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ABSTRACT

An examination is made of methods of measuring the lengths of
~~~~~IJ ~ arbitrarily shaped smooth curves from their quantized repre—

O._ sentations , both in the absence and in the presence of noise.
~~~ For a—way encoded curves in the absence of noise , the length
C...) of the underlying smooth curve can be accurately assessed as a

constant multiplied into n, the number of direction vectors in
the curve, or as a function of n and the number of corners in
the curve . Good measurements can also be obtained in the presenc e
or absence of noise by means of an rn—step polygon measure , or
after direction or curvature smoothing. The methods are explained
and their merits are compared.
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1. INTRODUCTION

Suppose that in a two—dimensional field of view there is a real

object with a hard smooth boundary well differentiated from the

background. Observers would agree that the object covers some

• definite area (A0, say ) and has a boundary of definite length (s0, say) .

• If the field of view , and the object on it , are quantized for the

purpose of analysis , the resulting values of area and boundary length

will differ somewhat from A0 and S~~. If , in addition , the physical

device which effects the transition from field of’ view to matrix of

numbers is subject to random noise (and this is often the case), then

the recorded value of boundary lengt h , Sr~ 
say , will further depart

from the “true” value of S0 . Indeed , if the boundary could be

corrupted by random noise of limited amplitude but of indefinitely

high spatial frequency, Sr would tend to infinity,  although in practice

the highest noise frequency is determined by the grid spacing of the

quantization.

In the accompanying paper (i) we examined the errors occurring

when a straight line of known length is measured by means of its

encoded representation. The same type of’ analysis could be used to

determine the average error in measuring the length of a quantized

form of a mathematical curve such as a circle or other conic section

(cf.(2)). However, typical natural objects are not bounded by

mathematical curves and in the computer analysis of visual scenes
~:r 0~ p

the task often arises of measuring the length of a curve of unspec- - 
1 Q
0

ifiable shape. This paper is concerned with the problem: given

the recorded boundary list of a quantized closed curve , estimate the 
-~~~~~~

true length , S
~~

, of the original smooth curve .
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2.

We distinguish, for the purpose of discussion, two classes of’

curves: noise—free curves for which error in the encoded representation

is due only to the quantization effect; and noisy curves for which

the qua.ntization error is compounded by the addition of random noise .

In order to analyze noisy curves it is necessary to introduce some

form of smoothing operation to diminish the effect of’ the noise. From

among the many smoothing operations available, we have in the present

context examined only the two which we consider simplest——curvature

smoothing (3  - 6) and direction smoothing. However , whereas length

determination involving smoothing operations can be used on noise—

free curves, some simple methods of measuring lengths of noise—free

curves fail in the presence of noise, as might be expected.

2. THE SPECIFICATION AND ~~ASUREMENT OF AREAS AND BOUNDARIES

If a continuous region of a picture is quantized onto a. square

grid , where the region , of area A0, is well contrasted to the background,

the region is represented by a set of picture elements (pixels), each

of which is the same area and is specified by a co—ordinate pair

(x.,y.) where i = 1, 2, ...,t and t is the total number of pixels.

The area , Ar~ 
of the quantized region is evidently equal to t x (pixel

area), or Ar = t if the pixel area is unity.

Kulpa ( 7 ) ,  and also Sankar and Krishnamurthy (8),  have argued

that the area enclosed by a digitized curve should be evaluated by

use of Pick ’s theorem (9) which states that the area , A , of a polygon ,

the vertices of which lie on the points of a grid with unit cell of

unit area , is given by A = I + b/2 — 1, where i is the number of grid

points interior to the curve and b is the number of grid points on
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the boundary. However, in dealing with quantized regions, it is

necessary to be clear as to what is taken as the boundary. It is

common practice to take as the boundary either {(x.,y.)}, a subset

of ((x
~ ,y 1) ) ,  containing the co—ordinat e pairs of a.1l those pixels

which lie on the edge of the region, or {(x~~y~ )},  the co—ordinate

pairs of’ all those pixels which lie just outside the region (7).

The implication of’ this practice is that the pixel coordinate pairs

specify grid points; but it would accord better with the technolo~ r

of picture processing to consider the pixel co—ordinate pairs to

specify the centers of unit cells of the grid (Fig.l), in which case

they can be referred to as lattice points. We can thus distinguish

the grid point boundary, b
6
, and the lattice point boundary , b& ,

together with the respective areas specified by them. This matter

is considered in more detail elsewhere (10) where it is proved that

Pick’s formula applied to bg gives an area equal to t, the total

number of lattice points (i.e. the total number of pixels), an d also

that b = b + 14 •g 9.

In the present work we have taken the area of a region to be

the total number of pixels comprising it and its boundary to be the

grid point boundary as illustrated in Fig. 1, chain—coded by a a—way

code (i).

An important matter to be noted at this poit’lt is that whereas

• the geometric length , 5r ’ of’ eitner the grid—point or the lattice—

point boundary is a poor approximation to the true length, S0, of’

the original unq,uantized boundary, the quantize d area ,Ari is a good

approximation to the unquantized area, A0, provided that the region

can be represented by several hundred or mc-re pixels and that most

__________  __________  ~~~~~~~ 
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of the region is more than a few grid units across. This is illustrated

in the results given below, but can be seen intuitively by considering

the effect of noise. If noise is represented, as below, by pixels

being randomly added to or subtracted from the boundary, the area

within the boundary , An will be unchanged, provided that the additions

and subtractions are equal in number ; but the length,S~~, of the

boundary will be significantly increased.

3. NETHODS OF MEASURING THE LENGTH OF ARBITRARY CLOSED CURVES

Circularity methods

We have included two methods of approximating the length of

boundary of an irregularly shaped area. since their results were easy

to compute from our data. The deficiencies of the methods are,

however, obvious and little attention is given to them in the results

we quote below.

Circumf~rence_of equa1—e~rea circle. This method, self—explanatory ,

Will clearly give a reasonably accurate estimate of the length of

boundary of’ nearly—circular areas without important clefts or

protuberances , but will fail otherwise. It has been used in a few

cases for the measurement of appropriate objects (ii) .

Circumference of avera~e—diazeter circle. The average value , d, is

taken of the projection of the area onto lines at various directions;

the length of boundary of the area is then estimated as 2wd (12) .

In using this method we typically took directions inclined to the

x—axis at 10 angles between 00 and 1600. The method works quite well

for compact areas bounded for the moat part by convex arcs , but fails

-~~~~ -~ - ~~~~~~~ -~~~~~ --- __:_ _ —--- — -  -~~~
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if there are significant ne—entrant regions in the curve.

Methods not involving ainoothin& to eliminate noise

%or’ correction to the number of boundary chain links. We have

shown in the accompanying paper (1) that if an arbitrarily—oriented

straight line of length t 10 h—way encoded in a sequence of n points

the length n of the digitized line gives an average relative error

= 
n L 

= -~~~ - 1. It follows from this result that if the length

of the grid unit were taken as instead of 1, the average relative

error would be zero ; but this method is rejected as a means of

measuring the lengths of straight lines since it involves too large

a standard deviation , implying that the relative error would be un-

acceptably high in the measurement of the lengths of lines inclined

at certain angles to the axes. An arbitrarily shaped curve , however ,

may be regarded as the envelope of a series of tangents to it, inclined

at a range of angles to the axes; and in the case of’ a closed

continuous curve , there are tangents inclined at all angles between 00

and 3600. Hence , insofar as a 14—way encoded closed curve can be

regarded as constituted of small segments of successive tangents, a

summation of these segments will involve lines at all angles to the

axes and the measured length obtained directly from the encoding will

• be exactly (1 + ~~) times the true length. According to this argument,

if an arbitrary continuous closed curve is 14—way encoded as n points or

direction vectors, the true length of the curve is given by ncor =

c, corner count correction. We have shown (1) that for a 14—way

encoded straight line the average relative error of length measurement

______ — - -‘
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may be reduced to zero and the standard deviation to a tolerable

level if the grid, steps are taken as being of length ‘~~~~~~ ( 0.~ b8)

instead of 1 and if also a deduction of _!
~
_ ( 0.278) is made for

8v’~
each corner encountered in the quantized line. Applying the same

argument as that used to obtain 
~cor ’ we have an alternative measure

of the true length of the h—way encoded arbitrary continuous closed

curve: c = O.9148n — O.278kwhere k is the number of corners in the

quantized curve .,

~~~~~ the rn—step poly&onal boundary. In our account of the measurement

of the lengths of straight lines (1) we considered the reduction in

relative error which could be brought about if the b—way encoded data

were rn—sampled; that is, the length of the line is taken as the sum

of the lengths of vectors such as that between the points s~ and s,~ + m’

This method is here also applied to b—way encoded arbitrary closed

curves. We take p — (~~d1)/m where d. is the rn—vector from s.~.

Methods designed to smooth out noise

Curvature smoothing. Since several techniques of curvature smoothing

are of proven utility and are incorporated into procedures of picture

processing (3 — 6) we have used it for the present purpose. For a

continuous differentiable curve, the curvature at a point is defined

as where ip is the angle between the abscissa and the tangent to
ds

the curve at that point and a is the distance along the curve to the

point from an arbitrary zero. (It is to be noted that for simple

• closed curves which do not loop over themselves, ~dq, = 2ir.) For

such a curve which is closed , the area A0 enclosed by it is given by

_________________  ~~~~~ . ~~~~~~ ~~~~~~~~~ ~~~ _ _ _ _ _ _ _ _ _ _ _ _
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A0 =~~ (~xdy -~~ydx).

Hence ,~~:o = ~~L (~xdy)~~ — 4 -~j (~ydx) ~~
= (xain * — ycos*) (1)

• since = sin ~ and ~ eosi~ from which, also,y = f 0sinipds and

x f0
cos~4ias. Integration of eq(l) then gives

S 5

A0 = ~#sirx~ (f 0cos4~ds) ds -, 
~~~

‘ ~cos*(f sin*ds ) ds (2)

The corresponding formula for a curve quantized into n elements

of equal length &~, enclosing an area Ar~ is

Ar = 
~~~~~~~~~~~~ coo ~~~~~~ 

— 

~j~l 
cos (3).

For a 14—way-encoded curve, when = 1 and ~~ the angle which the ith

chain vector makes with the x—axis, has the value ~~ (K = 0, 1, 2 or 3),

it is readily shown that eq(3) gives the area within the grid, point

boundary as discussed above.

For the quantized curve, the curvature at a point is taken to be

where is the angle between a direction vector and the x—axis

aRd 
~~d is the difference between the 

values of 4’d 
of the vectors

leading to and departing from the point in question (3); note that

true values of angles are used rather than coded values as in Eccies et al.

(5). We have smoothed the curvature by the multiple convolution

method with a rectangular window discussed by Eccies et al. (5);

that is , for a window width w, the curvature at each point is replaced

• by an average of the curvatures of the (w 1) neighbours on each side

of the point together with the value at the point itself’, this

~~~w ~: ~~~~~~~
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procedure being repeated a number of times.

The effect of curvature smoothing is to remove the influence

of quantization error and noise from encoded curves(5). However,

removing the influence of noise is equivalent, in eftect, to removing 
. 

-

or replacing an unknown number of points in the boundary list which

originally comprises ii points. Since it is not possible to know

which points are to be removed or added, the matter is dealt with in

the following way. After q convolutions, all n line elements are

considered to be of equal length, though displaced from their

original positions; the length of each element is chosen so that

the area ~~~~ calculated by eq(3) after q convolutions, equals A~0~

which is the best estimate available of A0, the area enclosed by the

unq,uantized curve, according to the argument given in the previous

section ; and the length L, of the original curve is measured as

= 
~~s,cor 

where ‘5s,cor ’ 
the corrected value of is given by

~s,cor 
____ 

, and Ar~~~ 
and A~~°~ are both calculated with = 1.
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Direction smoothing. This method is based on the following informal

argument. If a continuous curve is quantized and encoded as a chain

of n direction vectors , the contribution each vector ought to make

to the measured length of the curve is approximately equal to the

length of its projection onto the tangent to the curve at the point

where the perpendicular bisector of the vector cuts the curve . This

is illustrated in Fig. 2. Let d be a direction vector and let u be

a unit vector along the tangent corresponding to d. Then the length

of the projection of d onto the tangent is given by the scalar product

thu  and the length of’ the curve will be given by~~ ~~~~~~~~~~~~~~~

Since d and u are both unit vectors , it remains to determine only

their directions to calculate d.u. The direction of d is known from

the original encoding ; the direction of’ u is taken to be an average

direction of the quantized curve in the interval spanned by d. The

average we used. was obtained b~, the convolution method described

above for curvature smoothing , using one or more convolutions . As

in the case of curvature smoothin g, a small number of convolutions

with a rectangular window serves to eliminate disturbances caused by

noise in the boundary .

_ _ _ _ _ _ _ _ _
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14. EXPERIMENTS AND RESULTS

Apparatus

Some experiments reported here were made using a Grinnell Systems

Inc. graphics display- connected on line to PDP11 computer at the

Computer Vision Laboratory, University of’ Maryland and other results

were obtained with the computer—controlled flying—spot microscope in

the Biophysics Laboratory, Chelsea College (13), although this did not

allow precise calibration as did the Grinnefl system.

The Grinnell system presents a scene viewed by a conventional

television camera as rectangular array of 512 x 1480 pixels on a square

grid, each point being displayed on an 8—bit grey level scale (i.e.

providing 256 grey levels). To calibrate the system for the purpose

of the present measurements of length, the television camera was set,

to ‘view a sheet of graph paper at normal incidence. A simple computer

progr am was written to determine the nu~ber of pixels along the

straight line joining the co—ordinates of two cursors which can be

independently positioned on the digitized picture by the trackball

which is part of the system. It was then iossible to check the linearity

of all parts of the digitized picture. The aspect ratio of the television

camera and the x— and y—defleetion controls of the monitor screen on which

the digitized picture is shown were all carefully adjusted until the

number of pixels per unit length in any part of the scene viewed (i.e.

the sheet of graph paper) departed by less than 1% from the average

value. The discrepancies in the calibration ratio in fact occurred

at the edges of the picture , so that in practice the object measured
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was placed in the middle of the scene, in the same plane as had been

calibrated with graph paper. Since the apparatus was also used for

other purposes , it was recalibrated for each experiment.

Measurement of the lengths of’ noise—free curves

Using the Grinnell system, measurement were made of’ the lengths

of pla3tic—covered wire twisted into arbitrary planar shapes . The

color of the plastic covering was chosen to contrast sharply with the

background (e.g. white—covered wire was viewed against black paper).

A threshold was chosen by examining the thresholded picture to ensure

that it was as free as possible of noise in the boundary of the wire. The

threshold was then used in a computer programme which tracked the

boundary, encoded it and calculated its length by the various methods

discussed in the previous section. That the boundary was essentially

noise—free was indirectly checked in a few cases by repeating the

measurements with the threshold raised or lowered by a factor of more

than 1.5. The recorded measurements showed that the resulting change

in the number of direction vectors encoding the boundary and in the

various measures of length was less than 0. 5% ; this contrasts with

the measurements reported below in which random noise added to a smooth

boundary increases the number of direction vectors needed in the

encoding by amounts up to 90%.

In a first  series of measurements , a length of’ wire was soldered

into a loop , bent into arbitrary shapes (similar to that of Fig .3(a))

and measured (Table 1, first column). The length of wire was measured

with a standard rule before soldering , with  allowance made for the
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soldering overlap; and after the measurements it was cut, straightened

out and reineasured with the rule. However , the difference between

the measured lengths of the inner and outer boundaries of’ the wire

loop was appreciably greater than the difference between the measured

lengths obtained by the reliable methods among those used. For the

experiment reco’~’ded in the first column of Table 1, in which the

averages are over measurements of the inner and outer boundaries of

three different shapings of the wire loop, the difference in lengths

of the inner and outer boundaries was , on average , 6.3%.

In a second set of experiments, pieces of wire of known length

were measured unlooped. The boundary that was measured, after the wire

had been twisted into a nun~ber of different shapes, was then twice the

length of the wire plus twice its diameter. The results of measuring

such a series are given in the second column of Table 1.

Measurement of the lengths of’ noisy curves

In view of the accuracy of some measurements of the lengths of

curves which were free of noise, as demonstrated in Table 1, noisy curves

were examined in the following way. A smooth version of a curve was

created and its length measured several times to give 
~cor ’ c and p

7

values, the average of’ all of which was taken to be the true length of

the curve. A noisy version of the curve was then produced, enclosing

the same area as the smooth version. Curvature smoothing and. direction

smoothing of the noisy curve were used to provide the measures cs(w ,q)

and da (w ,q) of the length of’ the curve after the effect of noise had

been reduced by making q convolutions of a window of width w according

to the procedures described previously. The values of w and q, were

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
- •

~~~~~~~~~~
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varied systematically to assess the amount of’ smoothing required to

• arrive at the presumed true length of’ the curve .

In one set of experiments the smooth curves were the boundaries

of shapes cut cleanly out of paper and viewed by the Grinell system;

examples are shown in Fig.3(a) and (b) which display the contents of

the picture store. After measurement of the boundary of the area , the

contents of the store were dealt with by a program which traced round

the boundary arid at each pixel either deleted it , added another in the

outward direction or did nothing. The boundary was traced one or

more times in this way and the action taken at each step was determined

by a random number generator , used so that there was equal chance of

adding or removing a pixel . The effect of this procedure on the shapes

of Fig.3(a) and (b) is shown in Fig.3(c) and (d) in each of which there

is nearly ioo% of noise in the boundary, i.e. the numbers of points in

the boundary of’ the noisy curves are nearly twice the corresponding

numbers for the smooth curves.

In a second series of experiments, appropriat e isolated objects ,

such as epidermal cells and muscle fibres in transverse section , were

• viewed in the flying spot microscope. The smooth curves were obtained

by viewing the objects with the microscope slightly out of’ focus.

Sharpening the focus then admitted higher spatial frequencies and so

gave a real or seeming addition of’ noise to the boundary of the object.

Fig. 14 shows the traced boundary, photographed from the monitor screen,

of two overlapping human red blood cells as the microscope is brought

into successive stages of sharper focus.

~rIIL ~i~T -~~~~ ~~~~~
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Boundaries with various amounts of noise were measured, the amount

of noise being quantified as the extra proportion of’ direction vectors

in the noisy boundary relative to the smooth one. In all, 18 sets of

measurements were made on boundaries corrupted by up to 93% noise.

The results of these measurements showed, broadly, ‘that as the amount of

noise in a boundary was increased the “true” length of the boundary could

be obtained either by increasing the window width or number of convolutions

in the curvature and direction smoothing methods, or by taking larger

steps in the rn-step polygon method.

The dependence of the calculated length of boundary on window width

and number of convolutions is shown in Fig. 5 for both curvature smoothing

and direction smoothing of a typical. noisy curve. In this example the

measured boundary was corrupted with 55.3% noise. It can be seen from

the semilogarithmic plot that for both methods the calculated length falls

steadily , but the rate of fall is slow after the first four or five

convolutions . The low broad peak near the second convolution of the

direction smoothing calculations was a consistent finding. The boundary

length calculated by the rn—step polygon method fell as m increased, in a

manner similar to that detailed in Table 1 for noise—free curves. The

two circularity measures , the circumferences of’ the same—area and average-

diameter circles, were barely changed from the smooth boundary case and

were as much in error (Cf. Table 1). Both ri and c rose in proportion

to the amount of noise in the boundary and were correspondingly in error.

As a guide to the accuracy of convenient procedures, Fig. 6 summarizes

the results of calculations after curvature smoothing with two convolutions

or direction smoothing with three convolutions . The graphs give the

~~IL~ - 
• - 

~~~~~~_ T _  • 

~~~~_. ~
_. 

~~
.., - - —



-,-•- --——-_ --- - - -  — -•- 
•

- ---- =~~~•~~~~~ 
- . - —------_•-

~

—

~~~

—— - — —  

~~~~~~~~~ 
-‘•---

~~~~~
--•

15.

probability, expressed as a percentage, that the calculated length will

differ from the “true” length by not more than the indicated error.

Measurements by the rn—step polygon method gave results very close to those

of’ direction smoothing on substituting step length for window width, i.e.

on writing p
~ 

for ds(w ,3).

5. DISCUSSION

In considering the merits of the various methods of measuring the

lengths of continuous curved lines which have been quantized for the

purpose of computer analysis, we can immediately dismiss the two circularity

methods , the circumferences of the same—area and average—diameter circles.

Table 1 shows that both are seriously in error if there are re—entrants

in the curve being measured , and neither would have meaning if the curve

were not closed. In the following paragraphs we therefore confine

ourselves to considering the three methods which do not involve explicit

smoothing (correction of’ the number of direction vectors 
~~cor~~’ 

corner

count correction Cc), and the ni—step polygon boundary 
~~~~ 

and the two

methods which do (curvature smoothing and direction smoothing). Further—

more , the discussion of’ curvature and direction smoothing is limited to

the cases of 2 and 3 convolutions respectively of a rectangular window

since these may be computational ly simplified as one—pass operations with

suitable shaped windows , triangular and cloche—shaped. Apart from the

computational inconvenience of convolving many times , it has been shown

(5) that a few convolutions with a rectangular window of width 5 or more

is quite suff ic ient  to smooth away typical noise disturbances .

Considering first the measurement of noise—free curves , Table 1 shows

~~~ ii~~A - - 
~~~~~~~

--

~~~~
~-
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how well, the five methods agree . In the absence of noise , the lengths

calculated by the curvature and direction smoothing methods change very

slowly as window width is increased; and although not recorded in

Table 1, the same is true as the number of convolutions is increased.

For the noise—free curves, in comparing the lengths ncor , C~ 
~~~

cs(5, 2) ,  cs (7, 2 ) ,  ds(7, 3) and ds(9,3) , all the values are within 1.5%

of the grand mean in each case given in Table 1. The grand mean of

the eight values is , in turn, within a fraction of one percent of the

value expected from the known length of the unquantized curve ; and the

mean of just the three quantities 
~eor ’ c and p

7 
comes even closer to

the expected value.

The very close agreement between the results of the five methods

implies that all are equally good at measuring the lengths of arbitrary

noise—free closed curves; hence local convenience or simplicity of

computation may be used as the criterion for choosing between them. On

this basis, measurement by computation of 
~cor 

is the most attractive

method since the boundary or curve cannot be specified without the value

of n , the number of direction vectors , being known . The next simplest

method is the computation of’ c which is obtained from n and the number of

corners . However , the measure obtained from 
~cor gives good values only

if tangents to the curves being measured have a fairly even distribution

of inclinations in a range of angles which is an integral multiple of 145~.

The value of 
~cor would be seriously in error if used as a measure of

length in , say , an engineering drawing consisting mostly of horizontal and

vertical lines meeting in sharp corners • The measure obtained from c has

the same restriction as that obtained from 
~eor ’ but less severely .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The measure obtained from the rn—step polygon method is more complicated

to calculate than 
~Cor or c but has the merit that it can be applied to

straight as well as to curved ~lines and. to noisy as well as smooth ones

It is shown in the accompanying paper (1) that in measuring the lengths

of arbitrarily inclined straight lines, the average error in the value of’

p
5 
is 0.92% and in the value of’ p

7 
is o.14i%. About the same amounts of

error are found in the values of p5 and p
7 
for smooth curves (Table i).

As noise is introduced into the curve it becomes necessary to go to greater

step lengths to obtain the “true” length of the curve . For a noisy curve ,

the probability of p7 
being within 1% of’ the “true” length is only about

10% and of being within 10% is about 65%; but p13 is virtually certain

to be within 10% of the “true” value and has about a 145% probability of’

being within 3% of it.

In practice , one might in the course of’ analy zing a quantized

picture encounter and be required to measure the length of a curve which

was evi dently noisy , yet was accompanied by no indication of’ how much

noise it contained. From observation of many curves, we have found that

one with 50% noise compared with its smooth counterpart looks very noisy

indeed (Fig. 14). A curve with 100% noise in it (Fig.3) looks so ragged

and “moth—eaten” that one might consider it to be qualitatively different

from a merely noisy version of’ the underlying smooth curve. In view of

these considerations, it is not possible to specify a measurement method

which will assuredly provide an accurate value of’ the “true” length of’ a

noisy curve ; some j udgement must be exercised by the experimenter in

selecting the measurement method and the conditions of its use.
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For noisy curves , the measures obtained from 
~cor and c can be

dismissed immediately as being in error directly in proportion to the

amount of noise present. However, while the values obtained from the

measures p13 and, as shown in Fig. 6 , cs(11,2) or da (13,3) are all

virtually certain to be within 1.0% of the “true” value of curves with up

to 75% noise , these values will be on the low side if there is not much

noise present . In cases of low noise , the use of slightly narrower window

width for curvature or direction smoothing or a shorter step length for

the polygon would give a better measure .

It would be possible’ to draw a series of graphs , like those of

Fig. 6, for each level of noise in a curve, but such a series would be of

limited use since it is hardly possible to know in advance how much noise

is contained in the curve being measured. Some estimate of the amount

of’ noise could be obtained by comparing the original length of the noisy

curve, measured by 
~cor 

or c , with the length after smoothing , assuming

that an appropriate amount of smoothing had been used. Such a calculation

could lead to an approach to a measure of the “true” length of the curve

by successive approximation , but our results do not indicate that the

computational effort involved would justify the improvement in accuracy

which would reduc e the error from not more than 10% to , possibly , not more

than 5%. Il’ the “true” length is to be measured of’ an evidently noisy

curve we recommend , therefore , using one of’ the measures p13, es(U,2)

or ds (13,3) together with the interpretation given by Fig.6.

Which of the three measures is to be used would probably depend on

other considerations . The curvature smoothing method cannot be used

with open curves ; but it may be the method of choice if smoothed curvature

. — - 
—
-
‘
~

— 
.. ‘~ ~~~~~~~~~~~~ ‘ :,- .
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is also to be used for se~~enting the boundaries of conjugated objects (5).

Direction smoothing can be used to measure the lengths of’ open curves

and involves somewhat less computation than curvature smoothing, but uses

more storage space since the computation requires the original direction

as well as the smoothed direction. Both convolution methods have the

advantage that analysis (5) provides knowledge of’ the spatial frequencies

which are being eliminated by the smoothing procedure . The measure given

by the rn—step po1y~on is not supported by such an analysis, but it involves

very much simpler computation than the other two methods and would be the

method of choice if the requirement is to obtain a rapid measurement of

the “true’1 length of a quantized curve corrupted with a relatively small

amount of noise. It is also of interest that storing an rn—sampled version

of a boundary has the advantage of’ requiring less data storage space than

does the original li-way coded boundary (1); if such data were in any

case Leing stored , the merit of’ using the measure of “true” length of

bc~irdnr: wnul d be even greater than otherwise.
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Table 1. Measurements of the lengths of noise—free boundary curves

E)~ ERIMENTAL CONDITIONS

Closed loop Open length
of wire of’ wire

Length of wire (mm) 224.0 189.5

Diameter of wire (mm ) 2.05 1.95

Calibration factor (pixels xnn~
1) 3.261 3.858

Length of boundary (mm) 

2 

224.0 383.0

Area covered by wire (mm ) 1459.2 369.5

Number of’ readings 6 7

DIRECTLY—OBTAINED DATA

Average number of direction

vectors in boundary , j~ 932.3 1878.0

Length corresponding to ~ (mm ) 285.9 1486.8

Average measured area (~~
2) 1465.8 362.6

Table 1 continued • . .

.~~~~~~ - - T ~~T~~~~ -- ~~~~~~~~~~ ~~~~~-
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Table 1 continued. -

)€THOD OF LENGTH I€ASUREMENT (all values in mm)

Circularity: methods

Same—area circle 167.0 67.5

Average—diameter circle 200.6 165.8

Methods not involving smoothing by convolution

Correction to number of

direction vector, 
~cor 

224.6 ± 3.6 382.0 ± 4.8

Corner count correction, c 226.3 ~ 3.3 383.7 ~ 0.5

rn—step polygon, 228.9 393.7

p5 225.5 ~ 3.2 386.7 ± 1.0

p7 2 2 2 .5  * 7.8 384.5 ~ 1.2

p9 221.6 383.1

p11 220.8 381.9

Methods which involve smoothing by convo1~it ion

The expression (w ,q) indicates a window of width w convolved q times

Curvature smoothing, cs(5,2) 228.9 ± 5.3 383.5 ± 10.1

227.9 * 5.3 383.1 ~ 13.7

~~(9,2) 226.9 383.2

— 382.9

Direction smoothing, ds (5,3) 22 14.8 381.9

~~(7.3) 224.2 ~ 8.2 380.14 ± 0.9

2214.0 ± 8.2 379.6 ± 0.9

— 378.5

~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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Fig. 1. The points A, B, C. etc. are specified by pixel co—ordinates.
These points can be regarded as determining a grid ( drawn in
broken lines) or as being lattice point s lying within the cells
of the grid determined, by the grid points a, b, c, etc.

Fig. 2. A smooth boundary is digitized into a sequence of points which
include a, b , c, etc . with unit grid spacing. The cont~ibution
required from each direction vector (a + b, etc.) to the
summation which will give the length of’ the curve is the
projection of that vector onto its corresponding tangent to
the original curve. Thus the contribution of (ab) is (a ’b’),
of (ed) is (cd ), etc.

Fig. 3. (a) and (b) are printouts of two initial arbitrary shapes cut
out of paper and viewed by the television camera of the
Grinneil Systesslnc. graphics display. (c) and (d) are
printouts of the same shapes after random noise has been
added to their boundaries in the picture store.

Fig. 14. Boundaries, tracked in the automated flying spot microscope ,
of a pair of human red cells slightly overlapping each other.
From left to right the microscope was brought into increasingly
sharper focus . Taking the left—most (out—of—focus ) curve as
the smooth one , the amounts of noise in the oth ers are ,
respectively, 29 . 14% and 171.9%

FiG. 5. Graphs of calculated lengths of the boundary of a noisy curve,
similar to that shown in Fig. 3(c), af’ter various amounts of
smoothing. Curvature smoothing and direction smoothing were
achieved by means of rectangular windows convolved several
times with the noisy boundary. The “true” length of’ the curve
was measured in the absence of noise, as explained in the text.
The amount of noise in the measured boundary before smoothing
was 55.3%

Fig. 6. Graphs summarizing the results of’ measurements of “true”
lengths of noisy curves . The graphs give the probability of
the measured length being within the error marked on the
abscissa when the smoothing conditions are given by (w, q),
w being the window width and q being the number of convolutions
used. The corresponding curves for measurement by the rn—step
polygon method are indistinguishable from the direction
smoothing curves if p

~ 
is substituted for ds (v ,3) . 
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