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E There has been a large impetus in recent years to extend fracture mechanics
concepts to characterize high temperature crack growth. Several years ago
McEvily and Wells[1] reviewed the application of these concepts to safe de-
sign in the creep range. Since then a large body of information on high tem-
perature crack growth in a variety of structural alloys has been accumulated
and there is a better understanding of the factors that affect crack growth
and the limitations these factors impose on the characterization of crack
growth by fracture mechanics concepts. Based on the available information we
shall attempt to summarize here the applicability of fracture mechanics tech-
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INTRODUCTION

P, niques to high temperature crack growth under cyclic, static, and combined

! z“'_ loads and emphasize the conditions that could limit their applicability.
S
FATIGUE CRACK GROWTH .

' ad IS
| = Crack Growth in Structural Alloys

[

Recognition that the life of many thermostructural components could be lim-

[ .. ited by subcritical crack growth under high temperature fatigue has led to

[ e | many crack growth studies. The success of linear elastic fracture mechanics
. (LEFH) to characterize low temperature crack growth has motivated its use at

high temperatures. Crack growth behavior in many structural alloys under
high temperature fatigue [2-35] has been studied and these have been listed
in Table 1. These extend from low temperature alloys, such as aluminum al-
loys, to superalloys, and to some of the more advanced alloys such as direc-
tionally solidified eutectics.

In most of these investigations LEFM is assumed to be valid. Only a few
investigations were done to check their applicability using different speci-
men geometries and loading conditions. For cases where LEFM was found to be
inapplicable, other parameters such as J-integral, crack opening displacement
and net section stress have been suggested. Before discuacinn thaea naram-

eters it is useful first to g ~ that
affect high temperature crac w5 i 95(-/ n the
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High Temperature Crack Growth Processes

Crack growth under cyclic load can occur by either or both of two processes:
(1) cycle-dependent process, and (2) time-dependent process. The relative
contribution from each process to crack growth depends on the temperature,
frequency, hold-time or wave shape, material, and environment. Time-
dependent processes include both creep and environmental effects, which are
thermally activated, and thus could introduce a large temperature dependence
in crack growth rates. On the other hand, purely cycle-dependent processes
are rather insensitive to temperature, and any temperature dependence is due
to elastic modulus variation with temperature. For example, the cycle-
dependent process could be plastic blunting [36], where irreversible plastic
flow under cycling provides the driving force for crack growth. Since initi-
ation of plastic flow (dislocation nucleation) from the crack tip is an
athermal process, we can treat the cycle-dependent process as temperature-
independent.

Figure 1 shows schematically the effect of temperature and frequency on
fatigue crack growth rates for time-dependent and cycle-dependent processes.
Low frequencies and high temperatures favor the time-dependent process, while
high frequencies and low temperatures favor the cycle-dependent process. At
intermediate temperatures, a combination of both processes could occur de-
pending on the amplitude and frequency. Temperature dependence similar to
that in Fig. la was observed in Type 304 stainless steel [12], a cobalt-base
alloy [32] and in several nickel-base alloys [18]. Crack growth rates as a
function of frequency was discussed earlier [37] with reference to A286 al-
loy. In some cases ultra high frequencies may be required before fatigue
becomes purely cycle dependent. It is apparent from Fig. 1 that the effect
of temperature on fatigue crack growth in the creep range cannot be studied
independently of the frequency effect.
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Fig. 1 Schematic illustration showing crack growth rate as a
function of (a) temperature and (b) frequency

The question concerning the applicability of fracture mechanics tech-
niques to high temperature crack growth can be divided into two separate
questions: the applicability to a cycle-dependent process; and the appli-
cability to time-dependent processes. If crack growth is purely time-
dependent, cycling may not be necessary since cracks could grow even under
static load. In the intermediate range of temperatures or frequencies, gen-
erally between 0.4 to 0.7 T where T, is the melting point, both cycle-
dependent and tine-dependeng processes could occur simultaneously. Any
interaction between the two processes could significantly influence the
applicability of fracture mechanics techniques. For example, the enhanced
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creep component during high temperature fatigue could alter the crack tip
stress field to the extent that fracture mechanics techniques cannot be ap-
plied. This can happen in two ways. Stress relaxation due to creep could
occur at a rate faster than the increase in stress field due to crack growth.
This results in crack tip blunting which influences the crack growth process.
Secondly, the creep deformation at the crack tip could cause the formation
of fissures around the crack tip and reduce the stress concentration effect
there. These are represented schematically in Fig. 2. Aggressive environ-
ments could also cause a similar type of crack tip stress relaxations. Crack
tip blunting by corrosion or formation of fissures due to the formation of
grain boundary brittle phases could both occur under severe environments.

In the following we shall first discuss the applicability of fracture mech-
anics to cycle-dependent process, then the effects of superimposed time-
dependent process, and finally, the applicability to purely time-dependent
process.

Fig. 2 Schematic illustration showing stress relaxation due to
(a) crack tip blunting, and (b) formation of fissures

Fracture Mechanics Parameters

Crack growth under high temperature fatigue has been characterized by stress
intensity factor range (aK), J-integral (aJ), crack opening displacement
(COD), and net section stress (o,), as shown in Table 1. If crack growth

is purely cycle-dependent, the s!ress intensity factor could be a reasonable
parameter if plane strain conditions can be maintained ahead of the crack
tip. Correlation with & in most of the alloys was found at high frequencies
and at relatively low temperatures where crack growth is mostly cycle-
dependent. Note that the ASTM thickness criterion for plane strain [38] can-
not be simply extended to fatigue even at room temperature, since cycling
localizes the crack tip deformation [39] and extends the range of thickness
or & for which plane strain conditions exist. In some alloys at high tem-
peratures, the superposition of environmental effects could increase crack
growth rates so that stress relaxation due to creep becomes minimal. This in
turn extends the & range for plane strain. On the other hand, in some other
alloys where plastic flow can occur rapidly, LEFM may not provide an accurate
description of the crack tip stress fields and other parameters may be
necessary.

Haigh [9] has recently evaluated the range of applicability of aK for
tempered 1Cr-Mo-V steel at 550°C. LEFM is valid until gross plasticity due
to creep occurs. The stress intensity limit at which creep becomes suffi-
ciently significant to affect the crack tip stress fields depends on the
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material, its creep strength and ductility, test temperature, as well as
specimen geometry and loading mode.

Correlation of crack growth rates with &K/E where € is Young's modulus
was obtained for an aluminum alloy [4] in the temperature range of 20 to
190°C and for an austenitic stainless steel weld metal [14] in the range of
24 to 704°C. This indicates that, for the temperatures used, the crack
growth is mostly cycle-dependent for these alloys, and it is relatively in-
sensitive to environment. Also, no differences in crack grosth rates at room
temperatures vere observed in several nickel-base alloys that encompass a
broad range in yield stresses while significant differences in their crack
growth rates at 593°C were observed [18]. In addition, no correlation was
obtained on AK/E basis at 593°C. Both imply that crack growth at room tem-
perature is cycle-dependent, while at 593°C there is a superimposed time-
dependent crack growth, the extent of which is different for different alloys.

When the plastic flow becomes significant, especially at high tempera-
tures, LEFIl may be of limited use and non-linear parameters such as J-
integral or COD may be better suited. Application of J-integral to fatigue
crack growth involves extrapolation of the original concept [40] to cyclic
conditions where its validity may not be ascertained by the theory. In ex-
tending this concept to fatigue, it is assumed that there exists a character-
istic elastic-plastic region ahead of a fatigue crack which is a unique func-
tion of the crack length and load. Dowling and Begley [41] have shown that,
in A533-B steel, a proper J-integral can be determined under displacement-
controlled fatigue. Their experimental data using different specimen geome-
tries [52] suggests that J-integral is a valid geometry and size independent
parameter for elastic-plastic fatigue crack growth. It has been shown re-
cently [28] for high temperature fatigue crack growth in Udimet 700 that a
proper J-integral can also be determined for load-controlled fatigue. The
procedure involves integration of the load-displacement curves (rising load),
taking the extensions corresponding to minimum load as the lower limit of
integration. This procedure is schematically shown in Fig. 3.
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Fig. 3 MNethod of evaluation of J-inteqral for load-controlled fatigue;
(a) hysteresis loops for two different cycles and crack lengths,
(b) rising load parts of the loops displaced to a common origin.

This definition is compatible to the & definition, and therefore it is
possible to see the effects of mean stress, or the effects of stress ratio,
similar to those observed on A& basis. Fiqure 4 shows fatique crack qrowth
data of Udimet 700 at 850°C (28] in terms of both & and AJ. The spread in
the data is less pronounced in terms of AJ, although, for the compact tension




?eometry used, aK may be reasonably valid at this temperature for this alloy.
t is possible to estimate aJ using a single load-extension curve and the
Merkle-Corten estimation procedure [43] for the compact tension specimen
geometry. It has been shown [28] that the estimation procedure gives aJ
valyes close to those observed by the compliance-type of procedure for the
whole range of aK values.
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Fig. 4 Crack growth rates in Udimet 700 under load-controlled fatigue
as a function of (a) stress intensity factor range, and
(b) J-integral parameter
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Note that unlike in A533-B alloy [41], the Stage II-Stage III transition
in fatigue crack growth rates in Udimet 700 exists even in terms of aJ. This
transition for this alloy occurs due to the superposition of a creep-related
crack growth process [28]. Since aJ appears to be valid in this aK range,
(see Fig. 4) it raises the interesting question as to whether the J-integral
concept can also be extended to creep-induced crack growth. This possibility
will be discussed later.

An alternate parameter that has been suggested is ~rack opening dis-
placement. The presumption here is that fracture at th:.e high temperatures
becomes strain-controlled, rather than stress-controlled. Haigh [44] has
shown that there is less scatter in terms of COD than in terms of 4K for
fatigue crack growth rates in a low alloy steel. Crack growth rates in terms
of COD are represented in Fig. 5 for Udimet 700 [28] for the same loads given
in Fig. 4. Although it is difficult to compare the data in Figs. 4 and 5, at
least the results show that aJ-integral may be even better than COD or AX.
This should be expected since J-integral involves a strain energy term which
is a product of both stress and strain. Major difficulty in using the COD
concept, however, is in its experimental determination, since it involves
some assumption about the position of the hinge point [44] which varies with
geometry and loading.

Examination of the existing data therefore indicates that fracture me-
chanics techniques can be applicable, at least in the temperature and fre-
quency ranges where crack growth is mostly cycle-dependent. It is possible,
to some extent, to identify the cycle-dependent region since fracture in this
region is mostly transgranular. For materials that are more ductile at high
temperatures, J-integral may be better than aK or COD. Crack growth char-
acteristics can be significantly altered when the time-dependent process
is superimposed over the cycle-dependent process as discussed in the next
section.

CREEP-FATIGUE CRACK GROWTH

With increasing temperature, decreasing frequency, or with hold-time at peak
load, the contribution from time-dependent processes could become signifi-
cant. In addition, increasing stress ratio, R, or increasing mean stress
value could also increase the contributions from the time-dependent process.
Prediction of crack growth in this range is important, since many service
components are not subjected to pure cyclic nor pure static loads, but to a
combination of them. Effects of hold-time on crack growth depends on the
material and test conditions. These effects have been studied in many alloys
[(7,10,12,13,19,21,29,30,45-51], and they are summarized in Table 2 along with
hold-time effects on uniformly stressed specimens. Note that hold-time ef-
fects observed in crack growth are also reflected in hold-time effects on
fatigue life. This implies that the effects observed in fatigue life could
be due to the effects in the crack propagation stage, although it does not
rule out the possibility that the effects may be present in the nucleation
stage as well.

Hold-time effects become significant when the microstructure becomes un-
stable at the test conditions. The instability in the microstructure could
increase crack growth rates, as in Type 316 cold worked stainless steel,
where dynamic recovery occurs, or decrease the rates, as in Alloy 718 at
760°C, where dynamic over-aging continuously alters the microstructure and
the flow stress of the material. These factors have a significant impact
in terms of the applicability of fracture mechanics to characterize crack
growth. For such materials, crack growth surely depends on crack length, or
more particularly on how long the material ahead of the crack tip is soaked
at that temperature. Here the inapplicability of the fracture mechanics
techniques is not due to the limitations in the parameters, but due to the
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inability to account for the change in material properties ahead of the

crack tip.

Hold-time effects observed in Udimet 700 provide further insight into
crack growth characteristics under creep-fatigue conditions and provides an
additional example where fracture mechanics techniques are inapplicable.
Figure 6 shows the effects of 1-min hold-time on crack growth rates in Udimet
700 at 850°C [29]. For an initial & of 40 MPasm, the crack growth rates in
a compact specimen decrease first with increase in &K and then increase as X

approaches the threshold &K for creep crack growth [52].

For higher initial

aK values, crack growth rates increase continuously with &K and with hold-

time on a da/dN basis.

On the other hand, for still lower & values close to

20 MPas/m, crack growth rates for l-min hold decrease until the growth com-

pletely stops.

This type of creep-fatigue interaction during crack growth

occurs whenever there is a large disparity between the threshold values for
cycle-dependent and time-dependent processes and when the applied stress in-
tensities are below that of the threshold for the time-dependent process.
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This can be seen clearly since in the 1imit of infinite hold-time (static
load test) crack growth does not occur for &K less than the threshold aK for
ttie time-dependent process. Such beneficial hold-time effects at low aK
values were also observed in a low alloy steel [9], Alloy 718 at 760°C [21],
and in directionally solidified carbide eutectics [35]. These effects become
pronounced with increasing hold-time, with increase in temperature, and with
decrease in flow stress of the material. This occurs generally in the tran-
sient regime, in terms of frequencies, hold-times, or temperatures, where
crack growth changes from one process to the other, such as from cycle-
dependent to time-dependent, or from one mechanism of crack growth to
another. The inverted frequency dependence of crack growth rates that was
predicted [21] and observed in a low alloy steel [9] is related to the above
e’fects. Physically, the effects are related to the relaxation of the crack
tip stress fields during hold times as discussed with reference to Fig. 2.
Needless to say, crack growth rates in this regime cannot be characterized
by any fracture mechanics parameter, including J-integral [28].

If crack growth rates increase continuously during a hold-time test, the
fracture mechanics parameters are likely to be valid except when large scale
deformation occurs which could reduce the stress concentration effect of the
crack. This depends on the creep ductility of the material and test tempera-
ture. For superalloys which have relatively low ductility in the temperature
range of application, fracture mechanics techniques are expected to be valid.
If there are no interaction effects between the cycle- and time-dependent
processes, the applicability of fracture mechanics techniques depends on the
relative contribution from each process. Application of fracture mechanics
concepts to characterize time-dependent crack growth will be addressed next.

TIME-DEPENDENT CRACK GROWTH
Creep Crack Growth

Creep crack growth is somewhat similar to sustained load cracking, as, for
example, in Ti-alloys, but occurs at relatively high temperatures where time-
dependent creep effects and enhanced environmental effects are superimposed.
The relative contribution from each, however, depends on the material and

its processing condition, flow stress, and temperature. Crack growth under
static load at high temperatures has been determined in many alloys [8,10,13,
15,19,22,30,35,38,44,52-69] and is summarized in Table 3.

Fracture Mechanics Parameters

Similar to fatigue at high temperatures, various parameters have been tried
to correlate crack growth data under static load. These include elastic
stress intensity factor (K), J-integral, C*-integral, crack opening displace-
ment rate (as/at), and nominal stress (o ). Some investigators showed that
K is applicable, while others showed thal other parameters are better than K
in predicting creep crack growth. There seems to be some consensus, however,
that for materials that have low creep ductility, K appears to be valid for
a wide range of specimen geometries.

Stress intensity factor appears to be valid, at least for Type 316 cold
worked stainless steel at 538°C, Alloy 718 in the range 538-650°C [19, 67],
IN 100 in the range 650-704°C, and aluminum alloy at low K values at 150°C
[55]. Stress intensity factor also appears to be better than nominal stress
for Udimet 700 at 850°C [52], low alloy steels at 565°C [58], annealed 304
stainless steel at 538°C [63], and Alloy 718 at 650°C [67].

When creep rates are high, then the material ahead of the crack tip
could deform and reduce the crack tip stress field. This could change the
stress field to the extent that LEFM may not be applicable. In many cases
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Table 3 Creep Crack Growth in Structural Alloys

Alloy Temp Geometry Parameter K Range Ref.
{*E) SIS . "
Al-Alloys
RR 58 150 DCB, K, C* 10-30 53,54
Con.K
2219-1851 150 CT K 15-45 55
Low Alloy
Steels
Cr-Mo-V 450-565 CC, SENT K, o> 28 10-90 8,10,44
SENB, WOL ot 56-60
CcT
Mild Steel 450 CT, SEN K 30-50 61
Austenitic
Stainless
304 650 bar,plate K, ¢ 8-15 62
308 weld 593 cT kK N 40-60 15
316 sol., 538-740 CT, CC K, ay» 38 8-40 13,63,
C.W. WOL, DEN ot 64
316 weld 538 WOL 36/ ot 38-50 65

Superalloys

Alloy 718 425-760 CT, SEN, K,J, C* 15-90 19,22,
CC, Surface 66,67

Rene 95 535-760 CT K 25-60 66
Astroloy 535-760 CT K 25-60 65
Waspaloy 535-760 CT K 25-50 38,66
Nimonic 115 704 bar K 25-50 68
Discaloy 650 CT, CC K, C* 30-80 69
IN 100

Gatorized 650-734 CT, CC K 20-80 30
Udimet 700 850 CT K 45-100 52
c73

Carbide 750-950  SEN K 30-80 35

eutectic

correlations with K may still be obtained for one specimen geometry, but such
correlation may not be valid for other geometries. In analogy with creep-
rupture tests, nominal stress has been used to correlate crack growth data
and is claimed to be better than K for low alloy steel at 550°C [8] and an-
nealed 316 stainless steel at 740°C [64].

Haigh [65] argued that use of K is not justified since elastic displace-
ments are small in comparison to the total. In such cases crack opening dis-
placement rate, as/at [44] was shown to correlate the data better than K.

In analogy with the fatigue results (see Fig. 4) J may be a better pa-
rameter to characterize creep crack growth, particularly when LEFM fails.
Crack growth data of Udimet 700 [52] and Alloy 718 [67] were correlated with
J-integral, but the results were not good. The large spread in the data ob-
tained, however, may not be due to limitation of the parameter but due to ex-
perimental difficulties. It was shown with reference to fatigue [28] that




spurious values of J-integral can result if the load-displacement curve char-
acterisitc of a given crack length is not properly defined. To determine the
correct J-integral for creep crack growth, the specimen has to be unloaded
and reloaded at each interval of crack increment to obtain the characteristic
load-displacement curves for the given crack length. This, however, intro-
duces a fatigue component into the crack growth. If the loading and unload-
ing are done at slow rates, fatigue effects can be minimized and proper J-
integral values could be determined.

Another energy-related puirameter suggested for correlation of creep
crack growth data is C*-parameter which is related to the crack tip stress-
strain rate fields [69]. Following the procedures in Ref. [67, 69], C* can
be determined for constant load or constant displacement rate tests. Landes
and Begley [69] claim that crack growth rates correlate better with C* than
with K in Discaloy. Figure 7 shows the data for Udimet 700 [52] in terms of
K and C*. C* does not seem to be any better than K, at least for one geom-
etry, although further evaluation is required using different geometries.

Turner and his coworkers [53,54,70] estimated C* parameter using non-
linear bending theory. They show C* to be related to the strain rate sensi-
tivity of the material, n, as well as to the product of load and 3a/3a, where
a is the displacement rate, and a, as defined earlier, is the crack length.
They show that C* correlates crack growth rate data reasonably well for alum-
inum alloy and low alloy steel. No attempt has been made to compare the es-
timated C* values with those determined experimentally [67,69]. Also, their
analysis applies only when bending components are overwhelming as in DCB or
CT specimens. C* parameter seems to be promising for creep crack growth, but
additional work is required using different geometries and loading modes in
different materials.

In extending the fracture mechanics concepts to creep crack growth, two
problems arise which require careful consideration. This crack growth is
highly sensitive to changes in microstructure [60,66,67]. Large differences
in growth rates were observed in the same alloy which underwent the same heat
treatment, but in two different batches [29]. This means that observed scat-
ter, when comparing data from different studies, may not be due to the limi-
tation in the fracture mechanics parameters. This also implies that to use
fracture mechanics for design, close control of chemistry and processing
treatments is required.

The second problem that is of concern here is the measurement of crack
length. Crack growth in the ductile materials occurs by the nucleation of
small cracks ahead of the main crack and joining of the most suitebly ori-
ented cracks with the main crack. When several cracks are being nucleated
simultaneously at the crack tip, particularly in the specimens loaded in ten-
sion, it becomes difficult to determine the crack length by any viable tech-
nique. Therefore, scatter in correlation data could also be due to the un-
certainty in crack length measurements.

Micromechanisms

It is useful at this point to understand the micromechanisms of time-
dependent crack growth, since application of fracture mechanics concepts

are intimately related to it. Crack growth in the creep range is essential-
ly intergranular. Detailed observations suggest that there may be at least
two distinct mechanisms for crack growth: grain boundary diffusion (GBD)-
controlled, where the diffusing species could be oxygen or vacancies; and
deformation-controlled, where creep deformation plays the major role. Also,
the GBD process is sensitive to deformation [67], particularly at high tem-
peratures, since dislocations act as secondary sinks to the diffusive species
and thus disperse them away from the crack tip region. A detailed analysis
of the diffusion problem [71] indicates that for cracks to grow by this
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process, D e>20br , where D_ and D_ are grain boundary and bulk diffusion
coefficienfs, &i¥ the graiﬂ boundgry thickness, and r_ is the plastic zone
size. Since creep deformation is not a prerequisite fBr GBD controlled crack
growth, cracks can grow rapidly, especially in high strength materials, be-
fore creep relaxations can set in. Fracture mechanics concepts should be
readily applicable for this crack growth. With increase in temperature, de-
formation rates on one side and bulk diffusion rates on the other increase
rapidly to induce deformation-controlled crack growth processes. Crack
growth in this regime occurs by the nucleation of voids or cracks ahead of
the main crack and their subsequent coalescence. Since extensive deformation
could reduce the stress concentration effect at the crack tip, fracture
mechanics may have limited application in this range. Fracture mechanism
maps were developed based on the above concepts [71] which show the tempera-
ture and stress intensity ranges where GBD and deformation-controlled mech-
anisms occur.

For time-dependent crack growth, applicability of fracture mechanics
depends on the micromechanism of crack growth. For GBD controlled process,
which is likely to occur in the temperature range 0.4 to 0.7 T,, fracture
mechanics techniques are applicable. For deformation-contro]l@d crack
growth, which is likely to occur at higher temperature or in relatively
ductile materials, the application of the fracture mechanics techniques may
be limited. The techniques can be applicable until the deformation becomes
significant which reduces the stress concentration effect of the cracks.

SUMMARY AND CONCLUSIONS

Application of fracture mechanics concepts to characterize crack growth at
high temperature under cyclic, static, and combined loads has been reviewed.
When crack growth is cycle-dependent, linear elastic fracture mechanics is
applicable to a & range where plane strain conditions exist; but this range
is not necessarily related to that given by the ASTM criterion for plane
strain for fracture toughness. It may be necessary to develop alternate
plane strain criteria for fatigue and creep which depend on the micromech-
anisms of crack growth. Fracture mechanics concepts could be utilized to a
limited extent for time-dependent crack growth. Non-linear parameters may
be more appropriate for this. Extensive work using different specimen geom-
etries and loading for different materials is required before the limitations
of the fracture mechanics concepts to time-dependent crack growth is fully
ascertained. Application of the concepts to crack growth under combined
creep-fatigue conditions depends on several factors, particularly those
which influence creep-fatigue interactions. Microstructural instabilities
during crack growth would also 1imit their application. In addition, the
applicability of fracture mechanics concepts are shown to be intimately re-
lated to the micromechanics of crack growth, since the time-dependent proc-
esses are very sensitive to the variations in microstructure.
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