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ABSTRACT
\

~

This report describes the computer model NRFLO2 which has
been developed to calculate the near-field stratified turbulent flow

driven by the intakes and outflows of an ocean thermal power plant.

A two-dimensional geometry is assumed, with the power plant intakes
and jet outflows modelled by boundary conditions on the left boundary
of a rectangular domain. Horizontal flow through the right boundary,
to or from the far-field, is allowed by assuming a pressure in hydro-
static equilibrium with the ambient density distribution. The code
uses a first-order closure model to treat the stratified turbulence.
Advanced numerical methods enable convergent and accurate solutions
to be obtained rapidly and economically.

A simple laboratory simulation of two-dimensional stratified
turbulence driven by intakes and Jet outflows is proposed in order to
address the general question of near-flow recirculation., Such an
experiment would also provide vital data for verifying the code NRFLO2
and its successors, and for tuning the turbulenge parameters to give
the best agreement.stumerical results from NRFLO2 are presented for
the proposed experimental simulation. They confirm our analysis
predicting a stability limit on the far-field horizontal flow, and

demonstrate the occurrence of recirculation for fast flow cases.




X, INTRODUCTION

Estimates of the resource availability and environmental
impact of an ocean thermal power plant (OTPP) will require carefully
designed computer models of the flows driven in the ocean waters
immediately surrounding the plant. This report describes the computer
model NRFLO2 developed to study the stratified turbulent motions
resulting from the intakes and outflows of an OTPP. The application
of NRFLO2 to particular OTPP engineering design configurations, such
as discussed by Trimble (1975) and Douglass (1975), will be presented

in subsequent reports.

An ocean thermal power plant operating in tropical waters
uses warm surface water to boil a working fluid such as ammonia. The
high pressure gas generates power by passing through a turbine, and is
condensed at a low pressure using cold water from the deep ocean. A
typical 200 MW power plant would take in 5 x 10" cu ft/sec of water
from near the ocean surface, at about 80°F, and eject it at about 77°F.
A similar volume flux would be removed from the deep ocean (at depth
1500 to 4000 ft) at about 40°F, and ejected at about 43°F after being
used to condense the working fluid. Most designers envisage floating

plants, though the early prototypes may be on land.

Our study of the turbulent external flow near an OTPP has two
objectives. First, we wish to determine the average inflow temperatures,
since their difference constitutes the thermal resource. For certain
designs and ocean environments, there will be a substantial reduction in
the average temperature of the warm inflow water, due to turbulent
mixing and to recirculation of some of the outflow water from the plant.
Our second objective is to obtain results from these near-field studies
which can be used in calculating the far-field environmental impact of
OTPP operation. A detailed discussion of the far-field effects and their
background in geophysical fluid dynamics is given by Piacsek, Toomre, and
Roberts (1975). Our calculations to be discussed here are confined to the
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region near the plant, where the flows can deviate substantially from
the horizontal, and the turbulence is very much stronger than in the
ambient ocean. Far from the OTPP, the plant-induced addition to the
ambient ocean currents is practically horizontal, and the plant-

induced turbulence has decayed to negligible levels.

In this report, we describe a two-dimensional computer model
NRFLO2, which we have used to obtain numerical results onthe near-field
flow. The differential equations are presented in Section 2, together
with the first-order closure model used to represent the stratified
turbulence. In our formulation, an extra equation is solved for the
mean kinetic energy of the turbulent fluctuations. The single turbulent
diffusivity is obtained from this in a novel way which serves to
describe the physics of stratified turbulent transport and which does
not allow the turbulence to decay to zero in a finite time. A further

innovation aids in obtaining steady mean flows for strong stratification.

. Our representation of the multiple inflows and outflows
characteristic of an ocean thermal power plant is described in Section 3.
The computational domain is rectangular, with the upper boundary repre-
senting the ocean surface. The left-hand boundary is occupied by the
inlet and outlet ports of the OTPP. The finite computational domain is
intended to represent a semi-finite portion of the ocean, and thus our
other boundaries (lower and right-hand) must be suitably permeable and
with an appropriate thermal stratification. The boundary conditions
used to achieve this are described in Section U, together with the
inital conditions.

Section 5 provides a brief description of the numerical
methods which we have employed in NRFLO2 in order to obtain accurate and
convergent results. The code has been designed to be economical of
machine time, despite the complexity of the problem. Implicit time-
stepping is used to allow larger time steps as we evolve the solutions
to a steady state. A non-uniform computational mesh is used to achieve
good spatial resolution of the fairly complicated flow structures.

l Second-order accurate finite-differences are used throughout.




In Section 6, we propose and discuss a fairly simple labora-
tory experimental simulation of stratified turbulence driven by inflows
and outflows, in support of our theoretical studies. The experiment is
designed to investigate recirculation between the inlet and outlet
ports, a matter of critical concern in this effort.

In the final Section T, we present numerical results obtained
by applying our code NRFLO2 to the proposed laboratory experimental
simulation, for a range of flow rates. The results show that for low
flow speeds, the inflow and outflow drive relatively independent fluid
motions which are practically horizontal. Doubling the flow speed
produces significant turbulent recirculation between the inflow and
outflow ports, and doubling it again produces major recirculation.

Such simplified experiments should play an important role in the design
of actual OTPP prototypes.
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2. EQUATIONS AND TURBULENCE MODEL

In this section, we present the equations used in our NRFLO2
code to describe these stratified turbulent flows. The resulting
equations (13) are listed at the end of the section, so that the

discussion can be omitted on a first reading.

Using the usual Boussinesq approximation and a standard
notation, the full equations of heat, momentum, and continuity are

written as:

3,1 = {KT,j - ujT} v : (1a)
o S {‘P‘Sij bl DR S } 3 3
u =0 ‘ (1c)

Here uy is the velocity vector, T is temperature, and P is a modified
pressure. Further, V and Kk are respectively the kinematic viscosity
and the thermal diffusivity, and b is the upward buoyancy force

gdp/p, taken as gaT, where a, the coefficient at thermal expansion, is
assumed constant. The third coordinate (x3) is upwards, the usual
summation convention is implied, and all spatial derivatives are

indicated by the suffix notation, so that u denotes Suj/axi.

Joi
We will express the velocity field as:

where uy is the average of an ensemble of flow realizations, and u

-

i
is a particular turbulent fluctuation from this average. The other

variables like temperature will be written in the same form. Then
taking the ensemble average of equations (1) yields:

i
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3T -{& -EE-uv‘Lj : (2a)

} : : (2b)
ui’i =0 3 (2¢)

Here, the long overbars denote ensemble averages of products of the
turbulent fluctuations ug and T°. Thus, -G:E’ is the turbulent heat
flux, and -E;E: is the Reynolds stress. Subtracting equations (2)
from equations (1) yields the turbulent fluctuation equations,

atT {KT,j ujT - ujT - (ujT ) },j s (3a)

9 u =b 613 + {—P éij + v(ui ; +ul ) ~u.u

-ujui - (ujui) },j s (3b)

ui,i =0 . (3(‘.)

Tt is not practicable to solve equations (1) or (3) for a

very large number of flow realizations, in order to obtain the mean

temperature distribution T and the mean flow uy by averaging. Instead,
statistical turbulence models (Piacsek, Toomre, and Roberts, 1975) are
used to obtain equations for u'T  and uJui which are partly empirical,

i
but are motivated by equations (3).
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In zero-order turbulence modelling, the turbulent heat flux

and the Reynolds stress are determined by the.equations

ﬂ'ﬂ'_ - froan”
-uJT = (K K)T,j 3 (ka)
——— = = 2
-uJui R \))(ui,J + uJ,i) -3 EGiJ . (L4p)

where the turbulent diffusivity K is an imposed function of position,
and E is the turbulent kinetic energy density %u{u;. In general, X can
be a tensor rather than a scalar, and can be different in equetions
(4a) and (Lv).

In second-order statistical turbulence mcdelling, the

Py

quantities uiT and uiu{ obey partial differential equations, with time
derivative terms, advection terms, generation terms, diffusion terms,

and decay terms. These equations are as far as possible derived from

equations (3), but are partly empirical, involving concepts such as
the length scale or turnover time of the turbulence, as in the following

discussion of first-order closure.

We adopted for the code NRFLO2 a first-order statistical
closure model using equations (4), with K determined from an imposed
length scale L and a turbulent kinetic energy equation. This equation
is obtained by multiplying equation (3b) by u{, taking the ensemble

average, and modelling certain terms. With

1]
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the resulting turbulent kinetic energy equation is

— — T e r oy
3 E = u3b - ui,j uiuj + {—u

J(p‘+ E’)
(6)

S o) = u. R

— g \V] -
+ v “1(°1,j + “j,i j },j -3 1,3 3,1
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The first two terms on the right of equation (6) represent,
respectively, the loss of turbulent kinetic energy in creating mean
potential energy, and the generation of turbulent kinetic energy from
the shear of the mean flow. We write the buoyancy-related term E;ET
as gaﬁ?f’. Equations (4) can then be used to approximate these first
two terms. The third term can be interpreted as the divergence of a

flux of turbulent kinetic energy; the first two parts are modelled as

< -ug(P'+ ) vu;(u;,j + ui’i)} 5 = {KE,j },j : @)

The last term in equation (6) represents the loss of turbulent kinetic
energy by a cascade through the spectrum to small length scales where
it is dissipated by viscosity. This process occurs on a time scale

proportional to the turnover time for the largest eddies, so that the

last term is modelled as

=g lu] , +up )* = e Elr ; (8)

where cf is a numerical coefficient and T is a turnover time scale.

In unstratified turbulence with first-order modelling,
usually K = LE & and T = ﬁf—&, where the length scale L is an imposed
constant or function of position, or is determined from another empi-
rical equation. When dealing with turbulence in a stratified medium,
the importance of the stratification is measured by the dimensionless
ratio N?L?/E where N2 13‘3,3 and N is the Brunt-Vaisala frequency of
internal waves. When this ratio is very small, the turbulent eddies
turn over in a time short compared with 1/N, and the stratification is
negligible. When the ratio is very large, the random motions are
more like internal waves than turbulent eddies and the system of

equations (3) is effectively linear in the turbulent fluctuations.

10
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This has two consequences. There is practically no nonlinear cascade

of turbulent kinetic energy to small length scales where it is lost
through viscous dissipation. Also, there is effectively no vertical
diffusion of heat; a vertically displaced fluid element bounces back

to its undisturbed elevation without mixing. When the dimensionless
ratio NzL/f is of order unity, the random internal waves are sufficiently
nonlinear to break at irregular intervals, resulting in some vertical
diffusion and in some turbulent kinetic energy loss through the cascade.

=% L

The unstratified formulae K = LEZ and T = LE 2 therefore
give too large a diffusivity and too small a time scale for energy
cascade, when stratification is important end the dimensionless ratio
is of order unity or larger. In addition, when this K expression is
used in modelling, the first term on the right-hand, the turbulent
kinetic energy density E, decays locally to zero in a finite time.
For this reason, we have adopted for the code NRFLO2 the following

expressions for K and T,

-~
I

= Lf!i(l + cSNZLZ/E)'1 s (9)

T = L%/K 4 (10)

with L an imposed constant length scale and " a constant.

For our modelling of the external flow for an OTPP, we have
made further modifications to the system of equations (2) and (4) to
(10) to give steady solutions when the dimensionless ratio N2L2/E is
large. The mean flow variables E} :i’ and E must be steady, from their
definition as the average over an ensemble of flows maintained by
steady boundary conditions. And in cases with reasonably strong mean flow
and turbulence, we have obtained steady solutions by time-stepping the

above equations. But in other cases, we obtained a finite amplitude

il




oscillation; it appears that the unmodified syst :m of equations
does have a steady solution, but this solution is unstable to small

disturbances when the turbulent diffusivity K is small.

We have considered three ways of resolving this difficulty
that the mean flow variables oscillate in time when the dimensionless
ratio N°L2/E is small. The first is the rational approach of time
averaging the oscillations, but such a procedure is of questionable
accuracy. The second approach is to look for steady solutions to the
same equations by a method which does not involve marching them
forward in time, thus avoiding the instability. The third method is
to modify the equations and the turbulence modelling in order to
suppress the instability. This could be achieved by a large and totally
artificial increase in the turbulent diffusivity X; the results will
then be steady, but numerically incorrect. A more subtle change in
the equations is required, and it is this approach which we have

implemented in our NRFLO2 code.

To achieve this, we have added the term

2 /==

“(chN /E)u3

on the right-hand side of the Eé
would make Eé tend to zero on a time scale of (chNZ/E)_l. When
used in combination with the other terms, and with the consistent

addition of the term

equation. The term taken alone

(chNz/E)E:a2 g (12)

to the right-hand side of the turbulent kinetic energy equation (6), it
serves to suppress the fluctuating vertical motions associated with the
instability of the mean flow, and to generate turbulent kinetic energy

instead. With these added terms (11) and (12), we have been able to

obtain steady mean flows for a wide range of OTPP flow simulations.

Le
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The resulting equations used in NRFLO2 are

3T =, - T }.j ' (13a)
29, = (80T - c KN /E)S 4 + {8
+ Ky ¥y - 'Jjﬁi} : : (13b)
’ ’ ’
u =0 , (13¢)

i, i

38 = K{-Nz = %(Ei,j + Cj’i)z-cfE/Lz
+ e N 2 E (T S R (13d)
N2 = goE’3 : (13e)
K = LE¥/(1 + c N°L?/E) . (13f)
where 3£ is P + %E in equation (13b), and a term -%v(:i’J - 33’1)2 has

been dropped from equation (13d) on the assumption V<<K.

Equations (13) involve four parameters, the length scale L
and the dimensionless constants Ces Cg and . These must be deter-
mined by tuning their values so that the numerical solutions are in
satisfactory agreement with the results of laboratory experiments.
The thermal exvansion coefficient a is taken as 1.3 x 107 “/°F, the

appropriate value for temperstures near 60°F.

13
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3. THE OCEAN THERMAL POWER PLANT MODEL

In the code NRFLO2, the ocean thermal power plant and its
inflows and outflows are modelled by boundary conditions on the left
boundary of the rectangular domain - D<z<0, O<x<YD. Note that in
describing our two-dimensional application of equations (13) we use x
as the horizontal coordinate and z as the vertical coordinate, in

place of X, and X,, and u and w for u, and ug. None of the currently

1
suggested plant designs (Dugger, 1975) are described exactly by such
a two-dimensional model, but it does serve to evaluate their primary

flow characteristics.

For each of four inflows and outflows, the code uses a

center height Z > & radius rpes @ signed flux amplitude a,s an angle
ak above the horizontal plane, a turbulence constant Ek, and a temper-

ature Tk’ together with the function

% (1-° P for |x| <1 5
£ix). = {o g

(14)

4
u(z) zl:—r—k (z 2 Zk) : (15)

Thus u is zero except close to one of the z, values, and is negative

k

when a, is negative (a plant inflow) and positive when a,

(a plant outflow). The function f(x) has been chosen to make the

is positive

boundary value of u a smooth function of z; replacement of (l-xz)2

by 1 in equation (14) may give a more faithful description of certain
plant designs or experimental simulations. If fewer than four plant
inflows and outflows are to be modelled, then some of the a, values

k
can be set to zero.

1k

[y A S O oS
frovo

aun =




For a plant outflow, where fluid is entering the computational
region, boundary values must be imposed for ;, ?, and E. The values

are

w(z) =1 tan o A (16a)
E(z) = Ekakzrk'z ’ (16b)
T(z) = : 4 : (16c)

Cccasionally, slightly more complicated formulae are used in NRFLO2 to

allow for the possibility of overlapping outflow regions.

Since the power plant uses warm surface water to vaporise a
fixed flux of working fluid, the warm outflow temperature is lower than
the mean warm inflow temperature by a fixed amount. Similarly, the cold
water inflow is used to condense the working fluid, and its temperature
is increased a fixed amount before it is pumped out as the cold out-

flow. The code therefore evaluates the mean temperature T, for each plant

k
inflow region (ak negative),

Eﬁﬁz
T = 5 (17)
udz

and adds or subtracts a given temperature increment to determine the

corresponding outflow temperature T This is optional; the code can

K
also use fixed Tk values for plant outflows as in the experimental

simulation described in Section 6.

We point out here that the NRFLO2 code has the flexibility to
describe a variety of plant designs. Further, it can be used to eval-
uate a portion of a given design, to evaluate for example just the cold

inflow, or just the warm inflow and the two outflows. This flexibility

15




in the code allows it to be used to describe other configurations, such
as the heated outfall from a conventional power plant, or the simple
experimental simulation presented in Sections 6 and 7.

16
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L. BOUNDARY AND INITIAL CONDITIONS

In many hydrodynamic simulations, the boundary conditions of
symmetry or periodicity are essentially passive, and are only minor
aspects of the problem. In our near-field simulations for ocean
thermal power plants, it is the boundary conditions on the left
boundary, described in Section 3, which drive the flow, and the remain-

ing boundary conditions which control it.

At large distances from an OTPP operating in a stratified
ocean, the flow is essentially horizontal, and the outflow water from
the near-field region has found its own density level. Thus a primary
requirement for a numerical simulation of the near flow is a set of
boundary conditions at the right-hand edge of a finite computational
domain, which make this boundary permeable and allow horizontal inflow

and outflow a* the correct density levels.

A second requirement is that the boundary conditions where
the flow is out of the computational region should be passive. They
should not produce significant outflow boundary layers, nor should
failure to resolve these boundary layers numerically lead to upstream

influence.

A third desirable feature for these boundary conditions is
that during time-stepping towards a steady solution of the equationms,
they should make the boundary permeable to internal waves, and not
allow them to reflect. As stated in Section 2, there are difficulties
in these computations over instability of the mean flow solution; a
boundary condition which reflects oscillations will increase these
difficulties.

In our code NRFLO2, we assume the ambient ocean T, ;, and E

distributions are

Ta(z) = Tc ¥ T, tan-lkz + dt)/zt: 5 (18a)

=0 > (18b)




E (z) = Eo exp (z/zE) > (18c)

where Tt is the thermocline temperature, Tr the thermocline temperature

range, z, the thermocline thickness, and dt the thermocline depth, while

the turbulent kinetic energy density amplitude and depth scale are Eo

and z_ respectively.

E
Equation (18a) implies a temperature variation from

T: - ﬂTr/Z at great depths to '1‘t + ﬁTr/Z at large z (though z is of

course confined to negative values). Parameter values can be chosen

so that this profile is a satisfactory approximation to most real

temperature profiles. According to equation (13e), the corresponding

Vaisala frequency N of internal gravity waves in the undisturbed ocean

is given by

}-1

N? = goT z :zi + (z + dt)zi g (19)

E-E

Equation (18c) is a reasonable choice, since the ambient turbulence

in the upper layers of the ocean is mostly due to the wind-driven
surface waves, and decreases with depth. In fact, the rate of decrease
is more rapid when N? is large. But since the ambient turbulence is
much smaller than the turbulence produced by the plant, our solutions
are relatively insensitive to Eo and Zp, and thus equation (18¢c) is

adequate.

At the ocean surface z = 0 and at the lower boundary of the

computational domain z = -D, we apply the boundary conditions

w =0 ’ (19a)
Ti’z =0 : (19v)
?,z =0 :
_’z i ,

where u s denotes du/dz.
’




v

Thus there is zero normal flow, and zero turbulent flux of horizontal
momentum, heat, and turbulent kinetic energy across these boundaries.
In applying equations (19b), (19c) and (19d) at the surface, we are
neglecting respectively the momentum flux across the surface produced
by wind stress, the heat flux (due to solar heating, sensible heat
transfer, and evaporative and radiative cooling), and the generation
of a flux of turbulence at the surface by wind and waves. Each
approximation is justified by the fact that the order of magnitude of
each of these fluxes in our near-field computation is much larger than

the geophysical surface fluxes.

We next describe our boundary conditions at the left and right
boundaries of the computational domain. On the left boundary, the
normal velocity'; is given by equation (15), representing the OTPP
inflows and outflows. In order to satisfy our first requirement
that the right boundary be permeable, allowing horizontal inflow and
outflow with the appropriate temperature for each depth, we have
applied the equation

R (20)

at x = yD, where Ta is the ambient temperature distribution (18a).

This implies a pressure distribution in hydrostatic balance with the
buoyancy force associated with the ambient temperature distribution.
From equation (13b), this balance must apply at large distances from
the plant, when the flow is horizontal and the turbulent kinetic energy
density and the turbulent diffusivity are negligibly small. With the
boundary condition (20), the only possible horizontal flow solution
near the boundary x = YD must have the mean temperature distribution
T(x,z) = Ta(z).

We further need boundary conditions on T} ;, and E at the

side boundaries. These boundary conditions take a different form




depending on whether the horizontal flow is into or out of the compu-
tational domain. For outward flow, the boundary conditions must be
passive, to satisfy our requirement that no significant outflow boundary
layer be formed. For both outward and zero normal flow, we impose

zero normal derivative on both vertical boundaries. Thus for u not

inward,

?’x =0 » (213)
. =0 . (21b)
_’x =0 . (21c)

on x = 0 and x = YD. For inward flow, the values of ?, ;, and E are
determined by equations (16) for the left boundary (the OTPP outflow
values), and by equations (18) for the right boundary (the ambient

ocean values).

Our third requirement, that the right boundary be permeable
to internal waves, is not met by equation (20) and the other boundary

conditions on the right. We have therefore added the further term
-0(x,z)w (22a)

to the w equation. Here 0 is only non-zero close to the right hand
boundary, where it serves to damp vertical motions. Incoming internal
waves are absorbed by this "porosity" distribution (Piacsek and
Roberts, 1975). For O, we have used the equation

o(x,z) = %N g,8(x/YD - 1)'

) ’ (22b)
where

8(5) = exp |-sinh(sinh s>{ : (22¢)

20




The initial conditions for equations (13) can be stated
readily. The NRFLO2 calculations are initiated by asserting ambient
ocean conditions (18) throughout the computational domain. Further,
the initial horizontal velocity profile at all values of x is the same
function of z as that prescribed on the left boundary by equation (15).

{ We have chosen these initial conditions, with horizontal flow and very
weak turbulence, so that any recirculation which occurs is not due to
the initial conditicns. In fact, our calculations have not provided
evidence for any hysteresis effects of the initial conditions on the
final steady solution.

2l
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5 NUMERICAL PROCEDURE FOR SOLVING THE EQUATIONS

In this section we give a brief summary of the numerical
methods we have used to solve equations (13), with the initial and
boundary conditions described in Sections 3 and 4. Since prolonged
calculations are envisaged for a large number of flow situations
and for different parameter ranges, the numerical procedures nmust be
very efficient. Further, it is desirable that the computer code used
to implement these methods should possess a structure with a high

degree of clarity and flexibility.

We begin by describing the non-uniform computational mesh
used in our finite-difference representation of the equations. We use
a small mesh spacing only near the left boundary and near the plant
inflows and outflows, where it is needed to resolve the small length
scales present. Elsewhere we use a larger mesh interval, to economize

on mesh points. The mesh spacing varies smoothly.

Our computational mesh is staggered, as shown in Figure 1,

for greater efficiency in representing equations (13). The variables

f, E, P. and K are defined at the mesh points (xm, zn) for integer

E
values of m and n, while u is defined for integer n and half-odd m,

and w for integer m and half-odd n. It has long been known that this
mesh is much more convenient and accurate for calculations involving
the primitive variables. Most of the required first derivatives can
be represented using neighboring mesh points, thus u_+w _in

X ’2

equation (13c) is conveniently represented at the T points, and 3& &
’

and Fé,z are conveniently represented at the u and w points.

Our boundaries are placed between the mesh lines, rather than
on them, in representing the boundary conditions. As shown in Figure
1, the side boundaries are at xl& and xM_%, and the bottom and surface
boundaries are at zl% and zN_%. This choice puts the normal velocity
components on the boundary, and makes for high accuracy in representing

the normal derivatives of the other variables.

Next we describe the numerical representation used for the
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Figure 1. The non-uniform staggered computational mesh. T, E P and K
are represented by their values at the T points, while u and
W are represented by their values at the staggered mesh
points indicated. The boundaries are at X1l Xpolg, zl?
Zp-L. This leads to greater accuracy, convenienc e,
efficiency in representing the equations and boundary condi-
tions.




spatial derivatives in equations (13). For every term but one, we
employ the simplest second-order accurate central difference repre-
sentation available, with averaging from the neighboring two or four
mesh points as required. The resulting finite difference equations
conserve the volume flux, heat, and momentum, as implied by equations
(13). The one deviation from central differences is the use of upwind
differencing in representing the advection term in the turbulent

kinetic energy equations (13d). For this term

(GjE),j = EE’X + EE’Z A (23)

we use the representation
(GE'x)m = G + JulxE - Em_l)/dxm_%
+ =G - JuDEpy - ED /S, (24

where the suffix n for the z mesh is understood and u denotes

%;:&_% + :§+%< . This representation is only first-order accurate;
it has been adopted to avoid negative E values where there is flow
from a region of small E toa region of large E and the intervening

layer, which can be very thin, is not sufficiently resolved.

The boundary conditions described in Sections 3 and 4 are
similarly represented using the simplest central difference method,
with one exception. Where the flow is out of the computational
domain (to the left or the right), the T, w and E'equations allow an
outflow boundary layer of thickness K/]:I. When this is smaller than
8x/4, our resolution is inadequate, and there is a tendency for mesh
separation, with the variables at even mesh points separating from the
variables at odd mesh points. This tendency is eliminated, and results
of greater accuracy are obtained, by replacing the boundary condition
of zero first derivative with zero second normal derivative, even

when the representation is only first order.
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We have chosen to represent the time evolution of equations
(13) with second order accuracy, in spite of the fact that we are
mainly concerned with time-stepping to a steady solution. Due to the
extreme nonlinearity of the equations and our desire to avoid the
artificial instability or dissipation associated with other explicit
representations, we were forced to use a "leapfrog" method for time-
stepping equations (13). The diffusion terms were treated by an
alternating direction implicit method. We write the equations (13a,b,4)
as:
9. f = Q+ Xf+If ; (25)
where f can be E} E, ;, orlf;

X and Z are the diffusion terms involving two differentiaticns
with respect to x and z;

Q represents the rest of the terms in the equation.

Then for time k&t, where k is an integer, our representation of

equation (25) is

(£* - £571) /60 = QX 4 xReKTl 4 ZRex ) (26a)

k+1 kfk+1 k

(£ - £*%y/6e = Q€ + x + Z8¢* . (26b)
At the beginning of the time step all quantities fk'-1 and fk are

known, and thus Qk can be evaluated. The z-diffusion is done implicitly
in the first stage, and the x-diffusion in the second. The intermediate

quantity £* is a second-order approximation to fk.

Equations (26) are subject to the well-known leapfrog
instability when applied to the turbulent kinetic energy density
equation (13d), because the N? and cfEVLz terms in the first bracket
are decay terms. To avoid this instability, ia which Ek for even k
separates from_fk for odd k, we subtract the term Zak(E* - Ek) from
the right hand side of equation (26a), and the corresponding term

o -
ak(Ek+ - ka 4 Ek l) from the right hand side of equation (26b).
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Here

205 lw? + 4@, . +3, ) - e E/L? + chz;z/E>3K/BE
-K(cf/L2 + cwnzﬁszz) >0 . 27

A suitable ak expression is evaluated and applied in the code.

The pressure P; remains to be determined, in order to apply

equations (26) to equation (13b). We write

B gk

- : , (28)

where PT is obtained by extrapolation from pPrevious values,

Sk =)
= - - (29)

; E

so that Pg remains unknown, but-is of order 6t2. Then Pi is used in

evaluating Q in equation (gS), and equations (26) determine Eé and ;é
which are third order approximations to E'+1 and ;k+1, and do not satisfy
equation (13c). We then add the effects of Pg,x and P;,z’ applied

for a time interval 268t,

—k+1 k

(u - u2)/26t = - PZ,x : (30a)
—fip) g ¥
(w - wz)/Zét = - PZ,Z (30b)

Taking the divergence and using equation (13c) gives

2k o =
v P2 (uZ,x + wz,z)/ZGt : (31)

This Poisson equation is solved by a generalized form of Wachspress
alternating-direction implicit iteration (Varga, 1962, Roberts and
Piacsek, 1975) using four iterations, while imposing the boundary

conditions,
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Pg = 0, on x = YD, (32a)
anlan = 0, on the other boundaries. (32b)

The resulting P;

determine F: [for application of equation (29)] and the new velocity

solution is substituted in equations (28) and (30) to

components.

With the numerical method described by equations (26), our
code is still subject to the stability requirement

(N + [ul/8x + |w|/6z2)6t <1 ; (33)

Since Ot is the same at every mesh point and time step, an estimate
must be made at the beginning of the calculation of the maximum value

of the bracket which is likely to be encountered. The code uses

=1
8t = c(Nma + u /6%

X max min) ’ (34)

where N and u are the maxima of the ambient stratification (19)
max max

and the left boundary velocity (15) respectively, and c is an input

constant.

Leanfrog time-stepping (26) is subject to a weak computational

instability, with the velues separating at even and odd time-steps, even

in the ebsence of decey terms. These parasite solutions are avoided by

re-iritializing the calculation every few time-steps. For initialization,

in terms of equation (26), any previous X is forgotten, and &

is used j
to evaluate Qk, Xk, and z¥ in order to obtain an approximate f§+l, with '
second-order accuracy. Then a new calculation can be started off from ‘
oK=1 :
f using i

£ - L [k=l k+1
i % %y ) ‘
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6. A PROPOSED LABORATORY SIMULATION

Our code NRFLO2 calculates the flow in & rectangular domain
representing the near-flow region closest to an ocean thermal power
plant, where the flow deviates from the horizontal and where the
turbulence generated by the plant is important. The rectangular region
has impermeable boundaries at the top and bottom. The horizontal
velocity is given on the left, with the temperature, vertical velocity,
and turbulent energy density also being imposed where this velocity is
out of the plant and into the region. The passive boundary conditions
on the right allow horizontal inflow from and outflow to a large fluid

region with assumed temperature and turbulent kinetic energy profiles.

This code NRFLO2 has four parameters: the turbulence length

scale L, and the three dimensionless parameters c , and cy Before

S aC
the code can be used with any confidence to simul:te ihe external flow
of an ocean thermal power plant, we must tune the values of these
parameters so that the numerical results are in satisfactory agreement
with the results of laboratory experiments. Such experiments should be,
two-dimensional, and involve the simultaneous effects of density
stratification and of turbulent jet inflows and outflows from the region.
To our knowledge, suitable experiments have not yet been done, but two
experimental programs recently funded by ERDA should begin to correct

this deficiency.

We now suggest an experiment which meets these conditions and
which would provide a laboratory examination of the possibility of
near-flow recirculation of the outflow water in OTPP operation, as well
as of the far-field environmental effect. In addition, this experiment
would provide data for verifying and tuning our code NRFLO2 and its

successors.

The proposed experimental configuration for this OTPP near-
field simulation is outlined in Figure 2. A long rectangular tank is
filled with water to a depth of L4 ft, with the temperature increasing
linearly from 40°F at the bottom to 80°F at the surface. At the
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FIGURE 2

The proposed laboratory experiment configuration.

A long tank is initially filled with water to a

depth of L ft, with the temperature increasing linearly
from LO°F at the bottom to 80°F at the free surface.
Water at LOOF is pumped steadily in through the bottom
gate on the left wall, and an equal volume flux is
removed at the top. The inflow drives the indicated

* turbulent Jet, entraining water from above. Further

along the tank (beyond about 8 ft) the turbulence becomes
very weak, and the flow is essentially horizontal, as
indicated. The outflow from the tank comes partly from
this far-field horizontal motion, and partly from the

cold inflow; the mean outflow temperature can, therefore,
range from almost 80°F for very slow flow to 4OCF for very
fast flow. The inflow and outflow maximum speeds

U= 2,68 ft/sec, 1.34 ft/sec, and 0.67 ft/sec are studied
numerically in Section T.
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beginning of the experiment the water is at rest. Cold water at ho°F
is then pumped in steadily at the end of the tank, through a gate 1 ft
high at the bottom, and taking up the full width of the tank. This
flow simulates an OTPP outflow. To simulate a plant inflow, the same
volume flux of water is simultaneously removed from the same end of
the tank, through a similar gate extending 1 ft down from the surface.
The maximum inflow speed U for the proposed experiment should be in

5 the range from 0.2 ft/sec to 5 ft/sec. This speed range brackets the
critical value described in the simple theoretical discussion of the
resulting stratified turbulent flow provided in the remainder of this
section.

In the absence of density stratification, a turbulent flow
field is established fairly quickly in which all of the cold inflow
water is sucked out again at the top of the tank. The mean flow and

the turbulence intensity E become very small at large distances (more

than twice the depth) from the end of the tank. Thus, the far-field |
flow is zero.

With a density stratification, the situation is quite
different. At large distances from the end of the tank, the turbulence

is still very weak, but there can be substantial horizontal motion.

This horizontal flow is established by very small horizontal density
gradients, and is limited only by continuity (13c) and by the stability

requirement,
N2 2 (3u/3z)? (35)
which follows from the first two terms in the turbulent kinetic energy

density equation (13d). Physicelly, when this equation is satisfied,
more turbulent energy is lost to creating potential energy than is

gained from the shear. Thus, with N constant (from equation (13e), N ‘
in these experiments is 0.204 sec-l), the maximum stable far-field u '
distribution is
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u = N(z +2) (x/X -1) (36)

o
where X is the length of the tank, and the total flux j. udz along

the tank is zero. The continuity equation (13c) implies a very weak

} upwelling velocity, independent of x, and given by the equation
v = -Nz(z + L)/2x i (37) !

for the maximum possible u distribution (36). This upwelling, or the
distribution corresponding to a u smaller than (36), will eventually
modify the ambient temperature distribution in the tank, in & time of
order 1/w.

For small values of U, therefore, the cold inflow Jet becomes

a horizontal flow as the turbulence decays. The surface tank outflow
simultaneously draws water steadily away from the surface layer. The
resulting far-field flow is smaller than that given by equation (36),
and is, therefore, stable. The averege outflow temperature is almost
80°F, since all the outflow comes from near the surface and since
minimel turbulent heat transfer occurs between the warm upper layers

and the cold lower layers.

For larger U values, in a critical range and above, the far-
field flow will be approximately given by equation (36). However, this
flow is too small to carry away the cold inflow and to provide the water
for the surface outflow. The remainder of the cold inflow water is
sucked up and out with the surface outflow. (If carried over to an
OTPP design, this would imply recirculation of the cold plant outflow
into the warm surface intake.) The average surface outflow temperature
(17) decreases to LO°F as U becomes increasingly large, and the far-
field warm surface water flow, with u negative according to equation (36),

is diluted with an increasing flux of cold inflow water.
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According to equation (36), the maximum possible far-field

-2
outward cold flux _f udz is 2N, for x << X. ©Now the cold inflow flux
-3 _ .
j. udz is AU, where U is the maximum speed and A depends on the
-4
inflow profile, with % < A < 1. So the critical U value, for which

all the cold inflow can flow out to infinity, is 2N/A. This is about
0.77 ft/sec for the value A = 8/15 used in Section 7.

For the laboratory experiment, the tank width should be at
least 4 ft, to reduce three-dimensional effects on the mean flow. The
length X should be at least 40O ft, to allow a reasonable period (about
3x/2 sec) for establishment of a statistically steady turbulent flow
before the upwelling (37) significantly modifies the temperature and
density stratification. Tr=s temperature and the velocity components
should be recorded, as functions of time, at a number of points in the

flow, in order to evaluate the ensemble average (or time average)

guantities T, u, w, T, wT , uu , W W , and w w . The measurement
points should be mainly in the first 8 ft, but should include a few
points further along the tank to confirm our predictions of horizontal
flow and small turbulent fluctuations. Most of the measurement points
should be in the x-z plane at the center of the tank, to reduce effects
of the sidewalls. These sidewall effects can be estimated by adding
measurement points across the whole width of the tank at selected

values of x and z.
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Tix NUMERICAL RESULTS FOR THE PROPOSED

EXPERIMENTAL SIMULATION

We have applied our code NRFLO2 to the proposed experimental
simulation of stratified turbulence driven by fluid jets and sinks, as
described in Section 6. This numerical simulation of a proposed experi-
ment has served three purposes. First, it has provided a simple and
economical problem for code development, and for improving and optimizing
the numerical methods of Section 5, since adequate resolution and
convergence can be obtained with very few mesh points (about 12x12) and
time-steps (about 100). Secondly, the numerical simulation has enabled
us to study the effects of varying the dimensionless pareameters Cos Cg
and .’ and the ratio of the turbulence length scale L to the given
dimensions. Such studies will be of great value in tuning these
parameters to give results agreeing with observation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>