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ABSTRACT . Two new combinatorial inequalities are
(~) presented. The main result states that if 1< ~

are fixed complex scalars with o ~~ > 0 and.

~~~~~~ 

- > 0 , and if ~ is a formed vector

space over the complex field, then 
D D C

max~. IE~i~ a~.(~)I ? [o5/(2o + o)J !fl&X
j  

la j i rn~Ef~
)1?FJnJJ2 j9~ILJ~ FEB 22 1918

In,
_ _ _ _ _ _ _ _ _ _ _ _

U~ L6U~J L6 UUL 6
ir varying over permutations of n letters . Next , we B

4 consider an arbitrary generalized matrix norm N and

discuss methods to obtain multiplicativity factors for

1 O.... N, i.e., constants v > 0 such that vN is submultipli-

cative. Using our combinatorial inequalities, we obtain
multiplicativity factors for certain C-numerical radii

which are generalizations of the classical numerical

radius of an operator.

~~~~ 1. SOME NEW COMBI NATORIAL INEQUALITIES
In a recent paper [ 5 ]  we studied a somewhat less general version of the

following problem: Given fixed complex scalars .,y~, and a normed

vector space ~ over the complex field C, can we find a constant K> 0
such that the inequality

(1.1) max E ~ a~(j)~ ? K .maxla~I~ ~~~~~~~~~ €
u - E S  j=l
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is sat isfied? Here Sn is the symmetric group of n letters, and la~l
18 the norm of the vector aj.

We start with the following lemma.

LEMMA 1.1. For any 7k,. .‘7~ E C and a
1
,.. ~~~ e

max
I~~~

v a~( )~ 
>~~~~~~ X l7~ - y  •max la~ - air i i,j i,j

Proof. We may rearrange the and the aj so that

— = ~a~c1i~. - 7j1 I a 1 - a~1 = a d a .  - a
ji .

Now, consider the vectors

= i1a~ + y2a2 + ... + 7~~1a 1 + y a  ,

= y1a~ + y
2a2 + • . .  + 7~~1a~~1 + y a 1

We have

x 1X ~v~ a7T(j)l > max(Ib1I , I b 2 l 3 > ~~ lb 1 - b 2 1

= ~ Ii~a1 + y a  - i1a~ - y a 1I -~~f
;

1=~~I7i- 7 nI . 1a~~-a~1 
~~

‘ - 0

and the proof is complete. 0

Denoting V
~~ ±~ 

V V 

~~~V_

(1.2) a = , ~~ = max -

we prove the following result.

THEOREM 1.2. There exists a constant K> 0 that satisfies (1.1) if
and only If c’~’> 0 .  If o~ >0 then (1.1) holds with K = a8/(2o +

Proof. Suppose o~ = 0. If a = 0, take aj a, 1< j < n, for
some a ~ 0; if ~ = 0, then the 7~ are equal, so choose not all
zero with L aj a 0. In both cases,
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~~ 
Z~ 7~ a.7~.( j) = 0 but max la j i > 0 ;

hence no K> 0 satisfies (1.1).

Conversely, suppose aB> 0 and let us show that K = aB/(2cr ÷ B)
satisfies (1.1). The following proof, which is shorter than the original

V one in [5], is due to Redheffer and Smith [8].
Order the aj so that

V a1 = max la~I I a 1 - a t  = max Ia 1 - a~I E eI a 1I (o <e  <2)

Thus , by Lemma 1.1, -

(13) UI d IE 7~ a~.(~)1 ?~~~~~Ifl5.X l a~I

Next , consider the vectors

C
j  

= .7~a1+~ + 72a2÷j + . . .  + ~~~~~ , 3 =

where k + j = (k + j)mod n. We have

m ax l E l j  a11.(j)i ?V m x  l C j I ?~ lc i + ... + c~

V 
=~~~ f a 1+ . . .  + a ~ I

= 
~~~ m a 1 - (a1-a 2) - (a1-a

3
) - . . .  - (a1-a 1)l

?~~ CnI a 1l - (n_1)(a
~ 

- a t )

= a( 1 - ~.:i e) max I a  I
3 3

By (1.3) and (1.14.), therefore,

(1.5) m a x I E i j  a,~<j) I  ~ V max
{~~~ a(i - ~~~e)} • max la~l

The expressions in the braces are function s of e describing straight lines
with opposite slopes and, intersecting value aB/(2a + B - 2a/n.) Thus , for
any e ,

lOB n-i 1 aB 
_ _ _ _ _ _(1.6)

By (1.5) and (1.6), the theorem follows. 0 V

- V V V 
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What is the best (greatest) possible K which satisfies (1.1)? In

answer to that question, Redheffer and Smith proved the following [8].

THEOREM 1.3. If a B>  0 , then the best K for (i.i) satisfies

(1.7) 2c + 6 2a/n < K < mm {a ’ 2a + 5 - 2~/n - 25/n) ‘

and the inequality on the right becomes an equality when the y~ ~~~ a
3

are real numbers. 
V 

V

We note that the left-hand inequality in (1.7) was established alrea&y

V 
in the proof of Theorem 1.2. For the complete proof of Theorem 1.3, see [2].

V From Theorem 1.3, Redlieffer and Smith immediately conclude that
while the Goldberg-Straus constant in Theorem 1.2 is not optimal for any n,

it is the best that can be chosen independently of n, even if the 7. and H
a3 are real.

Under certain restrictions on the 7~ , we can improve the constant
obtained in Theorem 1.2.

T1~ OREM 1.14.. If 71’~ ••’7 n are of the same argument, then (1.1) holds H
with K = B / 2 .

Proof. We may assume that

Arrange the a
3 

so that -

1a11 = max I a 3 1
V 3 H

and let P be a projection of ~ in the direction of a
1
. We write

= X
3
a

3 
, 3 = 1,.. .,n ,

and set

P3
=Re X3 ,  j = 1 ,...,n .

Since

LII ~~~~~~~~~~~~~~~~ i V ~~~~~~~ 
- ~~~~~~~~~~ V_  ~~~~~~~~~~~~~~~~~~ _______________________
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X1= 1 > 1 X 3 1 ,

it follows that V

j — 2 ,...,n .

So we may order a2,.. .,a to satisfy

V 

We have 
-

(1.8) max E 7~ a~~ i) I ? max ~ (i~ 7~ 
a~~j))

=
~~~~~~ I E Y 3X3 I . I a iI > max IRe (E uj~~j ) 1 . 1aiI

= max I E7P~4~I . ma x I 5 t .
~r ~~~~~~~~~~~~~~ j 3

Now, if 0 , then

V ~i~(i)I ~~~~7j~ j  ~ ~ 
- 

~n) =

and if p~ < 0, then, by ‘Lemma 1.1,

~ I ~i~ir(i)I 
?~~~max I P j  - P3 1 =~~~ ~~p1 

- %) ?~~
This together with (1.8) completes the proof. 0

Note that when the Yj are of the same argument , then B > 0 implies
0 > 0 , in which case

aS
2 2 a + 5

That is , the constant of Theorem 1.14 is indeed an improvement over the K of
Theorem 1.2.

2. MATRIX NORMS AND ~~~ERALIZED NtTh~ RICAL RADII
In this section we review (mainly without proof) some of the results in

[5) which lead to applications of our combinatorial inequalities .
We start with the following definitions [7] : let ~~~~ denote the

algebra of n x n complex matrices. A mapping

V 
. - 

. • . . _ _ _ _ _ _ _ _  - 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N : C ~~~ — iR

is a seminorrn If for all A,B E ~~~ and a € C,

N(A)> O ,

N(aA) = I a I N(A)

N(A + B) < N(A) + N( B)

It in addition

N(A) > 0 , •VA ~~ 0 ,

then N is a generalized matrix norm. Finally, if N is also ( sub)
multiplicative, i.e.,

N(AB) < N(A)N(B)

we say that N is a matrix norm.

EXAMPLES. (I) If ~ is any norm on C~, then

= maxCiAx i : lx i  = i)

is a matrix norm on C~~~ . In particular , we recall the spectral norm

* *  1/2 *h Ail2 = max((x A Ax) : x x = 1)

V (ii) The numerical radius ,

r(A) = inax( Ix*AXI : x*x = i)

is a nonmultiplicative generalized matrix norm (e .g . ,  [6 , ~l73,176] , [ 3 ] ) .

In (5] we introduced the following generalization of the numerical
radius: Given matrices A ,C € Cr~~ 

the C-numerical radius of A is the
nonnegative quantity

r~(A) max (Itr( cu*Au) l : U n x n unitary)

It ii not hard, to see that

-
V - -
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V V

r(A) = r0(A) with C d.iag(l,O ,. . .,0) ;

thus R(A) is a special case of r~(A) .
- 

It follows from the definition that for each C , r~ is a seminorm on
C1~~~. We may then ask whether r~ is a generalized matrix norm . Since the
situation is trivial for n = 1, we hereafter assume that n > 2.

THEOREM 2.1 ([5]). r~ is a generalized matrix norm on if

and only if C is a nonscalar matrix and tr C ~ 0.

Next, we consider multipli cativity, which seems to be a complicated
question.

For a given seminorm N and a constant v > 0 , evidently

N~~E vN

is a seminorm, too. Simi larly, if N is a generalized matrix norm, then
so is N~ . In each case the new norm may or may not be multipli cative. If
it is, we call v a multiplicativity factor for N.

It is an interesting fact that seminorms do not have mu.ltiplicativity
factors , while generalized matrix norms always do. More precisely, we have
the following result.

V TREXDBEM 2.2 ([5]). (i) A nontrivial seniinorm has multiplicativity
factors if and only if it is a generalized matrix norm.

(ii) If N is a generalized matrix norm~ then v is a multiplicativity
factor if and only if

N(AB
— N A ~ N(A j N(~B,

Theorems 2.1 and 2.2 guarantee that r
~ 

has rnultiplicativity factors
if and only if C is nonscalar and tr C ~ 0. In practice, however,
Theorem 2.2 was of no help to us since we were unable to apply it to
C-numerical radii.

An alternative way of obtaining multiplicativity factors is suggested

by the following theorem of Gastinel [2] (originally in [1)). 

V J
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THEOREM 2.3. Let N be a generalized matrix norm, M a matrix norm,

and T~ > ~ > 0 constants such that

~M(A) < N(A) < r ~M(A) , V A  € C~~~

2Then any v > r~/~ is a multiplicativity factor for N.

Proof. For ~ > ~~~
2, we have

NV (AB) vN(AB) < v ~M(AB ) < vr~M(A)M( B) <~~~~
-
~~~ N(A)N ( B)

- 

V •

.< ~2 N(A)N(B) = I%c(A)N~
(B)

and the proof is complete. 0

Since any two generalized matrix norms on C~~~ are equivalent ,

constants ~ > ~ > 0 as required in Theorem 2.3 always exist .

Having Gastinel’ s theorem and the inequalities of Section 1, we are now
ready to obtain multiplicativity factors for C-numerical radii with
Hermitian C.

Combining Lemmas 9 and 10 of [5], we state:

LEMMA 2.3. If C is Hermitian with eigenvalues 7~, and if K

satisfies (1.1), then

[~] 11A112 ~ 
r
~
(A) ~[E 17 j 1] 11A211 V A  €

Using the notation of (1.2), we prove:

THEOREM 2. 14 . Let C be Hermitian, nonscala r, with tr C ~ 0 and

eigenvalue s y~ . Then any V with

~~~~~~i ____V > 14 /.., 
~7— 3 ’  aS

is a multiplicativity factor for r
~
; i.e., yr

0 ~ 
r~~ is a matrix norm.

Proof. Since C is nonscalar, the are not all equal ; and since
V tr C ~ 0, ~ 0. Thus aS > o , so inequali ty (1.1) is satisfied by the

positive constant K of Theorem 1.2. By Lemma 2.3, therefore,

: - - - ~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 

~~~~~~~~~~~~~~~~

~~ 2a+ 5 ~~ 
< r0(A) <E I 7~l llA~l 2 ,  VA  € c~~~~~ ,

and Gastinel’s theorem completes the proof. 0

For Hermitian definite C, we improve Theorem 2. li. as follows.

THEOREM 2.5. Let C be Hermitian nonnegative (nonpositive) definite.

If C is nonscalar with eigenva lues then any V with v > l6a/52 is

a multiplicativity factor for r0.

Proof . Since C is Herinitian definite, the are of’ the same sign .
So (1.1) holds with K of Theorem 1.14, and Lemma 2.3 implies that

~ 
< r ~(A) <~~ 17 . 1 I~ II2 = a i~~~2 ’  V A .

-! Since C is nonscalar , the 7. are not all equal; so 5> 0, and Theorem
2.3 completes the proof. 0

The optimal (least) multiplicativity factor for r , V , is the subject

of our last result. -

THEOREM 2.6. yr is a matrix norm if and only if v > 1~• That is,

v~~~~14.r

Proo.c.~ It is well known (e.g., [6 , §173]) that

~ ilAll~ ~ r(A) ~ ~Ali2 ,  V A € c~~~~~ .

Thus, by Gastinel’ s theorem, v > 14 is a multiplicativity factor for r ,

and. by Theorem 2.2, V < 1 4.

To show that V
r 

> 14. , consider the n x n matrices

/0 1\ /0 0\
B = (  ~~~ 2 ’

‘~ ~~i 
n-2 ‘1 ~/ 

n-

A simple calculation shows that r(A) r(B) = 1/2 and r(AB ) = 1. Hence
~ yr satisfies

r~(AB ) < r~(A)r~(B) - 

-
- V .. ~~~~~ ~~~~~~ 

V 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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if and. only if v > 14, and the theorem follows . 0

- Note that the results of Theorems 2. li. - 2.6 depend neither on the
dimension n nor on the space V.
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20. Abstract continu ed .
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max~J~~ ry
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a.l~<~~) I ~ 

{ crf / (2o + 
~W max j~a~ I ~~~~~~~~~ €

7r varying over permutations of n letters. Next, we consider an arbitrary
generalized matrix norm N and discuss methods to obtain multiplicativity
factors for N, i.e., constants v > 0 such thaG vN is submultiplicative.
‘Jsing our combinatorial inequalities, we obtain multiplicativity factors for
cer tain C-numerical radii which are generalizations of the classical
numerical radius of an operator .
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