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FOREWORD

. This report describes an analytic method of computing the guidance
QO-matrix which is much simpler and more efficient than methods used previously.
The work was performed in the Fire Tontrol Presetting Analysis Branch (K51),
FBM Geoballistics Division, Strategic Systems Department, and was authorized

under Strategic Systems Project Office Task Assignment 36401. ;

The author would like to thank Mr. T. Alexander for permission to in- %
clude his derivation of the algorithm for computing correlated velocity given
in Appendix A. He is also indebted to Mr. J. F. Ray for reviewing much of

the original work and correcting an error in one of the key equations.

This report has been reviewed and approved by D. L. Owen; J. R. Fallin,

Head, Fire Control Presetting Analysis Branch; and C. W. Duke, Head, FBM Geo-
ballistics Division.
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INTRODUCTION

PROBLEM DESCRIPTION

Consider the motion of a body (or point mass) in an inverse-square
gravitational field centered at the origin of some arbitrary inertial ref-
erence frame. At any point R the body will experience an acceleration of

-
-x2R 3R, where K2 is the gravitational constant for the given field.

> >
Now suppose two nopparallel position vectors R, Rp and a time tg

are given. The correlated velocity (denoted ﬁc) for these conditions is

> >
defined as the velocity at R which will cause a body to reach Ry in time
-+ > >
tg if no other force acts on it. Clearly VC is determined by R, v L

2 . > - -+ > 2 > >
and K°, so we may write Vo = Vo(tg, R, Ry, K°). The symbols dV/9R, Bvc/Btf,

etc., will be used to denote the partials obtained by holding the other pa-
- -
rameters in this set constant. In particular, BVC/BR is commonly called

the Q-matrix, and denoted simply by Q.

It is well known that the path of a body in any inverse-square force field
will lie along a conic section with the center of force as a focus. We will
consider only the case in which the path is along an ellipse and subtends an
angle less than 7, GC will be considered undefined if no value corresponding
3 to such a path exists. This restriction assures that ;C is well-defined

when it exists.

This paper describes a new method for computing the Q-matrix which is

: completely analytic, yet is also simple and efficient.

BASIC CONCEPTS AND TERMINOLOGY

> >
Clearly R and RT determine the plane of the trajectory. It is con-
venient to define an orthogonal coordinate system (which will be called the

local coordinate frame) with the axes

- . >
U, = unit (R),

-»> > > <>
U = unit [(R x RT) x R], and

> > -+
U3 = Ul X Uz. H




We then define V U, - V_andv O, + V.. (G =V
e then define = . a = . . . = .

cr” 01 " Ve @0 Vep = H T Ve WUy 1 Ve O
Similarly, Vi = 61 « V and Vaz v, » V, where V is the actual velocity

-> -> >
at R. The range angle, GR, is the angle between R and RT. Finally, the

-> - -
difference V. ~ V will be called the velocity to be gained and denoted by Vg.

Since VCR and VCe are scalars, it is often desirable to express them

as functions of scalars. One such set is (tf, R, RT’ GR, K2); unless
otherwise indicated VCR and VC6 will be treated as functions of these param-
eters. Thus Svce/Btf, BVCP/BSR, etc., will denote the partials obtained by

holding the other parameters in this set constant.

> >
The usual point of view is that R is the current position and RT the pos-
ition at which the "target” will be located after an elapsed time te (often
-
called the "time-to-go"). Thus VC is the velocity required to reach the tar-

get in the specified time. With this interpretation it makes sense
> >

to consider R, VC' VCR’ +C6

is understood that t = 0 at R and te decreases with time; i.e., dtf/dt = -1.

and V as functions of time (t). 1In this case it
(The idea is that we want to reach the target at a specified time.) Of
course V 6 and V R are always defined relative to the current position; that
is, VCR(t) = VC(t) * unit[R(t)], and similarly for VC . Unless otherwise

> > >
indicated, it is assumed that V = VC. Note that, if Vv(0) = VC(O) and no

-5
force but gravity is acting on the body, then V(t) = Gc(t) for 0 < t < tf.

APPLICATIONS

The algorithm developed in this paper is useful in the analysis of
>
guidance systems using Vg steering. In particular, it can be used to compute

>
the time derivative of Vg by means of equation Bl, which is derived in Ap~
pendix B.

The equations for 3VCe/3tf and avce/aeR are also of interest in their
own right.

The algorithm for computing Q and the equation for BVCe/BGR are used

in several trajectory simulation programs developed by NSWC.
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DEVELOPMENT OF Q-MATRIX ALGORITM

PRELIMINARY RESULTS

->
Vg steering and the QO-matrix have both been studied extensively, and

some earlier results will be useful here.

1. An efficient algorithm for computing t. for a given value of
VCe was developed by T. Alexander. Differentiation of the equations involved
also yields an analytic expression for avce/atf. A derivation of these equa-
tions, together with a suggested iteration method for implementing them, is

given in Appendix A.

One of the equations developed in this derivation, e.g. (A5), can be
rearranged to give a useful formula for VCR:
2

R K
VCR = (cos BR - R'I‘>VC6 + RVCe <1 - cos 6R> /sin GR (1)

2. The QO-matrix is symmetric.*

DERIVATION

The algorithm will be developed in two stages. First, a representation

e’ VCR' and certain of

their derivatives will be obtained. Second, formulas for the required deri-

for Q@ in the local coordinate frame in terms of V

vatives will be derived.

> >
To obtain the representation of Q, fix R_ and t_, and a position R0 at

f
>
which Q is to be evaluated. Let Ug, 6:, and Ug be the axes of the local

* C. J. Cohen and R. H. Lyddane, The Q-Guidance Matrix and Its Symmetry (U),
Naval Proving Ground, Dahlgren, Va., TR K-6/59, June 1959. UNCLASSIFIED




-
coordinate system & defined at R;, and let Oy, be the corresponding range

-
angle. For an arbitrary position R, let

> )
RR = R Ul;
- >0
Re =R * Uz’ and
> -
R » U°

g

3 ° M

> > +>o&
For any vector X, the representation of X ing€ will be denoted by X , and the

<

corresponding representation for Q by Q%7

> > > >
N.B.: While the axes Ul, U2, and U are always defined relative to R, the
. ’ 0 Fo o
symbol&fdenotes the fixed frame Ul, Uz' u,-
By definition
> > >
v < v £ oV
£ _ c , ¢ ,_C
@ =\3k =& W& o> (2)
R G P/R=R, .
. : . > > >
Also, it follows immediately from the definitions that VC = Ver Uy + Vg U2
Applying the chain rule to this equation yields
> >
v v U v >
- 1 U
_C._CR U, + VCR‘—__ + cé 32 + Vg -2 (3)
3R, 3R, 3R,  OR, R,
i i i i 1
. f *
where Ri is any component of R (e.g., RR' Re, RP)'
It is easily verified that
» -1 ->
Ul = R R
> > > (4)
= (R, - r! 0q R)/sin 0, where R = unit(R).
u, (RT R cos R R’ "
Since ﬂf== (cos GRO, sin ORO, 0)T, in &€ these eqguations take the form
s -y
=1 . |
R RR (cos GRO R RR cos BR)CSC GR
>l -1 >l : -1 8
= . = - 5
U R Re ; U, (sin eRo R R6 cos eR)CSC R (5)
-1 _p=1
R RP R RP cot GR .
- J

gl o o b . L 1288150 a3 - 2Kt TR I 6 128D it -
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Now R = RR + Ry + Rp and cos Og = U; * Ry = (RR cos Og,y + RH sin YRy)R L.

fonPeror s

Differentiating these expressions with respect to Rp, Rg, and Rp and evaluating

the results at R = ﬁo yields
L 3R 3R 3y g 3R 3R -
| 3Ry _ ORp _ OBy  ORp O Bmp 1 Bmg . ° - t6)

>
The same operation can now be performed on Equation 5 to give (at Rgy):

> /
30" T o [ ° 3
S S I W ‘7’ |
0 R}
1
N T clined 0
Ry 0; TRy 0 ' SRp - ) 0 (8) i
0 ~-R 1 cot SR . \

Next recall that Veo and Vpop are functions of tg, R, Ry, GR, and K?. Since
tgs, Rp, and K? are constant here, Equation 6 yields immediately §

; Vei  9Vei Vi -, Vei Ve

= ; = =R — ; =— = 0 (9)
dRg 9R dRg aeR ORp ,

| where V.; can be interpreted as either Vg or Vpg.

Finally, substituting Equations 7, 8, and 9 into Egquation 3 with Rj

interpreted as Rgp, Rg, and Rp and substituting the results into Equation 2

yields P
Ver  _1[9V%cr i

3R R\seg * Vcd 0 ;

Vee Ve ;

F C -1 C 4

e = |73 R(SBR - VCR) 0 (10)

0 0 RN (Veg - Veg cot eR)J




This is the representation of Q mentioned earlier. We now turn to the

vz e o ey

problem of finding formulas for the partials of VCR and VC6 with respect to
R and O_.
and 0.

First, Equation 1 gives VCR as a function of VCG' R, RT' GR, and Kz,
2 . . . .
say VCR = f(VCG' o GR, K°). The derivatives of VCR which occur in
Equation 11, however, are defined with respect to the set of parameters t

8

R, R

f'

R, R K?, as explained in the Introduction. The partials of f can be

T' "R’
obtained simply by differentiating Equation 1. This gives

3f K*
= = -V ., -V_ cot 0 (11)
BGR RVC6 co CR R

of 1 R

== R‘Ezce(cos B - 2 R—T)csg 8y - VCR] (12)

~ v
of 2 csc 6 _([cos B_ - R\ R
R v

'c)vc8 R RT ce ) (13)
The chain rule gives the partials we need in terms of these:
aVCR _9f , of avce (14) .
BBR 36R Bvce SGR !
avCR of of avce
3R _ 9R | 9V__. OR (15) ;
co . g |

Thus, given Pvce/BR and avce/aeR, the required partials of VCR can be i

determined.

(It may be of interest here to note that BVCR/Btf, though not required

to compute Q, can also be computed easily from

avCR of BVCQ
Tl T (16)
tf (of3] f .
>
3VC aVCR > BVCG > . .
Thus, e.g., — = U, + U, can be found via these equations.)
atf atf 1 dtf 2




We now turn to the problem of finding BVCe/BR and BVCe/BeR. Recall

that BVCe/atf can be computed directly once V is determined. Moreover,

cé
if two independent equations relating BVce/BR, avce/aeR, and BVCe/Btf can
be found, it may be possible to solve for Bvcs/aR and avce/aeR in terms of

Bvce/Btf. One such equation can be obtained as follows.

-»> > - >
Recall that VR ZV . U1 and Ve TV . Uz' while t is the current time
=
(not time-to-go). Assume that V is in the trajectory plane (so that V6 is
the horizontal component of velocity) and the only force acting is that of

> >
gravity (but not that VvV = VC). Then

avce ) Bvce R, Vg 90 . V. 9tg an
ot OR 9t 36 ot ot ot
R f
But clearly
)
EE—V.iO_R—_V_O._t_f_—_l (18)
ot R 3 R ' 3t .
Thus
Ve _ WV g . Vg v_6 i Vg -
) - R .
at R R aeR atf
Next, from conservation of the angular momentum £, we have
V6 R = £ is constant. (z0)
Differentiating gives
Y
6 oR
— = = 21
5t "t V=0 (21)
i v v i 1 = d =V Al i §
Now if we set VC = V, obviously VCe = Ve an VCR = Vg- soO, since

>
will now follow a path reaching the target at the desired time, V will con-
tinue to equal 3&; thus Bve/at = Bvceyat. Eliminating SVCe/at hetween
Equations 19 and 21 then yields

Voo Vep (a"ce ) WVeg
—so— = v +
CR Btf

(22)




—

Bt o

Since VCR can be zero (i.e., at apogee), it is not legitimate to divide

through by Vc to obtain a formula for QVCe/aR. This will cause no problem.

R
Equation 22 is the first of the two independent equations sought relating
the partials of VCS' Since the Q-matrix is symmetric, it would seem that the

second relation needed can easily be obtained by setting Q, , = Q, ,; i.e.
’ 7

oo _ _1f%Ver
R R EN co (23) .

Combining this with Equation 14 yields a simple equation relating avce/aR
oV 39 _:
and Ce/ SR

Vep _ _l(&f , ot Voo ) (24) ]
3%, "BV 90, ' 'co )

Unfortunately, when Equations 22 and 24 are considered as a system of
linear equations in 8Vce/8R and avce/aeR, the determinant of the system is "
zero for the minimum-energy case, which is certainly a case of interest. (See i
Appendix C.) So Equation 24 cannot always be used to determine 8VCQ/86R and
avce/BR. (However, note that Equation 24, unlike Equation 22, can always be

used to find BVCe/BR.) Thus another such relation must be found.

This new relation will be obtained indirectly by finding two independent
equations relating Bvce/aRT, 3VC9/8R, BVCQ/BSR, and BVCe/Btf, and eliminating
9 .
BVCe/ RT between them

The first of these can be obtained by considering the "reverse" trajectory
> >
from RT to R in time tf. This trajectory passes through the same points as
> >
the original one, but with the time sense reversed. That is, if R(t), V_(t)

are the position and velocity at time t on the original trajectory, and R*(t),

and

> > >
VC*(t) those for the reverse one, then R*(t) = R(tf - t) for O <t :_tf,

>, >
thus Vc (t) = —Vc(tf - t).

o . e L . e o R » > o




. . > ->
Now define VER to be the radial component of Vé at RT' and VEG the

horizontal component in the direction of E. (Thus VEO and VER are both
positive.) Also, let VCRT' VCeT be the radial and horizontal components
>
Oth. = Yk = -y* ., 2 = .
( f) Clearly VCST VCe and VCRT VCR Since VCe R £ is constant,
* = = =
V&g = Veap dvce , where § R/Ry - (25)
Since this relationship continues to hold when tf and 6R are allowed to vary,
* * i
Ve -5 Vo . Ve <5 Vo (26) ;
atf atf BBR BGR . :

The relationship between SVCe/aRT and 8VES/BRT is not quite as simple since

§ depends on RT' but a simple application of the chain rule to Equation 25

yields i
“Veo = -1 Vo + iy (27) |
R OR_ R, C8 ,

Also, the same argument used to derive Equation 22 can be applied tc

the reverse trajectory to show that

ov* V* oV* V%

ce CcH co Cco
v* = - V* + (28)
CR QRT RT BeR CR atf )

Substituting Equations 25, 26, and 27 into Equation 28 yields

Voo 1 Veo Moo P Meo (291
! = * *
} aR'r Br\ Ver aen Ver Btf .
|
. < * = - . .
(For any practical case VCRT 0, so VCR VCRT is never zero.)

The second relation involving avce/aRT can be derived from dimensional
considerations. Recall that VCe = g(tf, R, RT' BR, K?). The value of g does

not depend on any physical constants other than the arguments themselves,

so that this function can be regarded as a purely numerical relation among




——

pl "

the variables VCG' t 6 _, R, RT, K2. Thus, if the numerical values of

£’ "R
tf, R, RT, and K? change because of a change in the physical units (i.e.,

units of distance and time), the change in the value of VC6 will be the
same as if the physical conditions had changed by the same amount. E.q.,
changing the time unit must have the same effect on the numerical value
of VCe as the corresponding variations in the actual time of flight (tf)

and the strength of the gravity field (Kz).

8 R, R K%, and v =
r ’ ’ ’ ’
£,° Ry o To o ch,

g(tfo, Ro,...) and change the distance unit by a factor 1l/0, so that all

Now suppose we choose fixed values t

distances are multiplied by a factor 0. Since K? has dimensions of
(distance) 3/ (time)?, its value will be multiplied by al. g has dimensions

of distance/time, so its value will be multiplied by . Thus
= 3,2
WVeg, g(tfo, Ry, ORp oy Bp 4 O KO) ) (30)

If we now change the time unit by a factor 1/B8, similar reasoning yields

Q al
— = , OR 8., —K 1
B Vceo 9 Btfo' aRo To' "Ry 82 ] (31)
The value of K? must remain constant, since otherwise avce/BK2 will
appear in the final result. This can be arranged by setting 8 = a3/2, giving
-1/2 = ofa3’? 2 32
a VCeo g( tfo' aRO, aRTo, ORO, Ko) ) (32)
Differentiating with respect to 0 gives
1 -3/2 d /2 2
- = = & R
2 o VC@o da & tfo' aRo' o To' eRO' Ko
3 1/2 ag 9g dg
= = + + 33
2% o3t TR dR Y Rro 3R (33)
f '
where the derivatives are evaluated at the point (a3/2 tfo' aRo, aRTo, GRO, Kz).

10




o

An expression relating the derivatives at the point (tf + Ry RTO' BRO,
K ) can be obtained by setting a = 1:
1 3 dg 9g 9
-zv == + 9
2 cBo 2 tfo at R dR * RTo 3RT . (34)

Since the derivatives here are evaluated at the original point, the zero
subscripts may be dropped and the convention of denoting 9g/9x by avCe/Bx

(x = tf, R, etc.) may be resumed. Thus Equation 34 can be rewritten

Neo .11, + 3 avce+aavce (35)
aRT RT 2 ¢ 2 °f atf oR .

Eliminating Bvce/SRT between Equations 29 and 35 yields

5 VCG avce + 1 v + RT é. \?Vce + R 3VCe = 0 (36)
VCR* aaR 2 co * 2 /3t 3R .
v

Multiplying through by VcR and replacing V by the right side of

CR “9R
Equation 22 gives

v av R Y
CR Co 1 T 3 ci
v .1+ 8§ ==V ., V., _-|R+V_|——+ =t |l (37}
* | 3 *
co vCR eR 2 'c6 'CcRrR CR VCR 2 f atf .

It is shown in Appendix C that the coefficient of 8vce/39R in this
equation is never zero for cases of interest. This equation can therefore
be used to find 9oV _./06_ in terms of oV __./0t_. Of course, V* must first

ce R co f CR
be computed. The simplest way to do this seems to be to apply Equation 1

to the reverse trajectory. This gives

2
RT K
* = - — —_— - i 8
VCR <cos GR = ) CG e (} cos 9;) /sin GR ) (38)
L T CO
Applying Equation 25 gives the more convenient form
r
K? 0 in 0 39
* = - -
VCR 8 cos OR 1 VCe = 1 - cos R) /sin R (39)
L co .
11




The derivation is now complete. The suggested algorithm for computing
QO may be summarized as follows. VCe

>
the VC computation. vCR and VER are found using Equations 1 and 39 respec-

tively. Next avce/aeR is computed from Equation 37. The partials of f are

and Bvce/atf should be available from

found from Equations 11, 12, and 13, and 8VCR/36R from Equation 14. Now
avce/BR can be computed from Equation 24, and BVCR/BR from Equation 15.

Equation 10 then gives Q in the local coordinate frame. Finally, the sym-
metry of Q can be exploited to save time in transforming it to the desired

frame.

N S
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APPENDIX A

-
COMPUTATION OF V., Vg, V., AND 3V o/dt,
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-
COMPUTATION OF VC, VCG' VCR'

and BVCe/Btf

First, an algorithm will be derived for computing the value of tf

corresponding to a given value of Vc for specified initial and target

6
vectors. This derivation essentially follows that given originally by

T. Alexander. Some additional terminology must be introduced here:

e = eccentricity of this trajectory ellipse
£ = specific angular momentum
6 = true anomaly

In this section, motion is assumed to be along the trajectory ellipse.
As usual, Ve and VR denote the horizontal and vertical components of velocity,
respectively. However, the symbols V

co
initial values of these variables. 1Initial values of other quantities will

and VCR will be reserved for the

be denoted by zero subscripts.

Finally, we define GD =0 - 60. 8 will be taken to be positive in the

direction of motion, so that GD > 0 for t > O.

The usual formula for R is:

82 /K?
R=17c cosd . (Al)
Since & = RVe = r%8, differentiating this equation gives immediately:
K2
Vg = T © sin® (A2)

Next, Equation (Al) can be rewritten in the form:

2

KZR[1 + (e cosGo)coseD ~ (e sineo)sineD] = 92 = R%v (A3)

0 Co °




B a1 )

Solving Equation Al for e cosf, and Equation A2 for e sinf, and substi-
tuting the results into Equation A3 yields:

. - n? y2 .
sanD] = R} vCe (a4)

2 2 2
R[K® + (RovCe - K )coseD -

R°Vcevcn

Now at the target R = RT and GD = BR. Substituting these values into

Equation A4 and solving for R°VC6vCR

gives:
RV V. = [{cosb_ - Ro R.VZ. + K*(1 - cosf_) /sin6 (aS)
0°CO CR R RT 0°co R R~ -

Substituting the expression on the right for ROVCSVCR in Equation A4
and setting B = Rovée, we have:

R[KZRTsinGR + RTsineR(B - Kz)coseD - {RT(B - Kz)coseR
- RoB + RX’}sinB ] = BR| R _sinf_ . (n6)

This equation, unlike Equation A4, does not involve VCR' and thus
>

>
gives R explicitly as a function of OD and the boundary conditions Ry, RT,

and Vce.
Now £ = R°VC9 = Rz(dBD/dt), or Rovcedt = deGD, so that:
3133
t, = Ro‘llce [ Rz(eD)deD . (a7)
0

It remains only to evaluate the integral in this equation and simplify

the resulting expression for t_ as much as possible. For this purpose,

f
define:

- k2R si
A=K RT51n6R

= - 2
B RT(B K)sinBR

A A g WA A B KA
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- - -2 -
C = B(Ry = Ry cos0.) - K'R,(1 - cos®p)
_ 3,2 . 2
D = (R,P) / (RT51n6R)
It can be verified easily that:
R
St a
= " -
D (A +B cosGD + C 51n6D)
0
. -B 51n6R + C coseR ) c
T F(A + B cosB + C sinf.)  F(a + B)
P N F!/2 H tankogp
F3/2 F + C(C + H tank0)) ! (A8)
where
F =a% - B2 - ¢?,
H=A - B. .

An efficient algorithm for evaluating this expression for tf is given
below. Although a detailed derivation will not be given, the following

key relations were used:
A+ B coseR +C sineR =R, B sineR
- 2— -
H tankf_ = R (2K B) (1 - cosf.) (A9)

F+C{C+H tan%eR) = RT(zxz - B)R, B sinzeR +C(l ~ cosB) .

It is sometimes useful to know for what values of VCe a solution exists.

The acceptable values are those on the open interval (V ). Equa-

COmin’ YCOmax
tions for VCemin and Vcemax are also given below.

used is denoted V*_, and

co co
the corresponding value of tf by tg. Also, R, is denoted simply by R, and

The algorithm is as follows. The value of V

_ _ . - 2
c, = coseR, C, = 31n6R, and uI = 1/K°.

A-3
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Compute:

(*)

§; = 1/c,

b, = R/RT

d, =1+ b,(b, - 2c))

b, =1+ <,

d1 = uIbsR

bg =1+ b1

{Vcemin' Vcemax cz/[dl(ba * mz)]l/z}

bg = b;by

by = Mb Ry

b, = 5:V%

d3 = dlb2

b, = d;b, .
b, =b, - b,d,
b11 = b7b9 -1
by, = by, * b,by,

1f b, <0, Vée £ (VCGmin' VCSmax)' so there is no solution
for this value of VCS' Otherwise:

b, = /S::

4, = b;,/b,

dg = m/2 - arctan (d,) (This is the standard two-quadrant arctangent.)
by, = bgb,d,

dg = by,by,

d; = byoby3 + 2by,

t2 = b,bed,;/d,

A-4




This completes the algorithm for evaluating tf from Equation A8. This
equation can be differentiated with respect to VC6 to obtain an expression
= -1 . . .
for atf/avce, and thus of BVCe/Btf (Btf/avce) . Again without going
through the algebraic details, an algorithm for evaluating this expression

is given below. The resulting value of (Bvce/Btf) is denoted (BVCe/Btf).*
Compute:

c, = ZdasI

Cyy 2c7b10

(o]
|

13 = €12/(2by5)

b;cd +bd (dc -cb)/[b (l+d2)]$
1y 6} 7 5 7T 4 4 13 79 11 4

(Svce/atf)* = ds/;be[sldv + bz(b1o°13 + 2014 - b13°7d2q

(¢]
[

- tile,,byg b12c134

.

>
In general, the values given initially are R, RT’
->

values required are VC Y VCR’ and SVCe/Btf. The algorithms
and Bvce/atf explicitly in terms of R, RT, coseR, 51n6R, and

Kz, and tf, while the
and possibly V
above give tf
VCG' R, RT, coseR, and sineR can be found immediately from the given values,

while e ined . -
VC can be determin once VCe and VCR are known Also, VCR can be com

puted for any given value of V 6 from Equation 1 which can be written in the

C
form:

Veg = R/ (bgb,) + b, (c; = by)

NOTE: Since the value of VCe finally accepted may not be the last value of

must in general be recomputed before VCR is evaluated.

* =
VCG' b2 SIVCG
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Thus the problem is reduced to that of finding the value of VCe cor-
responding to the given value of tf. The required value must be found by
iteration. Since tf is a well-behaved function of V_, and BVCG/Btf is

cé 1
available, the Newton-Raphson method is an obvious possibility. However, |

. - 2, . , .
since A = (Bvce/atf)tf/51n6R is much more nearly constant than BVCe/Btf,

more rapid convergence can be obtained by choosing

Vée + (E)VCe/E)tf)"r(tg/tf)(tf - t;) ,

where

tf is the given value of time of flight,

as the next estimate of VCe on each iteration.

Only the formulas from (*) on need to be reevaluated on each iteration.

If no better initial estimate of VCe is available, the value

= + 1
Ve VCGmin Rp SlneR/tf
is usually satisfactory.

Lastly, if the final value of VCe is not the last value of VEB used in

the algorithm, a better estimate of the corresponding value of BVCe/Btf than
.
(BVCe/Btf) is

e e

. _ 2
BVCe/dtf = (Bvce/atf)*(t;/tf) .

:
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DERIVATION OF EQUATION FOR Vg

The importance of the Q-matrix stems in large part from its occurrence

s
in the well-known equation for Vv

(B1)

7

3 -> Q—»
V = -A_ - QV
g T g
> .

where AT is the sensed (or gravity-free) acceleration; i.e., the acceleration

produced by all forces except gravity. This result is established by the

following simpie argument.

First, with the conventions explained in the Introduction, clearly

a—>
v V. e B2
cT¥ % (B2)
£ .
4 > > L] -> . .
On the other hand, vV = AT + G by definition of AT. An equation relating
> -
G to VC and its derivatives can be obtained most simply by considering the
> > D
"target" trajectory; i.e., the free-fall trajectory for which v = Vc initially.
-5
V. for all t, so

C
given by Equa-

>
As pointed out in the Introduction, on this trajectory V

ol
o< ¥

> > >
that VC = V = G, Combining this with the expression for
tion B2 yields

>
¢ =qv Vo (B3)
=% " 3% .
f
> > > > 2 R >
Now recall that VC = Vc(tf, R, RT' K°), so that neither VC nor any of
> >
its derivatives depend on the values of V or A . Thus, while Equation B3

-»T >
= VC and AT = 0, actually both

> >
sides are independent of V and AT' so that this equation is valid for any

<V

is most easily derived by assuming that

values of these variables. We can therefore write

-

oV

x

3 > > > ->
V=A +G=A +QVC- (B4)

T T

Q2

tf .

Subtracting Equation B4 from Equation B2 yields Equation Bl.

B-1
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NECESSITY AND SUFFICIENCY OF EQUATIONS

This section deals with the suitability of the algorithm developed in

of V..

the main section and discusses alternative methods of computing the partials l
{
cé [

The most important question to be considered is whether the coefficient !

of BVCe/BGR in Equation 37 can ever be zero in any case of interest.! Since

vCe is always positive, this is equivalent to asking whether it is possible E
v
that

1+ B -0 (c1) |
T CR .

for such a case. Since VCR* > 0 for all such trajectories, clearly VCR must

be negative for Equation Cl to hold; i.e., the body must be past apogee.

Since VCRT = —VCR*, Equation Cl is equivalent to

= c2
RVCR RTVCRT (C2)

But by Equation 20, in any case

RVeg = RpVeor . (€3)

Squaring Equations C2 and €3 and adding gives

24,2 2 2
RV, = R Cé
C T VCT ’ (c4)
h _ I+ l
where VCT = Vc(tf) .

By the well-known vis-viva equation,

vé = k%(2/R - 1/a) , (C5)

where a is the semimajor axis of the conic. Since a is constant and Equa-
tion C5 must hold at both t = 0 and t = tf, this gives expressions for
VC and VCT which can be substituted into Equation C4 to yield

(R - RT)[Za - (R + RT)] =0 . (Ce6)

I The term "case of intcrest" rcfers here to conditions which might arise
during powered flight for a ballistic missile.




The only time R can equal RT past apogee is at impact. At this point

calculations are no longer required, so this case can be ignored. Otherwise

the expression in brackets must be zero. Thus we must have R + RT = 2a, or
1 . . .
as=73 (R + RT)' We will show that computation of avce/aeR will never be re-

quired past apogee for such a trajectory.

The sum of the distances from any point on an ellipse to the two foci

is 2a. Thus the distance from E to the empty focus must be RT. This is !
>

illustrated in Figure 1. But between apogee and impact R > RT, so that RT !
must lie on the same side of the minor axis as 0, the center of the earth.

Now let Eo be the other pointeén the ellipse whose distance from O is RT. .
The time required to go from R; to ET is, by Kepler's second law, (AS/AE)P

where As is the shaded area in the diagram, AE is the total area of the

ellipse, and P is the period. Clearly AS/AE > 1/2, and a well~known formula

for P is

(€7)

Now since R » RT’ a = %—(R + RT) > RT' and since RT must be essentially
on the earth's surface we have a > 2 x 10’ ft. Also, K*> < 1.5 x 10'® ft¥/sec?,
so P > 4000 sec. Thus the time required to go from Eo to ET is at least
2000 sec, and the time to reach apogee is half that, or at least 1000 sec.
Since the actual launch point is also on the earth, the time reguired to
reach apogee on the actual trajectory is clearly greater than that required
to reach apogee from Eo on the ellipse. But this formula will never be
needed as late as 1000 seconds after launch. Since Equation Cl can only
be satisfied past apogee, this shows that it cannot be satisfied in any

case of interest.

This shows that Equation 37 can be used to compute avce/aeR in a general
algorithm. However, the question of whether Equation 24 can be used to pro-

duce a (possibly simpler) equation for this purpose should also be considered.

[ RS
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If 8vc8/3R is eliminated between Equations 22 and 24, the result is

v av
af c6 of co
VotV = mg—=-V_ =x— + R+ (c8) ‘
cé CR avce aeR CR aeR atf

Thus the question is whether the coefficient of Bvce/BGR in this

equaticn can ever be zero; i.e., whether the equation

of
A +V, _s7—=0 (C9)
co \%
CR 9 co
an be tisfied in a f int t Si v E + I {
can sa e n any case of interest. ince VC = vCR . VCe U;, clearly )
2 _ 2 2
Vo = Veg * Ver . (Cc10) |

As explained in the DERIVATION section, Equation 2 defines the function

£(v R, RT, GR, Kz). Thus, by Equation Cl0, vC can also be regarded as

co’
a function of these parameters. Differentiating with respect to VCe yields
LAY

C of

C 57;5 = Voo * Ver Wep - (C11) R

Thus, Equation C9 is satisfied if and only if BVC/BVCe = 0. This

v co

will happen for any value of VCe at which Vc attains a minimum (or maximum)

value; in particular, for the value of VCe corresponding to the minimum

energy trajectory. This is certainly a case of interest; in fact, a tra-
jectory close to this one is often chosen deliberately to minimize the

energy needed to reach the target.

{(Clearly the minimum energy trajectory must be an ellipse. Each value

of vce on the open interval (V ) corresponds to a unique ellip-
x

\Y
Cemin' COma

-> -> . s
tical path from R to RT’ and vice-versa, so the fact that VC is a minimum

does in fact show that avc/BVce = 0.)

We have shown that Equation C8 in itself is not suitable for use in a

general-purpose algorithm for computing Q. Still, it might be possible to

use Equation C8 together with Equation 37 to determine BVCG/BGR and avce/atf

simultaneocusly. This would certainly be useful in some circumstances. For !

—— e b —— - . oo
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example, in some applications a good estimate of Vce may be available without
>
using the usual VC iteration; in this case BVCe/Btf is not automatically

available.

Equations 28 and C8 can be combined into the matrix equation

ar -
- v R v _1
CR T 3 cH 1
v 1 +396 R+ V [—— + =}t — =V .,V
* *
co vCR CR VCR 2 f aeR 2 C6 'CR '1’
i = (C12)
v
af Cco of
V + v rr— R PR bovillai _V ———
c6 CR avce i Latf 1 L CR aeR |

This system can be solved if the determinant of the matrix on the left

is not zero. Thus the question to be considered is whether the equation

\Y R
CR of T 3 ,
RV (1 + & =V, +V_ IR+ V [+t (C13) {
* * ?
(of VCR co CR aVCG CR<VCR 2 f)
can be satisfied for any cases of interest. This equation can be satisfied, o]

but it is not known whether any situation in which it holds could actually

occur in practice.

A further question is whether still another relationship among BVCe/BR,
avce/aeR, and BVC9/8tf independent of those derived here might not be found.
Several fairly obvious ways to derive such relations besides those described
in this paper can be applied, but they all lead to relations which follow
from those already obtained. On reflection, it can be seen that this was to

be expected. Methods along the lines of those given here will lead to linear

relations among these derivatives. Another such relation would make it possible

to eliminate all the derivatives of Vce to give an algebraic expression re-

’ Kz, sin GR, and cos GR. The occurrences of V

T CR

| could then be eliminated by applying Equation 1. The result would be an

lating tf, VCG' VCR' R, R

algebraic relation between t_ and Vce in terms of the other parameters listed.

f
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But this impossible, because it would lead to the result, for example, that

4, and arctan d, are also related in this way. (See Appendix A.)

Nevertheless, there are some problems to be resolved. One is to find a

useful characterization of the conditions under which Equation Cl3 is satisfied.

Another is to determine whether a relation between 3Vcg/968g and 9Vcg/dtge can
be found which does not involve tg explicitly, and in which the coefficient
of 9Veg/90R is never zero. (This wculd be useful in certain applicatons).
Similarly, alternative expressions relating the derivatives of Vcg, though
equivalent to those used here, might be of such a nature as to permit simul-
taneous solution for all cases of interest (or ideally, for all cases). These

questions are appropriate subjects for further research.




