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ANNUAL. REPORT
Contract Number F44620-76-C-0036
January 5, 1979

The results of our research in the first eight months of the contract
year 1977-78 are summarized in the three attached papers which were pre-
sented at the 11th International Symposium in Rarefied Gas Dynamics. Two
of them will appear in the Symposium proceedings.

Theoretical research has since proceeded in two directions:

(1) The model presented by Trillina for spherical droplets of
continuous material is generalized to other geometrical
configurations. Since ice crystals appear to grow as
hexagonal platelets it has appeared interesting to consider
the growth of flat circular cylinders (R >> h where R is
the cylinder radius and h is its height). The rate of
growth on the sides turns out to be sufficiently faster
than on the circular faces to explain why a thin pilibox
does not grow into a sphere. The rate of growth is
fastest near sharp edges and therefore edges are not
smoothed out.

(2) Some further extension of the statistical mechanics of
nucleation embryos beyond the enclosed paper by Gobbini
appear in his S.M. Thesis. However, to our great regret,
Gobbini has now left this project to do his doctoral
research in another field, and we are seeking a replace-
ment for him to continue the statistical theory.

necessitated some rather extensive rebuilding of our experimental apparatus.
In particular we have been in the process of reconstructing the molecular
beam source chamber, and the target mount assembly. Extensive experimental

4 measurements on the scattering of beams of water vapor from ice and Covellite
surfaces have confirmed and extended earlier results obtained in our
laboratory by A. Swartzon.

ﬁ Experimental research beyond the results of the symposium paper has




Mass Distribution of Droplets in Nucleation

Leon Trilling*

Massachusetts Institute of Technology |

ABSTRACT

We present a general model for the interaction of a speci-
fied distribution of water droplets with a supersaturated
atmosphere. In terms of an intrinsic nucleation time scale,
the evolution of the droplet size distribution is obtained
explicitly as a function of the initial state and of the
rate of formation of new nuclei. The connection between the
intrinsic nucleation time scale and real time is then found
by solving the bulk conservation equations for the atmosphere
with the condensation as an energy source term. Examples
are worked out for an initially uniform droplet distribution
for various rates of nucleus formation.

In a number of condensation problems of practical impor-
tance, it is useful to know the mass distribution of droplets
or crystallites as condensation proceeds. Depending on the
order of that mass, the problem is best approached by means
of molecular kinetics and statistical mechanics (particles of
up to a few thousand molecules in a rarefied wvapor or gas’
vapor mixture) or as a twophase continuum non-equilibrium
thermodynamics problem (solid or liquid nuclei of order 0.1
to 10 microns). In the latter case, the mean free path of the
vapor or gas-vapor mixture may be large or small compared to {
the diameter of the nucleus.

The statistical mechanics of small crystallites (~102 to
10° atoms) interacting with their vapor raises two difficult
questions - What is the frequency distribution of their
configurations in phase space? What is the energy (particu-
larly the vibrational energy) to be ascribed to any given
configuration? The first of these questions can now be
answered fairly well (see for example F. Abraham [1] or the
ipaper submitted to this symposium by G. Gobbini [2]). The
‘answer to the second is still subject to considerable argument,
and depends on the model chosen for the crystallite. Such

*Professor of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts




models require either a definite set of rules for individual
molecular interactions or a convincing way of relating the
behavior of small assemblages to that of the material in the
bulk.

If the nucleus is large enough (a diameter of 0.1 micron
corresponds to some 10° atoms) it is usually represented as
a solid or liquid sphere whose main properties (e.g. surface
tension, chemical potential) are those of the material in the
bulk. Because its mass is large, it behaves in collisions
with ambient molecules of vapor or gas as a body at rest.

The nucleating particle size distribution in a non-equili-
brium situation is governed by a supply process, a growth (or
decay) rate which depends on the degree of background satura-
tion, on the fluid mechanics and surface physics of inter-
actions with the background, and on an exhaustion process
which removes particles from the field at a rate which depends
on particle size.

We discuss the nucleation of water droplets (supplied for
example by an aircraft jet exhaust or some other device) in a
supersaturated atmosphere of specified initial properties,
under conditions (e.g. initial droplet size) which makes
re-evaporation sufficiently rare to be negligible.

Let the ambient vapor density be p,, and the corresponding
saturation density be pvo; then the saturation ratio is
defined as:

do

A . 105 RV S,
S=1l-%y 3 @7 52 T py G

and py, is related to the ambient temperature T by the Clausius

Clapeyron equation:

d
v, o Pv
b

L _ dT 2)
dt T (xr " 1) @«

where L is the latent heat of condensation per molecule.

If the vapor molecules and the droplets or crystals are
convected by the surrounding air motion, then, applying the
continuity equation, for both air and vapor, to eliminate the
divergence of the velocity vector, we obtain

d P I
a—(;})--b; (3)
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where I is the total rate of condensation of the vapor per
unit volume aund unit time and Pa is the air density. We

write the energy conservation equation for the ambient air H

under the assumption that the heat released by condensation !

is fully transmitted to the air (e.g. py/pa.<<1)

dp :

c dT a ‘

Pa Pad_t= g9t + LI %) {

- This, with the (ideal gas) equation of state for air eliminates
the temperature and density from (1-3); finally eliminating
deO/dt by use of (2), we obtain: j

_ (5)
1—Sd—t= ( YY -ﬁ) dt o _3— 1 +-°_XY_ (ET)Z)

| : This is the bulk equation which connects the saturation ratio

E history to the dynamics of the bulk air motion and to the

§ [ total vapor condensation rate. A similar derivation may be
found in [3]. i

If we now represent the condensed phase as a distribution
! of spherical clusters f(r,t) where f(r,t) is the number of
clusters per unit volume whose radius is in the range

; ; (r,r + dr), then the condensation rate I is

(-]
I -~4an rzf(r,t) dar gr (6)
dt
f 0
: The continuity equation for the cluster size density in
‘ e - (r,t) space is
? of ) dr -
: st + ar Fae ot ™

where ¥(r,t) is the rate per unit volume per unit time at which
new nuclei of mass (r, r+dr) appear in the fluid.

!

! Finally, we balance the energy transferred to a droplet
‘by collision with ambient gas molecules (or by convection)
,and the energy exchanged in the condensation process, and

; ‘obtain a relation of the form:

E - F(r,8) = sv(r) (8) |

iWhen the time scale of collisions is short compared to the time
scale for droplet growth as, in the Stokes flow ‘regime, Fukuta

4
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! and Walter “, and independently Sedunov’, obtain

u_S
p, dr . _"a~ 9a
L 4c Ar + Bh e
P - -
'"ith A= 'p—:— s + l;]; 'E’v‘ Pr (Tl:f)z (9b)
| 0
| - B -1 Oy Ly2
=1 R
= 2YP!‘ ua Zma 2 Dav ™,
%" D /o g =By W

Here u, is the viscosity of the air
D,, 1s the diffusion coefficient of water vapor in air

m,,m, are the molecular masses of vapor and air
respectively

h is a characteristic length, essentially a Knudsen layer
thickness

Pr is the Prandtl number of air Pr = uCp/k
§ is the Schmidt number of air S = H/P_D,,

B is the condensation coefficient

The equivalent result for the free molecule regime is:

dr _ 9B SoyCy

PL dt P, C. (10)
+8 290 (L)
e PaCa (ET ’

iNote that %,, g and h are lengths of the order of the mean
i{free path of the gas; A, B are numbers of order unity. We
expect (9) to hold since the Reynolds number

r dr/4¢
Ha

is of order p3S/py, which is well below unity when the radius
of the droplet is larger than the mean free path. In air at
sea level, the mean free path of air is of order 0.1 microns;
one would therefore use (9) for all droplets considered
there. But at an altitude of 50 km, the mean free path is
100 microns and formula (10) is more appropriate.

Pa

o

a is the energy accommodation coefficient for air on water
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' new coordinates

_]:.a_a.g_ 'v8—=a_.
i 5 3¢ "3t  Vbr 9o
| we obtain
i
| 9g 4 g N(o
91 30 s(1)

which is integrated formally to give
T

vo (o)

vfi = g

= ¥(r,t) = ¢ (g,1)

g(0,7) = g,(o-1) + chw-r, 2) dg

i Substituting (8) into (9) or (10) and introducing the

(11)

(12)

13)

where £0(9) is the initial distribution of droplet sizes.

Thus, in the absence of a source of nuclei, g shifts to
the right; the distribution function keeps its shape but is

‘applied to larger droplets; the droplets in the system grow
+and the distribution function scale is modulated by the

{factor v,/v (see 1lc) which is generally greater than unity.

iThe time scale T is not real time; it is related to the satur-
jation ratio by (lla) and as S+ 0, t approaches a finite value
;while T~ «; when the droplets have condensed all the available

vapor, they grow no further.

tion process is completed sooner in real time.
1

i
i
1
i

] P
._a.t__is [l-l-p‘é

d log(1-S) -1 L, 9 logp
+ (1 - L=
i dt Yy kT

4mpy,

=s
Y

e I r?(0)g(o,T)v(c)dT

If a source term is specified [e.g. ¥ (r,t)], the form of
Y(o,T) is not known since (lla) cannot be inverted without
solving (5); but its role is clear; it provides new nuclei
iwhich compete with the original ones in g,(o) for available
vapor and therefore inhibit the growth of large droplets by
drawing some vapor to new nuclei. As a result, the condensa-

To complete the formal solution of the problem, we substi-
tute (13) into (5) transformed to the T coordinate:

L2
(EE) Ix  (14)
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! Remembering the definition of S we eliminate Py from (14),

since 1-S = 222, Thus ,
Py

d1l 1-S -1 L -1 L
S L - Bl —— - 109 + 5t I o

4mpy, f 3 i ’
Py I r (0)[80(0-T) + | (¢ + o-1,T) drlvdo (14a)
)

Let I, denote the integral of the homogeneous part of the
solution and I, that of the non-homogeneous part. In the
special case of an atmosphere at rest d log py/dt vanishes,
and in terms of I; and I,

Pa kT 1 d(1-8) ,
Bv ¥I L) If5s - by =gt = f
0 : (1-8) + 2o y-l L L2 ;
¥ VKT i
4an
i (I1 + Iz) (14b)

Integrating (14b)
4mpy, -
: S JY—I%VI[xl(r)ﬂz(r)]dw
v 5
(-5 a+ —5* Y_Yl (ELT)z)e 0 3

- (1-s4+ —;& 3—Y~< =)} x

4np Ly-1 1L :
‘ s 7 O f [I,(t) + I,(r)]dt | |
x { (1-8))e : - I i
i | |
- DY -1 (Ly2 -1 | |

(1 si + 'p—a-n- IT- (= ) ) } (15)

ey
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gwhere S; is the initial supersaturation. Whenever the expo-
! nent of the exponential is positive, S < Sj, and as the expo-

i nent increases, S decreases monotonically toward zero.

The real time variable t is obtained by integrating (1lla)
i when S(1) is known. In particular, saturation occurs when S
|vanishes, or

| Is
[I,(t) + I,(1)]dt=

pv H
0 1-8, + —o Y=1 (L,2 i
Yo H e ¥ W |

kT

= (L)? 1log -

ariy-Dp, (L (-5, (1 + I‘;VJI?_l (%)2)
a

(16)
P
.12 Ll (L)zs !
YPa kT , o 10 B
= Wm(y-Dpg (L) 1los [1¥ Prp y-1 L ]
- (1-s3) (1 +'5;— = Gp )

i

i
i
H

o .
since X:l.pZE <<1 for most problems of practical interest, (16) ’
Y Fa

may be approximated as

-

S pv "pvo r S pv. !
I [1(0) + 1,(D)dt = 75— = %T (17) |
L

where pvi is the initial ambient vapor pressure and pVo the

saturation vapor pressure at the (constant) ambient tempera-
ture. The integrals I1(T) and I,(T) represent the contribu-
tions of the growth of original droplets and added source
{droplets respectively to the depletion of the available vapor
isupply. The integral I, can be computed explicitly when the
‘original distribution of droplet size f,(r) and the growth
law (8) are known. The integral I, includes Y(0,T) and cannot
ibe computed directly from Y(r,t). But a step by step numerical
integration where I, is evaluated approximately over the nth
'step by using the value of S .1, gives a good approximate
result in a straightforward manner.
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For Stokes flow (9), a convenient non-dimensional time 7
| based on the rate of growth of a reference droplet of radius
Ty 1s introduced:

|
| e

2 ero(Aro + Bh) (183)
!

For a 1 micron droplet at sea level, one unit in T corresponds

to 100 seconds. Similarly a scale for the distribution func-
tion is introduced: i

Samp 3 f !
o (18b)
L i
That is essentially the ratio of mass of condensed material
to the mass of vapor at saturation conditions in the same

volume. For a set of droplets of size ry, the integral
J1,dt is evaluated as l

I I, dt = n(T + 12) (19a)

and the integral /I,dT becomes:

- - 4mp, r3¥(Ar + Bh)
Idt= §ltdt ;& = i T W (19b)
> Pvo Lo

where £ is the non-dimensional source intensity defined in a
manner comparable with n and t is a non-dimensional "real
time" compatible with T. The effect of the source term is
shown on Figures 1, 2 by comparing the real time histories
of the condensation for n =1, § = 0,1,5 for an initially
iuniform set of droplets ry.

This research was supported by the U.S. Air Force Office of
Scientific Research under contract # F44620-76-C-0036.
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History of supersaturation ratio for vapor seeded
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for several droplet source intensities
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A CONTRIBUTION TO THE STATISTICAL
MECHANICS OF HOMOGENEOUS NUCLEATION

!
‘ Giuseppe Gobbini*
‘ Massachusetts Institute of Technology

ABSTRACT

Homogeneous nucleation depends on the free energy of con-
densational embryos, an important part of which depends, in
its turn, on the embryos' natural frequencies of vibration.
Mathematical models previously proposed for these vibrations
are discussed, then a new one is proposed, which envisages
both compressional and distortional vibrations. This model
is applied to small cubic crystallites, and the resulting
values of free energy, obtained by means of numerical compu-
tation, are presented and discussed.

It is well known that the liquefaction or sublimation of a
gas is severely delayed when there are no pre-existing nuclei
on whose surface condensation may begin. Under such conditions
the supersaturated gas is believed to build embryonic aggre-
gations, or clusters. For smaller clusters,® free energy
increases with size, and so these clusters tend to decay.

Above a critical size, however, free energy decreases with
size. When supercritical clusters are formed, they tend to
grow, and condensation finally occurs.

The free energy of a cluster made of n molecules is:
f, = -kT 1n(Qque n"/Ny)

where m: total number of molecules in the enclosure
N,: number of clusters made of n molecules

and: Q, = (n!y' J exp (-H,/kT) dx dp

where Hp is the Hamiltonian of the cluster, X and P its
Lagrangian position and momentum coordinates. If we suppose

the clusters to be crystallites, with their molecules oscil-
lating around invariable lattice positions, Hp, and therefore
Q, and f,, can be decomposed into the sum of terms due to
translational, rotational, vibrational and binding energy.
The vibrational contribution to free energy can be expressed,
if the temperature is not too low, by the formula:

h Iin-6
(1) fn, vib = (3n-6)kT 1n §F + kT 1ln 121 wni

‘ *Graduate Student, Massachusetts Institute of Technology
Dept. of Aeronautics & Astronautics; Cambridge, MA. 02139 USA
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where the wni's are the 3n-6 natural frequencies (in rad/sec)
of a crystallite of n molecules. It has been pointed out?
that the "replacement'" term of free energy lies within this
component.

An expression for the intermolecular potential is neces-
sary in order to find the natural frequencies. Two different
kinds of expressions have been proposed so far, to my know-
ledge. One is a potential depending only on the distance
between nearest neighbors. If the problem is linearized, this
means modeling the crystallite as mass points collegated by
ideal coil springs. A serious objection must be raised against
this model: it works for a f.c.c. lattice - to which it was
applied by Hoover et al.® - but would not work for most other
lattices. In most crystalline lattices non-rigid deformations
are possible, which leave the distance between nearest neigh-
bors unchanged; the model provides no restoring force for
such deformations.

The directionality of bonds, which holds these lattices
together, was taken into account in the gotential proposed by
Stillinger and Rahman for liquid water*’>. The water molecule
was modeled as a rigid tetrahedron with four electrical
charges at the corners, and the potential was the sum of a
term depending on the distance between centers and of the
electrostatic terms. The motions allowed were compressions
and librations - the latter being rigid rotations of a mole-
cule with respect to its neighbors. If a model like this
were applied to a crystallite, it would account for the
stability of any kind of lattice, but would probably envisage
unrealistic vibrational modes. The assumption of molecular
rigidity is too strict. In the very case considered in
ref.“’s, water, the equilibrium angle between valence orbitals
changes of about 57 from the water vapor molecule to the
perfect ice crystal. It is only reasonable to assume that
oscillations of this angle around its equilibrium value occur
in crystallites. On the other hand, allowing librational
freedom to molecules is probably too liberal an assumption for
crystalline aggregates, where bonds are complete and fairly
tight, while it seems correct for a liquid, where bonds are
incomplete, strained and easily broken.

For these considerations, a different linear model of
crystalline lattices is proposed here. It is supposed that
molecules are not rigid, but that their wvalence orbitals always
stay oriented toward the centers of nearest neighbors. Libra-
tions, i.e., rigid rotations of a molecule, are therefore
excluded. The displacement of a molecule from its equilibrium
position will cause a change both of the distance between

4
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centers and of the angle between orbitals. Both are opposed
by a restoring force, so that compressional and distortional
vibrations result. Let us call Kc; and K4 the elastic constants
of compression and distortion, respectively; djj the distance
between the centers of the i-th and the j-th molecule; aijk
the angle with vertex in the center of the i~th molecule and
sides %oing through the centers of the j-th one and of the k-th
one; dy; =d and uoijk the respective equilibrium values.
The smail-displacement potential will be:

1 1
0= 35 N g1
2 ?i.ij Ko (dyy=dip? +2 gi gni’k Ky(agjx-01 510 %4’

where the symbol “i has been used to mean a summation over the
nearest neighbors of the i-th molecule, and d has been intro-~
duced to give K4 the same dimensions as K.

This potential has been used to compute numerically the
vibrational component of the free energy of cubic crystallites
with a simple cubic lattice. Crystallites of 8, 27, 64 and
125 molecules have been considered. The 27 molecules cube is
shown in fig. 1. The force-constant matrix F is found from
the potential ¢:

Fik = 1/m 32¢/3x43xk

m being the mass of each molecule and xij, xk two of the 3n
coordinates. The eigenvalues of F are the squares of the wji's
(see, e.g., ref.! , p.110). The product of the wi{'s (includirg
the six zero values competing to rigid translations and rota-
tions of the whole crystallite) is det F. Obviously, then,
detF = 0. With a simple mathematical transformation a matrix
F' can be found, which has all the eigenvalues of F except
the zeroes. The determinant of F', equal to

3n-6

mow)

i=1
has been computed numerically for several values of the ratio

q= VKd/Kc . In order to express the results in a convenient
way, let us rewrite eq. (1) as follows:

) fa,vib = [~(3n-6)lng+ K] kT

with: 0 = Q. h/k as a characteristic temperature and:
ip-6
K= 1ln 1Rl {wni/Qc]. The computed values of K are shown

in table 1.

id
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K
q n=2_8 n = 27 n = 64 n = 125
.05 -7.8944 ~-25.752 -45.658 -66.166
.10 -3.6467 -10.463 -13.500 - 9.784
b .15 -1.0708 - 0.803 8.094 30.439
.20 0.8475 6.716 25.784 64.706
.25 2.4209 13.127 41.420 95.667
.30 3.7845 18.858 55.718 124.325
.35 5.0073 24.008 69.019 151.159
.40 6.1278 29.009 81.508 176.448
.45 7.7697 33.610 93.304 200.378
.50 8.1479 37.962 104.489 223.089
TABLE 1

Computed values of factor K of eq. (2) for
four cubic crystallites (8 to 125 molecules)
and several values of q = V/K3/K,

It is customary (as in ref.s) to interpret these results
in terms of excess entropy. An Einstein frequency wg is
defined as the frequency with which an internal molecule would
! oscillate if the other molecules were fixed. In our case

202 4 12 02 2= ‘
We = /2S2c + 16 Q) , where O, = /Ec/m, Qg = /E;/m . The excess ]
|
entropy per molecule is then defined as: ‘

w ’
1 3n=6 e 3
(3) Se= n I o

Notice that, if T, = huw, /k is defined as the Einstein tempera-
ture, the vibrational contribution to free energy is:

fn,vib = -kT [(3n-6) 1n T/T, + nS.]-

Figure 3 shows the computed values of Sg versus n. For each
given value of q, Se behaves as expected; it decreases with n,
as surface molecules become less and less important than bulk
molecules; the downturn for small values of n is due to the
"replacement'" entropy - that is, substantially, to the fact
that six frequencies are missing. What is remarkable is the
strong dependence on the ratio q. For q = 0, Se Boes to
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infinity. Geometrical considerations show that, in the n-
molecules cube, there are 3(n2/3- 2) independent non-rigid
deformations that involve only distortion of angles, without
compression of distances between nearest neighbors. Conse-
quently, 3(n?/® - 2) natural frequencies are a function of
K4 alone and go to zero when q does, whereas wg does not. To
avoid this inconvenience, we can introduce another Einstein
frequency, depending on K4 alone: wg = 4Q4 and then define a
® modified excess entropy:

1n [w3(a-n*/?) w'3(“2/3'2)]
' 1 e e
(4) Se -.; TR
In II (.ui
i=)

which takes into account the existence of purely distortional
and mixed (compressional-distortional) natural modes.

Figure 2 shows S} versus n. The dependence on q remains,

but, at least, the singularity is avoided. The results are
regrettably too few to show a clear law in the dependence of
Sé on q and n, but the general behavior is correct.

It is apparent that the results of a model involving two

elastic constants are more difficult to interpret than those
of the model of ref.’ (see their interpretation in ref.!,
p-130 ff.). Yet, a two-constant model is necessary unless we
restrict our investigations to the narrow case of f.c.c.
lattice. Hopefully, the model proposed here will prove
instrumental in broadening the field of data on the free energy
of crystallites.
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FIGURE 1
Lattice of a simple cubic crystallite of 27 molecules.

g,

N
0

g

0 100 n

A

FIGURE 2
Modified excess entropy Sé vs. crystallite size
for several values of q (eq. 4).
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Time-of-Flight Analysis by the Pseudorandom Chopping Technique:
Calibration and Application to Mass Spectrometry

David D. Dreyfuss*, Robert B. Doak,+ Harold Y. \rJachman'hL

A time-of-flight apparatus utilizing a cross correlation chopper
for beam modulation has been calibrated acainst a Maxwellian stream.
A consistent and reliable scheme for determining the time origin, to
#5 u sec for any arbitrary time-of-flight wave-form has been devised.
It is also shown that the need for deconvolution over shutter function
is virtually eliminated, since with this scheme it is possible to wvork
in principle with an arbitrarily narrow width of unit slot. A
relatively simple and straightforward analytical procedure for decon-
voluting the modulated signal is described.
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20




1. Introduction

In 1966 we reported [1, 2] from this laboratory, on the calibration
and performance of a time-of-flight (TOF) apparatus (fig. 1) in which the
shutter consisted of a single rotating disk having four narrow slots of
equal widths located at 90° intervals around the rim. The detector con-
sisted of an electron beam ionizer which (ideally) produced a sheet of
electrons. which ionized the molecular stream at a plane. The ions were
drawn out of the stream and collected on an electron multiplier.

There are several limitations to this scheme. The time resolution of
the apparafus is determined by the ratio of the open to closed arc segments
around the disk (the chopping period, which is the sum of these two lengths,
is fixed by the need to prevent overlap of fast molecules from one pulse
and slow molecules of the previous pulse). To obtain good time resolution,
one uses a narrow slot. It is, in principle, possible to deconvolute from
the effects of a wide siot (shutter function), but the mathematical manip-
ulations involved are very sensitive to the magnitude of the noise in the
data. In practice, if the shutter function is broad enough to distort the
TOF waveform, then the best that deconvolution provides are the lowest
order moments of the velocity distribution represented. Usually, in the
past, it was found necessary to sacrifice information on velocity, and use
a wide enough slit to transmit a sensible signal in each pulse.

The ionization detector has its own limitations., An electron beam
jonizer is a universal detector, hence is usable for all molecular species
in the test stream. As a consequence, however, background molecules are

detected as well (in particular, with permanent gases, all those stream
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molecules which strike closed portions of the disk are detected as back-
ground). Statistical fluctuations in this background are usually the
major source of noise in the TOF data. Other detector problems include
the finite extent of the ionization region along the beam direction and
non-zero ion travel time between the instant of ionization and detection.
The extent of the ionization region does not present a serious problem
because it has only a second order effect on the TOF distribution (the !
finite shutter function is a first order effect). We have shown [3]
that a considerable flight path through the ionization region (up te
about 25% of the total flight path) can be used before appreciable dis-
tortion in waveform occurs, and we have taken advantage of this to
improve the efficiency of ionization. As to the effects of the ion
travel time, it can be made insignificant with sufficient draw-out
potentials or alternatively it can be accounted for in interpreting the 7

data.

2.  Pseudorandom Chopping

An alternative approach to molecular beam chopping, which avoids
many of the problems cited above is to use a pseudorandom chopping
scheme (fig. 2). This technique was originally developed in connection
with thermal neutron studies [4-7], and has only recently been used with
neutral molecular beams [8, 9]. In comparison to the scheme described
above a larger number of pulses of molecules are produced over each

revolution of the disk. As a consequence several pulses are produced
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within each chopping period, which overlap at the detector. By spacing

the pulses "randomly" within the period, it is possible by a simple
arithmetic procedure to undo the overlap produced [3, 9]. It is possible,
in fact, to attain a duty cycle of 50% for such a chopper independent of
individual slot width. With this chopper, the time resolution is determined
by the length of the pseudorandom chopping sequence, where "length" counts
the total number of unit slot widths (note that several adjacent locations
may be open, thus forming a single larger slot which is treated as a set

of unit slots). The deconvolution procedure recovers the waveform which
would be obtained from a chopper with a single unit slot per period. While

it is conceivable, in principle, to improve time resolution arbitrarily by

taking longer and longer sequences, in practice, limitations in electronic
response time and the need to have unit slot width compatible with
molecular beam width precludes this extension. Avoiding these probiems by
using larger diameter disks will cause other experimental difficulties.
(Given an electronic chopping scheme of some sort (e.g. chopping laser
excitation of a beam), this last limitation may not apply, since chopping
could be entirely independent of collimation, and even better time

resolution might be obtainable.)

3. Calibration

Although the pseudorandom chopping technique has been demonstrated
for molecular beams, to cur knowledge, no calibration of a system using
the technique has been reported. We have performed such a calibration
against inert gas Maxwellian beams. A schematic diagram of the apparatus

is shown in figure 3. A room temperature gas reservoir at a pressure on
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i the order of 10 Pa supplies a beam through a small hole in a thin stainless
steel wall. In operation, conditions were such that adequate signals were
achieved for a source Knudsen number, Kn ~ 1. Flow at this value of Kn is
perhaps not fully molecular (one would Tike to use Kn = 100), but it appears
adequate for velocity distribution measurements from comparison of velocity
distributions for a series of decreasing source pressures which indicates
no measurable change in distribution when values of Kn 2 .1 are used.

Some examples of calibration runs are shown in figure 4. To compare
the data with the known velocity distribution of the gas in the source,
a Tleast sqﬁare fit of a Maxwellian velocity distribution to the data was
made. Source parameters such as molecular weight and temperature which are
known or independently mecasurable were held fixed. Fitting parameters were
a baseline position (baseline information is lost experimentally because the
signal is superposed on a large DC background), and an overall amplitude
factor. The distribution is linecar in these quantities, so the fitting is

straight-forward and well-defined. It avoids the hazards of peak height

matching in that it weights all data points equally, and can be used for
comparison with moderately noisy data. Also it is readily extended to gas
mixtures, which should have a velocity distribution consisting of a

weighted sum of two different Maxwellians.

4. Time Origin Considerations
One parameter important to comparison of the data with Maxwellian
theory, which has not so far been mentioned, is the location of the time

origin in the TOF waveform. Physically, this is the time at which all
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molecules represented by the TOF waveform passed the chopper. Pecause of
the sharp leading edge of the Maxwellian TOF waveform, small differences in
time origin (less than one channel (slot) width or 15 usec) are readily
detected. In making a calibration it is especially important that the time
origin be fixed independently, and not determined by matching peak Tlocations
or the leading edge or by some similar scheme.

In principle, the time origin is easy to determine. Using a photo-
trigger reference, whose position relative to the beam position is measured,
time origin can be determined in terms of some constant number of channels.
Time delays associated with either ion drawout time or electron signal
processing, are essentially constant, and may also be assessed. It is
difficult, however, to measure these delays independently with sufficient
precision. It seems best to measure them for the composite apparatus. Of
the several schemes attempted, the following appeared the most satisfactory.

Using the complete system with molecular beam and all processing
electronics in place, electronic delays were determined from background gas
detection without the chopper. For this process the electron accelerating
grid in the ionizer was pulsed electronically, and the time delay from the
electronic pulse to signal rise was measured. To determine geometric
timing relationships, a series of TOF spectra were measured for a constant
intense signal. (The stream was not necessarily Maxwellian: we used a
fairly high pressure H20 beam for which we could obtain an excellent signal-
to-noise ratio.) These TOF waveforms were produced by rotating the chopper
both "forward" and "backwards" (the relative location of the photo-trigger

and molecular beam define directions). Then the relative location of some
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known feature (e.g. peak position) for the two resulting waveforms were
compared to give a measure of the geometric timing relationship which is
independent of electronic delays. Improved precision in the measurement
can be obtained by making the measurement at several chopping frequencies.
We have been able to locate the time origin to within about #1/3 channel
(typically # a few microseconds for our operating chopping period of

1-2 msec and pseudorandom sequence of length 103) using these techniques.

5. Applications to Mass Spectrometry

One possible application of the improved resolution TOF system we
have developed is to mass spectrometry (see fig. 5). As mentioned above
in connection with the fitting of theoretical curves to the data, it is
possible to obtain a measure of the relative amounts of aases in a gas
mixture by comparing amplitude of the fitting Maxwellians. The advantage
of the technique is that it is non-destructive, in the sense that ioniza-
tion takes place only after the necessary information (time of flight
between two fixed points) has been obtained. There are difficulties,
however, because the velocity distributions for the species to be separated
must be known independently. This information is available, a priori only
for free molecular flows. If Maxwellian velocity distributions must be
used, only a few fairly widely spaced molecular weights can reasonably be
separated since the separate TOF peaks are broad and overlapping. In some
experimental situations, for example, detection of dimers and higher order
clusters in near condensing systems, the advantage of non-destructive

sensing may outweigh the disadvantages cited.
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FIGURE 4

Calibration Examples

Solid Curves are theoretical Maxwellian TOF curves at source temperature
(fitting parameters: baseline, amplitude). Periods (abscissas) are not equal.
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FIGURE 5

Sample TOF Waveform for a H,/Ar Gas Mixture. Solid Curve is
a least-squares fit of a sum of two Maxwellians to the data (fitting
parameters: baseline, amplitudes).
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