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Abstract

We consider a regular Markov process with continuous parameter, countable
state space, and stationary transition probabilities, over which we define a
class of traffic processes. The feasibility that multiple traffic processes
constitute mutually independent Poisson processes is investigated in some detail.

We show that a variety of independence conditions on a traffic process
and the underlying Markov process are equivalent or sufficient to ensure Poisson
related properties; these conditions include independent increments, renewal,
weak pointwise independence, and pointwise independence. Two computational

riteria for Poisson traffic are developed: a necessary condition in terms of
weak pointwise independence, and a sufficient condition in terms of pointwise
independence. The utility of these criteria is demonstrated by sample applica-
tions to queueing-theoretic models.

It follows that, for the class of Fraffic processes as per this paper in
queueing-theoretic context, Muntz's M = M property, Gelenbe and Muntz's
notion of completeness, and Kelly's notion of quasi-reversibility are essentially
equivalent to pointwise independence of traffic and state. The latter concept,
however, is the most general one. The relevance of the theory developed to

queueing network decomposition is also pointed out.

Rey words: Markov Processes, Traffic Processes, Poisson Processes, Queueing Yon O !
Theory, Queueing Networks, Traffic in Queueing Networks, Decomposi- o
tion of Queueing Networks
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1. Introduction

This paper has grown out of previous work on traffic in certain queueing
networks ([4], [19], (20]) whose state process is a discrete state Markov
process. The paper generalizes several aspects of the discussion and results
in the papers alluded to above. In particular, a general notion of a traffic
process over a discrete state Markov process will be defined and the feasibility
of it being a Poisson process will be investigated. We shall also exemplify the
utility of the results by applying them to a number of queueing models.

In the way of motivation, we point out that traffic processes in networks
with flow characteristics (e.g., queueing networks, communication networks,
machine repair shops, etc.) are an important operating characteristic of such
models. They are also of major importance to the study of valid decompositions
of such networks. It is common to postulate, in such models, that the incoming
traffic is a Poisson process, a fact that often renders a mathematical amalysis
tractable; it is also based on many real-life empirical data. If, in additionm,
one may validly assume that traffic flows within the network are also Poisson

processes, then this could give rise to decompositions of the original network

such that each component subnetwork may be validly studied in isolatiom ([4], (20]).

The treatment of traffic processes in this paper will, however, be more

general--at the level of Markov processes.

-




2. Traffic Processes over a Discrete State Markov Process
Throughout the paper, {C(t)}tZa will designate a right-continuous Markov
process with parameter set [a, ®) for some real a, and a countable state set .

We assume fC(t)}t to have standard and stationary transition probabilities,

2a

so that the associated infinitesimal generator matrix Q is time homogenous; its
transition rate elements are denoted q(v, 3), v, 5 = . We shall further assume
that the q(y) 2 5 Z:. q(y, 5) are bounded as y ranges over I'. Thus the process
{C(t)}tza is regiizzkzg the sense of Cinlar (8] p. 251 and our assumptions on
f_C(t)}tza imply that the associated Forward and Backward Kolmogarov Equations have
unique and identical solutions for the transition probabilities ([12] p. 475).

Denoting ct(v) 3 P(C(t) = v] and premultiplying the matrix form of the
Forward Equations (cf. [11] pp. 240-241) by a row vector initial condition with
components ca(v) yields a system of equatioms in the absolute state probabilities

e (1) = B R R 2.1)
g<r-1y

We shall say that equilibrium prevails if {C(t)}tza is in steady state;
equivalently, in equilibrium, é% ct(v) =0, t 2a, for all v € T.

Next, let & < Tz - f(v, v): v = T) be an arbitrary set of pairs of distinct
states. To avoid trivialities we shall always assume that ®# §. For each y € T,
9 gives rise to the following sets 3(v, *) 4 {8: (v, 8) € @} and
3¢, v) & B: (8, v) €9,

Consider the sequence of epoches {Tn]:_o where

a, if o =0
T =
s inf (e: £> T ,, (C(t-), C(t)) €@}, if n>0

induced by 2.

Thus, Tn is the epoch of the n-th occurrence of a jump in {C(t)}cza from




=Aa

some v £ T to some 5 € [Ysuch that (v, 3) € 3. We adopt here the view that certain

state transitions in the underlying {.C(:)'}cz‘l are interpreted as traffic due to
entities (customers, messages, etc.) moving about in the system.
Instead of studying the traffic point process {rn}:_o, one mdy equiva-
o~ @
lently elect to study the traffic interval process -Tn+1 - Tn}n-O’ or equiva-
lently again the traffic counting process [K(t)}tzn defined by

0, if t =a
K(t) =

n, 1if Tn S t< Tn+1'

The state space of [K(t)}tzn is N U (0} where N is the set of natural numbers.

In this paper, we shall adopt the following terminology.

Definition 2.1

2 S ¢
A traffic process over LC(t)’tza is a process “K(c)}tzn induced by some

e c ?2- {(y» v): v € T) as described above. The inducing @ will henceforth be

referred to as a traffic set.

The particular choice of the representation of a traffic process is a mere
technical convenience serving the purposes of this paper. It is simply due to
the fact that a Poisson process can be represented as a counting process whose
state probabilities satisfy a simple system of birth equations.

What can be said about the joint process {(C(t), K(t))}tzn? First, we show

(cf. [4], Theorem 1)

Lemma 2.1

The joint process f(C(t), K(t))}tz‘ is a comservative Markov process with

bounded transition rates.




* \ Proof

Therefore, the ]

f f
The jumps of *K(:)}tza are contained in those of ~C(t)}tza.

joint process is comservative, since fC(t)'}':za is. Clearly, for every s < u,
K(u) - K(s) is measurable with respect to the c-algebra c/C(t): s < t s u}

f )
generated by C(:)‘s<:s“. Let a < & < tz S e S t. < u be a partition of the
interval (a, u]. Then, for any Y, 3 a <NU {0}, 1< j<r, and by the :

Markov property of {C(t)}tzl

r
= = ni{ = - -
P[C(u) = v, K(u) nlj._l.caj) (yr K(ey) = a,l] 1

¥ f
K(t) =a - nrlj:lic(tj) = vys K(gy) = n,}]

= P[C(u) = v, K(u)

e =0l
r

= P(C(u) = v, K(u) - K(¢) =n -0 [C(c) = v, K

=
4 nr]

! : = P(C(u) = v, K(u) =alc(e) =v_, K :

which verifies the requisite Markov property of the process {(C(t), K(c))}tza.
Finally, boundedness of the transition rates of the joint process follows
from the fact that they have the form
qly, 8), if (y,8)€E and 0si=j -1

qlv, 1), (¢, W= al,8), 1f (v, 8) €9 and 0s4i =3 {2.2)
0, otherwise

Denoting Pt(v, n) x P[C(t) =y, K(t) = n] and with the aid of (2.2), we can
now derive the equations in the absolute state probabilities for ((C(t), K(t))}tzn’

analogously to the ones previously derived for [C(t)}ta..

P, I PS5, maE, ) + T R.(E - D, v)

g e, vIUl v} ges(-,v)

= Py, n)q(v), tza, (y,n) €Erx (N1 (0}, 2.3)




The initial conditions are
ca(v), if k=0
Pa(y, k) = (2.4)

0, otherwise

since K(a) = 0 almost surely.

Eq. (2.3) can be equivalently written as

A

=P (,n) = = P (%, n)q(g, v) - P_(v, n)q(y)

3t Tt ger-(v) t t

+ I (@(na-1) - P, o), v),
"‘E@(',Y) .
t2a, (y, ) erx WU (0], (2.5)
by adding and subtracting z Pt(ﬂ, n)q(n, v) from Eq. (2.3).
nee-,v)

Finally, denoting kt(n) = P(K(t) = n] and summing Eq. (2.5) over vy € [

gives us

Zr = T T (B(n,a-1) - (n g, v,
” ve€r ne&(.,y) R

tza, n€NU (0], (2.6)

To interchange summation and differentiation in the above we have used the fact
that the Pt(y, n) have derivatives of every order in t, and that every countable
sum of the Pt(y, n) over a subset of ' x (N U {0}) is uniformly convergent on
each compact time interval of (a, ®»). This fact will henceforth justify all
termwise operations on sums of the P:(y, n) such as termwise integrationm,
differentiation, etc. ([24], 1.1, 1.7).

Throughout the paper we demote M(t) a E(K(t)]. To avoid trivialities we

. shall, henceforth, restrict the discussion to substantive traffic processes in

the following sense:




R T Rl B R ﬂ"‘“

Definition 2.2

A traffic process is nontrivial if M(t) # 0 ; otherwise it is trivial.

We now show

Theorem 2.1

t
q(n, v).‘ cT(ﬂ)d'r.
a

".‘ b

53" t 2a.
ver "‘.@('DY)

M(t) =

Proof
For every fixed j € N sum (2.6) over n 2 j; then integrate both sides of

the resultant sum thus obtaining
t

~

2 q(n, v) PT(m j - 1ldr, t2a.

PlK(E) 2 3] = T z
YEI‘ ’1&@("\/)

Eq. (2.7) now follows by summing the above over j € N, since [K(t)}tz’a is a

nonnegative integer-valued random variable.

Corollary 2.1
M(t) = \t, t 2 O, for some \ 2 0 iff

p > i c:(ﬂ)q(n, y) = comst., t 2 a.
veET & (.,v)

In particular, M(t) = At, t 2 a, in equilibrium.

tl
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3. Poisson Traffic Processes

In this section we shall give a number of simple characterizations of
Poisson related traffic processes over a Markovian process. We shall see that
only a subset of the ordinary Poisson axioms will here suffice.

To simplify nocation we shall henceforth denote

a) 2 S T e Mty v) T M) and ame, Y E T e M, V).
ver =e(-,v) € (- )

Intuitively, m(t) is the total rate of expected traffic count, while m(t, v) is
the rate of expected traffic count due to transitions into state v. Observe that

m(t) = Z:m(t, v) and that in equilibrium both m(t) and m(t, v) are independent of t.
ver

The first theorem characterizes an arbitrary Poisson process over {C(t)?_za.
-

Theorem 3.1

{K(t)}tz‘ is a Poisson process iff {K(:)}tz‘ has independent increments.

Proof

A Poisson process has independent increvents by definition. Conversely, the
only counting process with unit jumps and continuous mean function is the Poisson
process (see e.g., Cinlar (8] Ch. 4).

The second theorem characterizes a time homogenous Poisson process over

{C(:)}tz‘.

Theorem 3.2

(K(t)}tzn is a time homogenous Poisson process iff the following conditioms
hold:

i) [Tn}:_o is a renmewal process

ii) m(t) = m(a), t 2 a.

oy

A PR e R

37 o > T (h

s




T ——

4
!
4
i
|
3
!
i
|
:

Proof
() T fK(t)}tza is a time homogenous Poisson process then it is well-known
{rn}:_o is a renewal process. Furthermore, the rate function of [K(t)]} is

‘ta2a
= m(a) as required, due to Corollary 2.1.

() Conversely, suppose that i) and ii) hold. Since the renewal function

t

S

of {Tn}:_o is R(t) = M(t) = m(r)dr = m(a)t, it follows that {K(t)}tzﬁ

be a time homogenous Poisson process, as R(t) determines a renewal process.

Corollary 3.1

In equilibrium, the renewal process property of {Tn} is equivalent to

@
n=0

the Poisson process property of {K(c)}cza'

The preceding characterizations give us some information as regards non-

Poisson traffic processes, by way of elimination.

Corollary 3.2

Suppose .{K(t)}tza is not a Poisson process. Then (K(c)}tza does not have

independent increments, and, in equilibrium, the respective point process [Tn]n_o

is not even a renewal process (though it may be a delayed renewal process).

—_—
s

e eue ~lheoretic Examples



: 4. Multiple Traffic Processes over a Discrete State Markov Process

{ ) e B ) f S ¢ f ) £
! Let 'Kl(t)'cza’ A Kl(c)‘tza be traffic processes over ~C(t)'tza’ or

some fixed but arbitrary L = N. For the i-th traffic process above, the asso-

—

ciated entities are denoted 91 for its traffic set, Mi(c) for its mean function,
kii)(n) = P[Ki(t) =n], etc.; in general, we append the appropriate index to
such previously defined symbols. To simplify notation we shall denote in the
sequel K(t) B (Kl(c), prE Kz(t)) to be the vector traffic process,

n = (nl. e nz) to be a vector with aonnegative integer components, and

k, @) s P(Kj(€) = ay, «.., K,(e) =n,]. Lemma 2.1 still holds mutatis mutandis

for the joint process [ (C(t); Kl(c), s ety Kz(t))}:za; the new transition rates are

1
q(Yr 6), e 1 - - S.{.i(-/, 5e.
i=1 =
Wy, 1), G, 13) = s
0, otherwise

s 1)s (8, 1) EF x "N r0})1; in the above x. is the characteristic function
i

Lo e G 60 E?Ji
xi(v, §) =

0, otherwise

e A S A S AT . A A A N AN A et O (el

and e, is the n-dimensional unit vector with 1 in the i-th coordinate.
The counterpart of Eq. (2.5) for the joint process

: fc(e), Ky(e), ..., K, (e}, is

£r6ha) = T RS WG, V) - PG, wal)
- zer-{v)
2
+ b P.(n n - lei(n, v)e;,) = P (n, a))q(n, v), 4.2)
) i=
““.€ 'J 91(-,‘/)
i=1
t2a, (v,n) €T x (NuU o)L, | 4
-9«
‘ 23-
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For reasons that will become apparent later on, We shall restricc the

discussion to traffic processes which are disjoint in the following sense:

Definition &4.1

: ¢ . Sl ’ {
‘Kl(t)}tza’ e 'Kz(t)}tza are said to be disjoint traffic processes if

their associated traffic sets 31, hsrels SZ are disjoint sets.

For disjoint traffic processes, Eq. (4.2) reduces to
2P (y,n) = T g, n)q(g, v) - B )q(v)
3¢ Felve @ ere th(>. n)q(g, v) - P (v, niqly
A~ Y
n
+ = = (B (n, o - &) - B (7, a))q(n, ¥v), (4.3)
i=1 ":‘;'( )/)
i
t2a, (v, n) ET X N U {0})1'.
The initial condition becomes
Ca(v), if n, = 0 foralllsis 2
Pa(v, ) = {. (&.4)
0, otherwise.

The counterpart of Eq. (2.6) is obtained by summing Eq. (4.3) over v € T

thus yielding

A
A
L k@=2 Z I (P.(n,n-e) =P (n n))g(n, v),
ot € 1=1 vET €3, (*,v) t * g

4.5)
t2a,n€ (NU ‘0])2.
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5. Multiple Disjoint Poisson Traffic Processes

In this section we investigate the possibility that disjoint multiple traffic
= ‘v ‘w \ < -
processes _kl(:)}cza. Sk ‘ke(t>‘t:a have Pcisson related properties. 1In par

ticular, the upcoming discussion applies to single traffic processes as the special

case ¢ = 1.

Definition 5.1

The processes ‘C(t)}__ , (K, (t) v ey LR EEY] are said to be pointwise
t2a 1 t2a M t2a Lorhtriae

e e —

independent if for every t 2 a the random variables C(t), Kl(t), T Kl(t) are

mutually independent. The processes above are said to be weakly pointwise inde-

pendent if for every t 2> a and every (nl, wewy T,) E (N U {O})é,
v

¢
PR b Ba(n, e im0 qn, ) :
i=1 vér T‘.E"-"i('.‘/) . % 5
5:1)
£ = g ()
P PR -3 ¢ M Tk (@))q(n, v).
1-1 VET *‘@i('.‘() j-l

f—
(W

Since pointwise independence is of central interest here, the disjointness assump-

tion is made so as not to preclude it a priori.

We begin, however, with a characterization of weak pointwise independence.

Theorem 5.1
Kl(t). bk oy Kn(t) have mutually independent Poisson distributions for every
1 {K N
t e {Lff (C(C)’tzn’(xl(t)}caa’ sy ht(c)]taa are weakly pointwise indepen

dent processes.

Proof
(®) Suppose the Ki(t)’ l <1< ¢, are distributed as mutually independent !

Poissons. Then the generating function of K(t) is

s1ll=

B e o




e el — i

{
P (Fas saa; ¥ = exp( oM
e P i=1

W
ts
-

\t)\yi =T B O I S R S (5

i

whence

Al

~
=

- oa = a y ‘: ¢ - “» | ! { « 1
3 e s V) 2oy, eenn '\L) cm (E)y, - b, tza, y;lsl, lsisi.

i=]
(5.3)
On equating coefficients in (5.3) we obtain
e )
3 c(n ..(kt\n - ei) - kt(n mi(t)
i=1
i L o
= %‘kéj)(nj -8y 4) - f?kéj)\nj))‘, i: e Man, v), (5.4)
{=1 J-l ’ j-‘l‘ ver n‘;:‘)ik.’-')
A
tza,n =, ..., 0,) ¢ N foh"
where § is Kronecker's delta.

y L

Eq. (5.1) now follows by equating the right side of Eq. (5.4) to the right
side of Eq. (4.5), via a straightforward multiple induction on n = (ul. R nt).

(®) Assume that Eq. (5.1) holds. Substituting (5.1) into (4.5) and
rearranging terms in the resultant equaticn yields Eq. (5.4). The latter is
equivalent to Eq. (5.3) whose unique solution is given by Eq. (5.2), since the
initial condition {s ¢a(yl, Sy yL) 2 1, [yii <1, 1<1i< 3, by virtue of (4.4).

Consequently, kc(n) corresponds to ! Poisson-distributed processes with
respective rate functions mt(t); moreover, the Ki(t) are mutually independent for

every t 2 a.

Corollary 5.1

13+ fC(c)}t\a is in equilibrium and (K(C)}:\a is a singleton (¢ = 1) Poisson

traffic process over it, then necessarily

r

3 " ; +
% > T Te's Mq, v) 2 D @@N® lexp(-m\a)t). r € NU {0}.
veEl' =€ *,v) 3t
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| Next we characterize pointwise independence of traffic and state.

[' Theorem 5.2
lc(c):tza’ .Kl(c);tza, o ;Kz(c);tza are pointwise independent processes
iff
o /) )
Ta(t, v) =c () Zm,(t), t 2a, for every vy €. (5.:5)
: ; § t ; i
i=1 =1
Proof

(=) Suppose pointwise independence holds. Eq. (4.3) is equivalent to the

generating function equation

) { - -
Selee o (s «ver ¥yl = ce(De (s« ¥,0aE, V)

ger-ivj)

] - Ct(V)Qt(yl, seey yl)q(‘/) (5.6)

' : T =) ) (

i + 2 e (N . (Fys «oos &, = Daln, ¥),
=l mgg, v) & 40T

t 2a, }yif <1, l<sis 2, v T,

2
where ct(yl, e yz) = exp( E:Mi(t)(yi - 1)) is the generating function of X(t)
i=1
3 due to Theorem 5.1. We use this form of ¢t(yl, oy yl) in differentiating the

left side of (5.6) which after some manipulation becomes

J)
A
Rleg oy cos 71 =901 oo TP 0@ ¥ o) Tay (D0 - 1) |

Since ct(yl, oy yz) may be cancelled on both sides of (5.6), the latter |

reduces to

at c:(V) * ct(Y);:lml(t) (y’_ = 1) = at CC(Y) i 1:lmi(c’ Y)(Yi - 1)- (5.7)




Eq.

k=

(5.5) now follows from the above by equating the relevant coefficients.
(#) Suppose Eq. (5.5) holds. It can be checked directly that
& o
oy Wil o, (2)) )
b TTexp(-M(t)) e, L 2mi(t)>0
< m, (t) 3=L J =t
i=1
3 .
?C((’ nl) * s ey nz) (5-8)

0, otherwise

solves Eq. (4.3) and is consistent with the initial condition (4.4). An easy

proof of this assertion involves the transformation of (5.8) into the appropriate

Cc(y);t(yl, iciy yz) and then working the way backwards from (5.7) to (5.6) which

is equivalent to (4.3).

Corollary 5.2

a) {C(t)}tza, [Kl(t)}tza, vy ~_Kz(t)}tza are mutually pointwise independent
¢ : ’
i€ _C(t)}tzn and {Ki(t)}czﬂ, 1 <is g, are pointwise independent in pairs.
b) Eq. (5.5) holds iff for every 1 = i < g,
m (6, v) =c (L;(t), t=2a, vET,
for some functions Li(t) depending on t only; in fact, for every 1 < i < 2,
Li(t) = mi(:), necessarily.
¢) Consequently, in equilibrium, Eq. (5.5) holds iff for every 1 < i < §,
m, (€, v) = c ()L, tza, vET
for some constants Li; in fact, Li =, for every 1 s i £ £.
-
Proof
a) Mutual pointwise independence implies pointwise independence in pairs. Con-

versely, pointwise independence in pairs implies for every 1 < i < g,

-
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mi(t, v) = cc(V)mi(c), t 24, v €T,
This becomes Eq. (5.5) on summing both sides over 1 s i s 2.

b) If Eq. (5.5) holds, then from a) the condition holds for Li(e) = mi(c).
Conversely, by summing both sides of mi(t, y) = c:(v)Li(t) over v € T we
deduce Li(t) = mi(c); summing it over 1 =< i < 7 then yields Eq. (5.5).

c¢) Follows immediately from b) and from the time stationarity of the mi(c, v)
and mt(C)'

The relation of Eq. (5.5) and Corollary 5.2 to Muntz (22, and Gelenbe
and Muntz [13] should be noted. A more detailed discussion is deferred, however,
until Sec. 8.

Before proceeding to the main theorem we shall now prove two supporting

lemmas. The first one is a generalizationm of Corollary 1l in [4].

Lemma 5.1

{ f -
-C(:)}tza and the multiple traffic process ~K(t)}tza are pointwise inde
pendent iff for any fixed s 2 a, rC(:)}tzs and {K(t) - K(s)}tzs are pointwise

independent.

“) Follows immediately by taking s = a.

(=) Since [C(c)}tzs is a Markov process, it follows from Lemma 2.1 that
(), k() - K('))}tzs is also Markovian. To distinguish between {(C(t), K(c))]tza
and "(C(t), X(t) - K(S))}czs we denote the various mathematical entities associated
with the latter by appending tildas to the corresponding ones in the former.

Thus, Eq. (4.3) is satisfied by ?t(y, n) over the domain t € (s, =), subject
to the initial condition (4.4) with a = 3. Since ct(v) = ?c(y) for every v € T
and t 2 s, it also follows that mi(y, t) = ;i(v, t) and mi(t) = ;i(c) for any

t2s8, 1lsi< Jandy €.

Now, by pointwise independence of {C(t)}ca‘ and [K(t)}tz‘, Eq. (5.5) holds,




e i i
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whence

4 ai(t), £ = S, Vv ‘:_ :-y (5-9)
1

also holds. The Lemma now follows from (5.9) by applying Theorem 5.2 in the other
direction.
The second lemma is tantamount to Burke's argument in (5]. (See also,

Theorem 3 in [4]).

Lemma 5.2
Suppose that "C(t:)}‘:za and the multiple traffic process {K(t)}tza are point-
wise independent. Then, for every fixed t 2 a, the c-algebras c/K(t) - K(s): s < t)

and 3°C(u), K(u) - K(t): u 2 t} are independent.

Proof
Let 4 £ ¢ fC(u), K(u) - K(t): u 2t} = 2{C(u): u 2t}. Now, from Lemma 5.1,
and the Markov property of {C(t)}tz‘, we can write for any s s t, v € T and
a € (VU (oD,
P[A, C(t) = v, K(t) ~ K(s) = u]
= P[plC(e) = v, K(t) - K(s) =a]-P[C(t) =y, X(t) - K(s) = n]
= p{plC(t) = v].P[C(c) = v]-P[K(t) - K(s) = n]

= P(A, C(t) = v]-P[K(t) - K(s) = n]
whence on summing both sides above over y € T,

P(A, K(t) = K(s) = a] = P[A]*P[K(t) - K(s) = a] (5.10)

as required.

[
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Corollary 5.3

1f {C(t)}cza and {K(t)}tz‘ are pointwise independent processes, then by

Lemma 5.2 each {K (t)}tza' 1= 1< 1, has independent increments; consequently,

each is a Poisson process by combining Theorem 5.1 and Lemma 5.2.

We shall now proceed to show a stronger independence result, (cf. Theorem 4

in (4]).

Theorem 5.3

Suppose C(t)}

- and the multiple traffic process {K(t)}tza are pointwise

independent processes. Then the component traffic processes {Kl(t)}tz‘,

Sy :Kz(t)}tzn are mutually independent Poisson processes.

Proof
In view of Corollary 5.3 it suffices to show that for each partition

a=t; <t <t <...<c =t of an arbitrary interval (a, t], and for any

choice of nonnegative integers n l£i< g, 1< j<r, the events

iy’

E = [Ki(t

1,3 ) - Ki(t

3

j-l).nij]' 1‘1.51,1$er,

are mutually independent. The proof is by induction on r.

If r = 1, then the E are mutually independent by pointwise independence

: 3%
among the fKi(t)}tz., and the induction base is established.

Assume now that the Theorem holds for r = p, p 2 1, and show it for r = p + 1.

£ P L
€ - - . y - :
Since [1:1 j:lsi’J] €e \K(tp) K(s): s s tp] and [1:1E1’9+1] € o{K(u) K(tp). u‘ztp],

we can write by virtue of Eq. (5.10),

4 p+l L p L L p L

PIA NE J=P(N NE )A(N
i=1 y=1 10 g=1 y=1 1d

Ja @2l HE IR

NE ) NE Je
gm1 LoP¥1 i=1 §-1 137 gay LpHl
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Finally, applying the induction hypothesis to the first factor, and
Lemma 5.1 to the second factor yields

2 +1 J) +1
s e 0= T e,

iml y=1

which establishes the induction step.

1

In view of Theorem 5.3, we now see that Theorem 5.2 provides us with a

computational criterion as follows:

orollary 5.4
1f Eq. (5.5) holds, then the rKi(t)}uﬂ, l1sis 4, are mutually independent

Poisson processes with respective rate functions mi(t). The same is true .

if any part in Corollary 5.2 holds.

| |
Applications of the theory developed thus far are furnished in the next

two sections.




SR

6. Non-Poisson Traffic: Atomic Processes and eueing-Theo c _Examples
This section demonstrates how weak pointwise independence may be used to
show non-Poisson traffic by violating the necessary condition in Theorem 5.1 and

Corollary 5.1. Consider the class of traffic processes defined by

Definition 6.1

{K(t)}tzﬂ is called an atomic traffic process if its traffic set @ is a
singleton pair of states.
”
Atomic traffic processes are the elementary building blocks of all traffic
processes, since every traffic process is a superposition of disjoint traffic
atoms. We shall now exemplify the utility of the weak pointwise ind*pendence

concept vis-3-vis atomic traffic processes.

First, however, we show a more general result.

Lemma 6.1

Let fKR(t)} be a nontrivial traffic process such that
taa

( U @(’9 §)) N ( U @(g’ ')) = 3. (6-1)
ger ger
Then »'K(t:):ltzlB is not a time homogenous Poisson process; moreover, in equilibrium

it is not a Poisson process altogether.

Proof

Setting n = 0 and letting t - a+ in Eq. (2.5) gives us

g% P (v, 0) = é% ca(v) - m(a, v), v €T.

If n € @(+, v) for some v € ', then 9(+, m) = & by (6.1) so that m(a, m) = O.

Hence

-19-
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g% Pa(ﬂ, 0) = é% ca(ﬂ) for any m € 2(-, v), v €T.

Substituting the above into the left side of (5.1) for £ = 1 and differentiating

yields for t - a+

S8 o iP (n, 0)q(n, v) = = ik -Q-c (ﬁ)q(m y) = im(a). (6.2)
VeI w80 (s )% * V€T 188 (= 40) " %

Now assume rK(t)}cza is a Poisson process. By weak pointwise independence

of rC(t)]tza and l:l((t)]t:2a (see Theorem 5.1)

T T R0, 040 ) = ln £ @) exp(-M(e))]
v€r n€e(-,y) ta+

= lim [m(t)-exp(-M(t))-(-m(t)) + ozxp(-M(t))--L m(t) )

t-a+ 3t
=< 0@ - @@’ (6.3)

A comparison of (6.2) and (6.3) gives us necessarily m(a) = 0. But if
fK(t)}tz‘ is time homogenous, then m(t) = 0 from ii) in Theorem 3.2, which con-
tradicts the nontriviality of rK(t)}tza. Finally, in equilibrium, (K(t)]tzla is
necessarily time homogenous from Corollary 2.1, whence the rest of the Theorem

follows.

g
Nt

We can now assert,

Corollary 6.1
None of the nontrivial atomic traffic processe: over {'C(t)}tza is a time

homogenous Poisson process. Furthermore, in equilibrium, none is a Poisson process.

Proof

The Corollary follows trivially since every singleton traffic set

® = (g, B)} satisfies Eq. (6.1).

I
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Thus, in equilibrium, we have the intuitively curious situation where none
of the nontrivial traffic atoms is a Poisson process; however, an arbitrary super-
position of traffic atoms may or may not be a Poisson process. In fact, examples
of both cases abound in the queueing-theoretic literature (see next section).

We point out that if a superposition of point processes forms & Poisson
process, then either all superposed components are independent Poisson processes
or none is. Most superposition results are variants of the first type (see, e.g.
Cinlar [9]). What we have just shown is a nonvacuous example that falls within
the scope of the second type.

To further illustrate the utility of Corollary 6.1 we note that the departure
process (exclusive of the loss stream) from an M/M/1/0 queue in equilibrium is
not a Poisson process. In the same spirit we can deduce that any departure stream
of customers from a Markovian queueing network, such that departing customers
leave behind a prescribed network state, cannot be a Poisson process in equilibrium.

An important class of conjectured non-Poisson traffic in queueing networks
consists in most traffic on arcs having direct or indirect feedback ([6]; [19],
Conjecture 5.1). Intuitively, a recycling of customers takes place which deprives
the traffic of independent increments. Burke [7] proves directly the non-Poisson
conjecture for the total input into an equilibrium M/M/l queue with feedback; an

extension of this result to Jackson queueing networks (see Example 7.1) with

single server nodes appears in Melamed [21]. The latter is based on Corollary

5.1. The non-Poisson conjecture bears, in particular, on all traffic in closed

queueing networks such as the ones in Gordon and Newell [14].

s it i




7. Multiple Poisson Traffic: Queueing-Theoretic Examples

In this section we demonstrate how to apply pointwise independence to

certain traffic processes in a number of queueing networks whose discrete
state is represented by a Markov process. These applications utilize the

computational criterion of Theorem 5.2 as set forth in Corollary 5.2.

Example 7.1: Jackson queueing networks (see Jackson [15]).

A Jackson network consists of J service stations with infinite line
capacities. Each station j houses sj parallel independent exponential servers
with respective rates cj. Exogenous customers arrive at the stations according
to independent Poisson processes with respective rates ay- On service completion
at station j a customer is routed to stationm k, 0 < k s J, with probability pjk
(a routing to k = 0 designates leaving the network altogether). All arrival,
service, and routing processes are mutually independent.

The vector valued process of the J line sizes is a Markov process with
state space [ = [y = (@5 vens nj): ay € NU f0}]}. Next, suppose the equationms

J

5.Gj+i:,1vipi1 ISJSJ, (7.1)

have a nonnegative solution in the § ., 1 £ j < J. This is always the case when

J
the network is open in the sense that it is possible to leave the network from

every node through some finite sequence of routings (see [20], Ch. 4).

Suppose the network is open such that p & ——-L-< 1, 1< j £J. Then the

S

state equilibrium distribution is ct(nl‘ dewy “3) = :E:c (n ) where

=22
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(see [15] p. 520).

Let {K (:)}tza be the equilibrium traffic process of customers that leave
the network from station j. Thus Qj = (v + ej, v): v € I'} and EJ
we compute for any v = (nl, < nJ) £

(s V)s‘:‘{+e }-

b

L "
Denoting cj(i) = minfi, sjj:

3

(1]

m, (t, v)

J c (v + ej)cj(nj + l)Pjo

g
(]

, g +
ct(x) min;nj+l,s ‘j(nj l)ij

ji

= ct(v)cjcjpjo = C:(")éjpjo’ 1< j=J.

Hence, part c) of Corollary 5.2 holds for L, = 6jpj0’ 1o J < J,

b

It now follows from Corollary 5.4 that the (K L < jr<1J Sare

j(t)]tza’
mutually independent Poisson processes with respective rates 5jpj0'

We point out that this result includes as a special case the well-known
result by P. J. Burke [5] that the equilibrium departure process from a M/M/s
queue is a Poisson process with the same rate as the arrival process; this
result was arrived at by examining the interdeparture intervals. The same

result was later attained by E. Reich [23] through the use of reversibility.

A related derivation was demonstrated by F. P. Kelly [17]; his results apply

to a large class of Markovian queueing networks to be described in the sequel.
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Example 7.2: Kelly's networks with random routings (see Kelly [17]).

In this queueing model we have J service stations with infinite waiting
line capacities and I types of customers. Exogenous customers type i, 1 < i <1,
arrive at station j, 1 < j s J, according to independent Poisson processes with
respective rates aj(i). Each station j houses an exponential server with rate

chj(nj)’ where n, is the total number of customers at station j. The routing

B
probabilities pjk(i) depend on the type of customer routed. In addition, the

4~th customer in line j is allocated a proportion fj(z, nj) of the service
effort in station j. A customer arriving at station j is inserted in the {-th

position there with probability gj(ﬁ, n, + 1). All arrival, service and routing

]

processes are mutually independent. The vector-valued process of line configura-
tions is a Markov process with state space [ = {(vl, P vJ): ¢ € I*} where I*
(n,) where v

T3 3
of the f-th customer in station j (I* includes the empty string). The transition

is the set of all finite strings yj(l)yj(z) = o (L) is the type

rates of the state process are defined by
q (v, IH.L.(Y)) = cjwj(nj)pjo(vj(z))fj(ﬁ, nj)
. :
q(y, T.J.z(V)) aj(i)gj(z, Ry + 1)
q(v, Tjkzm(v)) - cjoj(nj)pjk(vj(z))fj(z, nj)gk(m, o+ 1)

where 13 . is the operator that removes the ¢-th customer at station j from the

i
W)

position at station j; T

network; T is the operator that inserts a customer of type i in the f-th

Jkm is the operator that moves the ¢-th customer in
station j to the m-th position in station k.

When the network is open with respect to every customer type i, 1 s i = I,
Eq. (7.1) has unique solutions 6J(i) for given ay = qj(i) and Py = pjk(i)’

)
1 < j,k £ J, and we denote pj(i) = —i—-— . Under certain conditions (see [17],
J
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Theorem 2) the equilibrium distribution has the form

J

¢ (vys ven ¥ )2 b 1TA,(~,) (7.2)
1 PN M

where b is a positive constant and

’ p, (v, (L))
{ *—l——i~—-, it o2 L
g1 wj(z)

s
Aj(vj) 5

I otherwise

Let fKij(c)}tza be the equilibrium traffic process of customers type i

which depart the network from station j. Thus,

+1) and @, (e, v) = {T° (): 1s gsn, +1}.

o )
(T (v), y): y €T, 1= 4<n 1j E fas j

)
i) afol 3l

For any v = (yl, e yJ) € T we now compute using the identity

i p, (1)
CC(T.J.L(V)) = Ct(\/) ¢J(nj+1)’
n,+1
mij(t, y) = é:l (T j E(v))q(T 4. E(Y), v)

n‘lﬂ e B at N |

&« L e (y) q(T ¥l T Y ‘

SE (1)
= ¢ (V) o1 = ij(nj.,.l) ch}j(nj + l)Pjo(i)fj (2, nj s D)

= ct(v)bj(i)pjo(i), Tei 2T, 183 =ds

Again, part c¢) of Corollary 5.2 holds for Lij = 5j(i)pj0(i), S S S
1< js<J. It now follows from Corollary 5.4 that the {Kij(t)}tza are mutually |

independent Poisson processes with respective rates 5j(i)pj0(i), in agreement

with [17] p. 553.

g
N
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Example 7.3: Kelly's networks with fixed routes and gamma-distributed service
(see Kelly [18]).
This model is a variation on the basic setup of J stations and I types of

customers, where we conveniently take ¢, =1, 1 < j<J, For 1sis<TI,

J
customers type i arrive according to mutual independent Poisson processes with
respective rates g(i). A customer traces a fixed route r(i, 1), r(i, 2), ...,
r(i, S(i)) of S(i) stages through the network and then exits. At node r(i, s)
en route, a customer requires a gamma distributed (Erlang) service composed

of 2(i, s) phases of mutually independent exponential services each with mean

d(i, s). We require, however, that fj =g, for all 1 s j < J. All arrival and

i
service processes are mutually independent.
The state process is Markovian over the state space I consisting of all

J-tuples y = (yl, ey vJ) where each yj is a finite (possibly empty) string

over the set {(i, s, p): 1 s i< I, 1ss<S(), L<sps=<z(, s)}. Define

ne-

5.(1, s) = g(i)d(i, s)¢ 1< j<J,1<i<I,1lss s S(i), where

Jaedd,s)”
is Kronecker's delta.

j

*1r,s)
Under certain conditions, the equilibrium state distribution is again given
by Eq. (7.2) provided we redefine
n
=1 85t ()8, ()
I , ifn,>0

Aj(cj) = (7.3)

p 19 otherwise

where tj(z) and sj(z) are the type and stage respectively of the Z-th customer
in line configuration Yj’ and nj is the length of Yy

Let the {Kij(t)]tza be as in the previous example. Thus,
24 " {(Tej gV ) e= (1, 5(1), 2(1, S(1))), vy €T, 1 s 40, # 1} and

8y Cav) = 115, () e = (1, SU), 2(1, SAW)), 18 2sa, + 1%




e et i sl . e .

<27=

Here Tej 2 is the operator that inserts a customer with attribute set e as above

(i.e., a customer type i in his last stage of the route and last phase in service)
e

into the £-th position in station j. Observing that ct(T j z(v)) =

5](1,5(1))

ct(y) ¢J(“J+1) we compute,
n,+1
e e
mij(t. v) Lfl ct(T.j.L(Y))q(T.j.L(Y)’ v)

n, +1
.S (i
=c_(v) g: ijii——iill
t

PETICIO ¢y(ny + DE (4, n, + 1)

= cc(v)é (i, @Y, Lhs'i< T, Is93=J.

3

~

We conclude that the rKij(t)}tzo are mutually independent Poisson processes
with respective rates 5j(i, S(1)), in agreement with [18] p. 423.
—
Analogous results can be similarly obtained for the class of Kelly's net-
works in Sec. 3 of [18] where the fj are allowed to differ from the gj, but
the service requirements are constrained to be exponential.
Suppose the rate of type i arrivals is g(i, vy); i.e., it is also a function

of the instantaneous state of the system. Kelly ([18], Sec. 5) considers the

case g(i, v) = g(i)- ;TT- y(N(y, W)), where y: NU f0} # (0, =) is a given
WE2T s iEW

1
function, and N(y, W) & T N(y, i) where N(y, i) is the number of type i customers
i=]

in network configuration y. He shows that under certain conditions the equili-

brium state distribution has the form

-
¢ (v) = BB+ 1A, (v))

st J(vj

where

N(y,W)-1

By = T; 1L ¢@

we2 n=0

e T
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and the Aj(vj) are still defined by (7.3). Thus, in the notation of Example

1.3, B(Tez j(\')) = 11 ¢(MN(, W) for any e = (i, S(i), z(i, S(i))), whence
R W:icW

6(1,8(1))
& = A, r .
ct(T.L.j(v)) e (v) (w:iwa(N(v. w))) %y @ D) .

It follows in an analogous calculation that

m (6, y) = e 68, SN TT v WGy, M),

i W:ieW

Hence, {c(t)}tza and {Kij(t)]tza are pointwise independent iff -rr y(N(y, W) =1L'
W:ieW

independent of y € I', which is generally not the case. (Notice, however, that when

]
j(t),tz‘

from being a Poisson process, albeit pointwise dependent on the scate.‘) A similar

the product above does depend on y € I', this does not, in general, exclude {Ki

r phenomenon takes place in Jackson [16] and in the following.

b

Example 7.4: The BCMP queueing networks (see Baskett et al. [2]).

These networks consist of four types of stations, all related to Kelly's

networks in [17]. There are, however, three differences: customers arrive
according to state dependent Poisson processes; they require type dependent
services which are mixtures of sums of exponentials; and, on service completion,
customers are allowed to change types in a Markovian manner.

Based on the equilibrium state distributions derived in (2], it can be
rigorously shown that the mij(t) factor into Ct(y) and another product. The
latter contains the instantaneous arrival rate as a state dependent factor.

Consequently, the [K“(t)}cza and fC(t)}‘:zﬂ are not, in general, pointwise

+

A trivial case in point is an arrival process to a Jackson network which is
Poisson by definition. However, it can be easily verified that it is pointwise
dependent on the state, say in equilibriur
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independent when the network is in equilibrium. However, it can be rigorously

——

checked that the above are pointwise independent provided the arrival rates

are fixed. The latter fact agrees with Theorem 13 in [13].

The author is unaware of any result in the queueing-theoretic literature

enunciating Poisson traffic (over a discrete state Markov process)that cannot

d be explained by means of pointwise independence of traffic count and state.

8. Discussion
The class of intuitive traffic processes that can be modeled via distin-

guished state transitions in an underlying Markov process {C(t)}tza is reasonably

comprehensive vis-a-vis applications. In particular it includes all traffic 3

processes in the queueing-theoretic literature with the exception of certain
feedback traffic processes.

Consider a feedback stream of customers that after service completion in
station j immediately rejoin the waiting line of that station in such a way that

the state of the system remains unchanged (notice that this situation never

arises for traffic processes between distinct nodes or for traffic streams that
leave the network altogether). In this case, defining the relevant an}:_O
becomes impossible since a consideration of any traffic set ©® is insufficient to

determine the epoches in question. Moreover, a direct appeal to Lemma 2.1 is

now invalid, even though the result of the lemma may be correct.
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i To remedy this situation one may attempt to proceed in two ways. First,

| it may be possible to modify fC(t:)}':Z‘a into a new Markov process ﬁf(t)}tza with g

state space F for which all feedback epochs correspond to discernible state

transitions. This technique was used by Kelly ([19], Sec. 2.1), and earlier by

Daley ([10,, p. 399) to treat balking arrivals to an M/M/s queue. The second

approach is to define directly the requisite joint process {(C(t), K(t))]tza and

of to show it to be Markovian by another technique (e.g., via a stochastic integral

representation as in (3] and [20]). Either way, chances are that the rest of

the theory in this paper would still be applicable, as was the case in [20] and [21].
A broader class of traffic processes over Markovian processes {C(t)}tza may

4 be defined by allowing the traffic epochs {Tn}:=0 to be affected by past history

of fC(t)}tza. One may then attempt to redefine a Markovian ''state' process

ﬁf(t)}tza with a ney T and © such that {E%t)}tza "remembers by state' the relevant

H information in the past history of the old {C(t)]taa'

The approach and definitions of this paper shed a new light on the differ- 5
ential equations (2.1). The traditional heuristic interpretation is that the
"probability rate of being in state y'" is the difference between the "flow rate

into v" and '"the flow rate out of y." On the other hand, let us define

e, ={(g y):E€r-{y}}andeo = {Grs 832 EET - {yll.
bi Vi.n Yout
Then clearly for any y € T, £ (y) =m (t) - m (t), or equivalently upon
SEE Yin out
integration c:(Y) = ca(Y) + E[R (t) - K (€)1, t 2 a.
Yin out

From this equation it can be easily shown that for any s s t

cg (v) = e (y) = EK (s, £) - 5 (s, t)]

in out

where K(s, t) w K(t) - K(s). Thus, from a traffic oriented vantage point, the

probability difference of being in state vy at the extreme points of any time




—— e
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interval [s, t] equals the expected difference of the number of times the
system entered and left state y in the aforesaid interval.

It is interesting to note how the Markov property of the underlying
':C(t:)}tz‘E affects the feasibility of {K(t)}tza being a Poisson related process.

It turns out that various notions of independence play a significant role in

this respect: independent increments in {K(t)}tza already ensure it to be a Poisson

process (theorem 3i1); a renewal {Tn}:_o and a time invariant m(t) already ensure
the same thing (Theorem 3.2); weak pointwise independence already ensures that
dis joint Kl(t)’ ey Kz(t), t 2 a, are distributed as mutually independent
Poissons (Theorem 5.1); and finally, pointwise independence already ensures that
disjoint {Kl(t)}tza, ety {Kz(t)}tza are mutually independent Poisson processes
(Theorem 5.3).

A number of concepts essentially equivalent to pointwise independence have
been discussed in the literature. Muntz [22] discusses departure processes from
an equilibrium queueing system with different types of customers whose arrival

rates are ki’ 1l < i s I. Suppose each customer type arrives according to

independent Poisson processes such that

4 & ct(n)q(n.v)
ey s A S ——" K
n€s, ct(v) &

where Ei is the traffic set of the respective departure process. Muntz calls
this condition the M = M (Markov implies Markov) property to indicate that
each such departure process is Poisson when the arrival process is. The above
condition is a special case of Eq. (5.5); it is easily seen to be equivalent
to pointwise independence in equilibrium.

In Sec. 5 of [13], Gelenbe and Muntz discuss Markovian queues with Poisson

arrivals at a fixed rate \; they define such systems to be complete (ibid. p. 52)
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if the departure process {K(t)}tza satisfies
Mt + o(at), ifn=1
lim P[K(t) - K(t - at) = n|C(t) = y] = o(at), ifn21

toe

1l -2t +o0(t), if n =0

for any vy € T.

Then, they proceed to give a heuristic derivation of equilibrium analogues
of Corollary 5.2. By virture of Lemma 5.1, we can recognize completeness as
pointwise independence of {C(t)}tza and {K(t)}tza when the former is in equili-
brium.

In Sec. 6 of [18], Kelly describes a queueing network with Poisson arrivals;
the network is represented by a Markov state process [C(t)'_\tz’n in equilibrium,
and each departing customer is classified into one of I groups depending (perhaps
stochastically) on the network's past history. Such a queue is quasi-reversible
if (see p. 428 ibid.):

a) departures of group i customers, for i =1, 2, ..., I, form independent
Poisson processes; and

b) the state of the network at time t is independent of departures from the
network up uatil time t.

Suppose the I departure streams can be modeled by traffic processes
[Kl(t)}tza, - {KI(t)}tza via traffic sets ©,, 1 £ 1 < I. Then quasi-
reversibility clearly implies pointwise independence of fC(t)}ta. and the
[Ki(t)}tza, 1<is< I, (Condition b) above). However, Theorem 5.3 shows
that pointwise independence of [C(c)}cz‘ and the {K (t)]tz., l<is I, already
implies Condition a) above (i.e., b) implies a)). It follows that for the
class of departure processes defined as traffic processes in the sense of this

paper, quasi-reversibility is logically equivalent to pointwise independence
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(i.e., to Condition b) alone).

As a matter of fact, for the class of traffic processes in this paper over
aA underlying {C(t)]:za in equilibrium, Kelly's quasi-reversibility, Muntz's
M = M property, Gelenbe and Muntz's completeness and our concept of pointwise
independence, all boil down to essentially the same thing. Although all four
concepts are largely equivalent, the pointwise independence formulation enjoys
the generality and convenience of being stated in purely probabilistic terms
without any allusion to queueing-theoretic context or an underlying equilibrium
assumption.

The utility of the pointwise independence concept is greatly enhanced by
Corollary 5.2 and 5.4. The former provides a convenient computational test
for pointwise independence which, in view of the latter, serves as a sufficient
condition for mutually independent Poisson processes; its ease of application
has been demonstrated in the examples of Sec. 7.

The utility of the weak pointwise independence concept derives from
Theorem 5.1 and, in equilibrium situations, from Corollary 5.1. These may
serve as necessity conditions for Poisson traffic processes by checking the
actual behavior of lim g%Pt(y, n) against the hypothesized one. This approach

t+a+
was demonstrated in Sec. 6; a more substantive application of this strategy

can be found in [21] concerning traffic processes on the so-called nonexit arcs

of a Jackson network.

The concept of pointwise independence (of traffic and state) has considerable

relevance to the study of queueing network decomposition. A typical Markovian

queueing network is postulated to have Poisson arrivals, independent servers

and independent routing switches--the above being mutually independent processes.

The problem of valid decompositions arises when one wishes to study one or more
subnetworks in isolation via the theory available for the original network. 1In

other words, under what conditions does a subnetwork satisfy all the postulates
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of the original network? In the aforementioned typical queueing network it is
required that all incoming streams into subnetwork nodes be mutually independent
Poisson processes which, in addition, are also independent of the service and
routing mechanisms operating within that subnetwork.

Now, certain subnetworks may have a state process (an appropriately selected
subvector of the original vector valued state process), Which still retains the
Markov property. Consider the departure streams from such a subnetwork. As we
have seen in the examples of Sec. 7, these departure streams and the compressed
state are quite likely to be pointwise independent, in equilibrium. Consequently,
if there is a subnetwork whose incoming customer streams are either exogenous or
from the subnetwork's complement, that subnetwork will indeed satisfy all postu-
lates of the original network, thus constituting an equilibrium original network
in miniature. The reader is referred to [4] for an example of this situation
from the domain of Jackson queueing networks.

Finally, we point out the plausibility of extending the results of this
paper to traffic processes over Markov processes with time dependent tramsition
rates or with continuous parameter and uncountably infinite state space. The
latter could enable one to treat queues and queueing networks with more general

arrivals and services, such as the limiting cases considered by Kelly [18] and

Barbour [1].
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