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resources in order to reflect the changing needs of the individual activities,
as well as the changes in total resource usages.

Conventionally, the resource-allocation problem has been studied for the
case where, in addition to the constraints, there exists an objective to be
maximized. Our emphasis, as is reflected by the title of this work, is on the
feasibility aspect of the problem, that is, of taking a large system and
keeping it operational. We show that this in itself is both an important
problem, and has theoretically interesting consequences. In addition, our >
results can be useful for the solution of the general (optimization) problem.éa

Chapter 2 provides the motivation for our study. The Chapter is divided
into two Parts. Part I describes the Resource Management problem in a large
FIAT spare-parts warehouse. We discuss why the warehouse management is satis-
fied with a feasible solution, and do not require any notion of optimality.

The size of the problem (there are 60,000 part-numbers, and 30-50 new part-
numbers are to be allocated every day), and the fact that the resource usage
functions are discontinuous and/or nonlinear and/or nonconvex, make the problem
a hard one. We discuss why standard techniques are not suitable. Part II of
Chapter 2 advocates a decentralized approach to the problem. We show how, by
replacing the feasibility problem by a suitable "Artificial" optimization
problem, we can use Lagrange Multipliers to simplify the solution through
decentralization of decisions. We then show how this decentralized approach
offers substantial advantages over standard techniques, with regard to each of
the three objectives above.

Although the use of Lagrange Multipliers for decomposition of large
problems is well known, the main drawback of this technique is the existence of
"duality gaps". 1In Chapter 3 we present a Theorem giving simple conditions
which guarantee the existence of optimal multipliers. Such results have
previously been given only under strict conditions. We are able to completely
remove restrictions on the form of the individual resource usage functions,
replacing them instead by a condition based on their magnitudes alone. This
result gives a firm theoretical basis to our approach, since it justifies the
use of our technique.

In Chapter 4 we develop iteration algorithms to solve the "Initial
Allocation" problem in a decentralized manner. These algorithms have proveable
convergence properties, and quadratic convergence rates. Again, although
ldecentralized iteration algorithms have been described in the literature, their
convergence has required strict conditions on the functions (convexity,
continuity). We are able to extend our proofs to more general functions. A
vinor but interesting contribution of this Chapter is the Selection Algorithm.
This is a simple and intuitively appealing method of solving certain inequality

roblems, yet its solution possesses useful minimum-norm properties.

In Chapter 5 we describe the design of a practical Resource Management
ystem, and give examples from the system designed for the FIAT warehouse.
hapter 6 illustrates the applicability of our methods to the problem of optimal
ile allocation in distributed computer systems.

Our conclusions, presented in Chapter 7, advocate a new approach to

rge-Scale systems. Based on the methods used in this work, we suggest that
nalysis of such systems should depend on the "global" properties of the systems,
nd be insensitive to the "local" properties of the system.
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NOTATION

de 'state some conventions nere, which will eliminate the

need for minor cefinitions throughout this work. Underlined

lower-case letters represent column vectors. Upper-case
letters may represent matrices, sets, or constants.

Subscripts on a symbol usually denote a componant of the
corresponding vector or matrix that the symbol represents,
for example

xj is the jth component of the vector x

Aij is the (i,j) componant of the matrix A.

Superscripts will be used to differentiate between symbols

of the same type, for example 57, 52, ik.

Vector 1inequalities are tc be 1interpreted componentwise,
that 1is

a £ b means a; 5 bi for all 1.

The zero vector will often be denoted simply by 0, and its

dimension will be apparent from tha context.
The notation x' denotes the transpose of the vector x.

En denotes the n-dimensional Euclidean vector space.
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Synopsis

This work studies the application of decentralization
to the problem of Resource Management in Large Systems. In
an operational system, where a very large number of
activities share limited resources, this Resource Management
problem has three objectives. The first (MIndrtial
Allocation") 1is to find an assignment of resources to every
activity, such that all the system constraints are
satisfied, and all activities are operating. The second
("New-Assignment") is to find a rationale for allocating
resources to new activities. New activities are initiated
frequently enough that we do not wish to re-solve the entire
problem for the combinad set of old and new activities. The
third objective ("Periodic Review") is to fi?d an efficient
way of re-allocating resources 1in order to reflect the
changing needs of the individual activities, as well as the

changes in total resource usages.

Conventionally, the resource-allocation problem has
been studied for the case where, in addition to the
constraints, there exists an objective to be maximized. Our
emphasis, as 1is reflected by the title of this work, is on
the feasibility aspect of the problem, that is, of taking a
large system and keeping it operational. We show that this
tn  1tself is ©Doth an important problemn, and has
theoretically 1interesting consequences. In addition, our

results can be wuseful for the solution of the general

— e ———————————
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(optimization) problem.

Chapter 2 provides the motivation for our study. The
Chapter 1is divided 1into two Parts. Part I describes the
Resource Management problem in a large FIAT spare-parts
warehouse. We discuss why the warehouse management is
satisfied with a feasible solution, and do not require any
notion of optimality. The size of the problem (there are
60,000 part-numbers, and 30-50 new part-numberé are to Dbe
allocated every day), and the fact that the resource usage
functions are discontinuous and/or nonlinear and/or
nonconvex, make the problem a hard one. We discuss why
standard techniques are not suitable. Part II of Chapter 2
advocates a decentralized approach to the problem. We show
now, by replacing the feasibility problem by a suitable
"Artificial" optimization problem, we <can wuse Lagrange
Multipliers o simplify the solution through
decentralization of decisions. We then show how this
decentralized approach offers substantial advantages over
standard techniques, with regard to each of the three

objectives above.

Although the use of Lagrange Multipliers for
decomposition of 1large problems 1is well known, the main
drawback of this technique 1is the existence of ‘'duality
3aps". In Chepter 3 we prasant a Theorem giving simple

conditions whizh guarantee the existence of optimal

multipliers. Such results have previously been given only
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under strict conditions. We are able to completely remove
restrictions on the form of tne individual resource usage
functions, replacing them instead by a condition based on'
their magnitudes alone. This result gives a firm
theoretical basishto our approach, since it justifies the

use of our technique.

In Chapter 4 we develop iteration algorithms to solve
the "Initial Allocation" problem in a decentralized manner.
These algorithms have proveable convergence properties, and
quadratic convergence rates. Again, although decentralized
iteration algorithms have been described'in the 1literature,
their convergence has required strict conditions on the

functions (convexity, continuity). We are ‘able to extend

-

our proofs to more generz2 functions. A mincr but
interesting contribution of this Chapter 1is the Selection
Algorithm. This 1is é simple and intuitively appealing
method of solving certain 1inequality problems, yet its

solution possesses useful minimum-norm properties.

In Chapter 5 we describe the design of a practical
Resource Management system, and give examples from the
system designed for the FIAT warehouse. Chapter 6
illustrates the applicability of our methods to the problem

of optimal file allocation in distributed computer systems.

Our conclusions, presented in Chapter 7, advocate a new
approach to Large-~Scale systems. Based on the methods used

in this work, we suggest that analysis of such systems
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should depend on the "global" properties of the systems,

be insensitive to the "local" properties of the systems.

and
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CHAPTER 1

INTRODUCTION

In an era where, due to rapid advances in technology,
we are seeing greater and greater interconnection between
systems, the study of large-scale systems is assuming a new
importance. Along with this has come the realization that
in most applications practicality calls foar decentralized
control of such systems. The importance of these two facts
is reflected by the recent devotion of an entire issue of a
prominent journal* to the topic of "Large-Scale Systems and
Decentralized Control". In this work we study the
application of decentralization to ones aspect of such
systems, namely, the problem of Resource Management in Large

Systems.

In a large operational system, where a very large
number of activities share a number of limited resources,
this Resource Management problem has three main objectives.
The first (the "Initial Allocation" or "Design" problem) is

- - - - - - - - - - - - . - - ———— - -

*IEEE Trans.Aut.Control, Vol AC-23, No.2, April 1978.
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to find an assignment of resources to every activity, such
that all the system constraints are satisfied, and all
activities are operating, enabling the system as a whole to
operate. The second (the "New-Assignment" proble1) is to
find a rationale for allocating resources to new activities.
It 1is presumed that new activities are initiated frequently
enough that we do not wish to re-solve the entire problem
for the combined set of old and new activities. The third
objective ("Periodic Review" problem) is to find an
efficient way of re-allocating resources in order to reflect
the 2hanging needs of the individual activities, as well as

the changes in total resource usages.

Conventionally, the resource-allocation problem has
been studied for the case where, in addition to the
constraints, there exists an objective to be maximized. Our
emphasis, as 1is reflected by the title of this work, is on
the feasibility aspect of the problem, that is, of taking a
large system and keeping it operational (maintaining it in
the feasible region). We shall see that this in itself is
both an important problem, and has theoretically interesting
consequences. In addition, our results can be wuseful for

the solution of the general (optimization) problem.

In Chapter 2 we shall provide the motivation for our
study. The Chapter is divided intn twe Parts, Part I
describes the Resource Management problem in a large FIAT

spare-parts warehouse. It was tne tackling of this problem
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that led to the work presented here. Hence an appreciation
of the original problem leads to a deeper understanding of
the abilities of our solution technique. The resource
management problem in the warehouse is exactly the general
one described above, with the three objectives corresponding
to (i) Initial Allocation of all parts, (ii) Allocation of
new parts, and (iii) Periodic Reallocation of parts. We
discuss 1in detail why the warehouse management is satisfied
with a feasible solution, and do not require any notion of
optimality. The size of the problem (there are 60,000
part-numbers, and 30-50 new part-numbers are to be allocated
every day), and the fact that the resoche usage functions
are discontinuous aand/or nonlinear and/or nonconvex, make
the problem a hard one. We discuss why standard techniques

(Linear Programming, Integer Programming) are not suitable.

Part II of Chapter 2 advocates a decentralized approach
to the problem. We show how, by replacing the feasibility
problem by a suitable "Artificial" optimization problem, we
can use Lagrange Multipliers to simplify the solution
through decentralization of decisions. We then show how
this decentralized approach offers substantial advantages
over standard techniques, with regard to ezc¢h of the three
objectives above. This provides wus with the basic

motivation for further investigation of this approach.

e ———— S—_ T —e e




Although the use of Lagrange Multipliers for
decomposition of large problems 1is well known, the main
drawback of this technique is the existence of "duality
gaps". This means there may not exist multipliers which can
generate the optimum to the Artificial Problem above. In

Chapter 3 we present a Theorem giving simple conditions

which guarantee the existence of optimal multipliers. Such

results have previously been given only under strict
conditions (e.g. convexity, continuity). We are able to
completely remove restrictions on the form of the individual
resource usage functions, replacing thgm instead by a
condition ©based on their magnitudes‘ aléne. This result
gives a firm theoretical basis to our approach, since it
justifies the use of our technique in many cases where the
resource usage functions are ill-behaved and the domains of

the decision variables are nonconvex.

In Chapter 4 we develop iteration algorithms to solve
the "Initial Allocation" problem in'a decentralized manner.
These algorithms have proveable convergence properties, and
quadratic convergence rates. Again, although decentralized
iteration algorithms have been described in the 1literature,
their convergence has required strict conditions on the
functions (convexity, continuity). We are able to extend
our proofs to more general functions. A minor but
interesting contribution of this Chapter 1is the Selection
Algorithm. This is a simple and intuitively appealing

method of solving certain 1inequality problems, yet its
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solution possesses useful minimum-norm properties.

In Chapter 5 we describe the design of a practical
Resource Management system, and give examples from the
system designed for the FIAT warehouse. We show how, in an
operational system, our approach enables simple and
efficient solution of both the "New-assignment" problem and
the "Periodic Review" problem. 1In addition, we suggest how
the algorithms in Chapter 4 can be ehhanced by incorporating

various features useful in a3 practical application.

Chapter 6 illustrates the applicability of our methods
to the problem of optimal file allocation in distributed
computer systems. This problem has only been addressed in
the 1literature for a small number of files (typically 5 to
20) . We show how, by appropriate formulation  of the
problem, a decentralized solution is possible. This brings
previously intractable problems (w.th several thousand
files, say) within the reach of known solution methods. Our
aim is to demonstrate the applicability and advantages of
decentralized techniques -- for the general optimization
problem we do not go into details of solution algorithms,
but give a framework for future research. We do however
consider one case in detail -- this is the problem faced by
a "Network Manager", whose task is to keep a given network
operational (that is, all resource wusages within the
constraints) in the face of constant arrivals of new files

and changing characteristics of old files.

o e e S T—————————




Finally, 1in Chapter 7, we present our concluding

remarks.
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CHAPTER 2
MOTIVATION FOR THIS RESEARCH

Part I: Resource Management in a Large Warehouse

2.1 INTRODUCTION TO PART I

In this Part we motivate the reader by describing the
resource management problem in a large warehouse. It was
the tackling of this problem that led to the work presented
in this study. Hence an appreciation of the original
problem leads to a deeper understanding of the abilities and

advantages of our approach.

Ofcourse, the application of our work is not restricted
to the specific problem in this particular warehouse. The
reader will see that our models and methods can be applied
to a variety of large systems which face similar problems.
In Chapter 6, for instance, we will discuss how our approach
could be applied to the File Allocation Problem in large

distributed computer systems.
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2.2 DESCRIPTION OF WAREHOUSE

OQur interest in this problem arises from a project
involving the author, along with a team from CSDL¥*, to
improve the operation of the FIAT Central Spare Parts
Warehouse, in Volvera (Turin, Italy). This Warehouse
essentially supplies spare parts to the whole world. It
covers an area exceeding that of 15 football fields, has an
inventory of over 20,000 tons (valued at several hundred
million dollars), contains more than 60,000 different
Part-Numbers (each of which may occupy several containers),

and services about 10,000 orders every day [F1].

The Warehouse is divided into several different areas,
used for stocking Parts with different characteristics. For
instance, medium-sized items with nct too high dJdemand are
stocked 1in a "High Shelf Area", where loading and retrieval
of containers is don2 solely by computer-controlled cranes.
On the other hand, very small, fast-moving items are stored
in an area where they are haﬁd-picked by men with
hand-pushed carts. Figs.2-1 to 2-3 1illustrate the

characteristics of three such areas.

*The Charles Stark Draper Laboratory, Cambridge, Mass.
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Fig.2-1: The "High Shel f"

Area

This area is equipped with
very high (27 metre) shelves,
ocrupying a floor area of
144x96 metres, with 24
corridors served by automated
cranes. The cranes are used
for loading and retrieval of
containers. Picking of parts
from this area is done either
by placing the containers on
conveyors, leading to manual
picking stations, or by
retrieving individual
containers down to manned
"bays" at the floor 1level.
Operation of all the equipment
in the plant is totally
automatic and is controlled in
real time by a computer. The
storage <capacity of this area
is over 120,000 containers,
and the picking capacity is
over 5,000 picks per day. The
area 1is designed for material
cf average dimension, and c¢f
medium or high turnover and
withdrawal frequency.

(Source: [(F1])

1]
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Fig.2-2: The Trans-Robot Shelves

These shelves house a few hundred high-turnover panel items.
Since the material has undergone protective treatment, it is
channelled in one direction only, to avoid getting damaged.
Withdrawal 1is thus on a first-in, first-out basis. Each
corridor serves one item only, and the crates progress from
the 1loading end to the withdrawal end by means of robots.
These shelves have enormous capacity, holding more than
30,000 large crates. (Source: ([F11])
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Fig.2-3: Compact Warehouse

The storage volume of these
large shelves (about 50,000
cubic metres) enables 6,000
tonnes of particularly large,
low-turnover material to be
stocked. The shelves run on
rails so that corridors are
created on request only at the
moment when the fork-1lift
trucks need to load or
withdraw containers. (A
safety system stops operations
whenever persons or material
are located 1in the temporary
corridors.) Source: [F1].
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The servicing of daily orders, and the replenishment of
stocks, makes use of various resources in each area, such as
cranes, conveyors, men, and shelf space. These resources
may be particular to a given area (such as shelf space) or
may be shared by several areas (such as a conveyor that

passes through different areas: see Fig.2-4).

Fig.2-4: Examples of Various Resources

AREA AREA
1 2
SHELVES
ST orane (ol
NOUT \No'r SHARED
CONVEYOR = SHARED =
(NOT ) E E &
SHARED LT T T I OO T IO O T T—
rm ouTPUT
— f CONVEYOR
) AREA (SHARED)
,% ; MEN 3
L_‘ (gglneo

Naturally, these resources have limits on ctheir capacity.
Upon reviewing the situation at the warehouse, in January

1977, we found the salient characteristics of the resource
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management problem to be as follows:

1.

The

several

There are several different storage areas, each
with several container-types, leading to 16

different storage-types*.

Each storage-type uses several resources, some of
which are shared with other storagze-types. ther=

are 24 constrained resources*, such as:

1. Storage Capacity

2. Crane Capacity

3. Conveyor Capacity

4, Manual Picking Capacity

There were 60,000 Part-Numbers* assigned to the

various storage-types on the basis of criteria that
were long since outdated ~-- demand patterns and the

Warehouse operations had changed considerably.

net effect of these factors was bottlenecks 1in

resources, yet much spare capacity in others. This

meant that while in some storage-types the daily demand (or

*The figures given here correspond to those areas of the
warehouse within the scope of our project.
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storage requirements) could not be met, 1in other
storage-types equipment was lying idle**, Keeping in mind
these problems, as well as the future operating requirements

of the warehouse, the aims of our project were set down as:

1. "Get rid of the bottlenecks". (Improve the current

allocation as quick as possible.)

2. Develop a method for reviewing the situation (say)
every 3 months, and making necessary reallocations

(Periodic Review).

3. Develop a rationale for allocating storage to New
Part-Numbers (note that these are not replenishment
stocks for existing Parts, but Parts never before

stocked, e.g. for a new car model).

2.3 FORMAL STATEMENT OF PROBLEM

.In this section we develop a formal model of the
Storage Allocation and Resource Management problem, and
indicate the factors that make a gzood solution (i.e. ona
that fulfills the aims above) difficult to find. Although
we will state our model in terms of the Warehouse above, the

reajer will see that our model generalizes to other 1argé

#®Due to the special design or fixed nature of the equipment
in each area, it 1is not generally possible to transfer
capacity from ones area to another.
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systems (see Chapter 3, Chapter 6).

2.3.1 Notation

It is assumed that the reader has read the description
of our notational conventions (following the Table of
Contents). This will eliminate the need for minor

definitions throughout the Chapter.

2.3.2 Problem Formulation

Let there be I Items (Part-Numbers) to be allocated 1in
S Storage-types, such that R Resource-usage constraints are

satisfied. To facilitate recall, we will use the indices i,

: th
s, or r, to represent the ith item, sth storage-type, or r

resource.

2.3.2.1 1Item Allocation - The total quantity of item i is
Ql, and 1its other characteristics (demand, weight, volume,

etc.) are represented by a data vector gl. For each item a

S-dimensional decision 51 needs to be taken, where x;

is the
quantity of item i allocated to storage s. We will often

refer to 51 as an allocation of item i.
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2.3.2.2 Resource Usage - A given allocation for an item,
alongz with the item's data characteristics (as above) will
result in the use of various resources (e.g. storage space,
crane-time, etc.). We define the resource Usage function

gl(gl,il) to be an R-dimensional vector function such that

ui(gl,il) is the usage of the rth resource by an item with
data gl, when its allocation is 51. (The calculation of
u(.,.) obviously depends on the "operating rules" of the

Warehouse. For generality, we let these rules be defined

for different items, hence the superscript i on u above.)

2.3.2.3 Total Allocation And Total Usages - The allocation
of all items will be represented by the vector
§ &5 L e

Tne total resource usage by an allocation of all items is
R |

(2.3.1] ulx) # § uw'(d ,x")
=1

. i
We will often refer to u or u” as "usage vectors".

2.3.2.4 Constraints On Usages - The R-dimensional vector of
constraints on the resource ‘usages will be denoted by ¢,

that is C.= value of constraint on usage of resource r.
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2.3.2.5 Statement Of General Problem - Let e be the
S-dimensional vector with each component equal to unity,
i.e. e 2 [1,1,.,.,1]'. Then the Storage Allocation and

Resource Management Problem can be stated as the General

Problem
[2.3.2] (GP): Find x = [ (x')',...,(x5) "]
such that g'ii = o} (I equations)
and 51 >0 (S x I equations)
and u(x) < ¢ (R equations)

Note that the decision x consists of S x I components.

2.3.3 Comment On Feasibility Versus Optimality

The astute reader will already have noticed that the
problem (GP), as formulated, only involves looking for a
feasible solution; no notion of optimality has been stated.

Some comments on the reasons for this are in order here.

The first reason for 1looking only for a feasible
solution is that the problem 1is so complex (see next
section) that even a feasible solution is hard to finé.
Thus we are satisfied if we can.generate such -a splution.
The second, more satisfactory, reason derives from the
warehouse management's objectives, which are: tou keep the
warehouse operational, irrespective of the relative uses of

the resources, provided these usage levels are within the

il

e Y

AR e e e
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limits laid down by management.® From an economic point of
view too, these objectives have an explanation: the major
warehouse-equipment has already been installed, and the
capacities are non-transferable (sec.2.2). Further, the
day-to-day operating cost of the warehouse 1is relatively
indifferent to what equipment is being used. Thus there is
no clear tradeoff between (say) using 10 more minutes of
crane-time in one area versus using 2 more containers of
storage in another. Hence no criterion for minimization can

be stated, and all feasible solutions are equally palatable.

The fact that we look only for feasible solutions does
not restrict the applicability of our approach to the
special problem above. In Chapter 3 we give examples of how
our method can be wused in several types of optimization

applications.

2.4 FACTORS CONTRIBUTING TO COMPLEXITY OF PROBLEM

Several factors make (GP) a complex 'problem, not
amenable to standard techniques. These factors will now be

discussed.

%*Je are assuming that these 1limits already include some
mar3in of safety. This point will be discussed further in
Chapter 5, when we study the practical aspects of our
system.

e
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2.4.1 Immense Size

In the warehouse we have 1=60,000, S=16, and R=24.
This leads to a decision vector of approximately one million

componants!

2.4.2 Part-Data And Usage Functions

The diversity of Part-Data (frequency of demand,
quantity demanded, weight, volume, etc.) and the dependence
of the usage functions on the physical operation of the
warehouse, leads to usage functions which can be

discontinuous and/or nonlinear and/or nonconvex. For

example if a quantity Q of an item is to be "picked", and
fits entirely in one container, then one crane operation can
retrieve the container. However, for 1larger Q two
containers may need to be retrieved, requiring two crane
operations. Thus .crane-time usage can be a discontinuous

function of the quantity demanded.

2.4.3 1Incoming New Part-Numbers

In addition to the 60,000 items in the warehouse, there
are 30-50 New 1items arriving every day. As mentioned in

sec.2.2, these are not replenishment stocks, but entirely

new items. Hence 30-50 new allocations 51

have to be made
every day, and clearly we would like to make '"reasonable"

decisions without re-solving the whole problem (GP) for the
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combined set of old and new items. By "reasonable" we mean
a decision that will remain valid in the long run, that is
we should not have to re-allocate these New Parts in the

near future.

2.4.4 Shortcomings Of Standard Techniques

Initially, we might have been tempted to try Linear
Programming or Integer Programming techniques, using
linearized approximations where necessary. In view of the
above remarks we see that these would suffer from other
major disadvantages: first, the decision "vector of one
million components would 1lead to an astronomical program;
and second, these methods would not lead to any strategy for
@llocating the new parts, short of re-solving tne problem

for each new set of parts.

In the second part of tnis Chapter we shall see how an
appropriate reformulation of the problem (GP) leads us to

better solution tools.

S ———
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Part II: Decentralized Solution Techniques

2.5 INTRODUCTION TO PART II

In the preceding sections we described the Resource
Management problem in a Large Warehouse, discussed the
reasons which make it a hard problem, and stated why we are
satisfied with any feasible solution to the problem. In
this Part we develop the beginnings of a solution technique
for the problem. Our method is to set up an "Artificial"
optimization problem, and to use Lagrange Multipliers to
simplify the solution to this problem, through decomposition
into a large number of smaller (much easier) problems. We
will show that solving these smaller problems also gives an
adproach for tLhe New Parts problem (sec.2.4.3). Then we
will describe conventional iteration methods ‘which, using
the smaller problems, might be able to solve the Resource

Management problem.

The use of Lagrange Multipliers for decomposition of
large problems 1is well known (see discussion in sec.2.7).
In genasral however, such methods suffer from some severe

disadvantéges, the most devastating of these being the

possibility of "duality gaps". This means that there may
not exist multipliers which generate an optimum to the
Artificial problem. A detailed discussion of this and other

disadvantages is given at the end of sec.2.7.
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In the remainder of this Chapter we show the reader the
advantages of the decentralized approach. This will
motivate us to investigate whethar we <can overcome the
disadvantages mentioned above. It shall be that very
investigation whicn, in Chapters 3 and 4, will lead to * the

main contributions of this work.

2.6 THE ARTIFICIAL PROBLEM AND LAGRANGE MULTIPLIERS

2.6.1 The Artificial Problem

In order to put the problem (GP) [2.3.2] in
conventional optimization terms we formulate the

"Artificial™ Problem

i .
(2.6.1] (AP): max J(x) 2) e'x'

i=1
(2.6.2] subject to iiz 0 each i
[2.6.3] Q'-e'x'> 0 each i
(2.6.4] c-u(x) >0

In other words, we want to maximize the total quantity

allocated, 'subject to the resource usage constraint, the

non-negativity constraint, and the fact that at most we can

allocate the quantity we have of each item. If a feasible

solution exists to (GP), then the maximum value of (AP) will

be ZEQi. (Notice the analogy with the Artificial
iz21

variable technique of Linear Programming where, if a

PP
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feasible solution exists to the original problem, then the
optimal value of the Artificial Problem is zero. This point

will be amplified in Chapter 3.)

2.6.2 Lagrange Multiplier Method

We tackle (AP) by the familiar Lagrange Multiplier

method. Let A be a R-dimensional vector of Lagrange

Multipliers. We write the Lagrangean associated with (AP)

as

12.6.5] L(x,A) = J(x) - A'[u(x)-c]

=

u
For each i, let X' be the set of x' which satisfy [2.6.2]
and [2.6.3], and let X be the set of x such that 516 x' for
each i. Then there is the following "Saddle Point Theorem"

(see for example Lasdon [L1]):

If there exist (x*,\*) with x*€X and A*> 0 such that
[2.6.6] ECX,A%) < Llx®,x*) < L(x*,)\)
for all x€X and A\ > O, then x* solves the problem (AP).

(]

The power of the above result lies in the fact that it
does not depend on the form of the functions J(x) and u(x),
nor on the form of the set X [L1]. An alternative view of

(2.6.6], which will be used below, is to say that

{2.6.7] x* = arg max L(x,A%)
Xx€X

(2.6.8] A* = arg min L(x*,\)
A >0

o




A
2.6.3 Decentralization Of Decisions

A key point to note is that for given A the problem

[2.6.7] can be decentralized since

I
[2.6.9] max L(x,\) = A'c + max . {e'x
o e Z?_ xtext =

—

Thus, for given A, the decision for each item i can be taken
independently of the others, by solving the (much simpler)
Individual Problem

[2.6.10] (IP):  max, {g'éi-é’gi(gi,xi)}
x €X

We note here that 1in Chapter 4 we shall further
simplify (IP). In Chapter 5 we will show how (for the
warehouse case) we were able to find an easy solution to
this individual problem, and also show that solving (IP)

gives us an approach for the New Parts problem.

2.7 KNOWN SCHEMES FOR FINDING OPTIMAL MULTIPLIERS

de see above that a given A, through (IP), leads to an
allocation of all items, say x(A), and corresponding total
resource usages u(x(A)). We can therefore think of u as a
function of A, and we shall henceforth write it simply as
u(A). The problem then, is to find the A* in [2.6.8], for
then from (IP), [2.6.7], and [2.6.6] we know that x(\*) and
u(A*) are optimal.*

*For the moment we assume such a A* exists. This issue will
be briefly discussed 1in the next section, and answered in
detail in Chapter 3.
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Arrow and Hurwicz{A1] observed that [2.6.7] and [2.6.8]

suggest an iterative scheme of the form

[2.7.1] 5k+1: arg max L(l,bk)
xEX
(272 Ak+1= arg min L(ik*1,§)
i A 20

They noted that [2.7.1] can be solved using (IP) with given
é:ék,_ and an alternative to solving [2.7.2] exactly at each
iteration is to let Ak be changed in the direction of the
negative gradient of L with respect to A, which is then
simply
if A¥=0 and u, (V%)<
g Al a0 Sk +a {i (Ak)-c i ;theriise
b e

where aj is some constant. The scheme [2.7.1),[2.7.3] then
has an intuitively appealing economic interpretation. A
"central co-ordinator" chooses a set of "prices" X\, after
which the items i find their optimal decisions ii for this
A The central co-ordinator then looks at the total
resource usages and adjusts the prices to increase the cost
of over-used resources, and decrease the cost of under-used
resources (but never making any cost negative); in other
words he adjusts prices according to excess demand. This
use of decentralization in Resource Allocation problems is
well known [A1,E1,G1,L1,S2], and arises out of the additive
nature of the objective function [2.6.1] and the resource

usage functions (see [2.6.4] along with [2.3.1]).
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We have reduced via this means an optimization problem
involving S x I (=one million) variables to an optimization
problem with R (=24) variables plus a set of I (=60,000)
decoupled and relatively simple problems. However, we must

overcome three additional difficulties:

1. The decomposition and iteration method described
above falls in the general category »f "dual"
methods [G1]. A major shortcoming of these methods
is the existence of "duality gaps" [G3,L1] -- this
means that although an optimal value of the
Artificial Problem exists, no pair (x* ,\¥*) exists
which satisfies the Saddle Point Condition [2.6.6].
Thus, no A can achieve the optimum value using the
schemes given above. (The name "duality gap"
derivés from the fact that there is a gap between
.the actual maximum and the maximum achievable using

the dual method.)

2. Even if no duality gap exists, convergence of
[2.7.3] 1is guaranteed only when strict conditions
{such as convexity/continuity) hold on the Payoff
Function and Resource usage Functions [(A1,Z1] =--
conditions which certainly do not hold in our

problem.

3. Convergence can be very slow even given the above

conditions.
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de therefore look for an improved scheme. At this stage the
reader might well ask what motivated us to pursue this line
of attack in the face of such difficulties, so we pause a

moment to gather our thoughts on this issue.

2.8 ADVANTAGES OF DECENTRALIZED APPROACH

The reasons why we <chose to pursue this solution

technique are manifold:

1. It makes possible the solution of a large
intractable problem, by reducing it to a number of

smaller problems.

2. Suppose we are able to find an efficient iteration
technique, and wuse it to generate a sclution A%,
with corresponding allocation x(A¥*). When demand
characteristics have changed slightly over some
months, we still expect A* to be a good starting
point for iterations to find s new solution. Heace
the Periodic R2via2w problem (sec.2.2) can be solved

very efficiently each time.

3. Given a set of multipliers A*, the New Parts
problem (sec.2.4.3) can be reduced to solving (IP)
for each new part. This problem is relatively easy
;nd can be solved separately for each new part.
Hence the allocation of new parts is (through A%¥)

made independent of the rest of the parts in the
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warehouse. (Tne practical implementation of this
scheme demands some care, and 1is described in

Chapter 5.)

4. The economic interpretation of the scheme (sec.2.7)
makes it appealing to Managers, who readily
understand it. Hence they prefer it to other
schemes which give them no insight as to the

rationale behind a particular allocation.

Thus, encouraged by the positive aspects of the
decentralized approach, we proceed to resolve the problems
mentioned in the preceding section. This will be the

subject of the next two Chapters.




s

g — i - e T

-29-

CHAPTER 3
AN EXISTENCE THEOREM FOR OPTIMAL MULTIPLIERS

NOTE
The results in this Chapter
are of interest in their own
right. For this reason it 1is
written so that it can be read

independently of the other
Chapters.

3.1 INTRODUCTION
3.1.1 Motivation

The task of finding feasible solutions to lérge
allocation problems can often be quite complex. Such a task
occurs in many situations (see sec.3.1.3). In this work we
present a technique for accomplishing this task. In the
domain of Linear Programming, the artificial-variable method
is wused for finding initial feasible sclutions, by setting
up an Artificial Optimization problem. Analogously, our

technique is to set up an Artificial Problem, and use
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Lagrangze Multipliers to simplify the solution to this
problem, through decomposition into several easier problems.
This effectively reduces the allocation problem to one of

finding suitable multipliers.

The contribution of this Chapter is to give a firm
theoretical basis for our technique. The main theorem gives

simple conditions which guarantee the existence of optimal

multipliers for the Artificial Problem. Although the use of
Lagrange Multipliers for allocation problems is well known,
such existence results have previously been given only under
strict conditions (e.g. convexity, continuity).  Our
Theorem justifies the wuse of this technique in many cases
where the resource usage functions are nonconvex and/or
discontinuous, and the domains of the decision variables are

nonconvex.

An iterative -algorithm for solving the Artificial
Problem, wusing our technique, 1is described in the next
Chapter. In that Chapter we also snow that this algorithm
has proveable convergence properties, and a quadratic rate
of convergence. It is thus expected to be of practical
value; 1indeed, in Chapter 5 we describe one instance of its

use in a large warehouse.
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3.1.2 Abstract Statement Of Problem

In Chapter 2 we described the Resource Management
problem in a very large FIAT spare-parts warehouse. In this
section we state the problem in abstract terms, so that the

reader can appreciate the generality of our work.

Consider the problem of allocating several resources

among a set of independent activities. Specifically, let

A', i€{1,2,...,I} be the ith Activity.

xte st be the strategy (decision) of Al, with
S1 a discrete strategy set with a
finite number of elements.

gl(xl) ¢ R be an R-dimensional resource Usage
vector, where ul(xl) is the amount of
resource k used By Al when strategy x!
is employed (each ut(xl)ZO).
££[x1,x2, ,xI]' be an Allocation (each x‘€st).
£
glxe )y u ix) be the total resource Usage by an
i=1 allocation.
c € ef be the vector of Constraints on the
usages (ckzlimit on usage of resourc
k)

Typically, we have in mind problems whare I (tha number
of activities) is in the tens of thousands, R (tne number of
resources) is in the range 10 to 50, and the number of

elements in each strategy set is in the hundreds.
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Usually, one has the following "Optimization Problem":

B3t e 1] (oP): max H(x) a real valued function
X

subject to L N8ES for each i

and* u(x) < ¢

In this Chapter we consider the "Feasibility Problem":

£3.1.21 (FP): Find x such that
x1 € Sl for each i

and u(x) < ¢

3.1.3 The Utility Of The Feasibility Problem

The solution to (FP) is wuseful for a variety of

reasons:

1. In the case of the problem (OP), there may =2xist
iteration methods which improve a given feasible
solution. In this case a completely different
algorithm may be required to generate an initial
feasible solution. (See [M1] for an -example of

this.)

- ——————— - ——— -~ —— - - - - - - - - ———-——-—

*Al11 vector inequalities are to be interpreted
componentwise. (See notation conventions following Table of
Contents.)

e —————
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2. In the case of an operational system, it may be

required only to keep it operational, i.e. to find

an allocation such that no constraints are
violated, and to maintain this condition during the
operation of the system. Examples of this are
Parts-allocation in a large warehouse (see Chapter
2) and file-allocation in a distributed computer

network (Chapter 6).

3. In many system design problems, a unique criterion
to be minimized cannot be formulated. In such
cases, one approach is to define certain
constraints, find a solution to satisfy these, and
then look at the other performance parameters of
the resulting design. This approach has been
advocated by Chang [(C1] for the general Distributed
Computer System design proSlem. It has also been
proposed for solving multicriteria decision

problems [L3].

When I is very 1large, the functions ul(.) are not
linear, and each S1 contains a substantial number of points,

(FP) may itself be a difficult problem.* Qur method 1is to

*We are assuming ofcourse that, for each i, Si does not
contain an X! such that ul(%1)=0. For if this were the
case, we could set xl=R1 for each i and the nrnhlem (FP)
would be trivial. In the warehouse problem (Chapter 2) for
instance, each part must be allocated somewhere, so that
thare is no x! for which 21(x1)=0.
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set up an "Artificial" Optimization problem, and to use
Larange Multipliers to simplify the solution to this
problem, through decomposition into I (easier) problems.

The decomposition technique is well known [A1,E1,G1,L1,S2].

In general however such methods suffer from three

disadvantages, which are briefly#*¥: (i) The -existence of

"duality gaps", which means that there may not exist
multibliers wnich generate an optimum to the Artificial
Problem, (ii) Convergenée of solution algorithms requires
stringent conditions on the functions gi(.) and the sets Si,

and (iii) Slow convergence of such algorithms.

In this Chapter we give simple conditions which

. guarantee the -existence of optimal multipliers for the

Artificial Problem, under very general conditions on the
gl(.) and s'. A solution algorithm for the Feasible Problem
(above) is described in Chapter 4. We mention that this
algorithm has guaranteed convergence  properties under
stricter, but still fairly general conditions on the gi(.).
It is being successfully used in a FIAT spare-parts
warehouse with 1260,000 , each S' has 16 points, the
functions gi(.) are nonlinear and/or discontinuous, and the

number of resources (R) is 24 (Chapter 5).

- - - —————— - - - - - - - - - - - - - - - - -

#%#These points are repeated here to Kkeep this Chapter
Self-contained. See sec.2.7 for details and rererences.

cibiadiety
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3.2 THE ARTIFICIAL PROBLEM

3.2.1 Analogy With Linear Programming

An artificial problem is wused 1in Linear Programming
(LP) to generate an Initial Basic Feasible Solution (IBFS).
A brief review of the technique follows (see [D1] or ([L5]

for details).

»

Consider an LP problem whose constraints are:

[(3.2,.7) (LP1y: &x

b where A is a matrix, and b >0

x20
(Through use of slack variables it is . always possible to
express 1inequality constraints in this form.) In order to

find an IBFS to (LP1) we consider the (artificial) problem

P : mi :
£3.2.2]) (LP2) min z;'zl
subject to Ax + z = b
x>0
>0

Clearly, if a feasible solution exists to (LP1), then the
minimum value of (LP2) will be zero, and conversely. But
now, (LP2) has an obvious IBFS (x=0, z=b), and can be solved
using the simplex method. The optimum to this problem, if
zero, will result from a value of X which can now be used as

an IBFS for (LP1).

e —— e e e
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Thus we see that the above technique (called the
Artificial Variable method in LP) sets up an "artificial"”

problem whose optimum 1is any feasible solution to the

original problem. This is essentially our approach below.

3.2.2 Formulation Of Artificial Problem

(3.2.3] Definition: (Augmented Strategy Sets) To each

strategy set Sl, let us adjoin a decision 9, with

ul(e) z 0
We shall also use
st 2 stu ey
s ss'xs®x... xs!
s £s' 28 % . ng
+ + + +
so that x€S <=> x'€S' for each i ; similarly x€s . (1]

(3.2.4] Remark: We can assume, without loss of generality,
that 62S’. For if 8€s’ for some i, then set x1=6, remove x-
from x, and then solve the remaining problem below. Also

see footnote in sec.3.1.3. (1]
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We can now state the Artificial Problem:

(3.2.5]  (AP):  max J(x) £ ) pr(xh)
X =

-— 1=

n

p—y

such that x € S

+
and u(x) < ¢

where

pi=0 if xize

1pl i xlest (pt

©

are positive constants).

I
Now let J* 2 % PY. In analogy with the LP example,
i=1
we sSee that if a feasible solution exists to (FP), then the
maximum value of (AP) will be J*, and conversely, any x

achieving J* in (AP) must be a solution to (FP).

)

.2.3 Lagrange Multipliers And Decentralized Solutions#*

We tackle (AP) by the familiar Lagrange Multiplier

method. Let A be a R-dimensional vector of Lagrange

Multipliers. We write the Lagrangean associated with (AP)

as

(3.2.6] L(x,A) = J(x) = A'[u(x)=-c]

- ———————— - ———-———————— -~ - - ——— - - —— - —— - —— -

*In order to make this Chapter self-contained, the next few
paragraphs are duplicated from Chapter 2. There will be no
further repetition of any material in this Chapter.
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Then there is the following "Saddle Point Theorem" (see for
example Lasdon [L1]):

If there exist (x*,A*) with x*€S_and A*> 0 such that
[3.2.7]  L(X,A*) < L(x* A%*) < L(x*,\)

for all x€S_and A > 0, then x* solves the problem (AP).

]
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