CELTO0VEY =d09 3114

CMU~CS-78-137

The Symbolic Manipulation of Computer Descriptions:

An Introduction to ISPS

Mario R. Barbacci

Department of Computer Science
Carnegie-Mellon University

16 August 1978

DISTRIBUTION STATEMENT

Approved for public rel
Distribution Unlimited 4

The development of ISPS is part of the research on the Symbolic Manipulation of Computer
Descriptions effort at CMU and is sponsored by the Defense Advanced Research Projects
Agency under Grant F44620-73-C-0074.

An earlier version of this document appears as Appendix 1 in Bell, C.G, Mudge.' JC,
McNamara, JE.: Computer Engineering: A DEC View of Hardware Systems Design. Digital Press
1978. Copyright -C- 1978 Digital Equipment Corporation, Maynard, Mass., reprinted by
permission.

e

Introduction to ISPS i

Table of Contents

1 Introduction 1
2 Instruction Set Processor Descriptions 1
2.1 Memory State 2

2.2 Processor-State 3

2.3 Instruction Format 4

2.4 Partitioning the Description 4

3 Effective Address 7
3.1 Address Computation 7

3.2 Indirect Addresses 8

3.3 Auto Indexing 9

4 Instruction Interpretation 9
4.1 Operation Code 0O\and: Logical And 11

4.2 Operation Code 1\tad: Two’s Complement Add 11

4.3 Operation Code 2\isz: Increment and Skip if Zero 11

4.4 Operation Code 3\dca: Deposit and Clear Accumulator 12

4.5 QOperation Code 4\jms: Jump to Subroutine 12

4.6 Operation Code 5\jmp: Jump 12

4.7 Operation Code 6\iot: Input/Output 13

4.8 Qperation Cade 7\opr: Operate 14

5 Other Features of ISPS 16
5.1 Constants : .16

5.2 Arithmetic Representation 16

5.3 Sign Extension ' i 17

5.4 Data Operators (in order of precedence) i 18
5.4.1 Negation and Complement: -, NOT 18

5.4.2 Concatenation: ® 18

5.4.3 Shift and Rotate: SLO,SL1,SLD,SLR,SRO,SR1,SRD,SRR Y18

5.4.4 Muitiplication, Division, and Remainder: #, /, MOD 18

5.4.5 Addition and Subtraction: +, - 18

5.4.6 Relational Operations: EQL,NEQ,LSS,LEQ,GTR,GEQ,TST . 19

i 5.4.7 Conjunction and Equivalence: AND, EQV 19
5.4.8 Disjunction and Non-equivalence: OR, XOR 19

5.4.9 Logical and Arithmetic Assignment: =, <= 19

‘ t
ACCESSICN for
NTIS vitite Section
poe vt Section O
UNANE? o
JUSTH AL i I "
8Y S—
DISTRBL L0, H LAY CODES
[Dist ~ ;‘j_r_(:r SPECIAL

I A s SATRBLAS B

e . arup—)
>

Introduction to ISPS °*

1 Introduction

This document introduces the reader o the ISPS! notation. Although some details have
been excluded, it covers enough of the ladguage to provide a “reading” capabiiity. Thus
while this document in itself might not be sufficient to allow writing ISPS descriptions, it
should be detailed enough to permit the reading and study of complex descriptions.

Not all the features of the notation are presented in the examples. For a detailed
explanation of the complete language the reader must consult the reference manual:
The ISPS Computer Description Language

Mario R. Barbacci
Gary E. Barnes
Roderic C. Cattell
Daniel P. Siewiorek

Departments of Computer Science
and Electrical Engineering
Carnegie-Mellon University
August 1977

There exists a compiler and a simulator for ISPS. These programs are written in BLISS-IO
and run on a DEC PDP-10 Computer under either TOPS-10, TOPS-20, or TENEX. For
information about software distribution contact:

Mario R. Barbacci
Department of Computer Science
Carnegie-Mellon University
Pittsburgh PA 15213
(412) 578-2578

or BARBACCI®CMUA on the ARPAnet.

2 Instruction Set Processor Descriptions

To describe the ISP of a computer, or any machine, we need lo define the operations,
instructions, data types, and interpretation rules used in the machine. These will be
introduced gradually, as we describe the primary memory slate, the processor state, and the
interprelation cycle. Primary memory is not, in a strict sense, part of the Instruction Set

11SPS is the second implementation of the ISP notation inireduced in Bell CG and A Newsll, Gomouter Siruciures:
Readings and Examples, McGraw-Hill Book Company, New York, 1971

Introduction to ISPS

Processor but it plays such an important role in its operation that it is typically included in
the description. In general, data types (integers, floating point numbers, cha}acters,
addresses etc.) are abstractions of the contents of the machine registers and memories. One
data type that requires explicit treatment is the "instruction” and we shall explore the
interpretation of instruclions in great detail.

We will use the PDP-8 ISPS desc}iption as a source of examples. In the presentation of
the PDP-8 registers and data types we will use the following conventions: 1) names in upper
case correspond to physical components on the PDP-8 (e.g., program counter, inten:bpt lines,
etc.), 2) names in lower case do not have a correspondent physical components (e.g.,
instruclion mnemonics, instruction fields, etc). -

2.1 Memory State

The description of the PDP-8 begins by specifying the primary memory that is used to
store data and instructions: :

M\Memory (B:4895] <B:11>, >

The primary memory is declared as an array of 4096 words, each 12 bits wide. The
memory has a name "M", and an alias "Memory”". These "aliases” are a special form of a
comment and are useful for indicating the meaning or usage of a register’s name. As in most
programming languages, ISPS identifiers consist of letters and digits, beginning with a letter.
The character "." is also allowed, to increase the readability. The expression [0:4095)
describes the structure of the array. It declares the size (4096 words) and the names of the
words (0,1,., 4094,4095).

The expression <0:11> describes the structure of each individual word. It declares the size
(12 bits) and the names of the bits (0,1,..,10,11).

It should be noted that bit and word "names” are precisely that, i.e., identifiers
for the subcomponents of a memory structure. These "names” do not necessarily
indicate the relative position of the subcomponents. Thus, R<7:3> is a valid
definition of a 5-bit register. The fact that the five bits are "named” 7,6,5,4,3
should not be confused with the 7th, 6th, etc. positions inside the register. Thus,
bit 7 is the leftmost bit, bit 6 is located in the next position towards its right, etc,,
while bit 3 is the rightmost bit.

Memory is divided into 128-word pages. Page zero is used for holding global Qariables,
and can be accessed directly by each instruction. Locations 8 through 15 of page zero have

" Introduction to ISPS 3

the special property, called auto-indexing, that when accessed indirectly, the contents of the
location is incremented by 1. These regions of memory can be described as part of M as
follows:

P.B8\Page.Zero(B8:127]<B:11> 1= M(B:1271<B:11>,
A.I1\Auto. Index(8:7]1<B:11> := P.B(8:15)<B:11>,

The word (and bit) naming conventions on the left hand side of a field declaration ar?
independent from the word (bit) names used on the right hand side. A.I[0] corresponds to
P.0[8), A.I[1] corresponds to P.0[9], etc.

2.2 Processor State

The processor state is defined by a collection of registers used to store data, instructions,
condition codes, etc. during the instruction interpretation cycle.

The PDP-8 has a 1-bil register L, which contains the overflow or carry generated by the
arithmetic operations, and a 12-bit register AC, which contains the result of the arithmetic
and logic operations. The concatenation of L and AC constitutes an extended accumulator
LAC. The structure of the extended accumulator is shown below:

LAC<8:12>,

L\ ink<> 1= LAC<@>,
AC\Accumulator<B:11> t= LAC<l:12>,

The expression <> indicates a single, unnamed bit (L is only one bit long and there is no
need to specify a name for it.)

The program counter is used to store the address of the current instruction being

~

executed as the machine steps through a program:

PC\Program.Counter<8:11>,

Twelve bits are needed in the PC to address all 4096 locations of MP.

In the PDP-8, 1/0 devices are allowed to "interrupt” the central processor. When a device
requires service from the central processor, it emulates a subroutine call, forcing the
processor to execute an appropriate 1/0 subroutine. The presence of an interrupt request is
indicated by setting the INTERRUPT.REQUEST flag. The processor can honor these requests
or not, depending on the setting of the INTERRUPT.ENABLE bit:

i Introduction to ISPS : a

INTERRUPT.ENABLE<>,
INTERRUPT.REQUEST<>,

There are 12 console switches which can be read by the processor. These switches are
treated as a 12-bit register by the central processor: '

SWITCHES<@B:11>,

2.3 Instruction Format

As most dala types and registers on the PDP-8, instructions are 12-bits long:

i\instruction<@:1l>,

An instruction is a special kind of data type. It is really an aggregate of smaller
information units (Operation Codes, Address Modes, Operand Addresses, etc.). The structure |
of the instructions must be exposed by describing the format. Most PDP-8 instructions
contain an operation code and an operand address:

op\operation.code<8:2> := i<B8:2>,
ib\indirect.bit<> t= <35>,
pb\page.B8.bit<> 1= j,
pa\page. address<8:6> t= i<5:11>,

op, ib, pb, and pa are abstractions that allow us to treat selected fields of the PDP-8
instructions as individual entities.

2.4 Partitioning the Descriplion

In ISPS, a description can be divided into sections of the form: .) |

Yoo section.name veve
<declaration>,
<declaration>,

: Yer section.name s
<declaration>,
<declaration>,

Each section begins with a header, an identifier enclosed between #* and *x. A section

iy e s

Introduction to ISPS i 5

consists of a list of declarations separated by commas. Section names are not reserved
keywords in the language, they are used to convey to the users of the description some
information about the entities declared inside ihe section. The register and memory
declarations presented so far could be grouped into the following sections: :

vee Memory.State ve

M\Memory (8:48395]1<B: 11>,
P.@\Page.Zero([B8:127]1<8:11> 1= M(B:1271<B:11>, .
AsI\Auto. Index(B:7) <B:11> t= P.B[8:151<B:11>,

vweve Processor.State v

LAC<8:12>,
L\Link<> 1= LAC,
AC\Accumulator<B:11> t= LAC<1:12>,
PC\Program.Counter<8:11>, i .
RUN<>,
INTERRUPT.ENABLE<>,
INTERRUPT.REQUEST<>,
SWITCHES<B:11>,

jx
!
|

Introduction to ISPS 6

veve Instruction.Format vevr

i\instruction<@:11s,

op\operation.code<B:2> := i<8:2>,

ib\indirect.bit<> 1= i<3>,

pb\page.B.hi t<> 1= i<h>,

pa\page. address<8:6> t= i<5:11>,

10.SELECT<@:5> 1= i<3:8>, ! device select

io.controi<B:2> 1= 1<9:1l>, ! device operation
10.PULSE.P1<> := jo.control<@s,
10.PULSE.P2<> := jo.control<l>,
[10.PULSE.P4<> := io.control<2>,

sma<> 1= <S>,
spa<> t= i1<5>,
sza<> 1= i,
sna<> i= i<B6>,
sni<> t= i<7>,
szl<> 1= i<7>,
is<> 1= 1<8>,
group<> := i<3>,
cla<> 1= i<h>,
clle> = <S>,
cma<> 1= i,
cmi<> tm i<7>,
rar<> s i<8>,
ral<> 1= §<9>,
rte 1= 1<18>,
iac<> t= i<ll>,
osr<> 1= 1<9>,
hit<> 1= 1<18>,

skip on minus AC

skip on positive AC

skip on zero AC

skip on AC not zero

skip on L not zero

skip on L zero

invert skip sense 2
microinstruction group ™
clear AC

clear L

compliement AC

complement L

rotate right

rotate left

rotate twice

increment AC

logical or AC with SWITCHES
halt the processor

G e tem cme com tems tem s s tew tem fm e tem Sem tem cmm Swm

We have added a few more field declarations. These are used to interpret the /0 and
Operate instructions. The POP-8 1/Q instruction uses the 9 bits of addressing information to
specify operations for the 1/O devices. These 9 bits are divided into a "device selector" field
(6 bits, I0.SELECT<0:5>) and a “device operation" field (3 bits, io.controi<0:2>). Note that
several alternate field declarations may be associated with the same portion of a register or
data type thus adding flexibility to the description. A comment is indicated by "!" and all
characters following ™" to the end of the line are treated as commentary and not as part of
the description. The PDP-8 Operate instruction’s address field is not interpreted as an
address but as a list of sub-operations. The reader can refer to the DEC PDP-8 processor

manuals for additional details.

e TP T AR, 4T S R T p—" T e 5
I S TR vy - e T A T ’ -

-

I s 1 AR

Introduction to ISPS 7

3 Effective Address

The effective address computation is an algorithm which computes "addresses” of data and
instructions:

veve Effective.Address vor

last.pc<B:11>,
eadd\effective.address<8:11> :=
Begin
Decode pb =>
Begin
@ := eadd ='00080 e pa, ! Page Zero
l := eadd = last.pc<B:4> @ pa ! Current Page
End Next

[f Not ib => Leave eadd Next

If eadd<B:8> Eqv #0881 => Mleadd] = Mleadd] + 1 Next ! Auto Index.
eadd = Mleadd)

End,

Since the memory of the machine is 4096 words long, addresses have to be 12 bits long.
Of the 12 bits in an instruction, 3 bits have been allocated for the operation code (op) and
there are only 9 bits (ib, pb, and pa) in the instruction register left for addressing
information. These bits, together with some other portions of the processor state, are
interpreted by the algorithm to yield the necessary 12 bits of addressing needed.

.

3.1 Address Computation

Instructions and data tend to be accessed sequentiélly or within address clusters. This
property is called "locality™. The PDP-8 memory is logically divided into 32 pages of 128
words each. The concept of locality of memory references is used to reduce the addressing
infor zation by assuming.that data are usually in the same page as the instructions that
reference them. The pa portion of an instruction is that "address within the current page”.
The pb portion on an instruction is used as an escape mechanism to indicate when pa is to be
used as an address within page 0 (M[0:127]) instead of the current page.

last.pc contains the address of the current instruction and is used to compute the current
page number.

The first step of the algorithm,

Introduction to ISPS 8

Decode pb =>
. Begin
:= eadd ='00008 e pa,
1 := eadd = last.pc<B:4> @ pa
End Next s

indicates a group of alternative actions, to be selected according to the value of the
expression following the "Decode” operator. The alternatives appear enclosed between
"Begin" and "End” and separated by ",". The expressions "0 :=" and "1 :=" are used to label
the statements with the corresponding value of pb. The alternative statements can be left
unnumbered in which case they are treated as if they were labelled "0:=", "1:=", "2:="_.. etc.

The effective address (eadd) is built by concatenating a page number with the page
address (pa). The "®" operator is used to indicate concatenation of operands. If pb is equal
to 0, page O is used in the computation. If pb is equal to 1, the current page number is used
instead. :

"

Constants prefixed with the character . represent binary numbers, 00000 represents a
5-bit string which is concalenated with the 7 bits of pa to yield the 12 bils needed.

The transfer operator, "=", modifies the memory or register specified on its left
hand side. If the right hand side has more bits than the left hand side, the right
hand side is truncated to the proper size by dropping the leftmost extra bits. If
the right hand side is shorter, enough O bits are added on its left until the length
of the left hand side is matched. Thus, the first conditional statement can be

« written as "0 := eadd = pa".

The expression <0:4> is used to select bits 0,.4 of last.pc. These 5 bits contain the
current page number, and, together with the 7 bits of pa, yield the necessary 12 bits.

3.2 Indirect Addresses

A full 12 bit target zddress can be stored in a memory location used as a pointer and the
instruction only needs to specity the address of this pointer location. Indirect addresses are
specified via a bit in the instruction register (ib) which indicates whether we have a direct
(ib=0) or an indirect (ib=1) address.

The second step of the algorithm,

I[f Not ib => Leave eadd

Introduction to ISPS

is separated from the previous by the operator "Next". The statement(s) preceding Next
must be completed before the statement following it can be executed. The first step
computed a preliminary effective address. The second step tests the value of ib and if it is *
equal to O then the preliminary effective address is used as the real effective address. If ib
is equal to 1, the preliminary effective address is used to access a memory location which
contains the real effective address. In the former case, the expression "Leave eadd” is used
to indicate the termination of the procedure (this is similar to a RETURN statement in many
programming languages).

3.3 Auto Indexing

Constants prefixed with the character "s" represent octal numbers. #001 represents the
following 9-bit string: '000000001. The procedure treats indirect addresses as special
cases. If a preliminary effective address in the range #0010:#0017 (8:15.) is used as an
indirect address (ib=1), the memory location is first incremented and the new value used as
the indirect address: '

[f eadd<B:8> Eqv #881 => M[eadd] = Mleadd] + 1 Next J
eadd = Mleadd]

By comparing the high order bits of eadd with 001 and ignoring the lower 3 bits we are
in fact specifying a range of addresses (#0010, #0011, #0012,.. #0017). Memory locations
#0010:40017 constitute the auto-indexing registers.

Regardless of whether auto-indexing took place or not, the last step of the algorithm uses
the preliminary effective address (which could have been modified by auto-indexing) as the
address of a memory location which contains the real effective address:

eadd=M[eadd]

4 Instruction Interpretation

The instruction interpretation section describes the instruction cycle i.e. the fetching,

decoding, and executing of instructions.

Introduction to ISPS 10

vee Instruction.Interpretation voe

interpret :=
Begin
Repeat Begin
i = MIPCl; last.pc = PC Next
PC = PC + 1 Next
execute () Next
[f INTERRUPT,ENABLE And INTERRUPT.REQUEST =>
Begin
M(B] = PC Next
PC =1
End

End
End,

The instruction cycle is described by a loop. The "Repeat” operator precedes a block of
statements that are to be continuously executed.

The instruction cycie of the machine
consists of four steps:

1. A new instruction is fetched (i = M[FC]).

2. The program counter is incramented (PC = PC + 1). It now points to the next

instruction. Under normal circumstances (i.e. unless a Jump takes place) this will
be the instruction to be executed next.

3. The instruction is executed (execute()).

4. Interrupt requests, if allowed are honored. The cycle is then repeated.

The ";" separator is used to indicate concurrency (i.e. two statements separated by “;" are
executed concurrently):

i = MPC]; last.pc = PC Next

Notice how the value of the program counter is saved in last.pc before it is incremented.

The effective address procedure relies on the fact that last.pc contains the address of the
current instruction.

The execute procedure describes the individual instructions:

Introduction to ISPS v 11

execute :=

Begin
Decode op =>
Begin :
#B\and := AC = AC And Mleadd()],
#l\tad := LAC = LAC + Mleadd()],
H2\isz := Begin
Mleadd) = Mleadd()] + 1 Next
If Mleadd) Eqgl 8 => PC = PC + 1
End,
#3\dca : = Begin
Mleadd(})] = AC Next
AC = 8
End,
#4\ jms = Begin
Mleadd()] = PC Next
PC = eadd + 1
End,
#S\jmp := PC = eadd(),
) #6\iot := input.output(),
#7\opr := operate()
End
End,

Instruction mnemonics can be indicated as aliases for the constants used to specify the
operation codes:

”S\dca %™ co000

4.] Operation Code 0\and: Logical And

If the operation code is equal to O, the contents of the accumulator (excluding the L bit)
are replaced by the logical product of the accumulator and a memory location. eadd() is used
to indicate that the effective address computation must be executed in order to obtain the
memory address.

4.2 Operation Code 1\tad: Two's Complement Add

The tad instruction follows the pattern of the previous instruction. Notice however, that
the complete accumulator (including the L bit) is involved in the operation. L will contain the
overflow or carry out of the sign position of AC.

4.3 Operation Code 2\isz: Increament and Skip if Zero

FT £ WRRBE AT e s

BSSpPeAA —

Introduction to ISPS o 12

This instruction is described in two consecutive steps, The first step indicates that some
memory location, specificd by the effective address computation, will be incremented by 1.

Notice the different uses of eadd in the statement:

Mleadd) = Mleadd()) + 1

The effective address is computed once, eadd(), and is used to fetch the memory
location, M[eadd()]. The result of the addition must be stored back in the same
memory localion. This is indicaled by using the effective address register, eadd,
on the left hand side, M[eadd]. eadd already contained the correct address and
there was no need to recompute it. In fact, because of the auto-indexing
operations performed during the effeclive address computation, the effective
address must be computed precisely once.

The second step of the instruction,
I1f Mleadd] Eql 8 => PC =« PC + 1
tests the result of the addition. If the result is equal to O the program counter is

incremented by one, thus in effect, skipping over the next instruction in sequence. Once
again, eadd is used instead of eadd() to avoid undesirable side-effects.

4.4 QOperation Code 3\dca: Deposit and Clear Accumulator

This instruction deposits the accumulator in a memory location and then clears the
accumulator (excluding the L bit).

45 Qperation Code 4\jms: Jump to Subroutine

This instruction alters the normal sequence of instructions by modifying the program

counter so that the next instruction will not be the one following the current instruction, but
the one located at a memory location specified by the effective address. The program
counter is stored into the location preceding the subroutine code (the result of eadd()). The
program counter is then modified to point to the first instruction of the subroutine (eadd + 1)

4.6 Operation Code 5\jmp: Jump

This instruction also modifies the normal sequence of instructions. It can be used to jump

S T T—

Introduction to I1SPS 13

to disjoint pieces of code. If we use ib=1 and specify the address of the location precéding
the subroutine, the result of the effcctive address computation will yield the return address
that was stored by the subroutine call.

4.7 Operation Code 6\iot: Input/Output

The input.output procedure describes two specific cases of I/0 instruction, namely those
used to control the interrupt mechanism:

input.output :=

Begin
Decode i<3:11> =>
Begin
#BB1\ion :=
Begin ! turn Interrupt ON
INTERRUPT.ENABLE = 1 Next '
Restart interpret
End,
#6B2\iof :=
Begin ! turn Interrupt OFF
INTERRUPT.ENABLE = 8
End, ~ .
Otheruise := No.Op() ! not implemented
End
End,

"Otherwise” can be specified in a Decode operation to indicate a default action to be
executed if none of the explicitly named cases (001 or %002) apply.: All other 1/0
operations default to a predefined ISPS procedure No.Op(), this is done simply to keep the

. examples short.

I/O operation 002 disables interrupts. It typically occurs as the first instruction’ of an
interrupt handling routine. 1/0 operation 2001 enables interrupts. It typically occurs at the
end of an interrupt handling subroutine. Its effect is delayed for one instruction (the return
from the subroutine) to avoid losing the return address if an interrupt were to occur
immediately. This is achieved by skipping over the last portion of the instruction
interpretation cycle:

1f INTERRUPT.ENABLE And INTERRUPT.REQUEST =>

The "Restart inlerpr.el" operation is used to indicale a return from the input.output
procedure, not to the place from were it was invoked (inside execute) but to the beginning of
the interpret procedure, thus bypassing the interrupt trapping for one instruction. ?

Introduction to ISPS

skip<>,

skip.group :=
Begin
skip = @ Next
Decode is =>

End,

14

4.8 Operation Code 7\opr: Operate

The Operate instruction encodes a large number of primitive "micro-operations” in the
address bils of an instruction. Some bits (e.g., cla) represent a micro-operation: by
themselves. Others (e.g., rt and ral) jointly represent a micro-operation. There are several
conditional skip micro-operations. These are grouped in a separate procedure for readability:

! invert skip condition

Begin

8 := Begin
If snl And (L Eql 1) => skip = 1}
1f sza And (AC Eql B) => skip = 1;
[f sma And (AC Lss @) => skip = 1
End, 4

l:= Begin
IF szlesnaespa Eql B8 => skip = 1;
If 92| And (L Eql B) => skip = 1;
1f sna And (AC Neq B) => skip = 1;

. I1f spa And (AC Geq B) «> skip = 1

End

End Next

[f skip «> PC = PC 4+ 1 . | Skip

M o T ST L
™ ‘

T

Introduction to ISPS 5

operate =

Begin
Decode group =>
Begin
8 := Begin ' ! group 1 .
lf cla => AC = B;
If cii => L = 8 Next
[f cma => AC = Not AC;
I[f cml => L = Not L Next
I[f iac => LAC = LAC + 1 Next
DOecode rt => ! rotate once or tuice
Begin
0 := Begin ! once
I[f ral «> LAC = LAC Sir 1;
I[f rar => LAC = LAC Srr 1
End,
1 := Begin ! tuice
I[f ral => LAC = LAC Sir 2;
I[f rar > LAC = LAC Srr 2
End
End
End, y
1l := Begin ' ! groups 2 and 3
Decode i<ll> =>
Begin ;
0 := Begin ! group 2
skip.group() Next
[f cla => AC = B Next
If osr => AC =« AC Or SWITCHES;
[f hit => RUN = 8
End,
1l e Begin ! group 3
[f cla => AC = B Next
No.Op() ! eae group
End
End
End
End
End

Several micro-operations can appear in the same instruction, however, not all combinations
are legal or useful. Micro-operations are executed at different points in time thus allowing
sequences of transformalions applied to the accumulator and/or link bit. For instance, in the
group | micro-operations, clearing AC/L is done before complementing them, this is. done
before incrementing the combined L®AC (LAC) register, and this in turn precedes the rotation
of L®AC.

» ;
Introduction to ISPS 16

5 Other Features of ISPS

Not all the features of the notation have been presented in the examples. This section will A
attempt to provide a list of the missing operations to help the readers follow larger 1
descriptions.

5.1 Constants

In general a constant is a sequence of characters drawn from some alphabet determined by
the base of the constant. The base of a non-decimal constant is given by a prefix character.
The alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet

2 ;i 8,1,?

8 # 8.1,2,3,4,5,6,7,?

18 8,1,2,3,4,5,6,7,8,9,? :
16 g 8.1,2,3,4,5,6,7,8,9,A.8,C,0,E,F,?

The character "?" can be used to specify a don't care digits. Its presence stands for any .
digit in the corresponding alphabet.

The length of a constant is measured in bits. Decimal constants are one bit longer than the
smallest number of bits needed to represent its value (beware that the use of don't care ("?")
decimal digits results in constants of unspecified length). Binary constants have one bit for
each digit explicitly'written. Octal constants have three bits for each digit explicitly written.
Hexadecimal constants have four bits for each digit explicitly written:

Example Length Bit Pattern
“10008 16 20010800082000302808
15 S 81111
#17 6 201111

3 *] 2 Be

; ‘griel 5 eriel
#?22 6 777018

A i) SR 515

" 5.2 Arithmetic Representation . et , t

Introduction to ISPS ' : 17

ISPS allows the user to specify arithmetic operations in four different representations:
Two’s Complement, One’s Complement, Sign Magnitude, and Unsigned Magnitude (the default is
Two's Complement.) To specify a different representation, the following modifiers can be
used:

Modifier Arithmetic Representation
{TC} Tuo's Complement

{0C} One's Complement

{SM} Sign Magni tude

{US}) Unsigned Magni tude

In all the signed representations, the sign bit is the leftmost position of the operand (1 for
negative numbers, O for positive numbers). The above modifiers can be attached to any
arithmetic or relational operator to override a defaull. They can also be attached to a
procedure declaration to set a default throughout the body. When attached to a section name
the default applies to all the declarations in the section:

test :=
Begin {OC} ! Default for the body
End,
veve Section.l voe (TC) ! Default for the section
"X =Y + (SM 2 ! Instance

Always remember that the arithmetic representation is a property of the operator, not the
operand. Thus, the same bit pattern can be treated as a Two’s complement or an Unsigned
integer depending on the arithmetic context in which it is used.

5.3 Sign Extension

All ISPS data operators define results whose length is determined by both the lengths of
the operands and the specific operator. Some operations require that their operands be of
the same length. This is usually accomplished by “sign-extending” the operands. In the
context of Unsigned Magnitude arithmetic, "sign-extension” is interpreted as zero-extension
(i.e. padding with Os on the left). In One's and Two's Complement arithmetic the expansion is

R B AR ST st som b

g et

. e —
r"rmvrnw i T EOEUNRC 5= -7 1 TS

Introduction to ISPS 18

done by replicalion of the sign bit. In Sign Magnitude arithmetic the expansion is done by
inserting Os between the sign bit and the most significant bit of the operand.

5.4 Data Operators (in order of precedance)

5.4.1 Negation and Complement: -, NOT

Unary - generates the arithmelic complement of the operand (the operation is invalid in .

Unsigned arithmetic.) The result is one bit longer than the operand. The NOT operator
generates the logical compiement of the operand. The result has the same length as the
operand.

5.4.2 Concatenation: @

The ® operator concatenates the two operands. The length of the result is the sum of the
lengths of the operands.

5.4.3 Shift and Rotate: SLO,SLI,SLD,SLR,SRO,SR1,SRD,SRR

These operators shift or rotate the left operand the number of places specified by the
right operand. The result has the same length as the left operand. The operators have the
format "Sxy" where “x" is either L(eft) or R(ight) to indicate the direction of movement. "y" is
either 0, 1, D(uplicate), or R(otate) to indicate the source of bils to be shifted in. Sx1 shifts
its left operand inserting ls in the vacant positions. SxQ is similar to Sx1 but inserting Os.
SxD inserts copies of the bit leaving the position to be vacated (not the bit being shifted out).
SxR inserts copies of the bit being shifted out (i.e. rotates the left operand).

5.4.4 Multiplication, Division, and Remainder: %, /, MOD

These operators compule the arithmetic product, quotient, and remainder of the two
operands, respectively. The lengths of the resuits are:

Operation Length of Result

e . Sum of lengths

/ Left Operand (dividend)
MOO Right Operand (divisor)

5.4.5 Addition and Subtraction: ¢, =

The + and -operators compute the arithmetic sum and difference of the two operands,

e et s i ek, .5t Al

st

Introduction to ISPS 19

respectively. The shortest operand is sign-extended and the resuit is one bit longer than the
largest operand.

5.4.6 Relational Operations: EQL,NEQ,LSS,LEQ,GTR,GEQ,TST

These operations perform an arithmetic comparison between the two operands. The
shortest operand is sign-extended and the result is either 1 or 2 bits long. The first six
operators (i.e. all except TST) produce a 1-bit result indicating whether the relation is True
(1) or Faise (0). The TST operator produces a 2-bit result indicating whether the relation
between the left and right operands is LSS (0), EQL (1), or GTR (2).

5.4.7 Conjunction and Equivalence: AND, EQV

These operators produce the logical product and coincidence operations of the two
operands. The shortest operand is zero-extended and the result is as long as the largest
operand. . ' .

5.4.8 Disjunction an& Non-equivalence: OR, XOR

These operators produce the logical sum and difference operations of the two operands.
The shortest operand is zero-extended and the resuit is as long as the largest operand.

5.4.9 Logical and Arithmetic Assignment: s, <=

The logical assignment operator, "=", l.runcates or zero-extends the source (right operand)
to match the length of the destination (left operand). The arithmelic assignment operator,
"<a", truncates or sign-extends the source to match the length of the destination.

SECUK. Ty

kASSIFIL.A TION OF THIS PAGE (When Data Entered)

‘_4

~

-

¢ L]

PO OCUMENTATION P

READ INSTRUCTIONS
BEFORE COMPLETING FORM

RE
“‘

RECIPIENT'S CATALOG NUMBER

AGE
F’sBVT ACCESSION NOJ| 3.

069 7

S. TYPE OF REPORT & PERIOD COVERED

o |)
L/J:lu-: S$YMBOLIC MANIPULATION OF COMPUTER Eugapin
DESCRIPTIONSs AN INTRODUCTION TO ISPS 4 | W:ﬁpom seR
B i ¥ ="/ CMU-CS-78-137)
7. AUTHOR(s) 8{_ConTRACY O NUMBER(s) ‘
[2~ Y S
7 . 5"\ ’ 3
Mario R.fBarbacci L2 F44620-73-C-0074y L2
il foic A 7 »

PERFORMING ORGANIZATION NAME AND ADDRESS

9. 10. ’
AREA 8 WORK UNIT NUMBERS '
Carnegie-Mellon University ////
Department of Computer Science 61101E AQ240bu/7
Pittsburgh, PA 15213 P {
1. CONTROLLING OFFICE NAME AND ADDRESS 12. RePORT OATE (J1J r@%}
Defense Advanced Research Projects Agency August—tby—t078.
1400 Wilson Blvd 13: NUMBER OB -BAGES ‘1
Arlington, VA 22209 2 (JRA % D))
T4, MONITORING AGENCY NAME & ADDRESS(if dilferent [rom Controlling Office) | 15. SECURITY CLASS] (of shia 1ok’
Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332 UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18, SUPPLEMENTARY NOTES
19 KEY WORDS (Continue on reverse side if necessary and identify by block number)
20 ABSTRAQT /Continue on reverse side If necessary and identify by block number)
his report introduces the reader to the ISPS notation. Although some
details have been excluded, it covers enough of the language to provide
a '"reading" capability. Thus while this document in itself might not be
sufficient to allow writing 1ISPS descriptions, it should be detailed
enough to permit the reading and study of complex descriptions. Not all
the features of the notation are presented in the examples. For a detailed
explanation of the complete language the reader must consult the reference
FORM
DD v 1473

uncLAssIFIED 402 08

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

P

SECURITY QLA;;;? ~-ATION OF THIS PAGE(When Data Entered) . . : o

~ ' v

20. Abstract continued.

N [2d .
\§)nmnual. The ISPS Computer Description Language, available from Departments
of Computer Science and Electrical Engineering, Carnegie-Mellon University.,

There exists a compiler and simulator for ISPS.
written in BLISS-10 and ron on a DEC PDP-10 Computer
TOPS-10, TOPS-20, or TENEX.

These programs are
under either

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

