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ANNUAL REPORT
Contract Numbe r F44620-76-C-0036

January 5, 1979

The results of our research in the fi rst eight months of the contract
year 1977-78 are summari zed in the three attached papers which were pre-
sented at the 11th International Symposium in Rarefied Gas Dynamics . Two
of them will appear in the Sym posium proceedi ngs.

Theoretical research has since proceeded in two directions:
(1) The mode l presented by Trilling for spherical droplets of

continuous material is generalized to other geometrical
configurations. Since ice crystals appear to grow as
hexagonal platelets it has appeared interesting to consider
the growth of flat circular cylinders (R >~~ h where R is
the cylinder radius and h is its height). The rate of
growth on the sides turns out to be sufficiently faster
than on the circular faces to explain why a thin pil lbox
does not grow into a sphere . The rate of growth is
fastest near sharp edges and therefore edges are not
smoothed out.

(2) Some further extension of the statistical mechanics of
nucleation embryos beyond the enclosed paper by Gobbini
appear in his S.M. Thesis. However, to our great regi-et ,
Gobbini has now left this project to do his doctoral
research in another field , and we are seeking a replace-
ment for him to continue the statistical theory .

Experimental research beyond the results of the symposium paper has
necessitated some rather extensive rebuilding of our experimental apparatus .
In particular we have been in the process of reconstructing the molecular
beam source chamber , and the target mount assembly. Extensive experimental
measurements on the scattering of beams of water vapor from ice and Covellite
surfaces have confi rmed and extended earlier results obtained in our
laboratory by A. Swartzon.
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Mass Distribution o~ Droplets in Nucleation

Leon Trilling*

Massachusetts Institute of Technology

ABSTRACT

• We present a general model for the interaction of a speci—
fled distribution of water droplets with a supersaturated
atmosphere. In terms of an intrinsic nucleation time scale,
the evolution of the droplet size distribution is obtained
explicitly as a function of the initial state and of the
rate of formation of new nuclei. The connection between the
Intrinsic nucleation time scale and real time is then found
by solving the bulk conservation equations for the atmosphere
with the condensation as an energy source term. Examples
are worked out for an initially uniform droplet distribution
for various rates of nucleus formation.

In a number of condensation problems of practical iinpor—
tance, it is useful to know the mass distribution of droplets
or crystallites as condensation proceeds. Depending on the
order of that mass, the problem is best approached by means
of molecular kinetics and statistical mechanics (particles of
up to a few thousand molecules in a rarefied vapor or gas
vapor mixture) or as a two phase continuum non—equilibrium
thermodynamics problem (solid or liquid nuclei of order 0.1
to 10 microns). In the latter case, the mean free path of the
vapor or gas—vapor mixture may be large or small compared to
the diameter of the nucleus.

•

The statistical mechanics of small crystallites (~lO
2 to

iO~ atoms) interacting with their vapor raises two difficult• ‘ questions — What is the frequency distribution of their
configurations in phase space? What is the energy (particu-
larly the vibrational energy) to be ascribed to any given
configuration? The first of these questions can now be
answered fairly well (see for example F. Abraham [1] or the
paper submitted to this symposium by C. Gobbini [2]). The
answer to the second is still subject to considerable argument,
and depends on the model chosen for the crystallite. Such

*professor of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts
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models require either a definite set of rules for individual
molecular interactions or a convincing way of relating the
behavior of small assemblages to that of the material in the
bulk.

If the nucleus is large enough (a diameter of 0.1 micron
corresponds to some 108 atoms) it is usually represented as
a solid or liquid sphere whose main properties (e.g. surface
tension, chemical potential) are those of the material in the

• bulk. Because its mass is large, it behaves in collisions
with ambient molecules of vapor or gas as a body at rest.

The nucleating particle size distribution in a nort—equili—
brium situation is governed by a supply process, a growth (or
decay) rate which depends on the degree of background satura-
tion, on the fluid mechanics and surface physics of inter-
actions with the background , and on an exhaustion process
which removes particles from the field at a rate which depends
on particle size.

We discuss the nucleation of water droplets (supplied for
example by an aircraft jet exhaust or some other device) in a
supersaturated atmosphere of specified initial properties,
under conditions (e.g. initial droplet size) which makes
re—evaporation sufficiently rare to be negligible.

Let the ambient vapor density be Pv and the corresponding
saturation density be p.,, ; then the saturation ratio is
def ined as: 0

Pv0 
dS 

~v0 
dp~ — ~ 

dP~,,0 (1)
S 1 — -p—— ; dt — 

~~~~~ dtV V

4 and Pv0 is related to the ambient temperature T by the Clausius
• Clapeyron equation:

dp
V 0~~~~~~~~ , L 

1~~~
dT (2)

dt T ‘ kT

where L is the latent heat of condensation per molecule.

If the vapor molecules and the droplets or crystals are
convected by the surrounding air motion, then, applying the
continuity equation, for both air and vapor, to eliminate the
divergence of the velocity vector, we obtain

d Pv Ia~ 
( - ~.;)~~~— ~~ (~

)

2

~
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~;re I is the total rate of condensation of the vapor per
unit volume and unit time and 

~a is the air density . We
write the energy conservation equation for the ambient air
under the assumption that the heat released by condensation
is fully transmitted to the air (e.g. pv/pa.<<l)

p Cp dT dPaa a = a~ +LI (4)

• This, with the (ideal gas) equation of state for air eliminates
the temperature and density from (1—3); finally eliminating
dp~ 0/dt by use of (2), we obtain:

(5)
1 dS y—l L d(logpa) I Pv y—l L

dt

This is the bulk equation which connects the saturation ratio
history to the dynamics of the bulk air motion and to the
total vapor condensation rate. A similar derivation may be
found in [3].

If we now represent the condensed phase as a distribution
of spherical clusters f(r,t) where f(r,t) is the number of
clusters per unit volume whose radius is in the range
(r,r + dr), then the condensation rate I is

I 4trp r2f(r,t) !~!~ dr (6)L dt

0
• The continuity equation for the cluster size density in

• 

• (r ,t) space is

+ (f ) ‘V(r , t) (7)

where ~V (r,t) is the rate per unit volume per unit time at which
new nuclei of mass (r, r+dr) appear in the fluid.

Finally, we balance the energy transferred to a droplet
by collision with ambient gas molecules (or by convection)
.and the energy exchanged in the condensation process, and
obtain a relation of the form:

— F(r,s) — sv(r) (8)

When the time scale of collisions is short compared to the time
Bcale for droplet_growth as, in the Stokes flow regime, Fukuta

4

~
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~and Va1ter~~, and independently Sedunov3 , obtain

p dr 
— 

M aS (9a)L dt A r + B h

‘ with A — :-~—~ 
S +ii.~~ Pr (~~)z (9b)

Bh— ~&.. ~ + 11 ~ L Pr ( ..k)2 La (9c)
V .

~
. ma kT

2yPr 1 
~a J 2

~~a £ ~~~ (9d)
~~Y~

l) pa kT kT

Here TMa is the viscosity of the air

Day is the diffusion coefficient of water vapor in air

are the molecular masses of vapor and air
respectively

h is a characteristic length , essentially a Knudsen layer
thickness
Pr is the Prandtl number of air Pr =

~ is the Schmidt number of air ~ 
l
~/P aDav •

a is the energy accommodation coefficient for air on water
B is the condensation coefficient

The equivalen t result for the free molecule regime is:

- :::~: (~~ .)2  
(10)

Note that ta~ 
LB and h are lengths of the order of the mean

Ifree path of the gas; A, B are numbers of order unity. We
expect (9) to hold since the Reynolds number

Pa ~ 
dr/ dr

• IA~
1. of order paS/p t which is well below unity when the radius
of the droplet is larger than the mean free path. In air at
sea level, the mean free path of air is of order 0.1 microns ;
one would therefore use (9) for all droplets considered
there. But at an altitude of 50 kin, the mean free path is
.100 microns and formula (10) is more appropriate.
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Substituting (8) into (9) or (10) and introducing the
new coordinates

1 .1. . .L . 
~ 

= ; vf = g (11)
S a t  a~ 

‘ 3r ~~

we obtain

= vça~ ‘t’(r,t) = q, (a,t) (12)
• a t aa  sur)

which is integrated formally to give

g(a ,t)  = g0(a-t) + J ~~~ +a- t, ~) d~ (13)

0

I vhere £o.121 is the initial distribution of droplet sizes.
• vo(a)

Thus, in the absence of a source of nuclei , g shifts to 
•

- the right ; the distribution function keeps its shape but is
applied to larger droplets; the droplets in the system grow
and the distribution function scale is modulated by the
factor v 0 /v (see llc) which is generally greater than unity .
The time scale t is not real time; it is related to the satur—

iation ratio by (ila) and as S+ O , t approaches a finite value
,while t-~~~; when the droplets have condensed all the available
vapor , they grow no further .

If a source term is specified [e.g. M~ (r,t)1, the form of
‘*(a,r ) is not known since (h a) cannot be inverted without
solving (5); but its role is clear; it provides new nuclei

• which compete with the original ones in g0 (a) for available
vapor and therefore inhibit the growth of large droplets by
drawing some vapor to new nuclei. As a result, the condensa—

1
tion process is completed sooner in real time.

To complete the formal solution of the problem, we substi—
ttute (13) into (5) transformed to the t coordinate:

d log(l-S) + (
~ 

1:1 L
) 
d lOSPa [l+~~ ~~~ (

L)2]x (14)

4irp f
x I r2(a)g(a ,t)v(a)dtPy

0 j

H
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Remembering the definition of S, we eliminate p.,,, from (14),

since 1—S = —
~~~. Thus

d log(l-S~ (h-~~~~~~~) 

d log Pa 
= [(l-S) ~~~~~~~~~ ~~~j 2]

41TPL f r 2 (a) [g (a-t) + + o—t ,~~) d~ )vdo

0 0

Let I~ denote the integral of the homogeneous part of the
solution and 12 that of the non—homogeneous part. In the
special case of an atmosphere at rest d log Pa/dt vanishes,
and in terms of I~ and I~

,

~~~~~~ kT 2 1 1 d(l—S)
Pv0 ~FT ~~~ ~~~~ (l—S) + !! ~.. L.i ~.k.) 2 

C’ 
=

Pa y kT

4rPL= 

~‘v (I~ + 12) (14b)
0

Integrating (l4b)

• 
4
~

P L
~~~

L 2I
s ~~~~~~~~~~~~~~~~ (.k ) 2 )e 0 —

— (l_Si+~~~~0.1~~~(.~~ )2 )}  x

411p

pa
L

~~~~ (~~~~) 2 f [I~(t) + 12(r)ldt
X { (1S1)e

— (1—Si + ~~~~~~ ~~~~Z) —l (15)
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P IIme .

ç~iere S~ is the initial supersaturation. Whenever the expo-
nent of the exponential is positive, S < S~ , and as the expo-
nent increases, S decreases monotonically toward zero.

The real time variable t is obtained by integrating (lla)
when S(T) is known . In particular , saturation occurs when S
vanishes, or

.
~S

• f [I~(t) + 12(T)]dt=
J pv
0 i s~ + ~~~ :1=1 (

j
~~;)

2

4W(y_i)pL 
(
1~~~) 2 log 

(l-Si)(l (~~~ )2 )  
=

• (16)

~~~X i J~ 2s
YPa kT a~~~ 

1
—~~~2 1 r~~= 4rr (y—l )P L L~ 

og i. 

—l L(l—S 1)(1 +~~
_A 1__ (j—)2)

p
since 11 .~~.2.. <<1 for most problems of practical interest , (16)

I ~‘a
may be approximated as

s PV1—PVO S~ ~v .

I

. 0 

[11(t) + I z ( T ) J d t (17)

where p.,,
~ is the initial ambient vapor pressure and Pv0 the

saturation vapor pressure at the (constant) ambient tempera—
ture. The integrals 11(T) and I2(T) represent the contribu-
tions of the growth of original droplets and added source
droplets respectively to the depletion of the available vapor

i supply. The integral I~ can be computed explicitly when the
original distribution o~ droplet size f0(r) and the growth
law (8) are known . The integral 12 includes i~(ci,t) and cannot
be computed directly from I~(r,t). But a step by step numerical
integration where ‘2 is evaluated approximately over the nth
step by using the value of S~_1, gives a good approximate
result in a straightforward manner.

• . I
8
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For Stokes flow (9), a convenient non—dimensional time ~
based on the rate of growth of a reference droplet of radius
r0 is introduced :

= 
PL~ O ( ~~ O + Bh) (l8a)

For a 1 micron droplet at sea level, one unit in ~ corresponds
• to 100 seconds. Similarly a scale for the distribution func—

tion is introduced :

• ...4ir p r~ f 0= L (l8b)
pv0

• That is essentially the ratio of mass of condensed material
to the mass of vapor at saturation conditions in the same
volume. For a set of droplets of size r 0, the Integral
fl 1dt is evaluated as

f I~ dt = ri(t + ~~2 ) (19a)

and the integral fI2dt becomes:

— — 4irp r3’I~(Ar + Bh)J I2dT = t dT ; = p~
0
L 

r
0

where ~ is the non—dimensional source intensity defined in a
• 

. ‘manner comparable with r~ and ~ is a non—dimensional “real
• 

~time” compatible with T. The effect of the source term is
• shown on Figures 1, 2 by comparing the real time histories

!of the condensation for r~ = 1, ~ = 0,1,5 for an initially
~uniform set of droplets r0.

This research was supported by the U.S. Air Force Off ice  of
Scientific Research under contract # F4462 0—76—C—0 036.



- -..-

~~~~~~

• REFERENCES

1. F.F. Abraham: Homogeneous Nucleation Theory, Academic
I Press , N . Y. (1974).

• 2. G. Gobbini: “A Contribution to the Statistical Mechanics
of Homogeneous Nucleation,” (11th RGD Symposium —

Cannes 1978)
also , “Homogeneous Nucleation of Liquif ying or
Sublimating Gases , ” S.M. Thesis — M.I.T., June 1978 —
94 pp.

3. Y.S. Sedunov: Physics of Drop Formation in the Atmosp here,
J. Wiley and Sons , N. Y.  (1974).

4. N. Fukuta & L.A. Walter : “Kinetics of Hydro—xneteor Growth
from a Vapor—Spherical Model,” J. Atm. Sc., Vol. 27,

• pp. 1160—1172 , Nov. 1970.

• ls

--- — - ------- -- -  - •-•-~~~~~~~~~~~~~~~~~~~~~~
-- .- 

--— p



r • — --—

• t

i
~ /J.T/p&(Aro+Bh) 

•

.

-‘ 0 9 0 $o 0 0 0 0
I

• p~~~~~~~~~~~~~
_

•
0

0
.~~~~~
.

0 -

F; ‘.4
-

r~~~~O O r ~
o

•
+ S
W 0 ~ c

~~~~~~
. ..

~ 0 ’ l
CD

I-’

‘1 i~ 0
— 0 —‘.5 I —o 5 0o D .~~~~~ C

DC ~~~0
S D )

‘1 -~~~ ~~~~~~ —
— ~)CD

0 
~.4 • I r ~u C.J~ CD

CD S
S • • C• DC C D I )
I-’

• . r? . 5 0
.~~~ ‘.4o CD

DC S n

•0~0

II

—

______________________ A



~~~~~~ - ---• ~~~~~~~~~

SUPERSATURATION RATIO S(1)
0 0 9 P

0 
_ _ _ _ _ _ _ _ _ _ _ _ _

I I I

‘

-‘• 0
+ ~~~~~~. 0.5

W o
.5~~~10
r r O

e n0 .  CD
0 ‘1

P3

‘ ..X’ . 4 P~
N C I

~~~. U C D I )
r~ ,-~0 1 “~~~~ 

—
— .5 

_ 
a P i  0

I) C
-‘ 

CD P3 re

0 .0  
~Tl

‘•i ~~
.—

— 
r I~ ,., ,.,

• - 
~~~~~~

• . .!~.0 I.-.
I’.,

• 0
ii DC

.0% ‘1 0 3
— rt 5

o CD
DC C

‘I n
IS m I D
0 r, CD

0 ( 1

0

- - -•- • - -~~~~• --- •- —- -~~~~~-—~
---—-

~~--“-
- - • - -- • - - - -~



• i
, .~~- . : •

1

A CONTRIBUTION TO THE STATISTICAL
MECHANICS OF HOMOGENEOUS NUCLEATION

Giuseppe Gobbini*
Massachusetts Institute of Technology

ABSTRACT

Homogeneous nucleation depends on the free energy of con—
densational embryos, an important part of which depends, in
its turn, on the embryos’ natural frequencies of vibration.
Mathematical models previously proposed fo r these vibra tions
are discussed, then a new one is proposed, which envisages
both compressional and distortional vibrations. This model
is applied to small cubic crystallites, and the resulting
values of free energy, obtained by means of numerical compu-
tation, are presented and discussed.

It is well known that the liquefaction or sublimation of a
gas is severely delayed when there are no pre—existing nuclei
on whose surface condensation may begin. Under such conditions,
the supersaturated gas is believed to build embryonic aggre-
gations, or clusters. For smaller clusters,1 free energy
increases with size, and so these clusters tend to decay.
Above a critical size, however, free energy decreases with
size. When supercritical clusters are formed , they tend to

• grow, and condensation finally occurs.

The free energy of a cluster made of n molecules is:

• 
f~ -kT 1n(Q~e m~

/Nn)

where in: total number of molecules in the enclosure

• N~: number of clusters made of n molecules

and: = (n!i’ I exp (—H~/kT) d~ d~

where H~ is the Hamiltonian of the cluster, ~ and ~ itsLagrangian position and momentum coordinates. If we suppose
the clusters to be crystallites, with their molecules oscil—
lating around invariable lattice positions, Hn, and therefore

and f~ , can be decomposed into the sum of terms due to
translational, rotational, vibrational and binding energy.
The vibrational contribution to free energy can be expressed,

• if the temperature is not too low, by the formula:
h 3f l -6

(1) 
~n, vib 

= (3n—6)kT in ij~ + kT in 
II w

i—i ni

• *Graduate Student, Massachusetts Institute of Technology
Dept. of Aeronautics & Astronautics; Cambridge, MA. 02139 USA
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where the w~~’s are the 3n—6 natural frequencies (in rad/sec)
of a crystallite of n molecules. It has been pointed out2

• that the “replacement” term of free energy lies within this
component.

An expression for the intermolecular potential is neces-
sary in order to find the natural frequencies . Two different
kinds of expressions have been proposed so far, to my know-
ledge. One is a potential depending only on the distance
between nearest neighbors. If the problem is linearized , this
means modeling the crystallite as mass points collegated by
ideal coil springs. A serious objection must be raised againa

• this model: it works for a f.c.c. lattice — to which it was
applied by Hoover et al.3 — but would not work for most other
lattices. In most crystalline lattices non—rigid deformations
are possible, which leave the distance between nearest neigh-
bors unchanged; the model provides no restoring force for
such deformations.

The directionality of bonds, which holds these lattices

• together, was taken into account in the çotential proposed by
Stillinger and Rahman f or liquid waters

” . The water molecule
was modeled as a rigid tetrahedron with four electrical

• charges at the corners, and the potential was the sum of a
term depending on the distance between centers and of the
electrostatic terms. The motions allowed were compressions
and librations — the latter being rigid rotations of a mole-
cule with respect to its neighbors. If a model like this
were applied to a crystallite, it would account for the
stability of any kind of lattice, but would probably envisage
unrealistic vibrational modes. The assumption of molecular

• rigidity is too strict. In the very case considered in
ref.”5, water, the equilibrium angle between valence orbitals

• changes of about 5% from the water vapor molecule to the
perfect ice crystal. It is only reasonable to assume that
oscillations of this angle around its equilibrium value occur
in crystallites. On the other hand, allowing librational

• freedom to molecules is probably too liberal an assumption for
crystalline aggregates, where bonds are complete and fairly

• tight , while it seems correct for a liquid, where bonds are
incomplete, strained and easily broken.

For these considerations, a different linear model of
crystalline lattices is proposed here. It is supposed that
molecules are not rigid, but that their valence orbitals always
stay oriented toward the centers of nearest neighbors. Libra—
tions, i.e., rigid rotations of a molecule, are therefore
excluded. The displacement of a molecule from its equilibrium
position will cause a change both of the distance between

iq
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centers and of the angle between orbitals. Both are opposed
by a restoring force, so that compressional and distortional
vibrations result. Let us call Kc and Kd the elastic constants
of compression and distortion, respectively ; djj the distance
between the centers of the i—th and the j—th molecule; aij~
the angle with vertex in the center of the i—th molecule and
sides ~oing through the centers of the j—th one and of the k-th
one; d11 d and cz°jj~ the respective equilibrium values.
The small—displacement potential will be:

— I ~i~~i Kc(dij_d~j)2 + 
~ ~i ~~j,k 

1(d(cLi~k_4jk)
2d2

where the symbol i has been used to mean a summation over the
nearest neighbors of the i—th molecule, and d has been intro-
duced to give Kd the same dimensions as K~

.

This potential has been used to compute numerically the
vibrational component of the free energy of cubic crystallites
with a simple cubic lattice. Crystallites of 8, 27, 64 and
125 molecules have been considered. The 27 molecules cube is
shown in fig. 1. The force—constant matrix F is found from
the potential ~:

Fik 1/rn a 2~ /a xj3 Xk

m being the mass of each molecule and xj, Xk two of the 3n
coordinates. The elgenvalues of F are the squares of the wj’s
(see; e.g., ref.1 , p.110). The product of the wi’s (includi~g
the six zero values competing to rigid translations and rota-
tions of the whole crystallite) is det F. Obviously, then,
detF = 0. With a simple mathematical transformation a matrix

• F’ can be found, which has all the eigenvalues of F except
• the zeroes. The determinant of F’, equal to

3fl- 6

IL
• i— i

has been computed numerically for several values of the ratio
q Ic/K5 . In order to express the results in a convenient-
way, let us rewrite eq. (1) as follows:

(2) 
~n,vib 

E (3n 6)ln~+ K) kT

with: 0 — 
~~ 

h/k as a characteristic temperature and:

K — in ~~~~~~~~~~~ The computed values of K are shown

in table 1.

,J~~
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K

q n - 8  n — f l  n— 6 4  n— l 2 5

.05 —7.8944 —25.752 —45.658 —66.166

.10 —3.6467 —10.463 —13.500 — 9.784
• .15 —1.0708 — 0.803 8.094 30.439

.20 0.8475 6.716 25.784 64.706

.25 2.4209 13.127 41.420 95.667

.30 3.7845 18.858 55.718 124.325

.35 5.0073 24.008 69.019 151.159

.40 6.1278 29.009 81.508 176.448

.45 7.7697 33.610 93.304 200.378

.50 8.1479 37.962 104.489 223.089

TABLE 1

Computed values of factor K of eq. (2) for
four cubic crystallites (8 to 125 molecules)
and several values of q =

It is customary (as in ref.3) to interpret these results
in terms of excess entropy. An Einstein frequency We is
defined as the frequency with which an internal molecule would
oscillate if the other molecules were fixed. In our case

— v12~
2 + 16 ~~ , where 

~~ 
— /I(

~
/m, 

~~ 
= vt,1/m . The excess

entropy per molecule is then defined as:

~ 
3 f l 6

(3) S~ ~ ln~fl ~~~
—

Notice that, if Te ~~~~~ 
is defined as the Einstein tempera-

ture, the vibrational contribution to free energy is:

~n,vib 
— —kT ((3n—6) in T/Te + flSeJ

Figure 3 shows the computed values of Se versus n. For each
given value of q, Se behaves as expected ; it decreases with n,
as surface molecules become less and less important than bulk
molecules; the downturn for small values of n is due to the
“replacement” entropy — that is, substantially, to the fact
that six frequencies are missing. What is remarkable is the
strong dependence on the ratio q. For q 0, Se goes to

1~
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infinity. Geometrical considerations show that , in the n—
molecules cube, there are 3(~~2/3 .. 2) independent non—rigid
deformations that involve only distortion of angles, without
compression of distances between nearest neighbors. Conse-
quently, 3(~~2/3 — 2) natural frequencies are a function of
Lj alone and go to zero when q does, whereas We does not. To
avoid this inconvenience, we can introduce another Einstein
frequency, depending on Kj alone: (4 = 4

~d 
and then define a

• modified excess entropy:

in [w3(~~~~~~~~2h
I3

) Wt3(~
l ” 2)]

(4) s5 
e 

3n— 6 
e

ln II Wj
i—a

which takes into account the existence of purely distortional
and mixed (compressional—distortional) natural modes .

Figure 2 shows S~ versus n. The dependence on q remains,
but, at least, the singularity is avoided . The results are
regrettably too few to show a clear law in the dependence of
S~ on q and n, but the general behavior is correct.

It Is apparent that the results of a model involving two
elastic constants are more difficult to interpret than those
of the model of ref.3 (see their interpretation in ref. ,
p.130 ff.). Yet, a two—constant model is necessary unless we
restrict our investigations to the narrow case of f.c.c.
lattice. Hopefully, the model proposed here will prove
instrumental in broadening the field of data on the free energy

• of crystallites.
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FIGURE 1
Lat tice of a simple cubic crystallite of 27 molecules.
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FIGURE 2
Modified excess entropy S~ vs. crystallite size

for several values of q (eq . 4).
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FIGURE 3

Excess entropy S5 vs. crystallite size (eq. 3).
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Time-of-Fl ight Analysis by the Pseudorandom Chopping Technique :
Calibration and Application to Mass Spectrometry

David D. Dreyfuss*, Robert B . Doak ,~ Harold Y. Wachmantt

A time—of—flight apparatus utilizing a cross correlation chopper
for bean modulatio n has been calibrated anainst a Maxwellian strewn .
A consistent and reliabl e sche,~e for determining the time origin , to
±5 ~i Sec for any arbitrary time-of-flight wave-form has been devised .
It is also shown that the need for deconvo lution over shutter function
is v i r t ua l l y  e l i m ina ted , since with this scheme it is possible to work
in pr inc ip le  w ith an a rb i t ra r i l y  narrow width  of uni t  slot . A
relatively simple and straightforward analytical procedure for decon-
voluting the modulated signal is described.

* Present Address: Dept. of Aeronautics & Astronaut ics , M.I.T., Cambridge , MA
+Present Address: Aerodyne Research , Burlington , MA , USA

~~ Professor , Dept . of Aeronautics & Astronautics , M.I .T., Cambridge , MA , USA

S



_ _ _ _ _ _ _  _____ 
~~~~~~~~~~ - - —

— l  —

1. Introduction

In 1966 we reported [1 , 2] from this laboratory , on the calibration

and performance of a time-of-flight (TOF) apparatus (fig. 1) in which the

shutter consisted of a single rotating disk having four narrow slots of

equal widths located at 900 intervals around the rim. The detector con-

sisted of an electron beam ionizer which (ideally) produced a sheet of

electrons, which ionized the molecular stream at a plane . The ions were

drawn out of the stream and collected on an electron multiplier.

There are several limitations to this scheme . The time resolution of

the apparatus is determined by the ratio of the open to closed arc segments

around the disk (the chopping period , which is the sum of these two lengths ,

is fixed by the need to prevent overlap of fast molecules from one pulse

and slow molecules of the previous pulse). To obtain good time resolution ,

one uses a narrow slot. It is , in principle , possible to deconvolute from

the effects of a wide s’ot (shutter function), but the mathematical manip-

ulations involved are very sensitive to the magnitude of the noise in the

data. In practice, if the shutter function is broad enough to distort the

TOF waveform, then the best that deconvolu tion provides are the lowest

order moments of the velocity distribution represented . Usually, in the

past , It was found necessary to sacrifice information on velocity , and use

a wide enough slit to transmit a sensible signal in each pulse.

The ionization detector has its own limitations. An electron beam

ionizer is a un iversal detector, hence is usable for all molecular species

in the test stream. As a consequence , however , background molecules are

detected as wel l (in particular , with permanent gases , all those stream

14
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molecules which strike closed portions of the disk are detected as back-

ground). Statistical fluctuations in this background are usually the

major source of noise in the TOF data. Other detector problems include

the finite extent of the ionization region along the beam direction and

non-zero ion travel time between the instant of ionization and detection .

The extent of the ionization region does not present a serious problem

because it has only a second order effect on the TOF distribution (the

finite shutter function is a first order effect). We have shown [3]

that a considerable flight path through the ionization region (up to

about 25% of the total flight path) can be used before appreciable dis-

tortion in waveform occurs , and we have taken advantage of this to

improve the efficiency of ionization . As to the effects of the ion

travel time , it can be made insignificant with sufficient draw-out

potentials or alternatively it can be accounted for in interpreting the

data.

2. Pseudorandom Chopping

An al ternative approach to molecular beam chopping , which avoids

many of the problems cited above is to use a pseudorandom chopping

scheme (fig. 2). This technique was originally developed in connection

with thermal neutron studies [4-7], and has onl y recently been u sed with

neutral molecular beams [8, 9]. In comparison to the scheme described

above a largernumber of pulses of molecules are produced over each

revoluti on of the di sk. As a consequence several pulses are produced

i~t-
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within each ch ü p p i n g  period , which overlap at the detector. By spacing

the pulses “randomly ” within the period , it is possible by a simple

ar i thmet ic  pr ocedure to undo the overlap produced [3, 9]. It is poss ible ,

in fact , to attain a duty cycle of 50% for such a chopper independent of

ind ividual slot width. With this chopper , the time resolution is determined

by the length of the pseudorandom cho pping sequence , where “length” counts

the tota l number of unit slot widths (note that several adjacent locations

may be open , thus forming a single larger slot which is treated as a set -

of unit slots). The deconvolutio n procedure recovers the t’.’aveforrn which

would be obtained from a chopper with a single unit slot per period. While

it is conceivable , in principle , to improve time resolution arbitrarily by

taking longer and longer sequences , in practice , limitations in electronic

response time and the need to have unit slot width compatible with

molecular beam width precludes this extension . Avoiding these problems by

using larger diam2ter disks will cause other experimental difficulties.

(Given an electronic chopping scheme of some sort (e.g. chopping laser

excitation of a beam), this last limitation may not apply, since chopping

could be entirely independent of collimation , and even better time

resolution might be obtainable.)

3. Calibration

Although the pseudorandom chopping technique has been demonstrated

for molecular beams , to our knowledge , no calibration of a ~ystcm usin g

the technique has been reported. We have performed such a calibration

against inert gas Maxwellian beams. A schematic diagram of the apparatus

Is shown in figure 3. A room temperature gas reservoir at a pressure on
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• the order of 10 Pa supplies a beam through a small hole in a thin stainless

steel wal l .  In operation , conditions were such that adequate signals were

achieved for a source Knudsen number , Kn ~ 1. Flow at this value of Kn is

perhaps not fully molecular (one would like to use I’~n 100), but it appears

adequate for ve1oç~t~ distribution measurements from comparison of velocity

distributions for a series of decreasin g source pressures which indicates

no measurable chan ge in distribution when values of Kn ~ .1 are used .

Some examples of calibration runs are shown in fi gure 4. To compare

the data with the known veloc ity distr~bution of the gas in the source ,

a least square fit of a ~axw e ll ian veloc ity distribution to the data was

made. Source parameters such as molecular weight and temperature which are

known or independently measurable were held fixed. Fitting parameters were

a baseline position (baseline information is lost experimentall y because the

signal is superposed on a large DC backgro und), and an overall amplitude

factor. The distribution is linear in these quantities , so the fitting is

straight-forward and well-defined . It avoids the hazards of peak height

matching in that it weights all data points equally, and can be used for

comparison with moderately noisy data . Also it is readily extended to gas

mixtu res , which should have a velocity distribution consistin g of a

weighted sum of two different Maxwe ll ians.

4. Time Origin Considerations

One parameter important to comparison of the data with Maxwellian

theory , which has not so far been mentioned , is the location of the t ime

origin in the TOF waveform . Physically, this is the time at which all

2~’f
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molecules represented by the TOF waveform passed the chopper. t~ecause of

the sharp leading edge of the 1-laxwellian TOE waveform , small differences in

time origin (less than one channel (slot ) width  or 15 psec) are readily

detected . In making a calibration it is especially important that the time

origin be fixed independently, and not determined by matching peak l ocations

or the leading edge or by some similar scheme .

In p r i n c i p l e , the time origin is easy to determine. Using a photo-

trigger reference , whose position relative to the beam position is measured ,

time origin can be determined in terms of some constant number of channels.

Time delay5 associated with either ion drawout time or electron signal

processing, are essentially constant , and may also be assessed. It is

difficult , however , to measure these delays independently with sufficient

precision . It seems best to measure them for the composite apparatus. Of

the several schemes attempted , the following appeared the most satisfactory .

Using the complete system with molecular beam and all processing

electronics in place , electronic delays were determined from background gas

detection without the chopper. For this process the electron accelerating

grid in the ionizer was pulsed electronically, and the time delay from the

electronic pulse to signal rise was measured. To determine geometric

timing relationships , a series of TOE spectra were measured for a constant

intense signal. (The stream was not necessarily Maxwellian : we used a

fairly high pressure H20 beam for which we could obtain an excellent signal-

to-noise ratio.) These TOF waveforms were produced by rotating the chopper

both “forward” and “backwards ” (the relative location of the photo-trigger

and molecular beam define directions). Then the relative location of some 

—~~~~~~~~~-— - - • -  ------.~~~~~~~------- -A
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known feature (e.g. peak position ) for the two resulting waveforms were

compared to give a measure of the geometric timin g relationship which is

independent 0f electronic delays . Improved precision in the measurement

can be obtained by making the measurement at several chopping frequencies.

We have been able to locate the time origin to within about ±1/3 channel

(typically ± a few microseconds for our operating chopping period of

1-2 msec and pseudorandom sequence of length 103) using these techniques.

5. Applications to Mass Spectrometry

One possible application of the improved resolution TOF system we

have developed is to mass spectrometry (see fig. 5). As mentioned above

in connection with the fitting of theoretical curves to the data , it is

possible to obtain a measure of the relative amounts of gases in a gas

mixture by comparing amplitude of the fitting Maxwell ians. The advantage

of the technique is that it is non—destructive , in  the sense that ioniza-

tion takes place only after the necessary information (time of flight

between two fixed points) has been obtained. There are difficulties ,

however, because the velocity distributions for the species to be separated

must be known independently. This information is available , a priori only

for free molecular flows. If Maxwellian velocity distributions must be

used , only a few fairly widely spaced molecular weights can reasonably be

separated since the separate TOE peaks are broad and overlapping. In some

experimental situations , for example, detection of dimers and higher order

clLsters in ne,~r condensing systems, the advantage of non-destructive

sensing may outweigh the disadvantages cited.

S
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FIGURE 4

Calibration Examples

Solid Curves are theoretical Maxwellian TOE curves at source temperature
(fitting parameters: baseli ne, amplitude). Periods (abscissas) are not equal .
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FIGURE 5

Sample TOF Waveform for a H2/Ar Gas Mixture. Solid Curve is
a least-squares fit of a sum of two Maxwellians to the data (fitting
parameters: baseline , amplitudes).
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