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u~d modifications to its set of productions as required for procedural
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If new productions . Strengthening a production may have important cons e-
uences for performance, since a production’s strength determines the 5

mount of system resources that will be allocated to its processing. Fin-
Llly, generalization and discrimination refer to complementary processes
hat produce better performance by either extending or restricting the
ange of situations in which a production will apply. These learning
ecbanisms are used to simulate experiments on schema abstraction by Franks
nd Bransford (1971), Hayes-Roth and Hayes-Roth (1977) , and Medin and
chaffer (1978) . The mechanisms are used to predict recognition trials
o criterion, as well as final test recognition and classification. ACT
uccessfully accounts for the effects of distance of instances from a
entral tendency, frequency of individual instances , and inter-item similar-
,ty.
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Abstract

ACT is a computer simulation program that uses a propositional network to represent

knowledge of general facts and a set of productions (condition - action rules) to represent

knowledge of procedures. There are currentty four different mechanisms by which ACT can

make additions and modifications to its set of productions as required for procedural learning :

designati on, strengthening, generalizat ion, and discrimina tion. Designation refers to th. ability

of productions to call for th. creation of new productions. Stren gthe ning a production may

have important consequences for performance , since a producti on’s strength determines the

amount of system resources tha t will be allocated to its processing. Finally, generalization

and discrimination refer to complementary processes that pr oduce better p rformanc . by

either extending or restricting the range of situations in which a production will apply. These

learning mechanisms are used to simulate experiments on schema abstraction by Franks and

Brans ford (1971), Hayes-Roth and Hayes-Roth (1977), and Medin and Schaffer (1978). The

mechanisms are used to predict recog nition tr ials to criter ion, as well as final test recognition

arid classif ication. ACT successfully accounts for the effects of dist ance of instances from a

central tende ncy , freque ncy of individual instan ces , and inter-Item similari ty.

I
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I Introduction

We are Interested in understanding learning. For man~ years learning theory was

practically synonymous with experimental psychology; however , its boundaries have shrunk

to such an extent that they barely overlap .t all with those of modern cognitive psychology.

Cognitive psychologists, by and large, concern themselves with a detailed analysis of the

mechanisms that underlie adult human intelligence. This analysis has gone on too long without

adequate attention to the question of how these complex mechanisms could be acquired. In

an attempt to answer this question, we have adopted one of the methodological approaches

of modern cognitive psychology: Results of detailed experimental analyses of cognitive

behaviors are elaborated into a computer simulation of those behaviors. The simulation

program provides new predictions for a further experimental testing whose outcome is then

used to modify the simulation and the whole process then repeats itself.

Our computer simulation is called ACT. The ACT system embodies the extremely powerful

thesis that a single set of learning processes underlies the whole gamut of human

learning--from children learning their first language by hearing examples of adult speech to

adults learni ng to program a computer by reading textbook instructions.

In this paper we will gIve a general overvi ew of the ACT learning theory and describe its

application to research on abstraction of schemas. Elsewhere we have provided somewhat

more technical discussions of the ACT system and described its application to other domains

(Anderson, 1976; Anderson, Kline, and Lewis, 1977; Anderson, Kline and Beasley, 1977;

Anders on, Kline and Beasley, in press ).

A. The ACT System

In ACT knowledge is divided into two categories: declarative and procedura l . The

declarat ive knowledge Is represented in a propositional network similar to seman tic network

repres entations proposed elsewhere (Quillian, 1969; Anderson and Bower , 1973; Norman and

Runi.lha rt , 1975). Whit, the network aspects of this representation are important for such

- 
- - -~~~~~~~~~~~~~~~~~~~~~~_
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ACT processes as spreading activation, they are not Important to the current learning

discussion. For present purposes we will consider ACT’s declarative kn~~iledge as a set of

asse rtions or propositions and Ignore the technical aspects a its network represent at iop.

ACT represents its procedural knowledge as a set of productions. The ACT production

system can be seen as a considerable extension and modification of the production systems

developed •t Carnegie-Mellon (Newell, 1972, 1973; Rychener and Newell, 1977). A

çroduction is a condition - action rule. The condition Is an abstract specification of a set of

propositions. If a set of propositions can be found in the data base which meets this

specification, the production will perform its action. Actions can both add to the contents of

the data base and cause the system to emit observable responses.

ACT’s productions can only have their conditions satisfied by activ, propositions. ACrs

activation mechanism is designed such that the only propositions active are those that have

recently been added to the data base or that are closely associated to propositions which

have been added. Propositions are added to the data base either through input from the

environment or through the execution of productions. Thus, this activation system gives ACT

the property of being immediatel y responsive to changes in Its environment or in Its internal

state.

ACrs basic control structure is an iteration through successive cycles, where each cycle

consists of a production selection phas, followed by an execution phase. On each cycle an

APPLYLIST is computed which is a probabilistically defined subset of all of the productions

whose conditions are satisfied by active propositions. The probability that a production will

be placed on the APPt.YLIST depends on the str.ngt h (s) of that production relative to the

sum (Y) of the strengths of all the productions whose conditions mention- active elements; that

is, this probability varies with s/S. Discussion of the process of assigning a strength to a

production will be postponed until a later section; all that needs to be said here is that this

strength reflects just how successful past applications of this production have been. Thus -

on component of th, production-selection phase consists of choos ing out of all the

productions which could apply those which are the most likely to apply successfully. Further

4--
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discussion of the details of production selection and execution is best conducted in the

context of an example.

B. An Example Production System

Table I presents a set of productions for adding two numbers.1 Let us consider how this

production set would apply to the addition problem of 32 + 18. We assume this problem is

encoded by a set of propositions which may approximately be rendered as: -

The goal Is to add 32 and 18
32 begIns with a 2
The 2 s fol  t owed by a 3
32 ends w i th  this 3
18 begIns w i th  a 8
The 8 is fo l l owed  by a 1
18 ends w i th  this I

The above propositions encode the digits from right to left as is required by the standard

addition algorithm.

The condition of P1 in Table 1 is satisfied by making the following correspondences

betwe.en element~ of the condition and propositions in the data base:

The goal &s to add LVnumberl and LV,tumber2—The goal is to add 32 and 18
LVrswnberl begins with a LVdi gitl 32 begins with a 2
LVnuntber2 begins with a LVdigit2 — 18 begins wit h a 8

In making these correspondences, the variables LVnumber l, LVnumber2, LVdigit l, and

LVdigit2 are bound to the values 32, 18, 2, and 8 respectively. The LV prefix indicates that

these are local variables and can be bound to anything. - Since they only maIntain their

bInding within the production, other productions are not constrained to match these variables

in the same way. The action of Pt , th. subgoal is to add LVdi g itl and LVdigit2, becomes,

Th. p~oducti.øu ~~~~~~~~ I~’ this paper are tr.n•I.fion. .1 the fo,a,.I .ynt.,i .f th. ~~~~~~~~~ preducto~. Mo
(b.~.ft#y) Mora readable pros. The r..d.r wat.rs.t.d a~ the actusi hepl.m.nt.tion details u~i.y r.qu..4 5.U. ,~e of the
lmpl...sohe d vsreie~~ and .s e,plee of their op.rstion

_________ __________ - ~~~~~~~~~ - -~~~~ ~~~~~.-- - -~~~ 
- - .=~~~- 
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5

given the values of th. variables, an instruction to place the proposition, Tb. subgoal is to

add 2 and 8, into the data base. This serves as a cue to productions that will actually add 2

and 8.

After the execution of P1 the first element of the condition of production P2 is satisfied:

The subgoal is to add LVdigitl and LVdigit2.’Th. subgoal is to add 2 and 8

The remaining condition of P2 matches a proposition in the data base about integer add it ion:

LVsunt is the sum of LVdigit l and Lvdigit2 — l Ois the sum of ? and 8

The action of P2 odds to the data base The subgoal is to put out 10.

The next production to apply is P5 which is matched as follows:

The subgoal is to put ou.t LVsunt . Th, subgoal is to put out 10 -

The subgoal is to add LVdigitl and LVdigit2— The subgoal is to add 2 and 8
LVsum is greater than 9 — 10 is greater than 9

LVsum is the sum of LVdigit3 and 10 — 10 is the sum of 0 and 10

The action of PS writes out 0 as the first digit in the answer, places a proposition in the data

base, The subgoal is to do the next digits after 2 and 8, to the effect that this column is

finished, and sets a.carry flag.

Insert Table 1 about here

It is worth considering why no other production besides P5 can apply. All the conditiuns

of production P3 match, but PS contains all the conditions of P3 plus two additional

propositions. Because its condition contains more elements , PS is applied rather than P3.

This illustrates the principle of specificity - if two productions match but the condition of one

of them is a subset of the condition of the other, t hen the production with the larger number

of conditions (mor e specific) will apply instead of the production with fewer conditions (more

t - - - . - -
~~

- -- -~
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Table !
- A Set of Productions for Adding Two Numbers

P1: IF the goal is to add LVnumberl and LVnumber2
and LVnurnberl begins with a LVdigitl
and LVnumber 2 begins with a LVdigit2

THEN the subgoal is to then add LVdigitl and LVdigi t2

P2: IF the subgoal is to add LVdigit 1 and LVdigit 2
and LVsum is the sum of LVdigitl and LVdigit 2

THEN the subgoal is to put out LVsum

P3: IF the subgoal is to put out L.Vsum
and the subgoal is to add LVdigitl and L.Vdigit2

THEN write LVsum
and the subgoal is to add the digits after LVdigitl and LVdigi t2

P4: IF the subgoal is to put out LVsum
and the subgoal is to add LVdigitl and LVdigit2
and there is a carry
and LVsuml is the sum of LVsum plus 1

THEN wr ite LVsuml
and the subgoal is to do the digits after LVdigitl and LVdigit 2
and remove the carry flag

PS: IF the subgoal is to put out LVsum
and the subgoal is to add LVdigitl and LVdigit2
and LVsum is greater than 9
and LVsum is the sum of LVdigit3 and 10

THEN write LVdigit3
and the subgoal is to do the next digits after LVdigitl and LVdigit2
and set the carry flag

P6: IF the subgoal is to put out LVsum
and the subgoal is lo add LVdigitl and LVdigit2
and there is a carry
and LVsum is greater than 9
and LVsum is the sum of LVdigit3 and 9

THEN writ e LVdigit3
and the subgoal is to do the digits after LVdigitl and LVdigit2

P7: IF the subgoal is to put out the digits after LVdigitl and LVdigit2
— and the LVdigit l is followed by a LVdigit3

and the LVdigit2 is followed by a LVdigit4
THEN the subgoal is to add LVdigit3 and LVdigit~

P8: IF the subgoal is to add the digits after LVdigit l and LVdigit2
and the goal is to add LVnumberl and LVnumber2
and LVnumber 1 ends with the LVdigit 1
and LVnumber2 ends with the LVdigit2

THEN the goal is satisfied

- 
- 

____ 1~ ~~~~~~~~~~~~~~~~~~~~ 
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7

general). Productions P4 and P6 do not apply because there is no carry into the first column.

One might wonder why P1 or P2 do not apply again r’rtce their conditions were satisfied once

by data base elements that have not been changed. The current version of the ACT

production system does not allow production conditions to match twice to exactly the same

data-base propositions. This constraint serves to avoid unwanted repetitions of the same

productions and thus some of the danger of infinite loops.

Production P7 applies next , adding The subgoal is to add 3 and I to the data base so that

the next column can be added. Production P2 next app~~s, finds the sum, and adds The

subgoal is to put out 4 to the data base. Production P4 adds the carry to LVsum and writes

out the second di git of the answer , 5. P8 then applies, noting that the problem is finished.

This example illustrates a number of important features of the ACT production system.

(1) Individual productions act on the information in long-term memory. They communicate

with one another by entering information into memory.

(2) Productions tend to apply in sequences where one production applies after another has

entered some element into the data base. Thus the action of one production can help evoke

other productions.

(3) The condition of a production specifies an abstract pattern of propositions in the data

base. The more propositions that a condition requires in its pattern, the more difficult it is to

satisfy that condition. Similarl y, the more a condition relies on constants instead of variables

to describe its pattern, the more difficult it is to satisfy that condition.

II Learning in ACT

ACT can learn both by adding propositions to its data base and by adding productions. It

can also learn by modif ying streng!hs of propositions and productions. We wilt concentrate

here on the learning that involves productions. Production learning tends to involve the more

significant events of cognitive restructuring. It is also through production learning that ACT

- --~~~~~~ - —--- — -
-- 
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accounts for schema abstractions.
£

Productions can be added to the data base in one of two ways. They can be added by

deliberate designation as in the encoding of instructions or they can be encoded by

spontaneous restructuring of productions in response to experience. We will talk about two

var sties of spontaneous restructuring, generalization and discrimination. There is another

spontaneous process, strengthening, which adjusts strengths of productions in response to

their record of success. Our discussion of learning will be divided to three subsections - one

to describe the deliberate designation, another to describe generalization and discrimination,

and a third to describe the mechanisms of strength adjustment.

A. Designation

Productions can desi gnate the cre ation of other productions in their action just as they can

designate the creation of propositional structure. We wilt illustrate the basic idea with an

example. Consider how ACT might assimilate the following rules defining various types of

LISP expressions (adapted from the second chapter of Weissman, 1967):

1. If an expression is  a number It is an atom,
2. If an expression is a l i teral (a string of characters) it i~

an atom ,
3. If an expression is an atom It Is an S—expression.
4. If an expression is a dotted pair , It is an S—expression.
5, If an expression beg ins wi th  a lef t parenthesis, fo l l owed  by

an S—expression , f o l l o w e d  by a dot , fo l lowed by an
S—expression, followed by a ri ght parenthesis, I t Is  a
dotted pair .

After receiving this instruction ACT will have the sentences expressing these rules

represented in its data base. However this representation, by itself , does not allow It to

perform any of the cognitive operations that would normally be thought of as demonstrating

en understanding” of these rules. In order to obtain such an understanding, a means of

Integrating these rules into ACT’s procedural knowledge is required. Since these rules have 

— ——— - — - -- - - - -~~~ -- ---- —-—---- -—- - -- - - - -
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the form of conditionals (antecedent implies consequent), they can be translated in a fairly

straightfor ward manner into the condition-action format of productions. Table 2 illustr ates

four ACT productions for performing such a translation.2 Production P9 handles the

antecedents of the first four conditionals. For example, P9 matches the segment If an

expression is a number_of rule (1) by binding LVword to the word number and LVconcept I to

the concept ØNUUBER that ACT considers underlies that word. Its action is to save the

proposit ion An object is a i~NUM8ER for the condition of a new production.

Insert Table 2 about here

Production PlO is responsible for actually building the productions encoding these rules. It

obtains the actions of these new productions from its own processing of the consequent

parts of the rules, while the conditions of these new productions have already been

identified, so PlO only needs to retrieve them. For example, in the case of rule (I), PlO

applies after P9, matching the remainder of the sentence.., it is an atom. The local variables

LVword and LVconcept receive values of atom and oATOM, respectively, In the process of

matching. The action of PlO builds the production:

P13: IF an object is a SONUMBER
THEN it is an øATOM

Production P13 is the methanism by which ACT can actually make the inferences authorized

by rule(1).

Productions P11 and P12 are responsible for processing complex conditionals like (5). P11

2 TheI, produc lion and so ,os others in th is pip., .mbody sue’s cl..rl y ov,r-a.e’pSfi.d not ions about bn,u., e
c oe’pr.h,nai on; S e’O?5 .d.qu.te t rsatm.n t would only distract st t .nl ion f,o,. th. ls.rnln~ pr.csss .s which or. the
,,,stte,s of present ,nl•rsst, however . For s discussion of 1.11us$. proc.s.in~ within the ACT f,.,,,.work see And. ,.,,,
KIi~.. and Lewis (1977). (On. coe’Øcstion nscssssry to any coqi,pl.t. analysis of Isn~us~e compr.henseon Is,
nev.rtheless, being ob.,rved In see’s of the en.~wpIe, 10 this piper — th. distinction between words sod the concepts
uviduvlyin thee’ )

I

- - - -~~~~- - .  - -~~~~~~~
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Table 2

A Set of Productions for Encoding Rules about LISP expressions

P9: IF there is a sentence beginning: “IF an expression is a LVword...”
and LVconcept is the concept for LVword

THEN save an object is a LVconc.pt for a new condition

PlO IF the sentence ends: “_it is a LVword
and LVconcept is the c~,ncept for LVword
and LVcondition is the saved condition

THEN BUILD IF LVcondieion
THEN it is a LVconcept

P11: IF there is a sentenc e beg inning: iF an expression begins with a LVword.,.”
and LVconcept is the concept for LVword

THEN save IF an object begins with an LVcor*c.pt for a new condition
and LVconcept is the last concept

P12: IF the sentence contin ues: ...followed by a LVword
and LVconcept is the last concept
and LVconcept I is 11* concept for LVword

THEN add the LVcoszceptl is befor, a LVconc.pe to the new condition
and LVconcept l is the last concept

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  

_ _ _ _  
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processos the first begins phrase and P12 each subsequent followed by phrase. After th.

antecedent of the conditional has been entirely processed, production PlO will apply to

process the consequent and the designate a production. In the case of rule (5) this

production would be:

P14: IF an object begins with a M.EFT-PARENTHESI$
and the p.LEFT-PARENTHESIS is before a eS-EXPRESSION
and the aS-EXPRESSION is before a EDOOT
and the i~DOT is before a ~ S-EXPRESS1ON
and the AS-EXPRESSION is before a eRIGHT-PARENTHESIS

THEN it is a ~aOOTTED-PAIR

This designation process serves in any learning situation as the initial means of introducing

productions into the system. Once productions are Introduced, the generalization and

discrimination processes can operate to create new productions. The designating productions

in Table 2 are quite sophisticated. However, one can also propose much more primitive

designating productions. For instance, it would not be unreasonable to propos. that a child

has the following production which encodes a simple principl, of reinforcement:

P15: IF LVevent occurs just before ACT performs LVaction
and LVact ion is followed by reinforcement

THEN BUILD IF LVev.nt
THEN LVaction

B. Generalization and Discrimination

It is the ability to perform successfully in novel situations that is the hallmark of human

cognition. For example, productwity has often been identified as th, most important feature

of natural languages , where this refers to the speaker’s ability to generate and comprehend

utterances never before encountered. Traditional learning theories ars generally consider.d

inadequate to account for this productivity and ACT’s generalization abilities must eventual ly

be evaluated against thés same standard .

I

_____________
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While it is possible for ACT to designat e new productions t o apply in situa tions wher e

existing ones do not, this kind of generalizati on requires having designating productions that

correctly anticipate future needs. It is plausible that ACT could have such designating

productions to guide Its generalizations in areas in which It possesses some expertise.

However, there are many situations where it would be unreasonable to assume such

expertise. For this reason, ACT has the ability to create new productions automatically that

are generalizations of its existing productions. This ability, while less powerful then the

ability to desi gnate generalizations , is appl icable even in cases where ACT has no reliable

expectations about the characteristics of the material it must learn.

We will use an example from the schema abstraction literature to illustrate Acre automatic

generalization mechanism. Figure 1 illustrates the stimuli from Experiments 3 and 4 of Franks

and Bransford (1971). The 12 figures on the left hand side of the figure were presented to

subjects for study. We will assume that Is designate productions to recognize each stimulus.

So for the first stimulus item subjects would designate the following production:

P16: IF a triangle is to the right of a circle
and a ‘square is to the right of a heart
and the first pair is above the second pair

THEN this is an instance of the study material

For the third stimulus the following production would be designated:

P17: IF a circle is to the right of a triangle
and a square is to the right of a heart
and the first pair is above the second pair

THEN this Is an instance of the study material

From these two productions a generalization can be formed that captures what thes. two

productions have in common. This involves deleting terms on which the two productions

differ and replacing t hese terms by local variab les. Thus, we have the following

p

1 
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Figure 1: The mate rial used in Franks and Bransford (1971).

genera lizat ion:3

P18: IF a LVshapel Is to the right of a L.Vshspe2
and a square is to the right of a heart
arid th. first pair is above the second pair

THEN th is is an instance of the study material

This generalizatIon can be thought of as an attempt on ACT’. par t to arriv, at a more

3A. di.cusied in detsit elsewhere lAnd.rsoo, Khne, & BessIsy~ in press) there cen be osoy different mssliuu.I c.me’so
penerekz.tieea In this ceo. the,. .. soother uieoi sI coe’e’eo ~eoei’shs.tien besides PlC. This geoer.Cs.tIsa preserves
the lofe,n’etleo thet there i~ • trlai~le sod s fisirt in beth •buuti but ceossqueotly lees.. rnl.ro.*iso sbeut the p.sltl.n
•f the sh ip.. This 1soe,.hzetIse ceeld be rendered i~ ew eppresiaste synt .. se

W the’. is a
sod there is . heat
sod s sqiare is to the right of . tiesrt
sod the sec.iid psi’ is below soother peir
THEN this Is so initsoce ef the st udy e’.t.,i.I

IO eilV shusuI.ti fis we wiN be we,kifl with the f ist ~~ ie,skst*a

—~~~ 
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general characterizati on of the study material. Note that ACT’. generaliza tion mechanism £

needs only two examples to propose a generalization 4 This generalization do.. not replace

the original two but rather co-exists with them as an alternat e means of characterizing the

stimulus ..t. Which production will actually produce the response depends on the strength
mechanism that we wilt describe shortly.

Restrictions are needed on how many elements can be deleted in miking a generalizatIon.

Consider, ACr. representation for the sixth stimulus from the Franks and Bransford set:

P19: IF a circl, is to the right of a triang le
and a h.o.rt is to the right of a biank
and the first pair is above the second pair

THEN this is an instance of the stimulus material

If we allowed this stimulus to be generalized with stimulus 1 (P16) we would get the
following generalization:

P20: IF a LVshapel is to the right of a LVshape2
and a LVshape3 is to the right of a LVsbap.4
and the first pair is above the second pair

THEN this is an insta nce of the stimulus material

This production will accept any array of geometric objects as an instanc, of the study

material . While it is conceivable that any possible array may be an experimen ta l stimulus , this -

seems like too strong a generalization to make just on the basis of these two examples.

Theref ore, a li mit is placed on the proportion of constants that can be replaced by variables.

In the current system no more than half of the constants In the production with least

constants can be replaced by variables in a generalization. The terms that ACT considers

leuhire ef ~.ner.lisstien (1w. insto.ces te mike s $eiiurslicstleo) V It. well with the V oN,wln5 bserv.tloo
sbout Inducti.o. which he. been sItr~ ut.d to Geer~, Mill. , (by C. Siath~ persensi communicstloo) Supp.se one person
comes into your office sod seys, ‘I co.wiet ..hs eur .ppsintm.nt. 1 em ~~~~ I. BrstIt’ A eecmd person comes kite
your office sod says, ‘Could veu teed, my thee Is, me, I sm $eUi~ Is Brazil You ~~~~~~ ask the qu.stles, ‘Why ~ev.ryone ~o.n to BrszV

- .......L ~ -_—-.-- -- ---- 
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constants are italicized. There are five constants in productions P16, P17, and P18.

Production P18 is an acceptable generalization from P16 and P17 because It only involves

replacement of tw o of the constants. Production P20 is not an acceptable generalization from

P16 and P19 because it involves replacement of 4 of the 5 constants.

Even with this restriction on the proportion of constants deleted It is likely that

unarceptably many generalizations will bb formed. A realistic simulation of an adult human’s

entire procedural knowledge would require hundreds of thousands of ACT productions.

Under these circumstances it would be disastrous to attempt to generalize all possible paIrs

of productions. ACT only attempts to form generalizations when a new production has been

designated. Although no potential generalizations would be missed if a generalIzation was

attempted for each possible pairing of this newly-designed production with existing

productions, an enormous computational cost is required even under this scheme. For this

reason generalizations are attempted only for pairings of newly -designated produc tions with

the productions on the APPLYLIST. Since a production is on the APPtXLLST only if the

constants it references are active and it has met a strength criterion (see p. 3), this implies

that attemp ts to generalize will be restricted to productions that are relevant to the current

context and which have enough strength to indicate a history of past success.

Discrimination

Even with these restrictions placed on It, ACTs generalization mechanisms will produce

productions that are overgeneralizations of the desired production. However, given our goal

of a psychologically realistic simulation, such overgeneralizatioris on ACT’. part are actually

desirable since it can be shown that people make similar overgeneralizations. For example,

children learning language (and, it appears adults learning a second language - see Bailey,

Madder, and Krasher ,, 1974) overgeneralize morphemic rules. Thus a child wilt genera te

mans, gwed, etc. ACT will do th. same. It is also possible that productions will be directly

designated in overgeneral form. Thus, for instance, ACT might generate the following rule for

predict ing rice growing:

_______________ _________________ 
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P21: IF the climate of LVplace is warm
and there is ample rainfall in LVplac.

THEN LVplac. can grow rice

This rule is overgenerai in that it fails to specify that the terrain be flat.

To correct overgeneralizations ACT must create more discriminate productions. A

production can be made more discriminate either by adding clauses to the condition or by

replacIng variables by constants. So production P22 serves as a discrimination of P21 by the

addition of a clause:

P22: IF the climate of LVplace is warm
and there is ample rainfall in LVplace
and the terrain Is flat in LVplace

THEN LVplace can grow rice

Such a discriminate production does not replace P21 but rather coexists with it. Because of

the specificity principle described earlier (p. 5), P22 will apply rather than P21 If both are

selected for application.

it is possible for ACT to directly designate such productions to correct overgeneral ones.

However, just as in the case of designated generalizations, the existence of the required

designating productions is plausible only f or domain’~ in which ACT already possesses some
expertise. In such domains, ACT could possess the knowledge required to debug its own

errors intelligently, but In tI* majority of cases it will rely on its automatic discrimination

mechanism.

ACT’s automatic discrimination mechanism requires that it hav, examples both of correct
and incorrect application of a production. This raises the issue of how ACT can get feedback

on the operation of its product ions. Productions place new propositions Into the dat a base

and emit observable responses; either of these actions can be declared incorrect by a human

observer or by ACT itself . In the absence of such a declaration an action Is considered

correct. That Is, the only distinction made by the discrimination mechanism Is between

—
~~~~~~~ 

-
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negative feedback and its absence. Since the way in which ACT declares that the action of a

production is incorrec t is to apply another production that makes such a declaration as part

of its own action, arbitrarily complex ACT computations can be performed to decide the

correctness of any particular action. -

The discrimination mechanism will only attempt to discriminate a productIon when it has

both a correct and an incorrect application of that production to compare. BasIcally, this

algorithm remembers and compares the variable bindings In the correct and incorrect

applications. By finding a variable that had different bindings in these two applications it is

possible to place restrictions on that variable that would prevent the match that led to the

unsuccessful application while still permitting the match that led to the successful application.

Although we have explored other ways of restricting this variable, in the simulations of

schema abstraction that will be discussed a new production was formed from the old

production simply by replacing the variable by the constant it was bound to during the

successful application. 
-

As an example of a discrimination process, we will consider a categorization experiment

from Medin and Schaffer (1978). We wilt focus on two instances they presented from

category A. One was two large red triangles and the other was two large blue circles. From

these two examp les, ACT would designate the following categorization productions:

P23: IF a stimulus has two large red triangles
THE N it is in category A

P24: IF a stimulus has two large blue c ircles
THEN it is in category A

From these two ACT would form the following generalization:

P25: IF a stimulus has two large LVcolor LVshapes
THEN It is .n category A

____  -— - -
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However, this turned out to be an overgenerallzation. To be in category A the stimulus

had to be either red or a circle or or both. Thus, the counter-example was presented of two

large blue triangles which was a stimulus in category a Generalization P25 misapplied in this

circumstance. By noting what distinguished the circumstances of correct applications of

generalization P25 from the circumstances of incorrect application, both of the following

productions would eventually be formed by the discrimination mechanism. These productions

will always produce correct classifications.

P26: iF a stimulus has two large red LVshapes
THEN it is in category A

P27: IF a stimulus has two large LVcolor circles
THEN it is in category A

These productions were formed from P25 by replacing one of its variables by the binding

that variable had during a successful application -- (i.e. an application to a stimulus that was

actually from category A. As an aside, these two productions illustrate how ACT can encode

disjunctive concepts by the use of multiple productions).

C. Production Streng th

When a new production is cre~~ed by the designation process there is no assurance that

its condition is really the best characterization of the circumstances in which its action is

appropriate. For this reason, generalization and discrimination processes exist to give ACT

the opportunity to evaluate alternative conditions for this action. It is the responsibility of

ACT’s strength mechanisms to perform the evaluation of these competing productions.

Through experience with the ACT system we have created a set of parameters that appear

to yield human-like performance. The first time a production is created (by designation,

generalization, or discrimination) it is given a strength of .1. Should that production be

recreated its strength is incremented by .05. Furthermore, a production has its strength

incremented by .025 every time It applies or a production consistent with it applies. (One

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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production is considered consistent with another if its condition is more general and its action

is identical.) Finally, whenever a production receives negativ, feedback its strength is

reduced by a factor of 1/4 and the same happens to the strength of all productions

consistent with it. Since a multiplicative adjustment produces a greater change In strength

than an additive adjustment, a “punishment” is more effective than a “reinforcement”.

Note that productions are created out of what might be considered a “reinforcing” event.

That is, the designation ot production occurs because for some reason ACT considers this to

be a “good” rule. Generalization occurs in response to a designation event - that  is,

generalizations are found by comparing designated productions with productions on the

APPLYLIST. Since, designation and generalization can lead to an increase in strength and

negative feedback leads to a decrease in strength, the ACT strength mechanism can be seen

to have a principle of reinforcement built into it. There is also a principle of exercise - a

production gains strength just by applying. This principle is motivated by the observation

that behaviors become more reliably evoked and rapidly executed by sheer exercise.

Both decrements and increments in strength generalize to more general productIons. This

means that if a more general production is created it can rapidly gain strength even if it does

not apply nor is it recreated.

It is important to understand how production strength affects performance and how it

interacts with specificity. Recall that a production’s strength encodes the probability that it

will apply. If a is the strength of a production and S the total strength of all productions

selected, the probability of that production being chosen on a cycle for application is

where b is a parameter currently set at 15. Of course, it it is not app’ied one cycle

and the circumstances do not change, it can apply on a later cycle. Thus, strength affects

both the latency and reliability of production application.

While selection rules based on strength can make some of the required choices among

competing productions, it is clear that strength cannot be the sole criterion. For example,

people reliably generate irregular plurals (e.g., m.’i) under circumstances in which the “ add a” 

;~~~~~~~~~~~~~
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rule for regular plurals is presumably also applicable. This reliable performance is obtained

despite the fact that the productions responsible for generating regular plurals are applied

much more frequently than those for irregulars and theref ore should be much stronger.

ACT’s solution to the problem of exceptions to strong general rules relies on the

specificity-ordering principle to decide which productions on the APPLYLIST should actually

execute. This principle accounts for the execution of a production generating an irregular

plural since its condition presumably contains all of the requirements for generating the

regular plural and must, in addition, make reference to the specific noun to be pluralized.

The precedence of exceptions over much stronger general rules does not imply that

exceptions always apply, however. In order to benefit from the specificity-ordering principle

exceptions must first have achieved the amount of strength necessary to be placed on the

APPLYLIST. Furthermore, because the amount of strength necessary dependx on the

strengths of the other productions that could apply, the stronger a general rule is, the more

strength its exceptions need in order to apply reliabl y. This property of the ACT model is

consistent with the fact that words with irregular inflections tend to have high frequencies of

occurrence.

Production strength is an important way in which ACT differs from other computer-based

learning systems (e.g., Anderson, 1977; Vera, 1977; Hayes-Roth & McDermott, 1976; Sussman ,

1975; Winston, 1970; Waterman, 1974). The learning of all these systems has an all-or--none

character that ACT would share if creating new productions was its only learning mechanism.

Our hope Ic that strength mechanisms modulate the all-or-none character of production

creation in a way that enables ACT to cope with the kind of world that people have to cope

with -- a world where data is not perfectly reliable and contingencies change in such a w y

that even being as cautious as possible it is certain that occasional errors will be made.

D. Review of Critical Assumptions

It is worthwhile, as a review , to state what the critical assumptions are which underlie the

ACT learning model.

r 
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1. Productions can be designated by other productions.

2. When a production is designated an attempt will be made to generalize it w ith all the

productions in the APPLYLIST.

3. Generalization occurs by replacing constants on which two productions differ by

variables.

4. A generalization of two productions will be formed if .they have the same action and if

no more than half of the constants in the production with the least constants are replaced by

variables in forming a generalization.

5. If a production has a record of both a correct and incorrect application a discrimination

will be formed.

6. A discrimination is formed by filling in one variable of the production with the value

that variable had during its correct application but did not have during its incorrect

application .

7. Upon creation productions are given strength of .1.

8. Upon an attempt to recreate a production its strength is increased by .05.

9. Every time a production is applied its strength is increased by .025

10. When any of events 7, 8, or 9 occur a strength increment of .025 is inherited by all

consistent productions.

11. If a production is found to misapply its streng th Is decreased by 1/4 as is the

strength of all consistent productions.

12. If S is the total strength of all productions selected and s is the strength of a

particular selected production, the probability of its being applied if it matches is l~e~~
5

~’5.

13. If two productions on the APPLXUST both match the data and one is more specific, the 

— ---__ ________ 
-



22

more specific production will apply.

III Applications to Schema Abstracti on

There is a growing literature concerned with the process by which subjects form concepts

by detecting regularities among stimuli (e.g., Franks & Bransford, 1971; Hayes-Roth &
Hayes-Roth, 1977; Newmann, 1974; Posner & Keele, 1970; Reed, 1972; Reitman & Bower,
1973; Rosch & Mervis, 1975). This literature is often referred to as studying prototype
formation, but for various reasons we prefer to refer to it as studying schema abstraction.

There are a number of features of this research area that distinguish it from the related

research area that is often cailed concept formation: In the concept formation literature the

concept that is to be discovered is usually quite simple (e.g. red and a triangle) and subjects

are often able to verbalize the hypotheses they are considering at any point. In contrast,
the concepts used in the schema abstrac.tion literature may be quite complex. For example,

these concepts might be defined in terms of a linear discriminant function (e.g. Reed, 1972) or

solely by a listing of the exemplars (e.g., Medin & Schalfer , 1978). Subjects wilt often emerge

from such experiments without being able to verbalize the criteria they are using to correctly

classif y instances. Their instructions may even suggest that they should avoid formulating

explicit hypotheses and should simply study the instances one-by-one. Within the ACT

framework there is a corresponding distinction between forming a concept by the action of a

general set of productions for hypothesis testing versus forming a concept by the action of

the automatic learning mechanisms of generalization, discrimination, and strengthening.

Our intention in the rest of this paper Is to show that ACT’s automatic learning mechanisms

have a straightforward application to schema abstraction. In outline, this application is as

follows: For each instance presented ACT designates a production that recognizes and/or

categor izes that instance alone. Generalizations occur through the comparison of pairs of

these productions. If feedback about the correctness of these generalizations is provided

then the discrimination process can be evoked. Our working definition of a concept will be

this set of designations, generalizations, and discriminations. It turns out tha t such sets of

- - - 
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productions nicely capture the family resemblance structure that has been claimed for natural

categories (e.g. Rosch & Mervis, 1975). It also turns out that ACT simulations can account for

the results of various experiments in the literature on schema abstraction.

A. Franks and Bransford: Illustration of Basic Phenomena

We have already introduced (Figure 1) the material used by Franks and Bransford in one ‘

their experiments on schema abstraction. Subjects studied the 12 pictures on the lef t ~f

Figure 1 twice and then were transferred to a recognition phase in which they had to gi

recognition ratings of the 16 figures on the right of Figure 2 plus 6 other figures, calk

non-cases, which violated the rules under which the cases were generated. The 16 te~
cases in Figure 1 were generated by applying 0, 1, 2, or 3 transformations to the base

figures. Half of these 16 were actually studied and half were not. While Franks and

Bransford do not report subjects ’ performance for each stimulus, they do report that

confidence ratings for recognition generally decreased with the number of transformations
and was lowest for the non-cases.

We attempted to simulate the Franks and Bransford experiment by having ACT go through

propositional encodings of the items in the study set twice, designating a recognition

production for each stimulus it saw.5 Then at test ACT was again presented with

propositional encodings of the stimuli and the production which applied (if any) wa s rioted.

Sufficient generalization had occurred so that most of the stimuli were recognized by at least

one of the productions.

A critical question was how to map the production selected onto a confidence rating. We

assumed that ACT’s confidence would be a function of the number of constants in the stImulus

(and therefore an inverse function of the number of variables). This procedure for assigning

confidence will be used throughout this paper. This is a reasonable procedure for assigning

5ri,. .imul.tion , won , not p.rfornwd with th. ~on,rSl punpo., ACT ,imuhtion pro~n.i~ but r.th.r with . •p.cl.l
punpo.. •i,,,ul. t~on wh ich run. ibout tO tm~., f..t .~ Thi. sp.c,.l s,mul.t ion do.. not h.v. ill th. i.n.r.l compu t .tion .t
.. t ,,, .. of ACT R.th.r , it I. •sp.cislly d.,ln.d to •ltow ii. to follow only th. int ,r.ctj on of .tr.n~ th.nin~,discn inOnoti on, .nd ~.n.r.li z.ti on. 
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confidence, since the more constants in the recognizing production the closer it is to an

encoding of an actual tes t item. In the extreme , if the stimutus is recognized by a production

with no variables the subject can be sure that the item was studied since a non-variabitlzed

production is an encoding of a study item.

Note that this procedure f or assigning confidence implicitly weights the strength of

productions as well as their number of constants. Since strength of productions determines

whether a production is selected, the stronger the productions that can classify an instance

the more of these productions that will be selected and, thus , the more likely it Is th at a -

production with many constants will be selected. This increased probability of selectIng a

production with many constants translates quite directly into an increase in the probabili ty of

a high confidence rating because of ACT’s preference for applying the most specific

productions that have been selected. We have given some thought to the possibility that

strength should have more than an implicit role in assigning confidence. That is, confidence

could be made a joint function of number of constants in a production that applies and the

strength of that production. Considering a production’s strength in assigning confidence

could be justified by the fact that strength reflects the production’s past success in

classif ying instances and therefore predicts how successful the current application will be.

We have not gone to this more complex procedure for assigning confidence mainly because

we have been able to account for all the results just using the number of constants.

Consider again production P16 (on p. 10) which encodes the first item in the stimulus set:

P16: IF a triangle is to the right of a circle
and a square is to the right of a heart
and the first pair is abov, the second pair

THEN this is an instance of the study material

The five constants that can be replaced by variables are italicized. If this productIon applied,

ACT would assign a confidence rating of 5 to its recognition of that stimulus. If all five

constants were replaced by variables we would have a production that would recognize

any thing and if this applied we would assign a confidence of 0. For shorthand, we will denote

- : ~~ii --- —-- .
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the production above as TCSHA where eec), letter Is the first letter of one of the constants.

Variables will be denoted by hyphens. Therefore, production P18 (on p. 11) would be

denoted --SHA.

To obtain predictions for this experiment we ran ten ACT simulations. Each simulation

involved giving ACT a study phasà and then following this with five passes through the test

material. Since the process of production selection is probabilIstIc, Acrs ratings varIed from

one test to another. Altogether we obtained fifty ratings for each test stimulus and the data

we report wilt be based on averages of these fifty ratings. The practice of having five test

trials for each study represents a departure form the Franks and Bransford experiment.

However, since the study phase was relatively expensive in computational terms, It made

sense to get as much data as possible from each study phase that was simulated.

The numbers that were obtained from these simulations depend on the rather arbitrary

values for the strengthening parameters that were detailed earlier (p.p. 17, 18).6 It is

,..urrently impractical and probably premature to perform a search of the parameter space to

determine the best fitting parameters. For this reason, we used these arbitrary values for all

of the simulations that will be reported and had to be content to predict the relative ordering

of conditions rather than their exact values. 
-

The test stimuli identified as base or 0-transformations (1, 9 in F.gure 1) were given a

mean rating of 1.66 (i.e. mean number of constants in matching productionsh the test stimuli

(2-5, 10-13) identified as one transformation away from the base were rated 1.24; the stimuli

(6, 7, 14, 15) identified as two steps away were rated 1.11; the stimuli (8, 16) three steps

away were value 1.13; and the non-cases were rated .65. This corresponds to Franks and

Bransford’s report of an overall correlation between closeness to base and rating. (Franks

and Bransford do not report the actual ratings.)

On. .ddition.l psr.m.t.r b..id., thou, diecu.uid •.nii.r ii n~~uln~d. If ACT hid .1 .f the productions th.t would b.
,W.dud to •ccount for s .ubi.ct’I total pnoc.duv.l linowl,d~s, •emi of t iie,s, .lthou~h lrr~lsvsnt to the schonis
bstnsct ion t..k, would hi .&.ct.d enywsy end IheW st r.n5ths w uld conirtuli to S In ..suiup tion 12 (p 2*). For .11

of His .iieut.tion . v.port.d in this pip., the contrbution of ,uch ,r.isvsnt p~odvdion. is S wi. sot to 20.

-
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Neumann (1974) performed a replication of Franks and Bransford and he did report mean
- 

ratings for each of the five categories of test stimuli. Subjects assigned ratings of +1 to +5

to the stimuli that they thought they recognized and assigned ratings of -1 to -5 to stImuli

they did not recognize. Mean ratings were 2.79 for base stimuli, 2.18 for 1-transformation

stimuli, .49 for 2-transformation stimuli, .90 for 3-transformation stimuli, and —.26 for

non-case stImuli. While the ordering AC~T scores corresponds perfectly to the ordering of

these mean ratings, a comparison of the exact values is not meaningful because th. scales are

different. Some monotonic transformation is required to convert the ACT scores which ar•

based on the number of constants in the recognizing production into the -5 to +5 confidence

scale used by Neumann’s subjects. If the transformation from ACT match score to confidence

were linear there should be a strong correlation between the two measures. In fact, the

correlation is .927 suggesting such a linear transformation might not be that far from the

truth.

This experiment does not provide a particularly telling test of the ACT learning model, but

It is a good introduction in that it serves to illustrate that ACT can account for one. of the

basic phenomena of schema abstraction -- namely that confidence falls off with distance from

the stimuli tha t are the central tendency of the category. Subsequent experiments will deal

with the issue of whether the details of ACT’s abstraction process correspond to the details

of human abstraction.

To help understand how ACT accounts for preference for central stimuli like 1 or 9,

consider Figure 2 which compares the specificity network around test stimulus 1 during one

of the ten simulations (Part a) with the specificity network around test stImulus 8 (Part b). In

our notation, test stimulus 1 Is ACTHS and test stimulus 8 Is ATCBH. Both were presented

twice during study and so have strength .15. However, ACTHS is more similar to other stimuli

and so has entered into more generalizations. Hence, there is a denser network above

ACTHS. (Actually, the network around ACTHS is even denser than Figure 2 but we have

eliminated some of the generalizations to make the figure easier to read). ATCBH differs from

all other stimuli on at least two dimensions. Then are no 1-variable productions above

~ 
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ATCBH. On the other hand there are two 1-variable productions (ACT-S and -CTHS) above

ACTHS with a combined strength of .40. ACTBH does have two 2-variable productions above

it (A-C-H and ATC--), but their combined strength of .325 Is st ill much less t han the combined

strength of 1.475 possessed by the four 2-variable productions above ACTHS (A--HS -CT-S,

-C-MS. AC-H-; only three of these are IllUstrated). A similar picture is obtained when we look

at the 3- and 4-variable generalizations: There are two 3-variable productions above ATCBH

(A-.—-H and A-C--) with strength 1.025; but there are six 3-variable productions above ACTHS

(A---S, ---HS, -C--S. -C-H-, AC---, A--H-; only four of these are illus trated ) with total

strength 3.4. Finally, ATCBH was involved in no 4-variable generalizations while ACTHS is

involved in three (----S. -C---, ---H-) with total strength 3.25. Table 3a summarizes these

comparisons.

Under some approximating assumptions, it is possible to derive the expected match values

fr om these strengths. Assume that if a n-variable production is selected which matches the

stimulus, it will aoply in preference to all ni l v.niable productions. This assumption is an

approximate realization of P~CVs specificity ordering. Let be the probability of at least

one i-variable production being selected for stimulus - S. The probability ~~ that one of the

i—varIable productions will be the one that applies to classify stimulus S is:

i—i
w 

~~ (1 — ~~ P~,5) (1)
m o

That is, the probability that a i-variable production will be the one to apply is the probability

that a i-variable production is selected times the probability that no more dIscriminate

production is also selected. Then expected rating for stimulus S Is:

4
R5 ~ ~~ (S-i)P~,, (2)

i-O

- - -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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a) — — — — S — — — I—I — — C — — —

A — S ——— HS — C — H —  AC -— —

A— - HS — C- HS AC—H— ACP—

~TC2T~~~~~~~~TH~~~~~~~~HSCT AHSC~~~~ACPH

b)

A- ’SH A— C— H ATC-—

APCSH ATCBH ATCHS

Figure 2: Part a illustrates the specificit y network around stimulus 1(ACTHS) and part b illustrates the specificity network around stimulus 8
(ATCHS).
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By the end of this experiment, the total strength of all productions, relevant. and irrelevant ,

was about 35. Therefore, according to assumption 12 in Section lID, if t 1,~ Is the strength of

all of the productions matching S that have I variables, then the probability of at least one

being selec ted is:

in i - e 1
~~i,s

135 (3) 
-

From equation (3) we can derive the probabilities of selecting productions with various

numbers of variables and these are given in Part (b) of Table 3.

Insert Table 3 about here

From t hese values we can calculate by equation (1) the probabilities of applying an i-variable

production, P~~, subject to the specificity restriction. These probabilities are given in Part c

of Table 3. Substituting these values into equation (2) yields the expected confidence

ratings: -

RACTHSX 2.730
RATS~~= 1.194

In actual fact, the rating difference between 0-transformation stimuli like ACTHS and

4-transformation stimuli like ATSBH is considerably less than this expected difference. This

can be shown to be due to the following fact: If two productions are selected that match a

stimulus and neither has a condition that is a subset of the other, the one to apply Is

determined probabilistically by relative strength and not number of non-variable condItion

elements. Thus, unlike our analysis, it is not always the production with th. least number of

variables that applies. For instance, if ---H- and ACT-S are both selected, the more

variabi lized ---H- may apply because neither production is above the other in the specificity

network. Nonetheless, t he above analysis does illustrate in approximate terms why

0—transformation stimuli get better ratings than the non-central stimuli.
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Table 3 8

Analysis of the Differences between the stimuli ACTHS and ATSBI4

(a) Strengths of classifying productions with different numbers of variables

ACTHS ATSBH

0-variables .150 .150
1-variable .400 -

2-varIables 1.475 .325
3-variables 3.400 1.025
4-variables 3.250 -

(b) Probabilities of selecting productions with different numbers of variables

ACTHS ATCBH

Q0. .062 .062
Q1. .158 -

Q2. .469 .130
Q3. ~767 .356
Q4. .752 -

(c) Probabilities of applying productions with different numbers of variables

ACTHS ATCBH

P0. .062 .062
P1. .148 -

.371 .122
P3. .321 .29’)
P4. .073 -

- _ : - .~~~~~~~~ 
._ .
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B. Hayes-Roth and Hayes-Roth: Variation of Instance Frequency

One of the interesting features of the ACT simulation of the Franks and Bransford

experiment is that the ratings of the 3-transformation stimuli are predicted to have slightly

higher ratings than the 2-transtromation stimuli and this prediction was confirmed in the data

of Neumann. ACT makes this prediction because both of the 3-transformation stimuli were

presented for study while only one of the four 2-transformation stimuli was studied. It is

weak memory for the instances that were studied which gives the 3-transformation stimulI

this slight advantage. The Franks and Bransford paradigm has not been systematically

studied for instance memory, but the ACT simulation predicts a weak advantage for studied

stimuli over comparable non-studied stimuli.

Hayes-Roth and Hayes-Roth (1977) report a study, one function of which was to obtain

data relevant to the issue of memory for instances. They presented subjects with

three-attribute descriptions of people. One attribute ~‘as age and could have values ~30, 40,

50, and 60. Another was education and could have values junior high, high school, trade

school, college. The third was marital status which could have values single, married,

divorced, widowed. Subjects were also given proper name and hobby but these dimensions

were not critical. Thus, a subject might hear the description “John Doe, 30 years old, junior

high education, single, plays chess.” Subjects’ task was to learn to classify these individuals

as members of club 1, members of club 2, or neither club.

The four values of each dimension will be represented symbolically by the numbers 1 - 4.

The assignment of the symbolic values 1 - 4 to the values of each dimension was randomized

for eac h subject. In our discussion we will refer to stimuli by these numbers. Thus “11 1”

might refer to “40 years, high school, single. The rules determining assignment of individuals

to clubs were as follows:

1. If one of values was a 4, the individual belonged to neither club.

2. If there were more l’s than 2’s and no 4’s the individual was assigned to club 1.

3. If there were more 2’s than l’s and no 4’s the individual was assigned to club 2.

- -~Y - ~~~ -~~ _ _ _ _  - -
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4. If there were as many l’s as 2’s the individual wa~ assigned with a 507. probability
to club 1 and with 501. probability to club 2.

Thus, l’s were diagnostic of club 1, 2’s were diagnostic of clubS 2, 3’s were don’t cares, and

4’s disqualified club membership. A prototypical member of club 1 would be 111 and a

prototypical member of club 2 would be 222. These prototypes were never presented.

We will assume that for each individual encountered, subjects designated a production

mapping that individual’s features into a prediction about club membership. So, for instance,

a subject might form the following production:

If a person is forty years old -

and he has gone to high school
and he is single

Then he is a member of club 1

Or, more symbolically, we will represent this production as 111-il.

Hayes-Roth arid Hayes-Roth varied the frequency w ith which vari ous exemplars were

studied and Table 4 shows these frequencies. A study trial consisted of first presenting the

subject with an exemplar , asking him to classif y it , and then providing feedback as to the

correctness of the classification. In the case of equivocal exemplars like 132 the subject was

given feedback half the time specif ying club 1 and half the time specif ying club 2. The

feedback aspect to this experiment is a significant difference from the Franks and Bransford

experiment. Negative feedback will lead to the evocation of ACT’s discrimination mechanism

which was silent during the earlier simulation.

Insert Table 4 about here

Table 4 also indicates which items were tested. Subjects were first asked to categorize

each of the stimuli and then they were asked to decide whether each of the stimuli had been

_ _ _ _  _ _ _ _ _ _ _ _ _ _
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Table 4 8

Initial Classification Exemplars and Test Items
in Hayes-Roth and Hayes-Roth (1977)

Exemplar Club Number of Initial Tested for recognition
classifications and final classificat ion

112 1 10 Yes
121 1 10 Yes
211 1 10 Yes
113 1 1 Yes
131 1 1 Yes
311 1 1 Yes
133 1 1 Yes
313 1 1 Yes
331 1 1 Yes
221 2 10 Yes
212 2 10 Yes
122 2 10 Yes
223 2 1 Yes
232 2 . I Yes
322 2 1 Yes
233 2 1 Yes
323 2 1 Yes
332 2 1 Yes
132 Either 10 Yes
321 Either 10 Yes
213 Either 10 Yes
231 Either 0 Yes
123 Either 0 Yes
312 Either 0 Yes
111 1 0 Yes
222 2 0 Yes
333 Either 0 Yes
444 Neither 0 Yes
411 Neither 1 No
422 Neither 1 No
141 Neither 1 No
242 Neither 1 No
114 Neither 1 No
224 Neither 1 No
441 Neither 1 No
442 Neither I No
144 Neither 1 No
244 Neither 1 No
414 Neither 1 No
424 Neither 1 No
134 Neither 1 No

_______  —— - -- - ~~~~-— -~~~ - —- ~~~~~~~~~~~~~~~~~ 
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Table 4, continued

234 Neither I No
413 Neither 1 No
423 Neither 1 No
341 Neither I No
342 Neither 1 No
124 Neither 1 No
214 Neither 1 No
412 Neither 1 ~Jo421 Neither 1 No
241 Neither 1 No
142 Neither 1 No
143 Neither 1 No

Neither 1 No
314 Neither 1 No
324 Neither I No
431 Neither 1 No
432 Neither 1 No

- 
~~~~~~~~~~~~~~~~ L~~~ T :~~~~~~~ - T ~~~~T~~~~ T~~~ —~~~~
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studied or not. The recognition judgment was assi gned a confidence from 1 - 5 as was the

categorization judgment.

Table 5 gives the mean recognition ratings as well as mean categorization ratings for seven

different classes of stimuli. The recognition ratings were averages formed by weighting

rejection confidences negativel y and acceptance confidences positively. The categorization

ratings were averages formed by weighting negatively the confidences ascribed to incorrect

category assignments and weighting positively the confidences ascribed to correct category

assignments.

Insert Table 5 about here

The first class in Table 5 is formed from two protot ypes which were never in fact studied.

They receive the highest categorization rating and a relatively high recognition rating,

indicating that subjects have extracted the central tendency of this set. The second class

consis ts of the non-protot ypes which have received ten study trials each. They have the

highes t recognition ralings, reflect ing their high degree of exposure, and the second highest

categorization rating. They get higher recognition ratings than the third class which is closer

to (or as close to) the prototype. This reflects some residual instance memory. The third

class would perhaps be regarded as closer to the prototype than the second because its

members have don’t-care ” elements rather than an element that directly violates the

category ’s protot ype. The third class is clearly closer to the prototype than the fourth~
whose members have two don’t care items. The third and fourth classes have one exposure

of each member, but the third class receives a higher rating reflecting the fact it is closer to

the prototypes. The f i f th class is equivocal between the two categories and probably is

further from either prototype than are classes 3 or 4. Still it is g iven higher recognition

ratings than classes 1, 3, or 4 refiechrig Its greater exposure. However, it does get a lower

rating than class 2 despite the fact that members have the same frequency of exposure. This

may be due to distance from prototype or the equivocal response assignment in study.
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Table 5

Recognition and classificati on from Hayes-Roth and Hayes-Roth
compared to ACT’s match scores

Recognition C lass i f icat i on

Subjec t ’s ACT’ s Subject’ s ACT’ ,
degree of degree of degree of degr’ee of
confidence match confidence match

1. Non-Practicet~ 1.08 .94 2.61 .94
Prototypes

4 (111,222 )

2. Much Practfted 2.63 1.46 2.34 .86
Non-Prototypes
(112,121,211,
221,212,122)

3. L ittle Practiced .83 .70 2.27 .70
Close—to-Prototype
(113, 131, 311,
223, 232. 322)

4. L ittle  Practiced —2.25 .42 2.01 .41
Far-from-Prototype
(133 . 313, 331,
233, 323, 332)

5. Much Practiced 1.34 1.26 — —
Equ ivocal
(132, 321, 213)

6. Non—Practiced -.93 .46 - —

Equ i vocal
(231, 123, 312)

7. Non-Practiced -2.52 .07 - -
Ant i -Proto types
(333, 444)

r —~~~~-~~~ ~~— ____ --~- --- — -- —
_ -
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Categot ization ratings are not meaningful for class 5 nor are they for classes 6 or 7. Class 6

is just as equivocal as class 5 but was never studied so it receives lower recognition ratings.

The lowest recognition ratings are reserved for class 7 which contains non-presented

instances composed of all 3’s or all 4’s.

There two features to emphasize about this data. First , ratings are influenced by a rather

complex mixture of frequency of exposure and closeness to protot ype. Second, the rank

orderings of the recognition and classification data are not identical. Therefore, these data

should provide a challenging test for the ACT simulation program.

Simulation

This experiment was simulated with the same parameter settings as the Franks and

Bransford experiment. The one significant difference was that ACT was given feedback about

the correctness of its classifications. This meant that productions would not simply increase

in strength with every application, but rather would either increase or decrease in strength

depending on their success i,~ classification. Providing feedback a’so meant that it was

possible for ACT to compare variable bindings on successful applications in order to produce

more discriminate versions of its overgeneral productions. A study session consisted of

passing through 132 classif y-then-feedback trials presented in random order. After this the

28 test stimuli were presented in random order live times. This whole procedure was

repeated ten times. The data we will report is averaged from the fif ty test trials given to

each stimuli.

As in the Franks and Bransford. experiment , confidence was based on the number of

constants in the production that recognized the stimulus. In this experiment that number

would vary from 1 to 3. A value of 0 was assigned if no production was evoked to

categorize the stimulus. These mean match scores are reported in Table 5. The

-~ categorization scores were taken by weighting negatively the confidences of incarrect

classifications and weighting positively the confidences of correct classifications and ignoring

the confidences of classifications to the neither-club category. Class 2 received a

it -I 
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classification ra ting that was much lower than its recognition rating. This reflects the

application of productions assigning the stimuli to the wrong category. Such productions

were formed through the generalization process. For example, generalizing 121-’l with

321-~1 would yield the production -21-.1 which would misclassify the instance 221.

The general hypothesis is that the ACT scores will be monotonically and perhaps linearly

related to the obtained ratings. The monotonic hypothesis is clearly confirmed in that ACT

perfectly predicts the rank ordering of the seven recognition scores and the rank ordering of

the four classification scores. The linear hypothesis also fares quite well - a correlation of

.968 is obtained for the recognition scores and of .948 for the classification scores.

Hayes-Roth and Hayes-Roth present a model for their data which is quite similar to the

ACT model. (We will discuss similarities to other models at the end of the paper). They

derive a set of pairwise comparisons among conditions which their model better predicts than

any of a large class of categorization models. ACrs predictions correspond exactly with

those of Hayes-Roth and Hayes-Roth on these pairwise conditions. However, the ACT model

is more powerful than theirs, predicting the complete ordering of conditions and offers a

possibility of assigning an interval scale to that ordering. They are unable to do this on the

basis of their model, but it is something that fails out of a theory which has a computer

simulation.

One important aspect of the ACT simulation of this experiment Is its prediction of better

per formance on the class 5 stimuli than on the class 3 stimuli, despite the fact that both

types of stimuli we presented equally frequently. The reason for this is the equivocal nature

of the response assignment for class 5 which results in punishment of the productions that

classif y these stimuli and the consequent weakening of these productions. Most of the ACT

predictions for the experiments under discussion rely on the generalization mechanism or

discrimination and generalization in concert. This, however, is an instance of a result which

depends solely on the discrimination mechanism.

____ 
- - :

~~~~~~~~~:~~~~



39

C. Medin and Schaffer: Effects of inter-item similar . y

An interesting series of experiments his been performed by Medin and Schaf Icr (1978)

who show that under some circumstances , how t ypical an instance is considered of a category

depends, not on how close it is to the central tendency of the instances in the catego.y, but

rather how close it is io specific instances in the category. Particularly Important Is whether

there are any categ ory members which are very similar to this instance. Their experiments

are also interesting because they repor t data on the time it takes to l•arn to make a

classification.

They presented subjects with stimuli that took one of two values on four dimensions: color

(red or blue), form (circle or triangle), size (large or small), and number (1 or 2). As In the

Hayes-Roth and Hayes-Roth experiment these stimuli are best referred to abstract ly with the

numbers 0 and 1 for the values on each dimension. Values were randomly assigned to

number for each subject. Thus, for one subject a 1101 might be a single small red circle.

Subjects had to learn to classify these as members of category A or category B. The material

was always designed so that 1111 was t he central tendency for category A and 0000 was

the central tendency for category 2.

1. Exp.rim.nt I

Table 6 illustrates the material for Experiment 1. The A training stimuli were designed so

that for each dimension there are two training stimuli that have values of 1 on that dimension.

The B training stimuli were similarly designed so that two 0 values can be found for each

dimension. Thus the A prototype would be 1111 and the B prototype would be 0000.

Subjects were trained in categorizing the material until they had correctly categorized alt six

twice in a row or until twenty trials through the six items expired. Then subjects were given

transfer trials in which they saw the six old stimuli plus six new ones. Subjects’ tas k was to

indicate what category each stimulus came from. The categorization judgments were made on
-

- 
a 3 point scale varying from 1 — guess to 3 — high confidence. Medin and Schaffer

_ _ _ _ _ _  :~.: 
-
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transformed these scores to a 6 point scale where 1 — high confidence wrong and 6 — high

confidence correct. Subjects made categorization judgments shortly alter study and after a
weeks’ delay. The mean scores, averaged over immediate and delay as reported by Medin

and Schaffer , are in Table 6. A value of 3.5 reflects chance performance.

Insert Table 6 about here

Medin and Schaffer were particularly interested in transfer to the new stimuli. They

predicted higher performance on the A transfer stimuli than on the B transfer stimuli even

though the stimuli are all equally similar to their prototypes. They made this prediction

because the A transfer stimuli agree in three positions wi th two of the study Items (0111

with 1111 and 0101, 1101 with 1111 and 0101, 1110 with 1111 and 1010) while the B

transfer stimuli agree in three positions with only one study item (alt with the prototypical

0000). Moreover, each of the B transfer stimuli agree in three positions with an A study

stimulus (1000 with 1010, 0010 with 1010, 0001 with 0101). The Medin and Schaffer

predictions were verified.

ACT simulations of this experiment were performed with the same parameter settings as

the previous experiments. Each simulation involved training ACT to criterion or until the

t wenty trials were up. Then, five test passes through the twelve items were administered to

get classification ratings f or each item. The strength of each production was then reduced by

50Z to simulate the loss of strength with a week’s delay and five more ratings were obtained

for each stimuli. Ten such simulations were performed. Therefore, the ACT match rat ings are

calculated on 100 ratings per stimulus. The number of constants in the classif ying production

(weighted positively for correct classification and negatively for incorrect ones) was again

taken to be ACT’s confidence rating. Table 6 gives ACT results in terms of trials to criterion

and mean match ratings. The ACT trials to criterion provide a good, but not perfec t, rank

order correlation (r .89) with the actual data. Similarly, the ACT match scores provide a

good, but not perfect , rank order correlation (r— .88) with the actual classification ratings. The 
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Table 6

Stimuli used in Experiment 1 of Medin and Schaffer (1978),
number of errors on training stimuli, classification confidences,

and ACT simulation

Errors in Final
Original Learning Categorization

Data ACT Data ACT’s
Match

A Training Stimuli
1111 3.6 2.1 4.8 2.38
1010 4.7 3.8 4.6 2.28
0101 4.4 3.6 4.8 2.20

B Training Stimuli
0000 3.1 3.3 5.2 2.79
1011 4.9 6.6 4.5 .81
0100 3.8 3.3 4.9 2.65

A Transfer Stimuli
0111 4.3 1.22
1101 4.4 126
1110 3.6 1.57

B Transfer Stimuli
1000 3.5 .00
0010 4.0 .00
0001 3.2 .00

- - --- -- - — - -— z - -  
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linear correlation between the match scores and actual rating scores (r— .83) Is again fairly

high suggesting the possibi’ity of a linear transformation of one Into the other. Note that In

simulating this experiment , unlike Franks and Bransford or Hayes-Roth and Hayes-Roth, ACT

has the more demanding task of predicting the data obtained for individual stimuli. The less
than perfec t correlations may reflect this but they may also reflect that both the d.ta points

it is try ing to predict and its own estimates of those data points tend to be less reliable t han

in previous simulations.

One consequence of the small number of stimuli in this experiment is that it is possible to

consider the total set of classif ying productions that are generated by ACTs automatic -

learning mechanisms. Figure 3 illustrates that conditions of both the A-response productions

and the B-response productions arranged according to their specificity ordering. As for the

A-response productions, the 1111 and 0101 productions generalize to form the -1-1

production. Also, the 1111 and 1010 productions generalize to produce a 1-1- production.

This producti~~ can misapply in training and match the 1011 B stimulus. This mistake can

evotce the discr~minstion process and so give rise to 1-10 end 111- productions which

discriminate between the successful and unsuccessful contexts of application of the 1—1—

generalization. These discriminations did not appear in all the simulation runs as they
— depended on a particular sequence of events happening and ACT sometimes reached learning

criterion before this sequence was complete.

As for the B-response productions, there is only one generalization: 0000 and 0100 can

combine to form 0-00. Note that a generalization could be formed from 0000 and 1011 which

would be -0--. However, this would involve replacing more than 501. of the constants by

variables. In other words, this generalization is not allowed because the productions it

merges are just too dissimilar. Note that none of the productions in Figure 3 can match the B

transfer st imuli. This accounts for their low rating. In contrast , at least one of the A

generalizations match each of the A transfer stimuli: -1-1 matches 0111 and 1101, while

1-1-, 1-10, arid 111- all match 1110. This accounts for the higher ratin g of the A transfer

stimuli. Medin and Schaffer had constructed the material so that the A transfer stimuli would

- — . .-
~ 
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(a)
A— productions

l i i i  10 10 0101

(b)
B- product ions

0-00

0000 1011 0100
Figure 3: Part a illustrates the specificity network of A productions and

part b Illustrates th, specificity network of B productions.

be closer to study Items than the B transfer stimuli. The consequence in ACT is that the A

transfer stimuli are closer to a number of the generalizations that arose from th. study

elements.

2. ExperIments 2 and 3 
-

_____  ____  _______  
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Medin and Schaffer used very similar procedures for experiments 2 and 3. As in

experiment 1 there were four dimensions with two values on each. However, in these
experiments there were more study and test stimuli. Experiment 2 used the same geometric

stimuli as Experiment 1 while Experiment 3 used Brunswik faces that varied in th. dimensions

of nose size, mouth height, eye separation, and eye height. There were two procedural

differences between these two experiments and 1. First , the criterion for passing out of the

study phase was one correct pass through alt nine study stimuli or 16 total passes through

the material (32 passes in experiment 3). The second procedural difference was that there

was no delayed test at a week

The ACT simulation was basically the same as for experiment I with two changes to reflec t

the procedural changes. First , we used the criterion of one correct pass or 20 total passes

(a compromise between the 16 In Experiment 2 and the 32 in Experiment 3). Second, there

was no attempt to simulate performance at a delay since Medin and Schaffer do not collect

such data.

Table 7 presents the data from the two experiments and from the ACT simulation.

Transfer stimuli were classified as A or B by Medin and Schaffer according to a linear

discriminant function calculated to separate the A and B training stimuli. In general, subjects
learned more slowly in Experiment 3 with the faces than Experiment 2 with the geometric

stimuli. This may be due to the fac t that the face material had distracting irrelevant

dimensions. In any case, we used just one simulation run of ACT to fit both sets of data. As

discussed earlier, our concern is to be able to reproduce the ordinal trends In the data , and

not to perform the kind of parameter search required to get exact fits.

Again the prototype of Category A is 1111 and fov Category B it is 0000. Medln and
— Schaffer were particularly interested in the contrast between the A training stimuli 1110 and

1010. While 1110 is closer to the A prototype than 1010, 1010 is closer to the A training

instances. For example, the only A training stimulus that 1110 is one feat ur• removed from is

1010, and it is this close to two of the B stimuli, 1100 and 0110. By contrast , 1010 is one

feature removed from t he two A training stimuli 1110 and 1011 and there are no B training
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stimuli one feature distant. As they predicted performance was higher on 1010 when

measured either by the number of errors on training trials or by the subsequent classification

ratings. ACT predicts this because a 1 - 10 generalization will be formed from the 1110 and

1010 combination and a 101- generalization will be formed from .the 1010 and 1011

combination which will help classif y 1010. In contrast , there Is only one three—item

generalization (101—) to classif y 1011 and there is a B generalization (e.g., — 1—0) that will

misclassif y the 1110 stimulus.

In general , ACT does a good job of predicting the rank orderings of the error data. ACrs

rank ordering correlates .88 with the ordering in experiment 2 and .80 with experiment 3. It

is worth noting that the rank orderings of experiments 2 and 3 only correlate .85 with each
• other. So ACT is doing about as well as could be expected without Introducing a tot of

additional machinery about the salience of individual dimensions. As for rank orderings of

classification data, ACT’s match scores correlate .79 with Experiment 2 and .89 with

Experiment 3. The two experiments only correlate with each other .77. Another test was

performed of the hypotheses that the ACT match scores were related to the confidence

ratings by a linear transformati on. The correlations between the actual ratings and ACT’s

match scores were .73 for Experiment 2 and .81 for Experiment 3.

Insert Table 7 about here

3. Experiment 4

The final experiment we simulated was Experiment 4 from Medin and Schaffer which used

geometric stimuli again. The materials for this experiment are illustrated In Table 8. Subjects

were given a maximum of 16 passes through the material to achieve the criterion of one

perfect recall. ACT was run given the same 16 trial limit. Table 8 also presents the data

from the experiment and fr om the ACT simulation.

Again a linear discriminant function was calcula ted to separate A from B training stimuli and
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then used to classify the transfer stimuli. Again 1111 would be regarded as the prototype

for the A stimuli and 0000 for the B stimuli. Despite this, Medin and Schaffer predicted that

subjects would display better performances on a number of A stimuli than on their B

counterparts — — 0 110 better than 100 1, 0111 better than 1000, 1101 better than 0010, 1011

better than 0100, and 1111 than 0000. As can be seen, ACT makes these same predictions.

Medin and Schaffer made these predictions on the basis of the number of other stimuli similar

to the favored A instances. ACT makes these predictions because if there are a large number

of similar stimuli generalizations will be made. These predictions are supported by the data

except for the 0110 vs. 1001 contrast.

Insert Table 8 about here

The correlation between the rank order of ACT errors and the rank order of the data is

fairly high (r— .62). The rank order correlation with classification ratings and ACT match

scores is somewhat higher (r=.79). Again as a test of a linear relation we performed a

correlation between the actual ratings and match scores. This correlation was even higher

(r— .83).

4. Summing Up Media and Schaff.r Experiments

Medin and Schaffer designed their experiments to show the inadequacies of an independent

cue theory which creates a prototype out of the modal values on each dimension and assigns

rank orderings according to distance from these prototypes. Their data clearly refute such a

model and indicate that subjects are sensitive to similarities among individual ihstances.

Fortunately, ACT lines up with Medin and Schaffer in predicting this result. Medin and

Schaffer s theory is that subjects only store instances and that ratings are particularly

influenced by what instances are close to a test instance. ACT’s rating s are also influenced

by what instances are close to a test instance because these result in generalizations that

will classify the test instance.
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Medin and Schaffer derived predictions from their theory and compared these with

predictions from an independent-cue-pl ototypes model. Rank order correla tions were

reported between these models and their data. It is interesting to compare the correlations

of these two models with ACT. The three sets of rank order correlations are reported in

Table 9 for Experiments 2, 3, and 4 (Medin and Schaffer do not report correlations for

Experiment 1). There are two remarks that need to be made about interpreting these date.

First , Medin and Schaffer ’s correlations concern percent—correct classification while ACT’s

previously reported classificatio n correlations concerned confidence ratings. The ratings and

percent correct are not perfectl y correlated. We chose to report correlations with ratings

• because this measure tends to be more informative. For instance, if one compares two stimuli

in the Medin and Schaffer experiments with identical percent-correct classification, one

studied and the other not , the studied one will tend to receive higher mean confidence.

Averag ing over 10 non-studied stimuli and 17 comparable studied stimuli with mean correct

identification of 812, the non-studied stimuli were rated 4.60 and the studied stimuli 4.83.

ACT predicts this because some of the studied stimulus judgments will result from the

• application of the production that was designated to classify just that stimulus. In contrast ,

• all judgments for the non-studied stimuli result from the application of generalizations.

Application of a designated production results in higher confidence than application of a

• generalization because the designated production has no variables. This dissociation between

confidence and percent correct is not predicted by the other models.

A second remark is that the independent cue model and the Medin-Schaffer context model

estimated separate parameters for the salience of each dimension. This allows them to

account for variat ion among dimensions -- both real and random. The impact of this is clear

in Experiment 2 vs. 3. These two experiments have the same structure. The

independent-cue and context theories display rank order correlations of about .8 with the

data of Experiment 2 and about .9 with Experiment 3. However , the two experiments only

correlate with each other .69 in rank order of percent correct classification.

ACT’s correlations are uniformly below those of the Medin and Schaffer context model.

- -  
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They are also below the independent-cue model except for Experiment 4 which was explicitly

designed to discriminate maximall y between the independent-cue model and the Medin and

Schaffer theory. It needs to be emphasized, however , that ACT’s predictions were done

without any parameter search and without any parameters for cue salience. Thus, in ACT we

are using a 0-parameter model to fit the data while the context model had 4 parameters and

independent-cue model “ad 5 parameters.

One atheoretical way to give ACT four degrees of freedom is to identif y for it the best
• four conditions and only require it to predict the ordering of the remaining 12 conditions.

This was done in the last column of Table 9. Now ACT correlates better than either model In

Experiments 3 and 4 and is only slig htly worse than the other models in Experiment 2. Given

that ACT did this well with the addition of four totally atheoretical parameters we suspect

that an ACT model that estimated separate parameters for the salience of each of the four

dimensions would do at least as well as the Medin and Schaffer model in accounting for the

data.

Insert Table 9 about here

0. Comparison of ACT with Other Models

There are three basic t ypes of models for schema abstraction. One type proposes that

subjects form a single characterization of the central tendency of the category. A frequent

suggestion is that they distinguish a particular instance (it need not be one they have actually

seen) as the protot ype for the concept. Other instances are members of the category to the

extent that they are similar to this protot ype. This class of models would include Franks and

Bransford (1971), Bransford and Franks (1972), Roscl, and Mervis (1975), Posner and Keele

(1968), and Reed (1972). In order to account for the effects of instance frequency

demonstrated by Hayes-Roth and Hayes-Roth the prototypes would have to be augmented by

some memory for the individual instances studied. However , it is much more difficult for
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protot ype models to accomodate the results of Medin and Schaffer that indicate that subjects

are sensitive to similarities among individual instances. -

A second class of theories are those that propose subjects store individual instances only,

and make their category judgments on the basis of the similarit y between the test instance

and the stored instances. Among the theories in this class is the Medin and Schatfer theory.

A difficulty for the Medin arid Schafler version of the store-instances-onl y model was the

decorrelation found in Hayes-Roth and Hayes-Roth between recognition and classification.

They found that the protot ypes received the highest classification ratings but the

frequently-presented non-prototypes had the highest recognition ratings. This suggests that

• information is acquired both about the instances and about their more abstract

characteristics.

In a certain sense , any results that can be accounted for by a theory that says that

subjects store abstractions can also be accounted for by a theory that says subjects only

store instances. A store-instance-onl y theory could always be proposed that went through a

test process equivalent to calculating an abstraction from the stored instances and hiaking a

judgment on the basis of the abstraction. However , a difficulty for the instance model is the

frequent phenomena of subjects reporting verball y the existence of abstract

char acter izat ions or protot ypes (e•g•, Reed, 1972).

The third class of models is that which proposes that subjects store co-occurrence

information about feature combinations. ACT is an instance of such a model as are those

proposed by Reitman and Bower (1973), Hayes-Roth and Hayes-Roth (1977), and one aspect

of Neumann’s (1974) model. These models can potentially store all subsets of feature

combinations. Thus, they store instances as a special case. The Hayes-Roth and Hayes-Roth

experiment showed this model has advantages over many versions of the instance-only or

prototype models. However , the Medin and Schaf fer version of the instance-only model can

accomodate their results.

It is very difficult to find empirical predictions that distinguish ACT from the various other

_ _ _ _  _ _ _  _ _ _ _
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feature-set models. Perhaps, it would be best to regard them as equivalent given the curreflt

state of our knowledge and simply conclude that subjects respond in terms feature-se ts.

However , there are a number of reasons for preferring ACT’s version of the feature-set

model. First , it is a fully specified process model. As Medin and Schaffer argue, it is often

difficult to see in any detail how some of the feature-set models apply to particular

paradigms or produce particular results.

Second, ACT has a reasonably efficient way of storing feature-sets. It only stores those

subsets of properties and features that have arisen because of generalization or

discrimination rather than attempting to store- all possible subsets of features from all

observed instances. While it seems as if there should be empirical consequences of these

different ways of storing feature-sets , our efforts to find them have not been successful.

However , if there is very little difference in behavior, that would seem to be all the more

reason to prefer the more efficient storage requirements of ACT.

Third, it needs to be emphasized that the ACT learning mechanisms were not fashioned to

account for schema abstraction. Rather they were designed in light of more general

considerations about the nature of the rules that need to be acquired and the information

typ icall y available to acquisition mechanisms in real world situations. We were particularly

concerned that our mechanisms should be capable of dealing with language acquisition and

rules for making inferences and predictions about one’s environment. The mechanisms were

designed to both be robust (in being able to deal with many different rules in many different

situations) and to be efficient. Their success in accounting for schema abstraction represents

an independent confirmation of the learning theory.

Before concluding, we would like to discuss one characteristic of feature-set models which

may seem unappealing on first encounter. This is the fact that they store so many different

characte rizations of the category. ACT may not be so bad as some of the other theories, but

still having a set of productions for recognizing instances of a category seems far less

economical than having a single protot ype. However , the remark that needs to be made Is

that natural categories def y economical representations. This has been stressed in

• 
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discussions of their family resemblance structure by Witt genstein (e.g. Witt genstein, 1953)

and more recently by Rosch (e.g. Rosch & Mervis, 1975). The important fact about many

natural categories (e.g., games, dogs) is that there is no set of features that define the

category nor is there a protot ypical instance that functions as a standard to which all other

v dtegory members must be compared. On the other hand, these categories do not seem to be

unstructured; they are not merely a list of instances. The introspections of one of us (JA )

suggest that for him the category of dogs has subclasses that include the following:

(a) The very large dogs, with short wi.:, and floppy ears that
include the St. Bernards, Newloundlands, and Mastiff s.

(b) The medium to larg. dogs with relatively Long hair, and floppy
ears that include the spaniels, setters , and some of the other
retrievers.

(c) The sh ”rt and hairy dogs which include breeds like the pekinese
and toy terriers.

(d) The Large. muLti-colored dogs, wit h medium hair , and pointed ears
which include the German Shepherds and Huskies.

The italicized portions of each description gives the physical features that seem to

characterize that subclass. There are several things to notice about these feature—set

descriptions. First is that certain features are left unspecified; for example, subclass (a) make

no reference to coloration or hair . The implication is that these subclasses of the larger dog

category are not defined by protot ypes either. A second observation is that the feature-set

descriptions overlap in complex and relativel y unsystematic ways. For example, while there

is a tendency for size to distinguish the subclasses, subclass b overlaps with subclass d on

this feature so that large dogs are in both subclasses. Other features , like ear-type serve to

distinguish some subclasses (viz., subclass d from subclasses a and b), fail to distinguish

others (viz., subclass a from subclass b) and are irrelevant for still others (viz., subclass c).

Feature-set models like ACT seem uniquely suited to explain the complex , overlapping, and

Only partially—specified feature structures of natural categories. 

.ii___ T T . ~L1._::
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