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ABSTRACT

An exemination is made of methods of measuring the lengths of
arbitrarily shaped smooth curves from their quantized repre-
sentations, both in the absence and in the presence of noise.

For lW-way encoded curves in the absence of noise, the length

of the underlying smooth curve can be accurately assessed as s
constant multiplied into n, the number of direction vectors in

the curve, or as a function of n and the number of corners in

the curve. Good measurements can also be obtained in the presence
or absence of noise by means of an m-step polygon measure, or
after direction or curvature smoothing. The methods are explained
and their merits are compared.
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1. INTRODUCTION

Suppose that in a two-dimensional field of view there is a real
object with a hard smooth boundary well differentiated from the
background. Observers would agree that the object covers some
definite area (Ao, say) and has a boundary of definite length (So, say).
If the field of view, and the object on it, are quantized for the
purpose of analysis, the resulting values of area and boundary length
will differ somewhat from Ao and So. If, in eddition, the physical
device which effects the transition from field of view to matrix of
numbers is subject to random noise (and this is often the case), then
the recorded value of boundary length, Sr’ sey, will further depart
from the "true" value of So. Indeed, if the boundary could be
corrupted by random noise of limited amplitude but of indefinitely
high spatial frequency, Sr would tend to infinity, although in practice
the highest noise frequency is determined by the grid spacing of the

quantization.

In the accompanying paper (1) we examined the errors occurring
when a straight line of known length is measured by means of its
encoded representation. The same type of analysis could be used to
determine the average error in measuring the length of a quantized
form of a mathematical curve such as a circle or other conic section
(ef.(2)). However, typical natural objects are not bounded by
mathematical curves and in the computer analysis of visual scenes
the task often arises of measuring the length of a curve of unspec-
ifiable shape. This paper is concerned with the problem: given
the recorded boundary list of a quantized closed curve, estimate the

true length, SO, of the original smooth curve. Fﬁ
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We distinguish, for the purpose of discussion, two classes of

curves: noise-free curves for which error in the encoded representation

is due only to the quantization effect; and noisy curves for which .i
the quantization error is compounded by the addition of random noise.
In order to analyze noisy curves it is necessary to introduce some
form of smoothing operation to diminish the effect of the noise. From
among the many smoothing operations available, we have in the present
context examined only the two which we consider simplest--curvature
smoothing (3 - 6) and direction smoothing. However, whereas length
determination involving smoothing operations can be used on noise-
free curves, some simple methods of measuring lengths of noise-free

curves fail in the presence of noise, as might be expected.
2. THE SPECIFICATION AND MEASUREMENT OF AREAS AND BOUNDARIES

If a continuous region of a picture is quantized onto a square
grid, where the region, of area Ao, is well contrasted to the background,

the region is represented by a set of picture elements (pixels), each

of which is the same area and is specified by a co-ordinate pair
(xi,yi) where i =1, 2, ...,t and t is the total number of pixels.
The area, A, of the quantized region is evidently equal to t x (pixel

area), or Ar =t if the pixel area is unity. ‘

Kulpa (7), and also Senkar and Krishnemurthy (8), have argued
that the area enclosed by a digitized curve should be evaluated by
use of Pick's theorem (9) which states that the area, A, of a polygon,
the vertices of which lie on the points of a grid with unit cell of
unit area, is given by A = i + b/2 - 1, vhere i is the number of grid

points interior to the curve and b is the number of grid points on




the boundary. However, in dealing with quantized regions, it is
necessary to be clear as to what is teken as the boundary. It is
common practice to take as the boundary either {(xj,yj)}, a subset
of ((xi,yi)}, containing the co-ordinate pairs of all those pixels
which lie on the edge of the region, or {(xk,yk)}, the co-ordinate
pairs of all those pixels which lie just outside the region (7).

The implication of this practice is that the pixel coordinate pairs
specify grid points; but it would accord better with the technology
of picture processing to consider the pixel co-ordinate pairs to
specify the centers of unit cells of the grid (Fig.l), in which case
they can be referred to as lattice points. We can thus distinguish
the grid point boundary, bg, and the lattice point boundery, bys
together with the respective esreas specified by them. This matter .
is considered in more detail elsewhere (10) where it is proved that
Pick's formula applied to bg gives an area equel to t, the total

number of lattice points (i.e. the total number of pixels), and also

that b_=b, + 4.
g ')

In the present work we have taken the area of a region to be
the total number of pixels comprising it and its boundary to be the
grid point boundary as illustrated in Fig. 1, chain-coded by & lU-way

code (1).

An impertant matter to be ncted at this point is that whereas

‘ . the geometric length, Sr, of either the grid-point or the lattice-

point boundary is & pcor epproximaticn to the true length, SO, of
B . the original unquantized boundary, the quantized area,Ar, is a good
approximation to the unquantized ares, AO, provided that the region

can be represented by several hundred or mcre pixels and that most




of the region is more than & few grid units across. This is illustrated
in the results given below, but can be seen intuitively by considering
the effect of noise. If noise is represented, as below, by pixels

being randomly added to or subtracted from the boundary, the area

within the boundary, Ar' will be unchanged, provided that the additions
and subtractions are equal in number; bdut the 1ength,sr, of the

boundary will be significantly increased.
3. METHODS OF MEASURING THE LENGTH OF ARBITRARY CLOSED CURVES

Circularity methods

We have included two methods of approximating the length of
boundary of an irregularly shaped area since their results were easy
to compute from our data. The deficiencies of the methods are,
however, obvious and little attention is given to them in the results

we quote below.

Circumference of equal-area circle. This method, self-explanstory,

will clearly give a reasonably accurate estimate of the length of
boundary of nearly-circular areas without important clefts or
protuberances, but will fail otherwise. It has been used in a few

cases for the measurement of appropriate objects (11).

Circumference of average-diameter circle. The average value, 4, is

taken of the projection of the area onto lines at various directions;
the length of boundary of the area is then estimated as 2rd (12).

In using this method we typically took directions inclined to the
x-axis at 10 angles between 0° and 180°. The method works quite well

for compact areas bounded for the most part by convex arcs, but fails

g - -~ o t ‘ e ,l_-;&l % .m'\v '-l‘




if there are significant re-entrent regions in the curve.

Methods not involving smoothing to eliminate noise

B, correction to the number of boundary chain links. We have

shown in the accompanying paper (1) that if an arbitrarily-oriented
straight line of length % is b-way encoded in a sequence of n points
the length n of the digitized line gives an average relative error

L et il 4 1. It follows from this result that if the length
of the grid unit were taken as ﬁ-iustead of 1, the average relative
error would be zero; but this method is rejected as a means of
measuring the lengths of straight lines since it involves too large

a standard deviation, implying that the relative error would be un-
acceptably high in the measurement of the lengths of lines inclined

at certain angles to the axes. An arbitrarily shaped curve, however,
may be regarded as the envelope of a series of tangents to it, inclined
at a range of angles to the axes; and in the case of a closed
continuous curve, there are tangents inclined at all angles between 0°
and 3600. Hence, insofar es a L4-way encoded closed curve can be
regarded as constituted of small segments of successive tangents, a
sumation of these segments will involve lines at all angles to the
axes and the measured length obtained directly from the encoding will
be exactly (1 + EL) times the true length. According to this argument,
if an arbitrary continuous closed curve is L-way encoded as n points or

direction vectors, the true length of the curve is given by Bnn ™ 3%.

¢, corner count correction. We have shown (1) that for a L-way

encoded straight line the average relative error of length measurement
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may be reduced to zero eand the standard deviation to a tolerable
(1 + v2)

level if the grid steps are taken as being of length (= 0.948)

instead of 1 and if also a deduction of ff' (= 0.278) is made for
each corner encountered in the quantized liie. Applying the same

argument as that used to obtain Boor® ¥€ have an alternative measure
of the true length of the li-way encoded érbitrary continuous closed

curve: c¢ = 0.948n - 0.278k where k is the number of corners in the

quantized curve.

Pm»_the m-step polygonal boundary. In our account of the measurement

of the lengths of straight lines (1) we considered the reduction in
relative error which could be brought about if the 4-way encoded data

were m-sampled; that is, the length of the line is taken as the sum

of the lengths of vectors such as that between the points Sj and sj s

This method is here also epplied to U-way encoded arbitrary closed

n
curves. Ve teke p = (1

di)/m where di is the m—vector from 55
i=o

Methods designed to smooth ocut noise

Curvature smoothing. Since several techniques of curvature smoothing

are of proven utility and are incorporated into procedures of picture
processing (3 - 6) we have used it for the present purpose. For a
continuous differentiable curve, the curvature at a point is defined

as g!-vhere ¢y is the angle between the abscissa and the tangent to
ds

the curve at that point and s is the distance along the curve to the
point from an arbitrary zero. (It is to be noted that for simple

closed curves which do not loop over themselves, fdw = 2r.) For

such a curve which is closed, the area Ao enclosed by it is given by

e P -
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A, =5 (fxdy - fyax).
dA,
H —o=1d dr _14d dx
e ds 2d& (bxay)gh - 5 ¢ (bvex) 35
= % (xsin ¢ - ycosy) (1)
since gﬁ = sin ¢ and %f = cosy from which, also,y = fosinwds and
X = focoswds. Integration of eq(l) then gives
1 i 3 g
L §§sinw(focoswds)ds = 5-&cos¢([bs1nwds)ds (2)

The corresponding formula for a curve quantized into n elements

of equal length Gs, encloging an ares Ar, is

n = )
1v . 1 i
L% E.Zf“‘“‘a‘u cont; 4, .1, - - *jg Lot} 6,

3 =1 4 Jj=1 ti=l i
For & 4-way-encoded curve, when 8, =1 and ¥, , the angle which the ith
chain vector makes with the x-axis, has the value E-;-'(k €0, 1,2 or 3),
it is readily shown that eq(3) gives the area within the grid point

boundary as discussed above.

For the quantized curve, the curvature at a point is taken to be
ffg where ¥, is the angle between a direction vector and the x-axis
:ﬁd Awd is the difference between the values of ¢d of the vectors
leading to and departing from the point in question (3); note that
true values of angles are used rather than coded velues as in Eccles et al.
(5). We have smoothed the curvature by the multiple convclution
method with a rectangular window discussed by Eccles et _al. (5);
that is, for a window width w, the curvature st each point is replaced

by an average of the curvatures of the (u ; 1) neighbours on each side

of the point together with the velue at the point itself, this

WD A pren




procedure being repeated a number of times.

The effect of curvature smoothing is to remove the influence
of quantization error and noise from encoded curves(5). However,
removing the influence of noise is equivalent, in effect, to removing
or replacing an unknown number of points in the boundary list which
originally comprises n points. Since it is not possible to know
which points are to be removed or added; the matter is dealt with in
the following way. After q convolutions, all n line elements are
considered to be of equal length, though displaced from their

original positions; the length of each element is chosen so that

(a)

r

(0)

the area A s
r

, calculated by eq(3) efter g convolutions, equals A
which is the best estimate available of AO’ the area enclosed by the
unquantized curve, according to the argument given in the previous

section; and the length 2, of the original curve is measured as

zm = nég,cor where Gs,cor’ the corrected value of és, is given by
_[© g
as.cor = , and Ar(q) and Ar( ) are both calculated with §_ = 1.
\/A a)
r

R




Direction smoothing. This method is based on the following informal

argument. If a continuous curve is quantized and encoded as a chain
of n direction vectors, the contribution each vector ought to make

to the measured length of the curve is approximately equal to the
length of its projection ontc the tangent to the curve at the point
where the perpendicular bisector of the vector cuts the curve. This
is illustrated in Fig. 2. Let 4 be a direction vector and let u be
a unit vector along the tangent corresponding to d. Then the length
of the projection of d onto thetangent is given by the scalar product

n

d.u and the length of the curve will be given by ) 4. u;.
i=o

Since d and u are both unit vectors, it remains to determine only
their directions to calculate d.u. The direction of d is known from
the original encoding; the direction of u is taken to be an average
direction of the guantized curve in the interval spanned by d. The
average we used was obtained by the convoluticn method described
above for curvature smoothing, using one or more convoluticns. As
in the case of curvature smcothing, a small number of convolutions
with a rectangular window serves to eliminate disturbances caused by

noise in the boundary.
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L. EXPERIMENTS AND RESULTS

Apparatus

Some experiments reported here were made using a Grinnell Systems !
Inc. graphics display connected on line to PDP1ll computel at the
Computer Vision Laboratory, University of Maryland and other results
were obteined with the computer-controlled flying-spot microscope in
the Biophysics Laboratory, Chelsea College (13), although this did not

allow precise calibration as did the Grinnell system.

The Grinnell system presents a scene viewed by a conventional

television camera as rectangular array of 512 x 480 pixels on a square

grid, each point being displayed on an8-bit grey level scale (i.e.
providing 256 grey levels). To calibrate the system for the purpose
of the present measurements of length, the television camera was set
to view a sheet of graph paper at normal incidence. A simple computer
program was written to determine the number of pixels along the

straight line joining the co-ordinates of two cursors which can be

independently positioned on the digitized picture by the trackball

which is part of the system. It was then possible to check the linearity
of all parts of the digitized picture. The aspect ratio of the television
camera and the x—- and y-deflection controls of the monitor screen on which
the digitized picture is shown were all carefully adjusted until the
number of pixels per unit length in any part of the scene viewed (i.e.

the sheet of graph paper) departed by less than 1% from the average

value. The discrepancies in the calibration ratio in fact occurred

at the edges of the picture, so that in practice the object measured
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was placed in the middle of the scene, in the same plane as had been
calibrated with graph paper. Since the apparatus was also used for

other purposes, it was recalibrated for each experiment.

Measurement of the lengths of noise-free curves

Using the Grinnell system, measurement were made of the lengths
of plastic-covered wire twisted into arbitrary planar shapes. The

color of the plastic covering was chosen to contrast sharply with the

b

background (e.g. white-covered wire was viewed against black paper).

A threshold was chosen by examining the thresholded picture to ensure
that it was as free as possible of noise irn the boundary of the wire. The
threshold was then used in a computer programme which tracked the
boundary, encoded it and calculsted its length by the various methods
discussed in the previous section. That the boundary was essentially
noise-free was indirectly checked in a few cases by repeating the
measurecments with the threshold raised or lowered by a factor of more
than 1.5. The recorded measurements showed that the resulting change
in the number of direction vectors encoding the boundary and in the
various measures of length was less than 0.5%; this contrasts with

the measurements reported below in which random noise added to a smooth
boundary increases the number of direction vectors needed in the

encoding by amounts up to 90%.

In a first series of measurements, a length of wire was soldered
into a loop, bent into arbitrary shapes (similar to that of Fig.3(a))
and messured (Table 1, first cclumn). The length of wire was measured

with & standard rule before soldering, with allowance made for the
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soldering overlap; and after the measurements it was cut, straightened
out and remeasured with the rule. However, the difference between

the measured lengths of the inner and outer boundaries of the wire

loop was appreciably greater than the difference between the measured
lengths obtained by the relieble methods emong those used. For the
experiment recorded in the first column of Table 1, in which the
averages are over measurements of the inner and outer boundaries of
three different shapings of the wire loop, the difference in lengths

of the inner and outer boundaries was, on average, 6.3%.

In a second set of experimeqts, pieces of wire of known length
were measured unlooped. The boundary that was measured, after the wire
had been twisted into a number of different shapes, was then twice the
length of the wire plus twice its diameter. The results of measuring

such a series are given in the second column of Table 1.

Measurement of the lengths of noisy curves

In view of the accuracy of some measurements of the lengths of
curves which were free of noise, as demonstrated in Table 1, noisy curves
were examined in the following way. A smooth version of a curve was
created and its length measured several times to give Dops © and Pq
values, the average of all of which was taken to be the true length of
the curve. A noisy version of the curve was then produced, enclosing
the same area as the smooth version. Curvature smoothing and direction
smoothing of the noisy curve were used to provide the measures cs(w,q)
and ds (w,q) of the length of the curve after the effect of noise had

been reduced by making q convolutions of a window of width w according

to the procedures described previously. The values of w and q were




varied systematically to assess the amount of smoothing required to

arrive at the presumed true length of the curve.

In one set of experiments the smooth curves were the boundaries
of shapes cut cleanly out of paper and viewed by the Grinell system;
examples are shown in Fig.3(a) and (b) which display the contents of
the picture store. After measurement of the boundary of the area, the
contents of the store were dealt with by a program which traced round
the boundary and at each pixel either deleted it, added another in the
outward direction or did nothing. The boundary was traced one or
more times in this way and the action taken at each step was determined
by a random number generator, used so that there was equal chance of
adding or removing a pixel. The effect of this procedure on the shapes
of Fig.3(a) and (b) is shown in Fig.3(c) and (d) in each of which there
is nearly 100% of noise in the boundary, i.e. the numbers of points in
the boundary of the noisy curves are nearly twice the corresponding

numbers for the smooth curves.

In a second series of experiments, appropriate isolated objects,
such as epidermal cells and muscle fibres in transverse section, were
viewed in the flying spot microscope. The smooth curves were obtained
by viewing the objects with the microscope slightly out of focus.
Sharpening the focus then admitted higher spatial frequencies and so
gave a real or seeming addition of noise to the boundary of the object.
Fig. 4 shows the traced boundery, photographed from the monitor screen,
of two overlapping human red blood cells as the microscope is brought

into successive stages of sharper focus.




Boundaries with various amounts of noise were measured, the amount

of noise being quantified as the extra proportion of direction vectors

in the noisy boundary relative to the smooth one. In all, 18 sets of
measurements were made on boundaries corrupted bj up to 93% noise.

The results of these measurements showed, broadly,'that as the amount of
noise in a boundary was increased the "true"'léngth of the boundary could
be obtained either by increasiﬁg the window width or number of convolutions
in the curvature and direction smoothing methods, or by taking larger

steps in the m-step polygon method.

The dependence of the calculated length of boundary‘on window width
and number of convolutions is shown in Fig. 5 for both curvature smoothing
and direction smbothing of a typical noisy curve. In this example the
measured boundary was corrupted with 55.3% noise. It can be seen from
the semilogarithmic plot that for both methods the calculated lepgth falls
steadily, but the rate of fall is slow after the first four or five
convolutions. The low broad peak near the second convolution of the
direction smoothing calculations was & consistent finding. The boundary
length calculated by the m-step polygon method fell as m increased, in a
manner similar to that detailed in Table 1 for noise-free curves. The
two circularity measures, the circumferences of the same-area and average-
diameter circles, were barely changed from the smooth boundary case and
were as much in error (cf. Table 1). Both ncor and ¢ rose in proportion

to the amount of noise in the boundary and were correspondingly in error.

As & guide to the accuracy of convenient procedures, Fig. 6 summarizes
the results of calculations after curvature smoothing with two convolutions

or direction smoothing with three convolutions. The graphs give the

S —

e

=




159

probability, expressed as a percentage, that the calculated length will
differ from the "true" length by not more than the indicated error.
Measurements by the m-step polygon method gave results very close to those
of direction smoothing on substituting step length for window width, i.e.

on writing p, for ds(w,3).

5. DISCUSSION

In considering the merits of the various methods of measuring the
lengths of continuous curved lines which have been quantized for the
purpose of computer analysis, we can immediately dismiss the two circularity
methods, the circumferences of the same-area and average-diameter circles.

Table 1 shows that both are seriously in error if there are re-entrants

in the curve being measured, and neither would have meaning if the curve
were not closed. In the following paragraphs we therefore confine
ourselves to considering the three methods which do not involve explicit
smoothing (correction of the number of direction vectors (ncor)’ corner
count correction (c), and the m-step polygon boundary (pm)) and the two
methods which do (curvaeture smoothing and direction smoothing).  Further-
more, the discussion of curvature and direction smoothing is limited to
the cases of 2 and 3 convolutions respectively of a rectangular window
since these may be computationally simplified as one-pass operations with
suitable shaped windows, triangular and cloche-shaped. Apert from the
computational inconvenience of convolving many times, it has been shown
(5) that a few convolutions with a rectangular window of width 5 or more

is quite sufficient to smooth away typical noise disturbances.

Considering first the measurement of noise-free curves, Table 1 shows




how well the five methods agree. In the absence of noise, the lengths
calculated by the curvature and direction smoothing methods change very
slowly as window width is increased; and although not recorded in
Table 1, the same is true as the number of convolutions is increased.
For the noise-free curves, in comparing the lengths Door® ©» P Pps
es(5,2), es(7,2), ds(7,3) and ds(9,3), all the values are within 1.5%
of the grand meen in each case given in Table 1. The grand mean of
the eight values is, in turn, within a fraction of one percent of the
value expected from the known length of the unquantized curve; and the
mean of just the three quantities Boor? © and p7 comes even closer to

the expected value.

The very close agreement between the results of the five methods
implies that all are equally good at measuring the lengths of arbitrary
noise-free closed curves; hence local convenience or simplicity of
computation may be used as the criterion for choosing between them. On
this basis, measurement by computation of B is the most attractive
method since the boundary or curve cannot be specified without the value
of n, the number of direction vectors, being known. The next simplest
method is the computation of ¢ which is obtained from n and the number of
corners. However, the measure obtained from A gives good values only
if tangents to the curves being measured have a fairly even distribution
of inclinations in a range of angles which is an integral multiple of us5°,

The value of - would be seriously in error if used as a measure of

r
length in, say, an engineering drawing consisting mostly of horizontal and
vertical lines meeting in sharp corners. The measure obtained from c has

the same restriction as that obtained from Doops but less severely.
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The measure obtained from the m-step polygon method is more complicated
to calculate than B, OFC but has the merit that it can be applied to
straight as well as to curved:lines and to noisy as well as smooth oﬁes.

It is shown in the accompanying paper (1) that in measuring the lengths

of arbitrarily inelined straight lines, the average error in the value of
Pg is 0.92% and in the value of Pq is 0.47%. About the same amounts of
error are found in the values of pS and pT for smooth curves (Table 1).

As noise is introduced into the curve it becomes necessary to go to greater
step lengths to obtain the "true" length of the curve. For a noisy curve,
the probability of Pq being within 1% of the "true" length is only about
10% and of being within 10% is about 65%; but Py3 is virtually certain

to be within 10% of the "true" value and has about a 45% probability of

being within 3% of it.

In practice, one might in the course of analyzing a quantized
picture encounter and be required to measure the length of a curve which
was evidently noisy, yet was accompanied by no indication of how much

noise it contained. From observation of many curves, we have found that

one with 50% noise compared with its smooth counterpart looks very noisy
indeed (Fig. 4). A curve with 100% noise in it (Fig.3) looks so ragged

and "moth-eaten" that one might consider it to be qualitatively different

from a merely noisy version of the underlying smooth curve. In view of

these considerations, it is not possible to specify a measurement method

which will assuredly provide an accurate value of the "true” length of a

noisy curve; some judgement must be exercised by the experimenter in

selecting the measurement method and the conditions of its use.




For noisy curves, the measures obtained from T and c can be
dismissed immediately as being in error directly in proportion to the
amount of noise present. However, while the values obtained from the
measures p,, and, as shown in Fig. 6, cs(11,2) or ds (13,3) are all
virtually certain to be within 10% of the "true" value of curves with up
to T75% noise, these values will be on the low side if there is not much
noise present. In cases of low noise, the use of slightly narrower window

width for curvature or direction smoothing or & shorter step length for

the polygon would give a better measure.

It would be possible®to draw a series of graphs, like those of
Fig. 6, for each level of noise in a curve, but such a series would be of
limited use since it is hardly possible to know in‘advance how much noise
is contained in the curve being measured. Some estimate of the amount
of noise could be obtained by comparing the original length of the noisy

curve, measured by B, OF ¢, with the length after smoothing, assuming

or
that an appropriate amount of smoothing had been used. Such & calculation
could lead to an approach to a measure of the "true" length of the curve
by successive approximation, but our results do not indicate that the
computational effort involved would justify the improvement in accuracy
which would reduce the error from not more than 10% to, possibly, not more
than 5%. If the "true" length is to be measured of an evidently noisy

curve we recommend, therefore, using one of the measures P 3 es(11,2)

or ds (13,3) together with the interpretation given by Fig.6.

Which of the three measures is to be used would probably depend on
other considerations. The curvature smoothing method cannot be used

with open curves; but it may be the method of choice if smoothed curvature

[
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is also to be used for segmenting the boundaries of conjugated objects (5).
Direction smoothing can be used to measure the lengths of open curves

and involves somewhat less computation than curv;ture smoothing, but uses
more storage space since the computation requires the original direction

as well as the smoothed direction. Both convolution methods have the
advantage that analysis (5) provides knowledge of the spatial frequencies
which are being eliminated by the smoothing procedure. The measure given
by the m~step polygon is not supported by such an analysis, but it involves
very much simpler computation than the other two methods and would be the
method of choice if the requirement is to obtein a rapid measurement of
the "true" length of a quantized curve corrupted with a relatively small
amount of noise. It is also of interest that storing an m-sampled version
of a boundary has the advantage of requiring less date storage space than
does the original L-way coded boundary (1); if such data were in any

case being stored, the merit of using the p, measure of "true" length of

boundary would be even greater than otherwise.
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Table 1. Measurements of the lengths of noise-free boundary curves

EXPERIMENTAL CONDITIONS

Length of wire (mm)

Diameter of wire (mm)

. Calibration factor (pixels mm_l)
Length of boundary (mm)
Area covered by wire (mmd)

Number of readings

DIRECTLY-OBTAINED DATA
Average number of direction

vectors in boundary, n
Length corresponding to n (mm)

Average measured area (mmg)

Closed loop
of wire

224.0
2.05
3.261

22k.0

459.2
6

932.3
285.9
465.8

Open length
of wire

189.5
1.95
3.858

383.0

369.5

T

1878.0
486.8
362.6

Table 1 continued . . . .




Table 1 continued.

METHOD OF LENGTH MEASUREMENT (all values in mm)

Circularity methods

Same-area circle

Average-diameter circle

167.0
200.6

Methods not involving smoothing by convolution

Correction to number of

direction vector, n
cor

Corner count correction, c

m-step polygon, 55

224.6 * 3.6
226.3 ¢ 3.3
228.9
225.5 * 3.2
222.5 ¢ 7.8
221.6

220.8

Methods which involve smoothing by convolution

382.0 ¢ 4.8
383.7 ¢ 0.5
393.7
386.7 ¢ 1.0
384.5 + 1.2
383.1
381.9

The expression (w,q) indicates a window of width w convolved q times

Curvature smoothing, cs(5,2)
cs(7,2)
cs(9,2)

cs(11,2)

Direction smoothing, ds(5,3)
as(7.3)
das(9,3)
ds(11,3)

228.9 * 5.3
227-9 = 5'3
226.9

22L4.8
22k,2 £+ 8,2

22k.,0 ¢ 8.2

383.5 t 10.1
363.1 ¢ 13.7
383.2
382.9

381.9
380.4 ¢ 0.9
379.6 ¢ 0.9
378.5
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Fig. 1.
Fig. 2.
Fiz. 3.
Fig. L.
Fig. 5.
Fig. 6.
—

The points A, B, C. etc. are specified by pixel co-ordinates.
These points can be regarded as determining a grid (drewn in
broken lines) or as being lattice points lying within the cells
of the grid determined by the grid points a, b, c, etc.

A smooth boundary is digitized into a sequence of points which
include a, b, ¢, etc. with unit grid spacing. The contribution
required from each direction vector (a = b, etc.) to the
summation which will give the length of the curve is the
projection of that vector onto its corresponding tangent to

the original curve. Thus the contribution of (ab) is (a'Vv"),
of (ed) is (¢"ad ), etc.

(a) and (b) are printouts of twc initial arbitrary shapes cut
out of paper and viewed by the television camera of the
Grinnell SystemsInc. graphics display. (c) and (d) are
printouts of the same shapes after random noise has been
added to their boundaries in the picture store.

Boundaries, tracked in the automated flying spot microscope,

of a pair of human red cells slightly overlapping each other.
From left to right the microscope was brought into increasingly
sharper focus. Taking the left-most (out-of-focus) curve as
the smooth one, the amounts of noise in the others are,
respectively, 29.4% and 171.9%

Graphs of calculated lengths of the boundary of a noisy curve,
similar to that shown in Fig. 3(c), after various amounts of

smocthing. Curvature smoothing and direction smoothing were
achieved by means of rectangular windows convolved several
times with the noisy boundary. The "true" length of the curve

was measured in the absence of noise, as explained in the text.
The amount of noise in the measured boundary before smoothing
was 55.3%

Grephs summarizing the results of measurements of "true"
lengths of noisy curves. The graphs give the probability of
the measured length being within the error marked on the
abscissa when the smoothing conditions are given by (w, q),

w being the window width and q being the number of convolutions
used. The corresponding curves for measurement by the m-step
polygon method are indistinguishable from the direction
smoothing curves if P, is substituted for ds (w,3).
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(c)

Figure 3

Figure 4

(d)
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