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COMBINATORIAL INEQUALITIES, MATRIX NORMS, AND GENERALIZED NUMERICAL RADII

ABSTRACT. Two new combinatorial inequalities are
presented. The main result states that if 7., 1< j<n,
are fixed complex scalars with o E|§373| >0 and

) = max; . |7:.L - 7:j| >0, and if V is a normed vector
space over the complex field, then
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Va.l,...,an eV ,

m 'varying over permutations of n letters. Next, we

consider an arbitrary generalized matrix norm N and
discuss methods to obtain multiplicativity factors for
N, i.e., constants v > 0 such that vN is submultipli-
cative. Using our combinatorial inequalities, we obtain
multiplicativity factors for certain C-numerical radii
which are generalizations of the classical numerical

radius of an operator.

1. SOME NEW COMBINATORIAL INEQUALITIES

In a recent paper [5] we studied a somewhat less general version of the

following problem: Given fixed complex scalars 71,. YA and a normed
vector space V over the complex field €, can we find a constant K> 0 |
such that the inequality

n
(1.1) max |2 7, a > K- max|a,]|, Vays..sa eV,
res 131 3 mJ) J 1 n
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is satisfied? Here Sn is the symmetric group of n letters, and la

4!

is the norm of the vector 8y
" We start with the following lemma.

LEMMA 1.1. For any 71,...,7 e C and al,...,anev,

ma.x27 l max |7, - 7.| ‘max |a; - a,]
3 *m(3) ,J N R R

Proof. We may rearrange the 7 j and the a 3 so that

|71 - 7n| = ma.xl‘ri - 7:j| 3 Ial - anl max[a - ajl g
i,J i, J

Now, consider the vectors

b Rl e Sl R L DR

by = 758, * 728,

a

T laa%aa * M -

We have

e |7y a| 2 syl 2 4 ey -

-d “ - [ ACCESS
2 1781+ 758, - 718, - 78 -
1 Doe
"2"71'7nl 2 Ial'anl ’ JL
US
and the proof is complete. O
BY
Denoting DDISI
18t
(1.2) o= 2373', 6‘”"'71'73' ’
. J 1,3 |
we prove the following result.

THEOREM 1.2. There exists a constant K> 0 that satisfies (1.1) if

and only if ¢8> 0. If o5 >0 then (1.1) holds with K = 08/(20 + 8).

Proof. Suppose ¢d =0. If o =0, take aJ=a, 1< j<n, for

J

70 ¢ '

some a #0; if 5 =0, then the 7‘1 are equal, so choose a, not all

gero with 2 8y = 0. In both cases,




hence no K > 0 satisfies (1.1).

273 11'(.:))’-0 but m§x|a3|>0;

Conversely, suppose 08 > 0 and let us show that X = 08/(20 + )
satisfies (1.1). The following proof, which is shorter than the original
one in [5], is due to Redheffer and Smith [8].

Order the a 3 so that
-ma.xlajl 5 |al-an| =m§x[al-ajl = o|a, | (0<e<2) .
Thus, by Lemma 1.1,
'65
(1.3) "‘;,”‘l? 7 aw(a')l R |

Next, consider the vectors

+...+7a =

3 = 732145t 72Posy nn+j
where k + j = (k + j)mod n. We have 8
(1) x| 27, m)l > nax legl 22 ey + o+ el
=%|al+ +an|
=& lnay - (ay -2y - T R R SO |
> £ folay] - (a-Dlay - o] |

n-1
= o(1 - ==e) mgx Iadl
By (1.3) and (1.4), therefore,

(1.5) > ma.x{— , o(1 - ;1 e)} - max

Z 75 %1(3)

The expressions in the braces are functions of © describing straight lines

with opposite slopes and intersecting value ¢8/(20 + & - 20/n.) Thus, for
any 6,

; [2) od 08
(1.6) m{2 ,0(1-_6)}-20+5-20/n 20 + O

By (1.5) and (1.6), the theorem follows. O




What is the best (greatest) possible K which satisfies (1.1)? In
answer to that question, Redheffer and Smith proved the following [8].

THEOREM 1.3. If 0% > 0, then the best K for (1.1) satisfies

ad : gd
(1.7) 20+6-2c755KSmn{c’20+6-20/n-28/n} i

and the inequality on the right becomes an equality when the 7j and za.‘_j

are real numbers.

We note that the left-hand inequality in (1.7) was established already

in the proof of Theorem 1.2. For the complete proof of Theorem 1.3, see [2].

From Theorem 1.3, Redheffer and Smith immediately conclude that
while the Goldberg-Straus constant in Theorem 1.2 is not optimal for any n,

it is the best that can be chosen independently of n, even if the 7j and
ad are real. :
Under certain restrictions on the 73, we can improve the constant

obtained in Theorem 1l.2.

THEOREM 1.4. If 7qs+++s7, &re of the seme argument, then (1.1) holds
with K = 5/2.

Proof. We may assume that

Arrange the a_, so that

J
Iall =m3'x Ia'jl ’

and let P be a projection of Y in the direction of al. We write

rnd = Xdad s d = lyeiesn

and set

= Re XJ ’ g = Lysenyll &

°3

Since

e~
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5
/
x1=1.>_lle . §mBeiisin o
‘it follows that
pl=12'pdl s J=2,...,n.
So we may order aa,...,an to satisfy
1=p12p22 ‘.‘an,
We have
(1.8) m;rlx 273 ”(J)l >max P(?)'J'a‘n_(j))l
"";" e R g Re@’skm)) Iyl
= max 237 P a
RE | 2 0y e Juy -
Now, if Py >0, then
1 5 .
m;x 23373917“) ‘E7j;j>71°1 5(ry-7) =53
and if pn<0, then, by Lemma 1.1,
58 ' 5 5
m:rx ?7;!0”(3) §ma3: loy -ojl =2y -0)2%.

This together with (1.8) completes the proof. 0O

Note that when the 7, are of the same argument, then % > 0 implies

J
g >0, in vhich case
d od
2>2q+8 ;

That is, the constant of Theorem 1.4 is indeed an improvement over the K of
Theorem 1.2.

2. MATRIX NORMS AND GENERALIZED NUMERICAL RADII

In this section we review (mainly without proof) some of the results in
[5) which lead to applications of our combinatorial inequalities.

We start with the following definitions [7]: let C_,_ denote the
algebra of n X n complex matrices. A mapping




N:Cnxn—»IR

is a seminorm if for all A,B ¢ cnxn and ae C,

N(A) >0 ,
N(cA) = |a| N(a) ,

N(A + B) < N(A) + N(B) =
If in addition
N(A) >0 , VYA #0,

then N is a generalized matrix norm. Finally, if N 4is also (sub)
multiplicative, i.e.,

N(AB) < N(A)N(B) ,

—— e~ =

we say that N is a matrix norm.

EXAMPLES. (i) If |:| 4is any nom on €, then
Al = max{|ax| : [x] =1}

is a matrix nom on cnxn' In particular, we recall the spectral norm

“A“2 = max[(x*A*Ax)l/z P xx = i} .

(ii) The numerical radius,

r(A) = max{|x Ax| : x"x = 1} ,

is a nonmultiplicative generalized matrix norm (e.g., [6, §173,176], [3]).

i In [5] we introduced the following generalization of the numerical
radius: Given matrices A,C ¢ cnxn’ the C-numerical radius of A is the
L nonnegative quantity

L i ro(A) = max{|tr(CUAU)| : U n xn unitary} .

' It is not hard to see that




R

r(A) = rc(A) with C = diag(1,0,...,0) ;

‘thus R(A) is a special case of _rc(A).

It follows from the definition that for each C, To is a seminorm on

Can. We may then ask whether ro is a generalized matrix norm. Since the

situation is trivial for n =1, we hereafter assume that n > 2.

THEOREM 2.1 ([51). ) is a generalized matrix norm on cnxn 2By

and only if C is a nonscalar matrix and tr C # 0.

Next, we consider multiplicativity, which seems to be a complicated
question.
For a given seminorm N and a constant v > 0, evidently

Nv £ vN

is a seminorm, too. Similarly, if N is a generalized matrix norm, then
so is Nv' In each case the new norm may or may not be multiplicative. If

it is, we call v a multiplicativity factor for N.

It is an interesting'fact that seminorms do not have multiplicativity
factors, while generalized matrix norms always do. More precisely, we have -
the following result.

THEOREM 2.2 ([5]). (i) A nontrivial seminorm has multiplicativity
factors if and only if it is a generalized matrix norm.
(11) If N 4is a generalized matrix norm, then v is a multiplicativity

e e e 7 P L i > o SR ot S5 aldnal g > i o i o :w.»{-,:v. AT B o i ot e RN 5t v

factor if and only if

N(AB

® EAX  ErON(E)

v 2 v
A,B{O

N

Theorems 2.1 and 2.2 guarantee that r, has multiplicativity factors

(o
if and only if C is nonscalar and +tr C f 0. In practice, however,

Theorem 2.2 was of no help to us since we were unable to apply it to
C-numerical radii.

An alternative way of obtaining multiplicativity factors is suggested
by the following theorem of Gastinel [2] (originally in (1]).




LL..L‘ B oyt ot

THEOREM 2.3. lLet N be a generalized matrix norm, M a matrix norm,

and n > ¢ >0 constants such that

. gM(A) < N(A) < 1M(4) , Vhet -

Then any v > q/§2 is a multiplicativity factor for N.

Proof. For v > n/ge, we have : |
N, (AB) = vN(AB) < vM(AB) < viM(A)M(B) < 13 N(A)N(B)
. . g

2
< v" N(A)N(B) = N (4)N (B) ,
and the proof is complete. O

Since any two generalized matrix norms on Cnxn are equivalent,
constants ¢ > n > 0 as required in Theorem 2.3 always exist.

Having Gastinel's theorem and the inequalities of Section 1, we are now
ready to obtain multiplicativity factors for C-numerical radii with
Hermitian C.

Combining Lemmas 9 and 10 of [5], we state:

ILEMMA 2.3. If C is Hermitian with eigenvalues 73’ and if K
satisfies (1.1), then

(3 lall, < =) s[? gl gl e g -

Using the notation of (1.2), we prove:

THEOREM 2.4. Let C be Hermitian, nonscalar, with tr C # 0 and
eigenvalues 73. Then any v with

vzhzhﬁ(ééjf

is a multiplicativity factor for rc; 1.8 vrc = er is a matrix norm.

Proof. Since C 4is nonscalar, the 7J are not all equalj and since
trCc {0, T 75 #0. Thus 05> 0, so inequality (1.1) is satisfied by the
positive constant K of Theorem 1.2. By Lemma 253, therefore,

— Nl = JERE T T S — SR R
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el -

L s Ml < Tyl Ay, VA e

-and Gastinel's theorem completes the proof. O

For Hermitian definite C, we improve Theorem 2.4 as follows.

THEOREM 2.5. Let C be Hermitian nonnegative (nonpositive) definite.

If C is nonscalar with eigenvalues 7, then any v with v > 160/62 is

a multiplicativity factor for re

Proof. Sincé C is Hermitian definite, the 73 are of the same sign.
So (1.1) holds witk K of Theorem 1.4, and Lemma 2.3 implies that

2 lally < 28 <T 17yl Il = Wl s vA -

Since C is nonscalar, the 7j are not all equal; so & > 0, and Theorem

2.3 completes the proof. O

The optimal (least) multiplicativity factor for r, Vo is the subject °$
of our last result. ; i

THEOREM 2.6. vr is a matrix norm if and only if v > 4. That is, |

v, =L
r
Proor. It is well known (e.g., [6, §173]) that
Ll <o) <l s VA< -

Thus, by Gastinel's theorem, v > L4 is a multiplicativity factor for r,
and by Theorem 2.2, LT Lo

To show that Ve > L4, consider the n X n matrices

(0 1) 0 0
A = ®0 ’ BrE ( )ea 0 .
0 0 n-2 1 0 n-2

A simple calculation shows that r(A) = r(B) = 1/2 and r(AB) = 1. Hence
r, & vr satisfies

r (AB) < r (A)r,(B)




if and only if v > 4, and the theorem follows. O

Note that the results of Theorems 2.4 - 2.6 depend neither on the

dimension n nor on the space V.

T S TR gt
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