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ABSTRACT

This report consists of two papers that treat reliability of the multiprocessor
systems at CMU. The first paper discusses the multiprocessor architectures,
reliability features (hardware and software), and measured reliability data. The
second paper presents hard failure data from one of the systems, calibrates a hard
failure rate model, and analytically models the reliability of the three syst.ms.
These papers will appear in the October 1978 issue of the Proceedings of the IEEE
(Special Issue on Fault Tolerant Systems).
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Ab~tract

Three multiprocessor systems designed, implemented and currently operational at
Carnegie-Mellon University are compared and contrasted. The design goals and
architectures are summarized with a special focus on reliability features. Experiences
gained in design and operation are discussed. Finally, reliability data, with a focus on
transient failures, measured from each system is presented and discussed.
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I
1. Introduction 

-

In 1970 Carnegie-Mellon University initiated a design study into computer
structures supporting a high processor-to-memory bandwidth. Since that time three
multiprocessor systems have been designed, implemented, and made operational. While
all three systems had differing goals and technological constraints, they shared one

• fundamental design decision: use as much commercially available hardware as possible.
Several advantages resulted:

1) Limited design resources could be focused on the interconnection
architecture rather than being diluted doing state of the art processor,
memory, and 1/0 fabrication.

2) Existing products had a library of software available, especially diagnostics.

3) Commercial modules enjoy increased reliability due to volume production.
As illustrated in a companion paper (1), this could mean as much as a
factor of ten increase in mean time to failure.

4) Parallel programs and support facilities could be shared between the
multiprocessors if they shared the same instruction set.

The three following sections on the architectures adhere to a common format.
First the design goals of the system are sketched, followed by a brief discussion of the

* architecture including the reliability features. Experience gained with the reliability of
each architecture is followed by a presentation of actual data measured from the
system. The data focuses on transient failures and their causes. Each section
concludes with an indication of future research on the architecture.

The three architectures are C.mmp (a multi-minicomputer), Cmt (a modular multi—
microprocessor), and C.vmp (a voted multiprocessor). Design concepts for C.mmp were - -

/ initiated in 1970 at a time when a minicomputer cost $10,000. The goal was to
establish a high performance, low cost multiprocessor for work in speech and image 0

understanding. Because of the relatively high cost of hardware, a spartan architecture 
*

was implemented, leaving reliability and resource management to software.
Advantages and limitations of the softwar, approach to reliability are contained in
Sect Ion 2. Initial design studies for a follow-on mult iprocessor , Cm , that took
advantage of LSI technology was started in 1972. PotentIally a 100 processor system 0

was envisioned, but final design work had to wait for the advent of the $1000 LSI-1 1
microcomputer In 1975. Building on the C.mmp experience, a substantial portion of the

I
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Cmt design was devoted to reliability and operating system support as outlined in
Section 3. In 1975 a design study was started for a low end processor that could
tolerate transient faults anticipated in process-control applications. Other goals
included transparency to the user of error recovery and on-line maintenance without
loss of computing power. Section 4 illustrates the transient and hard fault survival
capacity of C.vmp as well as the performance degradation under faulty conditions.
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2. C.mmp, A Mult i—Miniprocessor

2.1 C.mmp Architecture Overview
C.mmp is the oldest of the three multiprocessors at CMU. First we will present the current

PMS (Proc.so r, Memory , and Switch) (2) structure followed by a discussion of the CMU-built
hardware components that have most affected reliability.

2.1.1 Th. PUS Structure
C.mmp Is composed of slightly modified DEC PDP-11/20 and PDP-11/40 processors. As

shown in Figure 1, up to 16 of these processors, in any mix, may be connected to 16 ports of
shared memory by a 16 X 16 crosspoint switch (Smp), providing an address space of 32
megabytes (3). The basic modifications to the processors were: to make user execution of
c.rtain privileged instructions illegal (e.g. HALT, RESET, WA IT, RTI (ReTurn from Interrupt) and
RIT (ReTurn from Trap )), and address bounds checking on the stack pointer register, R6.
These modifications were required for software protection. The operating system must leave
some context information on the stack over protected procedure calls (4]. RI! and RTT were
modified since they modify the processor status (PS) word and It must be protected because
it controls the memory protection scheme (see section 2.1.2). However, these features have
also had significant impact on hardware reliability. The 11/40’s have been additionally
modified to allow an extended, writable control store (5].

For about th. last year, the configuration has consisted of 5 11/20’s and 11 11/40’s.
Recently, the non-microprogrammed 11/20’s -have been dropped from the configuration to
allow greater use of special instructions within the operating system. All data in this paper
refer to the full 16 processor system with 2.5 megabytes o~ shared primary memory.

An interprocessor bus connects th. entire set of processors. This bus provides three
basic funtions:

1. interproc.ssor Interrup ts at three priority levels,

2. the control functions ~~~ continue and ~jj~j ,

3. continuous broadcast of a 60 bit non-repeating clock value used for interval
timing and unique name generation in the operating system (internal operations
of the Individual processors are not synchronized by this external clock). *

The relationships of the processors , memory and bus are shown in Figure 1. Also shown
are the per-processor 8K byte local memories (Mocal) and the principal secondary memories
Mdisk (RPO2 and RPO3 2314-typ. disks) and Mpaging (one megabyt e fixed head disks with
zero latency controllers for paging space ). Note that peripheral devices are assigned to the
UNIBUSes of specific processors I/O requests are mapped from requesti ng processors to the
processor controlling the device via an interprocessor interrupt.

2.1.2 Shared Memory Access
Access to shared memory is performed in two stages: relocation of the 18 bit

proc.sor*.generated address into a 25 bit address space , and resolution of contention in
- 

accessing that memory location. The relocation units (Omap) divide the 32k-word space into
eight 4k-word pages which may be anywhere In shared memory. There ire four address

~ 0 - - - - —- ~~~~~~~~~~~~~~~~~~ -~~ ~~ ~~~~~~~~~~~~~~~~ --~~-- - - - -- - * - ~0~ —-~ 
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spaces, specified by two bits in the PS. Therefore, four sets of eight registers are provided
in each relocation unit, although the stack page is common to all spaces to allow
communication across spaces. -

The four address spaces are the heart of the memory protection mechanism: in only one
space (1,1 in the PS space bits) are the relocation registers directly addressable. Since this
space is used exclusively by the Hydra kernel (4], protecting the PS guarantees that no
addressability changes may be made without the approval of the operating system. All
entries to the kernel, whether by interrupt or user request, force the assertion of both space
bits. Direct addressability Is accomplished by disabling two of the relocation registers in (1,1)
space, one each for Mlocal and the control register bank for all peripheral devices (including
Dmap). With these registers disabled, addresses that would normally be mapped are passed
along the UNIBUS unchanged to be received by the addressed register or memory location.

Pc Status word 16 bit Pc address word

I ~131S, cO 12~9 _I p
i 2 .p.c. bitu . 
I ~~l.ct b.n~ F I
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Figure 2 Cjnmp Address Relocation

As illus trated in Figur. 2, the relocation unit intercepts the 18 bit UNIBUS addresses (16
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6

bit words plus the two space bits) and converts them in the following manner: the three high
order bits of the 16 bit word select a register from the bank specified by the space bits.
The contents of the register provide a 12 bit page frame number; the remaining 13 bits from
the address word are the displacement Within that page. The two are concatenated to form
the 25 bit shared memory address. This transparent mapping is performed for all shared
memory accesses. In addition to the 12 page frame bits, there are four bits in each
relocation register used for control. They are designated: no page loaded ,
~write-protected , written-into”, and a bit to control whether values from the page may be
stored in the planned, but not yet implemented, per-processor cache.

The shared memory address and possibly 16 bits of data, each parity checked, and two bits
of access function data are sent to the crosspoint switch. The address parity is checked at
the switch interf ace. If the check fails, the request is aborted and the processor interrupted.
Data parity is not checked until the data is read from memory. All parity is generated, and
data parity checked, by the relocation unit (Omap) interface to the bus from the switch.

The switch then routes the request to the memory port specified by the high order four
bits of the address. A port is requested by setting the processor’s bit in an initial register,
the request register. Contention for the port is resolved by periodically gating the request
register into a second register, the queue register, which is left-shifted as the port becomes
available. The shifting creates a priority ordered queue: as a bit is shifted out, the
corresponding processor is granted access to the port. Processor 15 is assigned the high
order bit; processor 0 the low order bit, defining the priority. When the queue register is
zero, alt requests have been satisfied. The request register is again gated into the queue
reg ister, cleared, and a new cycle begins. A second request for the same port by a
processor must enter via the request register, hence equality of service among the
processors is maintained. This two level request mechanism also obscures the internal
queue’s priority ordering to the point that it is- of virtually no importance outside of the
switch, preserving the symmetrical design of the crosspoint. The switch’s maximum
concurrency (16 independent paths) is achieved if all processors request different ports.

The cost of address translation, switch overhead (no contention), and roundtrip cable
overhead is about one microsecond. Although this is high by today’s standards, more than
equal to the acce~a time of the memory, it has not proven prohibitive.

2.1.3 The Int.rproc.ssor Bus
The interprocessor bus provides a common clock as well as interprocessor control. These

two logically and functionally separate features travel separate data paths although they
share a common control (Kinter-bus). Each processor has an inter-bus interface (Kibi) that
defines the processor’s bus address and makes available the bus functions to the software.

The first function is to continuously broadcast the 60 bit, 250KHz )wiclock. This is done by
multiplexing the clock value onto a 16 bit wide data path in four time periods, low order bits
first. Any Kibi requesting a clock read waits for the initial time period and then buffers the
four transmissions in four local holding registers available to the software. Clock values are
often used for unique names (4],(6] so the otherwise unused high order four bits of the
fourth local register are set to the processor number (bus address) to insure uniqueness
when any number of Kibi’s read the bus simultaneously.

A count-down register is also maintained In each Kibi for interval timing. It may be
initailized to a non-zero value by the program; 1 is subtracted every 16 microseconds (timing

* 

supplied by Mclock) and the processor is interrupted when the register roaches zero. 
- 
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The second bus function is the interprocessor interrupt and control mechanism. Each
processor may interrupt, halt, ~ontinue, or start any other processor , including itself. The
control operations are invoked by set ting the bit(s) corresponding to the processor(s) to be
controlled in a 16 bit register provided by the Kibi for t he desired operation. A second 16
bit wide data path is eight-way time multiplexed. Each control operation is assigned a time
per iod. As the appropriate period arrives, each Kibi OR’s its control operation reg ister onto
the bus and clears the register. Synchronization of bus access , as well as opera tion
specificat ion, is accomplished by the multiplexed time periods. The Kibi also inspects the bus
to see if the specified operation is being invoked on its processor; if so, the requested action
is pe~fcrmed. Although eight time periods are available, only six are used: three priority
levels of interprocessor interrupt, halt, continue, and start; the remaining two are ignored.

2.2 Fault Tolerant Mechanisms in C.mmp

Having some knowledge of the workings of C.mmp, its fault tolerant mechanisms can now be
examined. The emphasis will be on the reliability of the fault tolerant mechanisms, but other
areas such as the memory modules, hardware features to enhance software reliability, and
software failure recovery models have all had great impact on the total system reliability. An
exhaustive treatment , especially in the area of failure types, is riot intended. (see also (7))

2.2.1 Hardware Mechanisms for Fault Tolerance
The necessity of constructing C.mmp from available minicomputers greatly restricted the

possible fault tolerant mechanisms that could be incorporated. For examp le, neither of the
two POP-il models used, nor the UNIBUS, have error checking abilities; one must assume that
t heir results are correct. Experience has shown that this is not always the case... Therefore
elaborate error checking and correcting of the shared memory and its access path were not
justified; only simple parity checks are done. Even so, there is room for some cleverness:
since there is a separate parity bit for both bytes of the word, one byte is given odd parity,
the other, even. This detects words of all l’s or all 0’s, both of which are common results of
transient timing failures.

The interprocessor bus has no error checking whatever. All checking and failure recovery
are done by software , which has been highly successful in this case.

The most elaborate checking is done to ensure software integrity. The stack pointer (SP)
is required to be within the stack page and have an even (i.e. word address) value. With
hardware protection enabled, it is impossible to load the SP with any other values. The SP is
further restricted to lie between a fixed overflow limit and a variable underf low limit. This is
necessary to protect operating system information that must be left on the stack during user
execution. Due to the difficulty of modifying the processors, the stack underf low register
(SUR) and the comparison circuitry were physically placed on one of the relocation unit
boards. This remote placement compounded the timing difficulties of adding stack limit
checking to the processors. Having to protect the PS by disallowing user execution of RTI
and RTT increased the perturbation of stac k operation timing. Unfortunately both of these
modifications were necessary to insure safe operation of a multiprocessing, multi-user
operating system.

2.2.2 Reliability Experience
In spite of the above mentioned difficulties, the machine has been reasonably reliable , 

T 1 1  - __:L _ _ - i__~ 
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considering its highly experimental and unique nature. Recent statistics indicate that the total
system MTTC (Mean Time To Crash), counting all f orms of errors that produce a crash, is, wit h
one exception, fluc tuating between 6 and 15 hours, averaged on a monthly basis. This is
more than enough uptime to be a useful computing engine, especial ly since the average
downtime after a crash is only about five minutes and the machine automatically reloads itself
(operator intervention is virtually never required).

The remainder of this section is a retrospective view of the principal failure types
encountered on the project. Many failures that were once common are now rare or
non-existent, others are still apparent and some reappear from time to time. The failure rate
has been significantly improved over the last year through a program of intensive
maintainence. This program has been in progress since completion of the basic 16 processor
machine.

Memory parity failures have, with rare excep tion, been the most common falure mode.
Most are transient , but hard errors happen with regularity. Often the memory failure rate
has largely detbrmined the MTTC. A methodology for recovering from transient memory
failures in the shared memory of the operating system is now being developed. ,~ marked

- 

— improvement in reliability is expected from this one recovery effort. (Most memory parity
failures happen in the operating system kernel. The kernel executes shared code with a high
degree of parallelism, resulting in memory port contention. This is thought to be the cause of
the failures appearing in the kernel. Memory areas in user-allocated pages present a lesser
problem. The rec overy methods for both areas are presented in the next section.)

Transient failures, while it is always difficult to isolate their source, have been an
- especially large problem on C.mmp since there are few, if any, trace points in most data

paths. Not including powerful debugging aids in the logical design has continuously hampered
development. There was little that could be done for the processors , but aids could have
been incorporated in all the CMU-built logic. Realizing this weakness, one tracking register
(f or the program counter) has been added to the relocation units and another (for operand
addresses) is being developed. A similar weakness became evident in f he software: often
information about a failure was lost by the operating system, making recording of the
conditions for transients unreliable. The latest rewrite of the crash logging procedures has
alleviated this to a great extent.

A transient failure that has eluded solution is the problem of false NXM’s .  The processor
reports a non-existent memory (NXM) exception, but upon analysis, the memory is responding,
and the instruction, registers and index word(s) are well-formed. No exception should have
resulted. Intermittent timing problems are suspected, but there is insufficient information
available to isolate what may be failing.

Another long-standing transient is stack operation problems. mis usually appears as
misexecution of subroutine call/return instructions or interrupt entry/exit mistakes. The most
common form of the error is one too many (few) words pushed (popped) from the stack. This
failure is thought to be a side effect of the SP checking modifications arid disallowing RTI and
RTT, but the cause has never been isolated. The transient is relatively rare and no method of
recovering from It has been developed.

A pleasant surprise has been the reliability of the crosspoint switch. Although it is the
most complex component of the multiprocessor hardware, it is now among the most reliable.
No doubt the relatively simple design, conservative implementation, and caref ul construct on
have paid off. However, an early problem required considerable effort io fix. Certain
conditions, characterized by a memory access not completed by the UNIBUS master , could
cause the switch to deadlock due to the lack of a time-out circuit in the memory port control

_ _



9

logic. Any other processor attempting to access the deadlocked memory port will block until
manually cleared. This situation was often caused by poorly designed I/O controllers that
recovered fr om errors by simply abor ting the current access with no regard for proper
termina tion of UNIBUS or switch protocols.

While the known cases that deadlocked memory ports were isolated and individually
remedied, the most important result was an appreciation of the design principle of mutual
suspicion (8]. The switch should never trust that an operation started will necessarily be
completed; it must be prepared to time-out, clear itself , and report a fai lure condition to the
requesting processor. -

The interprocessor bus is as unreliable as the switch is trustworthy. Its reliability is so
poor that if a cheap and highly effective method of software recovery (discussed in the next
section) hadn’t been found, the bus wou d be nearly unusable. The mode of failure is
transient loss of interprocessor interrupts and changing interrupt levels - usually f rom level
7 to level 6. No cause has been isolated. -

Two remaining tong—term reliability artifacts of the architecture are:

1. Overrun errors on I/O device DMA transfers caused by memory port contention.
This is a predictable result of not having the planned cache memories and is
effectively recovered from in software.

2. Having I/O devices associated with specific processors causes undesirable
dependency ~n that processor. A partial solution has been developed in
software to recover from transient failures, but frequent or hard failures force a
shutdown for repair or reconf iguration. Fortunately, shutdown is very rare.

2.2.3 Software Recovery Methods Within the Hydra Kernel

As the above description of the failures encountered indkates, fault tolerance is the result
of a highly cooperative effort between hardware and software. Some failures, such as losing
interprocessor interrupts, produce no damage and require so little effort in software
recovery that little motivation exists to correct the hardware. Others (deadlocked memory
ports) are impossible to recover from with software and much manpower has been devoted
to eliminating the sources of failure. The software recovery methods, developed by design
and evolution, may be similarly grouped: methods for recovery from frequent failures that
have little probability of non-local damage, and methods for treating relatively rare, but
serious, failures that may imply system-wide damage.

Examples of the first class of failures are typically transient, though frequent, and do not
involve shared data structures. The recovery methods were developed to suit each case;
three such cases wilt be examined in detail: interprocessor interrupt failu es, DMA overruns,
and memory parity failures in user-allocated pages.

Interprocessor interrupt requests are recorded in a software mask. When an interrupt is
to be sent, the bit(s) corresponding to the processor(s) to be interrupted are set in the mask
for the interrupt type. The mask rather than jus i the request bit(s) is then copied into the
interrupt request register.. Upon receipt of an interrupt each processor checks the mask for
its bit. If the bit is set, it is then cleared and the interrupt processed; if the bit is not set ,
the interrupt is considered redundant and ignored. A lost interrupt is then repeated
automatically by the next request since the bit has not been cleared from the mask. The

-

~
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frequency of interrupt requests assures that a lost interrupt will be repeated quickly, like ly
by a different processor. Priority-shifted interrupts become redundant interrupts at the
arrival level and are ignored. The next request for an interrupt at the intended level will
automat cally repeat the original request. The method is cheap, requiring only four
instructions: a bit-set on transmission and a bit-test , branc h, bit—clear sequence on receipt.

DMA overruns present a problem when the system is heavily loaded. The device handlers
attempt five retries as part of the standard device failure recovery before invoking overrun
recovery. Recovering from repeated overruns requires gaining exclusive access to the
required memory port. Scheduling interrupts are sent to all processors except the requestor
with instructions to execute a timed loop in local memory (Miocal). Execution of this loop
elimina tes all shared memory accesses giving the device the access It needs. The timing of
the loop allows the largest DMA transfe r to complete. Upon completion of the loop , all
processors resume normal execution. Since the system is required to pause for the transfer,
the method is not ‘-heap, but the condition is sufficiently infrequent to make the cost
acceptable. Completion of the cache memories will alleviate the overrun condition, but there
may still exist rare circumstances that may require that this recovery scheme be retained.

Memory parity failures in user-allocated pages are reported to the user process via its
error trap routine, as are NXM and illegal instruction exceptions. As the tracking registers
are added to the relocation units, detailed information about the failing location and location
of the instruction being executed will be passed to the routine. These registers will also
allow the paging system to restore a logical page to another physical page frame if a valid
copy exists on secondary memory. Reporting errors to the user process is an example of a
design decision: we always attempt to reflect exceptions back to a level where there is

- sufficient information for proper action (9).

Since Hydra is only the kernel of the operating system [4), important system elements such
- as job scheduling and file systems are implemented. as user-level programs. Their response
• to error traps such as above is highly variable and beyond the scope of this article, but many
— have a common technique, using multiple processes. These processes may be multiple

incarnations of the subsystem’s server pr ocesses, or they may be free-running daemonu
processes created specif ically to play a watchdog role in insuring the correct and reliable
operation of the subsystem. The multiple incarnations approach accepts the loss of a server
and the processes dependent upon it as a method of limiting damage. It also tends to
improve response. The daemon approach is specifically creating redundancy for reliability.

For the second class of errors, those that imply critical, system-wide damage, a formal
mechanism is invoked. This mechanism, the suspect/monitor model, causes the whole system
to pause so that a known state is reached before a sequence of error logging and analysis is
performed. This procedure allows a wide range of options, from continuing execution,
possibly with configuration changes, to reloading (possibly reconfigured). Developed in
response to the low reliability of the developing hardware and software, suspect/monitor was
retrofitted to the existing software. Since most data structures lack the redundancy and
associated verification routines to guarantee repair of damage, all paths through
suspect/monitor currently lead to system reload.

A description of the suspect/monitor sequence follows. Invocation occurs in two ways.
First, a processor may detect an error condition either by hardware trap or software check.
It then becomes the suspect and a monitoring processor Is randomly chosen from the
remain ing processors. Second , a processor execu ting the ~wat chdog routine detects that
some other processor has apparently not been executing. The watchdog processor becomes
the monitor and declares the apparently non-executing processor to be the suspect. The
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watchdog routine is executed by all processors as part of several frequently used interrupt
service routines and sets a bit (corresponding to the executing processor) in a mask
maintained by the watchdog. Periodically this mask is compared with a mask of processors
known to have completed initialization (upmask) and then cleared. Any processors in the
upmask but not in the watchdog mask. are declared suspects.

Once the monitor is chosen, it and the suspect must achieve synchronization. A shared
state variable ~s used to communicate between suspect and monitor. Each advance the
var ia ble to the next state upon entry. Both examine the state and if it is not in the
synchronized state, they wait for the other to advance it to that state. The monitor times all
wai ts for the suspect to reach a desired state. In this case, if synchronization is not achieved
quickly, the monitor attempts to force the suspect processor to execute the recovery code
with a sequence of interprocessor bus operations. Continued failure to synchronize causes
the monitor to abort the sequence and force a reload. Multiple suspects are processed one
at a time by the same monitor.

The suspect processor’s sequence is: record alt processor state at the time of failure,
including which pages were addressable, copy its local memory, execute a short diagnostic,
and assuming correct execution of the diagnostic, attempt analysis of the failure. Completion
of these actions is communicated to the monitor via the shared state variable. Because of the
sensitive nature of the suspect’s execution, several coding restrictions were employed in its
imp lementation. No stack operations are performed since they are failure prone, no loops are
allowed so the processor state logging code is straight-line and fast, a flag is set upon entry
to the suspect routine to force an immediate halt upon re-entry for any reason. Halting
causes the monitor to force a reload and prevents the previously logged data from being
overwritten.

Once synchronized, the monitor follows the suspect through its sequence. If the suspect
• fails to complete any operation in the allotted time, the monitor forces a reload. After a

suspect completes its sequence, the monitor has the following options:

- continue with no changes

- halt the suspect and continue -

- quiesce the suspect and continue

- reload

- reload, delete suspect from configuration

- reload, quiesce the suspect

huQulescingN a processor allows it to service I/O device interrupts, but not execute any other
functions (notably user programs). By only allowing I/O interrupt processing, the duty cycle
is kept low and, hopefully, so is the probability of a failure. This mode is required to keep
processors with critical I/O devices in the configuration.

The analysis that the suspect may perform is highly failure dependent. Due to the
problems of installing any recovery scheme in an existing large program , the problems of
analysis are only beg inning to be examined. Recovery from memory parity failures during
kernel execution is being considered as the first candidate for analytical recovery. These
parity fa ilures are considered serious enough to invoke suspect/monitor because the abstract

-
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data type system, the heart of Hydra’s protection system, must be as reliable as possible (4],
(6]. Further, a page may hold segments of many abstract data objects so a failure may Imply
future damage if not caught promptly. For parity fa ilures, the analysis must determine three
facts: if the failure is repeatable, it it happened during interrupt service, and if any critical
data structures were locked. If any of these are true, recovery is not possible. There is no
way to report the failure to the process while servicing an interrupt. - If locked, a data
structure may be in an inconsistent state. In these cases , the suspect notifies the monitor to
reload the system. Otherwise, the failure has occured during a kernel call and may be
aborted with a parity failure report. It is then the responsibility of the caller to decide
whether to retry the call. No claim is made that this particular method is optimal; It is
intended to illustrate the rote of analysis in the suspect/monitor. However, it does promise a
high probability of recovering from the majority of parity failures with an acceptably small
risk of undetected damage. 

-

The auto-restart mechanism is responsible for reloading the system. Three basic steps are
involved: adjusting the configuration masks for any deleted or quiesced processors,
constructing a free memory list (deleting pages that have been marked errant), and loading a
fresh copy of the kernel from disk. The new system is entered and initialization begins. This
sequence is normally accomplished without human intervention.

The last mechanism associated with failure recovery is the automatic diagnostic driver
which initiates and monitors the deleted processors’ execution of a diagnostic. - The driver
maintains a history of the failures found by each processor as well as their successful
executions of the diagnostic. The histories may be printed on command and are also
accessible from Hydra. If a processor is able to successfully run the diagnostic for a period

- 
- of time determined by its failure history over the previous few days, the driver automatically

returns it to the system. Automatic return is accomplished by executing the per-processor
initialization and does not require pausing or reloading the system.

2.2.3.1 Conclusion
The success of the error detection and recovery methods in Hydra is considered one of the

project’s more notable accomplishments (73. Fault tolerant methodologies wilt continue to be a
prime research area in the future; the current success is considered just a beginning.

A short antecdote will conclude this section in a light vein and illustrate the effectiveness
of the error coverage and restart mechanisms. late one Friday night, a power failure shut
down all the machines. Several of the larger machines suffered damage. C.mmp was not
spared: a large power supply In the switch was lost causing half of the memory to become
inaccessable. This massive fault overwhelmed the auto-restart system (undoubtab ly one of

- its pages was lost) and the system lay quiet after power was restored until one of the users
grew tired of waiting. He followed the simple tape restart instructions posted on the machine
(C.mmp does not have, or need, an operator ) and the system scanned memory, found what
was left , initialized its &f , and announced that it was ready for use. Th. user went back to
work without an inkling of the machine’s loss. In fact, none of the Hydrants knew until the
following Monday morning when the system engineer came In and said Say! Du you
realize. ..?’

2.3 C.mmp Reliability Data

The data presented her. were culled from the crash reports produced by the Hydra
suspect/monitor crash togging system . Thes. dumps must often be manual ly analysed to
determin, the reason for the crash. Sometimes the reason cannot be found always the
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analysis is error-prone, being a manual procedure. The crash records were never intended
as a precision reliability measure, rather, they are a programmer’s and engineer’s, tool to
isolate troubl e sp ots in the system. With this caveat in mind, the data may be discussed.

2.3.1 Interpreting the Data
A failure causing a crash may be the result of either hardware or software malfunction. Of

the five symptoms listed in Table 1, only parity failures are necessarilly caused by hardware.
All the others may be brought about by either and analysis is required to determine the
actual cause. The cause of most failures can be determined, but a substantial number of
crashes of unknown origin remain.

Examining Table 1, a trend is apparent. Parity failures are the major source (5O~ to 100Z) -

of all hardware-related failures. The other significant sources are NXM and non-response.
Analysis of many crashes has shown both of these to often be memory-related.

Errors due to software follow entirely different patterns. The error frequency is strongly
related to the introduction of new features. Being new and relativ ely untested , new features
are likely to have previously undetected faults. Once the feature is installsd, any errors due
to it are usually found and correc ted very quickly. Therefore, the trend is bursts of errors,
any particular error becoming less frequent as time passes. The four months with high

- software error counts all follow this trend even though new faults kept the counts high for
several months running.

The lack of independence among the symptoms, while present in all complex systems, is
increased by the lack of fault tracing facilities in C.mmp. All reliability measurements tend to
measure large sections of the system. Consequently they are coarse-grained and uncertai n.

- — — - .- - - ,-—_- -•---— - • - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:.
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2.3.2 Eight Months of Data
tlonth July41) Aug. (2) Sep. (33 Oct.(4) Nov.45) Qec.(6) Jan.47) Feb.48)

• Year 1977 1977 1977 1977 1977 1977 1978 1978

Up tlse 516.6 610.5 513.8 701.9 538.8 595.6 600.2 478.5
tITBF 5.9 7.6 2.9 9.4 8.7 16.5 15.4 7.3

32 55 38 
‘ 

27 34 18 15 30
NonUser 87 80 175 75 62 36 39 66

Crash Type

SoftWr 20 7 35 33 34 - 11 7 16
Unknown 32 40 14 4 9 7 8 3
HardUr 35 33 126 38 18 18 24 47

Crash Sysptom

Syserr 24 18 47 46 31 11 9 15
Il llne t 1 0 3 3 8 2 8 8
NoR.sp 13 33 34 3 4 4 18 . 10

i ty 32 24 57 17 18 14 18 21.

MTBF — (Up t I me) / (NonUser crashes)
I lli net . Illega l InstructIon

Table I A Summary of 8 Months of C.mmp Crash Data

Some comments about the data: -

1. Th. software error totals for July, September, Octab.r, and November are, w ith
one .xecption, du. to different causes each month.

- July: local memory overwritten (13 out of 20 (13/20) crashes),

- Sept.: microcode verifier bug (27/35 crashes),

- Oct : critical section count bug (14/33) and drum directory full (15/33)

- Nov.: Hydra message- port create bug (9/34), paging system bug (11/34),
and drum directory full (11/34)

2. The SYSERR (softwar . detected errors ) count is nearly always greater than the
numb r of software-caused crashes. These are examples of the software
detecting hardware failures not caught by th. hardware itself.

H 
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• The high counts for errors of unknown origin in July and August are due to
training a new person in the arcane arts of crash dump analysis. After his trial
by f ire in September, he became much better , but this only underscores the
basic uncertianty in manual analysis.

Figure 3 graphically restates ‘the data from Table 1 to show the contribution of each of
five classes of errors. The glitch at point 5 (November) is due to some of the NXM’s and
non-response errors being due to software. This again illustrates the impossibIlIty of
defining independent error classes on C.mmp.

I
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3. Cm*: A Modular Multi Microprocessor
Cm* was designed to take advantage of increasing complexity of IS! technology The

original goals included modularity~ effective performance/cost ratio and reliability tb ).
Tb. Cm~ architecture allows close cooperation between large numbers of inexpensive
processors. All processors share access to a single virtual memory address space. A
ten processor system has been operational since May 1977 (11] and expansion to a 50
processor system should be completed by the end of I 978.

Some of the features of this architecture include:

Extcnsibil1t~ There are no fundamental limits of the size of the system. Processors,
memories and interconnects can be incrementally added to increase processing
power, memory size and communication bandwidth. The system topology can be
constructed to match individual applications. (12] (13]

Addre.s.s Mapoint. All memory in the system is potentially accessible to all processes.
A sophisticated mapping from processor generated addresses to physical
memory addresses provides the means for memory sharing. An extensible set of
interprocess control mechanisms is constructed within the address mapping
structure. (14]

Ooeratin~ System Primitives. An interprocessor message system is supported by the
Cm* hardware. The writable control store allows experimentation and extension
of firmware primitives. (15] (16)

Cost /Effectiveness. The interconnection structure allows large numbers of
(potentially mass produced) inexpensive digital modules to share resources and
cooperate on large computation tasks. (173 (183

ReliabilIty. Distributed intelligence in the form of processors and communication
interconnects means that t here is no critical system resource whose loss would
cause system failure. Changing of the addre,, mapping functions allow pruning
of faulty components. Parity, remote diagnosis, and instruction retry allow the
detection and correction of transient and permanent faults. (1) (19]

— —~_________________ 
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3.1. The PMS Structure of Cm -

The structure of Cm5 has developed over a number of years into the TMcanonical”
structure in Figure 4a (10] (20] (21] [22). This is a structure with a low concurrency
switch (the network of buses) giving access to shared memory. The structure is built
from Processor-Memory pairs called Computer Modules or Cm’s. The memory local to a
processor is also the shared memory in the system. Inherent in this structure is the
assumption of program locality. The efficient use of the system depends on ensuring
that most of the code and data referenced by a processor will be held local to that
processor. Early measurements with various benchmark applications indicate that local
memory hit ratios of 0.8 to 0.9 (i.e., ratio of time memory reference is to local rather
than remote shared memory) are readily achievable (11].

3.2. Derivation of Cm~ Structure (11]

A se ies of design studies were undertaken to explore this design space. Figure 4
depicts the various PMS structures studied, while Figure 5 lists the estimated cost and
comp lexity of each design (22]. Figure 5 was created during a preliminary design
exercise, hence the numbers are only approximate figures.

Initially, we envisaged one self-contained module which consisted of a processor ,
memory and an intelligent interface (Figure 4a). The result was termed a computer
module (Cm). The mapping controller (K.map, marked K in the figures) performed all the
functions necessary for generating external memory requests and responding to
external requests for its local memory. So that the capacity for interprocessor
communication would not be limited by any single communication path, each K map
connects to three inter-Cm buses. Memory could be shared even though there was no
direct physical connection between the requesting processor and requested memory.
For examp le, consider a request by P1 to M4 in Figure 4a. Kmapl would route the
request to K.map2 which would route it, in turn, to K.map4. From Figure 5 we see that
this design was extremely costly while a simulation/benchmark study indicated that the
bus structure was under-utilized. Subsequently we tried as simple a design as
possible in order to minimize the complexity. Figure 4b depicts the simp le interface

I - 

- (S.m~nimal, marked S in the figure) design. The minimal interface provided parallel word
transfer between two buses. Every pair of Cm’s that required direct physical links
could communicate via intermediate modules provided the delays for the intermediate
passing of requests were acceptable. From Figure 5 we see that the projected
perf ormance was low and that for fully interconnected structures the cost was
comparable to the K.map per Cm scheme (Figure 4a).

Our investigation led us to the conclusion that very little performance loss resulted
from centralizing the address mapping and multiple bus connection functions of
individual modules in a K.map which is shared by a number of computer modules. The
cost savings are quite dramatic. Figure 5 shows a saving of a factor of two in chip
count for comparable structures. The cost savings are better than indicated by Figure
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5, because the final shared K.map design incorporates many features not accounted for
in the chip counts for the other designs, for examp le 30K bytes of bipolar RAM for
microcode and data storage. The programmable, high performance K.map is shared by
severa l Cm’s connec ted to an inter-Cm bus via simple anterfaces (S.local). The basic
function of the S.tocal is to provide a buffer between the processor and the inter-Cm
bus and sufficient control functions to generate or respond to external memory
requests.

Figure 6 shows the details of a Computer Module. The processor is a DEC LSI-1 1,
which is program compatible with the POP-Il family but is implemented with LS!
technology and uses a cheaper and lower perf ormance memory bus. Figure 7 shows a
cluster of Computer Modules sharing a single map bus and mapping processor , or
K.map. Figure 8 shows the third hierarchy in a Cm5 struc ture: Cm clusters connected
via interciuster buses.

The advantages of sharing a mapping processor across a cluster of Cm’s are much
broader than the simple chip count advantage indicated by Figure 5. Because the cost
of the Kmap is distributed across many processors it can be endowed with
considerable flexibility and power at relatively little incremental cost. Because of its
commanding position in the cluster, the K.map can ensure mutual exclusion on access toshared data structures with very little overhead. Further, the K.map can monitor Cm
and intereluster activity during normal operation. From this a constantly updating
picture of process activity and malfunctions are created for use in load balancing and
system recover/reconfiguration. 

-

The K.map, in addition to arbitrating and controlling the map bus, is a horizontally
microcoded I5Ons cycle time processor . The basic configuration has 2KxEO bits of
wr itable control store and 5Kx16 bits of bipolar RAM for holding mapping tables, etc.
A Linc provides the interface to two intercluster buses. The K.map has many features
which tailor it to the task of address mapping.

In addition to address mapping and the routing of requests to other clusters, theKmap provides a powerful protection mechanism and a low overhead interprocess
communication message system.
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Figure 7. A Cm5 Cluster
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VIRTUAL ADDRESS

Figure 10. Conceptual Virtual Address Generation and Rights Checking

3.3. Address Mapping in Cm

Cm5 has a 228 byte segmented virtual address space. Segments are of variable size
up to a maximum of 4K bytes. There is a capability-based protection scheme enforced
by the Kmap. The addressing structure provides considerable support for operating
system primitives such as context switching and Interproc ess message transmission.

3.3.1 The Path from Processor to Memory

The Stocal (see Figure 9) provides the first level of memory mapping. A reference to
local memory is simply relocated , on 4K byte page boundaries , by the relocation table
in the Sloca l. As discussed above, it is assumed that most memory references will be

• made by the processors to their local memory. Relocation of local memory references
can be implemented with no performance overhead because the synchronous
processor has sufficiently wide timing margins at the points where address relocation
is performed. For segments which are not in a processor ’s local memory the relocation
table has a status bit which causes the address to be latched, th. processor forced off
the LSI-1 1 bus, and a Service Request to be signalled to the Kmap. All transactions on
the Map bus are controlled by the Map bus controller , or (bus, which is a component
of the Kmap. The address generated by the processor is transferred bia the Map bus 

-~--- -~~- _ _ _ _ _  _ _ _ _  _ _ _ _ _  
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to the Pmap, the microprogrammed processor within the Kmap. U the reference is for
memory within the cluster then the Pmap generates a physical address and sends it to
the appropriate Slocal. If it is a write operation, data is passed directly from the
source Slocal to the destination Slocal; the data does not have to be routed through
the Kmap. The selected destination Slocal performs the requested memory reference
and the processor in the destination Computer module is not involved. When the
reference is complete the Kbus transfers the data read from the destination Slocal
directly back to the requesting processor via the Map bus and its Slocal.

If the processor references a segment in another cluster then the Pmap will transmit
a request to the desired cluster via the Linc and the Interciuster buses. If the
destination cluster does not share a common Intercluster bus with the source then the
message wilt be automatically routed via intermediate clusters. When the message
reac hes the destination cluster, the memory reference is performed similar to a
request from a processor within the cluster. An acknowledgement, or Return, message
(containing data in case of a read) is always sent back to the source cluster and
subsequently to the requesting processor. -

Several points are worth noting here with respect to the mechanisms for local and
non-local references. Except at the local memory bus level, where conventional circuit
switching is used, all communication is performed by packet switching. That Is, busses
are allocated only for the period required to transfer data. The data is latched at each
in terface, rather than establishing a continuous circuit from the source to the
destination. This approach gives greater bus utilization and avoids deadlock over bus
allocation. All transactions are completely interlocked with positive acknowledgement
being required to signal complótion of an operation (it is possible to allow a processor
executing a nonlocal write to proceed as soon as the data for the write has been
received by the Kmap or the destination Slocal, without waiting for completion of the
operation; however, in this case the Kmap will expect to receive acknowledgement in
place of the processor so that appropriate actions may be taken If none is received).

3.3.2 The Addressing Environment of a Process -

The virtual address space of Cm5 is subdivided in to up to 216 Sesments. Each
segment is defined by a Se&ment Descriptor. The standard typ e of segment is similar
to segments in other computer systems; it is simply a vector of memory locations. The
segment descriptor specifies the physical base address of the segment and the length
of the segment. Segments are variable in size from 2 bytes to 4K bytes. However,
other segment types may be more than simple linear vectors of memory; references to
segments may invoke special operations. Segments may have the properties of stacks,
queues or other data structures. Some segments may not have any memory associated
with them, and a reference to the segment would invoke a control operation. For each
segment type, up to eight distinct operations can be defined. For normal segments the
operations are Read and Write. Conceptually, segments are never addressed directly;
they are always referenced Indirectly v ia a Ca~abilltv. A capability is a two-word item
containing the name of a segment and a Rights field. Each bit in the rights field
indicates whether the corresponding operation is permitted on the segment.

L’ 
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3.3.3 Virtual Address Generation

The processors in Cm5, LSI-1 is, can directly generate only a 16 bit address. This
64K byte address space is divided into 16 pages of 4K bytes each. Each page
provides a window into the system-wide 228 byte virtual address space and can be
independently bound to different segments in the virtual address space. The top page
in the processor’s address space, page 15, is reserved for direct program interaction
with the Kmap. The mechanism is analogous to the I/O page convention in the standard
Pop-li S.

Figure 10 shows the conceptual translation from a 16 bit processor -generated
address to a virtual address. The four high order address bits from the processor
select one of 15 Window registers (which are pseudo-reg isters in page 15 and bind
page frames in processor immediate address space to segments in virtual address
space). The Window register holds an index for a Capability in the executing software
module’s Capability List structure. The 16 bit segment name from the selected

• Capability is concatenated with the 12 low order bits from the processor to form a 28
bit virtual address. Figure 10 also shows the read/write indicator from the processor
being concatenated with the two bits in the address expansion registers to form a
three bit opcode. The corresponding bit in the Capability rights field is selected and
tested. If the operation is not permitted then an error trap is forced.

3.3.4 The Kernel Address Space

• Each processor can execute. in either of two address spaces. One is the ~~~• Address Space which was described above. Tb. second is the Kernel Address Soace.
which is quite similar to a user address space with the addition of some mechanisms
reserved for the operating system. The currently executing address space is selected
by a bit in the Processor Status Word of the LSI-1 1.

3.4. Development and Diagnostic Aids in Cm’ Hardware

Simulators for hardware are expensive both in terms of development effort and
computer time; furthermore they cannot give an exact reflection of the hardware. Thus
this approach leaves the final bugs to be found using the real hardware , and is of no
aid in diagnosing component failures (rather than desi gn errors ). The alternative
approach adopted for Cm5 was to Incorporate special hardware , called Hooks , directly
into the Kmap for use in hardware and microcode development (13]. The int erfacing of
the Hooks to a standard LSI-1 1 allows extensive software support for hardware
development and diagnostics while at the same time providing a convenient
environment for the debugging of microcode on the real hardware.

The Hooks give to an LSI-1 1, referred to as the Hooks Processor, the ability to
intimately examine and change the internal state of the Kmap. They provide the
capability for the Hooks Processor to load the microcode into the writable control
store of the Pmap, read th. values on th. busses of the Pmap, and to independently
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start , stop, and single-cycle the Pmap-Linc and Kbus clocks. An interrupt is generated
• for the Hooks Processor whenever the Pmap clock stops (either due to a

microprogram-invoked halt or a memory parity error on the control or data stores).
Furthermore, several of the internal registers of the Pmap have ‘twin registers’
associated with them which may only be loaded by the Hooks Processor. These
alternate registers may be enabled via the Hooks to override microprogram-controlled
values. The presence of the Hooks added approximately ten percent to the cost of the
Pmap while enormously reducing system development time.

Several registers in the Slocal are concerned with providing diagnosis and recovery
information after a software or hardware error is detected. Almost all errors are
reported to the processor by forcing a NXM (Non eXistent Memory) trap. This includes
errors detected by the Kmap during remote references. The Kmap signals the error by
writing to the “Force NXM bit in an addressable register in the Slocal. The ~~~ ~~~~~~~
Register indicates the nature of the error and whether the erroneous reference was
mapped. The ‘Last Fetch Address register is updated to hold the address of the first
word of an instruction every time the LSI-11 fetches a new instruction. If an error is

• detected, this register is frozen until the Local Error Register is explicitly cleared.
Also frozen in the Local Error Register is a count of the number of memory references
performed in the execution of the instruction. In conjunction, these two registers
provide sufficient information to restore the state of the LSI-1 1 for retry of the
instruction during which the error was detected.

All external memory accesses are performed by message switching. Each message Is
buffered until receipt of a positive acknowledgement. Upon time-out or an error
message, the Kmap attempts to retransmit the message, possibly over a physically
different path. The user is only notified if the destination memory has been isolated or

• has a hard failure.

All system memory Is protected by parity. When a parity error occurs the address is
captured and the Kmap notified so that it might retry the memory access. Tabl• 2 lists
the parity and time-out features.

Data path parity and message switching combined allow single bit error detection as
well as correction. Th. message is passed along with vertical parity. The receiver
checks both horizontal and vertical parity; if there is a single error the intersection of
the two parity bits will uniquely indentify the erroneous bit.

Most errors in the system will apear as memory access errors (e.g. parity, time-out,
or capab4ity violation). Thus the operating system can focus on recovery from a single
class of •rrors rather than treati ng numerous special cases.
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Parity
Subsystem Wh.r. Error Reeorted
Local Memory Error Trap to Requesting Processor

and Interrupt to Local Processor
Map Bus To buffered context in (map
K.map Hooks Processor

- Data RAM
Code RAM

L.inc Memory RAM Local K.map
L.inc Intercluster Bus Local K.map

Timeouts
Subsystem Duration Where Reported
Local Memory 12 usec. Local Processor
S.local (source) 200 msec. Local Processor
S.local (destination) 12 usec. Report Non-existent

memory back
K.map 2-4 msec. Report error message

back to source
Linc 20 usec./word - Local K.map

Table 2, Parity and Timeouts in Cm

3.5. Autodiagnostic Softwar. for Cm (23]

• Autodiagnostic software was developed to exercize idle modules in Cm5. It is
designed to run on any Cm which has a serial line unit to the c~~! ~~~j , a message
switching POP-i 1 (24]. The Autodiagnostics process runs continuously and operates as
follows.

The initial step taken by the Autodiagriostics is to signal the Host that it wishes to
be considered a master. Once in t he master state it appears to the Host as any other
terminal. This fac t enables the Autodiag nostics to log into the system as a user and
request a system status report regarding the serial lines into the host. The report
indicates which modules are operational in the system and whether they are slaves or
masters. Once the configuration is known, the Autodiagnostics requests the Host to
assign to it any Cm, which may be idle. It then proceeds to load these Cms with
diagnostic programs and start them. The Autodiagnostics requests assignations of idle
Cms every seven minutes. If a user should request resources, however, it relInquishes
Cms that have been assigned to it.

There were three constraints on the design of the Autodiagnostics. First, off-the—
shelf DEC diagnostics were to be used. These diagnost ics were used unmodified since
no source code was avai lable. Second, the diagnostics written for the CMU built
hardware were subject to change. Third, initial tests indicated that If enough modules
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were executin g diagnostics which constantly printed diagnostic messages , the Host-
Autodiagnostic connection could be saturated causing loss of characters.

Diagnostics are programs that are designed to detect hard faults, however, some
transient failures can also be detected by them. Diagnostics for exercizin g various
parts of the system are loaded sequentially. The condition for loading the next
diagnostic program into an idle Cm l~ either the successful completion of a specified
number of passes of the diagnostic or the occurrence of a specified number of failures.
In the latter instance attempts are made to obtain as much information as possible
from all the diagnostics about the failure condition.

The Autodiagnostics must be able to automatically handle certain situations. One
such problem is detecting that a module is stuck in an endless loop, If a module has not
responded in a given time, it is reloaded and started. Another problem is that of
timeouts; these are detected if a character that is expected from the Host Is not
received In a given time. A tImeout message I; printed and the task being performed Is
put on the queue for a retry.

There are two types of information that the Autodiag nostics delivers. The first
consists of error messages that are output whenever a module detects an error. These
messages include the identity of the module, the name of the diagnostic being run, the
current time so the error can be time-stamped for future reference, the time since the
last error on the module, and the error information extracted from the diagnostic.

The second type of information consists Of status reports which Includ, the time the
Autodi.gnostics were started, the time of the report, and status information on all the
modules. This information is output in two tables. The first is a general report that
gives the overall length of time the diagnostics were run and the number of errors
detected for each module. The other table breaks this information down further by the
diagnostics. A summary of the total module hours and module errors for the system are
also included.

3.5.1 DIagnostics

A set of four diagnostics are continuously run on the Cms. These tests exercise
(i) the memory, (ii) instruction set, (iii) traps and interrupts , and (lv) the Slocal and a
small part of the Kmap.

The memory test Is divided into 13 subtests , which include a gallop test, marching
ones and zeros, and shifti ng (25]. It tak s approximately 13 minutes to complete one
pass through 56K bytes of dynamic MOS RAM.

The Instruction set (26) and th. traps and Interrupt dIagnostics (27] are designed to
test th. functioning of the LSI-1 1 processor. These are short tests so many panes are
don. before moving on to the next diagnostic.

The Sloca l diagnost ic preforms a number of functions. First it tests the registers and
data paths of the Slocal. Second, it exercise s a part of the Kmap. Final ly it runs a few
tests on portions of memory.

—- - 
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3.6. Data on Transient Errors

In the Cms system, the Autodiagnostics uses diagnostic programs to detect transient
errors. It is known that transient errors are more likely to be detected by certain
sequences of tests than others. Since the diagnostics used were designed to detect
hard failures in the system it is realized that they are incapable of detecting all
possible transient errors.

Data collected by the Autocliagnostics from May 1977 through April 1978 is
presented in Table 3a, Table 3b, and plotted in Figure 11. The concept of module time
is employed here. Module ~~~~ t~ , is the sum of the times of operation of individual
modules in a set of identical modules. The reliability experience that it represents is
assumed to be the same as that which would be gained by observing the renewal
process of a representative module of the set for a length of time tm. The Mean Time
Between Errors (MTBE) is calculated by dividing the module hours by the number of
errors. For the pieces of equipment under consideration, this corresponds to the
errors that occured during the time the module was exercised. The CPU was
diagnosed approximately 102 of the time by the combination of the instruction and
trap diagnostics. The rest of the time being equally divided between the memory and
the Slocai. The overall MTBE is calculated using the total time and errors for that
period (Table 3 and Figure 11). The final method uses a two month sliding “Window
to smooth out the measurements. Due to the level of resolution in the detection of
transient errors by the diagnostics these MTBE’s are for the diagnostics as opposed to
the hardware.

As may be noted from Figure 11 there has been a general improvement in the
operation of Cm’ by a factor of about 10:1 over a period of a year. The most
noticeable change in the MTBE occurred in January 1978. In seeking to explain this
sudden change we observed that it was during that month that slight modifications
were introduced into the operational routine observed by the ~utodiagnostics.
Diagnostic programs are loaded into an idle Cm from secondary storage, in this case a
DEC-Tape mounted on the Host. In the past the typical elapsed time between loadings
of tw o diagnostics in the sequence was set at approximately 7 minutes. This caused
undue mechanical wear on the DEC-Tape drive and the interval was reset to
approximately 30 minutes in order to avoid this. It is commonly noticed In general
computing practice that the frequency of crashes is closely correlated to the load on
the computing system. In particular , heavy I/O traff ic seems to be responsible for
transient errors. If this is in fact true far Cm’ then, conceivably, the less frequent
loading of diagnostics into idle Cms may be responsible for the less frequent
occurrence of transient errors noted by the Autodiagnostics after January 1978. In an
experiment now under way the interval between diagnostic loadings has been reverted
to 7 minutes. If the hypothesis is valid the MTBE should drop back to its earlier value
of about 100 hours from its present one of about 500 hours.
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• Occurrences of Transient Error Events
Month Mod-Hrs Memory Instr. Trap Slocal Total

May77 841.8 13 4 4 3 24
June 888.1 6 2 2 10 20
July 931.4 2 0 1 7 10
Aug. 652.4 0 0 0 0 0
Sep. 674.0 5 0 1 6 12
Oct. 2091.2 6 0 0 13 19
Nov. 549.1 3 0 0 5 8
Dec. 1134.6 5 1 2 4 12
Jan.78 2395.8 2 0 0 1 3
Feb. 1926.6 1 2 0 0 3 -

March 662.9 0 0 0 0 0
April 2328.2 1 2 0 4 7

Total 1.72Yrs - 44 11 10 53 118
(Total 15,072.1 Module Hours of Operation on Cms)

Table 3a Transient Error on Cm’ - Occurrences

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~
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Mean Time Between Error (MTBE) On Cms
Month Mod-Hrs uComp CPU Memory Slocal Cm Window

May77 841.8 22.1 17.5 27.0 116.9 35.1 -

June 888.1 48.4 37.0 71.7 55.4 44.4 39.3
Jul y 931.4 170.8 155.2 194.0 55.4 93.1 60.7
Aug. 652.4 358.8 65.2 293.6 293.6 652.4 158.4
Sep. 670.0 61.8 77.4 60.7 75.8 67.4 132.6
Oct. 2091.2 191.7 209.1 156.8 85.5 123.0 102.4
Nov. 549.1 119.9 82.2 92.5 37.9 68.6 105.6
Dec. 1134.6 92.3 93.8 91.4 99.9 94.6 84.2
Jan.78 2395.8 1146.4 1200.3 546.3 342.6 798.6 235.4
Feb. 1926.6 556.8 571.2 527.9 256.2 642.2 720.4
March 662.9 597.0 405.0 192.2 65.6 662.9 863.2
April 2328.2 655.0 660.0 645.0 90.8 332.6 427.3

(Overall MTBE—127.7 Mod-14r, o15,072.1 total Module-Hours)
(Overall MTBE.”562.6 Mod-Hr, ~ 7,313.5 since January 1978)

Module Hour — one hour of testing on one Computer Module
uComputer — CPU + Memory + Peripherals
CPU — Instruction test + Interrupt & Trap test
Memory — standard DEC DZKMA MOS memory diagnostic program
Slocal CMU-built local Switch for address mapping
Cm — uComputer + Slocal
Window — average of previous and current month

Table 3b Transient Error on Cm’ - Mean Time Between Error (MTBE)
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10000 -

X Bimonthly average, (sliding window)
- — - CPU — Instruction test + Interrupt & Trap tests— — Memory, standard DEC test for MOS memory

Slocal (CMU-built local Switch)
o
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Diagnostic test used
Mode Memory Instr. Trap Slocal Total 7.Total

Burst 5 1 1 13 20 31.2

Simult 5 1 0 5 11 17.2

Isolat. 13 3 2 15 33 51.6

Total 23 5 3 34 64 100.0

%Total 35.9 7.8 4.7 51.6 -

(Data collected from September, 1977 through April, 1978)
(MTBE — 183.7 Mod-Hrs, ~1 1,758.4 total Mod-Hrs)

Table 4 Distribution of Transient Error on Cm4 by mode of occurence

Three basic patterns were noticed in the transient errors: multiple errors occuring
together in the same Cm (Burst); simultaneous errors occuring on different Cms
(Simultaneous); and finally isolated errors (Isolated). Table 4 contains the data broken
down into these classes. These data were collected between September 1977 to April
1978 on the Cm4 system.

The most common cause of the “Burst type of error is the diagnostic program being
destroyed. This can be seen in either spurious halts or continuous reporting of an
error. Bursts may also be caused by transient errors of a duration which is long
compared to the time resolution of the diagnostic. The destruction of the diagnostic
program due to errors in transmission during the loading process is not very likely
since all such transfers are checksummed.

The simultaneous case is where two different Cm’s are affecte d by an error within
the same period of time. The final case is that of isolated errors which basic
redundancy techniques would be able to tolerate.

From the data in Table 3b, representing about 1.7 module-years, one would expect a
transient error about every 130 hours (Or over 500 hours since January 1978) in a
typical computer Module with 48K bytes of dynamic MOS memory. This number should
be considered to be an upper bound, since not all transients will be caught by
repeated execution of a diagnostic program. It is also interesting to contrast the
transient failure rate to the hard failure rate of the previous section. A comparison
suggests a ratio of about 100:1 overall for transients over hard failures (30:1 since

• January).
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For each occurence of a transient error , as indicated in Table 4, there is a 31Z
probability that the internal state of a processor will be destroyed and reinitialization
is required (Burst). When a transient occurs, a simple dual processor would fail 17Z of
the time. This is indicated by the fact that 17Z of all transient errors were detected in
more than one processor simultaneously. Redundancy techniques would tolerate 527. of
all transient errors, since these isolated errors did not destroy the test program.

I
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4. C.vmp: A Voted Mu’tiprocessor

4.1. Design Goals

A design study was initiated in the summer of 1975 to examine fault tolerant
architectures in industrial environments. Major attributes of this environment were
elec tromagnetic noise, less knowledgeable users, and nonstop operation. From these
at tributes the following design goals were established:

1) Permanent and transient fault survival

The system should have the capability to continue correct operation in the
presence of a permanent hardware failure--i.e. a component or subsystem failure——
and in the presence of transient errors--i.. . a component or subsystem is lost for a
period of time due to the superposition of noise on the correct signal.

2) Software transparency to the user

The user should not know that he is programming a fault tolerant computer, with
all fault tolerance being achieved in the hardware. This would allow the user to rely
on established software libraries, increasing the reliability of th, software itself.

3) Capable of real time Operation

A fault should be detected and corrected within a short period from the time the
fault actually occurs.

4) Modular desiEn to reduce down time

The hardware should be able to operate without certain sections activated.
Hence, maintenance could be performed without having to halt the machine. Modularity
includes the design of separate power distribution networks to be able to deactivate
selected sections of the machine. The use of modules in the design also has the virtue
of allowing the user to upgrade from a non-redundant, to a fully fault tolerant
computer, in steps.

5) Off-the-shelf components

To decrease the amount of custom designed hardware, to be able to rely on an
established software library, and to allow systematic upgrading to a fault tolerant
system, the computer should primarily employ oft-the-shelf components. Further, as
illustrated in a companion paper (1], advantage can be taken of the greater reliability
of high production volume components.
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6) Dynamic performance/rel iability tradeoffs

The fault tolerant computer should have the capability, under operator or
program control, to dynamically trade performance for reliability.

4.2. System Architecture

Actual System Configuration

- To be consistent with the design goals of modularity and software transparency,
1 bus level voting was selected as the major fault tolerance mechanism. (See (28] for a

more detailed discussion leading up to the selection of voting.) That is, voting occurs
every time the processors access the bus to either send or retrieve information.
There are three processor-memory pairs, each pair connected via a bus as depicted in
Figure 12. A more precise definition of C.vmp (for Computer, Voted MultiProcessor)
would therefore •be: a multiprocessor system capable of fault tolerant operation.
C.vmp is in fact composed of three separate machines capable of operating in

H independent mode executing three separate programs. Under the control of an
external event or under the control of one of the processors, C.vmp can synchronize
its redundant hardware, and star t executing the critical section of code.
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Wi th the voter ct lve, the three buses are voted upon and the result of th. vote
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is sent out. Any disagreements among the processors will, therefore, not propagate to
the memories and vice versa. Since voting is a simple act of comparison, the voter is
memoryless. Disagreements are caught and corrected before they have a chance to -•
propagate. The nonredundant portion of the voter does not represent a system
reliability ‘bottleneck , as will be shown later. However the voter may be totally
triplicated if desired. With voter triplication even the voter can have either a transient
or a hard failure and the computer will remain operational. In addition, provided that
the processor is the only device capable of becoming bus master ’, only one
bidirectional voter is needed regardless of how much memory or how many I/O
modules are on the bus. Voting is done in parallel on a bit by bit basis. A computer
can have a failure on a certain bit in one bus, and, provided that the other two buses
have the correct information for that bit, operation will continue. There are cases,
therefore, where failures in all three buses can occur simultaneously and the computer
would st ill be functioning correctly.

Bus level voting2 works only if information passes through the voter. Usually
the processor registers reside on the processor board and so do not get voted upon.
The PDP1 1, for example has six general purpose registers, one stack pointer, and one

• program counter. However, after tracing over 5.3 million instructions over 41
programs writ ten by five different programmers and using five different compilers, the
following average program behavior was discovered (31]:

On the average a register gets loaded or stored to memory every 24
instructions. -

A subroutine call is executed, on the average, every 40 instructions, thus
saving the program counter on the stack.

The only register that normally is not saved or written into is the stack
pointer. To maintain fault tolerance the system must periodically save and
reload the pointer.

Not. that this r..trict ion pro h~ it. tI* us. of Oir.ct Memory Acc.ss (DMA) device. If such devices wore
onl y allowad to communicat. with 1k. proc essor, and th. m.mory (not oth.r I/O d.vic.s), a .. cond votsq
b.tw ..n tl~. ,n.mory end 1k. 1/0 dovi ces on ths bus wounl be sufficmot to retain f suit to isrence.

2 This bu. l. v.l votin1 scheme can be cont raslod wiTh 1k. Drap.r Laboratory Symmetric Fault Tolerant
Multiproc.s.ov (29~ In SFTMP, memory and proc.sso r triad. ire mt.,c.an.ctsd by • triplicated •.~ial bus.

• Pr.~ra.i, task. .rc road from a m.mory triad silo b est memory in a proesiso, tri.d whsr. smeculion uk.. pisco.
Aft. r scecution th. r..ults are transf.rr.d back to m.mory triad. 1k. ma,or .rchit.cturiJ d.ff.renc.s frosi

• C.vinp aro: S.rial bus ruth., than parsilsi bus, thus d.5rsdin5 performence VeIl1 only fake. pIece on t ransfers
from and to m.mory triadt Error, in the pr.cs,aor. may accumulel. to 1k. point that th.w results an not
comparable. Pro~nsmm.r hi. to partition problems into tasks end prev(de 1.. m onste, to processor triadr
SFTMP hi. up to I ~ proc.ssors that can be dynaiiuically .esi~n.d t. four triad. (two an. sparse). When a
processor fails it can be replaced in its tr iad by snotksr process or . How.,.,, processors cannel •p.rat•
ind.pind.nt of tri.d s to improve th roughput. Anoth er v.tm~ ds si n in diacr~ id by (30} Tb. deacrbsd sys t.m
is baa. on an Intel SOlO microprocessor and has an output address end date bus end an input (from sismory to
processor) dcl. bus. The m.~or diff.r.nc. from C vii.p is Ikut only e unidir.ctlon.l vole , Is employed, on the
input data bus. Thus only information flow from ,nsmor y to process or is voted upoi~ There is no conoid.ratlon
.f I/O, sport from an as..rtion that s.ck I/O device en 1k. bus uquir.. a ..p. rat. vol. ,.
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Thus normal program behavior can be counted on to keep the registers
circulating through the voter.

To present a detailed description of the voter a brief digression to explain the
D~C LSI-1 1 Qbus is necessary (32]~ The 36-signal bus uses a hybrid of synchronous
and asynchronous protocols.

Every bus cycle begins synchronously with the processor placing an address on
the time multiplexed Data/Address Lines (CAL).

SYNC goes high and all the devices on the bus latch the address from the
CAL lines. The address is then removed by the processor. This terminates
the synchronous portion of the bus cycle.

In the event of an input cycle (DAT! shown in Figure 13) the processor
activates DIN on the bus.

BOAL _ _ _  
Ao!!1X

_ _ _ _ _ _ _  
DATA ~~XI

SYNC I
I~~~~~~

DIN

REPLY ______

Figure 13. DAT! cycle for LS!-1 1 computer

The addressed slave responds by placing a data word on the CAL tines and
asserting REPLY.

The processor latches the dat a word and terminates DIN and SYNC.

In the event of an output cycle (DATO), after removing the address the
processor places a data word on the bus and activates DOUT.

When the slave device has read the word it activates REPLY.

The processor responds by terminating DOUT and SYNC.

Voter modes of operation

The multiplexed paths through the voter are shown in Figure 14. Figure 14a
shows the case for the (unidirectional) control lines. Signals generated by the
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processor are routed from bus receivers to multiplexors which allow either signals
from all three buses, or signals only from bus A, to pass to the voting circuit. The
output of the voting circuit always feeds a bus driver on external bus A, but is
multiplexed with the initially received signals on buses B and C. This arrangement
allows all three processor signals to be voted on and sent to all three external buses;
the signal from only processor A to be “broadcast to all three external buses; and the
independent processor signals to be sent to the separate external buses, albeit with
extra delay on bus A:
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Vojj~z ~~~~~~~~ The transmittwi~ portion of eac h of the three buses is routed
into the voter , and the result if the vote is then routed out to the receiving
portion of all three buses. In addition to the voting elements the voter has a
set of disagreement detectors. These detectors, one for each bus, activate
whenever that bus has lost a vote. By monitoring these disagreement
detectors, one can learn about the kinds of failures the machine is having.

Broadcast !~~~~~~~
• Only the transmi tting portion of bus A is sampled, and its

contents are broadcast to the receiving portions of all three buses. This
mode of operation allows selective triplication and non-triplication of I/O
devices, depending on the particular requirements of the user. The voter has
no idea which devices are triplicated and which are not. The only
requirement is that all non-triplicated devices be placed on bus A. To handle
non-triplicated devices two extra lines are added to bus A. One is a special
copy of REPLY for use by non-triplicated devices ’ instead of the standard
bus A REPLY, and the other is a special copy •of the Interrupt Request line
(IRQ).

Independent mode. Buses B and C are routed around the voting hardware.
Bus A is routed to feed its signals to all three inputs of the voting elements.
In this mode C.vmp is a loosely coupled multiprocessor. Switching between
independenit and voting modes allows the user to perform a
performance/reliability tradeoff.

The unidirectional control signals generated by devices on the external buses
are handled the same way as processor signals, except that the direction (external-
processor) has been changed.

Figure 14b shows the more complex case of the bidirectional data/address lines.
Two sets of bus transceivers replace the sets of receivers and transmitters used
bef ore, and another level of multiplexing has been added. The received signals from
both sets of transceivers are fed into a set of multiplexors that choose which direction
the signals are flowing. After passing through the set of multiplexors and the voter
circ ui t, the voted signal goes through a latch whic h ensures that bus tirnimg
specifications are met. From there the signals pass onto the opposite bus from which
they were initially received. (Note that the drivers on the receiving bus are disabled
to avoid both sinking and sourcing the same signal.)

Peripheral Devices

In most cases, triplicating a device just means plugging standard boards into the
backplane, as is the case with memory. In some cases, however, the solution is not
quite so simple. An example of a device that has to be somewhat modified is the RXO1
floppy disk drive. The three floppys run asynchronously. Therefore there can be as
much as a 360 degree phase difference in the diskettes. Since the information does
not arrive under the read heads of the three floppys simultaneously, the obvious
solution to this problem is to construct a buffer whose size Is large enough to
.ccomodste the size of the sectors being transferred. A disk reed READ operation
would then occur as follows (333.

L - - - - — -
~~

-
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The trac k and sector number to be read are loaded into the three interf aces
and the READ command is issued.

The three floppys load their respective buffers asynchronously.

The processors wait until the three buffers are loaded and then
synchronously empty the buffers into memory.

A write operation would be executed in a similar fashion.

Tb. main synchronization problem is to find out when all three floppys have
completed their task or when one of the floppys is so out of specification that it can
be considered failed. Once this is determined the DONE signals are transmitted to the
three buses simultaneously.

When in independent mode, the three processors must be able to communicate
to each other. For this reason there are three full duplex single word transfer fully
interlocked parallel interfaces in the system (labeled L in Figure 12). These interfaces
provide data transfer between the separate processors (in independent mode) at rates
up to 180K bytes per second (32]. These interfaces are used for software
synchronization of the processors pricr to reestablishment of voting mode, in addition
to straight data transfers.

4.3. Issues of Processor Synchronization

Dynamic Vot inz Control

A major goal in the design of C.vmp was to allow dynamic tradeoff between
reliability and performance. Ideally, when reliability is of less importance, the machine
should be able to split into a loosely coupled multiprocessor capable of much greater
performance. Conversely, when reliability becomes crucial, the three processors ought
to be able to resynchronize themselves and resume voting. Consideration of dynamic
voting mode control led to the following features:

In transitioning from voting to independent mode, a simple change in the
multiplexing control signals causes the next instruction to be fetched and
executed independently by the three processors;

In order to ensure proper synchronization of all processors in transitioning
from independent to voting mode, a delayed transition forces an interrupt ,
presumably after each processor has had ample time to execute a “WAIT0
instruction. (“WA IT’ halts the processor until an interrupt occurs.)

Two bits are provided in the voter control register f or voter mode control. The first , a
- read-only bit, monitors the state, returning “0” if voting, and “1” if not. The other, a

read/write bit, chooses the desired mode. Each processor has a copy of the voter
control register, and a vote is tak n on th. mode control bit. This co ntrol register is 

- _ .: 
- 
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accessed like any I/O device register , as a specific memory location (in this case,
167770).

Dynamic voting mode control has been demonstrated by a test program. When
in voting mode, setting the appropriate bit in the control register causes the three
processors to split apar t and begin executing separately. To resynchronize the
processors , a simple handshaking protocol is used, in which each processor waits for
both of the others to signal permission before clearing the control bit. (A more -

•

sophisticated protocol would provide for a timeout if one of the processors has failed,
wi th efforts to recover from such a situation.) After clearing its copy of the control bit,
each processor releases control of its bus and ceases execution via a “WAIT”
instruction. The ensuing interrupt generated by the voter then serves to
resynchronize the three processors, and the first instruction of the interrupt service
routine is the first instruction executed in voting (fault tolerant) mode.

Bus Control Signal Synchronization -

There are two levels of synchronization used in C.vmp to keep the three
processors in step: bus signal synchronization and processor clock synchronization.
The first type of synchronization deals with the bus control signals. The voter uses
RPLY to synchronize the three buses, as it is asserted by an ex ternal device (memory
and I/O devices) once every bus cycle. Thus, processors can stay in step if they
receive RPLY concurrently. A set of possible voting circuits is shown in Figure 15.
(The boxes labeled “V” are voters, and the boxes labeled ‘1” are delays.) The first
voter is the one used for the data/address lines. The other voters attempt to maintain
synchronization of five critical control lines (SYNC, DIN, DOUT, lAX, and RPLY)3 by
waiting an appropriate period of time for a tagging control signal. (The delay is not
only selected long enough that a lagging device is far enough out of specification to be
suspect, but also short enough not to degrade performance severely. For maintaining
processor synchronization, a value f or “T” of at least one microcycle—-400 nsec——is
desirable, as processors are most likely to slip just one microcycle in the five to ten
microcycles between bus cycles rather than to become several microcyctes out of
synchronization.)

~ SYNC is used t o clock ike ddresa lines, and is lef t s.se,ted f or Ike remainder of the bu, cyCle; DIN indicate.
a read cycle; DOUT indicates a write cyc le ; IAK is used to .cknowI.d~. r,ceipt of en int.rrupt request; and
RPIV is ..s. rl.d to indicate thsl the devics tee responded I. the request indicated by th. the pravioua tour
sitnete. -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  —
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Figure 16. DAT! bus cycle with desynchronized processors

The first circuit considered for synchronizing the five control lines was voter
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15a. This was rejected because it provides no synchronization at all: if a signal fails
hi gh, the voter passes the first of the other two to be asserted without regard to the
second. Thus, if the two remaining processors get at all o”t of step, the voting
process fails.

The second circui t, voter lSb, provides a measure of synchronization by waiting
a time ‘T” for the third signal after two have been asserted. However , performance is
degraded because this delay occurs even when all three processors are working and
synchronized. Also, control signals will continue to be asserted after they should be in
relation to the data on the bus, failing to meet bus specifications. (RPLY is asserted
after DATA is invalid, see Figure 16.)

The third circuit, voter 15c, fixes the problem of meet ing bus specifications by
having a slow—rising, fas t-failing delay after the voter. However, performance is still
degraded by the presence of the delay even when all is well.

The fourth circuit, voter 15d, addressed the performance problem by providing a
second path through the voter for when all three processors are working. However,
the delay used after the voter to provide synchronization still causes the signal to fail

• bus specifications, and also causes some amount of unavoidable performance
deg~ adation. (RPLY is asserted after DATA is invalid, see Figure 16.)

The last circuit , and the one used (voter 15e), combines the features of the
previous two. Thus, a slow-rising, fast-falling delay is used in order to meet bus
specifications; and a secondS path through the voter is provided for optimal
performance when all is well. Note that the fast-falling feature of the delay not only
allows bus specifications to be met, but also removes any performance degradation
due to the voting process when all three signals are in step. This circuit was used for
SYNC, DIN, DOUT, lAX, and RPLY in C.vmp. The value for “T” is about 400-500 nsec for
SYNC, DIN, DOUT, and lAX, and about 75-100 nsec for RPLY. This method allows the
three processors to receive RPL.Y within five nanoseconds of each other, and thus to
stay synchronized.

~

~~~~~ 
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System Clock

Perhaps the most critical timing problem encountered in the design of C.vmp was
the synchronization of the four phase processor clocks, and also the memory refresh4
timing oscillators. This par t of the design was left untriplicated in C.vmp due to its —

very small size, hence high reliability, relative to the rest of the machine. The original
design, shown in Figure 17a, used the oscillators on processor A to drive the clock
circuits on all three processors, and the decoded clock signals of processor A to feed
the voter and to synchronize the phases of the other two processors by forcing phase
one when processor A was in phase one. This original design worked fairly well, as
processors B and C were closely synchronized, but the extra loading placed on the
clocks of process or A caused them to lag several nanoseconds behind, a significant
figure for pulses of less than 100 nsec duration. This resulted in sufficient
unreliability that the mean time between crashes in voting mode was never more than
five minutes. Therefore, a new clock circuit, shown in Figure 17b, was installed in the
voter to drive and synchronize the processor clocks. AU three processors were wired
exac tly the same, needing only three wires changed on each board. Since this change
was made, the mean time between software discernable disagreement has been over

• 250 hours, with one run of more than 900 hours before crashing.

Initial measurements using the disagreement detection circuit attached to all the
bus control lines showed no errors on any of the three buses over periods ranging
between eight to forty hours. (Note that data/address lines were not included.) This
indicates that the processors are well synchronized by the current design.

4.4. Performance Measurements

- - Processor Execution/Memory Fetch Time

An important parameter in the design of fault tolerant computers is the amount
of performance degradation suffered to obtain greater reliability. In a triplicated
archi tecture such as C.vmp, the obvious loss of two-thirds of the available computing
power is unavoidable. This was the reason why C.vmp was made flexible enough to
sw itch between voting (fault tolerant) mode and independent (high performance) mode.
However , this fundamental loss due to triplication is not the only loss: the voter cutting
and buffering all the bus lines introduces delays of 80 to 140 nsec in the signals
between the processors and the memories.

Because the ISI—il is a clocked machine, these delays are not too significant in
and of themselves. However, the latching of RPLY from slave devices on the external
buses in order to preserve processor synchronization turns out to be the more
dominant degradation factor. The voter latches RPLY one clock phase (100 nsec)
before the processors to allow sufficient latch settling time for minimizing the

-~ Note that the 1St-Il us.. dynamic MOS RAM memory, which requires continu.I ref rsah in~. Thi. is normally
eon. by processor microcod. at rs~uler intervals of ebout 157 mlliascondi

L - 
- - 
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probability of a runt pulse (34]. The delays in the control lines due to the voter cause
the external RPLY to return during the phase on which the processors sample RPLY
but ~~~ the voted RPLY has already been latched. Thus, the voted processors must
wai t one extra clock cycle (four phases/400 nsec) to receive their RPLY after asserting
SYNC than would a nonredundant LSI-11. The same sort of delay happens on the
falling edge of RPLY, causing up to two clock cycles to be lost in one complete bus
cycle. These losses could likely be prevented by more careful selection of t iming
components within the voter, and more impor tantly, by choosing different timing on the
memory boards.

Measurements were taken on the various bus cycles to learn what amount of
degradation actually was occurring. These measurements, and all others presented
la ter, were taken on the voted processor (C.vmp) and on either processor B (P38) or C
(PCC) in independent mode. (Note that in independent mode, bus A passes through the
entire voter via the broadcast multiplexing, while both buses B and C pass only
through a bus receiver/driver pair. Comparison tests with other 151—il’s showed tha t
processors B and C operated fully as fast in independent mode as a standard LSI-1 1.)

• The degradation within bus cycles introduced by the voter ranges from 27~ to 67Z,
with 40Z degradation for the most common (read) cycles.

As the LSI-1 I does not saturate its bus, the above figures are worse than the
overall processor degradation. A second step in measuring degradation was to check
the different phases of instruc tion execution. Tests were made using the MOV, TST,
and BR instructions 5 as typ ical double • operand, single operand, and zero operand
instructions. From this data, a predic tion can be made of performance degradation by
using instruction frequency data provided by (353. Table 5 summarizes the
calculations, showing that the voting process should degrade instruction execution
performance by roughly 14Z.

phase C.vmp C.vmo/PCC

• fetch 7.00 6.00 1.167
source 2.69 2.09 1.287
destination 3.68 3.22 1.143
execution 3.53 3.53 1.000

total 16.90 14.84 1.139

time (usec) 6.760 5.936

TABLE 5. Normalized Instruction Phases

The third stage for measuring performance was to run a set of test programs
with representative mixes of instructions and addressing modes to test the validity of

MOV loads the destination from the source, 1ST •,iaminea th. destination for various condition., sod BR
causes an uncondi tional tran sfer of control.

- - - - -  —-  - 
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t he above model. Table 6 compares the triplicated processor with a single LSI-11,
both without faults and with certain induced faults. These faults were in the two most
critical bus control signals, SYNC and RPLY, and represent worst case failures. Each
signal was forced to be either always asserted (hi) or never asserted (lo) on one of £

the three buses.

program6 DVKAA DZKMA OSORT

(unit) msec mm sec
ISI-li 18.51 7.03 11.9
C.vmp (normal) 21.4 8:23 14.0
C.vmp (RPLY hi) 21.4 8:23 14.0
C.vmp (RPLY 10) 21.4 8:23 14.0
C.vmp (SYNC hi) 21.4 8:23 14.1
C.vmp (SYNC 10) 23.6 9:20 15.6

C.vmp/LSI 1.157 1.189 1.176
C.vrnp’/LSI 1.324 1.276 1.311 (SYNC 10)

TABLE 6. Sample Program Execution Times

As illustrated by Table 6, a degradation in performance of about 16-19~ can be
expected, as compared to a standard LSI-i 1. This figure is somewhat larger than
predicted by the above model, which can be attributed to the greater degree of
degradation in such functIons as memory refresh, which Is done by the processor
microcode (18.5Z), and also to normal deviations of programs from the “standard ”
instruction mix.

The measurements involving the four failure modes show that only certain
failures will cause further degradation: those which cause the processor’s

• synchronizing signals (e.g., SYNC, DIN, and DOtJT) never to be asserted. Even in these
ex treme cases, only another 12-14Z slowdown is experienced. Most faults, however,
would not degrade the speed at all, but just the future reliability. For instance, the
loss of power to a bus would force all signals to ground, which is the active assertion
level (hi) on the 1St-i 1 bus. Only 10 failures in the five bus control signals which
require synchronization will cause any degradation. (Recall that there are a total of 36
bus lines.)

Disk Access Time

The last performance measurements involved the floppy disks used for mass
storage on C.vmp. Access time to a particular position on a rotating memory Is

DVKAA is the basic instruction dis~noatic, te.tin ~ ill instructions •nd .ddr.. .in~ modes. OZKMA is Iii,
memory die~noeUc, and weuld tend to make more memory reference . than .vere5e. OSORT is en enample of
compiler-produced cod~ bsln~ en inta~ar sorUn~ pro~ran, coded in BLISS-IL.

S •
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assumed to be directly proportional to the initial position of the disk. Since the
hardware makes no at tempt to synchronize disk rotation, access to the triplicated disks
will take the maximum of the three times. In general, for n disks, the access time is
given by: -

Tn - MAX (t 1, t2, ... , t~
) -

Assuming that each access time t is uniformly distributed over the normalized
range (0,13. the expected value for access time is:

Tn n/ ( n +1)

This means that for a single disk (n— i), we can expec t to wait .5 rotations; for
the triplicated disk (n—3), .75 rotations. This gives a 50% degradation in access time
for the trip lica ted disks over the non-triplicated disk for random accesses. This figure
was verified to an extent by experimental data. In reading 50 sectors in a random
pat tern from the same physical track, the tri plica ted machine experienced about 51Z
degradation, a very close confirmation. However , if the trac k was also chosen at
random for each of the 50 sectors, the triplicated machine was only 18% slower than
the single disk system. The model failed to consider that, although sector access time
is affected by the diskettes being out of phase, track access time is the same
regardless of triplication.

Another shortcoming of the disk performance model based only on consideration
of the diskettes being out of phase with each other is the impact of the resulting

• slowdown on nonrandom disk access patterns. The impact of this can be much more
severe (or much less severe) than predicted, depending on the pattern of nonrandom
disk accesses. For instance, the PT-i 1 floppy disk software uses a 2:1 interleaving of
sect ors in order to minimize access time for sequential file storage7. The extra delay
due to voting causes this interleaving to be insufficient for achieving much speedup in

• accesses , as illustrated by Figure 1& Waiting for all three drives to read a sector can
cause the first two drives to overrun the next sector in sequence before the third
drive has read the initial sect or. This causes part of an additional revolution to be
required on the next sector read. For the example shown, a nontriplicated disk drive
requires only 0.375 revolutions to read sectors 1 and 3, whi le the t riplica ted drive
needs 1.75 revolutions. The specific values depend on the number of sectors per
revolution, the access pattern (and interleaving scheme), and the degree to which the
three disks of the triplicated drive are out of phase.

2:1 inte r leaving means thu only every other soctor on a tra ck is read when r..din1 sec tors sequentially. Aa
some amount of t ime is necess ary to read the data into memory sfter it has been fet ched from the diskette , this

I - •Ilowt all 26 s.cto,s o f ,  j ,scli Is be reed in just two revolution, tether than ii iwsnty-sim revol utions.

- -- - - -
- ~~~~~~~~~~

i -  
- .~~~~~ii.. _ _ _ _ _ _



r - - _ _ _ _ _

58

Initial Position After First Read After Second Read

Single Disk Drive
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Figure 18. Effects of disk triplication on sequen tial access
• (2:1 Interleaving)
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Table 7 summarizes timing data collected by a program which was written totest different interleaving schemes. A number of consecutive logical sec tors were
read, which mapped into the same number of physical sectors in the pat tern dictated
by the desired interleaving. In addition, a tes t program was assembled under RT-1 1,using its 2:1 interleaving, to examine the impact of increased disk latency on typicaloperations. Figure 19 plots access time versus interleaving factor for reading 1000
sectors sequentially. The data indica tes that perhaps the best sequential file access
could be achieved for triplicated disks using 8:1 interleaving . The point to be made
about replicated disk access time is that it is very pattern sensitive: very little
degradation due to replication occurs in sequential accesses without interleaving, butgreat degradation is seen when interleaving is used. Ir~stead of the factor of ten
speedup available with 2:1 interleaving on a single disk, only a factor of roughly 1.5 is
possible (using 8:1 interleaving) on a triplicated disk.

sectors interleave C.vmp PBB C.vrno/P98

10 1:1 1.69 1.66 1.021
10 2:1 1.55 0.17 9.218
50 1:1 8.51 8.06 1.055
50 2:1 7.66 0.81 9.403

1000 1:1 171.2 159.9 1.071
1000 2:1 - 153.9 14.6 10540

assembly 2:1 109.6 15.8 6.937

TABLE 7. Disk Timing Tests

All measurements given in Table 7 are in seconds.
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4.5. Operational Experience.

Operating History

Implementation of C.vmp has been completed, and stable performance achieved.
The software is a standard, unmodified single-user diskette-based real time operating
system (RT- 1 1). The system has been utilized under actual load conditions with
students doing projects in an introductory real time programming course. The students
were supplied with an RI-i 1 software manual and a short paper on C.vmp specific

- 
- data (i.e. location of the power switches, reminder to load three diskettes, etc.). To

these users, C.vmp successfully appeared as a standard 1St-il uniprocessor running
- standard software.

C.vmp System Reliability

C.vmp has repeatedly demonstrated hard failure survival by bus power
swi tching and board removal (see comments later about on-line maintenance). Another
aspect of fault tolerance is transient fault survival. The only transients which should
cause C.vmp to crash are those occurring simultaneously in more than one module.
According to the data from Cmt presented in Section 3, such transients make up 17~of the total, occurring roughly every 1000 hours. The mean time to crash should equal
or exceed this figure. Indeed, as the hardware situation has been stabilizing, C.vmp’s
reliability has been increasing toward this order of magnitude. Table 8 summarizes
C.vmp crash data for the nine month period from August 1, 1977 to April 30, 197&

- Note that software or user caused crashes have not been included in the data. Also,
repeated crashes (ones due to the same cause) have been removed. Due to
uncertainty as to the exac t causes of many crashes, dual tables have been constructed
giving the best case and “worst case” figures. Crashes which may have been
software or user caused are included in the worst case, but not in the best case data.

month std d~~ median number uotime

August 64.8 91.9 28.0 5 323.8
September i0&7 139.6 35.6 4 434.9
October 35.5 51.1 19.8 16 568.3
November 49.3 33.0 52.0 10 492.9
December 204.8 191.6 113.1 3 614.5
January 95.4 104.3 70.5 7 667.7
February 258.8 78.6 258.8 2 517.6
March 298.3 276.4 298.3 2 517.6
April 352.4 114.2 352.4 2 704.7

- Total 96.5 167.8 30.6 51 4921.1

TABLE 8A. C.vmp Crash Data (worst case)
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month mean std dcv median number - uptime

August 81.0 96.1 34.6 4 323.8
September 217.4 132.4 217.4 2 434.9
October 142.1 44.5 125.7 4 568.3
November 246.5 167.3 246.5 2 492.9
December 614.5 0.0 614.5 1 614.5
January -- -- -- 0 667.7

— February 517.6 - 0.0 517.6 1 517.6
— March -- -- -- 0 596.7

April 704.7 0.0 704.7 1 704.7

Total 328.1 470.8 114.3 15 4921.1

All times given in Table 8 ~re in hours.
(std dcv is the standard deviation.)

TABLE 8B. C.vmp Crash Data (best case)

The voter induced transient failures are mainly due to construction. The wirewrap
boards used in the voter are prone to socket failures. These sockets are being
systematically replaced, with a consequent improvement in mean tim. to crash (MTTC).
With permanent construction techniques (e.g printed circuit boards) the voter should

• be removed as a source of system crashes.

One measure of transient fault survival lies in the severity of the methods
necessary f or recovery. Five levels of recovery exist: (1) CONTIMJE execution at the
same location without any change to processor registers or memory; (2) RESTART the
program in memory, which will also reset the I/O de.ices and processor registers; (3)
RELOAD the program into memory, also resetting the 1/0 devices and processor
registers; (4) RESET the processor s and reload th, program; and (5) DEBUG the
hardware to whatever extent is required to restor e st able operation. Table 9
summarizes this data in correspondenc. to the entries of Table 8.

-
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month continue restar t reload reset debut

August 0 1 3 0 1
September 0 0 - 

2 0 2

October 0 5 7 1 3
November 0 1 7 1 1
December 0 0 2 0 1
January 0 7 0 0 0
F ebruary 0 1 0 0 1
March 0 2 0 0 0
April 0 2 0 0 0

Total 0 19 21 2 9

TABLE 9k C.vmp Crash Recovery Data (worst case)

month continua restart reload debug
August 0 0 8 0 1
September 0 0 0 0 2
October 0 0 1 0 3
November 0 0 0 1 1 -

December 0 0 0 0 1
January 0 0 0 0 0
Februa ry 0 0 0 0 1

- March 0 0 0 0 0
April 0 1 0 0 0

Total 0 1 4 1 9

TABLE 98. C.vmp Crash Recovery Data (best case)

It is interesting to note that the majority of crashes required relat~ve)y little
effort to recover from. Only a few required the processor to be actually reset , and
several only required the resident monitor to be restarted. All the cases of debugging
involved socket failures in the voter boards, and seem to be getting less frequent.

On-Line Maintenance

The success of the voting mechanism has been established by experiments with
powering down buses and removing components, while still having the system as a
whole continue operating. With a bus powered down, the associated processor and
memory are, of course, lost , but the system keeps working. Defective components (if
such exist) can be replaced, and the bus powered back up. Contents of the newly
rest ored memory can be brought into agreement with the other copies by providing a
read/wri te memory background job. Normal operation suffices to resynchronize the
processor, as it starts executing code randomly until it gets in execution phase with
the other two processors.

L - - 
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Actual experiments have included removing memory boards from one, two, or
even all three buses (different 4K banks of memory from different buses). Also, a
processor was removed, and the machine kept running. Even with one of the
processors missing, and a differen t 4K bank of memory removed from each bus, the
machine continued in opera tion.

rhe only p oblem encountered with these experiments was that restoring power
to a bu~ sometimes causes a crash. All three buses, and even the voter itself , draw
power from the same +5v supply. The transients on the power lines associated with
turning on an LSI-1 1 processor , 12K of memory, and assorted I/O interfaces are the
cause of the crashes. (These transients arise from the sudden demand for 7-10 amps
of current for the various components on each bus.) independent power supplies, as
would be desireable in any case for a fault tolerant computer , are necessary to correct
this problem.

The ability described above to power down selective sections of C.vmp in order
to remove or replace defective modules is cer tainly a strength of the system as
regards being a highly available machine.

The Transient Analysis Experiment

A search through the literature reveals little or no experimentation in the area
of noninduced transient fault measurements. To facilitate gathering data on such
effects of noise, a statis tics board which straddles all the buses is under development.
This statistics board latches selected information from the buses whenever a
disagreement, signalling an error, is detected. This la tched information is stored along
with a unique time signature stamp in onboard memory For later dumping and analysis.
The main experiments that we hope to perform on this machine are the following.

The first experiment consists of exposing one of the external buses to a
controlled noise environment, either directly coupled through the power supply, or
radiated by a noise source. The rest of the computer would be kept in a shielded

- environment. -

With the statistics board operating, we can find out how often we get a failure,
where the faili. re is most likely to occur , and how long a failure lasts. By repeating
the experiment with different noise frequencies and different noise intensities, we can
map the noise usceptibility of components in the computer. By replacing components
and repeating he experiment we can determine the variation in noise susceptibility as
a f unction of c mponent variation due to construction.

For c~ ip to prove successful the smallest possible correlation between a
con~oor.’~I t.i ig and a corresponding component tailing at the same time is desirable,
sinc e t hese c related failures cause a system failure. In theory, we would like to
prove r~aCpe. ence between failures in similar sec tions of the computer. Once we
know the p~ t -bility of a non-fatal failure, we can expose two sections of the system
that pi”r * orm ‘ same task, and record fatal failures in the system. From the first
expe r ”nent w e ~pe to compute the mean and standard deviation of a non-fatal failure.
From th. secon~ experiment we hope to compute the mean and standard deviation for

- 
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a fatal failure. We can then measure the independence of two sections of the system
to a noise source.

Another experiment will be in on-line maintenance through module removal with
and without power switching.

--  ~~~~~~~~~~~~~~~~ ~~~~~~- -- 
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5. Conclusion and Acknowledgements
Hardware and Software reliabiiity remains high on the list of CMU’s research

activities. A natural evolution of our past research is an integrated hardware, firmware,
software approach to systems design. Activity is being initiated to look at the next
generation multi-processor which will have reliability and security as its major design
goal.

Through tI years many people have contributed to the concepts and
implementation effort required to construc t these architectures. That list might
approach 100 people and is too lengthy to include here. However, we would like to
acknowledge several people who have contributed to the reliability efforts. For C.mmp
the list includes William Wuif , Fred Pollack, and Roy Levin. Cmt owes much to the
major hardware designers Richard Swan, John Ousterhout , Kwok-Woon Lai and Andy
Bechtolsheim and to the major software designers Anita Jones, Robert Chansler, Ivor
Durham, Peter Feiler, and Karsten Schwans. The contributions of Mark Canepa and
Steve Clark to the C.vmp design were significant. Finally, William Avery, Gordon Bell,
Lloyd Dickman, Rich Olsen, Robert Swarz, Steve Teicher and Mike Titelbaum at Digital
Equipment Corporation have provided information, ideas, and support critical to the
success of the Cm’ and C.vmp projects.
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Abstraci

This paper focuses on measurement and modelling of hard failures in multiprocessors.
The failure rate predictions of the Military Standardization Handbook 2178 (NIL 2178)
are compared with semiconductor chip vendor data and data from Carnegie-Mellon
University’s multiprocessor systems. Based on these comparisons a modified NIL 2178
model is proposed. The modified model is employed to calculate module failure rates
for the three multiprocessors designed, implemented and currently operating at C-MU.
Hard failure reliability models for these three systems are presented. These models
use the calculated module failure rates as a basis for a consistent comparison of the
three systems.
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1. Introduction

A companion paper (1] has presented the architecture and reliability experience
of three multiprocessor systems constructed at Carnegie-Mellon University. Data on
transient failures in the various systems was also presented.

This paper focuses on measurement and modeling of hard failures. Section 2
deals with the modeling of non-redundant systems. First the Military Standardization
Handbook 2178 (NIL 2178) is presented as a way of estimating hard failure rates. The
model predictions are compared to semiconductor chip vendor data and data from C-
MU’s multiprocessor systems. Based on these comparisons, a modified NIL 2178 model
is proposed and used in the remainder of the paper. A program called AUTOFAIL
allows the parameterized modificaton of NIL 217B using engineering drawing
information as input. AUTOFAIL was used to produce the complexity and failure rate
tables that appear in the various modeling sections.

Section 3 discusses levels of reliability modeling and the assumptions used in
developing the system failure on exhaustion models. The final three sections contain
the details of the reliability model for each architecture. The sections all foilow the
same format: brief description of the architecture, effect of various component failures,
component fa ilure ra tes, reliability models, reliability curves, and discussion. The
uniform treatment of the architectures allows a more consistent comparison of the
results. 
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2. A Hard Failure Reliability Model and Its Calibration

In order to compare the various multiprocessor structures, a uniform hard
failure reliability model is required. The model should also explain the actual observed
failure rates. This section introduces the NIL model 2178 and two separate
approaches to its calibration: data obtained from accelerated life testing of chips and
life failure data from Cm’. From this calibration, a modified NIL model 2178 emerged
and was used to model all three multiprocessor systems. A failure rate calculation
program, AUTOFAIL, is also described. The automation of the failure rate calculation
insures accuracy and allows experimentation with the model versus observed data.

2.1. MIL Model 217B

It is usually assumed that the failure of electronic components follow the Poisson
distribution with failure rate )~. That is:

1. Probability of transition from state with n occurrences to n+1 occurrences in
time ~t is:

2. Occurrences are independent;

3. Transition probability of two or more occurrences in the interval ~t is
neglected.

Then

Probability of k failures in time (O,t)

Reliability — probability of no failures in time (O,t] — e Xt
With these assumptions, if a system does not contain any redundancy (i.e., every
component must function properly for the system to work), and if component failures
are statisticall y independent, then the system reliability is also exponential.
Furthermore, the failure rate of the system is the sum of the failure rates of the
individual components. This is also referred to as the Parts Count Model.

The Reliability Analysis Center has extensively studied statistics with respect to
electronic component failures. The data has led to the development of a widely used
reliability model for chip failures. The following is a sketch of the model presented in
the Military Standardization Handbook 217-B (2].

The failure rate model for a single chip takes the form:

~L~Q (CInT + C2flE)

_ _ _ _  _ _ _ _  
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where

A learning factor based on the maturity of the process. It assumes
values of 1 or 10.

A quality factor based on incoming screening of components. Values
range from 1 to 150.

A factor based on the ambient operating temperatu re and the type of
semiconductor process. Values range from 0.1 to 1000.

A factor based on the operating environment. Values range from 0.2 to
10.

C1 ,C2 Comp lexity factors based on the number of gates (random logic) or
number of bits (memory) in the component.

Since the rate of technology advance is rapid, new component types are
continually being introduced. In addition the “learning curve” for any particular
component type changes with experience engendered by its use in the field. There is
then some question as to the accuracy of NIL Hdbk 2178, particularly with regard to
newer technologies such as MOS RAMs, and ROMs.

Typical component failure rates are in the range 0.1 to 1.0 per million hours.
Thus tens of millions of component-hours are required to gain statistically significant
results. Two separate approaches were used to gather sufficient data for comparison
with the NIL 217B model: life cycle testing of components and analyzing field repair
information. The following subsect~ons summarize the results.

2.2. LIfe Cycle Testing 
-

In this approach a small number of components are tested in a controlled
environment. Frequently an elevated temperature is used to accelerate fai’ure
mechanisms. A translation factor is then used to equate one hour at elevated
temperature to a number of hours at ambient. The translation factor is usually derived
from the Arrhenius Equation:

R — M
El/ K7

where

R — reaction rale constant

A — a constant

L 
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Ea — activation energy

K — Boltzmann’s constant

T — Absolute temperature.

Often these accelerating factors are extrapolated into regions (such as ambient) where
there is very little corroborating data. Because of the exponentIal, accelerating factors
can become quite large.

In addition, there is little consensus on the appropriate activation energy.
Activation energies of 0.23 eV to 1.92 eV have been used. The tempera ture
dependent portion 

~~~ 
of NIL Hdbk 2178 assumes an activation energy of 0.41 eV

while NIL Std 883A (used to qualif y components for procurement) assumes 1.02 eV.
Consider conversion from 125°C to 50°C. The ratio of the NIL Std 383A acceleration
factor to the MIL Hdbk 2178 is 61.93. This means a factor of 62 difference in
predicted failure rate (X) from the same life cycle test data!

Furthermore, only one activation energy is assumed. In reality many different
mechanisms contribute to chip failure and they are not all accelera ted by the same
amount for the same temperature increment. Assuming a single activation energy can
lead to substantial errors, especially when using extrapolation.

Returning to the form of the NIL Hdbk 217B model we see that high temperature
testing only calibrates the temperature portion. The environmental portion (aging and
mechanical stress), which can range from 107. (high temperature) to 707. (low
temperature) of the predicted failure rate, is not measured. One last problem with
using high temperature life cycle testing is that semiconductor manufacturers usually
lump test data by process (i.e. bipolar, MOS, etc.) thus hindering a comparison with the
NIL Hdbk 2178 complexity factors.

Given the problems listed above, data from several sources was combined using
assumptions to establish commonality. The data represents over 3 billion hours of real
time operation (of which 137 million hours were high temperature testing). The data
sources were:

RADC A list of life cycle test data as a function of device complexity.
Most were from high temperature testing and some data about
test temperatures was missing.

Signetics High temperature testing with data lumped by process. Some
individual test data by component number but usually a sma ll
number of component-hours. An activation energy of 0.41 eV is
assumed and calibrated by experiment for bipolar component
temperature translation.

SandersAssociates - Analysis of field data.

Using a junction temperature of 50°C, a temperature accelerating factor
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corresponding to 0.41 eV activation energy, and adding in the NIL Hdbk 217B
predic ted environmental portion, Figure 1 results. The RADC data is raw and was not
temperature translated since a significant percentage of the data did not have a test
temperature recorded. The two anomalous points in the RAOC data at 20 and 58 gates
should be treated as suspect since these two points had the least number of test
hours (less than a million).

The temperature translated data in Figure 1 tracks the NIL l4dbk 2178 model
generally within a factor of two while the Sanders Associates data is in close
agreement

Since RAM and RON data is less extensive , it is reproduced in Table 1 along with
a few points of MOS data. The Signetics data was temperatur e translated to 50°C.
The total failure rate and temperature dependent portion are listed separately so that
comparison with high temperature, translated test data is facilitated. The Signetics
data with a less than (<) sign is an upper bound in cases where no failures were
observed.

For bipolar RAMs and ROMs the NIL l4dbk 217B model for total failure rate
tracks within a factor of two and is generally pessimistic. The temperature portion
roughly tracks but in a less precise manner. It should be noted that the majority of
this data is from one source (i.e. Signetics).
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For MOS RAMs, ROMs, and random logic there is even less data but it clearl y
indicates the NIL Hdbk 217B model is a factor of 16-64 pessimistic. Since the 2178
model was published in 1974 and was probably developed on 1972 data, one m ight
specula te that tVIOS technology might not have settled down in time for creation of the
model. There are many parame ters that can be altered in 217B to take into account
process maturity. One could modify a constant factor such as (i.e. move the curves
up and down). One could speculate that the complexity factor should be modified with
time since as the process matures more complex components are feasible (i.e. move the
curves to the right). If we use the rule of thumb that memory doubles in complexity
every 1-1.5 years and we want the state-of-the-art portion of the curve to
correspond in 1977 to where it was in 1972, then the complexity axis (number of bits)
should be divided by 2~ — 16. This modified 217B model is shown in the last column
of Table 1. The modified 2178 does rather poorly on bipolar components but is within
a factor of 3 on MOS components.

2.3. Analysis of Hard Failure Data

In this approach information about total systems is analyzed and broken down
into failure rate by components. The major difficulties are lack of control over the

• environments of the systems and incomplete data.

The various systems will be of different configuration, and subjected to different
env ir onmen ts (Tt E), operating temperatures 

~~~ 
and power-on time (affecting the

calculated failure rate). In addition, current repair practices do not lend themselves to
component level data analysis. Typically a repairman will fix a system by board
swapping. The boards are then sent to a repair depot where they lose their identities,
and where repair actions are often not recorded.

Furthermore , the repair activity may induce addttional or future failures.
However , wi th careful planning and documentation these difficulties can be overcome.
In our case we carefull y collected hard failure data from the Cm5 error logs [3). The
data presented in the following tables and fi gures were collected through May 10,
1978.

The Mean Time Between Failures (MTBF) was calculated assuming failures were
independent. The MTBF was obtained by dividing the total time by the total errors.
Because of the small number of failures per module, a concept called “module time”
was introduced. Module time allows data from all modules to be combined. If there are
Ic modules running during a period of time then

module time — 
~~~ 

t~1~ i~k

where t~ is the time the ~
th module was up. Now assuming that all the modules of a

type are identical, then the times that failures were recorded in real time can be
transfered to a “typical” module in module time. Table 2 depicts this module time data
for Cm5.

I - 5 - - -  - - - -5  
_ _ _
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The complexity in chips referenced in Table 2 is a measure of the actual
utilization of chi ps per module. In the case of the L91-1 I (DEC), the actual number of
chip sockets used is 76, of these 72 contain digital integerated circuits. The number of
chips used is recorded as 68, which implies that the unused functions on the chips add
up to 4 chips.

Module Complexity * of Total time Total failuree MTBF
(Chips) Modules (Hours) (Hours)

Kbus 138 3 36696 8 4587

Pmap 106 3 37416 12 - 3118

Mmicro 116 6 68328 4 17082

Mdata 142 3 37080 2 18540

Linc 116 3 22608 0 -

1St-li 68 14 163200 10 16320

Slocal 126 10 120720 5 24144

4K memory 56 21 260568 5 52003.6

16K memory 104 10 122280 5 24456

Slu 28 17 223248 5 44649.6

Power board 6 16 195456 3 65152

Refresh 14 16 162912 0 - 
-

Table 2. Failure Data on Cms

An analysis of the variance of the error log data showed that uncertainties
associated with module commissioning dates (i.e. initial power up and integration into
the system) were insignificant.

The next step was to determine the failure distribution from the data. There are
two basic approaches. The first is to determine the instantanous failure rate or hazard
func t ion, which indicates the failure distribution. The second method is to use statistical
tests to differentiate between distributions.

The following equation is used for plotting a piecewise linear graph of the
hazard rate:
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Hazard rate z(t) — ~~t) - n(t + At))/n(t)

The number of survivors at any time is given by n(t). The choice of At is not
specified and is occa sionally chosen to end just after each failure. Another method of

choos ing the size of At that smooths out the- curve is to divide the total time into
equally spaced intervals. The number of intervals is given by the following equation
[4]:

Ic—i + 3.3log10M

where Ic is the number of intervals and N is the number of failures. This latter method
was used for the plotting of data on the modules.

Data for these hazard calculations is commonly obtained through life tests. The
data tha t was obtained from Cmt differed from that of a life test in that when a failure
was detected in a module, the module was repaired and placed back in operation. Thus

• some components in the module were starting out their operational life while others
were in intermediate stages. A second difference is that modules had different amounts
of operating time. Due to the few failures detected and the small number of modules
being tes ted, all the failure data must be used. To accommodate the data on Cmt, a
replacement assumption is necessary.

The replacement assumption posits that a repaired module can be considered to
be new. The concept of module time described earlier is then used along with this
assumption to make effective use of the small amount of available data. For example,
consider the case of some set of modules {M

~
}. Each time some N1 fa i l s , it is repaired

and is considered to be new using the replacement assumpeion. The jth such
“incarnatiOn” of M

~ 
can be considered to be a new “vir tual” module N1 which has a

lifetime of t~ before it fails and is later reincarnated as the new virtual ‘module
Then at any given time the set of virtual modules (M

~
) is such that each member of

the set has either suffered one incapacitating failure Or has not failed at all. Module
time for this set is then given by

tm — tjj
‘Ii

A “typical” module of the set (N1) is then assumed to have been in use for time t m and
have suffered the same number of failures as the set (N1) taken as a whole. The
hazard rate expression previously mentioned is then redefined as follows:

Hazard rate z(t) — 
F(t ,t+At)/n(t)

_ _ _ _ _  _ _  --- - - - -5  — - ——— -5 -  
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where F(t ,t+At ) is the number of failures between time t and time t+At. For these cases
n(t) is always equal to one i.e. the “typical ” module.

There was only enough data on the modules to construct four rough hazard
functions. They are of the Pmap, the Kbus, the LSI-1 1, and of the total Cms system
(Figures 2 and 3).

4
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HAZARD FUNCTIONS

B

7

3

2

I I I

Pmap Interval — 309.8 Days

3
I ’  

• -I I
1

- 
I

Kbus Interval — 382.25 Days

L

LSI-l 1 Interval — 1700 Days

Figure 2. Hazard Curves f or Pmap, Kbus and LSI-1 1. -
S
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Hazard Functions 

I I I I I

Cm* System Interval - 50.6 Days

Figure 3. Hazard Curve for total Cm5 system.

The graph of the Pmap appears to exhibit a decreasing hazard rate. This
indicates a problem with infant mortality. A note should be made here that nine out of
the twelve failures on the Pmap were attributed to one chip type, the 74373.

The Kbus seems to display either a decreasing or constant hazard rate.
Assuming it to be constant, its value would be around two failures per 382.25 day
interval, which corresponds to a MTTF of 19 1.125 days.

The LSI-1 1 was the other module examined. This curve indicates a possible
constant hazard rate 2.5 failures per 1700 day interval or a MTTF of 680 days. 

- 

-

The final hazard function is presented in Figure 3 is that of the system using all
the modules. It is plotted using the first 304 days since commissioning for all the
modules. Over this period, a MTBF of 155.2 hours is indicated.

- - 
-

- — - - 
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The MTTF presented in Table 2 were calculated by dividing the total time by the
total number of failures. In the case of a constant hazard rate , the MITE was
calcula ted by dividing the length of an interval by the average number of failures per
interval. That these two calculations are equivalent can be seen from:

MTTF for constant hazard ra te  —

(length of interval)/ (average failures per interval)—

(leng th of interval)/( (total failures)/(number of intervals) )

(total time)/(total failures)—

MTTF from Table 2

The results presented have been inconclusive in predicting the failure
distribution. The exponential distribution is plausible, but a better test for the data is
needed. To accomplish this the data is fit to a generalized distribution that has the
Exponential as a special case. A generalized distribution that is used in reliability
studies is the Weibull for which the probability density function is given by:

f(x) . ~(~)13~
1exp(~)13

This degenerates to the exponential distribution when 13—1. Table 3, presents
• the maximum likelihood estimates for 13 and ~ and the 95% and 687. confidence interval

on J3 for the differen t modules.

The 957. (68%) confidence interval means that if the experiment were repeated
• 100 times, on the average 95 (68) times J3 would lie in the given range. In order to

tig hten up the range on 13, a smaller confidence interval is used. The data in Table 3
indicates a wide spread in the maximum likelihood estimates of j3, but in all but two
cases J3—i is enclosed in the 95% confidence interval. The 687. confidence interval is
only able to enclose a j3—i for half of the modules. This means that while an
exponential failure distribution is plausible, actual data presents enough variation that
the impact on the system of an exponential failure assumption should be examined. It
should be emphasised that the above parameters were estimated using a small number
of data points. The numbers will be refined as more data becomes available.

_ _ _ _ _ _ _ _ _ _
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Module 951. Confidence Interval 68% Confidence Interval
on fi ( fi ± i.96’4V(fl) ) 

~~~~ (f i  
±\,J~ ( ,~) )

Kbus 189.5 .721 .30 : 1.15 .50 
- 
: .94

Pmap 104.0 .537 .29 : .79 .41 : .66

Mmicro 625.9 1.264 .23 : 2.30 .73 : 1.79

Mdata 3043.9 .344 0.0 : .79 .12 : .57

LSI— 11 716.1 .915, .41 : 1.42 .66 : 1.17

Slocal 1977.1 .584 .1 : 1.07 .34 : .83

4 K memory 1496.4 1.320 .28 : 2.36 .79 1.85

16 K memory 690.7 1.945 .40 : 3.50 
- 
1.15 : 2.74

Slu 
- 1320.6 1.348 .25 : 3.08 .79 : 1.91

Power board 1819.4 1.295 0.0 : 2.67 .59 : 2.00

Table 3. Estimated Parameters of the Weibull from Failure Data

• The exponential distribution was chosen to model the different types of modules
in the Cm* system. This decision can be supported by the observations of Figures 2
and 3. The next step is to determine the parameters of the chosen distribution.

Table 4 gives the maximum-likelihood estimator (MLE) of X and its 50%
confidence interval. Again, it should be emphasized that this analysis has been based
on a small number of failures. For conclusive results much more data is necessary.
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Module MTTF 5O1~ Confidence Interval
(FaiI/lO6Hr) (Hours) (on MTTF)

Kbus 218 4587 3397.8 ; 6167.4

Pmap 320.7 3118 2461.6 : 3938.5

Mmicro 58.5 17082 10932.5 : 26953.9

Mdata 53.9 18540 9459.2 : 38625.0

Linc - - -

LSI-11 61.3 16320 12553.9 : 2105&1

j Slocal 41.4 24144 16313.5 : 35822.0

4K memory 19.2 52113.6 35211.9 : 77319.9

16K memory 40.9 24456 16524.3 : 36284.9
- 

Ski 22.4 44649.6 3016&7 : 66245.7

Power board 15.3 65152 38324.7 : 113307.8

Refresh - -

Table 4. Calculated Failure Rates from Data on Cms -
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Quality factor
Module Complexity 16/16 - 16 150 150/16

(Chips)

Kbus 138 44.1 53.3 499.3 413

Pmap 106 35.6 39.6 371.7 333.7

Mmicro 116 26.6 128.3 1203 249.2

Mdata 142 35.4 146.5 1373.8 332.4

Liric 116 35.5 75.1 704.6 332.8

LSI-11 68 29.9 379350.8 35568289.0 280.3

Slocal 126 27.4 31.8 298.4 256.8

4K memory 56 23.1 99.8 936 216.9

16K memory 104 74.1 380.9 3571.1 694.7

Slu 28 4.7 8.7 81.6 43.9

Power board 6 .97 .97 9.1 9.1

Refresh 14 2.6 2.6 24.9 24.9

Table 5. Predicted Failure Rates for Cms Components
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Module Failure Rate Best Fit Predicted
Failure Rate

Kbus 218 Q — 150/16 413

Pmap 320.7 Q - 150/16 333.7

Mmicro 
- 

58.5 Q — 16/16 26.6

Mdata 53.9 Q — 16/16 35.4

• Linc -

LSI- 11 61.3 Q — 16/16 29.9.

Slocal 41.4 Q — 16 31.8

4K memory 19.2 Q — 16/16 23.1 -

16K memory 40.9 Q — 16/16 74.1

Slu 22.4 Q — 150/16 43.9

Power board 15.3 Q — 150/16 9.1

Refresh -

Table 6. Results of Maximum Likelihood Ratio Test

Four variants of the Nil 2178 model were selected for comparison: quality
factors of 16 and 150; LSI chip complexity derating of 1 and 16. The predicted failure
rates are shown in Table 5. The results of the comparison of the data to various
parameter changes is shown in Table 6. They consist of the observed failure rate
the best fitting variant of the Parts Count Model examined, and its associated failure
rate prediction. This table indicates that the modules tend towards a derating of the
quality factor by 16 for MOS chips. This coincides with the conclusion from life cycle
test data mentioned earlier.

The data on the Pmap indicates a quality factor of 150 with a derating factor of
16. As was noted earlier, 9 of the 12 failures were attributed to a single chip type, the
74373. There are seven 74373 chips in each of the three Pmaps. The NIL 2178 model
predicts that 6.7% of the failures for the Pmap will be due to this chip. The failure rate
observed for the 74373’s in the Pmap was nine failures in 37416 hours or 240.5

_
~~~T - ~~~~; 

‘
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failures per mi llion hours. This corresponds to a quality factor for the 74373’s of 516,
which suggests a possible bad batch of chips. Using only the other failures to calculate
a failure ra te produces a X — 80.2 failures/ 106 hrs. This corresponds to a quality
f ac tor of 36, which lies between 150 and 16.

The Slocal is best fi t by a quality factor of 16. If a derating of 16 is assumed
then the quality factor for the Slocal lies between 150 and 16. In fact all but the
memory boards tha t have a quality fact or which is just less than 16, and the power
boards, which are slightly above 150, lie within the range of 150 to 16. In general,
industrially produced components (in this case by Digital Equipment Corp.) indicate a
quality factor close to 16. CMU-built components exhibit a quality factor of 16 for
more mass produced components (Mmicro and Mdata are printed circuit board RAMs
also used for writable control stores on C.mmp; the Slocal has been through tw o design
cydes) and a quatit y fac tor ol 150 for the remainder.

The expected failure rate for a sys tem composed of all the modules using their
approprIate quality factors from Table 6 is 7222.2 failures per 106 hours. This is
equivalent to a MTTF of 138.46 hours, which may be compared to the MTTF of 155.2
Hours derived fr om the hazard curve in Figure 3.

2.4. AUTOFAIL--Automated Failure Rate Calculation -

A program, AUTOFAIL, has been written at CNU (5) that simplifies the procedure
of computing a system’s I allure rate from the failure rates of its constituent parts as
predicted by the NIL model 217B. A system may be described to AUTOFAIL in the
form of a list of chips and/or subsystems, which are likewise recursively defined.
Figure 4 is the input description of the DEC LSI-11 microcomputer. Parameters such
as the various n factors may be modified so as to obtain a sensitivity analysis. The
format of this file is:

[ Module Name
Body)

where “Body is a l is t ing o f all chi ps and submodules making up this module. A chip is
identified by an integer , specif ying the number of chips of this type used, or by an
integer followed by an .F., specifying the number of functions of this chip type that
were used. This is then followed by a comma and the name of the chip. Submodules are
constructed using the same format as modules.
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(LSIIL
(SPECIAL.FUNTIONS

2F,0118641
3F , 7474
1 , 7442

• SF ,7484
IF ,7 6883

(BUS. PRB ITRRTION.LOGIC

• IF ,7488
IF , 0N8837
3F ,7474
iF , 01186413

(IPiTERRUPT. COHTROL.PNO.R(sET.LOGIC
4F ,7484 -
4F ,74 74
2F , 0118641
2F , 7488
SF , 0118837
IF ,7485
IF ,741743

(CLOCK. PULSE. GENERRTOR
IF , 7488

P IF ,74148
2F ,7474
IF ,74139
6F ,7484
4F , 11H88263

(ROn. CHIPS
3 ~CP1631B1

(DaTA. CHIP
1 ,CPI61iB~

• (CONTROL.CHIP
I ,CPI62tB~

• (BUS.DRIVERS.RNO.RECIEVERS
4 ,74257
4 ,0118641
iF ,01i8641
4F,7411
2F , 740S3

(IIEIIORY
16 ,11K48963

(BUS. I/O. CONTROLLOSIC
iF , 7497
7F , 74U
7F , 74S4
2F,7411
‘F ,?’?’
SF , 74 II
5F , D118641
IF ,0MU373 (Con t Inuid)

Figure 4. LSI-1 1 Input File for AUTOFAIL

____- ~~~~~~~~~~ - _ —- - - - -“  
~~~~~~~~~~~~~~~~~ --
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I/O. BUS . hE M . READ . DATA . fl UX
4F , 74 76
2F , 74257
3F ,7418
3F ,7408

2F , 7414 8
2F ,7485
2F ,741871

(FAST. 0 IN. flUX
IF , 74257
IF , 748 8
IF,748413

Figure 4. LSI-1 1 Input File for AUTOFAIL (Continued)

Figure 5 is a listing of the output for the LSI-11 produced by AUTOFAIL. The
top line consists of the values of the various derating factors used. The it values are
presented on the following line. The failure rates for the LSI-1 1 and the submodules
are shown along with the percentage of the failure rate for a module that is attributed
to each submodule. In the case of a partiall y used chip (i.e. denoted by the number of
func t ions “F ), AUTOFAIL prorates the chip fa ilure rate by the fraction of the total
number of functions used. It is sometimes desirable to examine the behavior of a
par ticular chip or chip type. The lower table indicates this ability by listing the number
of chi ps, failure rates , and percentages for the different chip types.

~~~~~~ 
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tsIll .r.I (x33*ds733 151. 1S.$SS RON. 1S.SSS RAN. is.ess
E • 1.888 Q • 16.8*, L • 1.888 7 • 25.88*

NODULE FAILURE RATE PERCENTAGE

15111 ~~~~ 186.99*
SPECIPL.FUNTIONS .669 2.237
BUS.ARBI TRRTION.LOGIC .359 1.172
INTERRUPT.CONTROL.RNO .RESET.LOGIC .776 2.596
CLOCK .PULSE.GENERRTOR .551 2.847
ROI1.CHIPS 3.413 11.416
DATA .CHIP 1.169 3.88*
CONTROL.CHIP 1.169 3.88*
BUS.OR IVERS.AND.RECIEW.*S 1.588 5.314
NE1tORY 16.991 56.837
BUS . I/O.CONTROL.LOGIC 1.58S 5.919
I/0.BUS.MEII.RERO.DRTLNUX 1.195 3.999
FRST.OIN.NUX .241 .865

I of ch i ps • 68.917 I of gatos • 7145.983 1 .1 bits • 99328.999

VVPE I .1 CHIPS FAILURE RATES PERCENTAGE

UI 37.259 4.899 16.387
ItSI 19.557 2.272 7.688
LSI 2.889 2.328 7.76*
RON 3.188 3.413 11.416
RAN 16.9*8 16.991 56.837
110$ 21.988 22.723 71.613
SIP . 47.917 7.171 23.987

xxxxxxxxxxxxxxxx xxxxxxx xxxxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxxxxxxxxxxxx x
Figure 5. Output from AUTOF AIL for LSI-t I

The parameters of the MIt. model 2178 can be varied by subsystem or even
chip type so that variations in ambient temperature (i.e. a board near the power
supply) or technology (i.e. a new chip for which parameters such as junction
temperature may riot be known) can be modeled. At the chip level it is also possible to
modif y the number of devices on a chip to gauge the effect of the size of a new chip
type on the design. Further, individual chip type or entire chip class (i.e. ROM, RAM,
MOS, LSI) can be assigned any arbitrary complexity derating factors. Again , this is
used to test the sensitivity of the system failure rate as a function of the unknown
parameter.

This program, AUTOFAIL, was used to generate the failure rates for aH the
multiprocessor components described in this paper. Actual parts lists were used as
the input, and a uniform list of parameters (nQ•16, nE—1

~ 
rn—i, ambient temperature —

25°C, division of all ROSA, RAM, and 191 compl.xitiss by 16) was maintained throughout.

- i 
_ _ _ _ _ _ _ _ _ _ _  _ _ _ _  
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3. Techniques for introducing protective redundancy
There are three ways to introduce protective redundancy in to computer systems (6]:

Hardware- additional modules

Software- special programs

Time - replication of operations

Only hardware redundancy will be considered in this paper. Hardware redundancy
schemes can be divided into two types:

Static redundancy- all the modules are powered up and functioning. The hardware failures
are masked by the redundant modules.

Dynamic redundancy- There ;re two types of modules, active ones that directly contribute
to the operation of the system, and standby spares.

In dynamic redundancy fault tolerance is achieved by three sequential actions: fault
detection, diagnosis, and recovery. As a rule, detection or identification of faulty units is not
perfect. Thus the probability of system survival is modeled by the probability of module
failure and the conditional probability that the system recovers (e.g. correctly detects,
isolates, and recovers) giv.n a failure. This latter conditional probability has been termed
coverage (7],(8]. It has been shown that coverage has a significant impact on the survival
probability of a system.

In this paper we will model the C.mmp and Cm5 multiprocessor systems developed at
Carnegie-Mellon University as dynamic redundancy systems assuming perfect coverage
(C.vmp employs static redundancy). We are primarily interested in predicting the maximum
reliability achievable by the architectures (hence perfect coverage) with no arbitrary policy
decisions (i.e. effort devoted to software diagnostic development, quality of programing staff,
etc.). However, as more data becomes available on actual system failures, the models will be
modified and calibrated. In particular, transient failures are at least •n order of magnitude
more frequent than permanent failur•s (1] and the models will be augmented to include
transient behavior.

3.1 Levels in re liability modeling
Typically, a reliability model divides a structure into various subsections that are easier to

study than the whole structure itself. There are certain levels at which it is customary to
model systems (91

1. The highest level of modeling is the system level. In this level the entire system
is considered as a black box. Statist ics are gathered about events (e.g. failure of
a certain kind). A model then can be suggested to fit the dati as closel y as
possible. An enormous amount of data is r quir.d for successful modeling.

2. The next level is the m odule level. The system is divided into a number of
modules which have mutually independent failure probability distributions. The
system model is obtained by a composition of the models for the modules.

3. The third level is the gal. level. Gate reliability is often the basic parameter
us.d to obtain the system reliability.

- - _—--—~~ —--—-- ---— —
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One rarely has to go below the gate level However, if the redundancy is introduced at a
lower level, the component level of modeling is required, where components are transistors,
diodes, resistors, etc.

In evaluating the reliability of the three architectures, module level modeling is used.
There are several reason for this choice. A first-order approximation of the reliability of a
large hardware system can be easily derived by assuming module independence and counting
components in each module. Also, the number of parameters are usually few and the
dominating parameters or architectural features are easily identified. Furthermore, all of the
redundancy in these three systems is at the module level thus allowing the various
architectures to be compared. Usually this level of modeling Is called PMS level (processor,
memory, switch).

3.2 Redundancy model
Redundant systems can be modeled in one of several ways:

1. Redundancy with periodic maintenance. This type of modeling includes the effect
of periodic maintennnce on the reliability of the system.

2. Redundancy with repair. This introduces a second random variable, the time to
do module repair, into the model, thereby complicating the analysis. However,
under this model, the probability that the minimum required set of modules is
functional at any given time is significantly higher than the first model.
Consequently the reliability of such systems is much improved though there may
be periods of degraded perfomance while failed modules are being repaired.

3. Redund ancy with failure to exhaustion. This pessimistic and simplistic model
assumes all redundant modules fail before any repair. The system is considered
to be failed if it does not satsify the minimal set of functioning modules that
comprised the corresponding minimal system. Repair is only done when a module
failure causes syst.m failure.

This paper uses the last method of redundancy modeling. Again, we are interested in
predicting the maximum reliability achievable with no arbitrary polIcy decisions (I.. . mean time
between maintenance periods, quality of the repair staff , .tc).

As an example of failur e to exhaustion , consider a system with fly, processors, ten memory
modules and a clock for synchronization. Also consider a task running on this system that
requires thrie processors and nine memory modules in order to run to completion. A minimal
system with respect to the task requirements would contain exactly three processors and
nine memory modules and the clock. This set of modules is the minimal module ~~ for that
particular task. The syst.m being considered is therefore redundant with respect to the task
requirements and will be considered failed only when It can no longer provide the minimal set
of functioning modules. In other words th. redundant system fails if the clock fails , or more
than two processors fa il, or more than one memory module fails.

Failure to exhaustion models typically enumerate all th. states of the system (wher. a
state is a pattern of failed and working modules) that meet or exceed the r.quir.m.nts of the
minimal module sit. If thers are N identical modu les with the reliability of each module R~(R~
— ~~~ where )~ — failure rate) , and if a task r.qulrss k modules, th. subsystem can tolerate
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up to N—k failures, and the reliability of such a system is

A

N-k
R — ~~ (t’) R~~’ (1_R0)i

1-0

consider the reliability of the system mentioned in the previous example with the given
task requirements.

Reliability of the system when all of the processors and memory modules are functioning is

~O ~clk * ‘~Rro~ 
R
~~m

where

Rclk — clock reliability.

~proc — processor reliability.

~mem — memory module reliability.

Reliability of the system when one memory module fails is

P1 “~~clk~~
R
~roc~~

[ (10) 1~
9mem (1 Rmem)]

Reliability of the system when one processor fails is

P2 — 
~clIc * [ (~

) 
~~~~ 

(1 Rpr~~)] * R~~m

Reliability of- the system when one processor and one memory fails is

R3” ~clk * ((?) 
~~roc (1Rprn~)I(1°) ~~~~ 

(1
~~msm)]

RslI.bility of th. system when two processors fail is

L 
-
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R4 — 
~cllc * [ (~

) 
~~roc ( iRproc)2 I ~ n2m

Reliability of the system when two processors and one memory fails is

P5 — Rclk * [ (~
) 

~~roc U~~proc) I (1°) R~~m (1~~mem)]

The total reliability is the sum of the reliabilities of the system in these six operational states:

2 1 -

Rays — Rclk * [I (~
) 

~~~~ ( lRproc)’IX (~O)R1O~ (1R
~.rn)J]

i-0 - j-0

The following three subsections, develop the hard failure models for the three
multiprocessor systems. Due to its simplicity, the complete model is presented for C.vmp
illustrating the development Of the module reliabilities and total system equation. The model
for C.mmp is more complex and its development is only outlined. The model for Cm5 is very
complex and only one of several possible functional system states is fully developed.

3.3 C.mmp, a Multi-miniprocessor

3.3.1 Architecture Summary

C.mmp is a canonical multiprocessor system with a 16X16 crosspoint switch (Figure 6). Up
to 16 DEC POP-i 1/40 processors may be connected to th. processor ports on the switch.
The 16 memory ports provide an address space in shared memory of 32 megabytes. Any
processor can access any of t he 16 memory ports thereby providing a maximum switch
concurrency of 16 for memory accesses. The entire set of processors may communicate via
an interprocessor bus which allows interp rocessor interrupts at one of three priority levels,
continuously broadcasts a 60-bit non-repeating clock value and allows any processor to ba11~itir.t or continue any other processor. Processor-generated 18-bit addresses are mapped
onto a 25 bit physical address by the Dmap. The companion paper (1] In this issue prov ides
a more detailed description of the C.mmp architecture.

3.3.2 Probabilistic Hard Failure Model For C.mmp

Figure 7 illustrates the PMS 1.mod.l used for the reliability model. The effects of modules
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failures on the system are presented in Table 7. The architecture configuration parameters of
the model are defined in Table 8. The minimum required modules to satisfy the operational
requirements are parametrically, shown in Table 9. Table 10 lists the reliability parameters •

• while Table 11 summarizes the failure rate of the various modules as calculated by AUTOFAIL
in failures per million hours.

Module Qj fai lure

Processor Loss of processor.
Processor controller Loss of processor.
Loca l memory module Loss of memory module.
Shared memory module Loss of memory module.
Memory controller Loss of memory port.
Memory arbiter Lose of memory port.
Switch Loss of the whole system.
Master clock Lose of the whole system.

Table 7. Effect of module failures in C.mmp

— P Number of processors.
M Number of shared memory modules/port.
N Number of loca l memory modules/processor . .

I Number of memory port..

Table 8. Architectur e configuration parameters.
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Figure 7. C.mmp reliability model.
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l’%odute Minimum number.

Processor n 
A

Loca l memory modu l e/processor v

Processor controll er It

Master clock 1

Shared memory module m

Memory port controller r—~--i
Memory port arbiter

Sw i tch 1 (if l umped)

n * 1—jig—i (if distr i buted)

Table 2. Minim a l module requirements

- m,n,v functions of application requirements, rest der i ved
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Rpr Reliability of processor.

Rpk Reliability of processor port controller. A

Rim Reliability of local memory module.

Rmic Reliability of memory port controller.

Rma Reliability of memory port arbiter.

Rsm Reliability of shared memory module.

Reliability of switch cross point.

P51 Reliability of lumped switch.

R,~~ Reliability of master clock.

Table 10. Reliability parameters.

• 
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EQUIPMENT CHIPS GATES 
~~~~~ 

X/Mhr

POP-i 1/40 (each of 16)
Processor (pr) 416 3442 15872 56.933
CMU modifications to Processor (pk) 1 53 492 0 7.6 10

Relocation Box (each of 16) (pk) 99 736 768 12.744

Memory
EMU box 32l~w (sm) 189 413 589,824 159.638
(each of 32, 2/port ,byte parity)
EMU interface (per EMM box) (Sm) 42 516 0 6.918
Memory Control (per port) (mk,ma) 20 197 0 

- 
2.9 18

Local Clock (pk) 116 1504 256 18569
(each of 16; one per processor)

Master Clock (one only) (mc) 83 1717 0 14.704

16x16 Crosspoint Switch (sl)
Crosspoint logic (total) 1656 29808 0 328.923
Priority Decode logic (total) 864 7344 0 121.664
Processor Interf ace logic (total) 384 3552 0 57.104
Front Panel, 544 4448 0 77.712

(Crosspoint Enable/Disable etc., total)

Table 11. Complexities and predicted failure rates for modules in C.mmp

The switch was modeled in two ways. The simplest case (!umped) is when the switch is
considered to be a single component whose failure causes the whole system to fail. The
second case more accurately reflects the construction of the switch. Figure 8 shows a single
bit slice of the actual switch implementation. it is obvious from this Figure that a 16 by 16
switch is not made of 256 (16*16) individual cross points, but rather is 16 sets of cross
points from one processor port to the sixteen memory ports, and another 16 sets of cross
points from one memory port to the sixteen processor ports. Thus the failure rate of the
components used as the communication path from a processor port to all the memory ports
was added to the processor port controller failure rate, and the failure rate of all the
components used as the communication path from a memori port to all the processor ports
was added to the memory port controller failure rate.

1Th. Iow , cu. Is~tsrs within p.r.nth.s.. in this IIbIS r.f.r to th. subscripts on th. P.Ii.bility P.rs,n.t.rs in T.bI.
10 ,s. R~~ is sssu msd io b. .n sxpon.ntisl with. Isiluis nt. which is th. sum of ths fsilu,s rib s en lines which h.v.
tiw snnol.t~en Iptir in his Isbis.
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M15

M0 
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P0~~~~~~~~~ 5 F~~~~~~~~~~ 5

a.). Processor to memory path

• M1 5—
16

to 
_____________________________________

1

~i’ MUX
~ 
V,

0

M15—

to _______

1
M1 —

0
P0

b.) Memory to processor path
Figure 8. Physical implementation of crosspoint switch.

The system reliability R5~5 can be stated as a function of the aggregate reliability of the
processor and the aggregate reliabilty of the memories. We write

~

— ----

~ 

- —  -
~~

- ‘-a-----



_ _  
- -_— - --- -- - -—- - ---~~ —--- ----- - —-—----- - - -— —------- -- -

34

P-n

~sys 
Rmc * ~~ (r) R~~p (1-RAGP)’ R1

- i-0

where

N-v
RAGP — Rpk $ ~pr * E (~

) R~~J ~~~~~j-o
and

MPD
R1 — 

~~ 
(
~

) ~~~~ (1_RAGM)k R2
k—0

where

MPD

— Maximum number of memory ports that can fail because of
memory port arbiter or controller failure.

RAGM — 
~mk~ 

Rma

— overall reiisbilty of memory port control’er and memory port
• arbiter.

and further, R2 gives the reliability of the memories when m of them are required for the
application.

(T-k)M-m
R2 p(T ’k)M-A ( lRsm)A Ri~ p

A-0

MW
- RImp h’~~~ B~~R3

MMP.Min [ L—A-J ,T - k - r — ~-1]

________ 
- 

~~~~~ -r ~~~
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V

B~ - (T-k)[ ((T-~-c~~ ) - ~~ [(T-~-~) A~+h / (~;‘~) ] J
- h—i • -

where B~ — number of cases such that failure of ‘A’ memory modules causes ~ memory
ports to go down. 

-

- 0 If L 
~ ~~.i ~~~ 

1 —0
t—1: 

• 
-

. (M-(T-kXM-i)) otherwise

L e t O — T - k - ~ 
-

— number of memory ports functioning
— number of switch cross points working per processor port.

If for simplification we assume that each processor should have access to all the required
shared memory modules at any given time then

— P~i )~~
( ~‘ )(P-i-r) P +tXDi) * (1..p )(P-i)g+r(D-g) 

-

p-

where Rsc is the reliability of a switch crosspoint. In the case of a lumped switch

— R51 * (cr_~M) 
- - 

- 
- 

-

Table 11 lists the major modules in the C.mmp implementation with their complexity and -

lumped failure rate. These failure rates were used In the above reliabIlity model to generate
the curves in Figures 9,10,11,12 and 13. C.mmp was modelled assuming that all processors
were POP-i 1/40’s. One million words of semiconductor memory distributed 64Kw per port
was also assumed. Figures 9 illustrates the system reliability (lumped switch) for various
values of required processors (e.g. 4,8,12, and 16 assuming only 502 of the shared memory
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is required). Comparing the curves for four and eight required processors indicates that the
extra four processor spares contribute little to increasing system reliability. Figure 10 shows
even less sensitivity -for the 4, 8, and 12 required processors curves since the requirement
for 752 of the initial memory is dominating the extra reliability contribution of the spare
processors (lumped switch). Figure 11 shows the system reliability for various numbers of
required processors with a distributed switch. In this model the failure rate of each set of 16
cross points which cause a memory (processor) port to go down is added to the memory
(processor) - controller failure rate. The comparison of this curve with Figure 9 (lumped
switch, same configuration and same requirements) reveals that a lumped switch is a critical
resource of relatively high failure rate with respect to other modules In the system. Of
course, as was mentioned before, Figure 9 (lumped switch) is not an accurate model of the
hardware because in actuality all switch failures do not cause the whole system to fail.
Figure 11 more accurately reflects the reliability of C.mmp and also illustrates the effect of
more detailed reliability modeling of critical resources. For example the Mu (Mission Time
Improvement), the time for which the system reliability (R5~5) is above a certa in minimum
mission reliability [101 of the distributed switch over the lumped switch at a reliability of 0.9
for eight required processors (Figures 9, and 11) is 2700/350, or about 7.7.

Figure 12 illustrates the system reliability (distributed swItch) for various values of
memory modules (e.g. 256Kw, 512Kw and 768Kw memory and assuming only 12 processors
are requ ired.) The d iffer ence between the curves for 256Kw and 512Kw of required memory
shows that the extra redundant memory adds little to system reliability.

Figure 13 illustrates the effect of using high reliability components. The architecture
configuration parameters and thi minimum requirements for the two systems plotted are the
same except that the failure rate of all the modules in the system with high reliability
components is assumed to be a factor of ten lower than the other system (representing
higher level of component screening and hence a smaller value of in MB 217B). The
impact of high reliability components on the system is considerable.

3.4 Cm’, a Modular Multi Microprocessor

3.4.1 Architectur. summary

Cm5 is a modular multiprocessor system based on the LSI-1 1 processor. Each computer
module (Cm) is connected via an interface (S.local) to an intelligent cluster controller, K.map.
The clusters of Cms can be interconnected via Linc’s and interc iuster buses. Each Cm can
share memory with any other Cm in the network through routing tables in the K.m.p. The
S.local controls local memory access and passes external ref rences (i.e. to memory elsewhere
in the cluster or in a different cluster) to the K.map which does the appropriate mapping arid
routing of the request. The K.msp enforces a capability based protection scheme end
provides considerable support for operating system primitives and interproc.ss
communication. The architecture provides for incremental extensibility, modularity, reliability,
and an effective cost/performance ratio. The companion paper (1] in this issue prov ides a
more detailed descrip tion of the Cm* architecture.

3.4.2 Probabilistic hard failur, model for Cat5

Due to the flexibility of the Cm5 architecture, two particular configuratIons were selected
- for comparison. Figure 14 shows the case where there are two parallel intercluster buses

and all th. clusters are connected to these two buses via Linc’s. FIgure 15 shows the case
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Figure 13. C.mmp with 64Kw per port, high reliability components,
- 

12 processors and 512Kw required (distributed switch)

_____ - -~- ~~~~~~~ — — — i~~ __~~~~~ _~ 
- —----- -~~~~~~~~~~~ — -~~ 

- 1- . -



- - - - - -—- -- -,-~~~
-, — - --,- - - - - - - ----  —— —-—--—--------

~~~~~
- - - - -

42

where the buses form a checkerboard pattern, again each cluster Is connected to two of the rn

buses via two Line’s. No two clusters are connected to the same two buses in this
configuration. Table 12 depicts the effect of module failure in Cms, Table 13 lists the
architectural parameters, Table 14 shows the minimal module requirements, Table 15 lists the
reliability parameters, Table 16 summarises the failure rates for the modules as calculated by

- AUTOFAIL

Module Effect ~~ failure

Proceseor Loss of processor.
Memory module Lose of memory module.
S. local Lose of CII, -

K .map Loee of cluster ,
Uric Loss of l ink,

isolation of cluster in the case of
two Linc failures.

Inter c luster bus Loss of bus,
perhaps separation of clusters.

Table 12. Effect of module fai l ure. in Cm~’

C Number of clus te r s
P Number of processors per cluster .
II Number of memory modules per DI.
B Number of intercl ueter buses.

Table 13. Arch i tec t ural parameter s

- -
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Module Minimum number

Processor fl

Memory module m

S.local MS — Max ( n , I —s-’ 1)

(ma p Max [ r .-p—i ,r.-~j~i ]
Line M a x [ I — ~-1,I-~~p 1)

Bus 1 (two parallel bus)
(depends on the structure)

Table 14. Minima l module requirements .
(n,m a function of application requirements, the rest der i ved).

. •

Rproc Reliability of processor in Cm

Rmem Reliability of a memory module

Rsjoc,i Reliability of S local

~~~~~ Reliability of intercluster bus
• 

~~~~~ Reliability of K.map -

Rile Reliability of Unc

Reliability of i clusters that can communi cate

Table 15. Reliability parameters

11n aS The c.$cul.lion. Q~.,, .s.uu..d I. b. 1.
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EOUIPMENT CHi~$ GATES ~JI~ X/Mhr

Computer Module - 
- 

-

LSI- 1 1 with 4K word memory 69 7145 99,328 29.893
151-11 without 4K word memory (proc) 53 7145 33,792 12.902
4K word memory (mem) 56 438 65,536 23.139
Serial Line Unit 28 918 0 4.689
Power distribution 6 74 0 0.973
Memory refresh control 14 231 0 2.664

S.loca l (s.lo cal) 126 3700 5376 24.059

K.rnap (k.map)
Map bus controller, Kbus 138 8494 12,480 33.360
Mapping processor, Pmap 155 3892 2816 35.600
Segment descriptor memory 147 1081 92,160 35.454
Microcode memory 116 376 84,480 26.581

Line (line) 150 3443 32,960 34.836

Table 16 Complexities and predicted failure rates for modules in Cm5

Consider the three cluster checkerboard connected Cm (Figure 15). It is evident that the
checkerboard is not a regular structure, i.e. failure of modules of the same type do not have
an equivalent effect on the system functionality. For example, failure of K.map number 1
leaves a two isolated cluster system, whereas failure of any of the two other K.map’s
(numbers 2 and 3) leaves a singte two connected cluster system, etc. This irregularity
complicates the generation of an analytical solution for reliability of large arbitrary Cm5
structures. A program was wr itten to enumerate all possible functional cases based on the
states of the subset of modules that are required for inter-cluster communication (I.e. buses,
K.map ’s and Line’s) in the Cm5 architecture. For each of the cases, the closed form analytical
solution for the resultant clusters was used to generate the contr ibut ion to reliability for that
particular case. The reliability of the entire structure is then a combination of the reliability
of these special cases. The number of cases enumerated in this fashion is very much less
than the total number of functional states which the structure may occupy. At any stage of
enum ration the available modules wilt be checked against the minimum requirements, if they
do not satisf y the minimum requirements that case will not be considered further.

The system reliability will be evaluated wit h respect to the module failur. effects,
architectural parameters, minimal module requirements and reliability parameters in Tables 12
13, 14, and 15.

To evaluate the reliability of the whole system we follow the example in Section 3.2,
i.e. calculate the contribution to the system reliability of each working state. The overa ll
reliability of the system will be sum of the contributions of all the working states.

The general formu la for system reliability to be derived in this section is valid for any Cm5
strusture (parallel bus, checkerboard pattern, etc). Assume after the failure of ~ buses, ~

_____  — --- -- - ~~~~~~~~~~~~~~~~~~~~~ --- - -——--- - --- --  - 
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K.maps’s and c Linc’s there exist f sets of intercommunicating clusters. Each set has qi
connected clusters. Any of the parameters used in the following equations and not mentioned
are previously defined in the tables.

f
let Rqj — reliability of set I ( qi — C) -

i—i -

Then the reliability of the whole system is

f
Psys4l H (1_Rqi)] ~~~~ ( 1Rbus)~ ~~~~~ (lR ic.map)$ *

i-O

R~’~ (1—R . )( -

linc linc

(It is assumed that each cluster is connected to two buses.)

where Rqj — 0 if set i does not satisfies the minimum requirements and

qi*P-MS
Rqj — ~ (~~*i~) R~ r~;? (1 ‘.Rs loc.i )6 R1

a-0

and -

qiaP~
_
~( ~~ ( qis~-a) ~~~~-a-b (1 ‘Rproc )b ) *

- b—0

(qi*P-a)sM-m( ~~ ( (qi*P_a)*M ) g(qi*P..a)*M-e ‘1-R c )e mem ‘ mem’
e—0 

-

The further evaluation of R5~5 Is a function of the particular Cm* structure. Consider the
checkerboard structure with identically configured clusters and an application can be met by
a single clusters Then there are six possible major states of the configuration in Figure 15• which provide at least one functioning cluster. They are:

1. All components function

2. All components function except at least one Uric is failed

3. Both Int~rclust*r buses function, all four Lines function, one or two K.map ’s are
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failed

4. Both lntercluster buses function, one or two K.map’s are failed, at least one Line
is failed

5. At least one Intercluster bus is failed, all K.map’s and all their Lincs function

6. At least one Intercluster I~us is failed, one or two K.map’s are failed.

Note that each of these cases consists of several sub-cases. The system reliability R5y5 IS
the sum of the reliabilities in each of the six cases above. As an example, we shall only
derive the equations for Case 2 in which all the components function except at least one Line
which is failed. The other cases can be derived in an analogous manner. With the notation of
Table 15 we have the following sub-cases:

a) All components work except exactly one Line

R — R
~us * ~~map * ~~n ( 1R;inc) $

(
~
) E1_(1_ Rq2X 1_Rq~))

The failure of exactly one uric implies that at least two clusters will still be able to
communicate while the third is isolated. The term within “trs is the probability that the
task’s processor and memory requirements are met either by two communicating clusters
(Inclusive) OR by one isolated cluster.

b) All components function except exactly two Lines

R — * ~~ma1,~ * 
R~nc( 1R line)2 

*

(2(1 ( 1 ‘Rq2X 1 Rq j  )).((~)-2)s( 1 ~ l R q ~
]} 

-

Two Lines can fail in a symmetric fashion (Lines 1 and 3 or 2 and 4 in Figure 15) or in an
asymmetric fashion (Lines 1 arid 2 or 3 and 4). In the former case we have one isolated
cluster and two communicating ones. This is reflected by the first term in 1j”s within fl ”s, in
the previous equation. In the latter case we have three isolated clusters. This gives rise to
the second term in “fl’s within ‘fl ’s, in the previous equation.

c) All components function except exactly three Lines. There will be three isolated
clusters.

—- - ---. — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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R — * ~~map * 
(~)Riinc(1_R iinc)3[1_ (1 Rqi)3]

d) All components function except exactly four Lincs. Again all three clusters are isolated.

R — R
~us * R~.map * (1R iinc)~

[1_(1_Rqi)3]

The reliabilities in each of the other five cases may be calculated in a similar way. The
above model was programmed using predicted failure rates from the modified MIL Hdbk 2178
model described in Section 2. Some of these failure rates are summarized in Table 16.
Curves were plotted for the reliability of the Cm5 model configurations for various values of
p and m.

The configuration parameters used in plotting the curves are for a three cluster model
Cm5. Each cluster has three Cm’s and each Cm has a total number of 8, 4Kw memory modules.

Figure 16 illustrates reliability of a system with two parallel buses for various values of
required processors (e.g. 3, 6, and 9, assuming 8, 4Kw memory modules per Cm and only
144Kw of memory required). - 

-

Figure 17 illustrates the reliability when all of the memory modules (288Kw) are required.
This curve shows no improvement due to redundant processors, because memory has
dominated the reliability contribution of the spare processors.

Figure 18 depicts the reliability of a system equivalent to that of Figure 16 but using a
checkerboard pattern for the interciuster buses. A careful look at these two curves shows
that the two parallel bus system is slightly more reliable. Figure 19 plots a curve from each
configuration (i.e. the one with six processors required) on the same graph.

Figure 20 shows the case when six processors and 144Kw or 288Kw of memory are
required. A 50?. redundacy in memory yields a substantial increase in system reliability.

The configuration for a Cm’ system for optimum reliability for a given set of minimum
requirements has not yet been determined. The effect of interconnection structuro on
system reliability is ongoing research.

____  
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.5 CHECKERBOARD PATTERN PARALLEL BUS
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I

3.5. C.vmp, A Voted Multiprocessor

3.5.1 Architecture Summary

C.vmp may best be described as a multiprocessor system capable of fault-
tolerant operation (Figure 21). It consists of three separate LSI-1 1 microcomputers
each with its own memory and peripherais. They may run independently as three
separate computers communicating through parallel line units (L In Figure 21).
Alternatively, they may be swi tched into what is termed voting mode under manual or
program control to form a triplicated LSI—1 1. In this mode all three processors run
identical programs operating on identical data. All signals at th. bus level are voted
upon by a majority voter in both the processor-to-memory direction as well as the
memory-to-processor direction. This form of triple modular redundancy (TMR) allows
the voted multiprocessor to continue operating under the situation where any one out
of three copies of any triplicated element (e.g. processor, memory, floppy disk, bus line -

etc.) suffers a hard failure. Confining the voting to the bus level makes fault-tolerance
transparent at the software level while allowing the use of off-the-shelf components.
The capability to switch between voting and independent mode under program control
allows dynamic tradeoffs between reliability and performance. A companion paper (1)
in this issue provides a more detailed descri ption of the C.vmp architec ture.

L. 
_ _
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3.5.2 Probabilistic Hard Failure Model for C.vmp

The effect of the failure of various modules and subsystems in C.vmp is shown
in Table 17 and the reliability parameters are presented in Table 18. The reliability
calculated for permanent faults is based on a parts count model of the system, using
the AUTOFAIL program described earlier. For these calculations, we assume a
hardware configuration for C.vmp consisting of three processors, 28K of memory per
processor, and the voter. The resulting values are shown in Table 19. Table 20
summarizes the failure rates for the various modules for two different voter designs.

MODULE OR SUBSYSTEM EFFECT OF’ FAILURE

Any single Processor Loss of a Processor
(System continues to function)

Any single Memory Loss of a Memory
(System continues to function)

Any single Voter bus interface
Processor bus side Loss of a Procesi or
Memory bus side Loss of a Memory
both Loss of a Processor and a Memory

(system continues to function
• in each case)

Voter control circuitry Loss of Voter
(two Processors may function
in independent mode)

Any one copy of any triplicated Lois of a Processor or a Memory
Bus line on Processor side respectively
or Memory side

Tabi. 17. Effect of module failures in C.vmp. 

~~~~~~~~~~~~~~~~
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RELIABILITY PARAMETER MEANING

R~ Reliabilit y of Processor
Rm Reliability of single 4Kw memory module -

R~, Reliability of triplicated part of the voter
R~ Reliability of non-triplicated part of voter

Reliability of the part of th. voter associated
with the external bus -

Table 18. Reliability parameters.

EOUIPMENT CHIPS GATES 
~~~~~ ~JMhr

LSI-1 1 Processor (each of 3) 53 7145 33,792 12.902

4K RAN (each of 7 per proc.ssor) 56 438 65,536 23.139

Bus Level Voter: Non-Triplicated Version
Control 22 189 0 3.165
Non-triplicated ‘portion: 44 803 0 8.543
Tri plicated portion (total for 3 buses) 143 1781 0 24.349

Bus Level Voter: Triplicated Version
Control 22 189 0 3.165
Triplicated portion (total for 3 buses) 263 4107 0 48.424

Confifuratipns:

Model 1: 3 LSI-1 1, 7x4Kw RAN/Processor, nontr iplicated voter.

Model 2: 3 LSI-1 1, 7x4Kw RAM/Processor, triplicated voter.

Lumped Failure Rates:

Model j~ 560.682 /Mhr. -

MOdSI~~ 576214 /Mw.

Table 19. ComplexitIes and predicted failure rates for modules in C.vmp

______ - - -. --~-~~~~
-
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Three cases are considered: -

> a nonredundant system consisting of only one processor with memory;

> a triplicated system with a nonredundant voter design; and

> a triplicated system with a redundant voter design--all devices in the data
paths of the voter, including the voter chips themselves, are triplicated. It

• should be noted that a large portion of the non-redundant voter is
replicated, such as the various bus interfaces.

• Now the reliability parameters for each case will be derived.

Reliability Parameters. Nonredundant System.. The nonredundant system has a
failure rate found by simple summation of the individual failure rates:

— e - (Lp + 7Lm) * T

Substituting the failure rates from Table 20 yields:

R — -174.9*1e

Lp — 12.902 LSI-1 1 processor module.
Lm — 23.139 Memory module (4K semiconductor RAM)

• For the nonredundant voter desi gn:
Lvp — 1.963 Portion of voter connected to processor bus
Lvm — 2.130 Portion of voter connnected to external bus
Lv — 4.024 Portion of voter connected to both buses
In — 11.708 Non-triplicated portion of voter

For the redundant voter design:
(vp — 3.311 Portion of voter connected to processor bus
Lvm — 3.189 Portion of voter connnected to external bus
Lv — 9.641 Portion of voter connect-ed to both buses
In — 3.165 Non-triplicated portion of voter (part of the control)

Table 20. Failure rates for system module.
for different voter designs

I
L -
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Reliabilit y Parameters1 Triplicated System. Nonredundant Voter. The reliability of
the triplicated system is found by summing the reliabilities for all states in which the
system is correctly operating. Each state is a combination of working and failed units.

The various parts are:

Pp — reliability of processor bus elements
— ~ 

-(Lp + Lvp) * T

~ e’~~~
865 * T

Rm — reliabiIit~ of a single 4K memory module

— e 23
~

39 * T

Rv — reliabiIi~y of the triplicated part of the voter

— e 4 °24 * T

Rn — reliability of the non-triplicated part of the voter
_ e~~ h 1 * 1

Re — reliability of the part of the voter associated with the external bus
~.-Lvm*T

Reliability Parameters. Triplicated System. Redundant Voter. If the voter is itself
redundant, the reliability factors calculated above become:

Rp _ e~~6.2l3*T 
-

Rm — ~-23.139 * I
Rv — e’9641 * ~

Rn _ 0.3.165*T
Re _ e 3189*T 

.

Reliability Model. The reliabilities for each operational state are:

1) At most one processor failed, at most one memory modul, per 4K
address range failed, voter and buses all working.

Ri — (3Rp2 - 2Rp3) * (3Pm2 - 2Pm3)7 s Rv3 * Rn * Re3 
-

2) At most one processor failed, single memory bus failed, voter and
all memory on the other two buses working.

P2 — 3 * (3Rp2 - 2Rp3) * Rm’4 * Rv3 * Rn * Re2(1 - Re)

j  3) One third of voter failed, all processors and memories on the other
two buses working.

I
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R3— 3 sRp3 *Rm ’4*Rv 2(1 - Rv) t Rn * Re2

The coefficient of three in R2 and R3 represents the three possible configurations for
‘nis error.

~ote that in the last case, the failure of a third of the voter masks the operation
of one processor-memory pair. Since it no longer matters whether that pair operates,
the Rp and Re terms are only squared. When added together, the tri plicated reliability
reduces to:

Rtrip — (3*Rm 2 - 2Rm3)7 * Rv3 * Re3 * Rn * (3Rp2 - 2Rp3)
• 3 $ (Rm7 * Rv * Re * Rp)2 

* Rn * (Rv(2 - 3Re - 2Rp + 2Re*Rp) + 1)

These three reliabilities , R~0~ and the two ca ses of Rtrjp, are plotted using the
derived reliability parameters in Figure 22. Note that the C.vmp system with a
nonredundant voter is more reliable than the C.vmp system with a fully redundant
voter except for reliabilities above 0.94, and a time period of less than 1600 hours.

1.00 ~~~~~~~

\ -.,
~~~~ 

— RELIABILITY OF NONREDUNDANT C.vmp
~~~ .90 - •~

• 
-- --- REL IABIL ITY OF RED UNDANT C.vn~

.80 \.
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.70 -
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‘
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Figure 22. Reliabilities of Simplex system and C.vmp
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4. Summary and conclusions
A modified MIL 2178 model was proposed after comparing semiconductor chip vendor data

to data from C-MU’s multiprocessor systems. A program, ALITOFAIL, embodies a
parameterized version of the modified model. AUTOFAIL was used to calculate failure rates
for the various modules in the three multiprocessor systems. Hard failure reliability models
were then presented using these calculated failure rates to provide a basis for consistent
comparison.

After careful studies of the curves presented in the previous three sections, several
interesting points are observed.

1- The lumped switch model for C.mmp shows the effect of dependency on a critical
- resource with relativel y high failure rate. In Figure 9 (lumped switch) the curves for 4, 8, 12
required processors drops almost linearly with time cancelling the reliability improvement due
to redundant processors and memory modules. Whereas in Figure 11 (distributed switch) the
curves for 4, 8, 12 required processors are almost flat up to 2000 hours, pointin g out the
reliability improvement due to redundant modules (processors and memory modules).
Substartial gain in reliability prediction can be obtained simply by more accurate modeling of
the systems and their failure modes.

2- Requirements for a large number of one type of module will dominate the reliability
improvement due to redundancy in other modules~ In effect, the module with the least
amount of redundancy behaves almost as a non~edundant system exhibiting a close to
exponential failure rate. Figure 10 shows that requiring 751 of the memory modules negates
the effect of redundant processors and all the curves for 4, 8, 12 required processors
coincide with each other. This should be true for any architecture. Figure 17 illustrates the
point for Cm5.

3- Small amounts of redundancy will improve system reliability. Beyond that limit, the
addition of any more redundant modules does not incease system reliability. Figure 11 shows
that for C.mmp, 8 redundant processors are the limit. 

-

4— High reliability components will increase the reliability of the system dramatically.

5- The level of modularization can have an impact. A study not included in this paper
examined the effect of 4Kw and 16Kw memory modules on Cmt. Due to the sharing of control
circuitry, the failure rate of the 16Kw memory module was less than four times that of the
4Kw memory module. In cases where a low percentage of the total system memory was
required, the 16Kw memory module was a better choice due to its lower failure rate.
However, if a high percentage of the total system memory was required, the 4Kw memory
module was superior since its lower level of modularity allowed a larger number of
operational system states.

The three architectures presented here had differing design goals. C.mmp was meant to be
a high performance multi-minicomputer. Cm~ was designed to be a highly available,
extensible, and modular mutiprocessor. C.vmp was a fault tolerant mutiprocessor with very
limited expandability.

Il ls difficult to compare the three architecture in terms of reliabtity. To get a feel for the
absolute retiablity of each architecture, a typical curve for each one of the three, based on
the actual hardware implementatic~n. is plotted in Figure 23 The curve for C.mmp required 4
of 16 processors, 5 12Kw out of 1 Mw of memory and a distributed switch. Cmt required 3 of
9 processors and 144Kw out of 288Kw of memory. It is important to note that the
architectures modelled In Figure 23 do not have the same procdssing power, however, C.mmp

- - -
~~~~~
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appears best for short missions and C.vmp for long missions.

Perhaps the bes t way to compare these architectures is to normalize them with respect to
a common fac tor , yielding differences from the actual existing implementations. This
normalization will indicate the effect of the processor/memory interconnection structures on
the system reliability. For examp le one of the common factors to normalize is the number of
processors and memory modules. Another factor is performance. Studies are in progress at
Carnegie-Mellon University to compare different interconnection structures under various
normalizations.
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