


- -::~~~~ ;. ~~~~
-‘

~~

QIU-CS-78— 137

The Symbolic Manipulation of Computer Descriptions:

An Introduction to ISPS 
A

Mario R. Barbacci

Department of Computer Science
Carnegie-Mellon University

16 August 1978

H 
_

1 DI3TR
~ moN STATEMENT ITI 

B
L Appfoirsd tor public re1.aI~~j ,i[ ~DIaU1beUam Unliznft.d ~~~~~~~~~

The development of ISPS is part of the research on the Symbolic Manipulation of Computer
Descriptions effort at CMU and is sponsored by the Defense Advanced Research Projects
Agency under Grant F44620-73-C-007a.

An earlier version of this document appears as Appendix 1 in Bell, C.G., Mudge, iC.,
McNamara, J.E.: Comouter E ngineering: 

~ Q~ ~ 9! Hardware Systems Design. Digital Press
1978. Copyright -C- 1978 Digital Equipment Corporation, Maynard, Mass., reprinted by
permission.

- ,.~ -
.

~~~~~ ~~~~~~~~~~~~~~~~~~~ -
- 

~~~~~~~ —



_ _ _ _ _ _ _ _ _  
~~~~~~~ -—~~~~

---
~~~~~~~~ 

-- --
~~~~

. - -
~~~~~~~~~~~~~~~~~~

-

Introduction to ISPS

Table of Contents
1 Introduction 1
2 Instruction Set Processor Descriptions 1 £

2.1 Memory State 2
2.2 Processor State 3
2.3 Instruction Format 4
2.4 Partitioning the Description 4

3 Effective Address 7
3.1 Address Computation 7
3.2 Indirect Addresses 8
3.3 Auto Indexing 9

4 Instruction Interpretation 9
4.1 Operation Code O\artd: Logtcal And 11
4.2 Operation Code 1\tad: Two’s Complement Add 11
4.3 Operation Code 2\isz: Increment and Skip if Zero 11
4.4 Operation Code 3\dca: Deposit and Clear Accumulator 12
4.5 Operation Code 4\jms: Jump to Subroutine 12
4.6 Operation Code 5\jmp: Jump 12
4.7 Operation Code 6\iot: Input/Output 13
4.8 Operation Code 7\opr: Operate 14

5 Other Features of ISPS 16
5.1 Constants 16
5.2 Arithmetic Representation 16
5.3 Sign Extension 17
5.4 Data Operators (in order of precedence) ‘S 18

5.4.1 Negation and Complement: -, NOT 18
5.4.2 Concatenation: ~ 18
5.4.3 Shift and Rotate: SLO,SL1,SLD,SLR,SRO,SRI,SRD,SRR 18
5.4.4 Multiplication, Division, and Remainder: a, /, MOD 18
5.4.5 Addition and Subtraction: +, - 18
5.4.6 Relational Operations: EQL,NEQ,LSS,I..EQ,GTR,GEQ,TST . 19
5.4.7 Conjunction and Equivalence: AND, EQV 19
5.4.8 Disjunction and Non-equivalence: OR, XOR 19
5.4.9 Logical and Arithmetic Assignment: — <a 19

a

t

ACCtS~
,
~~ 

ft’ r 
—~~~~~~~~~

~‘ Section
DOC 

.. on 0
0

i t S

OlSt~ ‘~~ CODES
~PLCIM.

- 

I 
- .-

~

~-



.—~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ,~~~~~~~~~~~~- .

~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _

a

Introduction to ISPS • 1

1 Introduction

This document introduces the reader to the ISPS 1 notation. Although some details 1,
~ve

been excluded, it covers enough of the language to provide a readingu capabiiit),. Thus
while this document in itself might not be sufficient to allow writing ISPS descriptions, it
should be detailed enough to permit the reading and study of complex descriptions.

Not all the feat ures of the notation are presented in the examples.. For a detailed
explanation of the complete language the reader must consult the reference manual:

Th. ISPS Computer Description Languag .

Mario R. Barbacci
Gary E. Barnes

Roderic C. Cattell
Daniel P. Siewiorek

Departments of Computer Science
and Electrical Engineering

Carnegie—Mellon University
August 1977

There exists a compiler and a simulator for ISPS. These programs are written in BLISS-lO
and run on a DEC POP-lO Computer under either TOPS-lO, TOPS-20, or TENEX. For
information about software ’ distribution contact:

Mario P. Barbacci
Department of Computer Science

Carnegie-Mellon University
Pittsburgh PA 15213

(412) 578-2578

or BARBACCI,DCMUA on the ARPAn.t.

2 Instruction Set Processor Descriptions
To describe the ISP of a computer , or any machine, we need to define the operations ,

instructions , data types , and interpr etatio n rules used in th, machine. These will be
introd uced graduall y, as we describe the primary memory stats , the processor state , and the
interpretation cycle. Primary memory is not, in a strict sense , part of the Instruction Set

1ISPS is 1k. ~~cond impIii’~sMst*e sI iks ISP ~ tsh ii øI,odvcsd ~ 50 C.G ..id A NswO, C.mevt.r St,uctuv.s ~
~ g Examois s. McC,ew-HsM B..k ~~~~~~~~ Nw Ysik, 1 171

______ — 
—‘ ~~~~~~~~~ .S ~~~~~ _~~~~~_ ,._k 

~~~~~~
-.



-
~

---- --- .

Introduction to ISPS 2

Processor but it plays such an important role in its operation that it is typically included in
the description. In general, data types (integers, floating point numbers, characters ,
addresses etc.) are abstractions of the contents of the machine registers and memories. One
data type that requires explicit treatment is the “instruction0 and we shall exp lore the
interpretation of instructions in great detail.

We will use the PDP-8 ISPS description as a source of examples. In the presentation of
the PDP-8 registers and data types we will use the following conventions: 1) names in upper
case correspond to physical components on the PDP-8 (e.g., program counter, interrupt lines,
etc.), 2) names in tower case do riot have a correspondent physical components (e.g.,
instruct ion mnemonics, instruction fields, etc).

2.1 M.mory Stat.

The description of the PDP-8 begins by specifying the primary memory that is used to
store data and instructions:

M\Meinor~ (0:4895
] <0:11).,

The primary memory is declared as an array of 4096 words, each 12 bits wide. The

memory has a name “M”, and an alias “Memory”. These “aliases” are a special form of a
comment and are useful for indicating the meaning or usage of a register’s name. As in most
programming languages, ISPS identifiers consist of letters and digits, beginning with a letter.
The character “

.
“ is also allowed, to increase the readability. The expression (0:4095’]

describes the structure of the array. It declares the size (4096 words) and the names of the
words. (O,1,~, 4094,4095).

The expression <0:11> describes the structure of each individual word. It declares the size
(12 bits) and the names of the bits (O,1,...,1O,11).

It should be noted that bit and word “names” are precisely that , i.e., identifiers
for the subcomponents of a memory structure. These “names” do not necessarily
indicate the relative position of the subcomponerits. Thus1 RC7:3> is a valid
definition of a 5-bit register. The fact that the five bits are “named” 7,6,5,4,3
should not be confused with the 7th, 6th, etc. positions inside the register. Thus,
bit 7 is the leftmost bit, bit 6 is located in the next position towards its right , etc.,
while bit 3 is the rightmost bit.

Memory is divided into 128-word pages. Page zero is used for holding global variables ,
and can be accessed directly by each instruction. Locations 8 through 15 of page zero have

-

~

--

~~~~~~~ 

~~~~
- - .  - 

~~~~~~~
-

~~
-—- 

~~~ 
‘
~~ 

- - i_~
_
~ - --~~~~~~— - -  —



_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _  -~ —

Introduction to ISPS 3

the special property, called auto-indexing, that when accessed indirectly, the contents of the
location is incremented by 1. These regions of memory can be described as part of M as
follows:

P.8\Pacje.Zero(8t1273 cøtll> :— M(8 1273 cø:11>,
A .I \Au to.I ndex (B:7]<B:lb. :~ P.8(8: 15] .cB:11>,

The word (and bit) naming conventions on the left hand side of a field declaration are

independent from the word (bit) names used on the right hand side. A.I(O] corresponds to

P.0(8), A.I(1) corresponds to P.0(9], etc.

2.2 Processor State

The processor state’ is defined by a collection of registers used to store data, instructions,
condition codes, etc. during the instruction interpretation cycle.

The PDP-8 has a 1-bit register L, which contains the overf low or carry generated by the

arithmetic operations, and a 12-bit register AC, which contains the result of the arithmetic
and logic operations. The concatenation of L arid AC constitutes an extended accumulat or
LAC. The structure of the extended accumulator is shown below:

LAC cB:12> ,
L\L ink c> :- LAC.cø>,
AC\Accuaiulator.cø:11> :- LACcl:lb ,

The expression c indicates a single, unnamed bit CL is only one bit long and there is no

need to specify a name for it.)

The program counter is used to store the address of the current instruction being
executed as the machine steps through a program: ‘S

PC\Program.Counter cø:11>,

• Twelve bits are needed in the PC to address all 4096 locations of MP.

In the PDP-8, I/O devices are allowed to “interrupt” the central processor. When a device
requires service from the central processor , it emulates a subroutine call, forcing the
processor to execute an appropriate I/O subroutine. The presence of an interrupt request is
indicated by setting the INTERRUPT.REQUEST flag. The processor can honor these requests
or riot, depending on the setting of the INTERRUPT.ENABLE bit:

_______ -4



Introduction to ISPS 4

INTERRUPT. ENABLEc>,
INTERRUPT. REQUESIc>,

There are 12 console switches which can be read by the processor. These switches are
treated as a 12-bit register by the central processor:

SUITCHES<ø:11> ,

2.3 Instruction Format

As most data types and registers on the POP-B, instructions are 12-bits long:

¶ i\instructi oncBill,,

An instruction is a special kind of data type. It is really an aggregate of smaller
information units (Operation Codes, Address Modes, Operand Addresses, etc.). The structure
of the instructions must be exposed by describing the fOrmat. Most PDP-8 instructions
contain an operation code and an operand address:

op\operation.codecø:2> :. icø:2> ,
ib\ i ndirect.bitc > :. <3> ,
pb\page.8.bit.c> :— <4> ,
pa\page.adcireeecB:S> a 1 5i11>,

op, ib, pb, and pa are abstractions that allow us to treat selected fields of the PDP-8
instructions as individual entities.

2.4 PartItioning the Description
In ISPS, a description can be divided into sections of the form:

** section.name **<dec l aration> ,
cdec larat i on> ,

** sec t ion.na me **<dec l aration > ,
cdsc l aration> ,
• • I • S •

Each section begins with a header, an identifier enclosed between cc and as. A section

______________________ — — — —- — —& --. - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



--

Introduction to ISPS ‘ 
•-. 5

consists of a list of declarations separated by commas. Section names are not reserved
keywords in the language, they are used to convey to the users of the description some
information about the entities declared inside the section. The register and memory
declarations presented so far could be grouped into the following sections:

~~~ Memory .State **
M\Mernory(8:4895]<8:11>,

P.8\Page.Zero(8:1271 cB:11> :— (1(8:127]c8:11>,
A .I\Auto.Index (8:7).cø:11> :— P.ø(8:lSLcB:11>,

** Processor.State **
LAC cR: 12>,

L\Link.c> :o LACcB>,
AC\Accumulator.cB:11> ;. LACcl:12> ,

PC\Program.CountercO:11>,
RUNc> ,
INTERRUPT. ENABLEC> ,
INTERRUPT.REOUESTc> ,
SW! TCHES.c0: 11>,

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



~ .‘ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Introduction to ISPS 6

** Ir istruct ion.Format **
i\iristructioncø:11> ,

op\operation .cocle<812> :- i cB:2,,
ib \iridirect.bit c> :— 1 <3,, -

pb\page.8.bitc> :- 1<4> ,
pa\page.address~8:6> : —  1<5:11>,

IO.SELECT<8:5> :— 1<3:8> , I dev i ce se l ect
io.control<ø :2> :— 1<9:11> , 1 device operation

IO.PULSE.P1 c> :- io.control.cB> ,
IO.PULSE.P2.c> a io.controlc1> ,
IO.PULSE.P4c> : —  io.control.c2,,

smac> := i c5>, ! skip on minus AC
spac> :— 1 <5>, ! skip on positive AC
sza<> :— 1 <6>, ! skip on zero AC
snac> :— i c6>, I skip on AC not zero
snic> a i c7> , I skip on L not zero
szl c> : —  <7>, I skip on L zero
i e<> : —  <8>, I i nver t skip sense
group<> :— <3>, I mi croinstruction group
clac> :— i c4>, I clear AC
c lIc> :— <5>, I clear L
ceac> :- 1<6>, I comp l ement AC
ce i c> :—  <7>, I comp l ement L
rar<> :. <8>, I rotate ri ght
ralc> : —  <9>, I rotate left
rt<> :—  1 <10>, I rotate twice
iacc> : —  1<11>, I i ncrement AC
osrc> : —  1<9>, I log i ca l or AC with SWITCHES
hlt c> :—  1<18>, ! halt the processor

a

We have added a few more field declarations. These are used to interpret the I/O arid
Operate instructions. The POP-B I/O instruction uses the 9 bits of addressing information to
specify operations. for the i/O devices. These 9 bits are divided into a “device selector ” field

• (6 bits, IO.SELECTc0:5’ ) and a “device operation” field (3 bits, io.controlc0:2>). Note that
several alternate field declarations may be associated with the same portion of a register or
data type thus adding flexibility to the description. A comment is indicated by “I” and all
tharacters following “!“ to the end of the line are treated as commentary and not as part of

• the description. The POP-B Operate instruction’s address field is not interpreted as an
address but as a list of sub-operations. The reader can refer to the DEC PDP-8 processor
manuals for additional details.

_______ _______ _________



-~~~ -- .— --- — -~~~~~~~~~~~ .- -—.-w —‘S- — — -- -
~~~~~

-
~~~~~~~~ 

-_ — _ _ _ _ _

Introduction to ISPS 
-

3 Effective Address

The effective address computation is an algorithm which computes “addresses ” of data and
instructions:

~ * Effective.Address **
last .pc cO:11> ,

eodd\effective.address<8:11> :—
Beg in
Decode pb ->

- Begin
8 :- eodd — ‘80028 e pa, ! Page Zero
I :- eadd a Iast.pc <0:4> e pa I Current Page
End Next

If Not lb -> Leave eadd Next
If eadd<8:8> Eqv #881 -> 11(eadd) - i1(eadd] + 1 Next I Auto I ndex .
eadd - M (eadd3
End,

Since the memory of the machine is 4096 words long, addresses have to be 12 bits long.
Of the 12 bits in an instruction, 3 bits have been allocated for the operation code Cop) and
there are only 9 bits (ib, pb, and pa) in the instruction register left for addressing
information. These bits , together with some other portions of the processor state , are
interpreted by the algorithm to yield the necessary 12 bits of addressing needed.

• 3.1 Address Computation

Instructions and data tend to be accessed sequentially or within address clusters. This
propert y is called “locality”. The PDP-8 memory is logically divided into 32 pages of 128
words each. The concept of locality of memory references is used to reduce. the addressing
infor~ ation by assuming.that data are usually in the same page as the instruc tIons that
reference them. The pa portion of an instruction is that “address within the current page”.
The pb portion on an instruc tion is used as an escape mechanism to indicate when pa is to be
used as an address within page 0 (M(O:127]) instead of the current page.

last.pc contains the address of the current instruction and is used to compute the current
page number.

The first step of the algorithm,

L 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~

_ - . 
~~~~~~~~~



_ _ _ _ _ _ _ _ _ _  
_ _  _ _ _

Introduction to ISPS 8 •

Decode pb ->

• Beg in
8 :— eadd — ‘00288 e pa,
1 : —  eadd - last.pc cB:4> a pa
End Next .

indicates a group of alternative actions, to be selected according to the value of the
expression following the “Decode” operator. The alternatives appear enclosed between
Begin ” and “End” and separated by “,“. The expressions “0 a” and “1 :— “ are used to label

the statements with the corresponding value of pb. The alternative statements can be left
• unnumbered in which case they are treated as if they were labelled ~‘0:a , ’” 1:a~’, “ 2:— ” ,... etc.

The effective address (eadd) is built by concatenating a page number with the page
address (pa). The ~~~~~

“ operator is used to indicate concatenation of operands. If pb is equal
to 0, page 0 is used in the computation. If pb is equal to 1, the current page number is used
instead.

• Constants prefixed with the character “‘“ represent binary numbers. ‘00000 represents a
5-bit string which is concatenated with the 7 bits of pa to yield the 12 bits needed.

The transfer operator , “ — “ , modifies the memory or register specified on its left
hand side. U the right hand side has more bits than the left hand side, the right
hand side is truncated to the proper size by dropping the leftmost extra bits. If
the right hand side is shorter , enough 0 bits are added on its left until the length
of the left hand side is matched. Thus, the first conditional statemen t can be
written as “0 :— eadd — pa”.

The expression <0:4> is used to select bits 0,..,4 of ast.pc. These 5 bits contain the
current page number, and, together with the 7 bits of pa, yield the necessary 12 bits.

3.2 Indirect Addresses

A full 12 bit target address can be stored in a memory location used as a pointer and the
instruction only needs to specify the address of this pointer location. Indirect addresses are
specified via a bit in the instruction register (ib) which indicates whether we have a direct
(ib—O) or an indirect ( ib— 1) address.

The second step of the algorithm,

If Not lb —> Leave eadd 

•- - •—
~~~~

—-
~~~~~~

--,— - -
~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~  •1L~~~~~ -~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction to ISPS 9

is separated from the previous by the operator “Next ”. The statement (s ) preceding Next
must be comp leted bef ore the statement following it can be executed. The first step
computed a preliminary effective address. The second step tests the value of lb and if it is
equal to 0 then the preliminary effect ive address ~s used as t he real effective address. If ib~
is equal to 1, the preliminary effective address is used to access a memory location which
contains the real effective address. In the former case , the expression “Leave eadd” is used
to indicate the termination of the procedure (this is similar to a RETURN statement in many
programming languages).

3.3 Auto Indexing

Constants prefixed with the character “
*
“ represen t octal numbers. *00 1 represents the

following 9-bit string: ‘000000001. The procedure treats indirect addresses as special
cases. If a preliminary effective address in the range c0010:n0017 (8:15) is used as an
indirect address (lb—i ) , the memory location is first incremented and the new value used as
the indirect address:

If eadd<2 :8> Eqv #021 —> t1 (eadd] - t1(eadd] + 1 Next
eadd - Mteadd]

By comparing the high order bits of eadd with *00 1 and ignoring the lower 3 bits we are
in fact specif ying a range of addresses (*0010, *00 11, *0012,... *00 17). Memory locations
*0010:n00 17 constitute the auto-indexing reg isters.

Regardless of whethe r auto-indexing took place or not , the last step of the algorithm use’s
the preliminary effective address (which could have been modilied by auto-indexing) as the
address of a memory location which contains the real effective address:

eadd-i1 (eadd]

4 Instruction Interpretation

The instruction interpretation section describes the instruction cycle i.e. the fetching,
decoding, and executing of instructions.

— _ _ 1  
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• .
.-



Introduction to LSPS 10

*~c Instruct ion. Interpretat ion ~~

interpret :—
Beg in

• Repeat Beg in
I - M (PC]; last.pc — PC NextPC - P C + l N ext

• execute () Next
I f INTERRUPT.ENABLE And INTERRUPT.REQUEST ,

Begin
11 (8]  — PC Next
P C - i
End

End
• End, -

The instruction cycle is described by a loop. The “Repeat” operator precedes a block of
statements that are to be continuously executed. The instruction cycle of the machine
consists of four steps:

1. A new instruction is fetched (i — M[FC)).

2. The program counter is incremented (PC — PC + 1). It now points to the next
instruction. Under normal circumstances (i.e. unless a Jump t akes place) this will
be the instruction to be executed next.

3. The instruction is executed (executèØ).

4. Interrupt requests, if allowed are honored. The cycle is then repeated.

The “;“ separator is used to indicate concurrency (i.e. two statements separated by “;“ are
executed cnncurrently):

I - M (PC) ; last.pc — PC Next . 
- .

Notice how the value of the program counter is saved in last.pc before it is incremented.
The effective address procedure relies on the fact that last.pc contains the address of the
current instruction.

The execute procedure describes the individual instructions:

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~~ 

—
~~~~~ . :: ~~~~~~. ~~~~~~~~~~~~~~~~ 

-
~~ •



-

Introduction to I$PS 11

execute :-
Begin

• I Decode op ->
Beg in
#8\and :- AC - AC And fl (eaddO) ,
#1\tad :- LAC - LAC + M (eaddOl ,
#2\isz :— Begin

11(eadd] a IlteaddUl + 1 Next
If .t1(eaddl Eql B —> PC — PC + 1
End,

#3\dca :- Begin
• t1 (eadd()] — AC Next

A C - B
End,

#4\j ms :- Beg in
Il leaddU] - PC Next
PC - eadd + i
End,

#S\jmp a PC — eadd~~,#6\iot :— i nput.outputU ,
#7\opr :— operate()
End

End, . 
-

Instruction mnemonics can be indicated as aliases for the constants used to specify the
operation codes:

#3\dca :—

4.1 Operation Code O\and: Logical And

If the operation code is equal to 0, the contents of the accumulator (excluding the L bit)
are replaced by the logical product of the accumulator and a memory location. eadd() is used
to indicate that the effective address computation must be executed in order to obtain the
memory address.

4.2 Operation Cod. 1 \t ad: Two’s Complement Add

The tad instruction follows the pattern of the previous instruction. Notice however, that
the complete accumulator (including the 1. bit) is involv,d in the operation. L will contain the
overf Low or carry out of the sign position of AC.

4.3 Operation Code 2\isz: Increment and Skip if Zero

~~~~~~~ II1_ —~~~~~~ -~~~-• ________ —- 
~~

_ .
- ~~~~

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~ .•



~~
— -

;,, ~~~~~~

_ ____

~

__ _ _•__ _ — —

Introduction to ISPS . 12

This instruction is described in two consecutive steps, The first step indicates that some
memory location, specified by the effective address computation, will be incremented by 1.

Notice the different uses of eadd in the statement:

t1(eadd] - M (eaddUl + 1

.

• The effective address is computed once, eaddO, and is used to fetch the memory
location, M(eaddO]. The result of the addition must be stored back in the same
memory location. This is indicated by using the effective address register, eadd,
on the left hand side, M(eadd]. eadd already contained the correct address and
there was no need to recompute it. In fact , because of the auto-indexing
operations performed during the effective address computation, the effective
address must be computed precisely once.

The second step of the instruction,

If f1(eadd3 Eql 9 -> PC - PC + 1

tests the result of the addition. If the result is equal to 0 the program counter is
incremented by one, thus in effect , skipping over the next instruction in sequence. Once
again, eadd is used instead of eadd() to avoid undesirable side-effects. .

4.4 Operation Cod. 3\dca: Deposit and Clear Accumulator

This instruct ion deposits the accumulator in a memory location and then clears the
accumulator (excluding the L bit).

4.5 Operation Cod. 4\jms: Jump to Subroutine

This instruction alters. the normal sequence of instructions by modifying the program
counter so that the next instruction will not be the one following the current instruction, but
the one located at a memory location specified by the effective address. The program
counter is stored into the location preceding the subroutine code (the result of eaddO). The
program counter is then modified to point to the first instruction of the subroutipe (eadd + 1).

4.6 Op.ration Cod. 5~jmp: Jump 
. 

.

This instruction also modifies the normal sequence of instructions. It can be used ~o jump

________ • ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



F: —
~~
-- -

~

- - 
• - I

I i

Introduction to ISPS 13

to disjoint pieces of code. If we use b— I and specify the address of the location preceding
the subroutine, the result of the effectiv e address computation will yield the return address
t hat was stored by the subroutine call.

• 4.7 Operation Code 6~iot: Input/Output
• The input.output procedure describes two specific cases of I/O instruction, namely those

used to control the interrupt mechanism:

input.output :-
Begin
Decode i<3 :11> —>

Beg in
#0B1\ion :- •

Begin I turn Interrupt ON
INTERRUPT.ENABLE - 1 Next
Restar t interpret
End,

#022\ io f  :-

Begin ! turn Interrup t OFF
INTERRUPT. ENABLE - 0
End,

Otherwise :— No.Op() I not imp lemented
End

End,

“Otherwise” can be specified in a Decode operation to indicate a default action to be
• executed if none of the explicitly named cases (*001 or .002) apply.. All other I/O

operations default to a preclefined ISPS procedure No.OpØ, this is done simply to keep the
• examp les short.

I/O operation *002 disables interrupts. It typically occurs as the first instruction of ,an

interrupt handling routine. I/O operation *001 enables interrupts. It typically occurs at the
end of an interrupt handling subroutine. Its effect is delayed for one instruction (the return
from the subroutine) to avoid losing the return address if an interrupt were to occur
immediately. This is achieved by skipping over the last portion of the instruction
interpretation cycle:

I f INTERRUPT.ENABLE And INTERRUPT.REOUEST -> ....
The “Restart interpret” operation is used to indicate a return from the input.output

procedure, not to the place from were it was invoked (inside execute) but to the beginning of
the interpret procedure, thus bypassing the interrupt trapping for one instruction.

— ~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
-



• — — • -  —--~~~

Introduction to ISPS 14

4.8 Operation Code l \opr: Operat .

The Operate instruction encodes a large number of primitive “micro-operations ” in the
address bits of an instruction. Some bits (e.g., cia) represent a micro-operation , by
themselves. Others (e.g., rt and ral) jointly represent a micro-operation. There are several
condilional skip micro-operations. These are grouped in a separate procedure for readability:

• sk i pc> ,

skip.group :-
Begin

• skip - 0 Next
Decode is -> ! inver t skip condition

Beg in
B :- Begin

I f snI And CL Eql 1) a> skip —
If sza And (AC EqI 0) —~ skip • 1;
If eisa And (AC Lee 0) -> sk ip — 1
End,

1 :— Begin
IF szlisnaespa Eql 0 a> skip — 1;
I f szl And (L EqI 0) a> s k i p  — 1;
I f sna And (AC Neq 0) -> skip - 1;
If spa And (AC Geq 0) a> s k i p  - 1
End

End Next
If s k i p a> PC .P C + 1  I Skip• End,

• I

•
~~~~ 

. ‘ -
~~

• -
~~

• —____

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~ ••- •~~~ ~~~~
- •~~~~ - - - •~~~~ ~~~ - - 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



Introduction to ISPS .15

operate :-
Begin
Oecode group a>

Beg i n
B :- Begin . 

group 1
If c ia •> AC — 0;
If ci t —> L a 8 Next
I f cma -> AC - Not AC;
If cml • L • Not L Next
I f b c  -> LAC — LAC + 1 Next
Oecode rt a> I rotate once or twice

Begin
0 :- Begin I once

U ral a> LAC a LAC Sir 1;
If rar -> LAC - LAC Srr 1
End,

1 :— Beg in I twice
If ral -> LAC - LAC SIr 2;
I f rar -> LAC - LAC Srr 2
End

End
End,

1 :—  Beg in 
. 

! groups 2 and 3
Decode 1<11> a>

Beg in
8 :- Beg in I group 2

ekip.group () Next
If c la -> A C . B N e x t
I f ocr -> AC - AC Or SWi TCHES;
If hit a> RUN — 8
End,

1 ;- Beg in ! group 3
I f cia — > AC - B Next
No.Op () I eae group
End

End
End

End
End

Several micro-operations can appear in the same instruction , however, not alt combinations
are legal or useful. Micro-operations are executed at different points in time thus allowing
sequences of transformat ions applied to the accumulator and/or link bit. For instance, in the
group 1 micro-operations, clearing AC/L is done before complementing them, this is. done
before incrementing the combined LsAC (LAC) register, and this in turn precedes the rotation
of L AC.

. 

•

~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~
, .*_. J~~_._~. _ _ *L .ri! ~~ — ——--- • • - . —

~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --..

Introduction to ISPS 16

5 Other Features of ISPS

Not all the fcatures of the notation have been presented in the examples. This section will
attempt to provide a list of the missing operations to help the readers follow larger
descriptions.

5.1 Constants

In general a constant is a sequence of characters drawn from some alphabet determined by
the base of the constant. The base of a non-decimal constant is given by a prefix character.
The alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet

2 ‘ 0,1,?
8 0,1,2,3,4,5,6,7,?
10 8,1~2,3,4,S,S,7,8,9 ,?
16 “ 8,1,2,3,4,5,6,7,8,9,A,B,C,O,E,F,?

The character “?“ c’an be used to specify a don’t care digits. Its presence stands for any .
digit in the corresponding alphabet.

The length of a constant is measured in bits. Decimal constants are one bit longer than the
smallest number of bits needed to represent its value (beware that the use of don’t care C””)
decimal digits results in constants of unspecified length). Binary constants have one bit for
each digit explicitly written. Octal constants have three bits for each digit explicitly written.
Hexadecimal constants have four bits for each digit explicitly written:

Example Length Bit Pat tern

“1000 16 0801000090900000
15 S 81111
#17 6 801111
0 2 90
‘0?181 5 8?i81

6 ???018

5.2 Arithmetic Representation

~ - ~~~~— -—~~~~- - ~~~~~~~~~~ ,~~~~ ~~~~~~~~~~~~~~~~~~~~~~



.
~~~~~~~ 

- 
——-

~~

-

~~~~~~~~~

——

~~~~~

— - ______  __________

Introduction to ISPS . 

17

ISPS allows the user to specif y arithmetic operations in four different representations:
Two’s Complement, One’s Complement, Sign Magnitude, and Unsigned Magnitude (the default is
Two’s Complement.) To specif y a different representation, the following modifiers can be
used:

Modifier Ar ithmetic Representation

ITCI Two’s Comp l ement
(OC ) One’s Comp l ement
(SlIP Sign liagn i tucie
IUS) Unsi gned Magnitude

In all the signed representations , the sign bit is the leftmost position of the operand (1 for
negative numbers, 0 ~or positive numbers). The above modifiers can be attached to any

arithmetic or relational operator to override a default. They can also be attached to a
procedure declaration to set a default throughout the body. When attached to a section name
the default applies to all the declarations in the section:

test :—
Beg in IOC) I Default for the body

End,

** Section.1 ** (IC) I Default for the section

X — V + (SlIt Z 1 Instance

Always remember that the arithmetic representation is a property of the operator , not the
operand. Thus, the same bit pattern can be treated as a Two’s comp lement or an Unsigned
integer depending on the arithmetic context in which it is used.

5.3 Sign Extension

All ISPS data operators define results whose length is determined by both the lengths of
the operands and the specific operator. Some operations require that their operands be of
the same len8th. This is usually accomplished by sign-extending” the operands. In the
context of Unsigned Magnitude arithmetic, “sign-extension” is interpreted as zero-extension
(i.e. padding with Os on the left), In One’s and Two’s Complement arithmetic the expansion’ is

.

____ — --.- --—--— __•__ _ _ _ _ _ __•%_ ----  - - - - - - - — -~~~~~~~~~~
- •• - - - - - --- - - - 

~~~~~~~



~~~~~~~~~~~ ~~~~~~~~~~~ —~~~~~ -~ - -

~~

Introduction to ISPS 18

done by replication of the sign bit. In Sign Magnitude arithmetic the expansion is done by
inserting Os between the sign bit and the most significant bit of the operand.

5.4 Data Operators (in order of pr.cedenc.)

5.4.1 Negation and Complement: -, NOT

Unary - generates the arithmetic complement of the oper and (the operation is invalid in
Unsigned arithmetic.) The result is one bit longer than the operand. The NOT operator
generates the logical complement of the operand. The result has , the same length as the

operand.

5.4.2 Concatenation:s

The ~ operator concatenates the two operands. The length of the result is the sum of the
lengths of the operands.

5.4.3 Shift and Rotate: SLO,SL I ,SLD,SLR,SRO,SR1 ,SRD,$RR

These operators shift or rotate the left operand the number of places specified by the

right operand. Th. result has the same length as the left operand. The operators have the
format “Sxy” where x” is either Uef t) or R(ight) to indicate the direction of movement. “y” is
either 0, 1, O(upiicate), or R(otate) to indicate the source of bits to be shifted in. Sxl shifts
its left operand inserting is in the vacant positions. SxO is similar to SxI but inserting Os.
SxD inserts copies of the bit leaving the position to be vacated (not the bit being shifted out).
SxR inserts copies of the bit being shifted out (i.e. rotates the left operand).

5.4.4 Multiplication, Division, and Remainder: *, I, MOD

These operators compute the arithmetic produc t, quotient, and remainder of the two
operands , respectivel y. The lengths of the results are:

Operation Length of Result

* ‘ Sum of l engths
/ Lef t  Operand (dividend )
MOO Ri ght Operand (divisor ) 

.

5.4.5 Addition and Subtraction: .,-

The + and -ope rators compute the arithmetic sum and difference of the two operands,

• -~“-—.-~ ~~~~~~~ ~~~~~~~~ ~~~~~~ “~ 
— -  ‘

~
- -

~~~~~~~~~~~~~~ _ _~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~

- : -,_~- —,



Introduction to ISPS 19

respectively. The shortest operand is sign-extended and the result is one bit longer than the
largest operand.

5.4.6 Relational Operations: EQL,NEQ,LSS,LEQP GTRIGEQ,TST £

These operations perform an arithmetic comparison between the two operands. The
shortest operand is sign-extended and the result is either 1 or 2 bits long. The first si~operators (i.e. all except TST) produce a 1-bit result indicating whether the relation is True
(1) or False (0). The 1ST operator produces a 2-bit result indicating whether the relation
between the left and e ight operands is LSS (0), EQL (1), or GTR (2).

5.4.7 Conjunction and ~quival.nc.: AND, EQV

These operators produce the logical product and coincidence operations of the two
operands. The shortest operand is zero-extended and the result is as long as the largest
operand.

5.4.8 Disjunction and Non-equivalence: OR, XOR

These operators produce the logical sum and difference operations of the two operands.
The shortest operand is zero-extended and the result is as long as the largest operand.

5.4.9 Logical and Arithmetic Assignment: a, <a

The logical assignment operator, “ — “, truncates or zero-extends the source (right operand)
to match the length of the destination (left operand). The arithmetic assignment operator ,
“<a”, truncates or sign-extends the source to match the length of the destination.

— . -~ ,- .



S’~.CUR. I ’, ‘ ASSII~ILA lION OF IHIS PAc,L (l$høn l)nta t.,,I.r,.d)

READ INSTRUCTIONSEPO OCUMENTATION PAGE
_________ 

IIEFORE COMPLETING FORM
3. R E C I P i E N T S  C A T A L O G  N U M B E R

TYPE OF R EPORT & PERIOD COVEREDd Sub 
— ______

Interim
~HE S~.YMBOLIC ~ANIPULATION OF ~PMPUTER _______________________________

~ ESCRIPT ION Sa ~ N INTRODUCT iON TO ISPS~~ ,4 ML~~~~~~~~~~
REP OR Ji.IJM aER

(J~~)CMU—CS—78—13fJ7. Aut.~I0R(a) aL,c.a.rrl.rAl l OR GRANT P~UMBER(a)

~~~~~~~~~~R./Barbacci ~~~~~~~ F4462~ -73—C—0O74~ 
1

~/ V A RFA ~~~~~~~~~~~~~I. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRESS b .  P~~,~~rne.w ~~~~~~~~~~~~~~~~~~~~~~~~~A R E . b~~~ W~~R$( UNIT NUM3 ERS
Cart egie-~Me1lon University
Depar tment of Computer Science 6llOlE AO24&x~/7
Pittsburgh,_ PA 15213 

_____________________________

lb. CONTROLL ING OFF ICE NAME AND ADDRESS 12. REPORT DATE 
~~~~~~~~~~~~~~ 

)
Defense Advanced Research Projects Agency Augu.& t 1-6-, 1-43&
1400 W i lso n Blvd 13 .  NUMBER OF P.A~~~ S~~~~~~

Arl ington, VA 222 09 ~~ U~~. •

II. MONITORING AGENCY NAME & A DDRE5S(j l  diffe rent from ControlUng Office) IS. SECUR ITY CLA SSt (9jJhla

Air Force Off ice of Scientific Research/NM
Boi l ing AFB , Wa sh ington , DC 20332 UNCLASSIFIED 

___________

IS.. DECLASSI  FI CAT IO N,  DOWNGRAD ING
SCHEDULE

lb. DISTRIBUTION STATEMENT (of fbi. RrporI)

Approved for public release; distribution unlimited.

I?. D IS T R I B U T I O N  S T A T E M E N T  (of lb. abst racl .nt.r.d in Block 20, II differen t from Report)

I&. SU P P L E M E N T A R Y  NO TES

19 ~ EY WO RDS (Cont :nue on fever.. .~,de if nec.aaary id Identify by block num ber)

20 A B S T R A c T  ?Conttnu. on ras.rae ad.  If n.c ,aa.ry and idenI t>• by oloek numbr.r)
‘
~~rli is report introduces the reader to the ISPS notation . Although some

details have been excluded , it covers enough of the language to provide
a “read ing’ capability. Thus while this document in itself might not be
sufficient to allow writing ISPS des criptions , it should be detailed
enou;~h to permit the reading and study of comp lex descriptions. Not all
the fea tures of the notation are presented in the examp les. For a detailed

exp lan.ition of the comp le te language the reader must consult the reference .

DD FORM 
~~~~~~~~

UNCLASSIFIED ~~~~~ C~~/1 J A N 73 u4i~
SECURITY CLAS SIF ICATI ON OF TH IS PA G E (A~,.n Data EnIe,.J)

_________ — - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
.
. 

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY ‘~ L AS ~ IF  .CAT ION OF THIS PA GE (W ~l.n Data Ent.r.ii) 
- 

. .

W

20. Abstract continued.

manual. The ISPS Computer Descri ption Language , available from Departments
of Computer Science and Electric al Engineering , Carneg ie—Mellon University.

There exists a compiler and simulator for ISPS. These prog rams are
wr itten in BLISS—b and ron on a DEC PDP—10 Computer under either
TOPS—b , TOPS—2O , or TENEX .

fc%

UNCLASS I FlED
SECU RITY CLASSIFICATION OF THIS PAGE (Wb,.n D•a Ent.r•d)

____ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
—~ - . .


