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FOREWORD

This report describes an analytic method of computing the guidance

Q-matrix which is much simpler and more efficient than methods used previously.
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INTRODUCTION

PROBLEM DESCRIPTION

Consider the motion of a body (or point mass) in an inverse-square

gravitational field centered at the origin of some arbitrary inertial ref-

erence frame. At any point R the body will experience an acceleration of

2 3~2-K R-3R, where K is the gravitational constant for the given field.

Now suppose two nonparallel position vectors R, RT and a time tf

are given. The correlated velocity (denoted C) for these conditions is

defined as the velocity at R which will cause a body to reach RT in time

tf if no other force acts on it. Clearly VC is determined by R, RT, tf,
and K , so we may write VC = Vc(t f , R, RT , K2). The symbols V'/R, DVc/3tf,

etc., will be used to denote the partials obtained by holding the other pa-

rameters in this set constant. In particular, DV c/R is commonly called

the Q-matrix, and denoted simply by Q.

It is well known that the path of a body in any inverse-square force field

will lie along a conic section with the center of force as a focus. We will

consider only the case in which the path is along an ellipse and subtends an

angle less than 7. VC will be considered undefined if no value corresponding

to such a path exists. This restriction assures that VC is well-defined

when it exists.

This paper describes a new method for computing the Q-matrix which is

completely analytic, yet is also simple and efficient.

BASIC CONCEPTS AND TERMINOLOGY

Clearly R and R determine the plane of the trajectory. It is con-

venient to define an orthogonal coordinate system (which will be called the

local coordinate frame) with the axes

U, = unit (R),

U 2 
= unit [(R x R) X R], and

U =U xU3 ! 2

- _l, ,. -- " " -. r x .. . . . i ' . " ,,L . , -- .'t ..' ] .; ,, . .. .. . ,, ,. . . .2 .. . .. .. 1



We then defineV R U V and = U2  V (U VC =0)Siial, V = .nd V VC 2 • C

Similarly, VR  " and V0 U • V, where V is the actual velocity

at R. The range angle, eR' is the angle between R and RT. Finally, the

difference VC - V will be called the velocity to be gained and denoted by Vg.

Since V CR and VCe are scalars, it is often desirable to express them

as functions of scalars. One such set is (tf, R, RT, 0R" K'); unless

otherwise indicated VCR and V will be treated as functions of these param-

eters. Thus 3Vc/3tf, VC/36, etc., will denote the partials obtained by
Cf C R

holding the other parameters in this set constant.

The usual point of view is that R is the current position and RT the pos-

ition at which the "target" will be located after an elapsed time tf (often
called the "time-to-go"). Thus V is the velocity required to reach the tar-

C

get in the specified time. With this interpretation it makes sense

to consider R, VC, VCR, and VCO as functions of time (t). In this case it

is understood that t = 0 at R and tf decreases with time; i.e., dtf/dt = -1.

(The idea is that we want to reach the target at a specified time.) Of

course V and VCR are always defined relative to the current position; that

is, V CR(t) = V c(t) unit[R(t)], and similarly for VC . Unless otherwise

indicated, it is assumed that V = V . Note that, if V(O) = V C(0) and no

force but gravity is acting on the body, then V(t) = V c(t) for 0 < t < tf.

APPLICATIONS

The algorithm developed in this paper is useful in the analysis of

guidance systems using V steering. In particular, it can be used to compute

the time derivative of Vg by means of equation Bl, which is derived in Ap-

pendix B.

The equations for V ce/3tf and VCO/36R are also of interest in their

own right.

The algorithm for computing Q and the equation for DVCO/mOR are used

in several trajectory simulation programs developed by NSWC.
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DEVELOPMENT OF Q-MATRIX ALGORITM

PRELIMINARY RESULTS

Vg steering and the Q-matrix have both been studied extensively, and

some earlier results will be useful here.

1. An efficient algorithm for computing t f for a given value of

Vewas developed by T. Alexander. Differentiation of the equations involved

also yields an analytic expression for DVCe/9tf. A derivation of these equa-

tions, together with a suggested iteration method for implementing them, is

given in Appendix A.

One of the equations developed in this derivation, e.g. (A5), can be

rearranged to give a useful formula for V CR:

VCR = os 6 R - R\c 2  
] + RV Cl - cose R /sin ()

2. The Q-matrix is symmetric.*

DERIVATION

The algorithm will be developed in two stages. First, a representation

for Q in the local coordinate frame in terms of VCO, VCR, and certain of

their derivatives will be obtained. Second, formulas for the required deri-

vativeF will be derived.

To obtain the representation of Q, fix R and tf, and a position R0 at

which Q is to be evaluated. Let U1, U 2 , and U3 be the axes of the local

* C. J. Cohen and R. H. Lyddane, The Q-Guidance Matrix and Its Symmetry (U),

Naval Proving Ground, Dahlgren, Va., TR K-6/59, June 1959. UNCLASSIFIED
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coordinate system X defined at R0, and let ORO be the corresponding range

angle. For an arbitrary position R, let

0
RR=R * Ul,

-*0

Re = R , U2 , and
e0

RP R U3

For any vector X, the representation of X in. will be denoted by X , and the

corresponding representation for Q by Q

N.B.: While the axes U1 , U2 , and U are always defined relative to R, the
3

symbolcdenotes the fixed frame U0, U2, U3 .

By definition

Q C, C , (2)
RR )-4 +

R e PR R0 -+-4 -9-

Also, it follows immediately from the definitions that V C  VCR U1 + VCe U2 •

Applying the chain rule to this equation yields

3 3VCR1 A+ CR V 0  AU
-c = VcU V + -- + -- U2 + VC0 2 (3)R. RV R 3 R i R I

1 1 ~ 1 11

where R. is any component of R (e.g., RR, Re, P).

It is easily verified that

1 =R-
1 R

1 (4)

02 (RT - cos R R)/sin 0R' where % = unit(RTI.

Since R = (cos eR, sin 0R0' O)T, in Xthese equations take the form

RR (Cos OR R Cos OR)csc eR

-+::Of -R,
S= R- R@;U 2 = (sin 0Ro - R- 1 R8 cos R )csc 0R (5)

-1 RP) -R-1  R cot OR

4
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Now R
2  

RR + R 0 + RP and cos OR U 1 •R T = (RR cOs 
6
Ro + R sin Ro)R

-

Differentiating these expressions with respect to RR, Re , and Rp and evaluating

the results at R= yields

DR DR 96R R DR DeR
- 0- 0;(6- R Rp RR T~ RR(6

The same operation can now be performed on Equation 5 to give (at R0 ):

'0 /0\
; (R 0 )(7)

, -)-. I - 1)~ 0

R U (R2=; 1 ; o (8)
0 R -  

Cot R/

2
Next recall that VCO and VCR are functions of tf, R, RT , OR , and K Since

tf, RT, and K2 are constant here, Equation 6 yields immediately

DVci DVci DVci W~ci 3Vci
.. .. . .R- - 0 (9)

DR R  R ' RO Do R . ; Rp

where VCi can be interpreted as either VCor VCR.

Finally, substituting Equations 7, 8, and 9 into Equation 3 with Ri

interpreted as RR, R., and Rp and substituting the results into Equation 2

yields

DVCR -D CR

= DR R\36R  Vca)o(oavce -(____ VC) (0
DR R VR 0R10

0 0 R
-1 

(VCR VCe cot OR)

5



This is the representation of Q mentioned earlier. We now turn to the

problem of finding formulas for the partials of VCR and V with respect to

R and 0
R"

First, Equation 1 gives VCR as a function of VC6, R, R T , R , and K2
,

say V = f(VcO, R, R T R, K 2). The derivatives of VCR which occur in

Equation 11, however, are defined with respect to the set of parameters tf,

R, RT , 0 K2, as explained in the Introduction. The partials of f can be

obtained simply by differentiating Equation 1. This gives

f KL

S=RVc VCO VCR cot R (11)
3R - CO O C

oR R[1\CO( ~ 0R R 2 R-cs ORVCR] (2

=V

3V 2 s (c Ros R RT V (13)

The chain rule gives the partials we need in terms of these:

CVR C- D V f 3CO (14)

R R CO D R

CVcR _f f Vc

aR - ' +  V R (15)

Thus, given VCO/DR and 3VCe/3OR, the required partials of VCR can be

determined.

(It may be of interest here to note that V cR/t f, though not required

to compute Q, can also be computed easily from

DV CR _ f CO 
(16)

tf - tf
tf VcO tf

C C VcR CVcOThus, e.g., t- = U + -- U2 can be found via these equations.)

. .f .f I ,f 2
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We now turn to the problem of finding 3V c/DR and aVCe/aOR. Recall

that DV C/atf can be computed directly once V is determined. Moreover,

if two independent equations relating aVc/aR, DVc/30R, and aVc /atf can

be found, it may be possible to solve for 3Vcs/DR and 3Vcs/DeR in terms of

DV C/atf. One such equation can be obtained as follows.

Recall that VR  V * U and V E V * U2 , while t is the current time

(not time-to-go). Assume that V is in the trajectory plane (so that V6 is

the horizontal component of velocity) and the only force acting is that of

gravity (but not that V VC). Then

DVc V DV DO DV at

C - 3R CO R CO (17)

RR fDt DR tO R  0t Dtf at

But clearly

DR 0R V0 )t(
t VR; 't R ; t -1

Thus

DVC6 c - c v DVC6 (19)
t 7R VR 8 R atf

Next, from conservation of the angular momentum Z, we have

V0 R = £ is constant. (:0)

Differentiating gives

e R +DV = 0 
(21)

at 0

Now if we set VC = V, obviously VCe = Ve and VCR = V Also, since R

will now follow a path reaching the target at the desired time, V will con-

tinue to equal V ; thus 3V0 /Dt = DVce/ t. Eliminating V c/Dt between

Equations 19 and 21 then yields

V C V C4a Ce V + CO (22)
CR DR R \V-R CR1  atf

7



Since VCR can be zero (i.e., at apogee), it is not legitimate to divide

through by V to obtain a formula for DVc0/aR. This will cause no problem.
CR c

Equation 22 is the first of the two independent equations sought relating

the partials of V C. Since the Q-matrix is symmetric, it would seem that the

second relation needed can easily be obtained by setting Q1 ,2 = Q2 1; i.e.

ace l1(VCR )
aR R\90R ce(23)

Combining this with Equation 14 yields a simple equation relating aVco/3R

and av// OR

_Vco 1 _f af IVCO (

aR R Vco a C0

Unfortunately, when Equations 22 and 24 are considered as a system of

linear equations in 3Vco/aR and VCO/aOR , the determinant of the system is

zero for the minimum-energy case, which is certainly a case of interest. (See

Appendix C.) So Equation 24 cannot always be used to determine DV /@e and
VCO R

WC/ VR. (However, note that Equation 24, unlike Equation 22, can always be

used to find 3Vco/aR.) Thus another such relation must be found.

This new relation will be obtained indirectly by finding two independent

equations relating aVco/3RT, Vco/3R, D /Vco/OR, and 9Vco/atf, and eliminating

3VCO/aRT between them.

The first of these can be obtained by considering the "reverse" trajectory

from RT to R in time t This trajectory passes through the same points as

the original one, but with the time sense reversed. That is, if R(t), V (t)

are the position and velocity at time t on the original trajectory, and R*(t),

V *(t) those for the reverse one, then R*(t) = R(tf - t) for 0 < t < tf, and
Cf
thus V *(t) = -V (t - t).

C Cf



Now define V* to be the radial component of V* at RT , and V* the
CR C T Ce

horizontal component in the direction of R. (Thus V0 and V* are both
CO CR

positive.) Also, let VCRT' V COT be the radial and horizontal components

of V(t ). Clearly VCOT = V* and V = -V. Since VC6 R = Z is constant,
f C OC VCRT CRC

V C , where 6 =R/R (25)

VeCPT 6 VCO T (5

Since this relationship continues to hold when tf and 6R are allowed to vary,

f R R

The relationship between aV /aRT and aV* /aR is not quite as simple since
CO CO T

6 depends on RT, but a simple application of the chain rule to Equation 25

yields

CO = 6-' - + V (27)
R RT  ce

Also, the same argument used to derive Equation 22 can be applied tc

the reverse trajectory to show that

CO C O C O V + ICO6 (28)
CR R R O CR) at

T / f28

Substituting Equations 25, 26, and 27 into Equation 28 yields

aV c e = 1 V c 8 aV c e R T 3V C( 2-CO _ __t --- + - -- -- (29)
'T RT r\VCR* aR VCR* -f /

(For any practical case V < 0, so VR = -V is never zero.)

CRT CR CRT

The second relation involving @VCO/aRT can be derived from dimensional

considerations. Recall that VR = g(t, R, R, 0 K2 ) The value of g does

not depend on any physical constants other than the arguments themselves,

so that this function can be regarded as a purely numerical relation among

9



the variables VCe, tf, eR, R, RT, K
2 . Thus, if the numerical values of

2
tf, R, RT, and K change because of a change in the physical units (i.e.,

units of distance and time), the change in the value of V will be the
ce

same as if the physical conditions had changed by the same amount. E.g.,

changing the time unit must have the same effect on the numerical value

of VC0 as the corresponding variations in the actual time of flight (tf
2f

and the strength of the gravity field (K2).

Now suppose we choose fixed values t f, 1 R, R , K2  and V

f 0 R 0  0 To 0  C ~ 0
g(t fo, R ,...) and change the distance unit by a factor 1/a, so that all

distances are multiplied by a factor a. Since K2 has dimensions of

(distance) 3/(time)2, its value will be multiplied by a 3 . g has dimensions

of distance/time, so its value will be multiplied by a. Thus

avcO = (tfo' aR aR To' Ro KO) (30)

If we now change the time unit by a factor i/ , similar reasoning yields

= g tf, aR, aRT, R, KO) (31)
VC T' gt2

The value of K 2 must remain constant, since otherwise Vc /9K2 will
3/2

appear in the final result. This can be arranged by setting a = 
/

, giving

a-1/2 (x3/2 e, R , aR , K2 (32)
co To Ro )

Differentiating with respect to a gives

1 -3/2 d, /R3/, OR 0 , K2)

2 VC 0 =d-ga tfT T 0

3 /2 - + R? +R 2- (33)
2= tf0 0 R To ,RT

where the derivatives are evaluated at the point (a
3/ 2 tfo, aRo , oR R , K2).

o' o To Ro 0

10



An expression relating the derivatives at the point (tf , R0 , RT0, OR0

KO) can be obtained by setting a = 1:

1 V .1 t +R 1 + R(3
2 coo 2 t f R To 3R

Since the derivatives here are evaluated at the original point, the zero

subscripts may be dropped and the convention of denoting 3g/ax by aVc/x

(x = tf, R, etc.) may be resumed. Thus Equation 34 can be rewritten

1 (T VC6 + -tf t- + R --V-O (35)

RRT 2 tf Ce)

Eliminating aVc /aRT between Equations 29 and 35 yields

Ce c
V ce 3 cR  I c +v-R . 1 tfj DV CO + R--a = o 0136)

V~ V(RT 3 ) ce RVc
V+ 2 -+ (36) f5T

Multiplying through by V and replacing V C by the riqht side of
CR CR ?JR

Equation 22 gives

CR RT (37)VC6~~7 +1 t f) 
7C  

-R+ C

VCO( CR* a R  2 Ce VCR I-CR-\vR* 2t at f.

It is shown in Appendix C that the coefficient of V CO/D R in this

equation is never zero for cases of interest. This equation can therefore
be used to find 3V /e in terms of aV /at Of course, V* must first

Ce R CzO f' CR

be computed. The simplest way to do this seems to be to apply Equation 1

to the reverse trajectory. This gives

R)K2 (1
V* RV* - - cos ( /sin e (38)
CR R R Ce RT VCO

Applying Equation 25 gives the more convenient form

V*= cos O R - Cv + L -- ( - cos e' /sin 6( 39)
CR 1R ,CO +RVCe\ R) R

11IL



The derivation is now complete. The suggested algorithm for computing

Q may be summarized as follows. V and VCO/Dtf should be available from

the C computation. VCR and VR are found using Equations 1 and 39 respec-

tively. Next 3VCO/36R is computed from Equation 37. The partials of f are

found from Equations 11, 12, and 13, and 3V cR/' R  from Equation 14. Now

3V c/3R can be computed from Equation 24, and VcR /3R from Equation 15.

Equation 10 then gives Q in the local coordinate frame. Finally, the sym-

metry of Q can be exploited to save time in transforming it to the desired

frame.

12
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APPENDIX A

COMPUTATION OF VC VCO' VR AND DVCe/Dtf



COMPUTATION OF VC, VC6 , VCR, and 1Vce/1t f

First, an algorithm will be derived for computing the value of tf

corresponding to a given value of V for specified initial and target

vectors. This derivation essentially follows that given originally by

T. Alexander. Some additional terminology must be introduced here:

e eccentricity of this trajectory ellipse

Z E specific angular momentum

S-E true anomaly

In this section, motion is assumed to be along the trajectory ellipse.

As usual, V0 and VR denote the horizontal and vertical components of velocity,

respectively. However, the symbols VCe and VCR will be reserved for the

initial values of these variables. Initial values of other quantities will

be denoted by zero subscripts.

Finally, we define 0 0 - 60. 0 will be taken to be positive in the
D a

direction of motion, so that 8 > 0 for t > 0.D

The usual formula for R is:

R z 2 /K2  (Al)
1 + e cosO (

Since k = RV = R2 6, differentiating this equation gives immediately:

K2

R -- e sine (A2)

Next, Equation (Al) can be rewritten in the form:

K2R[l + (e cosO )cos0D - (e sinO )sinO D = p.2 = R 2V2  (A3)
0 D D 0 Ce

A-1

jaI



Solving Equation Al for e cosO0 and Equation A2 for e sinO0 and substi-

tuting the results into Equation A3 yields:

R[K 2 + (R V2  K2)COSO - D R2 2 (M)0OCO DRovceVC~sinO] Ve

Now at the target R = RT and 6D = eR" Substituting these values into

Equation A4 and solving for ROVCOVCR gives:

2 K2 i(A)
RoVceVcR os0R RoVc0 + (i - cosR A

Substituting the expression on the right for R0VCOVCR in Equation A42

and setting S = RoVc we have:

R[K 2RrsineR + RTsineR(S - K2 )cosOD - {R( - K 2)coseR

- R05 + 1y(
2 }sineD ] = 8R ° Rsin0R . (A6)

This equation, unlike Equation A4, does not involve VCR, and thus

gives R explicitly as a function of e D and the boundary conditions Ro, RT,

and Vce.

Now X = RoVce = R2 (de D/dt), or R Vc dt = R2dOD so that:

r R
tf = 1 R(6 )dO (A7)

f O Roe I D D

It remains only to evaluate the integral in this equation and simplify

the resulting expression for tf as much as possible. For this purpose,

define:

A = K 2sinO R

B = RT(B - K2)sinOR

A-2



C = 6(RO - RT coS@R) - K2 RT(l - cosO

D = (R 0 ) 3/ 2 (R TsinOR) 2

It can be verified easily that:

tf = dO

D J (A + B cosO + C sin D )'0D D

-B sineR + C cosOR  C

F(A + B cosOR + C sine ) F(A + B)

2A tan - F Fl/2 H tan n 1+ tan- + C(C + H ta R)j  (S

where
F A 2 B 2 - C

2
,

H=A- B.

An efficient algorithm for evaluating this expression for tf is given

below. Although a detailed derivation will not be given, the following

key relations were used:

A + B cosOR + C sine R = R0 
1 sineR

H tan OR = RT(2K2 - 1)(l - cosOR) (A9)

F + C(C + H tanOR) = RT(2K z - ) 3 sinOR + C(l - cosR)

It is sometimes useful to know for what values of V a solution exists.

The acceptable values are those on the open interval (Vc~min, Vc~max ) . Equa-

tions for Vcmin and Vcemax are also given below.

The algorithm is as follows. The value of VCe used is denoted V* and
CO CO

the corresponding value of tf by t*. Also, R0 is denoted simply by R, and

C, - cosOR, C 2 - sineR, and pI -/K 2.

A-3
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Compute: I 2
SI = i/C2

b,= R/RT

d 2 = 1 + b(h I - 2ci)

b5 = 1 +c 1

d, =P ib5R

=1 + b±

cemin Vcemax b9 2II

b 6 =blb5

b = b R 
2

(*) b = S V*'
2 1ICe

d3 =dlb2

b7 = d 3b2

b1 0 =b 9 - b7 d2

bl= b7b - 1
79

b 12 =b 1 1 + b7 b 10

If b12 < 0, VC % (Vcmin, Vc max), so there is no solution

for this value of VCe. Otherwise:
b /b-

b13 12

d 4 = b1l /b 1 3

d 5 = 7T/2 - arctan d4) (This is the standard two-quadrant arctangent.)

b1= b6 b7 d5

d6 =b 12b 13

d7 = b 10b1 3 + 2b14

f b2bsd 7/d6

A-4
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This completes the algorithm for evaluating t from Equation A8. This
f

equation can be differentiated with respect to VCO to obtain an expression

for 3tf/DVce, and thus of 3Vc /atf = (at f /aVc . Again without going

through the algebraic details, an algorithm for evaluating this expression

is given below. The resulting value of (;VCO/3tf) is denoted (VC/atf).* 

Compute:

c 7 = 2d3S I

c12 = 2c 7b1 0

c13 = c1 2 /(2b 1 3 )

c 67 5 +7 d 13 +7 b d9 d)/[b ( +

(vC/atf)* = d 6 / b Sid7 + b 2 (b 0c 1 3 + 2c1 4 - b 3c 7 d2 ]

- t*(c 1 2 b1 3 + bc

In general, the values given initially are R, RT, K, and tf, while the

values required are VC and possibly VC, VC, and aVc/t f. The algorithms
CCO VCR C f*

above give tf and DV /atf explicitly in terms of R, RT, cosOR, sineR, and

VCO. R, T, cosO R, and sine R can be found immediately from the given values,

while VC can be determined once VCe and VCR are known. Also, VCR can be com-

puted for any given value of V from Equation 1 which can be written in the

form:

VCR = RT/(b8b 2 ) + b2 (cl - bl)

NOTE: Since the value of Vce finally accepted may not be the last value of

V , b I Vc must in general be recomputed before VCR is evaluated.

A-5
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Thus the problem is reduced to that of finding the value of VC6 cor-

responding to the given value of tf. The required value must be found by

iteration. Since tf is a well-behaved function of V CO and DVCO/atf is

available, the Newton-Raphson method is an obvious possibility. However,

since A E (@Vc /atf)t2/sinOR is much more nearly constant than aVc /9tf ,

more rapid convergence can be obtained by choosing

V*e + (a Vc/t f )*(t/tf) (tf - t*)

where

tf is the given value of time of flight,

as the next estimate of V on each iteration.

Only the formulas from (*) on need to be reevaluated on each iteration.

If no better initial estimate of Vce is available, the value

VCe m Vcemin + RT sineR/tf

is usually satisfactory.

Lastly, if the final value of VC0 is not the last value of V* used in
Ce CO

the algorithm, a better estimate of the corresponding value of Vc@/atf than

(aVce/Dtf)* is

~VCOdtf (~~e/~f)(t/tf

A-6 I.
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DERIVATION OF EQUATION FOR Vg

The importance of the Q-matrix stems in large part from its occurrence

in the well-known equation for V
g

V = -AT - QVg (BI)

where AT is the sensed (or gravity-free) acceleration; i.e., the acceleration

produced by all forces except gravity. This result is established by the

following simpie argument.

First, with the conventions explained in the Introduction, clearly

4 V~C
V - Dt-- (B2)

On the other hand, V = AT + G by definition of A . An equation relating

G to V and its derivatives can be obtained most simply by considering theC - 4

"target" trajectory; i.e., the free-fall trajectory for which V = VC initially.

As pointed out in the Introduction, on this trajectory V = V for all t, so

that V = V = G. Combining this with the expression for V given by Equa-
C C

tion B2 yields

C

G = QV - (B3)
C at

Now recall that VC= V C te R, R T K ),so that neither V Cnor any of

its derivatives depend on the values of V or A . Thus, while Equation B3T

is most easily derived by assuming that V = VC and AT = 0, actually both

sides are independent of V and AT, so that this equation is valid for any

values of these variables. We can therefore write

V = A ATG=A + QV C  (B4)

Subtracting Equation B4 from Equation B2 yields Equation Bl.
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NECESSITY AND SUFFICIENCY OF EQUATIONS

This section deals with the suitability of the algorithm developed in

the main section and discusses alternative methods of computing the partials

of Vc0 .

The most important question to be considered is whether the coefficient

of WVce/ 0R in Equation 37 can ever be zero in any case of interest.1 Since

VC6 is always positive, this is equivalent to asking whether it is possible

that

R VCR
1 + R VR = 0 (Cl)

R V
T CR

for such a case. Since V * > 0 for all such trajectories, clearly V must
CR CR

be negative for Equation Cl to hold; i.e., the body must be past apogee.

Since VCRT = -VCR*, Equation Cl is equivalent to

RV =RV (C2)
CR T CRT

But by Equation 20, in any case

RV =RV (C3)
Ce T COT

Squaring Equations C2 and C3 and adding gives

R 2V 2 = R2 V 2  (C4)
C T CT

where VCT =LC(tf)'.

By the well-known vis-viva equation,

V 2 
= K2 (2/R - 1/a) , (C5)

C

where a is the semimajor axis of the conic. Since a is constant and Equa-

tion C5 must hold at both t = 0 and t = tf, this gives expressions for

VC and VCT which can be substituted into Equation C4 to yield

(R - R T ) [2a - (R + R T)] = 0 . (C6)

1 The term "case of interest" refers here to conditions which might arise

during powered flight for a ballistic missile.
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The only time R can equal R past apogee is at impact. At this point
T

calculations are no longer required, so this case can be ignored. Otherwise

the expression in brackets must be zero. Thus we must have R + RT = 2a, or
1

a (R + RT). We will show that computation of ;VC /;eR will never be re-

quired past apogee for such a trajectory.

The sum of the distances from any point on an ellipse to the two foci

is 2a. Thus the distance from R to the empty focus must be R T . This is

illustrated in Figure 1. But between apogee and impact R > RT, so that RT

must lie on the same side of the minor axis as 0, the center of the earth.

Now let R0 be the other point on the ellipse whose distance from 0 is R

The time required to go from R0 to R is, by Kepler's second law, (A /A )P0 T S E
where A is the shaded area in the diagram, AE is the total area of the

ellipse, and P is the period. Clearly A s/AE > 1/2, and a well-known formula

for P is

P = 2T a3/ 2  (C7)

1

Now since R > R, a = ! (R + R ) > R , and since R must be essentially
2 T TT

on the earth's surface we have a > 2 x 107 ft. Also, K2 < 1.5 x 1016 ft3/sec 2 ,

so P > 4000 sec. Thus the time required to go from R0 to RT is at least

2000 sec, and the time to reach apogee is half that, or at least 1000 sec.

Since the actual launch point is also on the earth, the time required to

reach apogee on the actual trajectory is clearly greater than that required

to reach apogee from R0 on the ellipse. But this formula will never be

needed as late as 1000 seconds after launch. Since Equation Cl can only

be satisfied past apogee, this shows that it cannot be satisfied in any

case of interest.

This shows that Equation 37 can be used to compute VCe /;eR in a general

algorithm. However, the question of whether Equation 24 can be used to pro-

duce a (possibly simpler) equation for this purpose should also be considered.
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TRAJECTORY ELLIPSE

R¢ R

EARTH SURFACE

C = CENTER OF EARTH
E = EMPTY FOCUS OF TRAJECTORY ELLIPSE

R + RE = 2a = R+RT

rE-RT

Figure 1. Case Which satisfies Equation Cl
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If 3V /R is eliminated between Equations 22 and 24, the result is
CO

f VcO _f__Vc

V V CO -V - + R -VO(C8)CO + VCR TVc6 P R - CR aO R  atf

Thus the question is whether the coefficient of 3V c/30R in this

equation can ever be zero; i.e., whether the equation

VC +VCR = 0 (C9)
=e + 

, clearl

can be satisfied in any case of interest. Since VC  V U + V U,, clearly
C CR 1 CO 22 2 2

VC = VC2 + V2 (ClO)
C CO CR

As explained in the DERIVATION section, Equation 2 defines the function

f(VcO, R, RT,  ' K2 ). Thus, by Equation C10, V can also be regarded as
COR' ORc

a function of these parameters. Differentiating with respect to VCO yields

av
V vC af C)V :C = VCe + VCR (Cll)

Thus, Equation C9 is satisfied if and only if 3Vc/aVc = 0. This

will happen for any value of VCe at which VC attains a minimum (or maximum)

value; in particular, for the value of VCO corresponding to the minimum

energy trajectory. This is certainly a case of interest; in fact, a tra-

jectory close to this one is often chosen deliberately to minimize the

energy needed to reach the target.

(Clearly the minimum energy trajectory must be an ellipse. Each value

of VCO on the open interval (Vcemin, VCOmax ) corresponds to a unique ellip-

tical path from R to R T , and vice-versa, so the fact that VC is a minimum

does in fact show that aVC/aVCO = 0.)

We have shown that Equation C8 in itself is not suitable for use in a

general-purpose algorithm for computing Q. Still, it might be possible to

use Equation C8 together with Equation 37 to determine VcO/3OR and 3VCO/atf

simultaneously. This would certainly be useful in some circumstances. For
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example, in some applications a good estimate of VC0 may be available without

using the usual VC iteration; in this case 3VCO/atf is not automatically

available.

Equations 28 and C8 can be combined into the matrix equation

VCR RT +ct 3V
+ VR. [R + VCR * fI 30 2 COCR

=C (C12)

V + V 3f R VCRO- -3

CO C Ve f R

This system can be solved if the determinant of the matrix on the left

is not zero. Thus the question to be considered is whether the equation

/ VCR 'f/R
RV 1+6 -CR. = (V +V - IRV R-. t f)CO CR /RC CR3 VO I CR\VCR* 2 t) C

can be satisfied for any cases of interest. This equation can be satisfied,

but it is not known whether any situation in which it holds could actually

occur in practice.

A further question is whether still another relationship among aVco/aR,

3VCo/ OR' and VcO/atf independent of those derived here might not be found.

Several fairly obvious ways to derive such relations besides those described

in this paper can be applied, but they all lead to relations which follow

from those already obtained. On reflection, it can be seen that this was to

be expected. Methods along the lines of those given here will lead to linear

relations among these derivatives. Another such relation would make it possible

to eliminate all the derivatives of Vc6 to give an algebraic expression re-

lating tf, VCO' VCR, R, RTo K2 , sin eR' and cos 0 R . The occurrences of VCR

could then be eliminated by applying Equation 1. The result would be an

algebraic relation between tf and V in terms of the other parameters listed.
C-
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But this impossible, because it would lead to the result, for example, that

d. and arctan d 4 are also related in this way. (See Appendix A.)

Nevertheless, there are some problems to be resolved. One is to find a

useful characterization of the conditions under which Equation C13 is satisfied.

Another is to determine whether a relation between DVc8/36R and WVce/atf can

be found which does not involve tf explicitly, and in which the coefficient

of aVce/DeR is never zero. (This would be useful in certain applicatons).

Similarly, alternative expressions relating the derivatives of VC6, though

equivalent to those used here, might be of such a nature as to permit simul-

taneous solution for all cases of interest (or ideally, for all cases). These

questions are appropriate subjects for further research.
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