZK are two disjoint regions occupying the whole ob-
servation space, and are associated with L and K respectively.
The object whose measured response lies in any of them is assigned
to the corresponding class.

To solve the problem, construct a function F as follows:
FAPy+ [PF-x]
« %(1=a) +J [P(x|K) - A P(x|L)1dx . (1)
I
Since PF-m=0, minimizing Py is ecuivalent to minimizing 3
Now, for any positive \ we like the integrand to be as small

as possible (i.e., to be negative or zero) such that F is mini-

mized. Therefore, if

P(x|K) - x P(x|L) < 0, assign point x to 7 (12)

Or, it

P(x /K ] ; ’

PixIL) assign to L, and to K otherwise. (13}
Defining

2 el
; 2x(S,-S,)-(S5-57)
A 2 1
A(x) = z i E = exp { 5 s (14)
20

we have

A(x) > A assign to L, and to K otherwise. (15)

g A A ST I i

1
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Since Pp = a, Equation (9) can also be written as

o

Pp = ):r P(A|L)dA = o« . (16)

\
The function P(A|L) can be evaluated by using the trans-

formation equation[9]

P(A[L) = P(x(n)|L)

9.3_((1% ! A

where
J}, in the region A is defined
I =
Lp, otherwise

(see Figure 1).

AA(X)
S, >S5,
___/ s' >Sz
= X

Figure 1. 1,=0 for A<0 since A(x) is not
defined in this range.

T P(x(a)[L), where A > 0
P(AIL) =

0 , where A <0
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Therefore, we find a solution \* for Equation (16), which,

substituting back to Equation (14), will give us the threshold x*.

Case a. Sp>S1  (Figure 2)

Equation (16) can be transformed back to the form of P(x!'L)

when S,-S, (see Figure 1 and Equation (15)),
(R BT (18)
X*

This leads to

x-S
erfc = = a (]9)
or
* =
)(l UZ(‘ * S] 1) (20)

where erfc(x) and z are defined as follows:

0-¥2/2
erfc(x) A Jx v dy > (21)
and
erfc(z“) A« ; (22)
P(x|L)
X ' X
— 0 ~= ZL % ZK = D

Figure 2. The threshold x* for S9>87.
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Case b. 598 (Figure 3)

It is clear that for this case

)
J " P(x|L)dx = o, (23)

and the threshold

Xy = §) - 02 (24)
Combining Equations (20) and (24), one obtains
X* = 51 = oz, sqn(Sp-Sy) . (:25)

|
~ D7 e 7 = D
fiqure 3. The threshold for S?AS].

The probability of making a type two error ¢ for both cases

a and b is

15,5 |
g = erfc (f“ - —= s (26)

which is minimized according to the rule.

Discussion
A very common application of the above result is in radar
detection. L is set to be the absence of a target and K its pre-

sence. The false alarm is kept to some prefixed constant, say a.
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A CW radar detects the backscattered returns and assigns the ob-
ject to one of the above cases. If S;>. the noise free response
of the target, is assumed to be greater than zero, a threshold
is set at x*=o0z , provided that the injected noise is Gaussian
with zero near and variance of oZ. The noise is assumed to be
Gaussian since it is the most commonly encountered type. The
threshold x* is completely determined by the system parameters

o and o even without knowing the amplitude of So. Nevertheless,
it is based on the assumption that 50 and S]fO. When a noise
free signal S, is not greater than or equal to zero, the result
1s different. It is clear that if we have no a priori information
about the response of the external class K, we have no way of
finding the threshold x* according to the rule. A more compli-
cated case with some knowledge of K will be brought up in the

next section.

2. n-dimensional case
If the response of an object is an n-tuple x, corrupted by

zero mean Gaussian noise, the conditional probability density

function 1is

y T S b e Tl p
[(Xll) = (2”)“/2,{!]/2 exp [‘ Z(X—S]) i (x g])‘l i (117)

and

P(x|K) = ( )h}?l-1j/? exp [: l(x—Sg)Tr‘](x-Sq)J (28)
2n [ . = © ‘

where
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x 15 the observed signal (column) vector,

5y and 5, are noise free signal (column) vectors, and

1S an n X n noise covariance matrix.

The above can be simplified by a linear transformation as

described in [10] such that

Lxi-s0 )8

A I R R

Plx L) —p—— BN [ 5 (29)
(»/l‘w‘ )" 0.2

and

Pt o N o .
P(x"'|K) (J5< ?)” exp|- > . (30)

£no

The summation above is carried over i=1 to i=n. The diagoni-

zation of the noise covariance matrix and the equalization of the
varitance do not require the uncorrelatedness of the individual
components and the above process can be applied for any Gaussian

processi1].

tquations (29) and (30) can be further simplified by rotat-

ing and shitting the coordinate axis to obtain

= n P’
\ xn.u_
: | f=i
PRI = — L exp |- 1211 (31)
( l ) (ZIUL)n/Z 202

and
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1
(2ne®)

where the absolute value represents the length of the vector.

Using the same technique as before, one obtains

?XHISV'_S||_IS|_S|}?
\(X') CXP (? I .) l \ s o
! e e e > assign to K,
?\“
to L otherwise (33)
" \X
T ..
\ _ X,
\ _e-
P S !
\‘ o L S,
- \
\
\ >X|
\
\
\

Figure 4. Rotd@inq and shitting coordinate axis to
obtain a simpler expression for
Equations (29) and (30).

It is clear that the decision boundary is a straight line
in a two-dimensional space, a plane in a three-dimensional space
and a hyperplane in an n-dimensional space in the transformed
coordinate system x". This boundary surface is then used, with
the knowledge of the previous linear transformation to obtain the

threshold boundary in the original system.

- -

:
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tive positions too.
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| DECISION BOUNDARY

Figure 5. The distance between Sj and the

decision boundary in the x'

coordinate system is zo.

[t is interesting to note that the distance between the deci-

coordinate system (Figure 6).

/

\

b

sion boundary and Sy is still z o (Figure 5). Obviously, the deci-
sion plane depends on the orientation of Sj and 55 and their rela-
However, it is always a hyperplane tangential

to the hypersphere, whose radius is z o, centered at §} in the x'

Note that the radius is independent

=0
sl

2q0

Figure 6. A1l possible decision planes are
tangent to the hypersphere of
radius z o, centered at 5.




ine error probability - for this n-dimensional case 1S

3 obtained similarily as

5.-5: |
erfce (ﬁ" = ~é;-L‘) s (35)

where S5 and Sy are the transformed vectors of S, and Sy discuss-

v |
! ed before.
Note that when a train of observed signals, X1s X2e "7, g

are taken independently, the noises added to each component are

% very often independent of one another. One can simply use
| Equations (?9) and (30) directly.
i

1 D Middleton's Modified Neyman-Pearson Rule

When there is more than one element in either of the two
classes, or when Sy and 52 are statistically distributed in the
observation space /7, Middleton proposed to fix the average of Pes
T “Pp>, instead of PF and minimize the average of PM, T8 4
-PM~[I?]. This requires the conditional probability density

. functions P(S1|L) and P(SPIK).

! 1. One element in L
(a) Suppose there is only one element in the learning class
L, say Sy, in a one-dimensional observation space, and two elements

521 and S»2 in the exterior class K with

P(Sy 1K) = by ; (35)

and




By using the similar method, we can obtain the decision
rule as:

P, P(x|S,)*P P(x|S,5)
A(x) = —J~—~-~%;%(H§§—;——i§{~ > \ assign to K,

to L otherwise . (37)

If the corrupting noise is Gaussian with zero mean and

variance of o2, \(x) becomes

2 2
2x(S57-S1)-(S57-57)
A(x) - py exp {' 2177 . 21 1_}

20
2%(S, .~5.)~(58 ~S%)
32 ] 221
S - P exp —
2 { 242
= A(x) + B(x) 5 (38)
where
x5 =5, J=1SE. ~35)
A(x) = py exp [ 4 (39)
25

: 2
2x(S55-51)-(55,-57)
B(x) = p, exp [ 221 5 2z 1 } (40)

1 —

20
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As before

J“ P(AlL)dA (16)

P =
E : A

J P(x|L)dx . (41)
Ly

Note that P(x|L) is independent of $215522.

When $21,522+S1 or $21,522<Sy, the threshold turns out to be the

same as in the one element case obtained in the last section.

A(x) =A(x) +B(x)

A(x)

Figure 7. A special case for A(x), where $72<51<507-
Z| is a region covering [xg,xf].

When Spp<S1<Spy (Figure 7) or Sp5>51>Sp1, Z = [x3,x}] can
be found by Equations (41) and (38). A table is constructed of

a(A) vs A from Equation (16) and a A* is chosen such that a(A*)

is equal to the prefixed value. The corresponding xT,x; are then

obtained from Equation (38).

29
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The region Z depends not only upon the relative positions
of 32],522 to Sy, but also upon the values of 52]-51, Sp9-51,
p]P(SzllK) and p2P(522|K). This above conclusion holds in a
multi-dimension case with the scalors being replaced by the vectors.
when there are more than two elements in K, the computation
is even more complicated and results in a more intricate region
Zy -
(b) If there is only one element §] in the learning class

L and Sp is distributed in the observation space Z as follows:

5,-5, 12
- 1 n 2 1
P(S,IK) = | = ) exp - ——5— (42)
“21102 205
i.e., normally distributed around §].
e have
P(X[K)> = j P(S,[K) P(X|S,)dS, (43)

Suppose, the noises added to each component are independent
of one another and are again Gaussian with zero mean and variance

ol Equation (43) becomes

= = 12
<P(x|K)> =(.____l_____) : exp |- li:;lli_ (44)
V2r(o2e2) 2(20:7)

Applying the same technique, we obtain

A(R) = SB(EIKD
§ P(X L)> (45)
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\\S 0 2(‘5(” +.‘S)

indicating that A* or [x*-S;| is again independent of S,, and de-
pends on « only. The decision boundary here is a hypersphere with

the radius being a function of .

The above example demonstrates that if the distribution of
So is symmetric with respect to Sy, the decision boundary will de-

pend upon the preset false alarm probability o only.

2. Multiple elements in L

When there is more than one element in L, the computation
becomes more complicated but the rules still hold. An example is
given here.

Suppose there are two elements in L, whose corresponding
noise free points are 511 and sz in a two-dimensional observa-
tion space. Also, §]]=-S]2 and P(Syq[L)=P(Sy,[L)=1/2. Sp is
uniformly distributed in a circle, centered at the origin with
the rauius of rq.

Then

PR = [ P(x[8,)P(S, (K)dH,

2
k-, (‘xp - e T ‘%‘ d[Sf,ld(‘
1 .S

y o 2
Xr \/ (x€+r<)
S 1 S
o () oo |- 2 z
4
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where I, is the modified Bessel function of order zero and is an

even function of its argument (Figure 8).

b1,

’x

Figure 8. A modified Bessel function of degree
zero is a two-dimensional hyperbolic
cosine function.

Also
= 12 512y ]
P(x|L)> = T lexp ﬂi )+ exp < LX‘%)
2 2'102 & 2\2 2&‘
2,2 —
X +b].l X S]] 48)
= exp Q—‘E;j? ~ ] cosh o (

and

I
1) T RE— (49)

X S..cose
cosh(—w—ll———g

where ¢ is the directional angle of x and Sy;.

24
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It is clear that the decision boundary is no longer a circle

here (Figure 9).

Figure 9. Constant A* curves.

E. Identifying Unlisted Objects

So far, we have catalogued all the known objects into two
classes; viz., the learning class L and the exterior class K.
The observation space Z is divided into two disjoint regions 7
and Zy, corresponding to the two classes L and K. The observed
object is assumed to be one of the known objects. Its response
is measured and assigned, according to the region where the mea-
surement falls, to one of the two classes. The classifier is
claimed to be optimum in that it minimizes one kind of classifi-
cation error while fixing the other one.

In our problem, there are also two disjoint classes: viz.,
the listed and the unlisted classes. To make a classification,

or more specifically, to decide whether an object is known or

not, there are also two kinds of errors, namely, the error made




when N is true and the error made when X is true. However, since

the objects in the unlisted class are unknown, no a priori infor-
mation about them is available. Consequently, minimizing the
error made when X is true or fixing this kind of error is not
possible.

We note that in the case of Neyman-Pearson rule the observa-
tion space Z is divided into two regions, Z and Zy corresponding
to the two classes L and K. Similarily, in dealing with our
problem, we can also divide the observation space Z into two
regions ZN and Zy, associated with the Tisted class and the un-
listed class respectively. Any observed measurement that falls
into the region Zy (or Zx) will be identified as belonging to the
listed (or unlisted) class. The error made when N is true is
also called a type one error and the error made when X is true is
a type two error. The following criterion is used to determine

an optimum classifier.

1. The criterion

In discriminating between uncatalogued objects from cata-
logued objects, the observation space Z is divided into two dis-
joint regions Zy and ZX, associjated with the 1isted and the un-
listed classes respectively. When the error probability of
classifying a known object in the listed class to the unlisted
class is prefixed to a specific value other than zero, the opti-
mum rule is the one which minimizes Zy.

By minimizing ZN we mean minimizing V(Zy), the volume of

the region Zy, where we use the notation
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v(Z,) AJZ dx
a

The main idea here is similar to that of the Neyman-Pearson
classifier. In the latter, the probability of making a type two
error is minimized while that of making a type one error is fixed.
In our case, a type two error is impossible to determine; instead,
the type one error probability is fixed, while the volume of Zy,
the region associated with the listed class, is minimized. By
minimizing V(ZN), the possibility of an unlisted object response

falling into Zy will also be minimized, thus reducing the possibil-

o AN s

ity of making a type two error. This can be clearly seen from 3

e

Equation (3). Since P(x|X) is always positive, whenever the :

region ZN decreases, ¢ will be reduced accordingly.

gy st

This is indeed an optumum classifier which we need in

identifying an unknown object. The criterion prefixes the type

’ o
RN DDV s i i

one error probability such that the region Zy is large enough

TS )

not to exclude noisy responses from the known objects. Mean-

while Zy is kept by the criterion as small as possible so that

the classifier can most effectively identify an unknown object.
Therefore, the main philosophy in designing a classifier
; to identify an unknown object is based on the following two
principles:
ks Keeping the probability of misclassifying a listed
object as unlisted to a fixed value. This is done

by fixing the error probability « when constructing

. the region Zy-




2. Minimizina the likelihood of classifying an uncata-
logued object as catalogued. This is accomplished by
minimizing the volume of ZN, the region associated
with the known class.

Note that the last rule implies minimizing the type two

error probability without any information regarding the unknown

class.

/N can be a compact region or a set of several disjoint
regions, depending upon the distribution of the observed vector
x in the observation spacc Z. However, the volume of Zy is
always finite when the error probability is greater than zero
(when « equals zero, the problem becomes trivial and is not con-
sidered here). This will be proved later. Since the volume of
the region Zy is minimized, the criterion is referred to as a
minimum volume criterion. The two regions Zy and Zy are dis-
Joint and occupy the whole observation space. Some of their pro-

perties will be further discussed in the next chapter.

2. Null class

We classify an observed object to be one of the two classes;
namely, N and X, as we get some responses from an object. This
actualiy implies that the classifier may make an identification
even without the presence of any object, so lTong as a respense is
shown in the measurement. The case of no object present is inde-

pendent of the two aforementioned classes and is another kind of




B el e s

L& l

s

[er———

o

class itself. It is therefore called a null class and is denoted
by ¢

In a practical system, noise is added to the original sig-
nal and is reflected in all measurements. Therefore, when a
detector detects a signal, the possibility that a tested vector
is originating from a null class cannot be ruled out and should
be taken into consideration in an identification problem. The
noise free signal of a null class is obviously zero, invariant
with the features selected and may be considered a known object.

Figure 10 shows an application of this concept. The null
class is combined with the Tisted class N to form a new class N'.
N' is then used, with the preset error probability for a type one
error as defined before, to construct a region Zy+ for the new
listed class N'. A measured vector is tested whether it is in
[N" If it is in Zy+, a conventional scheme is used to identify
the object as one of the catalogued objects, including the case
of no object.

Note that the relative frequency of occurrence of each
object in the new listed class, including that of the null class,
has to be known to construct the region Zyv.  Therefore, the a
priori probability of the null class when both : and N are pre-
sent has to be determined beforehand. Since it can range from a
small number close to zero to some number near one, depending on
tne system, we will not include the null class in our subsequent
discussions. However, the process is similar to the N case and

is dmplicitely included in the general discussion.

Unless
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the a priori probability of the null class is close to one, in
which case Zy 1s enlarged in the vicinity of the origin, no
special consideration is necessary for the null class. Neverthe-

less, a design engineer should not ignore the existence of a

null class in a practical system.
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CHAPTER 111
SOME PROPERTIES OF THE REGION Zy

The previous discussion illustrated the rules governing the
design of a classifier for identifying unlisted objects as dis-
tinct from listed ones. The goal of the design is to find a
region Zy satisfying the constraint that the volume V(ZN) be
minimized while fixing the probability of making a decision error
when the observed object is in the listed class. The problem of
finding a boundary surface separating the observation space Z
into Zy and Zy is equivalent to that of finding a threshold in a
transformed space. It will be shown that utilizing the threshold
greatly simplifies the problem.

We begin this chapter by demonstrating some characteristics
of the region Zy introduced in the last chapter. With the assump-
tion that the probability density function of the observed vector
is continuous and bounded, we first show that there exists some
Iy satisfying the proposed criterion and that under certain con-
ditions ZN is unique. The proof also reveals a method of con-

structing Zy.

A method of transformation is then deduced from the above
results. A few one-dimensional examples are worked out analytic-
ally. 1In general, however, a closed form solution is difficult

to obtain, due to the complexity of the transformation for most

of the functions encountered in practice. Yet, with the help of

32




Monte Carlo simulations, all the problems are numberically solv-
able except in the cases where Zy is not unique. Two algorithms
are proposed and applied to a practical aircraft identification
problem. The results show that the criterion leads to an effec-
tive and easily implementable scheme.

The proposed criterion is compared with the Neyman-Pearson
criterion in a one-dimensional case. It is shown that our scheme
is less sensitive to a priori information of the unlisted class
than a Neyman-Pearson classifier to the a priori information of
the exterior class. However, in terms of the probability of mis-
classification, the latter does perform better because it minimizes
the error probability while the former minimizes the volume of the

region only. The tradeoffs are also discussed.

A. Some Properties of Zy

A classifier measures a noise corrupted response of an
object, say x, and assigns the observed object into the listed
class or the unlisted one. The probability density function of

the measurement x when the listed class is present is denoted by

g(x) & P(x|N) : (50)

In case there are several subclasses (or objects) CysCoyee

S0

C, in the listed class, Equation (50) becomes

g(x) =
1

P(XIC{)P(C; [N) (51)

o133
—
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where
n is the number of subclasses (or objects)
P(CilN) is the relative frequency of occurrence of C;
in N, and
P(i]ci) is the conditional probability density function
when C; is present.
If the ith noise free signal S; is distributed over the

observation space Z and its distribution function is denoted by

fi(§ilCi), Equation (51) becomes

9(®) = I PC;IN) [ PRIS)F (S lces; (52)

|
1S

1
Here, P(i}g}) is the probability density function of the

i

measured vector x when the noise free signal is S;. The integra-
tion is carried out over the entire observation space.

Obviously, if there is only one subclass in N, Equation (52)

can be simplified as
9(x) = J P(X|S)F(S|N)dS 3 (53)

again, f(S|N) is the probability density function of the noise
free signal S.

In general, g(x) is either continuous or discrete in the ob-
servation space. However, for most of practical cases, like
those where Gaussian noise is added to noise free signal, g(x) is
continuous and defined over the whole observation space. Therefore,
in the following discussions, we will make the assumption that

g(x) is continuous and bounded everywhere in the observation space.
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From the basic characteristics of a probability density

function we also have
[ o1, (54)
i

and

g(x) >0 for all x in Z 2 (55)

By definition, Zy is a region of observation space in which
an observed signal is assigned to the Tisted class. The probabil-
ity of misclassifying known objects as unknown is therefore

Pe - j g(x)dx (56)

IN

where

-
—
(2]
~
~—

IyAZ =12y =1,

and ZN U Zy = Z by definition.

In other words, Pp can be expressed as

g =1 = f g(x)dx . (58)
Zy
Our criterion is to hold PF at a fixed value and to minimize

the region ZN’ viz., minimize

iy a [ &, (59)
Zy
provided that V(Zy) exists.

The observation space 7, as stated before, is divided into

two disjoint regions Zy and Zx by a threshold surface St. The
classification rules are as follows:

S ————




Let N denote the listed (known) class, X the unlisted class
and Cy the observed object.

if x ¢ Zy Cx is assigned to N,

x|

if x ¢ Zy Cx is assigned to X, and

|

if x is on St» Cx can go either way.

Usually ST is contained in either Zy or ZX’ indicating that
Zy is a closed or an open set. Our main objective here is to find
a threshold surface Sy.

We now show that for a continuous and bounded density func-
tion g(x) there exists at least one region ZN described by the

criterion. We first state and prove a lemma below and use it to

prove the existence of Zy.

1. { emma

Assume that g(x), a probability density function, is contin-

uous and bounded in the observation space Z and « is a number such

that O<a<l. If a region Zy in Z satisfies

(1) fz g(X)dX = 1 - a : (60)
N

(2) for any X ¢ Zy y ¢ Iy

g(x) > g(y) ; (61)
and a region ZN' in Z, different from Zy, satisfies

J g(x)dx =1 - a 5 (62)
ZNI

then




V(zZy) < V(Z) (63)

2. Pxoof

We first show that the region Z; specified by Equations (60)

and (61) is finite and then show that for any Zy: specified by
Equation (62), Equation (63) holds.

Since 1-a-0, from Equation (60) we have
[ oy = a0

2N

where Zy is the complement of ZN' This equation shows that not
all g(y) 0 for }_i ZN.

Therefore, there must exist a yj ¢ 2y, such that g(yy)=a>0.

From the given condition Equation (61), we have
g(x) > glyy) =a >0 for any x ¢ Iy .
Also, by Equation (60) and the above

1 >J g(;)d;;aj dx
Iy 2y

we get

f dx = Y1) <
Iy

Since a-0, V(ZN) is finite.

1
N) a
If the region Zy. specified by Equation (62) is infinite,

then Equation (63) is always true.

If ZN' is finite and different from ZN’ then let

37




ZC A ZNI n ZN
and define
Zfl :\_ ZNI - ZC
[.f :f\_ ZN b ZC
From the given conditions

Jf g(X)dx = [ g(x")dx' = 1 - a
5 2o

Subtracting the above by the integration over Zc, one gets

[ gt = | el

However, since

g(x) ~ g(x") for any x ¢ Zg

‘ the above equality holds only if

J X < [ dx
Zf Zfl
That is

V(Z¢) < V(Zg)

Adding the volume of Zc on both sides, we have

This proves the lTemma.
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We have shown that among all the regions satisfying Equation
(62), the one specified by Equation (61) is finite and has the
minimum volume. Now we show that, for any g(x) being continuous

and bounded, there exists at least a minimum region Zy satisfying
Equation (62).

We first construct a region
s(¢) 2 {x|g(x) > &} , fore >0 (64)

i.e., a region formed by all points for which the value of the
function g(x) is larger than or equal to &.

Its complement is denoted by

Z - S(¢)
{xjglx} <&} 5 Fores>=0 = . (65)

S(z)

(=2

1]

It can be proved, following the same reasoning line which
proved that V(Zy) was finite, that V(S(t)) is always finitie if
;:)”.

From the lemma, if

gix)dx = 1 « o
js(f,) A65)

then S(z) is a minimum region constrained by the criterion.
Now we prove the following theorem.

Theorem
For any continuous and bounded probability density function

g(x), and an « such that O<a<l, there exists a minimum Zy in Z

catisfying
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Proof

Defining
6() o | 9(R)dk (67)

where S(:) is defined by Equation (64).

By the definition of S(&) and continuity of g(x),
S(e,)DS(eq) if g >8y>6,>0 ,

where ¢ is the maximum of g(x) in the observation space Z.
Note that S(&Z) strictly contains S(:7). Therefore we can

obtain

G(iz) > G({,]) it Em > €1 > €2 > Q

indicating that G(:) is a strictly decreasing function.
Also, from the basic characteristics of a probability den-

sity function, we have

G(0) =1 s

and

=0 3 for any gn >



S i

|
l
I

(a) If G(«) is continuous over [0,:,] (Figure 11), then
since G(i) is strictly decreasing in ¢, there is a one-
to-one correspondence between ¢ and G(¢). for every
a3 O-a- by we find a unique @y such that
(](:ﬂr) N ST (68)

tp 1s between 0 and ¢ and is not equal to 0 or ¢
since O<a<l.

As shown before, S(&T) is the minimum region ZN'

hGg)

'“ah_'ﬂxﬁ\ .

0 €s  Sm

Figure 11.  G(&) is continuous.

(b) If G(:) is not continuous in i, say discontinuous at

a point iy (Figure 12), let

S1(£) A ix[g(x) ~ &} . (69)
G (&)
I
G({d) ___r_)_{

!
s NS 5 . A £
d em

Figure 12. G(¢) is discontinuous.
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We have
+
G((d) = GT([’d ) +h (70)
where h>0 is a jump of G(&) at &£ and
: alegh s oK. (71)
E | Sy(eq)
£
| From the definition of G(:), it is clear that
F |
g |
{ ' N
| 6le,) -6 g, ) = [ g(x)dx , (72)
d d So(gd)
where So is defined as
S (g) a {x]g(x) = &} 3 (73)

0

viz., the set of all the points where g(x) = ¢.

This indicates that there is a finitie volume for

the region So(gd) in which the function g(x) is con-

stant and equals to Eq> where the discontinuity of

G(¢) occurs.
Consequently, for any number b such that O<b<h/g,

we can obtain a region Sob(gd) in Sy(gq) so that

g‘ V(Sob(‘d)) = b . (74)
!

%‘ This is equivalent to

2

| g(x)dx = £4b (75)
i

; with

{

!
|
|
|
|
1
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Sopl£a! < Soltd) : (76)

Therefore for any « such that G(gd+)<(1-u)<G(5d), we can

choose a region

s, (8q) = Sq(eq) U s, (£4) (77)
such that
Saala) < 3,(84) (78)
and
(1-a)-G(gy)
T R i (79)

Su(gd) is not unique since SOa(gd) defined by Equations (78)
and (79) is not. Nevertheless, from the previous lemma, Sﬂ(ad) is
a minimum region.

For any (1-a) lying in the continuous portion of G(&), we
can, as before, obtain a unique £7 for each «a such that G(gT)=1-a
since there is a one-to-one correspondence relationship between
G(+) and ¢ over this range. The corresponding S(t7) is again a
minimum region.

In conclusion, for any continuous and bounded density func-
tion g(x) and any « such that O<a<l, we can always find a minimum

region ZN satisfying

J g(;)d; =1 -a
IN

43
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From the above discussion, we can also have the following
(1) If Zy satisfies the criterion, then for any X ¢« Iy
and any y ¢ Zy
9(x) > 9(y)
(2) If for any x ¢ Zy and any y ¢ Zy
a(x) > g(y)
Zy is a minimum region among all the ZN'S satisfying
j-wﬂ&=j a(x)dx
Ly 2y
(3) [f Zy is a region which satisfies the criterion and

is closed and if

1 i1 = min g(x)
4 XfZN

then Zy is unique unless V(SO(aT)) # 0, in other words,
the volume of the region over which g(x)=cT is not zero.

] E A few examples are given here to demonstrate how the above
g theorem works.

Example 1

When the listed class is present, the probability density
function of the observed vector x is triangular as shown in
Figure 13. We would like to find the region Zy associated with
the listed class when «=0.05, 0.01 and 0.001.

Obviously, g(x) is continuous and its integral over the en-

tire x-axis is one. Also, g(x) is bounded and ranges from O to 1.
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| A og(x)
|
i
‘ ' > X
9 ~i 0 I
Figure 13. g(x) is a triangular function.
We first find the function G(t). As before
G(s) = J g(x)dx
S(&)
:é where
‘ S(&) = (x]g(x) > &}
We obtain (Figure 14)
J’]—&z 0<¢g <1 B
i 6(e) = 41 £ <0 ,
LO £
3 From Equation (68)
i
3 ‘:T:"“ wheno.a.‘]
!
| Iherefore
’ bp = 0.224 when o« = 0.05
- 0.1 when « = 0.01
i1

0.001

"

i = 0.0316 when «
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_..q.....m,_,‘A

A G6(&)

B 0 | =il 1

Figure 14. G(¢) for a triangular
function g(x).

Corresponding to the above ¢!

T's

Iy = S(&T) = [-0.776,0.776] when « = 0.05 ,
= [-0.9,0.9] when « = 0.01 ,
= [-0.9684,0.9684] when o« = 0.001

Example 2
If g(x) is a function as shown in Figure 15, find a corres-

ponding 7y when . is a fixed number in (0,1).

g(x)

I
i
I
1

[
-0.5 | 0.25

)

"

L » X
1.25 1.5

Figure 15. g(x) including a flat
probability density.

. -
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Again, g(x) is continuous and bounded everywhere on the x-
axis and its integral over the entire x-axis is unity. Like be-

fore, we first find G(:) by inspection

—
] ‘—:~0 ’
}] - ; &2 Q< 2 200G

G(&) = ] 2 0 : .
§-—'2'\‘_ .5_\—\‘ = ’

LO g > 1

It is clear that there is a one-to-one correspondence between
< and G(t) when & is in (0,1), except at £=0.5, or equivalently,
when G(:) is between 0.375 and 0.875. We can, as before, obtain a
unique Zy for any o whose value is not in (0.125,0.625) and O<a<1.

When 0.125<a<0.625, we can set &T=0.5 and form a region Zy

according to the method described in the theorem.

? G(g)
|

0.875

378 -~
i
1

——
(6] 0.5 | ¢

Figure 16. G(:&) has a jump at £=0.5.

For instance, when «=0.5, we can form a region Zy in / (i.exs

x-axis in this example) such that

Zy = [-0.25,0.25] U S _4(0.5)
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when 5‘0(0.5) 1s a region consisting of a segment or a set of
segments whose total length is 0.25 and lies between x=0.25 and
x=1.25. However, to have a higher stability in the classifica-
tion process, a subregion of x=0.25 to x=0.5, right adjacent to
x=0.25, is preferred in forming the region ZN'

This illustrates that for any « such that O<a<l, there

always exists a region Iy satisfying the criterion.

Figure 17. S 4(0.5) is a region consisting of

a segment or a set of segments
between x=0.25 and x=1.25; its
total length is 0.25.

B. One-dimensional Case and
Method of Transformation

It is clear that if V(SO(JT)) # 0, the region Zy s not
unique and there is an instability in constructing the classifier.

This can be more closely related to the function G(:) in Equation

(67). If the rate of change of G(:) with respect to ¢ is large,

an instability would become noticable. The rate of change is

strongly associated with the behavior of g(x) in the observational

space. In most of practical situations, the error probability

X

1s set to be a small number. Under these circumstances, the
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instability becomes almost irrelevant to the overall performance be-
cause the effect is definitely small when ¢1 is small. This will be

shown later in Chapter III-E that even when g(x) is almost flat, the

instability is still not noticeable. The derivative of G(&) at ¢t

can serve as an indicator to this instability.

However, if necessary, the instability can be eliminated
completely if the classification process is carried out in the
x domain where a region Zy can always be found and consists of
some compact regions. This essentially guarantees that the problem
is solvable as far as g(x) is continuous and bounded in the observa-
tion space.

From the above discussions, it is seen that the solution
for our problem is unique when V(SO(&))AO for all ¢>0. This
occurs in many practical situations and represents most of the
distribution functions that one will encounter. Any monotonic
function or the summation of a finite number of monotonic func-
tions are in this category, particularly Gaussian distributions
that occur in most communications or measuring systems. The
function g(x) consists of a finite number of such monotones if
the number of subclasses in the Tisted class is assumed to be
finite, which is a legitimate postulate in all practical cases.
Therefore, in this study, the function G(:) defined in Equation

(67) will be considered continuous and its corresponding region

S(:) unique.

R R AL A et a5
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With the assumptions made to construct the region Zy,
associated with the listed class for a prefixed error probabil- ;
ity «, we can carry out the integration in Equation (67) from ; 3
the portion where the function g(x) has the maximum value, in | 4
the descending order of g(x), until G(t) reaches the value 1-a.
In doing so, we are actually carrying out the integration of g(x)
over S(¢) in the descending magnitude of ¢. Therefore, we can

define a new variable Pa(g) such that '

g(x)ds(c)
£ dS(¢) (80)

P_(g)de

3

at every .

In a one-dimensional space, the right side of Equation (80)

is equivalent to

g(xq) [dxq[ + g(x,)[dxo| + == + g(xp)[dx,
where (Figure 18)

£ = 9(x)) = glxp) = === = glxp)

Using the above two expressions, we obtain
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|
|
|
|
X

X e - =D

.

I 2 Xy Xq X
: Figure 18. The function y=g(x) intersects y=¢
! At Xq4Xns===yX .
: > =2 n

_ dX] dX2 fdxn
Pb (¢) = Q(X]) dg(x]) +g(X2) —(—)—dg Xy + --- +g(xn) _——(_—)_dg X
=G )j d ]x (8])
O Mo
dx

provided that g(x) is continuous[9,13].
Obviously, if the curve y=¢ intersects y=g(x) at a finite

number of points, the function P_(t) can be always obtained by

the above transformation. Also, P.(2) is positive and defined

over (0,¢,) and

|
| = £
J P (£)de = f"‘ pPielde =1 . (82)
. (I 0
. The threshold i is obtained by solving
' f\’m P (£)de = 1 - o (83)
&Y '
l which can be used to determine the boundary surface Sy.

Solving Equation (83) is a straightforward step if P{(&)

can be analytically determined from Equation (81).
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Note that the transformation Equation (81) is almost the
same as that of transforming a probability density function from
one variable to another except that ¢ here is not a random vari-
able[9,13]. P_(z) is a function containing the probability con-
tributions of all the points in Z for which the function g(x)=¢.
Reference [13] has a very thorough discussion about the one-to-
one and non one-to-one transformation for a continuous function
g(x). It also describes the transformation from Z space into ¢
domain for a multiple-variable function g(xy,xp,~--,x,), which
is denoted as g(x) in our notation. As the number of dimensions
increases, the transformation becomes very complicated even when
r=g(x) is a very simple function. However, g(x) is usually not
very simple and the transformation is not an easy task in most
situations. We will not go into any detailed discussion of the
transformation in multi-dimensional space in this work. Instead,
a method of Monte Carlo simulation is presented later to ease
this computational difficulty, which enables us to bypass all the
problems numerically without having to use the transformation
process.

One Element Case

A one-dimensional problem given in Section II~C is used here
to demonstrate the above approach. Suppose Cy; is the one element
in N and its noise free signal is S1. No information about the
unlisted class is available. We would Tike to find a region ZN

associated with the listed class N when the misclassification

probability for the listed class Pg is set to be a.
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The probability density function of x when the listed class

is present, is, as before, assumed to be

(X’S])Z
i o(x) = P(x|N) = 2] e 202 : (3)

Wwe first transform the above probability density function

to
dx dx
1 2
“ P(e) =& lge | * & |dE (84)
k where © ranges from 0 to 1//2nn2 :

From the symmetry of & w.r.t. Sy, it can be shown that

S-I-X] (:T) = Xz({:T)'S-‘ ’

and Equation (83) becomes

%+ (& 2) a
j A gix)dx + { g(x)dx =«

s XZ(&T)




We have

xplep) - Sy = Sy - xq(eq) = 2,50
where z is defined in Equation (22), or

|X;(e7) - S4] = z,/2° for i=1,2

Corresponding to this

Iy = Loz o0 + Sy 2400 + 511

and

2
.
2

1
£ =
T /2_2

Comparing this with Equation (25), we see that the boundaries

are no longer dependent on Sos which is not known in our problem

anyway.

Two Element Case

If there are two elements Sy and S, in N, the problem be-

comes more complicated. Now ° becomes

g(x) = Py P(x[Sy) + pp P(x[Sp)
where

P1 A P(S1[N)

Py A P(Sy[N) =1 - py as defined before.

i, < S e
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(88)

(89)




Figure 19. /75 15 a region covering both sides of
51 symmetrically.

Again, assume the noise added to the signal to be Gaussian

with zero mean, then

[ T 20 [ 20

g(x) = p > e e — : (93)

i’) o . B}
NOnaf eno”

By transforming the above into the o domain and employing

the same technique as before, one gets

[T p (eVde = o : (94)
lo !

Figure 20 'wo olement case.,
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And iy can therefore be solved if P_(¢) can be obtained by
Fquation (81). The points X1*s Xo¥*, X3*, xg* (Figure 20) corres-
ponding to ¢y are then obtained by substituting ¢ back to £=g(x).
Note that analytically, Pl(t) is difficult to obtain because the
points for which g(x) is constant are difficult to compute
for Equation (93), and even more so the derivatives at these
points. Nevertheless, it was carried out and the results listed
in Table 1. The new region Zy» in general, is the union of two
disjoint zones [x]*,xz*] and [x3*,"4*] since £=g(x) is a multi-
valued function. Some results are shown in Table 1 for P1=p2=1/2,
=0.05 and Sy=N.

TABLE 1

Two Element Case for the Misclassification
Probability «=0.05, 510

S1/0 So/o X1*/o Xp*/o x3*/o Xg*/0
0 1 -1.68 --- = 2.68
0 2 -1.645 --- -—= 3.645
0 5 -1.927 196 3.04 6.927
0 10 -1.96 1.96 8.04 11.96
0 50 -1.96 1.96 48.04 511,96
el e e el e e )

In the table, 5 is set to be zero to simplify the computa-
tion. This does not affect the generality of the results since

it is considered as a reference point; consequently, the numbers

525 X3*, Xp* === in the table are actually S-Sy, xy*-Sy, Xp*-Sy

56
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--- etc. The signal to noise standard deviation (o) ratios are
associated with the SNR of the system. The interval [x3*,x4*]

is a symmetrical reflection of [Xi*,x2*] with respect to the mid-
point of S, and S,. For (S,-S

1 2 2 71
intersects :=g(x) twice when «=0.05; therefore x

)<30, the threshold line only
2*,x3* do not
exist in that case. Note that under these conditions, ISi-xj*l
where j=2(i-1) or 2(i-1)+1, is very close to zero. As ]SZ-S]I
becomes larger in terms of o, the size of the subregion surround-
ing Sj’ e, |Sj—xj*| becomes closer to oZ /2° the same as that
of ZN found in the last example. This is so because when all the
subclasses are equally weighted, the probability density contri-
buted from other subclasses around each element is small as long
as the distances between elements are large; consequently, the
threshold boundaries around each element are close to those of
single element systems. Thus, under the same constraint of «,
the sizes and shapes of the subregions of ZN are like those of

ZN generated by single elements. This indicates that if the noise
free signals of each element in the known class are far apart in
terms of o, ZN will be a joint region of several individual ones
which are obtained as if there were only one element in the list-
ed class, provided that each element is equally weighted. This
conclusion holds no matter how many subclasses there are in the
listed class. We can approximate ZN by combining the subregions

associated with each subclass, obtained as if it were the only

one in the listed class, and reduce the complicated computation

substantially.




In the last example, if p]fpz, the function :=q(x) will no
longer be symmetric with respect to the midpoint of (S],Sz) name-
1y, (81+SZ)/2 (Figure 21). Still, we can transform the original
function t=g(x) into the : domain and compute &1 by Equation (94).
The required region ZN is again obtained by substituting i1 back
into Equation (94) by setting 3T=q(x*). If there are two sub-
regions of ZN’ each one, associated with its noise free signal
Si‘ will be different in size and shape. The two subregions will

merge into one as « decreases.

Figure 21. Two element case when p]fpz.

Another common situation similar to this occurs when the
amount of noise added to each signal is not the same. For in-
stance, the noise injected to each signal is proportional to its
signal amplitude in some systems. This multiplicative noise will
also result in different sizes and shapes of ZN for different
subregions than those described in the above example.

In case that « is large, very often some of the noise free

points originating from the subclasses of the listed class are

not contained in ZN at all (Figure 22).
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Pigure 22. Zy does not consists of the signal
points Sy and S4.

This is most likely due to the following:
(1) The a priori probabilities of some subclasses in
the listed class are very low as compared with those

of others. When a is large, Z, consists of only the

N
'g highly weighted regions, leaving out the signal

points of low densities. Consequently, they are

excluded from ZN.

(2) The noises added to some signal points are larger

than those added to others, making the probability
contributions from these points smaller than those
from others. For the noise distribution being
Gaussian or decreasingly unimodal, a classifier is
therefore more Tikely to exclude some signal points
corrupted by larger noise from Z, when the detection

N
probability T-a is not very high.
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5 Comparisons of the Two Criteria

The above results can be used to demonstrate the differences
between the classifier devised by Neyman-Pearson criterion and
that by the minimum volume criterion.

Both criteria are aiming at the same objective of minimi-
zing one kind of error while fixing the other. The lack of a
priori information about one of the classes leads one to intro-
duce the idea of minimizing the region associated with the known

class, which is really the only class we know and can do something

about. A Neyman-Pearson classifier can fix either of the two
error probabilities and minimize the other while the classifier
devised by the proposed criterion can only minimize the specified
region and fix the error probability associated with the known
class. This indicates that the former is more flexible in choos-
ing a class whose associated error is to be fixed. However, in
almost all practical situations, a system very often gives a
strong preference in fixing one of the two error probabilities,
thus making the two classifiers almost identical in terms of the
flexibility with respect to this kind of selection.

Another difference between the two classifiers is the quan-
tity to be minimized. A Neyman-Pearson classifier minimizes a
type two error probability which is associated with the exterior
class (see Chapter II-C), while the classifier devised in this
work minimizes the region associated with the exterior class. It

can be shown that the two classifiers are identical (see the ex-

amples in Chapter 11-D) when the corrupting noise is Gaussian with

60
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equal variances in all dimensions, the noise free signal of the
first class occupies only a single point in the observation space,
and the noise free signal of the exterior class is normally and
symmetrically distributed around the noise free signal of the
learning class. Extending this to the limiting case of o=, we
can assert that the two classifiers are identical when the noise
free signal of the second class is uniformly distributed over
the whole observation space and the noise is Gaussian of equal
variance in every dimension. This kind of "equal distribution of
the noise free signal" of the second class, which happens to be
the unknown class in the problem defined here, is an implicit
assumption in the minimum volume criterion, but the criterion can
be generalized by weighing the observation space according to the
distribution of noise free signal of the second class. However,
it minimizes the region instead of the error probability since the
former is strongly linked with the latter. Since the noise free
signal of the unknown class is uniformly distributed, it is a
reasonable approach not to weight any region more heavily than
others. In other words, the criterion should weight equally every
point in the space. This leads to the insensitivity of the pro-
posed classifier to the distribution of the noise free signal of
the second class.

To illustrate the above behavior, an example is given be-
Tow. Suppose there are two classes, Class I and Class I1I. There
is one corresponding noise free signal for each class in a one-

dimensional observation space. The noise free signal of Class 1
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1s known to be zero and that of Class II is unknown. The noise
added to each class is Gaussian with zero mean and variance of
one. When the error probability of identifying the known class
(Class 1) as the unknown class is fixed to be 0.05, according to
the proposed criterion the region associated with the known
class Zy is [-1.645,1.645] and the probability of misclassify-

ing the unknown class as the known class is

B erfc(1.645-x) + erfc(1.645+x) (95)

where x is the noise free signal of the unknown class and the
function erfc(x) is defined in Equation (21).

The above is, of course, a fictitious one because we do not
have any information about x, much less the error probability
associated with it. Its result is plotted in curve A in Figure
23. The probability of error decreases as the absolute value of
X increases. This is quite reasonable since the classifier
better distinguishes the two classes as their responses are fur-
ther separated.

[f we use the Neyman-Pearson classifier to distinguish the
two classes and the probability of a type one error is again
fixed to be 0.05, the threshold is found to be either 1.96 or
-1.96, depending on the position of x. Since we do not know x,
the value 1.96 is arbitrarily chosen as the threshold (as if x
were positive) and the probability of misclassifying the unknown
class to the known class is shown in Figure 23 as curves By (when

x is negative) and By (when x is positive). When x is positive,
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Figure 23. The fictitious performances of three different

classifiers.

A. The proposed classifier without any
knowledge about the second class.

B1-Bp. The Neyman-Pearson classifier without
any knowledge about the second class.

C-By. The Neyman-Pearson classifier with the
knowledge of both two classes.
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the Neyman-Pearson classifier here yields better performance than
the proposed classifier. This is so because in this range, the
Neyman-Pearson classifier fully utilizes the available informa-
tion (both x and zero, response of the first class) while the pro-
posed classifier only uses the information of one of the two
classes. However, when x is negative, the threshold 1.96 for

the Neyman-Pearson classifier is actually wrong. Therefore, the
performance deteriorates drastically as -x gets large. This is
also compared with curve C, where the classifier is designed with
the information of both the classes. Note that the Neyman-Pear-
son classifier becomes identical to the proposed classifier when
the noise free signal of Class Il is statistically symmetricai
distributed about zero. This can be shown by employing the formu-
las developed in Chapter II-D.

Considering the sensitivity of the overall performance to
the position of x, it is apparent that the proposed classifier is
superior to that of the Neyman-Pearson. In case that x is known,
the latter yields the best performance. Nevertheless, the pro-
posed cliassifier does yield a comparable performance. The per-

formance is insensitive to x, the response of the unknown class.

D. Approximation and Simulation

So far, we have been trying to find a region ZN. specified
by the proposed criterion, to provide decision surfaces. A close
look at the theorem of Chapter III-B shows that if ZN is unique,

it is not necessary to find ZN in order to make a classification.
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Whenever we want to identify an observed object, all we need is

to obtain a T corresponding to the specified «. The measurement | 3
x is then substituted into £=g(x) and compared with {T‘ It £ is i'
larger or equal to &, the test vector x is identified as being
in ZN and otherwise, in Zy.

This process demonstrates that the implementation of the
classifier can be very simple (Figure 24) no matter how compli-
| cated ZN is. Instead of finding the required region ZN‘ the com-
putation of &7 becomes the main task in designing the classifier

for identifying unknown objects. Therefore, it is obvious that

the complexity of the technique is not in implementina the classi-

fier but in computing the error probability and the threshold ET'

= YES |
X —»f = g(x) Xe€l,

NO

X4Zy

Figure 24. A simple way of implementation makes the
classification as a threshold test.
The few examples worked out in the last few sections illu-

strate, however, that analytically computing &y is extremely

difficult for most cases. Two algorithms are devised here to

alleviate this difficulty.
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The first one was sketched out in Chapter III-B right after I

the two examples. When the a priori probabilities for all the

known subclasses are equal, i.e., the occurrence of each class

is equally likely, the subregion associated with each subclass is
approximated by a hypersphere centered at the noise free point of
each subclass in a multi-dimensional observation space. The
approximation also implicitlv assumes that the mean of noise add-
ed to each individual noise free signal is zero so that the centers
of hyperspheres are coincident with the noise free points of the
subclasses. This is not a necessary constraint in applying this
kind of approximation since we can shift the centers of these
hyperspheres by the means of the contaminating noise and approxi-
mate the region ZN by the hyperspheres centered at these new points.
When the distances between any two of the noise free signals
are large in terms of the noise standard deviation, this approxi-
mation is close to the exact ZN specified by the criterion. This
is shown in Figure 25, where two subclasses S] and 52 are equally
probable and embedded in Gaussian noise with zero mean in a two-
dimensional space. The approximation ignores the mutual influ-
ence among the known objects and hence simplifies the construction

of ZN rather significantly.

Figure 25. The optimum region Z,, (dotted lines)
and the two approximgted circles
(solid lines).
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This can also be used as another '‘ndependent way of identi-

fying unknown objects. The optimum region ZN is formed by con-

structing hyperspheres around each signal point and anv noisy

response falling into ZN can then be cons<idered as one of the
listed objects.

The approximation is especially good when it applies to a
higher dimensional space. This is so because the influence from
each noise free point S; is smaller in a higher dimensional space.

A hyperspherical shell of a specified thickness at a fixed dis-

tance from the noise free point in a higher dimensional space

gets Tess probability contribution as compared with that in a

lower dimensional space, when both of them are in the same noise
environment. For instance, suppose the contaminating noise in
every dimension is Gaussian and independent of one another with
variance o and zero mean, the probability contribution to a
region bounded by radii 0.1 and 0.2 from the origin is 0.07886
in a one dimensional space, 0.01481 in a two dimensional space,
0.00183 in a three dimensional space and so on. The contribution
to any spherical volume surrounding a noise free point lying in
this region (.1<r<.2) is further reduced by the higher dimension-
ality since the ratio of such a spherical volume to the spherical
shell (.1<r<.2) decreases as the dimensionality increases.

With the assumption of additive noise to each noise free
signal 5}, the radius of each hypersphere is assumed to be the
same and is computed for each designated a. The result, in turn,

can be used to obtain the threshold ¢7. Some examples employing
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this scheme in the detection of unknown aircraft targets are

worked out in Chapter III-E.

Diagrammatically, the scheme is easy to implement and gives

good approximation at a high SNR system. The computation of the

e sep——

Type I error probability, an integration over the joint regions
of several hyperspheres, subject to a specified radius r is dif-
ficult, however, in a high-dimensional space. A Monte Carlo
simulation technique is employed to circumvent this later.

The second scheme is to employ a Monte Carlo simulation
directly to the computation of Er- First, a train of random vec-
tors ny,ny,---ny are generated according to the distribution of
the noise added to each signal. Each random vector is added to

its noise free signal 3} to form a test vector

Xk = §'l * Ny . (96)

The test vector ik is substituted into £=g(x) to obtain a scalar
fk» which is then stored into the data bank D;. The number of
random vectors added to each noise free signal 5} is proportional
to its corresponding a priori probability P(§}]N). After all the
transformed gk's are stored into Dg, gk's are then Tined up in the
order of magnitude and we designate the [a-m]th smallest : to be
“1» where m is the total number of tk's in D and [ ] is the
symbol for the largest integer less than or equal to its argument.
It is clear that £1 splits the ik's into two groups, those
less than £1 and those that are not. Corresponding to this, the

£ space is divided into two sections Zyx=[0,¢7) and ZN:[ET’Qn]'
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Figqure 6.  The generation of a data bank D.. 1
The probability of each " falling into /X is o and that talling ;
into /gy is v l-a.  The probability of exactly ¢ points talling P

into Zy inom trials is therefore given by

po) (?) MUENUE (97)

The expected number of xi talling into /X is

<O = M 3 (98)

and the variance of ¢ is

n? m oy . (99)
or

o = vimay : (100)

The ratio of the spread or standard deviation to the mean
is

O Vil ¥

T INq‘ ng (101)

which goes to zero as m goes to infinity, showing that the

concentration around the mean increases with m.

We may then use the sample mean as an estimate ot «, denoting it




@ = o (102)
and obtain
\{1‘- = \L = (]03)

indicating that & is unbiased.

The variance of the estimate
0% = <(a-a)%> = 9L ! (104)

The relative spread is

0 'L_ _ (105)
86 g Mo

This represents the error spread of & as a function of .
Therefore, if we like to have the estimate to be in error within
some specific range, say ¢, we can just have the number of trials

larger than or equal to

m= L 3 : (106)

For instance if ¢=10%, «=0.05, then y=0.95 and we obtain
from Equation (106) that m should be 1900. Any estimate using
more than 1900 trials will yield better accuracy. Even for
0=0.01, it only requires 9900 random vectors to have a 90% accur-
acy, which makes the implementation of this simulation feasible

in terms of computer time.
The value 1 can be used to obtain Zy. Yet, as indicated

before, the criterion does not require the system to construct Zy
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in order to build the classifier. Instead, utilizing iy as a
threshold is good enough for the purpose of classification.

The proposed criterion classifies the object into one of
the two catagories, namely, the one consisting of the listed class
and the other consisting of everything unlisted. The region ZN
associated with the former constructed by the criterion actually
provides a way of clustering different listed subclasses. This
is especially useful in a multi-feature space where the criterion
yields a way of getting those most likely together. By decreasing
the value of «, we expand the region Zy and hence have some sub-
regions associated with the known subclasses merged into a new
cluster, reducing the number of subregions. This is indeed a
generalized single linkage hierarchical clustering[4] except that
it operates in a multi-dimensional space. Figure 27 shows an
example of forming clustering regions when employing four points
embedded in Gaussian noise. Each point is from one of the four
subclasses. The classes C3 and C4 are grouped to form a new
region associated with both of them when a=aj. The classes (
and C2 are then grouped into another new one as « decreases to
another value. A1l the subregions are eventually grouped into
one single region as o decreases to a specific value g depend-

ing on the distribution of 5}‘5. This illustrates a method of

clustering in terms of "influence" of each individual subclass.
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Figure 27. When o decreases, some of the subclasses
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E. Identifying Unlisted Aircraft
- An Application

The above simulation technique is applied to an aircraft
identification problem. It has been shown[6,7] that a low fre-
quency method can effectively identify a large variety of air-
planes. The features used are the electromagnetic scattering
returns from the observed objects. Signal amplitude as well as
phase information and the orthogonal polarizations of each scat-
tering return are used to do the identification. An additive
Gaussian noise with zero mean is assumed to be added to each noise
free signal. A set of four aircraft (F104, F4, MIGI9 and MIG21)
is chosen to form the listed class. The a priori probabilities
are assumed to be 25% for each class of aircraft. The scattering
data of all the aircraft were computed by the moment method[14] at
Ohio State University ElectroScience Laboratory and the features
(frequencies) are chosen to optimize a nearest neighbor classifi-
cation of the four aircraft. Based on the above assumptions, the
probability density function when a known object is present is

%-5,1°
202

: - —
] (/21102)n . g

Hne-—H

i
where
x is the observed signal vector,
S: is the noise free signal vector of the ith aircraft,

o is the noise standard deviation, and

n is the number of features used.
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The aircraft is assumed to be facing the observer nose on.

We first apply the hypersphere approximation to this problem.

The region Zy is constructed by the hyperspheres centered at each

signal point with radius r. The object is ident fied as one of

the listed objects if the observed vector lies in ZN' From the

‘4 previous argument, the probability contribution from Zy should
! total T-a. For a=5%, the total probability contribution over '
|
|

the region Zy is therefcre 0.95. The Monte Carlo simulation is

used to find the radius for three cases using different numbers

of features and the results are shown in Table 2.

TABLE 2 |

The Approximated Radii Obtained by the Monte Carlo ,
Simulation for Four Aircraft Data, %

a=0.05, 02=] |

Dimension Radius for «=0.05 Radius for «=0.05

when there is only
one object in the

bz el known class

& 2.136 2.42
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Forty-thousand tested vectors were generated each time to
assure the accuracy of the simulation. The first row in the table
employs both components of a complex signal (the amplitude and
phase of a scattering return constitute a complex signal) for a
single frequency, horizontally polarized wave. The second row
uses both vertical and horizontal polarizations of the same fre-
quency signal. The third row uses both polarizations of two
frequency returns simultaneously.

The second column in the table lists the data obtained by
the simulation. The last column lists the radii for the cases
when there is only one element in the known class. This happens
to be the same as the distance for the x2 distribution with the
cumulative probability being 95%. It is obvious from the table
that the deviation of the radius from that of the single element
case decreases as the dimensionality goes up (13% in the two-
dimensional case and only 3% in the eight-dimensional case). This
confirms our argument before that the influence of the subclasses
on one another decreases as the dimensionality increases. At the
same time, it also demonstrates that the single element radius is
an increasingly good approximation as dimensionality increases.

The implementation of the above is also very simple. A test
vector x whose minimum distance to any of the four signal points
is less than or equal to the obtained radius can be considered

from the known class (one of F104, MIG19, F4 and MIG21) and vice

versa.

o




The second scheme is to obtain the threshold for a prefixed
« directly from the Monte-Carlo simulation. This was carried out
over the similar cases and the results are listed in Table 3.
Again, 10,000 test vectors were generated in each simulation. The
accompanying CPU time in the table is the computer time for each
simulation needed for the Datacraft 6400 at The Ohio State Univer-
sity ElectroScience Laboratory, which is about three times slower
than an IBM 370/165. For the most complicated case here, only
604.39 ms is needed to finish the simulation. The accuracy, from
Equation (105), is in the range of 4.36% of the correct value for
« being 5%. This illustrates that the method is effective and
efficient.

An interesting experiment was carried out by introducing
four other objects -- MIG25, SR71, Bl and F14, chosen to represent
a wide range of different shapes and sizes of aircraft. The pro-
babilities of these new objects being classified to the listed
class by the proposed classifier (described in Figure 24) were
computed and the results were tabulated in Tables 4 and 5 for a
two-dimensional case. Also computed in the tables were the pro-
babilities of classifying the listed objects into the unlisted
class when the test vector originated from the known objects.

Both tables list the probability of classifying each object out

of the eight into the unlisted class. In the process, the test
vector is substituted into Equation (107) and the resultant scalar
is compared with the threshold £1, obtained by presetting « to be

sequentially 0.05 and 0.10. Ten thousand test vectors were
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generated for each case and the noise added to the objects was again
assumed to be Gaussian with zero mean and ¢ set to be equal to 10
per cent of the average signal of the responses of the four listed
objects. For the first four (listed) aircraft, the probabilities
of classifying them into the unlisted class are close to 0.05 in
the first rows and to 0.1 in the second rows of the table because
we prefixed o to be 0.05 and 0.1 respectively. The probability of
classifying an unlisted object into the Tisted class is zero for
each of the unlisted objects in Table 4, indicating that the
classifier is an excellent discriminator in this case. Note that
the thresholds ET change almost linearly as a changes from 0.05 to
0.10, indicating that the instability discussed in Chapter III-C
does not occur in this case, although the thresholds & are small.
This is a reasonable result since the rate of change of a Gaussian
distribution (the function g(x) in this example) is always pro-
portional to the value of the function at the point considered.
This eliminates the flatness of g(x) over any regions in the obser-
vational space.

When o increases to twenty percent of the average signal, the
same conclusion can also be drawn on the performances (Table 5)
except the probabilities for SR71 and B1 being classified to the
listed class are not zero. This happens because (1) the responses
of SR71 and B1 are closer to those of the listed objects (Table 6),
and (2) ZN covers a larger area in the observation space when o

is larger. Also when o gets larger (i.e., the probability of

misclassifying a listed object into the unlisted class gets larger),
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the region Zy associated with the listed class shrinks, making
the probability of misclassifying an unlisted object into the
listed class smaller. This is seen by comparing the first row

and the second row in Table 5.

Table 6

The Noise Free Responses of the Eight Aircraft at the
Considered Frequency (24 MHz) at Nose-on Aspect

F104  MIGI19 Fa MIG21 MIG25  SR71 B1 F14

——

- (-5.]30 -0.526 -2.904 -5.076 2.687 -3.723 4.426 ]7.864)
§ =

3.244, -5.908, 4.258, -5.283,-20.057, 2.828, -9.145, 0.363

Incidentally, the probability of classifying no object (null
class) to the Tisted class was also computed and the results are
zero for all the cases considered here.

When the dimensionality increases to four and higher, the
classifier performs even better. The probability of misclassify-
ing any of the listed objects into the unlisted class becomes 0.05
for all of the four listed objects and that of identifying an
unlisted object as the listed class is zero for all of the four
unlisted objects. This demonstrates that the proposed scheme is

indeed a very effective one even when applying to a quite noisy

environment.
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CHAPTER IV
COMPLETE CLASSIFICATION

A. Introduction

As described in the first chapter, there are two steps in a
"complete" classification procedure. One is to decide whether
the object to be identified is in the 1list of the known objects.
If it is one of the catalogued objects, in the next step a con-
ventional scheme is then employed to do the classification. If
not, the object is designated to be a new object and a learning
process is employed to estimate its characteristics.

This chapter attempts to show how this complete classifica-
tion procedure can be conducted. The influence of the preclassi-
fication on the final classification and the strategies to be

used are investigated. Some related problems are also discussed.

B. The Effect of Preclassification

The technique developed in the previous two chapters in-
volved the separation of the uncatalogued class from the cata-
logued class. For the convenience of the following discussion,
this step will be called "preclassification" and the step of
classifying the observed object as one of the listed objects after
the preclassification, "final classification", or just "classifi-

cation". The preclassification approach minimizes the region of
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the catalogued class in the observation space, while keeping the
probability of misclassifying the catalogued class to a fixed
value. This tends to maximize the probability of correctly class-
ifying an uncatalogued object while ensuring that the probability
of misclassifying a catalogued target is below a prespecified
level. We have shown that this region is constructed in such a
way that no information about the uncatalogued class is needed.
This enables the scheme to be useful in a practical situation
where usually no information about the uncatalogued class is
available.

In the final classification, only the response that falls
into Zy, the region associated with the listed class defined in
the last chapter, is used. Most of the observation space will
thus be excluded. This will have some influence on the final
classification after the observed object is determined to be in
the listed class.

In Chapter III-A, we have shown that Zy excludes the region
where the probability density of the observed vector x is small,
compared with its density in ZN. This indicates that the pre-
classification procedure excludes only the portion where the mea-
sured vectors are least likely to occur in the feature space. If
a is small enough, the region Zy should contain all the regions
which are significant in the final classification process. In
this case, the preclassification has very little effect on the
final classification. As o increases, Zy shrinks and the impact

of the preclassification becomes noticeable. However, the regions
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corresponding to the lTowest probability density are usually far
away from the uncorrupted signals of the listed objects, where
the classification is more likely to make an error. Consequently,
the exclusion of these regions is usually not detrimental to the
overall performance of the complete classification process. Yet,
the total impact of preclassification depends on the data distri-
bution of the listed objects as well as the misclassification
probability .

[o demonstrate the influence of preclassification, an ex-
ample, using Bayes approach as a means of final classification,
is shown here. Consider the example given in Figure 20. Let the
distance between the two objects be 2d, o be the standard devia-
tion of the noise added to each signal, and the probability of
misclassifying any of the listed objects (S] or Sp in Figure 20)
as unlisted be «. If we use Bayes classifier to do the classifi-
cation of the two objects directly (without going through the pre-
classification), the average probability of misclassification is
shown by the curve designated as =0 in Figure 28. If we first
apply the preclassification process and use Bayes classifier to
do the classification after determining the object to be in the
listed class, the results are shown by the rest of the curves in
Figure 28, for various values of «. As mentioned above, at the
final classification the feature space is shrunk to ZN since only
the response that falls into Zy is used for the Bayes test. There-

fore the probability of misclassification for the final classifica-

tion is a conditional probability obtained from dividing the
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Figure 28. The error probability of Bayes classification,
carried out after the preclassification, as a
function of the distance between the two classes.
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misclassification probability by the probability of the response
falling into Zy. MWhen « increases the average probability of mis-
classification increases, but not significantly. All the curves
for different «'s converge to 0.5 as d approaches zero. They all
go down to zero as d goes up to infinity, which would be expected
since the classification error probability approaches zero when

the two noise free signals are separated by an infinite distance.

€ Identification Among the Known Objects

We demonstrate here, with a practical aircraft identifica-
tion problem, how the two step classification works. As shown in
Chapter III-E, the electromagnetic scattering returns from the
observed object are used as the test features. The selection of
the features (e.g., frequencies and polarizations)[6,7] should be
solely dependent on the data distributions of the catalogued ob-
jects since they are the only information available.

In the case that the probability distributions are known
the optimum decision rule is that of Bayes, where the misclassifi-
cation probability is minimized. The average probability of error

will be

Po=1 - JZ m;x (PKP(§1CK))d§' (108)

where

CK denotes the kth object in the catalogued class,

Pk is the a proiri probability of Cy,
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' P(KlCK) is the probability distribution of the test

H vector x when Cg is present, and

t l . is the feature space defined before.

The integration is carried over the whole feature space by pick-

ing the maximum of pKP(i]CK) among all K such that the error pro-

bability is minimized.

In many cases it may be difficult to evaluate Pe analytic-

ally. This is so even if the distribution P(Y{CK) is known

exactly since it is difficult to analytically describe the region
i which gives the maximum value. Also the computation of P, becomes

extremely complicated when the number of objects is large, there-

fore, a nearest neighbor (N.N.) method is used below.
An N.N. rule can be described as follows. Given training

samples (SiK} for each object Cy, the rule is to classify the

tested point x as a member of C, to which its nearest neighbor

belongs, i.e.,

XeCps if | |x-55"]] = l?iz %5511 (109)

where Cr is one of the known classes and we use the notation for

tEuclidean distance,

-, 1x-5i%11 = [x-5;K17[x-5,%91/2 (110)

! An analytical calculation of probability of error for the
nearest neighbor classification is also very involved because it

would require the integration of a multivariate density function

—
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over extremely complicated boundaries. For this reason, the errors
are obtained by Monte Carlo simulation.

The N.N. classifier has a practical advantage over Bayes
classifier in that the difficulties of determining the boundaries
of the integration are eliminated, and of course, it is nonpara-
metric and consequently is perfectly applicable to classification
problems where the statistics of the noise and signals are not
known. Cover and Hart[15] have shown that in the large sample
case, the probability of error for the N.N. rule is bounded above
by twice the Bayes probability of error, and is clearly bounded
below by the Bayes error. For most practical situations these
bounds are sufficiently tight to indicate the merit of the N.N.
rule. Therefore, in the following examples, the N.N. rule is em-
ployed as the final classification to compute the overall perform-
ance of the classifier. In the aircraft identification problem,
the training samples are just the noise free responses from the
aircraft to be identified and the test samples are these responses
to which a Gaussian noise is added. As stated in Chapter III-E,
the a priori probabilities of the aircraft subclasses in the cata-
logued class are assumed to be all the same. Therefore, the pro-

bability function of the test vector x when N is true is

9(x) = & (1)

ne-—m=

B i
1 (JZnoz)n

where M is the number of objects in the catalogued class and x,

i

Si» o» n are all defined as those in Equation (106).
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' D. Two Step Classification

Let the listed class consist of five American airplanes,
F104, F4, SR71, B] and F14. The data of the electromagnetic scat-

tering returns were, as mentioned before, numerically computed at

Ohio State University ElectroScience Laboratory[14]. The optimum
frequencies were selected by using the N.N. rule to do the classi-
fication. The optimum frequencies were found to be 24 MHz for

single frequency features, and 20 MHz and 24 MHz for two frequency

features.

A preclassification process is first employed to test whet-
her an observed object is listed. To do this, we obtain the pro-
bability density function of an observed vector x when a catalog-
ued object is present. This is g(x) in Equation (111), where
g(x) is shown to be a function of all scattering returns as well
as that of the noise. The thresholds ¢7's are therefore computed
in terms of the noise standard deviation o and listed in Table 7
for =0.05.

The numbers shown in the table under the "case" column are
explained in Table 3 in Chapter III-E.” For instance, (:) repre-
sents the system utilizing one freguency, horizontally polarized
electromagnetic returns and so on. A represents the average
amplitude of all the listed objects.

When « is greater than 1//2n, which is what we have in all
the cases here, it is seen that as o increases, £ decreases in

the table. This is because g(x) in Equation (111) goes down as




TABLE 7
The Thresholds Computed for «=0.05 at Three Different
Noise Levels. The Listed Class Consists of Five
American Aircraft: F4, F104, SR71, Bl and F14

Case ! Dimensions | 0=0.1 xA 0.2 xA AI 0.3 xA
..... —Jr-—-——-

e @ 2 6.3054x1073 | 2.1445x1073 | 1.3814x1073 |
e 2 5.0052x1073 | 1.3613x1073 | 6.3608x10™*
e -.ﬁ. I ‘
1 ® 4 5.0133x10°% | 3.133 x107° | 6.22 x107®
+® 8 5.6813x1076 | 2.2192x10°8 | 8.6591x10-10

o becomes larger, reducing the value of amplitude of the proba-
bility density in the vicinity of its maximum. This is also true
when the number of features n increases in Equation (111).

Once the i7's are decided, the experiment described in
Figure 24 in Chapter III-D can be used to test the classification
of these five American made airplanes. Three other, foreign made,
aircraft (MIG19, MIG21 and MIG25) are added to the preclassifica-

tion test and the results are shown in Table 8 for 0=0.1 xA for
case (D).

The probabilities of misclassifications are computed by
Monte Carlo simulation and the result for each aircraft is listed.
The average probability of preclassification error for the five
listed aircraft is 0.0477, which is close to the theoretical
value 0.05 (since we set a=0.05). The difference is caused by

computational error and is so small that it can be considered in
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agreement with the design value 0.05. The classification by
using the N.N. rule, after the object is assigned to be in the
listed class, is also computed and the errors are negligible when
the noise is ten percent of the average ampiitude return.

Table 9 shows the probabilities of misclassification when
o equals twenty percent of the average amplitude returns. The
overall performance at the preclassification stage is still very
good, however, the classification among the listed objects deteri-
orates quite significantly. The fact that the listed airplanes
can be distinguished from the unlisted ones while they cannot be
well identified among themselves stems from the way the two classi-
fications are set up. The preclassification process classifies
two major classes, nameiy, listed and unlisted. The errors com-
mitted in the detailed classification among the subclasses of the
listed class are not considered as errors in the preclassification
process unless the objects are identified as unlisted.

When the noise level increases, the identification of the
lTisted objects worsens further, although it is still relatively
easy to distinguish them from the unlisted ones (Table 10).

As discussed in [6,7], one way of improving the overall per-
formance of classification among the known objects is to increase
the dimensionality of the feature vector. This was done by em-
ploying both vertically and horizontally polarized radar returns.

The results are shown in Tables 11-13 for 0=0.1 to 0.3 of the

average return of the listed aircraft.
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At the preclassification stage, the overall performance is
still similar to the previous results. Yet, identification among
the listed aircraft improves drastically when more features are
used. This is in agreement with the identification results of an
N.N. classifier without going through the preclassification step,
where the more features are used, the better a classifier preforms.

i Note that the increase of the dimensionality also improves the
separability between the unlisted and listed aircraft, although
not significantly in this example.

When one increases the dimensionality to eight, i.e., utili-
zing two frequency returns simultaneously, the overall performance
is further improved. The separation between the listed and un-
listed classes (for the three aircraft added here) becomes very
large. The error probabilities of classifying the unlisted air-

craft as the listed ones approach zero even when o increases to

thirty percent of the average return (Tables 14-16).

E. Effect of the Type One Error
Probability « in the Pre-
classification Process

The threshold £1 is constructed by presetting type one
error probability « to a fixed value, therefore the change of «
has some influence on the overall performance. Some implications
of this was discussed in Section C when a Bayes classifier was
employed to do the second step classifications. In this section,

we demonstrate the effect of changing « in using an N.N. classi-

fier to do the classification of the catalogued objects.
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Since for «=0.05, the other misclassification probability

is zero. There is an unbalance between the two types of error
and the overall error is larger than need be. Reducing « will
thus tend to minimize the overall error. Its value is decreased
to 0.01 to test the performance.

Again, the thresholds for the preclassification are comput-
ed first. The five American airplanes are included in the listed
class. Since the listed aircraft are still the same, the opti-
mum features selected before are unchanged too. The thresholds !
for five different cases at three noise levels are computed and
listed in Table 17. Since « is five times smaller than before,
according to Equation (106), the number of tested vectors requir-
ed to yield the same computational accuracy should increase
almost five fold, implying that if the same number of random vec-
tors are used in the computation of &'s, the computation error
will increase. Still, if one uses 10,000 random vector, the de-
viation of the classification error will be kept to less than

0% of the actual value.

Again, when only using the data of the horizontally polar-
ized wave at the frequency of 24 MHz, the classifier performs
quite satisfactorily even when o« is decreased to 0.01 and o
equals ten percent of the average response of the listed air-
craft. The average error probability of the preclassification
becomes 0.00804, which is close to the specified value 0.01 (Table
18). The misclassification among the listed aircraft at the

second step classification is still kept as low as it is at
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TABLE 17
The Thresholds Computed for «=0.01 at Three Different
Noise Levels. The Listed Class Consists of Five
American Aircraft: F4, F104, SR71, Bl and F14

e S D A R e S SO =

Case  Dimensions | o=01xK | 0.2xK | 0.3x
; @ 2 1.2504x10-3 | 5.3065x107% | 3.153x107%
’ - ——; ———— - -,.,_:5_.-_“_____--,,__;____.v__,__- ~-<rr~———-—-*—<——
@] 2 o 9.982x1074 | 2.745¢107% | 1.510x10°% ;
T L - |
| o) i 4 | 8.524x10-5 | 0.533x107> | 0.108x107°
“Q-v‘-'--— : e e —— ———— “*-——-~~-——T———~—<»——‘-- —_— e e e — ———
i i:q»&b 8 | 4.382x1077 | 1.712x1079 f 6.679x10" 11
RIS SENESRIECN, SRS, RSN
¢ i
-0.05.  However, since « decreases, the region Zy in the feature ]
|
space expands, increasing the tendency of identifying an unlisted
: object as listed. Although this is not evident in Tables 18 and i
’ |
.

19 where the noise levels are low, it shows up in Tablie 20 where

the noise level increases to thirty percent of the average re-

sponse of the listed aircraft. Of course, this kind of error J
probability depends on the response of the unlisted objects. The

affect of « on the overall performance is: the smaller a is, the

more probable it is that the preclassifier will identify an un-

listed object as one of the listed objects. Note that the influ-

-

ence of « on the performance of the second step classification is |
1 negligibly small. The results in Tables 18-20 do not change very
much from those in Tables 9-11. A general conclusion cannot be

drawn based on these because the differences are so small. They

.,.,‘, .

are probably contributed by the numerical computation error.

l
l
l
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Tables 21-23 list some of the results when using the verti-
cally polarized returns at the same frequency. The data distribu-
tion of the noise free responses of the listed objects are not the
same as that in the previous case. Hence the classification among
the known objects changes quite a bit. Nevertheless, the overall
performance in separating the listed class from the unlisted class
is still very good.

The error probability of identifying the unlisted class

as the listed class is on the average less than ten percent

even when the standard noise deviation o is thirty percent of the
average response. The error probability for the opposite direc-
tion of identification is close to 0.01, in agreement with the
specified value.

Finally, we show that, for the special case of using both
polarized wave returns at one frequency the results are good
enough for the preclassified error even under the constraint of
«=.01. The identification among the known objects also performs
very satisfactorily when utilizing the N.N. rule to do the second

step classification. The results are shown in Tables 24-26.

B Groupings and Strategies

The scheme developed to do the classification between the
listed and unlisted classes can serve not only as a means of pre-
classification, but also an intermediate step in the complete
classification. This is especially beneficial in a classifica-

tion involving a large number of classes.
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Considering a situation where an object is to be identified
as one of many possible objects in the known 1ist, a conventional
method will require the response of this object to be compared
with those of known objects in some predetermined way. For in-
stance, in an N.N. classifier, the Euclidean distances of this
response to the noise free points of all the listed objects are
computed and the minimum one of these computed distances is then
used to classify the observed object. The computatibn and the
comparisons of these distances usually consume a lot of time if
the number of the listed objects is large. In general, the time
for picking a minimum (or maximum) value is proportional to n,
the number of items from which the choice is made. A conventional
scheme becomes very slow and inefficient due to this. Moreover.
the classifier becomes inevitably complicated when the number of
the objects is large.

One way of tackling the above problem is to group all the
listed objects into several subgroups and use the preclassifica-
tion scheme developed in this work as an intermediate step of
classification. One of the subgroups can be considered as the
listed class and the scheme is employed to do the preclassifica-
tion. Once it is decided that the object is in this subgroup, a
conventional scheme can be used to identify it as one of the ob-
jects in this subgroup. If not, the next subgroup can be con-
sidered as the listed class and the same process is applied until
the observed object is identified. Of course, in the whole pro-

cedure the objects with higher a priori probabilities should be
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subgrouped and used as the first listed class. By doing so, the
number of tests would be reduced since we test the most likely

occuring objects first.

The procedure would at least yield the following advantages:

(1) The basic classifiers can be greatly simplified since
the number of the objects in each identification is
small.

(2) The objects with similar responses can be grouped
into the same subgroup in the first classification
such that the classification error probabilities
can be made small. Incidentially, the clustering
process described in Chapter III-D can serve as
a grouping method.

(3) The classifier identifies each subgroup in sequence,
hence the objects considered most important (or with
highest a priori probabilities) can be subgrouped
and used as the first listed class. In this way,
the objects can be grouped according to the import-
ance of the identification of each one, and the
classifier carries out the classification in a
specified order of priorities.

Note that the preclassifier developed by the proposed
criterion only compares the value g(x) with the designated
threshold ¢r, the process is much simpler than that needed for
an ordinary classification of several objects. Therefore, the

preclassification is much less time consuming as compared to a

conventional classifier.
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However, the preclassification process yields some classi-
fication error in each step of identification. For successive
identifications of several subgroups this process will definitely
worsen the overall performance, the extent to which this will
happen depends on the prefixed error probability « as well as the
data distribution. Since this is also related to the order of
the subgroups chosen, an optimum strategy for this system has to

be defined. Further study is necessary to determing the stragegy.
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CHAPTER V
SUMMARY AND RECOMMENDATIONS

A technique has been developed to discriminate listed ob-

Jects from unlisted ones. It is based on the principle of mini-

mizing the probabiiity of error in an didentification process.

| Since no information regarding the unlisted objects is available,
. instead of minimizing the overall probability of misclassifica-
tion the method prefixes the probability of misclassifying a
listed object as an unlisted one and minimizes the region associ-
ated with the listed class in the feature space. This minimizes
the likelihood of misclassifying unlisted objects as listed ones.

It was proved that the devised classifier could be imple-

mented as a threshold test. The employment of the Tatter greatly
simplifies the design of the classifier. The classifier was
applied to an aircraft identification problem. It was shown that
the error probability of misclassifying catalogued targets as
uncatalogued and vice versa can be made very small, while keeping
a high probability of correct identification when the presence

of a listed object is detected. The misclassification probability
for a specific case of three unlisted objects and five listed

ones was computed and was found to approach zero when the number
of the features used was as low as four. The additional step of

discriminating listed objects from unlisted ones produced very
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little degradation of the overall classification performance.

The overall misclassification probability for all cases consider-

ed was changed less than five percent. The implementation of the

developed scheme was shown to be simple and efficient.

-

The technique does not need to utilize any information about
the unlisted class to carry out the classification. However, some
a priori knowledge of the unlisted class is sometimes available.
For instance, the responses of the unlisted objects might well be
confined to a restricted region of the observation space. We can
use the technique developed in Chapter II-D to tackle this kind |
of a problem. |

Some information on unlisted objects can be obtained from
the observed response. For example, once the observed object is
determined to be a new one, a learning process is employed to
estimate the characteristic of this new object, which can be used
as the a priori information for the classification process. This
would lead to a modification of the minimum volume criterion.
Since the response of any unlisted object was assumed to be
unknown in this study, no further investigation was conducted
along this line.

Another problem that occurs frequently is that the para-
meters of the listed class are not known. This turns out to be

a nonparametric classification problem of identifying the un-

listed class as distinct from the listed class. No attempt has

been made to deal with this problem, but it should be investigated.
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A procedure for identifying a subclass of a large number
of objects was discussed. The classification utilizing the de-
vised classifier is essentially an elimination process. The
subgroup bearing the highest a priori probabilities is tested
first and eliminated from the Tist if it is decided that the
observed object does not belong to this subgroup. The detailed
classification procedure depends on the cost function assigned
to the number of tests needed, the probability of misclassifi-
cation and the complexity of the classifier[16]. This approach,

which was outlined in Chapter IV, requires more thorough study.
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