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._ -~ entire problem for the combined set of old and new activities. The third
objective (~ Periodic Review~ ) is to find an efficient way of re—allocating
resources in order to reflect the changing needs of the individual activities,
as well as the changes in total resource usages.

Conventionally, the resource—allocation problem has been studied for the
case where , in addition to the constraints, there exists an objective to be
maximized. Our emphasis, as is reflected by the title of this work , is on the
feasibility aspect of the problem, that is, of taking a large system and
keeping it operational. We show that this in itself is both an important
problem, and has theoretically interesting consequences. In addition , our
results can be useful for the solution of the general (optimization) problem.

Chapter 2 provides the motivation for our study . The Chapter is divided
into two Parts. Part I describes the Resource Management problem in a large
FIAT spare—parts warehouse. We discuss why the warehouse management is satis-
fied with a feasible solution , and do not require any notion of optimality .
The size of the problem (there are 60,000 part—numbers , and 30-50 new part—
numbers are to be allocated every day), and the fact that the resource usage
functions are discontinuous and/or nonlinear and/or nonconvex , make the problem
a hard one. We discuss why standard techniques are not suitable . Part II of
Chapter 2 advocates a decentralized approacb to the problem. We show how, by
replacing the feasibility problem by a suitable “Artif icial”  optimization
problem, we can use Lagrange Multipliers to simplify the solution through
decentralization of decisions. We then show how this decentralized approach
offers substantial advantages over standard techniques, with regard to each of
the three objectives above.

Although the use of Lagrange Multipliers for decomposition of large
problems is well known , the main drawback of this technique is the existence of
“duality gaps”. In Chapter 3 we present a Theorem giving simple conditions
which guarantee the existence of optimal multipliers. Such results have
previously been given only under strict conditions. We are able to completely
remove restrictions on the form of the individual resource usage functions,
replacing them instead by a condition based on their magnitudes alone . This
result gives a f irm theoretical basis to our approach , since it justifies the
use of our technique.

In Chapter 4 we develop iteration algorithms to solve the “Initial
Allocation” problem in a decentralized manner. These algorithms have proveable
convergence properties , and quadratic convergence rates. Again , although
lecentralized iteration algorithms have been described in the literature , their
convergence has required strict conditions on the functions (convexity ,
continuity). We are able to extend our proofs to more general functions. A
riinor but interesting contribution of this Chapter is the Selection Algorithm.
rhis is a simple and intuitively appealing method of solving certain inequality
,roblems, yet its solution possesses useful minimum—norm properties.

In Chapter 5 we describe the design of a practical Resource Management
;ystem , and give examples from the system designed for the FIAT warehouse.
hapter 6 illustrates the applicability of our methods to the problem of optimal
ile allocation in distributed computer systems.

Our conclusions, presented in Chapter 7, advocate a new approach to
.arge—Scale systems. Based on the methods used in this work , we suggest that
nalysis of such systems should depend on the “global” properties of the systems,
nd be insensitive to the “local” properties of the system.
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Log ica l Depen d ence of Cha pters

This study extend s over several areas. For the benefit of

readers interested in one particu lar subject , certain

Chapters can be read independently of the others. The

logical dependence of the Chapters is shown below.

2 —> 14 > 5
5..

3 - .

6

7

K E Y :  A > B A mu s t  be read be fo re  B

A — — — — >  B R e s u l ts f rom A a re use d in B ,

but it is not essential to read

A b efore  B.
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NOTATION

We state some c o n v e n tions  here , which will eliminate the

nee d for m inor  c~efinitions throughout this work. Underlined

lower—case letters represent column vectors. Upper— case

letters may represent matrices , sets, or constants.

Su b scri p ts on a sym bol usu all y denote  a component  of  the

corresponding vector or matrix that the symbol represents ,

for  ex am ple
thx

3 
is the j component of the vector x

is the (i ,j) component of the matrix A.

Superscripts will be used to differentiate between symbols

of the same type , for  ex am p le x 1 x 2 ~
k

Vector inequalities are to be interpreted componentwise ,

that is

a < b means a
~ 

< b~ for a ll i .

The zero vector will often be denoted simply by 0 , and its

dimension will be a p p a r e n t  f r o m  the context.

The notation x ’ denotes the trar~spose of the vector x.

E
n denotes the n— dimensional Euclidean vector space.

P s
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S y n o p s i s

T h i s  work  s t u d i e s  the  a p p l i c a t i o n  of d e c e n t r a l i z a t i o n

to the p r o b l e m  of R e s o u r c e  M a n a g e m e n t  in  L a r g e  S y s t e m s .  In

an o p e r a t i o n a l  s y s t e m , w h e r e  a v e r y  l a r g e  n u m b e r  of

a c t i v i t i e s  sha re  l i m i t e d  r e s o u r c e s , t h i s  R e s o u r c e  Man ag em en t

prob lem has three objectives. The first (“Initial

A l l o c a t i o n ” )  is to f i n d  an a s s i g n m e n t  of r e s o u r c e s  to e v e r y

activity, such that all the s y s t e m  c o n s t r a i n t s  are

s a t i s f i e d , and a l l  a c t i v i t i e s  a re  o p e r a t i n g . The second

( “ N e w — A s s i g n m e n t ” )  is to f i n d  a r a t i o n a l e  for  a l l o c a t i n g

resources  to new a c t i v i t i e s .  New a c t i v i t i e s  a re  i n i t i a t e d

f r e q u e n t l y  e n o u g h  t h a t  we do not wish  to r e — s o l v e  the  e n t i r e

problem for the combined set of old and new activities. The

third objective (“Periodic Review ”) is to find an efficient

way of r e — a l l o c a t i n g  r e s o u r c e s  in o r d e r  to r e f l e c t  the

changing needs of the individual activities , as well as the

c h a n g e s  in t o t a l  r e source  u s a g e s .

C o n v e n t i o n a l l y ,  t he  r e s o u r c e — a l l o c a t i o n  p r o b l e~n has

been s t u d i e d  for  the case w h e r e , in a d d i t i o n  to the

c o n s t r a i n t s , t h e r e  e x i s t s  an o b j e c t i v e  to be m a x i m i z e d .  Our

emphasis , as is reflected by the title of this work , is on

the feasibility aspect of the problem , that is , of taking a

large system and Keeping it operational. We show that this

i n  itself 1.3 both an important proble~n , ~nd ha!

theoretically interesting consequences. In addition , our

resu lt s can  be u s e f u l  for tne so lu ti on of th e gener a l



(optimization) problem .

Chapter 2 provides the motivation for our study. The

Chapter is divided into two Parts. Part I describes the

Resource  M a n a g e m e n t  p r o b l e m  in a large FIAT spare—parts

w a r e h o u s e .  We d i scuss  why the  w a r e h o u s e  m a n a g e m e n t  is

satisfied with a feasible solution , and do not  r e q u i r e  a n y

no tion of optimality. The size of the problem (there are

60 , 000 p a r t — n u m b e r s , and  3 0—50 new p a r t — n u m b e r s  a re  to be

a l l o c a t e d  eve ry  d a y )  , and the  f a c t  t h a t  the  r e s o u r c e  usage

f u n c t i o n s  are  d i s c o n t i n u o u s  a n d / o r  nonlin ear and/or

n o n c o n v e x , make the  p rob lem a h a r d  o n e .  We d i s c u s s  why

s t a n d a r d  t e c h n i q u e s  are  not  suitable. Part II  of C ha p t e r  2

a d v o c a t e s  a d e c e n t r a l i z e d  a p p r o a c h  to the  p rob lem . We show

now , by  r e p l a c i n g  the f e a s i b i l i t y  problem by a suitable

“ A r t i f i c i a l”  o p t i m i z a t i o n  p rob lem , we can use L a g r a n g e

M u l t i p l i e r s  to s i m p l i f y  the  so l u t i o n  t h r o u g h

d e c e n t r a l i z a t i o n  of d e c i s i o n s .  We t hen  sho w how t h i s

d e c e n t r a l i z e d  a p p r o a c h  o f f e r s  s u b s t a n t i al  a d v a n t a g e s  o v e r

standard techniques , with regard to each of the three

objectives above.

Al thou gh the use of La grange  M u l t ip l iers for

d ecom pos it ion o f lar ge pro b lem s is wel l  known , the main

drawback of this technique is the existence of “duality

saps” . In Ch~ ptcr 3 ~e prc~ ent a The oreir i  giving simple

conditions whi~ h guarantee the existence of optimal

mul tipliers. Such results have previous ly been given only

V .. 
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un der strict conditions. We are able to completely remove

restrictions on the form of the individual resource usage

• func tions , replacing them in!tead by a condition based on

their magnitudes alone. This result gives a firm

theore tical bas is to our a pp roach , sin ce it jus ti f i e s  the

use of our technique .

In Chapter 14 we d evelo p it e r a t ion a lgor ithms to solve

the “In itial Allocation s’ problem in a decentralized manner.

These al gor ithms have provea b le co n v e r g e n c e  pro pe r t i e s , and

quadratic convergence rates. Again , although decentralized

iteration algorithms have been described .in the literature ,

their convergence has required strict conditions on the

f u n c tions (convex ity , con ti nu it y). We a re  a b le to e x t e n d

our proofs to more general functions. A mincr but

interesting contribution of this Chapter is the Selection

Algorithm. This is a simple and intuitively appealing

method of solving certain inequality problems , yet its

solution possesses useful minimum — norm properties.

In Chapter 5 we describe the design of a p r a c t i c a l

Resource Managemen t system , an d gi ve exam p les f rom the

system designed for the FIAT warehouse . Chapter 6

• illustrates the applicability of our m e t h o d s  to the  p rob lem

of o p t i m a l  f i l e  a l l o c a t i o n  in d i s t r i b u t e d  c o m p u t e r  sy s t em s .

Our c o n c l u s i o n s , p r e sen t ed  in C h a p t e r  7 ,  a d vocate  a new

a p p r o a c h  to L a r g e — S c a l e  s y s t e m s .  Based on the m e t h o d s  used

1 L ~I this work , we suggest that analysis of such systems

I.
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should depend on the “global” properties of the systems , and

be insens it ive to the “local” properties of the systems.
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CHAPTER 1

INTRODUCTION

In an era where , due to rapid advances in technology,

we are see ing g r e a t e r  an d gr ea t e r  in te rconnec t ion between

sys tems , the stud y of large—scale systems is assuming a new

importance. Along with this has come the realization that

in most applications practicality calls f’~r decentralized

con trol of such systems. The importance of these two facts

is reflected by the recent devotion of an entire issue of a

prominent journal’ to the topic of “Large—Scale Systems and

Decen tralized Control” . In this work we stud y the

application of decentralization to one aspect of such

sys tems , namel y , the problem of Re source Management in Large

Sys tems.

In a large operational system , where a very large

num ber of activities share a number of limited resources ,

this Re source Management problem has three main objectives .

The first (the “Ini tial Allocation ” or “Design ” problem ) is

‘IEEE Trans.Aut.Control , Vol AC— 23, No.2, April 1978.
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to fin d an assignment of resources to every activity, such

that all the system constraints are satisfied , an d al l

act iv it ies are  oper a t i n g , ena b l ing the system as a whol e to

operate. The second (the “New—Ass ignment” probl~~ ) is to

find a rationale for allocating resources to new activities.

It is presumed that new activities are initiated frequently

enough that we do not wish to re— solve the entire problem

for the combined set of old and new activities. The third

objective (“Periodic Review ” problem ) is to f ind an

efficient way of re—allocating resources in order to reflect

the changing need s of the individual activities , as well as

the changes in total resource usages .

Convent io n a l l y ,  the resource—alloca tion problem has

been stu d ied for the case wh ere , in addi t ion to the

cons t ra i n ts , there exis ts an objective to be maximiz ed . Our

emphasis , as is re f l ec ted b y the t i t l e  of thi s work , is on

the feasibility aspect of the problem , t ha t  is , of tak ing a

large system and keeping it operational (maintaining it in

the feasible region). We shall see that this in itself is

both an important problem , and has theoretically interesting

consequences. In addi tion , our results can be usefu l for

the solution of the general (optimization ) problem .

In Chapter 2 we shall provide the motivation for our

study. The Chapter is divided tntn two P!rts. Part I

descri bes the Resource Management problem in a large FIAT

spare-parts warehouse . It was the tackling of this problem

V .
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that led to the work presented here . Hence an appreciation

of the ori ginal problem leads to a deeper understanding of

the abilities of our solution technique . The resource

managemen t problem in the warehouse is exactly the general

one descr ib ed above , wi th  t he three  object ives  corres pon d ing

to C i )  Initial Allocation of all parts-, (ii ) A l loca t ion of

new par t s , and (iii) Periodic Reallocation of parts. We

discuss in detail why the warehouse management is satisfied

wi th a feasi b le solu t ion , and do not require any notion of

optirnality. The size of the problem (there are 60,000

part-numbers , and 30—50 new part—numbers are to be allocated

ever y day ) , an d the fac t tha t the resource  usa ge fun ct ions

are discontinuous and/or nonlinear and/or nonconvex , ma ke

the problem a hard one. We discuss why standard techniques

(Linear Programming , Integer Programming) are not suitable.

Par t II of Chapter 2 advocates a decentralized approach

to the problem . We show how , b y r e p l a c i n g  the feas ibi l it y

problem by a suitable “Artifi c ial” op t im iza t ion pro b lem , we

can use Lagran ge Multipliers to simplify the solution

through decen tralization of decisions. We then show how

this decentral ized approach offers substantial advantages

over s tandar d techn iques , wi th  regar d to ea~..h of the three

objectives above. This provides us with the basic

motivation for further investigation of’ this approach.

I
4 ,
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Alt hough the use of Lagrange Multipliers for

decomposition of large problems is well’ known , the  m a i n

drawback of this technique is the existence of “duality

ga ps” . This means there may not exist multipliers which can

generate the optimum to the Artificial Problem above. In

Chap ter 3 we presen t a Theorem giv ing sim ple con d i t ions

which guarantee the existence of optimal multipliers. Such

results have previously been given only under strict

conditions (e.g. convexity, cont inuity). We are able to

com pletely remove restrictions on the form of’ the individual

resource usage functions , re p l a c ing  them 
, 
instea d b y a

condition based on their magnitudes alone. This result

g ives a firm theoretical basis to our approach , s ince it

justifies the use of our technique in many cases where the

resource usage funct ions are ill—behaved and the domains of

the decision variables are nonconvex .

In Chapter 14 we develop iteration algorithms to solve

the “Initial Allo cation ” problem in a decentralized manner.

These algorithms have proveable convergence properties , and

quadratic convergence rates. Again , although decentralized
a

iteration algorithms have been described In the literature ,

their convergence has required strict conditions on the

functions (convexity, continuity ). We are able to extend

our proofs to more general functions. A minor but

interesting contribution of this Chapter is the Selection

Algor ithm . This is a simple and intuitively appealing

method of’ solving cer tain inequality problems , yet its

-S
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solut ion possesses useful minimum — norm properties.

In Cha pter 5 we describe the design of a practical

Resource M a n a g e m e n t system , an d gi ve ex am ples f rom the

system designed for the FIAT warehouse . We show how , in an

operational system , our a pp roach ena b les sim ple an d

ef f icien t solut ion of bot h the “New—ass ignment” pro b lem an d

the “Per iodic Review ” problem . In addition , we su ggest how

th e a lgor i thms in Ch a p ter 14 can be en hance d b y incor pora t i n g

var ious features useful in a practical application .

Chap te r  6 il l u s tra tes  the a pp l ica bi l it y of our metho d s

to the problem of optimal file allocation in distributed

com puter systems. This problem has only been addressed in

the literature for a small number of files (typically 5 to

20). We show how , b y ap propriate formulation , of the

pro b lem , a decentralized solution is possible. This brings

previously intractable problems (w.th several thousand

f i l e s , say ) wi th in the reac h of known solut ion me thod s. Our

a im is to d emons tr at e the  a pp l ica b i l i ty an d ad v a n t a ges of

decentralized techniques -— for the general optimization

problem we do not go into details of solution algorithm s,

but give a framework for future research. We do however

consider one case in detail —— this is the problem faced by

a “Network Mana ger ” , whose task is to kee p a g iven ne twor k

opera tional (that is , all resource usages within the

constraints ) in the face of constant arrivals of new files

and changing characteristics of’ ol d files.

-5-
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F ina l l y , in Cha p ter 7 , we present our concludin g

remarks .

~

L . ~~~~~~~~~~~~~~~~~~~~~~~~~ ‘1  _ _ _ _ _ _
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a 

CHAPTER 2

MOT I VATION FOR THIS R E S E A R C H

Par t  I: Resource  Managemen t in a Large  Warehouse

2. 1 INTRODUCTION TO PART I

In th is Part we motivate the reader by describing the

resource managemen t problem in a large warehouse . It was

the tac kl ing of th is pro b lem tha t led to the wor k presen ted

in this study. Hence an appreciation of the original

problem lead s to a deeper understanding of the abilities and

advantages of our approach.

Ofcourse , the application of our work is not restricted

to the specific problem in this particular warehouse. The

reader will see that our models and methods can be applied

to ~ var iety of large system s which face similar problems.

In Chapter  6 , for in s t a n c e , we will discuss how our approach

could be applied to the File Allocation Problem in large

distributed computer systems.
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2 . 2  D E S C R I P T I O N  OF W AREH OUSE

Our in teres t  in thi s pro bl em a r i s e s  f r o m  a pro jec t

in v o l v ing the au thor , along with a team from CSDL’, to

im prove  th e opera ti on of the FIAT Cen tra l  Sp are  Par ts 
a

Ware house , i n Vo lve ra  (T u r i n , I t a l y ). Th is Ware house

essent ially supplies spare parts to the whole world. It

covers an area exceeding that of 15 football fields , has an

in v e n t o r y  of ov er 20,000 tons (v a l u e d  at s e v e r a l  h u n d r e d

million dollars) , contains more than 60 , 000 different

Part—Numbers (each of which may occupy several containers) ,

and s e r v i c e s  about  10 , 000 o r d e r s  e v e r y  d a y  [F l ] .

The Warehouse is divided into several different areas ,

used for stocking Parts with different characteristics. For

inzt ar.ce, medium—size d item s with not too high demand are

stocked in a “High Shelf Area ” , where loa di ng an d re tr ieva l

of containers is done solely by computer— controlled cranes.

On the other hand , v ery  small , fast—moving items are stored

in an area where they are hand—picked by men with

hand—pushed carts. Figs .2— 1 to 2—3 illustrate the

characteristics of three such areas.

‘The Charles Stark Draper Laboratory, Cam br idge , Mass.

_ _  _ _  _ _ _ _  _ _ _  -5-
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Fig.2— l : The “High Shelf”
Area — —

This area is equipped with 
—very high (27 metre) shelves ,

oc~ upying a floor area of — —
1414x96 metres , w i t h  214
corri dors served by automated — —
cranes. The cranes are used
for loadi ng and retr ieval of — —
con tainers. Picking of parts
from this area is done either — —
by placing, the con tainers on
conveyors , leadi ng to manual — —
picking stations , or by 

—retr ieving indiv id ual
containers down to manne d — —“bays ” at the floor level .
Operat ion of all the equipment — —
in the plant is t o t a l l y
automatic and is controlled in — — V
real time by a computer. The
stora ge ca pac ity of this area — — ‘

~~

is over 120 ,000 containers ,
and the picking capacity is
over 5,000 picks per day. The
area is des ig ne d for m a t e r ial —

of avera ge di mens ion , an d cf 
—medi um or h igh turnover and 

______

wi thd ra wal fre quenc y . — ‘ ~~ .
(Source : [Fl])

— —

— —
•

I ’ _ _ _~~~~~~~~~~~~~~~~~~~
.

a

_ _ _  _ _ _ _ _  
I

V .
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig.2— 2: The Trans—Robo t Shelves

These shelves house a few hundred high—turnover panel items.
Since the material has undergone protective treatment , it is
channelled in one direction only, to avoid getting damaged .
Withdrawa l is thus on a first— in , first—out basis. Each
corr idor serves one it em onl y , and the crates p rogress from
the loading end to the withdraw a l end by means of robots .
These shelves have enormous capacity, holding more than
30,000 large crates. (Source: [Fl))

4.-

-5-
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Fig .2—3: Compa ct Warehouse
— — — — — — — —

The s torage  vo lum e of these ~~~~ -

l a r g e  she lves  C about  50 , 000
cub ic  m e t r e s )  e n a b l e s  6 , 000
t o n n e s  of p a r t i c u l a r l y  l a r g e ,
l o w — t u r n o v e r  m a t e r i a l  to be
stocked The she lves  run  on
ra ils so tnat corridors are
created on re ques t only at the
momen t when the fork—lift
trucks need to load or — :~ j . : ’ : — — — — —
withdraw containers. (A
safet y sys tem sto ps operat ions — — - — —whenever persons or mater ial
are located in the  t e m p o r a r y
corri dors ) Source [Fl)

i 4 4 4

4 -

- 
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The servicin g of daily orders , and the replenishment of’

stoc ks , makes use of’ various resources in each area , such as

cranes , conveyors . men , and shelf space. These resources

ma y be particular to a given area (such as shelf space) or

may be share d b y several areas (such as a conveyo r that

passes through different areas: see Fig.2—14).

Fig.2—J4: Examples of’ Various Resources

AREA AREA
_ _ _ _ _ _  1 _ _ _ _ _ _  2

___________I SHELVES

—‘J...L[ FII I t I j  
~~~~~~

ANEJ
~N 

(sH’
~~~ D)~~~~~

CONV EYOR SHARED

(
NOT 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _SHAR ED) I I I 1 1 1 1 1 1  J l i i i !  I I !~~~ i 1 1 1 1 1 1 1 1  I i~~~
~~~~ A OUTPUT
I CONVEYOR

______________  
AREA

3 (SHAR ED)
MEN

(
~~~~RED)

Naturally, these resources have limits on their capacity.

Upon reviewing the situation at the warehouse , in January

1977, we foun d the salient characteristics of’ the resource

_
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man ag ement  p ro b lem to be as f o l l o w s :

1. There are several different storage areas , eac h

with several container —types , lea d ing  to 1 6

different storage_types *.

2. Each storage—type uses several resources , some of

which are shared with other storage— type s . there

.~r e 214 consc raine-i r~ sources *, su ch as :

1. Storage Capacity

2. Crane Capacity

3. C o n v e yor Ca paci ty

4. Manual Picking Capacity

3. There were 6 0,000 Part_Nurnber s * assigned to the

var ious storage—types on the basis of criteria that

were long since outdated —— demand patterns and the

Warehouse operations had changed considerably.

Th e net ef fect  of these factors was bot tlenec ks in

several resources , yet muc h spare capacity in others. This

meant tha t while in some storage—types the daily demand (or

‘The figures given here correspond to those areas of the
ware house within the scope of our project.

V . -
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s to rage  r e q u i r e m e n t s)  could not be met , i n  o the r

s t o r a g e — t y p e s  e q u i p m e n t  was l y i n g  i d l e ’’. K e e p i n g  in m i n d

these problems , as wel l  as the  f u t u r e  o p e r a t i n g  r e q u i r e m e n t s

of the ware hous e , th e a ims of our ~pro ject were se t down as:

1. “Get r i d  of the b o t t l e n e c k s ” . ( I m p r o v e  the  c u r r e n t

allocation as quick as possible.)

2. Develo p a method for reviewing the situation (say)

ever y 3 months , an d making necessary  reallocat ions

(Periodic Review ) .

3. Develop a rationale for allocatIng storage to New

Part—Numbers (note that these are not replenishment

s tocks  for  e x i s t i n g  P a r t s , b u t  Par t s  n e v e r  before

stocked , e . g .  for  a new car  m o d e l ) .

2 . 3  F O R M A L  STATEMENT OF PROBLEM

- In this section we d e v e l o p  a fo rma l  model  of the

Storage Allocation and Resource Management problem , and

indicate the factors that make a good solution (i.e. one

that fulfills the aims above) difficult to find . Although

we will state our model in terms of the Warehouse above , the

rea ier will see that our model generalizes to other large

“Due to the special design or fixed nature of the equipment
in each a rea , i t is not generally possible to transfer
capac ity from one area to another.
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systems (see Chapter 3, Chapter 6).

t t~
2. 3. 1 Notat ion

It is assumed that the reader has read the description

of our notat ional conven t ions (follow ing the Tab le of

Contents ) .  Th is w ill elim inate the need for minor

definitions throughout the Chapter.

2.3.2 Problem Formulat ion

Let there be I Items (Part- Numbers ) to be alloca ted in

S Storage—types , suc h that R Resource—usage constraints are

sa ti sf ied . To fac ili tate rec all , we will use the indices i ,
th ths , or r , to re presen t the  i i tem , s storage— type , or r~~

resource.

2.3.2.1 Item Allocation - The total quantity of item i is

and its other character is tics (deman d , weight , v o l u m e ,

etc.) are represented by a data vector d 1 . For eac h item a

• S— dimensional decision need s to be taken , where is t he

quan tity of item i allocated to storage s. We will often

refe r to as an alloca tion of item i. 
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2.3.2.2 Resource Usage — A given allocation for an item ,

along w i t h the item ’s d ata charac ter ist ics (as above ) will

resu lt in the use of various resources (e.g. storage space ,

crane—t ime , et c .). We d ef ine t he resour ce Usage func tion

to be an R~-dirnensional vector function such that

i i i  t hur(d ,x ) is the usage of the r resource by an item with

data d 1 , when its allocation is x 1 . (The calculation of

u(.,.) obviously depends on the “ope r a t i n g  r u l e s ” of the

Warehouse . For generality, we let these rules be de f ined

for  di f f eren t i tems , hence the superscript i on u above.)

2.3.2.3 Total Allocation An d Total Usages — The allocation

of all items w ill be re presented b y the vec tor
1 , 2 I ,x [ (x  ) , ( x  ) ‘ , . . . , (x  ) ]

The total resource usage by an allocation of all items is

I .

[2.3.1] u ( x )  ~ 
~~ u 1(d 1 x~~)

1= 1

We will often refer to u or as “usa ge vectors ” .

2.3.2.4 Constraints On Usages - The R—dimensional vector of

constra ints on the resource usages will be d enote d b y c ,

that is c r: value of constraint on usage of resource r.

4-
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2.3.2.5 Statement Of General Problem — Let  e be the

S— dimensional vector with each com ponent equal to unity,

i.e. e ( 1 , l ,..., 1 J ’ . Then the Storage Allocation and

Resource Manag emen t Pro b lem can be state d as t he General

Pro b lem

[2.3.2] (GP): Find x ( (x~~)’,...,(x
1)’ ) ’

such that e ’x 1 Qi (I equations)

and > 0 (S x I equations)

and u(x) < e (R equations)

Note th at th e d ec is ion x cons ists of S x I com ponents.

2.3.3 Commen t On Feasibility Versus Optimality

The astute reader will already have noticed that the

problem (GP), as f o r m u l a ted , onl y t nvo lves  loo ki ng for a

feas ible solution ; no notion of optimality has been stated .

Some commen t~s on the reasons for this are in or d er he re.

Th e f i rs t reason for looking only for a feas ib le

solut ion is that the problem is so complex (see next

section) that even a feasible solution is hard to find .

Thus we are satisfied if we can generate such a solution .

The second , more sa t isfac tory,  reason der ives from the

warehouse management ’s object ives , which are: to keep the

warehouse opera tional , irres pect ive of the rela ti ve uses of

the resources , provided these usage levels are within the

.._ . . - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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limit s laid down by management. ’ From an economic point of

v i e w  too , these o b j e c t i v e s  h a v e  an ex planat ion: th e ma jor

ware house—equipment has already been installed , an d the

capacities are non—transferable (sec.2.2). Further , the

day— to-day  operat ing cos t of the ware house is relat ivel y

indifferent to what equipment is being used . Thus there is

no clear tra d eoff between (say ) us ing 10 more minutes of

crane— time in one area versus using 2 more containers of

storage in another. Hence no criterion for minimization can

be stated , and all feasible solutions are equally palatable.

The fact that we look only for feasible solutions does

not restrict the applicability of our approach to the

special problem above. In Chapter 3 we give examples of how

our method can be used in several types of optimization

applications.

2.14 FACTORS CONTRIBUTING TO COM PLEXITY OF PROBLEM

Several factors make (GP) a complex problem , not

amenable to standard techniques. These factors will now be

discussed . -

~~~ are assum ing that these limits already includ e some
mar~ in of safety. This po int will be discussed further in
Chapter 5, when we study the pract ical as pec ts of our
system .
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2.14 .1 Immense Size

In the warehouse we have I~ 60,000, S~ 16 , an d R~ 24 .

This lead s to a decision vector of approximately one million

c o m p o n e n t s !

2.4.2 Part—Data And Usage Functions

The d i v e r s i t y  of Part—Data (frequency of demand ,

quantity demanded , weight , v olume , etc.) and the dependence

of the usage functions on the physical operation of the

warehouse , lead s to usa ge funct ions wh ic h c an be

discontinuous and/or nonlinear and/or nonconvex. For

example if a quantity Q of an item is to be “picked” , and

f its en ti rel y in one con ta iner , then one crane operat ion can

re tr ieve th e con ta iner. However , for lar ger Q two

con tainers may nee d to be re tr ieve d , r equ i r i n g  two cr ane

operations. Thus crane-time usage can be a discontinuous

func tion of the quan tity demanded .

2.4.3 Incoming New Part—Numbers

In addition to the 60,000 items in the warehouse , there

are 30—50 New items arriving every day. As mentioned in

sec .2.2, these are not replen ishment s tocks , but entirely

new items. Hence 30—50 new allocations x 1 have to be mad e

every day, and clear ly  we woul d like to ma ke “reasona b le”

decisions without re— solving the whole problem (GP) for the

-
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combined set of old and new items. By “ re asona b le” we mean

a d ec is ion th a t w i l l  rema in v a l i d in the lon g run , that is

we should not have to re—allocate these New Parts in the

near future.

2. 14.4 Shor tcomin g s Of Standar d Tec hniques

In itially, we might have been tempted to try Linear

Programming or Integer Programming techniques , us ing

linearized approximations where necessary. In view of the

above remar ks we see that these woul d suffer fr om other

major disadvantages: first , the d ec is ion vec tor of one

m illion components would lead to an astronomical program ;

and second , th ese met hod s woul d not lead to any s t ra teg y for

allocating the new parts , short of re—solving the proolem

- for each new set of parts .

In the secon d part of thi s Ch a p ter we shall see how an

appropriate reformulation of the problem (GP) leads us to

better solution tools.
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Part II: Decentralized Solution Techniques

• 2.5 INTRODUCTION TO PART II

• In the preceding sections we described the Resource

Mana gement problem in a Large Warehouse , d iscusse d the

reasons  whi ch make it a har d pro b lem , and stated why we are

sa ti sf ied w ith any feas ib le solution to the pro b lem . In

this Part we develop the beginnings of a solution technique

for the problem . Our method is to set up an “Artificial ”

optimization problem , and to use Lagrange Multipliers to

simplify the solution to this problem , thr.oug h decomposition

into a large num ber of sm aller (muc h eas ier) pro b lems. We

~i ill show that solving these smaller problems also gives an

dD proach for Lhe New Parts problem (sec.2.LL3 ). Then we

will describe conventional iteration methods -wh ich , usin g

th e smaller pro b lem s , might be able to solve the Resource

Management problem .

The use of Lagrange Multipliers for decomposition of

lar ge pro b lem s is well known (see di scuss ion in se c. 2.7 ).

• In general however , such me tho d s s u f f e r  f rom some seve re

disadvantages , the most devastating of these being the

possibility of “duality gaps” . This means that there may

not exist multipliers which generate an optimum to the

Artificia l , problem . A detailed discussion of this and other

disadvantages is given at the end of sec.2.7.
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In the  r e m a i n d e r  of’ this Chapter we show the reader the

advantages of the decentralized approach. This will

motiva te us to investigate whether we can overcome the

disadvantages mentioned above. It shall be that very

investigation whicn , in Chapters 3 and ‘4 , will lead to the

main contributions of this work.

2.6 THE ARTIFICIAL PROBLEM AND LAGRANGE ~1ULTIP LIERS

2 . 6 . 1  The A r t i f i c i a l  P rob lem

In order to put the problem (GP) [2.3.2] in

c o n v e n t i o n a l  o p t i m i z a t i o n  t e rms  we f o r m u l a t e  the

“A r t i f i c i a l”  P r o b l e m

I
( 2 . 6 . 1 ]  ( A P ) :  max J(x) ~~~~~~~~~

‘ 
e X ~~

i~ 1

(2.6.2] subjec t to ~~~‘> 0 each i

(2.6.3] Q1-e ’x ”> 0 each i

[2.6.14] c-.u(x) ) 0

In other wor d s , we want to max imize the total quantity

allocated , subjec t to the resource usage constra int , the

n o n — n e g a t i v i t y  c o n s t r a i n t , and the fa c t that at mos t we can

alloca te the quantity we have of each item . If a feasible

solut ion ex is ts to (GP ), then the max imum v a lue of (AP ) w ill
I

be (Notice the analogy with the Artificial
1:1

var iable technique of Linear Programming where , if a 

— 
~

— --— . --—— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - ..



—23—

feasible solution exists to trie original problem , t hen t he

optimal value of’ the Artificial Problem is zero. This point

will be ’ amplified in Chapter 3.)

2.6.2 Lagrange Multiplier Method

We tac kle CAP) by the familiar Lagrange Multiplier

method . Let X be a R—dimensiona l vector of Lagrange

Mul tipliers. We write the Lagrangean associated with CAP )

as

[2 .6.5] L(x ,)~) J(x) - A’ [u(x)-c]

For eac h i , let X1 be the set of which satisfy [2.6.2]

and [2.6.3], and let X be the set of x such that x~’e X 1’ for

eac h i. Then there is the following “Saddle Point Theorem ”

(see for example Lasdon [Li]):

If there exist (x’,A ’) with x *eX and A’> 0 such that

(2.6.6 ] L(x ,X’) < L(x’,X’) (L(x’,X )

for all xex and X > 0, then x’ solves th e pro b lem (AP ).

[]

The power of the above result lies in the fact that it

does not depend on the form of the functions J (x) and u(x) ,

nor on the form of the set X (Li]. An alternative view of

(2 . 6 . 6 ], which will be used below , is to say that

(2.6.7) arg max L (x ,X*)

~CCX

( 2 . 6 . 8 )  A’ arg mm L(x’,X )
A > O
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2.6.3 Decentralization Of Decisions

A k e y  p o i n t  to n o t e  is t h a t  fo r  g i v e n  A the  p rob lem

[2 . 6 . 7]  can be d e c e n t r a l i z e d  s ince

I .

[2.6.9] max L (x ,X) A ’ c +~~~~~~

‘ n~1,ax 
~, 
(e ’ x 1—A ’ u 1 (d ” ,x 1)}

xex ç~ x e x
Thus , for gi ven A , the decision for ea~ h item i can be taken

independently of the others , by solving the (much simpler)

I n d i v i d u a l  P rob lem

[2.6.10] (IP): pax j (e ’x 1’— A ’ u1(d 1 ,x~’)}x ex

We note here that in Chapter 14 we shall further

simplify CIP). In Chapter 5 we ~iill show how (for the

warehouse case) we were able to find an easy solution to

this individual problem , and also show that solving (IP)

gives us an approach for the New Parts problem .

2.7 KNOW N SCHEMES FOR FINDING OPTIMAL MULTIPLIERS

We see above that a given A , through (IP), leads to an

allocation of all items , say x(X ) , and corresponding total

resource usa ges u(x(X )). We can therefore thi nk of u as a

func tion of A , and we shall henceforth write it simply as

u()~). The problem then , is to find the A’ in [2.6.8], fo r

then from (IP), [2.6.7), and [2.6.6] we know that x(X*) and

are optimal .’

‘Fo r the moment we assume such a A ’ exists. This issue will
be b r ief l y discussed in the next section , and answered in
detail in Chapter 3.

4
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A r r o w  and H u r w i c z [ A 1 ]  obse rved  t h a t  [ 2 . 6 .7 ]  and [ 2 . 6 .8 ]

suggest an iterative scheme of the form

k+ 1 k[2.7.1] x arg max L(x ,X )
• 

— xeX

[2 . 7 . 2 ]  ~
k+1 a rg  m m L ( x ~~

’1 ,A )
— x > 0  —

They noted that [2.7.1] can be solved using (IP) with given

and an alternative to solving [2.7.2] exactly at each

iteration is to let A 1< be changed in the direction of the

negative gradient of L with respect to A , which is then

simply

I A 1< if A~~ 0 and
~2 7 3] A k4~~_ <

I 3 3 3 — j
- 

A~ +a.(u .(X 1<)~~e.} otherwisek ‘~

where  a~ is some constant. The schem e t2.7.1],t2.7.3] then

has an i n t u i t i v e l y  a p p e a l i n g  economic  i n t e r p r e t a t i o n.  A

“ c e n t r a l  c o— o r d i n a t o r ” chooses a set of “ p r i c e s ” A , a f t e . ’

which the items i find their optimal decisions for this

A. . The central co— ordinator then looks at the total

resource usages and adjusts the prices to increase the cost

of over—use d resources , and decrease the cost of under-used

resources (but never making any cost negative) ; in other

wor d s he adjus ts pr ices accor d ing to excess  d eman d . Thi s

use of d ecentral i zati on in Resource Allo cat ion pro b lems is
• wel l  known [A 1 , E1 ,G1 ,L1 , S2], and arises out of the additive

nature of the objective function [2.6.1] and the resource

usage runut iuris (see [2.6. 4] along with [2.3.1]).

4’.
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We h a v e  r e d u c e d  v i a  t h i s  m e a n s  an o p t i m i z a t i o n  p r o b l e m

involving S x I (:one million) variables to an optimization

problem with R (:24) variables plus a set of I (~ 6O ,00O)

decoupled and relatively simple problem s. However , we must

overcome ti’~ree additional difficulties:

1. The decomposition and iteration method described

above falls in the general category ‘f “dual”

methods [GiL A major shortcoming of these methods

is the existence of “duality gaps ” [G3, Li ] —— t h i s

me ans that a l t h o u gh an optimal  v a l u e  of t he

Artificial Problem exists , no pair (x’,A’) exists

which satisfies the Saddle Point Condition [2.6.6].

Thus , no A can achieve the optimum value using the

sch emes g iven above.  (Th e nam e “duality gap ”

derives from the fact that there is a gap between

the actual max imum and the maximum achievable using

the  d ual  r~ethod.)

2. Even if no duality gap exists , con v er gence of

[2.7.3] is guaranteed only when strict conditions

(such as convexity/continuity) hold on the Payoff

Funct ion and Re source usage Functions (A 1 ,Z1] --

conditions which certainly do not hold in our

problem .

3. Conver gence can be very  slow even gi ven th e a bove

con diti ons.
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~4e therefore look for an improved scheme. At this stage the

rea d er m ight well as k what mot ivate d us to pursue th is line

of at tac k in the face of suc h di ff icult ies , so we pause a

momen t to gather our thoughts on this issue .

2.8 ADVANTAGES OF DECENTRALIZED APPROACH

The reasons why we c hose to pursue thi s solut ion

technique are mani fold:

1 . It ma kes poss ib le the solut ion of a large

intractable problem , by reducing it to a number of

smaller pro bl ems.

2. Su ppose we are ab le to f ind an eff ic ient i terat ion

technique , and use it to generate a sc1~ t.ion A ’,

with corresponding allocation x (X’). When demand

c harac ter is ti cs have c hange d sl ight ly over some

mont hs , we still expect A ’ to be a good starting

point for iterations to find a new solution . Hence

the Periodic Rev iew problem (sec.2.2) can be solved

very efficiently each time.

3. Given a set of multipliers A ’, th e New Par ts

problem (sec.2. 11.3 ) can be reduced to solving (IP)

for each new part. This problem is relatively easy

an d can be solved separately for each new p~~ t.

Hence the alloca tion of new parts is (through A’)

r mad e ind e pen d en t of the rest of t he parts in the
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warehouse . (The pract ical implementation of this

sc heme d eman d s some care , and is described in

Chapter 5.)

~4. The economic interpretation of the scheme (sec .2.7 )

makes it appealing to Managers , who readily

understand it. Hence they prefer it to other

schemes which give them rio insight as to the

r a t i o n a l e  b e h i n d  a p a r t i c ul a r  a l l o c a t i o n .

Thus , encouraged by the positive aspects of the

decentralized approach , we proceed to resolve the problem s

mentioned in the preceding section. This will be the

subject of the next two Chapters.
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CHA PTER 3

AN EXISTENC E THEOREM FOR OPTIMAL MULT IPLIERS

NOTE

The results in this Chapter
are of in terest in their own
right . For this reason it is
written so that it can be read
ind epen dentl y of the other

Chapters.

3. 1 INTRODUCTION

3. 1 - . 1 Motivation

The task of finding feasible solutions to large

alloca tion problems can often be quite complex . Such a task

occurs in many situations (see sec.3.1.3). In this work we

present a technique for accomplishing this task. In the

domain of Linear Progra:nrning , the artificial -variable method

is used for f indi ng in it ial feas ib le solutions , by setting

up an Artificial Optimization problem . Analogously , our

technique is to set up an Artificia l Problem , an d use

4-
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Lagran ge Mult ip l iers to simpli fy t he solution to thi s

pro b lem , through decomposition into several easier problems.

Thi s ef fec t ivel y re d uces the al location p ro b lem to one of

f i n d i ng  s u i t a b l e  m u l t i p l i e r s .

The contribution of this Chapter is to give a firm

theoretical basis for our technique . The main theorem gives

simple conditions which guarantee the existence of optimal

mult ipliers for the Artificial Problem . Al though the use of

Lagrange Multipliers for allocation problems is well known ,

such ex istence results have prev iously been gi ven onl y und er

strict conditions (e.g. convexity, continuity). Our

Theorem justifies the use of this technique in many cases

where the resource usage functions are nonconvex and/or

discontinuous , and the domains of the decision variables are

non convex .

An iterat ive -algorithm for solving the Artificial

Prob lem , us ing our techn ique , is described in the next

Cha pter.  In that Ch a pter we also show tha t thi s algor ithm

has provea b le convergence pro per t ies , and a quadratic rate

of convergence. It is thus expected to be of practical

value ; indeed , in Chapter 5 we describe one instance of its

use in a large warehouse.

-

~

-

~ 

.~~~~~~~~~~~~ ~:.
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3.1.2 Abstrac t Statement Of Problem

In Chapter 2 we d escr ib ed the Resource Management

problem in a very large FIAT spare—parts warehouse . In this

sect ion we sta te the pro b lem in ab stract  terms , so that the

reader can’ appreciate the generality of our work.

Cons id er the pro b lem of allocat ing several resources

among a set of independent activities. Specifically, let

A 1, ie( i ,2 ,. . . , I } be the i t h  A c t i v i t y .

- x 1e S~
’ be the strategy (decision) of A 1 , with

S~’ a discrete .strategy set with a
f i n i t e  number  of e l e m e n t s .

u 1(x1) C ER be an R—dimensional resource Usage
vector , where u~ C x 1) is the amoun t of
resour ce k used By A1 when strategy x 1
is employed (each

be an Al loca tion (each x~’6S~~).

u(x)
~~ru

1(x 1) be the total resource Usage b y an
allocat ion .

c ~ E
R b e the ve c tor of Cons tra ints on the

usages Cc , :l irnit on usage of’ resour ce
k)

Ty pical ly, we have in mind problem s where I (the number

of activities) is in the tens of thousands , R (the number of

resources ) is in the range 10 to 50 , and the num ber of

elements in each strategy set is in the hundreds.

4 - .
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Usuall y , one has the follow ing “Optimization Problem ” :

(3 .  1 . 1]  ( O P ) :  max H(x) a real valued function

subject to x~ e Si for eac h i

~~~~ u(x) .( c

In this Chapter we consider the “Feas ibility Problem ” :

(3.1.2] (FP): Find x such that

x 1 C 51 for  each i

and u (x) < c

3.1.3 The Utility Of The Feasibility Problem

The solution to (FP) is useful for a var ie ty of

reasons:

1. In the case of the problem (OP), there may ex ist

iteration methods which improve a given feasible

solut ion. In this case a completely different

algorithm may be required to generate an initial

feasible solution. (See [Mi] for an example of

this.)

‘All vector inequalities are to be interpreted
com ponentwise . (See notation conventions following Table of’
Contents .)
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2. In the case of an operational system , it may be

required only to ~~~~ it operational , i.e. to find

an alloca tion suc h that rio constraints are

violated , and to maintain this condition during the

operation of the system . Ex amples of this are

Parts—allocation in a large warehouse (see Chapter

2) and file—allo cation in a distributed computer

networ k (Chapter 6).

3. In many system design problems , a u n i q u e  cr i t e r ion

to be m in imize d canno t  b e f o r m u l a t ed . In su ch

cases , one approach is to define certain

constraints , find a solution to satisfy these , and

then look at the other performance parameters of

the resulting design. This approach has been

advocated by Chang [Cl) for the general Distributed

Computer System design problem . It has also been

proposed for solving rnu lticrit eria decision

problems tL3].

When I is v e r y  l a r g e , the functions u 1(.) are not

l inear , an d eac h S’ con tains a substantial number of points ,

(FP) may itself be a difficult prob l ’m .’ Jur me thod is to

‘We are  a s s u m i n g  o fcour se  th a t , fo r  eac h i , S1 does not
con tain an 2’ such that U~ (2i):O. For if this were the
case , we coul d se t X i:21 for ~ac h I and the prr~hle’v~ (FP)
would be trivial . In the warehouse problem (Chapter 2) for
ins tance , eac h par t mus t b e a l l o c a t e d som ewhere , so that
there is no x~ for whic h u ’(xi):O.

- ‘____s_ __ 
- . --- - . . -- - .--- - - --

~~
-- -  —
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set up an “Artificial” Optimiz ation problem , and to use

Larange Multipliers to simplify the solution to this

pro b lem , through decomposition into I (easier) problems.

The decomposition technique is well known [Al , El ,G1 ,Li ,52].

In general however such methods suffer from three

disadvantages , which are briefly”: C i )  The existence of

“duality gaps ” , which means that there may not exist

multipliers which generate an optimum to the Artificial

Pro b lem , (ii) Convergence of solution algorithms requires

str in g en t con diti ons  on the f u n c t ions u~ (.) and the sets Si ,

and (iii) Slow convergence of such algorithms.

In this Chapter we give simple conditions which

guarantee the ex is ten ce of op t i m a l  m u l t ip l iers for the

Ar t if ic ial Pro b lem , un d er v ery gener al con diti ons  on the

arid S’. A solut ion algorithm for the Feasible Problem

(above) is described in Chapter ~4. We mention that this

algor ithm has gu a r a n t e e d conver gence - pro per t ies un der

str i c t e r , but still fairly general conditions on the u’(.).

It is being successfully used in a FIAT spare—parts

ware house with 1:60,000 , eac h S1 has 16 points , the

f u n c t ions u’(.) are nonlinear and/or discontinuous , and the

number of resources (R) is 24 (Chapter 5).

“These points are repeated here to keep this Chapter
self— contained . See sec.2.7 for details and references.
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3.2 THE ARTIFICIAL PROBLEM

3.2.1 Analogy With Linear Programming

An artificial problem is used in Linear Programming

(U’) to generate an Initial Basic Feasible Solution (IBFS).

A b r ief re vi ew of t he tec hn ique fo l lows  (see [D l ] or [L5 ]

for details).
9’

Consi der an LP problem whose constraint s are:

[3.2.1) (LP1): Ax : b where A is a matr ix , and b >0

x ) O .-

(Through use of slack variables it is . always possible to

ex press inequality constraints in this form.) In order to

find an IBFS to (LP1) we consider the (artificial) problem

[3.2.2) (LP2): mm r z 1 - -

subject to Ax + z : b

x > 0

z > O •

C l e a r l y ,  if a feasible solution exists to (LP1) , then the

m inimum value of (LP2) will be zero , and conversely. But

now , (LP2) has an obvious IBFS (x:O , z:b) , an d can be so lved

using the simplex method . The optimum to this problem , if

zero , will result from a value of’ x whi c h can now be use d as

an IBES for (LP1).

¶

V..
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Thus we see that the above techniqu e (called the

Artificial Variable method in LP) sets up an “artificial ”

pro b lem whose optimum is any  f eas ib le solu ti on to the

or iginal problem . This is essentially our approach below.

3.2.2 Formulat ion Of Artificial Problem

[3.2.3] Definition: (Augmented Strategy Sets) To each

s t r a t e g y  set S1 , let us adjoin a d ecis ion 9, with

u 1 ( 9 )  0

We shal l  also use

S~ ~ s
1L){9}

s s~ x s2 x . . .  x s 1

S~~~~ S
l x S 2 x 5 1

so that x€S <:) x 1CS 1 for each i ; similarly xCS . H

(3.2.4) Remark: We can assume , w ith ou t loss of gene ra l ity ,
I . i ithat e~s . For if ees for  some i , then set x :9, remov e x

from x , an d then solve the remaining problem below. Also

see footnote  i n sec.3. 1.3. ( )

4
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We can now state  the Ar ti f ici al Pro b lem :

[3.2.5] (AP): max J(x) ~ ~~ p 1 (x ’)
iT~

suc h th at x e S
+

and u ( x )  < c

wh e r e

p~ :O if x~~ 8

p~:P
1 if x iCS i (P’ are positive constants).

Now let J’ 
~ r P1 . In analo gy with the LP example ,

we see tha t i f a feas ib le solut ion ex ists to (FP ), then the

max imum value of CAP) will be J* , an d conv ersel y , a n y  x

achieving J’ in (AP) must be a solution to (FP).

3.2.3 Lagrange Multipliers And Decentralized Solutions’

We tackle CAP ) by the familiar Lagrange Multiplier

method . Let A be a R— dim ensional vector of Lagrange

Multipliers. We write the Lagrangean associated with (AP)

as

[3.2.6] LC x ,A ) : J C x) — A ’ [ u ( x ) — c ]

~~~ order to make this Chapter self_ contairi e~~, the next few
paragrap ri s are duplicated from Chapter 2. There will be no
further repetition of any m aterial in this Chapter.
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Then there is the following “Saddle Point Theorem ” (see for

example Lasdon [Li]):

If’ there exist (x’,A’) with x ’eS and A’> 0 such that

[3.2.7] L(x ,A ’) < L(x’,X’) < L (x’,A)

for all xeS and X > 0, then x~ solves  th e ~problem (AR).— + — 4

[]

The power of the above result lies in the fact that it

does riot depend on the form of the functions J(x) and u(x)

nor on the form of the set S [Li]. An altern ative view of’

[3.2.7 ], which will be used below , is to say that

[3.2.8] : arg max L (x ,A’)
x CS
— +

[3.2.9] arg m m  L(x’,X ) -

A >0

We note further that for given A the problem [3.2.8] can be

decentralized since

( 3 . 2 .  10] max L (x ,X ) : X ’ c m~ax ( p’ x -X ’ u~~ x~~~xeS ~~— + - +

Th us , for g iven A , the decision for each item i can be taken

independently of the others , by solving the (much simpler)

Individual Problem

[3 .2.11) (IP): Tax i {p i (x i)A , u1 (x 1)}
x es

+

(This problem could be solved , a t  wors t , simply by

enumerating the points of St).

For given A we shall denote the solution to (3.2.8] by

that is

(3.2. 12) ~(A) ~ ar g max L (x ,A )
xC S
— +

4 -
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Since the solution to [3.2. 12] is relatively simple for a

given A , our  a im is to d eterm ine

1 . Whether there exists a A ’ suc h that ~(X’) achieves

the max imum in (AR) ?

2. If such a A’ e x i s t s , how can  it be foun d ?

As already mentioned , the second question will be

tackled by us in Chapter 4 . In the rest of this Chapter we

address the first question . Our theorem will be quite

different from the Saddle Point Theorem .

3 .3  M A I N  THEOREM

The question of existence of an optimal A for a given

pro b lem has , in general , onl y b een answere d in t he

l iterature under certain convexity conditions [G3, L1 ,L’4].

In this section we take advantage of the structure of a

lar ge allocation problem to give a far more general result.

4-
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[D3 .3 .1] Definition: We define the R— dimensional vector ~~~~,

whose k th c o m p o n e n t  r e p r e s e n t s  the  l a r g es t  c h a n g e  in the

usage of the kth resour ce , that can be caused by a single

activity A 1 (with its decisions restricted to its strategy

set S ):

max 
x~esT~~~esi lu~

(x
~ )—u~

(x
~ )I ( 3

[13.3.2] Theorem 3-I:

If there exists an ~ C S~ with J(fl:J* and u(~~)< ~—à4, where

~.2CR— 1 )/2 , then there exists a X’ >0 and an 2(A’) as in

[3.2.12] such that J(2(X’)):J* and u(~~(A’))< ~~~, that is ,

~~( X’ )  solves (AR). [)

For a large problem with (say) several thousand

a c t i v i t i e s  us ing eac h resour ce , we would expect ~~ to be

very small in comparison with ~~ . In t ha t case we c an gi ve

the following

In terpretation of Theorem 3—I :

If , for a slightly tighter set of limits , t he or ig ina l

pro b lem is st ill feas ib le , then there will exist a A’>O such

that the (decentralized ) solution 2(A’) will also be

feasible for the original problem . (This interpretation

will be illustrated by a diagram in sec.3.5.)4) [ )
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Rem arks: The importance of our theorem is threefold -—

1. We have given conditions under which there will be

no dual ity  
~~2 in the Artificial Problem .

2. Our con ditions require no convexity and/or

con tinuity and/or linearity assumptions. In

compariso n to existing conditions they are

e x t r e m e l y  m il d , an d l ike ly  to be t rue  for  most

large systems (since à~ is v er y sma l l  in com par ison

wi t h ~~~, as e x p l a i n e d  a b o v e )

3. If ’ each S1 has N components , our theorem justifies

replacing the IxN Integer Programm ing problem for x

by -the R— dimensior ial Nonlinear - Programming problem

of finding a suitable A. For instance , in the case

of the FIAT warehouse problem (Chapter 2), IxN has

approximately one million com ponents , whe reas  R h as

onl y 24.

3.3. 1 Outline Of Proof Of Theorem

Since the proof of the a bove Th eorem is qu i te lon g , we

gi ve the re ade r a fl avour  for  wh a t nee d s to be ac com pl ishe d .

4..
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3.3.1.1 Motivation - Let us consider the R+1 dimensional

space of payoff versus resource usage for (AR). In this

space consider the setr~i£ L~1 
J:J(x) , ~~~~~~~ for x e S ~

The problem (3.2.12] finds a solution 2~s such that

J(U—X ’[u(2)—~~] > J(x)—X ’[u(x)— ~~) for al l  xCS

1i’1 frt~)}
or , with 

~ 
we can wr ite thi s as

(1 ,x’ ]Ifl > [i ,X ’) 
~~~~~ 

for all [3i e ~L~i L~1 L~J
which is a support hyperplane for the set J , passing through

the point e j .  Thus , solutions foun d using [3.2.12] can

onl y lie on these support planes.

The source of duality gaps is that (if J is nonconvex ,

sa y) there ma y ex i s t  solu tion po ints  on the n o n c o n v e x

bo undary of J which are not touched by any support plane of

3 .

Our approach is to show that , a l t houg h such

“unrea cha b le ” po in ts may  ex ist , the ~~ condition in the

Theorem assures us tha t there  e x i s ts some o ther “ reacha b le ”

point which is also an optimum for (AP). We do this as

follows.

Firs t we loo k at the pro ject ion of a su b set of on to

the u—space. Specifically, we look at the set U’ of a l l  u

such that 
[~~~] 

83 ,  wi th J:j . This will be illustrated by an

example.
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3.3.1.2 Simple Allocation Example —

Let 1=3 (number of activities)
and R:2 (number of reso urces)

Suppose the activities are:

A 1 wi th x 1 9S1 
~ (a ,b) and u~ (a) : (1 ,4)’

~ (b) = [3,3]’

A 2 with x 2SS2 {a ,bJ and u~ (a) : [3, 53’
ti (b) : [~4,3]’

w i t h x 3eS3 (a ,b ,c} an d u 3(a) [4,4]’
ti
3
(b) [5.5 ,3.5 ]’

~ (c) = [6 ,2]’

The augmen ted s t ra teg y set S~ , for exam ple , woul d be

S~ :(a ,b ,B} with

3 . .
The possible value s of u(x)=r u~ (x 1), for x&S , are

i:1 thshown in Table 3— I . For example , in the ‘4 row of the

table , for x:[a ,b ,a ] ’  we have

u ( x )  u 1 (a)+u 2(b)+u 3(a) : [9 , 11 ] ’

Since , for J (x):J’ we mus t h a v e  xes , the set U’ is precisely

the se t of v a l u e s  in the Ta b l e , and this set is illustrated

in Fig. 3—1 .

By exam ining the value s of u 1(x 1) a~ ove , we f i n d (see

definition [D3.3.1))

• = (2,2 ] ’

Since R:2, we have  ~:(2—i)/2 0.5 so that

= (1 , 1]’

We shall need this value in later illustrations. ( ]
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Table 3—I : Values of u (x) for x e S in the Example

x 1 x 2 x 3 u 1 ( x )  u2
(x)

a a a 8 13
a a b 9.5 12.5
a a c 10 11

a b a 9 11
a b b 10.5 10.5
a b c 11 9

b a a 10 12
b a b 11.5 11. 5
b a c i2 10

b b a 1 1 10
b b b 12.5 9.5
b b c 13 8
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u2(x )

14—

—

.
12— ~..

‘N
— 

‘N
10 — • •

—

8 —

I- . 

S..

0 8 10 12 14 u1 (x )

~~— 1: The set U’ for the Ex ample.

The set consists of all possible values of u (x ) , sho wn by

heavy dots. The line H is a typical support hyperplane for

the set U’, passing throug h the point Q.

V.
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With U’ as d e f i n e d above , our proof  shows that the M

cond ition in Theorem 3— I guarantees the existence of some

u’eti ’ which lies on the “reachable ” boundary of U’, an d also

has u~ < ~~ . Then we procee d to t he (J ,u) space , where we

c o n s t r u c t e su i t a b l e  A ’ suc h that the corres pon di ng

hyperplane (as above) passes through (J’,u’), is a support

for  , and also satisfies A’>O. This proves the Theorem .

We shall  il lus tr a t e  these po ints , using the example , as we

proceed with the proof.

3.3.1.3 Stages In Proof — Our proof depends heavily on the

pro per ti es of polyhe d ra , an d these are reviewed in the next

sect ion. Then we define a set W , rel ated to U* a bove , and

define its convex hull ~~~. Sec.3.5.2 characterizes the

su ppor t p l anes  of ~~ . Sec.3..5.3 c h a r a c t e r i z e s  certain faces

of ~, and shows why we need only consider such faces.

Sec.3.5.4 ac com pl ishes the ex istence  of a U’ as described

above. Finally Sec.3.5.5 carries out the construction of a

suitable A’.
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3. 4 CONCEPT S R E L A T I N G  TO P O L Y H E D R A  -- A B R I E F  REVIEW

Our proof relies heavily on the - properties of

Pol yhedra. Hence a review of relevent concepts is given

here. The reader should be aware that several different

(but equivalent) definitions can be given . Our exposition

is taken mainly from [Si).

We shall be concerned with n-dimensional Euclidean

spaces E~ . For ~~~~~~ u 1CU , and a1 sca l a r s , we d e f i n e  the

c o n i c a l  h u l l  of U

cone(U) £ tra’u’ a1>0} for any finite N ,

t he convex hul l  of U

N . .  - N .
convex (U ) £ { ~~a

1u 1 a1>O , 7a
1= 1} for any finite N ,

fri fri

an d the a f f ine hul l  of U

N . .  N .
affine (U) £ ( ra1u ’~ ra

1
= 1I for any finite N.

i:1 i=1

The sum of two se ts U ,Vc.E~ is

IJ+V (u+v ueIJ and vev i

[ D 3 . 4 . 1 )  D e f i n i t i o n :  The s o l u t i o n  set P~~. E n of a f i n i t e

sys tem of l inear  in e qual iti es

P t C : h 1 ’c < b 1 , ri~~,c CE n , i= 1 ,..., N }

is called convex -polyh.edron (or briefly,

po l y h e d r o n ) .  H
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[P3. 4.2] Property : If U and V are finite point sets in En

t h en

P convex (U ) + c o n e ( V )

is a polyhedron . H

a

In the following statements , P w i ll always denote a

polyhedron .

(D3. Ll .3] Definition: In [D3.4 .1], for each i the set

I i 2.{ c  h ’ c =  b }

is called a boundary plane of P. []

[D3.4.4] Definition: The intersection of P with some of its

boundary planes is called a face. (A face is itself a

po l yhedron . Also , if El is a face of P and F2 a face of Fl ,

then F2 is a face of P.) A face consisting of exactly one

point is called a vertex. A face which is different from P

is called a proper face. H

(D3.4 . 5]  D e f i n iti on: c is an ex tr e m e  po in t of P i f

c e con v ex i ~~~~~~~~~~~~ ) for  c 16 P

implies c i=c for all i. H

(P3.4 .6] Property : Every extreme point of P is a vertex ,

and conversely. H

(D3.4.73 Definition: P is called bounded if’ there exists a

V. -
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scalar e such that for all c6P , Ic~
Ve. [)

[P3.4.8] Property : Every bounded polyhedron is the convex

hull of its finitely many extreme points (vertices). []

[P3.4.9] Property : P is bounded if and only if’ it contains

no ha l f l i n e .  []

[D3. 14. 10] Definition: Any point belonging to a proper face

of P is a boundary point. All other points of P are inner

po ints. ( ]

[D3. L4 .l1] Definition: A boundary plane containing the

entire polyhedron is called singular. (For example , if the

face F is the intersection of P with the boundary pidr ie H ,

then w.r.t. the po lyhedron F , the plane H is a singular

boundary plane.) H

[P3. 4. 123 Property : If c is an inner point of’ P, and c” an

arbitrary point on the intersection of all singular boundary

p l an es of P , then there exists an e>0 such that

c + e ( c — c ” )  and c— e (c-c”)

are both  in P. (If there are no singular boundary planes ,

the above intersection is En b y c o n v e n ti o n . ) H

[P3.4. 13] Property : (This is true of convex sets in

general.) Let U CEn and put d :dimensior i of affine(U) . Then

V .
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for each point u e convex(U) there exist d÷ ’ points u ’eu
such that u e ~~~~~~~~~~~~~~~~~~~~ H

3.5 PROOF OF THEOREM
a

3.5.1 The Sets W And ~

Consider the R— dimens ional space ER in which the vector

u(x) lies , and consider any constraints vector c in this

space. Following [ L L I )  we define the Pr imal Functional

G(c) max J(x) subject to u(x)< c
x es
— +

Rand define ‘4CE as

“4 { c c >0 and G(c):J’}

so that W is the set of all constraints for which a feasible

allocation exi~ t.~ for the original problem . Also let

convex (W)

See Fig .3—2 for an illustration of W and ~~ .

[03.5.1] Definition: We shall say 8 dominates c if 8 < c ,

and we shall say 8 is a non—dominated point (NDP) of VC .E R

if 8eV , an d for all ceV we have

C < ~ => C=~

(t h a t  is , 6 is not  d o m i n a t e d  by any other point of V). See

Fig .3— 2 for examples. 1 )

4,
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12-
-

10—
~ r /~~~~Z / / / /

~~~~~~~~ / / / /
~~~~~~~~~8 -  ~1

— boundar y of W

I ~~~ 
I I I I ~ I ~0 8 10 12 14 u1(x )

Fig .3—2: The sets W and ~ for the Ex ample.

The set W cons ists of a l l  cons t r a in ts for whi c h a f eas ib le

solution exists for the allocation example. ~ is the convex

h u l l  of W. It c o n s i s t s  of a l l  p o i n t s  to the r i g h t  of , a n d

above , the dotted line. 6 dominates C , an d i s an exam p le

of a NDP of W , an NDP of ~~ . An example of duality &~2 is

given by the problem with constraint ~ (see point x) , fo r

which there exists a solution U < ~, but this solution does

no t lie on any support plane; in fact no point on any

support plane can solve this problem .

-A-
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tie now make some observations on W and ~, fo r  l ater

use.

(03.5.2] ~CW and 6 dominates c => cGW .

4

[03.5.3] (xeS~~, J(x)=J’) <=> (xES , u(x)eW).

[03.5.4] ~ is a po lyhedron . Proof:

- - RLet U ( u ( x )  xes ) , a finite point set in E

i - . Rand V { e } , the R unit vectors in E

Then , by definition of W ,

c ew => c > U (for some u eU )

c U + 

~~ 

a 1e1 (for some a1>0)

ano conversely, so that

W U + cone(V)

Now ~ convex(W)

=convex(U -+cone(V)) convex(U) + cone (V)

where the equivalence in the final step is easily

established . Hence by [P3.4.2] ~ is a po lyhedron .

[03 .5 .5 ] ~~~ and 8 dominates c ~> c6~ (compare [03.5.2]).

Proof: This follows from the final equation of [03.5.4].

V
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3.5.2 On Repre senting The Bo~..r~da r y P l a n e s  Of ~

[L3.5.6] Lemma: Let H be a boundary plane of ~, which

passes through c~ €~’ . Suppose H is r~~p r e sen t e d as

[3.5.7] h’ c=h’ c’ I

the sign of h being chosen such that

[3.5.8] h’ c’ < h’ c for all ce~
Then h >0 (componentwise). H

Proof: The proof is by contradiction. Su ppose some

components of h are negative. Let h~ be, one such component.

Consider ~ such that -

~~>c’ and ~ :c~ (kij).
3 3

Then

[3.5.9] h’~ h’(~ —c’) + h’ c’

+ h’ c’ -
.

< h’ c’

aut clearly > c~ so that ~~~ (using [03.5.5]) and trius

from [3.5.8] h’ c’ < h’~~, which contradicts [3.5.9]. H

[C3.5. 10] Corollary : With definitions as in the previous

Lemma , if c’ is -i ominated by ~~~ then ~~~~ [ ]

roof: ~~~ = >  h ’ c’< h ’~ us ing [3.5.8].

h >0 and ~ < c~ ~> h ’~ < n ’ c’. Hence  h ’~~~h ’ c’. H
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3.5.3 Characterization Of Non-dominated Faces

[D3.5. 11] Definition: A prope r face F of ~ such that some

inner point ’ of F .~ an NDP of ~, is called a non—dominated

face of ~~ . The set of all non—dominated faces of ~ will be

denoted N. (See Fig.3—3 ) H

The justification for naming an entire face , on the

basis of one point , follows from the next Lemma.

[L3.5. 12] Lemma: Let N be as above , and let ~~~ Then

a. N includes all NDPs of ~~ .

b . All points of F are NDPs o f ~~ . 
-

c. F is bounded .

d. F is the convex hull of some extreme points of W.

e. If F f~ W , there exists xes with

C ]

Note that (a) and (b) above show that the set of all

points which are NDPs of ~ is e quivalen t to the se t of all

points on faces in N.

‘Note that from the definition of inner points (D3. 4.lO ), a
vertex is an inner point of itself.

4-
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u2( x )

- . 

-

14- 
F1

~~~~V / /A  /

12- 

Fz
~~~V7/ //

- 
_

~~~~~~~~~~~~//// /
1:— 

F4

- F8 F9
I 

~ ~~~~~~~~~~~~~ ~

0 8 10 12 14 u1 (
~~

)

Fig.3—3: The 10 Faces of ~~ .

F 0 to F
9 

are a l l th e faces  of ~~ .

F2 to F
8 

are non— dominated faces, members of N .

The circled points 0 a r e  e x a m p l e s  of  p o i n t s  in  F,IW , fo r

some F e ~ (see Lemma [ L 3 . 5 . 12 ] ) .

4 - -
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Proof:

a. Su ppose c is an NDP of 1. Now c cannot be an inner

point of ~, since it would oe possible to find another

point in ~ wh i c h  would  dominate i t  (see [P3. 4.12]).

Thus c must lie on a proper face , say F’ . If c is an

inner point of F’ , then F’eN~ and c is includ ed in N. If

c is a boundary point of F’ then it must lie on a proper

face F” of F ’ . Eventually, since ~ is finite

dimensional , C will either be an inner point of some

face , or will lie on a vertex , which is an inner point

of itself. C ]

b. L~ t be an NDP of ~ and an inner point of F. Now

supp-3se that c0eF is dominated by some ~~~ For an y

singular boundary plane of F ~e have~~
h, c N h , CD< h ’~~ (with h as in [L3.5.6]).

But also h >0 [L3.5.6] , and ~ with strict

inequality for at least one component , say

implies h, (c D_~ )~ O and h
3
:O. Thus if e~ is the unit

vector in the j direction , h ’ e~~ O. This means that

lies on the intersection of all sin -~u1ar boundary

planes of F so that [P3. 14.12] there exists an a>O such

N j  - . . N .that c —a! e F. But this point dominates c , wn ich is

a contradiction . Thus must also be an

“We use this phrase frequently, to denote “a boundary plane
of ~ w h i c h  is a s ingular boun d ary p lane o f F “ .

V
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NDP of~~~. C ]

c.  F i s  a c o n v e x  p o l y h e d ro n  [ D3 . 14.14]. If it is not

bounded , ~hen (P3. 4.9] there must exist C
EeF an d c such

that

F b e F fo r  a ll b > 0 .

In addition , we must have some c~~<O , or e l se cF +bc w i l l

be dominated by (which cannot be , by (b) above).

Choose b l a r g e  e n o u g h  so t h a t

+ bc. < 0
1. 1

which is a contradicti on , s ince “4 (and hence ~) consist

of vectors with non— negative components. [ ]

d. Since F is bounded , it must be the convex hull of its

eAt r~~ie points [P3.4.8]. These points , b e ing faces of

F, are a l so f aces of ~ [D3.4 .4] hence extreme points of

~~~. Let c be such a point. By definition of ~

c convex (c 1
,c2,...,c~

1 } for

This implies that [D3.4,5] c~ c 1 for  al l i , so that

cew . C ]

e. Since c1
~ew , there exists xeS~ with u(x)< ~

F an d J(x):J’.
F .  . . FBu t c is an NDP of ~, and u(x)eW c~~, implies ~(~~):~

A lso J(x):J* ~> xes. []

I.

4..
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3.5.4 From Premises Of Theorem To Allocation On F

[L3.5.13) Lemma: (Delta—Domination Lemma)

For any F e !‘T ~~~~~ is dominated by some c’€ .‘I (\ F ,

where  ~ and ~ are as in Theorem 3—I. (See Fig .3—4) H

Proof: This is quite involved and is left to the Appendix.

[L3.5. 14] Lemma: If there exists ~es such that J(l):J’ and

u(l)< 
~~~~~~~~~~~~~ 

then there exists x ’eS such that

a .  u ( x ’) < ~

b. u(x ’) e Eu W , for som e FelL

( 3
Proof: (See Eig .3—5) Since J(l)~ J’, ~~~~~~~~~~ C W . N~ w choose

some c EeF ( some F C IT) , which domin ates ~~~~~ (T he rea d er

can verify that such a choice is always possible. In

particular if ~~~~~~~~~~ is itself an NDP , we can just choose

The n f r om [L3.5. i f l ,  there exists a c’C E1~~ such

that

~~~ <

but also ~F <

so that c~ < ~~~. But now s ince c* e F(~W , from [L3.5. 12e ]

the re  e x i s t s  some x ’eS with

C ]
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I

u (x )

8 -  

- 

e/ ~~~~~~~~~~~~~

I I I I I ,
0 8 10 14

Fig.3—1$ : Illustration of the “Delta—Dom ination ” Lemma.

The vec tor â4 equals ( 1 , 1]’ for th i s example. It Is shown

by an arrow in the Figure.

I-
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- w
u2 (&) 

-

14

‘ I
12 I ~~

- —— -
~~~~~~~

10 ~~~~~~~ ~~~~~~
----i

I.

8 u(~
)

I I I I ~~~ ‘1
0 8 10 12 14

Fig .3— 5: Illustration of how conditions of Theorem ensure

existence of allocation on “reachable ” bounda ry.

If there ex is ts an allocation ~ w i t h  u ( l ) <  ~~~~~~~~~~~ t h e n  ~ mus t

l i e  in the set W+~ 4 (dotted boundary ). But then , from the

D e l t a — d o m i n a t i o n  Lemma , we know t h a t  there exists a u(x ’)

which dominates ~, and u ( x ’) l i es  on the “ r e a c h a b l e ”

boundary. 

~~~~ - ------ -- - 
p
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3.5.5 Construction Of Suitable X

[L3.5.35) Lemm a: If there exists I as in the preceding

Lemm a , then there exists a A’>O , and an ~(A’) as in

[3 . 2 . 1 2 ] , such  tha t

J(~ O~’)) = J’ , and u (~~~)~’) ) <  ~ []

- Proof: Let c~ and x ’ be as in the previous Lemma , and let

H ,h be as in [L3.5.6]. Now consider the R+1 dimensional

space of Pa yoff  versus resource Usag e , with points L~1 such
t h a t  J : J ( x ) , ~~~~~~~ fo r  some xes~ . Define the seta

IT1
N 

J<J*) , and ~ L~I 
J<J’}

Since the allocations are discrete points , 
~< 

has a finite

number of points and there exists a J’ such that

max i j I

Choose b>h ’ c’/(J’.-J’). We will now sho w that

( 1 / b ) h

is a s u i t a b l e  v a l u e  for  X .

First , we no te that (see CL3 .5.6] and definition of J’)

A ’>O.

1T1
N e x t , c o n s i d e r  a n y  

L~~~J 
eJ < . Then

b > h’ c’/(J’—J ) since J<J ’

> (h’c’— h’ u)/(J’— J) since h >0 , U >0

:> J — J  > (h’ c’—h ’ u)/b

that is ,

V
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[3.5.16] J’—A ’’c’ > J—X ’’ u

In
And now , consider any L~i 

C L .  -T hen
4

— h’ c’/b J — h’ c’/b since J:J~

> J — h’ u/b (uCW , and using [L3.5.6])

so that

[3.5.17] J’-X’’c’ > J—X ’’ u

Finally, we consider that ~(A’) max imizes J(x )— > .’’u (x )

over xes . From [3.5.15] and [3.5 .16] we see that ~(X’)=x ’— +

C x ’ as in [L4.5. 14)) satisfies this criterion . Further :nore ,

from [L3.5.114 ] it -follows that c~ < ~, so that we have

u ( x ’) = c ’< ~, and J(x ’)=J’. We have thus shown the existence

of a suitable X’ and I(X’). C ]

This also concludes the proof of Theorem 3— I . C ]

3.6 EXI STENC E OF STRICTLY POSITIVE A

Under the stated conditions , Theorem 3— I showed the

existence of a suitable A >0. From the proof of [L3.5.15]

we see that , since we could choose .~21 su pport p lane for ~

through C ’, an d a r ange of v a l u e s  of b , the A is no~ unique

-— there is a range of possible values. The next Theorem

shows that in this range of values there also lies a A whi ch

is s t r i c t l y  positive. (Thic result will be u.e fji in

Chapter 11 , for our iteration algorithm.)

V p
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[T3.6.1] Theorem 3— Il :

Un der the conditions of Theorem 3—I , t here also e x i s t s  a

~‘>0 suc h, that solves (A?). [ ]

Proof: Let c’CF , for some F~~~, be as in the proof of

[L3.5.14]. Since F is a face of ~, from (03.4.14] it can be

written

(3.6.2] F = ~ flH 1
fl u 2C~...nH

N

where the H 1 are  b o u n d a r y  p l a n e s  of ~~~~. Since c~ l ies on

each H1 , we can write each H1 in the form

C c h 1 ’c:h1 ’c’ }

and by choosing the sign of each suen that

[3.6.3] b i~ c* < h~~’c for all cC~~,

we shall have n 1>J (from [L3.5.6]). Now let

p .

~Th11 
. 

-

Then n ’ c~ < n ’c for  all  c e ~ from [3.6.3].

From above we know tn-a t n >0. We will now orove , by

contradiction , that n>3 (strict). Suppose n
3
=O. This

implies h~ :O for all i. Let 6~ c’+ae3 , w here e 3 is the unit

vector in the j direction , and a>O. Then 6 is dominated by

so that , from [03.5.5], ~~~ Also , for all i:1 ,... ,N

h 1 ’ c’ + ah 1 ’ e3 h 1 ’ c’

so that 8eH 1 . Hence by [3.6.2], aeF . But ~ is dominated by

c~~, and this contra dicts the property [LLL5 .12b] of

non— dominated faces. Thus n.>O.
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The remainder of the proof follows [L3 .5.15]

exactly. C ]

[C 3 .6 J 4 ] ‘Corollary : If there exists a A >0 such that 2 (A)

solves (AP) , then there exists a A ’>O (strictly) such that

2(A’):~~(X), so that 2(X’) solves CAP ) . [3

Proof: In the proof of Theo-’em 3— Il above , simply take

c’=u (~~(A) 
) . H

[R3 .6.5] Remark: The ~4 condition is not required fThr tnis

coro llary. H

3.7 DISCUSSiON

~-iere tt [E li pointed out that , even ‘nder general

c o n i  i t i o n s  on the  u~ C .) and S’ , some statements could be

m i ~i ’~ re~ ar~~iri~ the properties of an allocation 2 (A ), for any

A >0. He i i i  not , however , deal with the existence of

optim al multipliers. Our results greatly extend th~

ipp l~ cabi lity of the Lagran ge Mult iplier technique , by

givi ng simple conditions for the existence of optimal

mul t Lp l iers , under general conditions on the ~~~~~~ and S~~.

We also emphasize that in practice , our conditions are

likely t’~ hold for larg~ syztems. This justii’i tne use of

tr~e decentralized method of finding feasible solutions to

large allocation proble m s.

4-
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APPENDIX 3A

THE DELTA-DOMINATION LEMMA

For the convenience of the reader , the Delta— Domination

Lemma [L3.5. 13] is re— stated here:

For any ~
Fe F e ~~~~, ~~

F
+~~~~ is dominated by some c’E WI l E .

(Here ~ and ~ are  as in Theorem 3— I. ) C ]

Outline of Proof of the Lemma

The proof proceed s in five stages :

1. We characterize the set of all points in Wil E , in

terms of the resource usage vectors of individual

activities .

2. We represent these individual usage vectors as

basis vectors in a different space , and show how a

certain polyhedron , P , represents F in thi3 space.

3. “le show that a certain subset of the faces of ~‘

ma ps onto all of F.
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4. We derive a s i m p l e  r e p r e s e n t a t i o n  of a n y  such  f a c e

of P .

5. We take a point on F , and choose a certain point

on a suitable face of P. This point will map onto

c ’e W I l E  such that c~ <

3 A .  1 ~ ET OF POINTS IN F RW

Let c~ be a point of E I 1 d .  (By [L3 .5.12d] F t 1 4 cannot

be vacuous.) Then , by [L3.5. 12e) there exists an allocation

.~ith u (x~ )=c
3
. In this allocation , let

usage v ec to r  of acti iity I

so that
7

~ow , for all points c~ e WIl E , l e t  u ,~ be defined as above ,

and defin e the set

- 
j —3

Loosely speakin~~, U 1 is the “set of usage vectors of the ~
th

Activity, for points lyin g on F1W” .

Our first step consists of showing that all

combinations of these u~ accordin g to the manner

I . -

[ 3A .  1 . 1 3  3
1 for e U

1

1= 1

w ill generate points ~ also lyin~ in  F(~W. In other words ,

we show t h a t  the  set of al] . c o m b i n a t i o n s  ~ in [ 3 A .  1 . 1 ] ,  is
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exa ctly the set of all points of F,l4 .

Su pp ose c~ and are both in F(’IW . Let

for u 1 e u 1

c~~~ fo r
i= 1

and let H be any singular boundary plane of F (see

[D3 . 4.11 ]) with equation

C3A .1.2] h’ c < h ’ c for all c C

so that , by definition ,

[3A. 1.3] ‘c~ =

We will show that h’(~~~—u ’):O for all i. Suppose that

for some k (1 < k < I). Consider the allocation- -o -+ - -
I . u1=u 1 (u k)

s— 1 I —

c =  ) U where < -
K k

1 I U : U
—

Since c e W , we mus t ha v e

h’ c < h’ c— —+ —
kh’ (c + u — u

— 4. .-.
~~~ —+

K h ’ c
— —+

which is a contradictio n . Thus we have shown that

h’(u 1 -u 1) > 0 for all i
— —0 —4~ 

—

But also , from C3A .1.3],

12.’ 1~ 
( .~~~-~~~ ) =

i= 1
Henc e

[3A .1 .4] h’ (u~ —u ) = 0 for all i.

Cl ea r l y ,  by definition of U1 , and the generality of ~~~, ~~
above , ~e can generalize [3A.1. 4] to
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h’(u 1-u 1 ) 0 for all ~~~~~ e for all i.— —o —+ —o --+
It is trivial to show now , that for any 6 as in C 3A .1 .1 ] , we

will have

as in [3A .1.3])

.
~~~~ that ô al so li es on H. Also 6 e W. Hence 6 e H I 1~~.

Since H is any boundary plane contain ing F , it follows

that 6 lies on the intersect ion of all such planes -with ~~~~.

But this is precisely the definition of F [D3. 4.4]. Thus

6 e F I l w .

3A .2 REPRE SENTATION OF F IN A HIGHER—DIMENSIONAL SPACE

In the  f o l l o w i n g ,  for  ease of n o t a t i o n , we s h a l l  use

d o u b l y — i n d e x e d  u n i t  v e c t o r s  v~~, by  w h i c h  we m e en

< = >  i:k , j:m

i ic i kand v .~~~~v <= > V .  , v
—3 —iii —j  — — m

N ow let  the  N 1 e l e m e n t s  of U 1 be o r d e r e d  in some f a s h i o n ,

say

i i i  iU C U l~~
U 2~~• • • ~~

U Nj }

We shall , as shown below , associate these -elements with unit

ve c to r s  in the se t

V1 ~~~~~~~ ~~~ 
.
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I - I
Let V UV 1 and N r dimension of span(V).

i= 1

Define the linear map T(.) from span (V) to

1 2  Ispan(U +U +. . . +U ) by

T(v~ )

Since the are basis vectors for span(V) , the a bove

equation defines T(.) for all points in span(V) [Ni].

We now consider those points in span (V) which can be

written

[3A .2 .  1] V = for ~~ C V~

Clearly, T(v) 6, for some 6 as in [3A . 1.1] , so that these

points correspond one—to—one with all points in FIlW . Let

P° be the set of all such v , and F its convex hull (so that

by [P3.4.2] P is a Polyhedron).

Since F is the convex hull of its extreme points , all

of which lie in F IlW [L3.5.12d] , the map T transforms points

in P to points on F. (The map is obviousl y many — to— one , in

general.)
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Remar k: P is not a hypercube , in general. For example , in

S d imens ions , i f  we ta ke

V 1 :-{ [i ,O ,O ,O ,0]’, [0 , 1 ,0,0,0]’, [0 ,0,0, 1 ,0)’)

((0,0, 1 ,0,0]’, (0 ,0,0,0,1] ’ )

t h en  the 3—D projection of the objec t P is the pr ism in

Fig .3A— 1 . (We are projecting both [0,0,0, 1 ,0 ] ’  and

[0 ,0,0,0,1)’ into (0 ,0,0)’.)

Fig .3A -l : The Object P

(i)
(,)
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31.3 ONLY NEED TO CONSIDER CERTAIN FACES OF P

Let n=dimension of F. In this step we show that the

map of just the r—dim ensior i a ]. faces of P (all r<n ) , is

sufficient to cover F. This will mean that , in later steps ,

we need only consider such faces. Formally, we have:

[31.3.1] Lemma: Let n=dimension of F. For any point c e F ,

there exists a point v C C (an r-dimensional face of P, r<n )

such that C 1(v). [ ]

Pr oof: (Reminder : P is N— dimensional , F is n-dimensional.)

If N<n , there is nothin g to be shown . In practice of course

we ex pect N>>n. Now if N>n , let Y be the N— n dimensional

null— space of 1, and let c:T(w) for some W C P. The linear

variety w+Y can be written as the intersection of n

Hyperplanes in the space of span(V):
n

[3A.3.2] w+Y = (% H .
— i=1 1.

Consider (w+Y)IlP. Suppose this intersection is contained

entirely within a face of P, defined by the intersection of

s boundary planes
n+ S

(3A.3.3] •~~~~\ H.
i:n+ 1 1

with P. (This statement is quite general , since if s=0 then

this intersection is , b y c o n v e n ti on , the whole space , and

the face is just P itself.)
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Combining [31.3.2] and [3A.3.3] we have
n+s

(w+Y)fl P C. rt H.
— i= 1 1

Since no t all of the s bounda ry p lanes are necessar i ly

di f feren t from the f irs t n p lanes , we can rewr i te th e a bove

as
r+s

[31.3.4] (w+Y)IIPC (\H. for some r<n
— 1=1 1 —

Now (w+Y ) is itself a polyhedron . Consider a vertex v of

this po lyhedron , which by (3A.3.4] must be obtained by the

intersection with N— (r÷s) more boundary planes of P, none  of

which is the same as any H
~ 

in [3A .3.4] above. Now v lies

on these N— (r+s) boundary planes of P , as we ll as on th e s

boundary planes of P in [31.3.3] , so that it lies on the

intersection of N— (r+s)-+ s N — r different boundary planes

with P. Thus v lies on an r— dimens ional face of P. But

also V lies in w+Y , so that T (v)=c as desired . [3

3A . 4 REPRESENTATION OF r-DIMENSIONAL FACES OF P

Let G be an r ( <n ) dimen sional face of F, as in the

previous section . Below , we derive a simple representation

for any point on C. Let

[3A. 4.l] v~ for  v 16V1 (similar to [31.2.1])
1:1  -

and let Z~< 1 ,. . . ,Z’<t be such that

~kj~~~~ yicj

with v ’<j 
~ Z~ J

and card inality of Z~ i = ~kj >~ , wi~~i ~~ r~~j :r

_ _  - 

j=1



—73—

Thus in general ,

[31.4.2] t < r

s ince some zl<j may have more than one elemen t .

Then the set of all points

[31.4 .3] ~~ ÷ ~~~~ 
+ 

~~~~~~~~~~~~ 
for  v t< J 6 zkj~~~v~ji

is the set of e x t r e m e  po in t s  of an r — d i m e n s i o n a l  f ace  of P .

In f a c t , e x t r e m e  p o i n t s  of !~1 r—dimensional face of P can

be thus  r e p r e s e n t e d , by  a p p r o p r i a t e  cho ice  of v 0 and zki .

(This can be proved in a manner exactly paralleling that in

sec.3A . 1).

Now all po ints on G ar e the convex hull of C ’ s ex tr eme

points. Using [P3.4.13], for any point v e C there exist

r+ ! points v l ,v 2,. .. , v~~~ e C with -

+ ~~
1
~~~j m ~~~j) (see [31.4.3])

r+1 r+1
such that v rb

m v~ for some bm >O , ~
_
~b

m
=l

m:1 m :1

which implies

[3A. ’4.4] + r b~’ ~
_
(Vkj;m _V kj)

m:1 j=1

This is the representation that we desire.
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3A .5 DERIVATION OF BOUND L~

Let be any point on F. From [31.3.1] we know that

I C )  where v is as in [3A .4. 4]. Thus

= 1(v
0
) + r bm rT(vlCj;m Vkj) using (31.4.4]

Define T(~~ ) so that e U1

u~i~ T({ v~i}tJ Z
1<i) 

~ ~~~~~~~~~~~ ~~~~~ (say)

so that ~~~ ~ 
&<i . Let kj;m e u~i .

Then we can write

+ ~~ b~ (Ukj;m Ukj)

I . t r~ i
+ :5—. :5~ 

gkj( kJ _ j )

i=1 j = 1 p=O
ri<j

where g~ 3>O and ~~ g~ J :1 for each j (j=1 ,. .. ,t)
p: 0

For eac h k
3 
(j:1 ,...,t) choose the constan ts h~ J as follows :

1. For p=o to rkj set h~ J:O.

2. For p:1 to rk.J , if g~ i>O.5, set h~ J= 1 .

3. If all h~
<j (p= 1 to rkj) are zero , then set h~ J= 1.

[31.5.1) Remark: From the properties of g~ i , we see that

for each ~~~ the above  p rocedure  sets e x a c t l y  one

(p=0 ,...,rkj) and the rest are set to zero. [1
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Def ine C~~ r ~~~~~ + ~~~ rh
kj(uk< J_ u ki)

j:1 p=O

From [3A.5. 1] we see that

1 for some e

so that 
~~~ 

e FI’\W .

Now ~*~~
F ~~ ~~ 

(g~ i~ h~i)(u
ki~ uki)

j:1 p=O

K 0.5r&

< O.5n~ (see [31.3.1])

< O .5(R— 1 )~

where the final ine qual it y follows from the fa c t tha t F i s a
proper face of the R—dimensional polyhedron ~~~. Thus we have

< + O.5 (R-1)~ [ ]
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CHAPTER 14

THE “SALA” (STORAGE ALLOCATION ALGORITHM) TECHNIQUE

4 . 1 OVE R VI EW OF CHA PTER

In Chapter 2 we described the Resource Management

problem in a very large system , and showed why the

decentralized approach may be a good solution technique for

this problem . In order for this approac h to be usable we

must overcome the problem s described in sec.2.7 which are

oriefly (1) pos sibility of duality gaps , (ii) convergence of

algorithms requires stringent conditions on the functions ,

and (iii) slow convergence of such algorithms.

With respect to the first of th~ se p ro b l ems , in Chapter

3 we gave simple conditions which guarantee d the existence

of optimal multipliers for the Artificial proble :n , under

very  gener al con diti ons on the funct ions. Resolv ing the

other two of the above problem s then , shall be tne main

contribution of this Chapter. We shall develop an iteration

algorithm with 2~2yeable convergence properties , an d a

quad ra ti c conver gence ra te. The rea d er shoul d no ti ce how

(both in this Chapter and in Chapter 3) we are able to

completely remove restrictions on the form of the individ ual
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resource usage functions , replacing them instead by some

restrictions on their magnitudes. We believe that this is

an important philosopny for analysis of large— scale systems

in general , since the former requirements (convexity!

continuity! linearity) are seldom met in practice , whereas

the latter are easily verified .

A m inor , but nevertheless interesting, contribution of

this Chapter is the Selection Algorithm (sec .14 .14). This is

a simple and intuitively appealing method of solving certain

inequality problem s, yet its solution , it turns out ,

possesses useful mi nimu ln norm properties.

4.2 THE SALA APPR OA CH

Our approach , called SALA (for Storage Allocation

Algorithm , a name which refers to its original objective at

the -wr’rehouse) will be as follows : We begin by observin g

tnat the Individual Problem (IF) [2.6.10] can be mad e still

easier. Then we look for an iteration scheme to - find a

suitable A* (suitable in the sense of sec .-2.7). To do this

we first make some simplifyin g assumptions. The resulting

mode]. will be analyzed ; we shall propose an algorithm and

study it. properties. This will provide us with insight as

to how to extend our algorithm to the more realistic case .

Finally we shall prove convergence results for this latter

case .
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4.2.1 Preview Of Iteration Scheme

We remind the reader of our objective which (as

described in sec.2.7) is to find a A~’ such that x(>~.*) and

u(X*) are optimal for the Artificial Problem *.

Our iteration scheme is motivated partly by the

Arrow— I-Iurwicz scheme described in Chapter 2 (sec.2.7) , and

partly by our existence theorem (Chapter 3). We choose a

starting value of A , s a y A°, and then follow the scheme

k÷1 . k[4.2.1] x = arg mm L* (x ,X )
— 

xCX* — —

[4.2.2] ~
k+1 

~
k ~~ k

until we find an optimal A. The reader should compare the

above scheme with [2.7.1] and [2.7.2]. Firstly , our scheme

r e p l a c e s  “ max L” for  x6X by “ m m  L*I ’ for  x e X * , w h e r e  ( see

n e x t  s e c t i o n)  L* and X~ a re  such t h a t  t h e y  f u r t h e r  s i m p l i f y

the  s o l u t i o n  to [ 4 . 2 . 1 ]  as compared  w i t h  [2 . 7 . 1 ] .  Secondl y ,

we have a different method of updating A , using the

Selection Algorithm (see sec.14.LI) , which will lead to a

quadratic convergence rate of the scheme [4.2.1] and

[4.2.2].

*The Saddle point condition was stated durin g our review of
known theory. From the discussion at the end of sec .3.2.3,
an d the Theorem in sec.3 .3, we see that it is not required
for our solution .
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4.2.2 “Mm -Cost” Allocation For Each Item

Let us consider the Individual Problem (IP) [2.6. 10]

once again. It is easy to see that if there exists a A such

that x(X) achieves t h e  maximum value of (AP) [2.6.1] , tn-e n

(IF) can be replaced by the followin g M inimum Cost

Allocation Problem *

[4 . 2 . 3 ]  ( M C A ) :  
- 

m m 
- 

[X’ u 1 (d 1 ,x 1 )]
e ’ x 1-Q~~} 

— — — —

This says that for a given set of “costs ” A , the ~th item

must find that allocation x 1 (of all its quant ity Q1) wn ich

minimizes its total resource usage cost. Thus , assum ing the

existence of an optimal X (see next section) , and summ ing

(MCA ) over all i , we have replaced [2.7.1] by [4.2.1],

provided we define

[4.2. 4] L*(x ,A )

and X* as the set of x such that each in x satisfies the

equality constraint in (MCA). The iteration scheme using L*

in [4.2.1] then has the fol1owin~ interpretation: we ho ld

tb-a objective function J C x) at its maximum value (~~~~~~)

and t r y  to b r i n g  the  t o t a l  r e s o u r c e  u s a g e  u(x) into the

feasible region ( < c ) .

‘Reminder : u 1 (d~~,x i) vecto - of re~ our~ e usages oy item i ,
whose data vector Ts d1 , when its allocation is x 1 .
And e = [1 , 1 ,..., 1]’ 

—

0 -
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Tha -aq-~:~1it j constraint in ( N I C A ) , and the fact that

is now ~n ~-J~ -n~ n sLo n Jl vector , make (NICA ) a relatively

simple pr~~olem . To ~1Lu st r~ te tnis we note that in the

- i i  - iso-~cial case -. ie--e ~~e ~i (d , . )  are linear functions of x

the solj ion to ~~CA) ~s simply to allocate all the quantity

to one stor iw~e irea .

4.2.3 Existence Of ~ioti :nal A

The conditions for the existence of an optimal A were

given in Theorem 3— I. Our proof there -depended on the

assumption that the strategy set for each was discrete.

Let us simply restrict each to a discrete set. (This

means each x 1 may assume only a finite number of values.

F~or example , we could restrict all the quantity of one part

to be in one storage-type only, giving a strategy set of

s i ze  S1 number of storage—types. In theory, we could let

this discrete set be as finely divided as required , so tris

should not be a major restriction.) This res trict~ or~

actual L y has two advantages: Ci ) we can apply Theor~~n 3-i ,

and ( i i )  it makes the solution of (MCA) simpler.

Now , the conditions in Theorem 3-I , sta t-~i ~~~~~~~~~~~~~

are “if we reduced the limits vector c ~~ v t .  -

resource usage of 3bout 12 parts , t~ e pro b1 e~ ~

f e a s i b l e ” . Si n c e  we a r e  d e a l i n g  w it~ 5u ,

condition is highly likely to hold. Tri ~~s ~~

~n proceed ing as if an opt imal A ex 1sts .



r
S

Ao-Aofl  710 HARvARD LRIIV CAMURI OSE MA DIV oc APPLIED SCIENCES c/s eu
MSOt~~CE MANAGEMENT IN LARGE SYST EMS.(U)
DCC 7$ R 51W! N00014 75 Ce06N8

UNCLASSIFIED TR—471 NI.

___p._ U _
_ _ 

_ _  

U

A

d
a A



—81—

~.3  DISCUSSION OF MAIN ASSUM PTIONS

As men t io n ed  in the overview , we sha l l  f irs t  ma ke some

simplifying assumptions , and analyze the idealized model.

Let W be a bounded subset of the A space , w h i c h will b e

del im ite d l ate r .  The s t a r t ing po in t  for our ana l ysis is

[ALL 3.1] Assumption: For all >~ e W , the func t ion u(X ) is

continuous and Frechet differentiable. C ]

Thi s assum pti on wi ll be r e l a x e d in sec.~4.6. Note that

we d o no t , however , make any convex ity (or concavity)

assumptions as in Arrow et.al. [Al] or Zangwill [Zi]. In

view of [A14.3 .1] we will define the Jacobian of u(X) at any

A” 6 ~ by the matrix AU ..”) , that is

[DLL3.2 ] Definition A. .0..”) ~u.13 — 

~~~~~~~~ è:~.”

[L14.3 .3J Lemm a (Singularity of A): For any ).“ e ~4 we have

A (A”) A” = 0 C l

Proof: If all costs are increased in the same proportion ,

then fr om (MCA ) no a l loca t ion  wi l l  change , that  is

u (A” +h>..”) u(A” )

and since this is true for arbitrary h , t he di r e c t i o n a l

derivative of u0~”) in the dir€ct ion X” muat be ~e u .  L i

(C4 .3.~4] Corollary : The R—dimer isiona l function u( .)  of the
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R— ditnensional variable )
~. is (at most) an R— 1 dimensional

su r f ace  (in the u space). This can also be seen from tne

fac t  that , since the scale of A is arbitrary, the  s u r f a c e  u

can be described completely by fixing one component of X and

letting the other R—1 vary. 1]

(D4.3.5] Definit ion: The feasible region in u space is

de f i n e d as

F (u O < u < c }  ( 3

Since by [A14.3 .1] the tangent hyperplane to u(A) exists

for all x e W , we in t r o d u ce the f o l l o w ing conce pt :

(D14.3.6] Definition (Pseudo— Feasibility): u(\)

Pseudo— Feasible (PE) w.r .t. F at X:A” , if the tangent

hy perplane to u(.) at A” passes through the region F (see

Fig.ZI_ 1). [ )

In term s of thi s conce pt we have  our nex t

(A ~ .3.7] Assum ption : uO~) is PF w .r.t. F , for a l l

h e w . (I

The motivation for this is that a fir~ t— o r~ er

ap proximation to u(A ) should have a non— empty i~ t ar ae~ t ion

with the feasible region . This assumption will be

considerably relaxed in sec .LL6.

I.
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•
Tangent plane at

-
~~~ 0 intersects F

surface
/ l

/ I Solution set
ii i i

F _L-
(Feasible / / U2Region) ,‘ /

/ I ,
,

/

Illustration of Pseudo— Feasibil i ty.
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We shal l  also sim pl i fy  the  system c o n f i g u r a t i o n  wi th

[AL l.3.8] Assumption: The matrix A satisfies A
JJ
(O and

A 1J
>O (iij). ( 3

(R4.3.9] Remark: (This assumption will be removed in

[14.5.28] -— it is required for the Selection Algorithm only,

not for our general convergence proof.) In any case ~~ must

be non—positive (explained below) . Our assumption

strengthens this to strictly negative. The two conditions

on A are part of the conditions that make (-A) an M—matrix

(see Lemmas (L14 .’L 13] and [LLL14 .15]). An example of a

matrix satisfying A
13>O would be in a system with storage

constraints only ; or alternatively a system in which we

could id en ti fy one cr itical resource  in eac h

storage~type’. C ]

[‘4.3.10) Summary of First Set of Assumptions: For the

conven ience of the reader we list these briefly below.

(A 14 .3.1) u(A) continuous , d i f f e r e n t i a b le .

(A’4 .3.7) Pseudo— Feasibility.

(A’4 .3.8] A~~ <O and A~ .>O.

‘The reason for this is as follows : From (MCA ), an increase
in ~ (with all other const .ant) cannot cause parts not
using 3resource j to decide to use it , and in fact it may
cause some parts using resource j to move to another area.
Thus we have A~~(O and A~~>O (Uj ) .

_ _ _  _ _ _  —~~ — -
V .
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‘ 4 . 14  THE SELECTION ALGORIT HM

1 4 . 1 4 .  1 Outline

The purpo se of this algorithm is to derive a value for

~A , the change in A for the next iteration (see [14.2.2]).

The algorithm does this by using tne information resulting

from the current iteration , i.e. u(A) and A(A ). (We

assume , for the moment , that A (A ) is known.)

Let us say we have a A :A” such that u(A”) ~ F. We are

looking for a change au ” such t ha t

u(A” ) + 6u ” < c

or to a first order approximation (using [A LL 3.1]), we wan t

~A such that

u (A” ) + A (A” )4A < c

(For notational simplicity we shall drop the dependence of A

on A” .) Defining ~ u :c - u (A ” )  we want

[L4 .’4.l] A~~ A < ~~~u

We need a method to solve this inequality, and in fact

to choose from all the possible solutions for ~A . (Th e

existence of a solution is guaranteed by [A14.3.7].) Clearly

we should not , in general , try to solve the equality

A ~A = ~u. (This would attempt to move to the point where

all the constraints are active , which may not even be

phy sically re it~h1~~, and/or may not lie on the tangent

hyperplane : either of these factors wil l cause numerical

problems.) Our method is to select only certain components
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of A” to be changed , an d to loo k at  the equat ion

=

where LA 5 is a vector containing only the selected

com ponents of &X , similarly with ~óu
5
, an d AS is a submatrix

of A containing only the rows an d co lumns  corresponding to

the selected components . We solve this for ~~~~~~~~~~~~~~

Then , in the full vector LA , we set all selected components

to their corresponding values in LA S , and all unselected

ones are kept zero. We check to see whether ALA is indeed

< Lu. If not , we m o d i f y  the select ion to inc lu d e other

com ponen ts , an d repeat the proced ure.

The Selec tion Algor ithm is described in detail in the

nex t section . Its idea is to find a solution to [‘4.14.1)

which is sat is factory  (in some sense ) , while at each stage

exerting tne minimum effort  that appears necessary.  For

example , in a typical operation of the Algorithm with R:2’4,

we may f i n d we have  to inver t a 14x 14 , then 6x6 and then lOx lO

matrix , at which point a suitable LX is found. This take s

(L4 3+63+103)k =1280k operations (say), whe reas  in v e r ting a

214x24 matrix takes 2~4
3k = 13 , 8214k operations.’

‘Strictly speaking , inversion of an NxN matrix takes of the
order of N2.81 operations [A2]. However , this assumes
implementation of Strassen ’s multiplication algorithm , which
is seldom the case in practice. Therefore we assum e the
more usual N3 value .
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The power of the Selection Algori thm however , stems no t

so muc h from its com pu t a t i o n a l  sav ings  as from its

properties which are described by the next result.

( T ’4 .~4 . 2)  Theorem ‘4— I

Le t the Assum pt ions ~‘4.3.10) hold for X~ A ” , and suppose that

u(A”) ~ F. Then if A ”>O we have

(14.4.3) The Selection Algorithm ( see next section)

terminates before all R components of A ”  are

selected ,

[T14.’4.14) The LA” so fo un d sa ti sf ies

LA” arg mm ( ~~~~ u(A”)+A(A” )~ X < c I
LA >0

where can be either tne Euc lidean Norm

or the l~~ Norm ( m~x~ y 1  i .

Proof: See next sect ion.

Remarks: There are two propert ies of in terest  in (T4.4.~4J

above. The f i rst , that the Algorithm gives ax” > 0. This

implies that if we had A ”> O , we can be sure that )~“+AX ” >O.

Th is is an important condition for the next application of

the Selectio n Algorithm , and for severa l of our other

results (sec .14. 14 .6  and ~4 .5). The second appealing property

is that among all suitable ~X > 0, it finds the one of

minimum norm . This will be important for our convergence

proof in Theorem ‘4—I l.

V .

_ _ _ _ _ _ _  _ _ _ _  -a
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‘4.4.2 Description Of Selection Algorithm’

The description of our method is greatly facilitated by

the concept below.

[D 4. LL5 ] Definition: A selection vector s is defined as a

vec tor of 0’s an d l ’ s only. Let s be an R—dimensional

selec tion vec tor , with n components equalling 1 , and let

be the set of indices of these components .

For any R— dimensional vector ~ we d e f i n e  the o pera t ion of

selection (II )

[~4 . 4 . 6 ]  S (II ) ~ £ [Y j~~~~~~~~~~]

Conceptually, 
~~~~~ 

“selec ts” only those com ponents s’1

for which s~ =l , and “deletes ” all others.  Similar ly, for an

RxR m atrix A , s (II)A “se lec ts” only tnose elements A~~ for

which s~ = l and s.:1. Thus 3 (//)A is the submatrix of A

obtained by deleting all  rows i with s 1=O , and all columns j
wi th s~ =O . Formally,

[ D 4 . 14. 7]  •~ ( f l A  
~ [A~ 131

... “
~~1i n}

~~~~ A ]  
C ]

‘The details of this algorithm are not essential to the
under standing of the rest of this Chapter. The reader may
omit this aectiora if desireu . The propert ies of the
a l g o r i t hm in Theorem ~4—I however , are  im po r t a n t , and shoul d
be noted .

V.,
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We also def ine  a “ r e v e r s e ” operat ion to select ion (fo r

vec tors o n l y ), as fo l lows :

[D’4.’4.8] Definition of Distribution Operation (‘): For s

and n as above , and for an n-dimensional vector z, we define

.L”:s(*)z to be an R—dirnensionai. vector such that

(i) z~~ (Ii )~ ”

(ii) If s
3~

O then y~ =O C ]

[14.14.9] E x a mp l e s :  s=Ii y~ 52 A~ 2 5 610 — 12 1 4 8 3
11 18 7 8 1

Then s(I~)y: [521 and s ( # ) A :  ~2 61
118] — 17 1]

and s ( * ) [ s ( ! I)~~] :152
1 0
Li 8

‘4.14.3 Details Of Selection Algorithm

We are trying to find a LA satisfying the inequality

[14.14.1). Armed with our new notation , we can ex pres s

concisely our algorithm for finding such a LA (a detailed

explanation follows the algorithm).

I



—90—

[14 . ’4 . 1O ]  Algor i thm (Selection Procedure )

DEFINE: A A ( x ” )  an RxR matr ix  (cons ta n t )
Lu c—u (A” ) an R—vector (constant)
—i an R vec tor  (var iab le)
LX an R—vector (variable)

an R-vec tor (variable)

INIT—S : for r:i to R
do if Lu <0 then s ~1r else
end r

CALC : set LA s(’)[(s(/I)A)~~~(s(/flLu)]

CHECK : set Lu ”~ A.AA
if  LtP~ < XT th en STOP

NEXT —S: for r= 1 to R
do if 

~~~~ 
then nothing
else if Lu ”>Lu then

end
go to CA LC

C i

4 . 14 . 1 4  Explanat ion

In the initial stage (INIT—S ) the algorithm sets s to

select only those components of L.u which are negative , say

~u
5
~ s(#)Au. These components correspond to the violated

constraints . It then uses the correspondin g subrna t .rix of A ,

say  A3~ s(#)A , to solve the l inear  equa tion

(‘4.14.11] A 56.A3

The resulting LA 5 is filled out with zeroes in the

unselec ted components to get AA=s(’)4A 5 in the step CALC.

Now the algorithm sees whether this LX is satisfactory

(CHECK). The method in CALC assures us that ~ny selected

com ponen t r wi ll always  sa ti s f y  AU
~~~

&U
r 

(proved below) , so

the check need only be done for the remaining com ponents .

- - - -~~~~~~ - -S-— -~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .- -—--. -

- _ _ _  _  -_
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Any violations cause their respective components to be

:.ncluded in the next selection (in addition to the

previously selected components ) and the process is repeated .

The termination of the algorithm will be proved below.

First we illustrate the algorithm with a simple example.

4 .4 . 5  Exam ple

Let all terms be as in DEFINE of  [ 1 4 . 1 4. 10].

Given A” : 1 and A: —~4 2 2 0 , C: 10 , u( A ” ) :  20
1 3 — 6  2 1 — 10 7
1 0 1 —2 1 10 5
1 0 1 2 — 3  10 ‘4

Note that our example satisfies A .A ”:O , as must be the case

by [L-14.3.3]. In DEFINE , we also calculate

t— ~ O , 3, 5, 6]’

Then the algorithm proceed s as follows :

INIT—S : This sets s:[1 , 0, 0, 0]’.

CALC : (Terminology as in sec. ’4. 14.’4 above.) This step sets
Lu S:[— 10J, A3:[—14]. Hence LA5:(A5) 1 Lu 5:[2.5],
and 4.A:[2.5, 0, 0, 0)’. 

— —

CHECK : Lu ”=ALX: [— lO , 7.5, 0, 0],
which is not < Lu (above)
so the algorithm cont inues.

NEXT —S: Sets s:[1 , 1 , 0, 0]’.

CALC : Lu 3: 1— 10~ , 
A5: 1—’4 21 :> A.è~ 13

I 3J L 3  —6J Li
Hen ce LA : [3, 1 , 0, 0]’.

CHECK : Lu” : [ — l O , 3, 1 , 13 ’ , wn ich is < ~u.
so the algorithm terminates , with

(3 , 1 , 0 , 0] ’ . -

V .. 
—j— - - 

-
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(Note that in each step CHECK above , t he selec ted com ponen ts

of Au exactly equal those of Lu” , as wi ll be pr o v e d b e low. )

C ]

‘4.4.6 Proof Of Theorem 14— I

The proof is by way of a series of Lemmas.

[L’4.’4.12] Lemma (Equality of Selected Components): In the

step CHECK of the algorithm [‘4.4.10] we have t~
uI
~
:
~
ur for all

r such that 
~r

1

Proof: (Notation as in sections 14 .14 .3 and 14 .14 .14 above.) Let

and n be as in (4.4.5) that is , r6J 5<:> ~~~~ 
From

[14. 4.11] we have , for  i e

k:1 jeJ5
Since b.u”:ALA:A [z(*)AA 5], we have  for  i 6 J 5

TA jjstXj + rA~~
.o using [D4.4.8]

3eJ j~ J5 5

[ 1

For the next Lemma we shall need the following result:
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[14 .14. 13] Hawkins -Simon Condi tions ’ (see for example Nikaido

[N2]): Consider the system of equations

[14 .14 . 114 ] 0 A : b

wnere D is a square matrix with nonpositive off—diagonal

terms. Then the four conditions below are all equivalent ’’:

(I) [4.4.114) has a solution A >0 for some b >0.

(II) (‘4.14.14] has a solution A >0 for any b >0.

(III) The leading principal minors of D are positive.

(IV) All principal minors of 0 are positive.

[ ]

[L14.14.15] Lemma (Modified Ha wkins— Simon Condition) : Let D

be as in [ -~4. 14.13], and define the condition

(I’) The diagonal terms of 0 are strictly positive ,

anc [4.’4.1L ~ has a solution )~ >0 for some b >0.

Then <I’ ) :> { (I),(II),(III),(IV) } C ]

Proof: It is sufficient to show (I’):>(III) , since t he res t

follo ws from [14.4.13]. Our proof follows Nikaido ’s p roof of

(I):> (III) [N2] with appropriate modifications for condition

(I’). Let A be n— dimensional. The proof is by induction on

~~~~~~~~~ satisfying these conditions are also known as
M—ma tr ices.

“The reader should note carefully the differences (i.e.
> or ) ) in the various ineQua lities in (I).(II) ,(t’~~.
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n . If n:1 , then (III) is true since D11 )O. Now assum e that

for . n> 1 , (I’):>(III) is true for n— i. Let us subtract

D~ 1/D 11 t imes the f irs t row f rom the ~th one in (14.4.14),

giving

(4.14. 16— 1) D 11 A 1+D12A2+...+D 11A n : b 1

(‘4.14.16—2] D~2X2+...+D~nA n b~

t’4.14:16 n] D
~2A2+...+D~ nXn =

where (for i ,j:2,...,n ) we def ine

D!j:Djj_D ji D ij /D ii , so that D!~ <0 , i~~j

b~ bj —Dj1 b~ ID 11 , so that b! >0.

This means that the n— i dimensional system of equations

[4.’4.i6—2 ) to [4.4.16—n) satisfies the conditions (I’) , so

that

> 0 for  any  k , (2<k<n)

D~ 2 ::: D~ k

Hence , b y the fam il iar r u l e s  of d e t e r m i n a n t s ,

D 11 ... D ik D 11 D 12 ... D1~<... D2k 0 D~~ ... D~~ D~2 ... D~k. . .. . :D11 . ...
Dk1 . . .  Dkk 0 D~ 2 ... D~k D~ 2 ... D~k

> 0 for any  k , (2<k<n)

so that (I’):>(III) is true for n . C ]
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CL4. ’4.i7] Lemma: Let A=A(A”) where A”>O. Let A5 be a n y

selected matrix of A (i.e. A5:s(#)A) of dimension n<R.

Then for an y A 5 of dimens ion n

A 5X 5<O =>

an d A5A 5<0 :> A 5>0 C ]

Proof: Let us reorder the components of A such that s

selec ts the first n. We have from [L14.3.3] that A~ ”:O.

Thus

[14.4. 18] = (_A
~~~)A3

j:n+i

Now from (A4.3.8] we have A .~ <0 and A. .>0 (iii). Thus since

A ”>O , for 1<i<n the RHS of (‘4.4. 18] is nonposit ive , so that

where A” 5~ s(/~)A” , or

(4.4.19] (—A 5) A”
5 > 0

Thus [14.4.19] satisfies condition (I’) of [4. ’4.15], which

implies from condition (II) of [14.14. 13] that for ~~~

(—A 5)X 5 >0 => A 5>O

which proves the first statement of the Lemma.

Now let A5X 5=b<0 (strict). This implies , a f o r t i o r i ,

that A 5>0. Then for i<n ,

• j=k
= bi

_ I A~ J
A~

j=lt3ii)
Since b

~
<O , A

~~
<O , A jfO (iij) , an d A~ >0 , we h a v e  A~ >O.

C i

V .
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[L14 .4.20] Lemma (~4on— n egativity of LA): At all stages of

the Algorithm [14.4.10], provided s selects less than R

com ponen ts , the step CALC results in LX >0. [ 1

Proof: Let ~l~~ 2 be the success ive selec t ion vec to r s

tr ied in the al gor it hm.  We can renum ber the com ponen ts of

Lu so tha t

selec ts com po n en t s  1 to mk o n l y .

C l e a r l y rn~ <m2<... (from [L14. 14.12] and step NEXT —S). Now

denote the intermediate stages of CALC as follows :

k.. kLu : s (#)Lu

A ’< 2

2 (Ak< )~~ Au~
<

so that the step CALC can be written

LA = sk(,)Ax k

At the first selection (INIT—S ) we have

A~LA 1 =Lu 1 < 0

which implies ~X~ >O us ing (L’4.4.17]. Hence LX >0 for k= 1 .

We w ill now p rov e ~tA 1<>O by induction on k.

Su ppose LX 1<>O , so that LA >0 , but the check fails (step

CHECK ), lea di ng to a new se lec t ion vector  (ste p

NEXT —S ), an d then in CALC a new va lue  of

[4.14.21] ~~k+1 : ( A ) ~~ Au’”1

(Note that we no longer have Luk~~ (O so tna t we cannot use

(L4.~4.i7) as we did above). Let

2 3k+i (,,) (k(,)~~~k)

w £
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k+1Then by definition of v and L.u

=>

j>m k => v
3
=0

j<m k >

From [4 .4.21) we have

(4.14.22] k+1 k+1 k+1 
—

A w = Lu A v b (say)

For i<m k k+1
, j=m

b i
: Au k+~

_ 
~~ A~~~ v

ii j
j:1

J =
- L  k_ 

~~~A 1< LA k
- u1 — ~~~~

•j: 1

0 (by calculation of
k+1An d for in <i<m

— • k+i

b .= Lu~~~
1
- >~ 

k+1A. • v •
‘3 3

j=1
k+1 

— 1A (’A ~~~ 
]i= aui

k+1Au 1 —Lu~

< 0

since these components failed the check in step CHECK. We

• k+ 1thus have b <0 in [‘4.4.22]. Now if m <R then from

[4.4.17] it follows that w >0. Using the strict inequality

on b~ (mk<i<m k~~~) above , and proceeding as in [4.14.17] , we

• can show that w~ >O for (m
k<i<m l<4l ). Hence

for i<~
k k+1 kA

~ 
:v
~
+wj:LA j+w~

>0 , and

for m~
<< k+1 L k+1 _i < m A .  -v +w. : 0 +w . >0 ,

— 1 i I 1

so that ~~k+1 >0 C ]

•
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(L4.’4.23 ] Lemma (Termination of Algorithm): The selection

algorithm (4.4.10] terminates before all R components are

selected. [ ]

Proof: First we shall prove that the algorithm cannot lead

to the sel ection of all the R components. The proof is by

contradiction .

With notation as in the preceding Lemma , suppose that

we have  an d z ’
~~ such that m t<<R and

[14.4.24] mL<4 l
= R

so tha t selec ts a l l  the com ponen t s . Now w it h
kLX s (‘)LA

Lu ” 2 AAX

we mus t hav e A u~ =Lu~ for i< i<m L< (by [L4.~4..12)) and also

(‘4.4.25] AupLu~ for

since these components we.~e selec ted in step NEXT —S .

Now , from [‘4.3.7] we know there exists some v such that

Ày < Lu. Let 
~~

=�
~‘~~~~

“ where b is a scalar and A” is as in

(L4.14.17]. Then (using (L4.3.3]) Aw :Av < Au. Since A ”>O ,

we can also choose b such that W R =O.

Define to select the first R— i components . Then ,

wi th the usua l  nota ti on , we h a v e

A~~~~~
R_ l

~ Lu R_ l 
(since LX :O and using [4.14.25))

A
R _ i 

~
R_ 1 . ~~R— 1 (s ince w R

:O)

= >  A (w R_ 1
~~~~

R_ 1 ) < 0 ¶
> ~

R_ 1 
> ~~R— 1 (using (L4.’4.17))

_________ ___________________ 

•1
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> 0 (since ~~ R— 1 )0)

Now le t L u ’2Aw . Then , using the preceding steps , and the

f ac t  that A R J
>O for j<R (from [A4.3.8]) , ~e h a v e

= A
Ri

w
i = A

~ i
w
i 

>

= ~~~
1

A R j LA j > Lti~ (using [4. 4.25])

which contradicts Aw < Au. So [~4.14.24] cannot be true .

Since m k is strictly increasing in k , but m~
<<R , the

algor ithm must terminate . C ]

[L4.Ll.26) Lemma (Minimum Norm Property): Let LA” be the

value of LA when the Algorithm [4.14. 10] terminates. Then

LA” : arg mm ( 
~LA~ I ALA < ~u 1

LA >0
— — C ]

Proof: Suppose the algorithm terminates when k (as in

preceding Lemma) equals n. We then have found a LX such

that ALA < Lu , with A t
~LX n=Lun (notation as before).

Now cons ider any w >0 such that Aw < Lu. Then for
ni<m

— j :mn i :R
T ~~~~~ < Lu~ -. ) A~~ w~j :1 j:m’1+1

< ~tu~ (A
1~ >O for UJ)

= A w < Au

:> A~~(~~
n_~~

n) < 0

> n > usi ng ( L4 .4 .1 7] .

0~~~~~

V .

~~1
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Also , for i >m n we have LA m =O , so tna t w.>AX
~
>0 for all

1<i< R , f rom whi ch the m in imum nor m pro per ty is c lear

(irrespective of which of the two norms in Theorem 14— I is

used). C ]

The last two Lem mas conclud e the proof of Theorem

14— I. [1

‘4 .5 ITERATION SCHEMES FOR THE IDEALIZED PROBLEM

14.5.1 Restricted System Configuration -

Retaining for the present the assumption that u (A) is a

continuous function of A whose Jacobian A(A ) can be

calcu l a t e d , an d also that eac h area  uses it s own r e source ,

we can hypothesize the following iteration scheme to solve

the Artificial Problem (2.6.1]:

.

~~~, 

a-—- - 

~~~~

. 

.: 
- -
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[4 . 5 . 1]  A lgorithm ( SA LA—1 I teration Scheme ) :

INIT : Given some A ifit >O
Set A 0 :A i t ~ it

Set k=O

MCA : Use A k to do a Mm —Cost Allocation [4.2.3)
for each ite:n , and calculate u~ A k )

TEST : If u(Ak) e F then STOP
JACOB IAN : Ca lcu la te A(A k)

SELECTION: Use Selection Algorithm to calculate LA k

UPDATE : Set A k4.l =A k+AA k
Set k=k+ 1
go to MCA

The next theorem will deal with the convergence

charac te r i s t i cs  of the above scheme.

4. 5 .2  Definit ions And Assumptions

In this sect ion we perform the groundwork necessary  for

a convergence analys is .

(D 4. 5 . 2 )  Def in iti ons:

I u.I
max 1

l ull 2 j
C j

~~~~

.. max .ih All i cj

d(u ,F) 2 mm fl u— u ”fl C )
u”eF — —

(L4.5.3) Remarks: The norms on u and A are the usual l~~

nor m s , with the factor 1/c~ in c l u d ed to make the norm

4.
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in d epen d en t of th e sc ale of m e a s u r e m e n t  of t he ith r e source .

It is easily verified that with the l~~ norm on LA (as in

(T4.4 .4]), the above definitions satisfy

[4. 5. 4] Lu: ALA = > II 4i~hl .~~ II All .11 4.~il
The definition of d (.,.) is the usual distance from a point

to a set. We note that if u ~ F— ui
_c

i14 .5.5] d (u,F) = mm hlu— u ”hl = max
— 

u”eF (ik4i
>c

m
} c~

C )

(A4.5.6] Assumption: u (A ) is Pseudo—Feasible w .r.t. pF for

all A e ‘,i, where p< l . (In this case we say u( .)  is Str ic t ly

Pseudo—Feasible , or SPE . This is a s t r o n g e r  r e s ta temen t of

(4.3.7 ].) C )

CA4.5.7] Assum ption: For all A ,X ” e W ,

~ 
A ( A ) — A ( A ” )  II < D~~ A—A” II (D is some constant)

C ]

[4 . 5 .8 ]  Remar ks: [14.5.6] assures us that the tangent

hyper p lane  en ters  the in ter ior  of F , wn ile [4.5.7]

effec tively bounds the second derivatives of u(.). We may

draw a parallel with convergence proofs of Newton ’s method

for finding the root of a vector function (L4 ,L5) . In such

proofs it is custo ma ry to see (4 . 5 . 7] , whi le our (4 . 5 .6]  is

analogous to the assumptio n there that the gradient of the

fu nct5.on is non— ze ”c at the roc t.  C )
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[D4.5.9 ] Definitions:

a. T(A) 2 mm ( ll~~hl I u (~~) + A ( X ) 4 A  < C I
LA >0

b. T”(A ) 2 mm { IILAII I u (A )+A(A )LX < PC
LX >O

where p is the value in [ALL 5.6].

c. SEL (A) 2 any LA minimizing CDLL5 .9a] above.
(The notation reminds us that such a value
is generated by the Selection algorithm.)

C ]

(14.5. 10] Remark: The definitions of T(.) and T”(.) are

motivated by Theorem 4—I (see [T4. 14. Ll]). We use the 1~~

norm on LA so that relation (14.5.14] is valid . Note that

T(.) and T”(.) are scalars while SEL(.) is a vector. [ 3

[D’4.5.11j Definition : W” 2 W il(A 1 u (A)> c} C )

(14.5. 12] Remark: W” is that region of W for which u(A) is

no t in the interior of F. C ]

[L14.5. 13] Lemma: For A e W” , T” (A) and llA (~ )lh are non— zero

and bo unded above. C ]

Proof: (see next section).

(D4.5.14] Definitions:
~UP ~~~- AeW ” ‘—

~ sup ‘ —- hew”

(4.5.15] Remark: It is in view of the previous Lemma that
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we can d ef ine the a bove  qu a n t it ies , since we are  a s su re d

that both quantities exist and are non—zero. C]

[‘4.5.16) Summar y of Assumptions (Second Set): The reader

shoul d com pare  these with the f irs t se t of Assum pt io n s .

CA 14. 3 .1) u(A) continuous , differentiable.

(A4.5.6 ] Strict Pseudo—Feasibility.

CA4 .3 .8] A~ 3
<O and A~3

>0.

CA 4 .5.7] 3oun ded second derivatives.

4 .5 .3  C on v e r g e n c e  Anal ysis

ET4.5.17] Theorem 4—tI (Convergence of SA LA— i Scheme)

Let Assumptions [‘4.5.16] hold for some W , and let the

const an ts D ,~ be as already defined . For some e w ,
(X°>0) let the following conditions hold:

(~~~ ~~~~~ 
(a , where A 1

= A°+SEL (A°)

(ii) e<i , where e £ a~D/2

Now le t W ’ 2 (
~ 1 Il~~

1 _
~~

0ll (b} where b2a/(1—e).

Then if W’ G W , the SA LA— 1 scheme generates a sequence {A 1<}

which converges to some A* e ‘.~~~
‘ such that u(A * )  e F.

Fur thermore , the avera ge or d er of convergen ce o f the

Algorith m is at least two . C ]

Proof: This will be via a series of Lemmas.

- — —.— — . — — —  —-  —— - -— ——-— -—- . .. —
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Proof of Lemm a [L’4.5.13]: This follows easily from the

definitions. Let A ” =ar g mm hl A (~ )hl over A~ W” . Since

u (A”)> c>pc , from tne SPF assumption [A’4 .5.6] we must have

A (A” ) >0 (or else [D’4.5.gbJ would have no solution).

Secondly, since W (and hence W”) is bounded , from [A4.5.7]

the finiten ess of hl A (~)hl (A ew ” ) is clear.

Similarly, the SPF property assures us that for all

A 6w” , there exists some 4.A to solve the RHS of CD’4 .5.9b] , so

T”(A ) exists and is finite in W” . Clearly, since in ‘.4” we

have u(A )>pc and ih A( A )fl finite , we mu st . have T” (A )>O . C ]

1 T (A)
~L’4.5.18] Lemma: For A e ‘i” , < < t [ ]

a d (u(A) ,F)

Remark: This will be the key Lemma for our convergence

proof , ~irice it will establish bounds on the ratio of the

norm of LA to tne distance from the feasible region. C ]

Proof: This relies on the minimum norm proper~ ies of the

definitions above , and on the SPF assumption.

Cons ide r some A e W ” and let LA ” be the m inimizer of the

RHS of CD 4.5.9b]. Then letting Lu ”=ACX )LA” we have *

(‘4 .5.19] 4u” < pc 1—u~

Now consider aLA” as a candidate for solving the RHS of

(D 4. 5 .9 a ], wne re

*Whenever there is no risk of confusion , we shall denote
~~~~~~~~~~ simply by u.

- ~gj
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[4.5.20 ] I 2 {i I u
~
_c

1>O } and a f
~~~~1_~~~1

;)
C l e a r l y , O<a< 1 .

Let u” £ u(X)+A(A )[aLA”] = u + aAu ”

We will show that u” C F .

For I i 1 u]-pc 1<O} , u’j < u1÷a(pc~~ u~~) using [‘4.5.19]

< u .+pc .—u. (since a<1)
— 1 1 1

pc i < c~~.

For C i 1 pc 1<u~ <c~ }~ u ’j < u 1+a (pc .—u 1) using [4.5.19]

< c~ (by definition of i)

For i e I , u~ < u1÷a (pc 1
_u
~) using [4.5.19]

u
~
_a (u

~
_pc

~
)

< U~~~ (U~~
_ c

1
) using (‘4.5.20)

C.
1

Thus u ”CF and a~A)~” is a member of the RHS of [D~4.5.9a]. It

follows from the minimum norm property of CD4.5.9a] that

T(A) < Ila~”)I aT” (X)

(u 1
_c
~)

<~~f ~~~~~~~ T” (A )

ci

Iu. —c.’
su~~1 1 ii
m elt I

\ C j / d (u,F) 
- T”O~.) < T” (X)

— (u. —pc .\ —  i— p —

1 1

I.
so that we have

T ( X )  T” (A )
— t from [4.5. 114 )

d(u (A ) ,F) — 1— p —

which proves the RHS inequality in the Lemma.
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Now let ~u2A(A )~~X , for LA m inim izin .~ CD’4.5.9a ].

Th en , since u+~~ e F ,

d(u ,F) < d(u ,u+Lu ) = lJ Au J < jlA (>~)Il .lI LAJI

= hl A(~~ )llT(~~
) < ~T(A )

which proves the LHS inequality in the Lemma. C ]

kCL14 .5 .21 ] Lemma: The sequence CA I ir’ CTLL5.1 7] converges

to some x’ e ~~~‘ with u (X*)eF . H

Proof: The existence of each X
k
, k>O , is guaranteed by the

SPF property provi ded we can show that the sequence rem ains

in W. Assume that tA~
< } satisfies

[‘4.5.22] hl A~~ A~
-1

jl < (a/e)e
2 3 1

for j:l ,2,... . We then would have

n— i . . n — i
(4.5.23 ) iI~~-~~I h < ~~~~~ ~fl,\

J+i~~\J 11 < (ale) 7e
23

s~o
n— i

< a 
> 

e~ (since e<1 )
j=0

< a/(1—e ) b

nThus we would nave A e ~~~
‘ C .4 for all n>0 .

To show that [4.5.22 ] is true , suppose it is true for

j:1,2,...,k. Let u ” £ u (A l )÷A (A k~~~)[A
k_A~~~

l
J , which

implies u ”eF by defini tion of SEL (>~~~~). Also [4.5.23]

j  . k . kimplies A ew’ for  ~~~~~~~~~~~~~ Le t U =u (X ) .  We consider tne

two cas es ukeE and u~~ F separately.

.— .— — — -~ — — .—. — - —. —.— -—- ___~ V4.-fl.~ - -“ —
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I f  u~~ F then A kew,c~i > 
~~~~~~~~~~~~~ so using (L14.5.18) we

have

T(A k) < td (u~
< ,F) < td(u1< ,u”)

= t 11u (A
k) — u(A~

<
~

1 ) — A(~ 
l )[Ak 

< _ l
] 
~

< (tD/2)tI Xk_A~~
h

I$
2 us ing (‘4.5.7)

2k( (a/e)e

If u ’<eF , clearl y SEL (A k):0 so that the following

inequality holds trivially

0 < (a/e)e
2k
.

Thus in either case [‘4.5.22 ] holds for j:k+1. Now

1 o 2°
~~~~~ 

—
~~~ ~ 

< a = (a/e)e

and so by induction it follows that [‘4.5.22] is true for all

j= 1 ,2 

Cl ear l y f ) %~~< a ~~~~~ so that (A k } is a Cauchy

sequence in W ’ and converges to some A*6W~ . It remains to

be shown that u(A*)eF . From [L14.5. 18], -

d (u(A L),F) < ~TiX~
<) ~IjA

k+l ...Akjl —> 0

so that d(u (A*) ,F)=0 , i.e. u (A*)eF by closure of F. H

[D 4.5.24 1 Definition (Average Order of Convergence , AOC):

We use the definition in (L5, p.129], ad a p te d for vec tor

n o r m s .  Le t x 1< —> A ’ . The AOC is the inf irnum of the num bers

p> 1 such that

l imsup IIA k A~~(
(1/p

~
() 

1

w here “l imsu p” denotes limit superior . C )

— — -  — — _ ——--—— - - —-— - - —— - ————— - -,.—— - — - - - —-— - ———— — -
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CL 14.5.25] Lemma: The AOC of the sequence CA~
< } in Theorem

‘4—Il is at least two . C ]

2k (1’ 1<)Proof: Consider the sequence of terms v~~(q) 2 [we ~ 
iq

where 3<w<~~ , and e< i . We have

u r n  vk(2) urn w (1
~
’2
~~ e = e < i

k->cx~

while for q>2 ,

u r n  v~ (q) = u r n  w (1~~~~~e
(2
~~~~

< 
= 1

so that inf (q I Urn v , (q) = 1 ) is two .
q>1

Now for the sequence we have

A’ll < $
~2. 

II)~~~~
1

A
~~II

j=k

< (a/e)
j=k

= (a/e)e2~
<
re

2
~
< (23 1)

j=0

ae 

e( 1 —e)

a
Since we have e<1 and 0< <~~ , by comparin g the above

e( 1 —e)
with the results on v~ (q) we deduce that the AOC of (Ak) ~~

at least two . C]

The proof  o f Theorem i4— II is now complete . C]
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4.5.4 Re m ar ks On Theorem ‘4— Il

4.5.4.1 Existence Of Optim um —

The reader may ask that , since 4A is always >0 , how can

we be sure that for arbitrary choice of A
it
~
l.t in the

algor ithm (4.5.1], there exists a solution A’ ) A
l f ht ? In

Chapter 3 we gave sufficient conditions for the existence of

some optimal A. In this Chapter we make a stronger

assum ption , the SPF assum pt ion , wh ic h im pl i c i t ly  assures  the

ex istence of such a A. However , we do know that if such a A

ex ists , then there also exists som e A ’>O (strictl y) which is

also a solution (see Corollary to Theorem 3—It ). Now the

scale of A ’ is arbitrary ”, an d o n l y  t he rel at ive ma gni tud es

of the components matter (see (4 . 3 .3 ]  and ( 4 . 3 .4 ) ) .  Thus

for any A~~~~
1t

, there ex is ts  a b>0 such that bA’> A 1
~~

t and

bA’ is a solution .

4 .5.4 .2 Condit ions In The Theorem —

These are similar to conditions used in convergence

proofs  of Ne wton ’s method and its extensions CL4 ,L5 ,R 1). In

fact our result is similar to Robinson ’ s ER 1), but our

“In Chapter 3, the scale of A ’ was determined by the choice
of the cons ta n t s  pt in t~e Art ificial Problem (3.2.5].
Since these constants are them~ e1ve s art~it’~ery, we are  no t
con tradicting the statements in Chapter 3.
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metho d is qu it e di f f e r e n t . His proof assumes A is

nonsingular , which is not so in our case (see [LL4.3.3]) , and

he uses several  prope r t ies of convex  processes [R 2 ,R3). Our

* 
proof on the other hand depends mainly on Lemma CL4.5.18),

whose proof , in turn , rel ies on the minimum norm properties

and the 3FF assumption. Intuitively, -we have replaced the

condition that the range of A be the whole space , by the

(weaker) condition t hat the r a n g e  of A i n c l u d e some po int  in

the interior of the set F—u (A ).

4 . 5.5 General System Configuration

In the above convergence proof , the  cruc ial pro per t ies

used were the minimum norm properties in 1D4.5.9). It is

seen that the res tr ic tion on the system conf ig u r a t ion in

Assum pt ion ( A 4 .3.8] was to ensure these properties for the

selection algorithm . From the insight given us by the use

- 
of these properties we propose a general programmin g

pro b lem , the Minimum Norm Problem :

[4.5.26 ] MNP: Find AA minimizing 
~~~~

a. subjec t to A+LA >

b. and u ( X ) + A ( X ) L A  < c

Here A mln is a g iven strictly positive vector. This

• norm problem can be solved quite simply using Linear

Programming ( Z 2 ] ,  since mm 
~~ 

is equivalent to mm y

subject to y>AX 1 and y>—~ A~ for all i. Thus this problem

can be solved using known mecri . In that case , we can 

— ._l~~
—— ~~ - —4- —-—----- —
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generalize our iteration scheme:

(‘4.5.27] Algorithm (SALA -2 Iteration Scheme):

INIT : Given some Amin >0 , and some A init, xmmn
Set A0=A~n~ t — — — —
Set <=0

MCA : Use A k to do a Mm —Cost Allocation [4.2.3]
for each item , and calculate u(A k)

- 

TEST : If u (Ak) e F then STOP
JACOBIAN : Calculate A ( A k)

MNP : Calculate LA k as in [4.5.26] above

UPDATE : Set Ak4 1:~Xk+LAk
Set k=k+ 1
go to MCA

We sha l l now cons id er the c o n v e r g en ce charac ter isti cs

of thi s scheme.

(4.5 .28 ) Thi r d Set of Assum pt ions:  ‘We can considerably

relax the restrictions in our second set of assumptions , to

get :

[A’4.3.1] u(A) continuous , differentiable.

[A 4.5.6) Strict Pseudo— Feasibility.

(A 4.5.7) Bounded second derivatives.

[L 4.5.29) Lemma: At the kt.h iteration of the algorithm

(14.5.27], there exists some a.~
< which solves MNP. C ]

Proof: This will be by induction . Assume that for

j:O, 1 ,...,k— 1 , LA 3 ex ists. Then , by the properties of
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= + LA k_ l > >~r n in

Now let Lu 2 c~ u (A~
< ), an d A ~ AO~

< ). From the SPF

assum pti on , we know there exists w such that Aw < Lu. Al so ,

from (L4.3.3], AA~
<=O . Hence for an y scalar b ,

A(w+bA 1<) < ~u

Choose b lar ge enou g h so tha t
k k mmA + (w+bA) )A

Then LX = w+bA 1< is fe asib le for MNP.  Thus t he set of

feasi ble solutions to MNP is non—vacuous . By closure of

this set , there must exist a solution of minimu m norm.

Henc e ~~ k ex ists.

Now , for j=O we have

~in i t  > ~min

so that by the above argument LA 0 exists. Thus by induction

ex ists for k:O , 1 ,2 C ]

( D ’4 . 5 . 3 0 ] Definition: We modify [D4.5.9] to get

a. 1(A) ) Let these be defined as
— ) in (D4.5.9], except that

b. T”(X) ) the minimizations be
— ) carried out over all LA

c. SEL (X) ) such that
— )

C ]

(L4 . 5 .3 1 ]  Lemma: The bounds in (L’4.5.18] hold for the new

assum ptions and definitions (i.e. [4.5.26] and

(D4 .5.301). C )

I.
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Proof: Refer to the proof of [L4.5.i8]. A 1< b elow is t he

same as A in that proof. We showed there that afl”

satisfied

u(A 1<) + A(A k)(a~X~~] < c ..

Now A~
< 

+ ô.A11 > A
rnin by [D4.5.30]

and also A 1< > see [L’4.5.29]

so A k + aAX ” = (l— a ) < 
+ a(A~

< 
+

mm m m) (1—a)X + a(A )

= ~
min

so that aLA” satisfies both the inequalities

[4.5.26a and b]. The remainder of the proof is exactly as

in (L-’4. 5.183 . C )

[T4.5. 32] Theorem 4— Ill (Convergence of SA LA— 2 Scheme):

The s ta temen ts in Theorem 14~ t I  rema in va l id for  assum pti ons

(4.5.28) and definitions [D~4.5.30], with the SA LA— 2

iteration scheme. C ]

Proof: Theorem 4— Il was proved -via the following Lemmas:

[L4.5.13] Bounds on T” (A) and A(A )

[L4.5.18] Bounds on ratio T(A)/d(u(A),F).

(L’4.5.21] Convergence to A’, with u(A’)eF.

EL’4.5.24] Order of convergence.

The reader can verify that by adding (L’4.5.29 ] to the above

sc t of L emm as , a~id t epiacir~ [L4 .5. 18] by (L4.5.31], the

proof of Theorem 4—I ll is complete . ( 1
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4 .6 EXTENSION TO R E A L I S T I C  CASE

In this section we relax several assumptions , in order

to extend our results to more realistic cases. First we

shall find an alternative to the continuity assumption

(A4.3.1]. Next we shall consider the problem of defining

an d ca lcu la ti ng a su it ab le re p l acemen t for th e Jaco bi an

A (.). Then we shall considerably weaken the SPF assumption ,

to one which is likely to hold in practice. We shall use

all these ideas to propose a modified iteration scheme , and

then prove  conv er g en ce of th is sc heme.

‘4.6.1 The Underlying Function

We now relax the unrealistic assumption 114 .3 .1), that u (A )

is a continuous differentiable function. The sources of

discontinuities in u(.) are two fold: (i) discontinuities in

the usage func tions of the in di v id ual  it ems , that is

and (ii) an item “jumping ” from one a l locat ion to

ano ther as A passes through some critical value for that

item . Obserie that , due to the size of the problem , the

resource  usa ge of an in d iv id ual i tem wi ll b e qu it e smal l  in

comparison to the limits. Thus ~e pos tu l a t e :  

_ _ _ _ _ _
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[A LL 6 . 1)  Assumption : There ex ists some con ti nuous ,

d i f fe ren t iab le  R -dimensional function ü(A ), wh ich we cal l

the under lyin~ function, such that

lO r(&_U r (è)l
< e  << 1

cr 
u

and whose Jacobian A(.) is such that for all A ,X+LX e w

IlA (~ +4è)-K(~ )Il~ II~ II 2 
< e  < < 1

ii~~ ii —

.~here h Ail is as in [ D4 . 5 . 2] .  C )

[R’4 .6.2] Remark: The subscript Q is for “Quadratic error ” .

The terms in the above def in i t ion have been chosen so as to

make e and eQ dimensionless , that is independent of the

scale of measurement of A and Ur (A)~ 
(Compare C Q w i th  D in

[AZ4.5.7 ], and remember that division by C
r 

is implicit In

~ Aj~.) The above assumption is reasonable in practice — -  for

instance , i f sever al tens  of thousan d s of ic.e n s use r e sou rce

r , tnen th~ flscontinuities mentioned above will be of tie

order of the usage by one ite a , so we can expect e
~~

J.OOOl

See Fig .’4— 2 for an illustration of t~(.). The e
0 assu mption

is equivalent to saying that the characteristics of the 
- 

-

items are not bunched together , so that too many i tems do

no t change their allocations for a small change in A.

(Withoi ~t the bo~~ d on the second derivatives of U , we coul d

always find a U arbitrarily close to u.) C )
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u~(A~)

U~~(X~)

xj~

~~~~~~~ Illustration of Underlying Function .

Le t A~ vary, with A k(kij) constant. We can think of u 1 as a

f u n c t i o n  of A~ alone , giving us a cross-section of the u

versus  A space as abo v e .
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‘ 4 . 6 . 2  Calculation Of Suit able Jacob ian

If we could (somehow) estimate the gradient matrix A of

the above function a(.), we would be able to apply our

algorithm. Ofcourse U is a hypothet ical  function and cannot

be observed . We could use finite d i f f e rence  methods on u( .)

to app r o x i m a te A , but such an approx imat ion would not , in

general , sa t i s f y  the condit ions that held on A (see

E L4 . 3 . 3 ] )  which were necessary  for the Lemmas which proved

Theorems 4 — I and ‘4—Ill (and also , 4-Il depended on ‘4—I ).

Our method is to construc t an approximation A in such a

way tnat the above-mentioned condit ions hold. The usual

f i n i te -d i f fe rence  approximat ion would be to let

u1 (X+he
3)—u. ( A )  

where e~ = unit vector in the j direction . A simple “trick”

enables us to construct  a more s a t i s f a c t o r y  es t imate  A .  Let

be the current value of A during an i terat ion . Let

2 (hX~~,... ,hA~~,O ,. .. , Q ]’

with h0 2 0

where h is some constant , typ ica l ly  0 . 1  . Then we cal~culate

our est imate A by

u .(A t<+h J ) — u
~~
(
~~

<+
~

’
~~

1 )
(‘4.6.3) 2 

hA.

(L’4.6.4j Lemma: The es t imate  A above sa t i s f i es  the p roper ty

of A In (L4 . 3 .3 ) ,  that is

Acx~~ A k = a [1

— a -
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Proof:  n 

~~ 

= Cu . (A k+h 3)~ u. (A k+h 3~~~)]

u~ (X 
~:i )_ u~ (A +~~

k k k
= u1 (A +hA )-u 1(X )

:0 .

The final step follows by the same reasoning as in [L’4.3.3]

—— that is , a proportional change in all the costs will not

lead to a change in the allocation —— a fact which is

indep ende nt of’ the form of the u( .) function . C ]

( R4 .6 . 5 J  Remark: We see that the above method evaluates A

at intermediate points a1on~ a path from A 1< to A I<+hx k . This

means that any given term ~~ is designed to estimate

i~~ 
rather than j-~

- ~~ . However , for small h , we

do not expect the difference to be sign ificant. Th~

important point is that , although both techniques involve an

estimation error , in the chosen method this error does not

destroy a useful property of A. The utili t y of tr~e above

result is that the Selection Al gorithm , if used on the

estimate A , .jill still satisfy the statements in Theorem I

(with A rep laced by A) , and some of our ex isten ce proofs

(e.g. [L4.5.29]) for Theorem 4— Ill also remain valid . C ]

In Theorem ‘4-tV we show that (a slightly modified

version of) the SALA —2 iteration scheme will in fact

convene tc a coluti on , e.’cn ir. the presence o~ e r r o r s

between the est i~nate A and the “underl ying ” gradient A. To

measure these errors we h~ ve
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CD’4.6.6] Defin itio n : e A 2 max
A

~n~ re h A i l is as in  [ D L I . 5 . 2 J .  C ]

[ R L 4 . 6 . 7 ]  ~er n a r k :  The t e r m  h Ail (and the C r implicit in

[D4 .5.2]) make eA dimensionless (see remark [R-’4.6.2)

above). C]

CA ’4 .6.8] Assumption: eA << 1 C]

C4 .6.9] Justification: ,le show here that the above

assumption is reasonable. First note that the scale of

measurement of C
r ~5 arbitrary, and all our definitions are

independent of this scale. Thus for any given A , we can

re— scale the C
r 

and A r (keeping c A  constant , so that no

allocation changes) to ~ct cach A ~iIA hI . Now A. - is a~ inr —

C~4 . 6 .3 ] .  S ince  the second derivative of U is small , a good

estimate of ’  A .  - is

- 

13 hA~

2e
~

c
~Then , us in~ [14.6.1], lA 1~~

_A
~~~~I I —~~~~— —

and thus 
~~~ ~hlK -~ il 2 max ll~ II 

~~ ~~~~~~~~I j:1

R
< (2e

~~
/h) 

~~ ~IftII’ 
A
3
)

j:1

(2Re ~/hU
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Thus for e
~~

O .OOOl (see CR4 .6.2]), h 0 . 1 , and R 2 0 , we have

eA <O.02 . C ]

‘4.6.3 Relaxing The SPE Assumption

Throughout s e c . 4 . 5  we relied on the SPF assumption

[A ’4 .5 .6 ] .  If &<2 Q( A ’< ) is quite far from the feas ib le  region

F , this assumption can easily be violated in practic e (see

Fi~~.4—3). This situation can be further aggravated by

errors in the estimate A. Let us consider an enlarged set

of constraints , c ’<
~ (l+d 1< )c where d k2d(&< ,F). the factor

(1+d ’<) is the smallest factor by which F must be enlarged in

order that it contain (Fig.’4-14). Thus a more reasonable

assumptio n to CA ’4.5 .6] would be to say that the tangent

hyperplane at U~
< intersects p (1+d ’<)F for some p< 1 (Ftg. LI ._ 5).

Since this enlarged region is much “ne ar e r ” to &< , we would

also expect that small numerical differences between

and (u~
< , A1< ) will not destroy the vaU.dity of this assumption

(we use A~
< for A (A ’< ), etc.). We now state this for~na lly.

[A-4.6.1O ] Assum ption: (Numerical Pseudo—Feasibility, NPF )

For any A 1<6W , the hyperplan e u1< +A ’
~i?~ (fo - varyin g 4A ) has a

non—e mpty intersection with the region p( 1~s.d
< )F , for some

p<1. C ]
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U2

C2 

-

F ~~(A)

Fig. 4- 3: Gross v iolat ion of the 3FF Assumption .

The tangent hyperplane H at has no intersection with F.
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‘~2 \~
\~~ I~~

(li.dk )c2

C
~ I

C1 (1+d k)c1 
~Z

Fig.~~—Z4: The En l arged Region .

The region (1+d ’< )F just contains
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(1 +&’)F

F 
H 

L

U1

Fig .4-5: Illustration of the NPF Assumption .

It is more reasonable to expect that H will intersect the

region p(1+d~ )F, than to expect it to intersect F.
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4.6.4 Iteration Scheme For Realistic Ca se

We have relaxed several of our unrealistic assumptions ,

in ord er to d eal wi th practical situat ions. In terms of our

new concepts we have our next  i terat ion techn iq ue.

f

[4.6.11] Algor ithm (SALA-3 Iteration Scheme):

INIT : Given some Am in>O , and some Xi~~ t> A~~ ’~Set A 0 :A1~~~~
t — — —

Set k:O

INITMCA : Use A ° to do a Mm —Cost Al location [4 . 2 . 3 ]
for eac h item , an d calculate u(A°)
Set u°:u(A°) 

— —

TEST : If uk 6 F then STOP

JACOBIAN : Calcu l ate Ak : A(X k) as in [‘4.6.3]

DISTANCE : Set d k : d(u k ,F)
Set ek : (l d k)c

MNP : Calculate ~A k erg ~nin II AAII subject  to
< ~~~k —

~ k+~A~~ Xm1Tr

LINESR CH : Find ~ : arg mm d(u~~~<+aAA k),F)

UPDATE ‘ : Set uk+~ : u <+â~ A k)
Set )~k+ 1 _ ,

~~+L$~A k
Set k=k+ 1
go to TEST

C R 4 . 6 .  12] Remark: The numerical computation of A can be

done quite efficiently. If the effort involved in

evaluating the vector u(X) is T units of CPU time , from

[‘4.6.3) we see that A (A) can be calculated in at most RT

additional units of time. In practice , ~ir~ce :nari y data

items calculated for u (X) can be used for calculating

u(A+h~ ) the additional effort is less than RT units of
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time. We have also added a Line Search (LINESRCH) as in

most implementations of Nonlinear Programming. This can

also be done using well— known numerical techniques CL5).

Usually a fairly crude search suffices , an d does not involve

too many eval uations of u(.). The value of p has been left

unspecified in the above algorithm . It can be either chosen

adapti vely d uring the algor ithm , or kept as a user

parameter , so that the user could “tune ” the algorithm for a

particular problem . (Tne adaptive method would start with a

low value , and bring the value closer to 1 if either the MNP

or LINESRCH steps were unsuc cessful .)

4.6.5 Conver gence Analysis

[A4 .6.13] Assum ption: Let e
~~

, eQ~ eA , and p be as already

defined in [A4.6.l], [DZ4 .6.6 ], CA ’4.6.10], a nd let

b £ 2eu + eA + (eQ/2)

so that b< (1. Then there exists ~ with 0<0< 1—b—p. [1

[A~4.6.14] Assumption: The AA k calculate d in MNP satisfies
0 

11~~ k
1, < Hè

k Il . C J

(R4 .6.15] Remark: There is a relationship between the

var ious assumptions in this analysis. In remarks following

[A1 4.6.1) and [ALL6.8] we have alread y justified b<< 1 in

pract ice , allow ing a choice of p close to 1 in EA ’4.6.13]
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above . Thi s ma kes the NPF assum ption more reasona b le , since

it brings p(1+d ’<)F very close to ut< . It also aids [A4 .6 . iLl]

since will be smaller for p(1+d 1<)F close to

[AL I .6.1LI ] can be further justified . We have alread y

remarked in [4.6.9] that it is possible to re—s cale the cr
so that A r 11 XhI . Since in MCA , an item decides its use of

resources depending on their relative costs , we can expect

that a change ~~~ of the order ot iI~Ih will cause a major

change in the usage of the ~ th resource. Loosely speaking ,

the step MNP only seeks to bring down the most over-used

resources by a factor of p (which is close to 1). So

< is reasonable. C ] -

[-‘4.6.16) Summary of Assumpt ions (Final Set): We have

considerably relaxed al l  our assum pti ons , and in addition

shown why the ones below are likely to be true in practice:

CA ’4.6.i] Underlying function.

[A4.6.8) eA << 1.

(A4.6.1O) Numerical Pseudo— Feasibility.

[A4 .6.13] 0 ( ~ < 1 —b—p.

CA I. 6 . iLl ) 11~~~
k

11 < 11 )%
k11

.
f.
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[TLI .6. 17] Theorem ‘4-IV (Convergence of SALA-3 Scheme)

Let assumptions [4.6.16] hold. Then the SALA—3 algorithm

~(Ll .6.11 ] converges to a solution in a finite number of

iterations. Further , if d
k is as in [‘4.6. 11 3 , an d 0 as in

[4.6.13), then the convergence rate is characterized by

- k+1either d = 0 (i.e. solution found )

or d t
~~ I 

(l_,)d k — (]

CR4.6. 18] Remark: We note that in the worst case , the

convergence rate is still better than geometric . [3

Proof: First we note that , since A satisfies [L-’4.6. ’4], the

ex istence of a ~.A
1< to solve MNP at each iteration can be

proved in the same way as [L4.5.29). We develop the

rem ainder of the proof in ‘4 stages:

1. The line search is replaced by a specific choice of

a. Cle arly, the line search in the algorithm will

a lways  do at least as wel l .

2. We develop an error equation relat ing the est imated

resource usage to the actual  usage.

3. We prove upper bounds on the actual usage.

4 . We show that d k dec reases  accord ing to the equation

above.

The deta i ls  now fo llow.

•

1 

“--

~~~~~~~~~  

- -

~~~~

- ‘-__

~~~~~~~~~~~~~~~

- -

~~~~

- 
I
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Choice of a

From [A 4.6. 13] we can let p :i—b—Ø— q for some q>O . Let us

choose a such that

[14.6.19] < a  < 1
2e~~+ O+q —

From t h i s  we d ed uce tha t

a(2e~ ÷o+q) > 2e +~

a(2e u
+l_ p_ b ) > 2e +~

=> a ( 1_ p_ e
Q / 2_ e A

) > 2e ,,+~ using { A 4 . 6 . 1 3 ]

and thus

[44.6. 20] a(1—p) — ~ > U A 3eQ/2

an equation we shall use later in this proof .

Error Equation - 
-

Wri te  u for u( A )  and u3 for u( A +aAA ) , for s impl ic i ty.

Define Au £ A(A )AX , so that u-i-Au < ~~k by MNP. Also let -

y 2 <1 by [A4.6.1~4]. Then we have

u~ 2 u .(A+agA ) I Q~ (~~÷a~~ )+c~ e using CA ’4 .6 . 1~ and c~ >c

eQII 2

< a .(>~i+C~~ X )aAX] . + C~~~~— -~-----— + c~ e using [A4 .6. 1]

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
< 0 . ( X ) + a ~ u. +e A c k ( a y ) + ( a y ) 2c~

<e Q/2+e ckc using C D 4 . 6 . 6 ]

u. ~u . —
~> —~~~ ~~ —~~~ a..... 1.2e

U+eA
(ay)4.(e

Q/2)(ay)~ using [A4.6. 1]
c1 c~ c~

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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u.

< — —  + a——— + 2e + e + e /2 since a<1 ,y< 1
— 1< k u A Q

c1
so that

ua u. ~u.1 1 1
[4. 6 . 2 1 ]  — —  — —  + a——— + a ( 1 — p ) — ~ using (4 .~~.20)

k kc~ c~ c1
whi ch is our desired error equat ion.

Bound s on the

First we prove a minor result:

( ‘4 . 6 .22 ]  a< 1 and u1<c~ => u~ +a (pc~
_u
~~) < c~ — a ( 1 — p ) c ~ C )

P r o o f :  a(c
~
_u
~~
) <

k k k k=> a (c~~ pc~
_u

1+pc 1) < c1—u~

=> a (1—p)c~ ÷a (pc~ —u~~) < c~ —u 1

u
~

_ a ( pc
~~

u
~~

) < c~ — a ( 1 — p ) c ~ C ]

Now consider two sets of indices:

J 2 (i u
~
<c
~
) and K 2 (i c~ < u . }

We have 
~~~~~~~~~~ 

(by step MNP) so that a Au
~

<a ( pc
~~

u
~~

) .

From [‘4 .6 . 2 1 ] ,  for ieJ ,
u~ u

~
+a (pc

~
_u
~~
) 

c’~1 1

< 1 — using (4.6.22)

and for i6K , since ui)c~~
,

u~ u1+a (pc~ —c~ )

— — I  
ck~ c~

<
1 1

u
~

= _ i
~ 

- 0
Cj
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Equation for d~
<

Note that from (DLI.5.5] we have

u-
1 k

C. —

1

and from the algorithm we have
k kc (1 -s.d )c

Consider the sets J , K of the previous sect ion , along w i t h

their bounds on u~~. 
-

1 1 kFor i6J — —  < (1 — p ) — —  (1— ~~) ( 1 ÷ d  ) = (1-s .d ) — ~~( 1 +d
ci

a k
U .  u . c.
1 1 1 k kFor jeK —— < — -  — 0 — —  < 1 -s.d —

c. c. c.~~1. 1. 1.

so that for all i we have
a

— 1 <

And note that d(U a ,F) {u ~ >c .} [
~ 

_ 1j

Identifying with u and u~~~
1 uit;h ~

a •~e tnus have

d ’<
~

1 I (l_o )d k 
—

as long as the RHS is non—ne ga t i ve .  C lear ly,  d~~’~~zO wi ll  be

achieved in a finite number of iterations , at which point

the algorithm will stop.

This concludes the proof of Theorem ‘4-IV. C ]

- -
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4 .7 REVIEW 3F RESULTS AND COM PARISON WITH OTHER WORK

Starting with a simplistic model , we proved some

properties of the Selection Algorith m , 3 means for

generating ~A
< . Using these properties we were able to

prove quadratic convergence of an iteration scheme for a

restricted system configuration. We then generalized our

method of Computing ~A
l< , and proved quadratic convergence of

an iteration scheme for  a general system configuration .

Next we incorporated the actual functions in our model ,

replacin g “local” assumptions (continuity) by “global ”

assumptions (system structure and bounds on certain error

terms -— it was shown that these bounds are reasonable for a

large system). We were then able to prove convergence of an

algorithm operating on these functions.

The use of the “underlying function ” assumption

[ A L l. 6.1] seems to be a po werful way to deal with local

discontinuities. Katk ovni~ C K 1 ] and Erm ol’ ev CE 3 ] have

suggested using Stochasti c Approximation techniques for

“ smoothing out” such local discontinuities. (Conceptually,

his method tries to identify our underlying function.) His

method however , woul d in v o lv e a l ar ge num ber of f u n c ti on

eva iuation s * to compute each row of A; our method requires

only one new evaluation for each row (see CR4.6. 12]).

‘Each function evaluation involves doing an allocation of
all par ts.
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Our assumptions , specially for Theorem 4—I V , ma y seem

strict and somewhat arbitrary. However , we are placing

almost no restrictions on the individu al Us-age functions

u 1 (d1 ,x 1). If we used Katkovnik’ s approach , along with a

~eneral framework for the analysis of Recursive Stochastic

Approximation Algorithms ,(e.g. Ljung [L6] or Kushner [K2])

we would require strict conditions on the differentiability

of various functions and bounds on their derivatives. As

above , one may think of our “global” assumptions as

replacing such “local” assumptions.

The final test of the validity of our assumptions is

ofcourse use of the algorithm in actual cases. We have used

the Algorithm successfully on numerous problem s , both for

ev -~l ;~~ting design of new Warehouse facilities , and for

im prov in g the operation of existing facilities. Examples of

t~iis w ill follow in the next Chapter.



—134—

C HAP TER 5

~~~~ DES 3:~ 3F A P R A - ~~TI ’ A L  R E S O U R C E  MA N A G E M E N T  S Y S T E M

5. 1 ~ V V ~~~4 CE C H . A PT E~

The previous Chapter ~ealt with the “Initial A 1loc~~ ion

Prob lem ” . In tnis Chapter -~e illustrate how , in an

operational system , we imple m ent the solution to this

proble m , and how our approach enables simple and efficient

solution of both the “New Assign m ent Probletn t’ and the

“Periodic Revie .~ Problem ” (see Chapter 1 for the definition

of these pr cb lems)

We shall also suggest some additions to the algorithms

of Chapter ‘4 , which enhance their operation in practice.

Most notable among these is the incorporation of a “Cost of

Reallo cation ” for each part.

The main features of the computerized Resource

Manage m ent System implemented in the FIAT Warehouse are then

described , including some details of the program package and

its per fo rmance .  We ~~r~clud e w~.tn e repres entativ e cxc~ plc

of the use of  the program to so lve a typ ica l

des ign—eva lua t ion  problem for the warehouse.
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5.2 CONCEPT S OF THE PRA CTICAL SOLUTION

5 . 2 . 1  Approach Used 
-

The first step in the practical solution is deciding on

the calculation of the estimated resource usages , that is ,

the functions u1 (d 1 ,x 1). For each part i , these  f u n c tions

should be designed to estimate the current mean value of

for t h i s part. An example of such a calculation is given in

Appendix 5A . The estimate of total usage of the rth

resource , i.e.

ur ~~ u~ (d1 ,x 1)
i=1 -

will then be the sum of these means.

Remark: Although the variation in the- individual part’ s

resource usages u~ about their mean may be quite high from

day to day, the variation in the sum ur., will - be much less in

comparison to the value of ur itself.’

The Initial Allocation Problem is solved with the value

of each constraint cr set at some proportion 
~r 

of the

actual physical capacity of that resource , for examp le 7O~

of crane— time or 90% of storage capacity. The value of

‘Formally, the st.andard error ( =standar i  iev ia t ion /mea n)  of
the sum of N ident ical ly distr ibuted independent random
var iab les  is 1 /,JTI t imes the standard error of any one of t r~e
random variables.
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for each resource r , is set by management to reflec t a

certain safety margin . For instance , by analysi ng the

history of demand on a particular resource , a reasonable

sa fety margin could be set.

The New Parts Problem is solved for each new part

simply by doing a Minimum Cost Allocation for that part ,

using the current costs A. In other words , we so lve

equation (MCA) [‘4.2.3] for that part. Mote that the

allocation for each new par t can be made by solving this

(relatively) simple problem independently of the rest of the

parts. -

For the Periodic Review Problem , we note that:

1 . Th .~ allocation of new parts will , cause a gradual

addition to the (average) usage of various

resour ce s.

2. The c h a n g i n g  characteristics of each part will

cause changes (increases or decreases) in the

(average) usage of each resource.

3. ~4e note that the changes above are expected to be

small with respect to the constraints. It is

phyaically possible to continue operati on due to

the safety margin in each lim it value .
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‘4 . The ne t r esul t for  eac h r e sour ce , will be a grad ual

increase or d ecre ase in the av erage to tal usage of

that resource.

The aim of the periodic review is to track these

ave ra ges , and to keep them below a specified value (say

c +d , where d is th3 max imum deviation allowed forr r r
resource r) .  This can be done in as sophis t icated a manner

as desired . For instance , in the Vo lvera  warehouse we found

that a monthly re—al locat ion was su f f i c ien t .  In a more

rapidly changing environment , a da i ly ,  or eve ry hourly

rea l locat ion could be done .

The reallocation is done by using the latest  A , s a y

A~~
d as a s tar t ing point fur ite ra t ions ox ’ the SA LA

algorithm . Since the data vectors for each part have

changed , an d sin ce new ’ parts have been added , u(X 0~~ ) which

was feas ib le ear li er , will not necessarily be feasible now.

However , it is likely that a smal l change in (achieved

in one i terat ion of the SA LA algorithm , say) will make it

feasib le.  The new value , say  A new wil l now be used for

allocation of each part , and for the allocation of new

parts. This method can be further enhanced as described

below.
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5.2.2 Cost Of Re-allocation

We now d escr ib e the incor pora tion of a f e a t u r e  c a l le d

the “cost of re— allocation ” for each part. In the

terminology of the previous section , for any A new we only

change the allocation of a part if its total (new) resource

usage cost plus a cer ta in  re—al locat ion  cost , is less than

the ex is t ing (old) resource usage cost , that is:

Let -~~ew arg mm (MCA ) for g iven 1r~~~

~ o1d current allocation of part i

~~ ew ~~~‘~-~ew~ 
[d’ is the current (new) data]

~old

C(X
~ ld~

X
~ eW ) cost of re— allocation from to 

~-r~ew
Then we r e a l l o c a t e  the ith part from 

-~old 
to ~~~~ only if

[5.2.1] anew ~ 
C(

~~~ld~~
X ne~~

) < 
~old

The calculation of C(.,.) will be discussed below.

The addition of this real .ocation cost has many

advanta ges:

1. It makes the allocation of each part “ stable ” , that

is , for smal l chan ges in A , we do not find

ourselves moving the same part back and forth (or

else we might spend all the warehouse resources in

constantly reallocatin g parts!)

2. It makes the decision for eacri new part , valid

in the lon g term , and hence a good decision

according to the criterion in Chapter 2, Sect ion
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4.3. The reason for this is that usually ver y

small changes in A are sufficien t to keep the total

reso urce usages within their margins as above.

Thus , as just described , the allocation of eac h new

part is likely to rema in un changed for some time.

Only when the characterist ics (d1) of this part

change significantly, or when A has changed

signifi~ antly, will it be likely that this part

will be reallocated , to reflec t the new situation.

3. The reallocation cost can be incorporated directly

in the SALA Al gorit hm dur ing its iter ations , so

that its d ecision for each part , and its

calculat ion of total resource usage U(X new ) will

be mad e using the rule C5. 2. 1J above. Thus the

A~
ew foun d by the algor ithm will take in to accoun t

the reallocation costs. 
-

1. The cost calculation C(.,.) can be modelled to

refle ct the physical work necessary to chan ge from

one allocat ion to another . (This would require

some “discounting” calculat ion, to t rade—of f

between a one—time cost and a dai ly operating cost

over some time horizon.)

5. The calculation of C(.,.) can also be mad e to

reflec t management preferences over and above

physical work in the above paragraph . For example ,

if management is t rying to grad ually shut down a
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certain storage—type , the cost of mov ing out of it

can be set lower than the physical cost , whereas

the cost for mov ing into it can be set very high.

We note here that the modification of the SALA

algorithm described in this section is a heuristical one ,

whose consequences have not been studied theoretically.

However , it appeals to common sense , and has definitely

proven its worth in pr actice. The method used for

cal culation of C(.,.) in the Volvera warehouse will be

described in sec.5.3.7.

5.3 FEATURES OF THE VOLVERA IM PLEMENTATION

5.3.1 Introd uction

The SALA program package , whose features are descr ibed

in this sect ion , was designed and implemented by the author ,

in connect ion with the C.S.Drape r Lab.,  for use by FIAT

Ricambi at their Central warehouse in Volvera , Italy. This

program package provides ma nagement with a ve rsa t i le  tool

with which to tackle the Storage Allocation and Re source

Man agement (SARM ) task at Volvera (see Chapter 2 for a

description of this task). The concepts of SALA , f r o m  a

mana gement po int of vi ew , are described in the stud y [F2],

and the d etails of its im plemen tation are con ta ined in the

SALA Reference Manual t S 3 ] .  A br ief descr ipt ion of the SALA
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program pac kage follows below.

SALA is designed to provide Volvera with three main

fun cti ons for the SARM task:

1. Periodic Review and Reallocation

2. New Parts Al location

3. Design Evaluation

The first two of these have been described in Chapter 2 , and

their solution is along the lines of sec.5.2. 1 above. The

third is an important additional feature , descr ibed nex t .

5 . 3 . 2  SALA As A Design Evaluation Tool

The power of the SA LA package lies in its flexibili ty.

It has been designed to enable management evaluate any

future warehouse modifications , within the fr amework of a

set of known possible modifications. (The modularity of tne

packagL means this set can be expanded in the future , if

necessary, by an experienced FORTRAN programmer.) In effect ,

SALA provides the user with the building blocks w i th  which

to d efine his d esig n , and also with the tool that will then

evaluate this des ign.  This enables the study of future

modifications to the ~,arehouse , suc h as closing dawn an

exist ing storage—type , or adding new storage—types. A

detailed illustration of th~ z will be given in sec.5.’4.
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We find that the FIAT managem ent at Volvera are making

extens ive use of this feature for evaluating future designs ,

an d consider this aspect of SA LA a valuable decision—making

aid.

5.3.3 Hierarchy Of Decision—Making

We d escri be here an im por tan t fea ture of the SARM

project. The SALA algorithm is designed to make long— term

decisions involving alocations of parts among different

storage—types. Now these storage—types are themselves

fairly lar ge systems , an d their day— to— day operation is

controlled by Real— Time computerized algorithms. Other

portions of the projec t have studied the optimization of

operat ions at this level . Thus we have a natural hierarchy

of dec is ions.  The operat ing s t ra teg ies  within a

storage— type give rise to certain average measures of

performance in that storage—type (e.g. crane— time per

pick). These measures are then use.d by the SA LA algorithm

for its decisions between s t o r a g e — t y p e s .  At a yet higher

level , the strategy of the SA LA algorithm generates certain

performance measures for the Volvera ware house as a whole ,

and these are used by another projec t , the Inventory Control

project , to decide on the iistribution of stock at Volvera

a~d at other sites throughout the world.
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5.3. 4 Some Program Details

The SALA package is written entirely in FORTRAN. ’ It is

highly modularized , for ease of modi fica ti on , debugging, and

im plementation on different computers.’’ It cons is ts  of some

40 modules totalling some 7000 lines of FORTRAN. Less than

3O~ of this is the algorithm code. The remainder is for

several di fferent options , for generating various statistics

on each alloca tion , and for detailed diagnostics if required

for checking the operation of the program .

The package is currently implemented on a Honeywell

6600 com puter. The typi cal CPU time for an itera tion

involving all 60,000 p arts is abou t one hour . (An

iteration , as described in Chapter 4, involves calculation

of the Jacobian , as wel l  as a s tep—s ize  ca lcu la t ion .)  Using -

a sampling technique , described in the next section , it is

possible to solve an initial allocation problem in a few

hours of CPU t ime. For an incoming new part , a new

allocation decision takes only a few milliseconds , and can

be done in real—time. A periodic review usually requires

‘The out put generated by SALA is further analyzed and
tab ulate d for warehouse personnel , using COBOL programs.

“In fac t , the package was developed and tested on a DEC
PDP— 11/70 at C.S.Draper Lab . (Cambridge , Mass.) before
implementation on the Honeywell H6600 in Italy.
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only one iteration , or one hour of CPU time.

This amoun t of time should be compared with the File

Alloca tion Program of Ma hmoud and Riordan (see Table 6— I , in

Chapter 6) which takes 16 minutes of CPU time on an XDS

Sigm a 7, for a problem with 20 files and 5 nodes. Our

solution is for a problem with 50,000 items and 1 6

storage—types. We can also compare SALA ’s performance wit h

the previous techniques used at Volvera. These involved

sorting all the parts into var ious subsets according to

their characteristics (this took hour s of CPU time) , and

then m a n u a l l y  d ecidi ng on di f f e r e n t su b sets of pa r t s  to be

r e a l l ocated , to meet a large number of criteria (this took

:nonths of man—time ) . In either case SALA ’s performance

compares very favorably.

5.3.5 The Sampling Technique

This technique brings the algorithm from an arbitrary

initial A , say A 0 to a near .y optim al A , in an efficient

manner. A ra ndom sub set of par ts is selec ted , an d al l

constraints are reduced proportionally. For example , i f  1 0~
(i.e. 6000) parts were selected , the constraints would be

set at 1O~ of their ac tual values. The algor ith m is then

mad e to iterate on this sample unttl a solution , sa y A ’, is

foun d. Usually, 5 to 15 iterations suffice , and since this

sample is a tenth of the whole sample , 10 iterations can be

done in an hour . Now , because the sample is a
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representative cross— section of all the parts , the value A ’

is a very good starting point for iterations on the whole

sample , and usually one or two itera ti ons on the whole

sample suffice. This means that the entire problem can be

solved in 3 to 4 hours of CPU ti me , as mentioned above. The

sampling technique is another way in which decentralized

solution of the problem proves to be advantageous .

5 . 3 .6  Solution Of MCA

Each iteration of the SALA algorithm involves solving

the Minimum Cost Allocation problem (MCA) [4.2.3] for each

part .  The solution to this problem can , in ge n e r a l , be

designed to fit the needs of the specific implementation.

For the Volver a prob lem , our solut ion is described below. A

rather different example of solving (MCA ) is given in

Chapter 6 for the File Allocation Problem .

In Chapter 4, we noted that we would restrict each

to a discrete strategy set. In the Volvera warehouse , a

r ev iew of m a n a g e m e n t  an d ope ra ti n g re qu i r e m e n ts , plus the

possible complexity of’ solving (MCA ) brought us to the

decision that each part would be stored in one storage—type

only. (Some exceptions to this are described below.) The

rationale for this can bo stated as: “If it is possible to

find a feasib le solution wi th  this res t r i c t i on , then we have

achieved our goal anyway,  and wi th a simpler s t r a t e g y .  If’

we do not ach ieve a feas ib le solution , then we w i l l  expand 

-~~~~- - -~~~~ - - - - - -~~~~~~~ -. - -~~~~~~~~~~ -- - -
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our strategy set.”

If we were to use integer program m ing , this restriction

would still mean that we have a 1—million dimensional 0— 1

integer programming problem , with the added 60,000

cons tra in ts
4

16

~~ x~ = 1 for eac h i
3=1

However , for the problem (MCA) , this restriction makes the

solution trivial , and it can be found by a simple “loop ”

over the 16 storage—t ypes. Let

unit vector in j direction

and let

t = arg 
cs= 1 ,~~~

’
~, l6J~~~~~~~~ ’~~~~~

Then for th e ith part , the optimal allocation for a given A

is

- 
~~

( A )  = Q~
L e t 

-

In other w o rds , a l locate all the quant i ty to - the

storage—type where tne total resource usage cost is a

m inimum .

For operational reasons , i t is ne cessar y fo r  some par ts

to be stored in two storage—types. This ability is

incorporated in SALA by pooling certain resources of the two

storage—typ es , and letting SALA find an allocation

satisfying those pooled constraints. A second program ,

designed to satisy other management requirements , and which

operates on a more frequent basis , then decides on the
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-

distribution of containers between the two areas. This

provides a convenient hierarchical separation of

decision —making, similar to that described in sec.5.3.3

• above. For details , see Sun [34].

5.3.7 Calculation Of Reallocation Cost

The calculation of C(.,.) is done empirically in each

review period , by allowing warehouse personnel to examin e

detailed “actual/recommended” tabulations , giving the

cost— improvement 
~~~~~~~~~~~~~ 

for each part. (These

tabulations compare the actual allocation with SALA ’s

recommended re— allocation) . The tables are sorted into

subsets by current and recommended allocation , and each

suoset ordered by cos t— improve men t .  By choosing a threshold

value for cos t—improvement  for each subset of tabulat ions ,

warehouse personnel are able to contro l  the number of

rea l locat ions  betwe en any two s t o r a g e — t y p e s  in each period .

Their decisions are based on their current  p r io r i t ies  and

the workload in tne warehouse.  The tabu la t ions are also

useful when carrying out reallocations: parts with the

greatest cost— improvement are always reallocated first ,

since they represent the greatest mismatch between current

allocation and part characteristics.
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5. 4 EXA M PLE OF A DESIGN—E VALUATION PROBLEM

~e illustrate the use of SA LA at Volvera with a typical

design— evaluation problem .’ This involves selection of pa r t s

to be allocated to a proposed new area , at the same time

reallocating parts between existing areas to meet future

requirements .

The Volvera management is considering building a new

area at Volvera , called the MPM (“Magazzino Prelievo

Manuale ” , or manual picking warehouse) , with very high

picking capacity, but only a limited number of parts can be

assigned there. The SALA program is being used to evaluate

various design specifications for the MPM , by looking at the

effect of certain decisions on the operating statistic s of

tne whole warenouse .

A typical design specification is given in Table 5—I.

This sp€cif i cat ion is for 5000 part — numbers and 12

5tJ r-~~e— types . There are 17 constrained resources (see the

first colj :nn ). For example , the entry “ M— ll  Part Nos”

refers to the number of Part—numbers in storage— type “ M— l l ” .

This is ~ storage— type in the MPM , and it has a limit on the

number of parts it can handle , as mention ed above. Some

resour ces a re  sn a r ed , for exa:np le (1+ ’l )— ll means —~ resource

‘rh i s  e’c -amp le u5es a sanp l2 of 500C parto , to m ainta in
confiden t iality of the detailed operating statistics of the
FIAT warehouse .

4.-
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used by both storage—t ype 1 — 1 1  and storage— type M— 1 1 . (The

meaning of these codes is not relevent to this explanation.)

The next two columns in the Table , “Usage Today ” and

“Us a~ e Limit” reflect the current operating v2lues versus

the design specifications laid down by man~~ ement. The

number of Part—Nos in M— 11 , M— 2 0, M— 60 (all in the MPM ) are

currently zero , and their design capacities are given as

29 1 , 353,  and 20 , respectively. In other resources , we see

that management would like to see some decreases in the

—— most notably in “1— 20 Crane — Minutes ” which exceed

tne desired value by 500L (The sign “ > “  is used in the

Table to flag ov er—used resources.)

The problem of finding an allocation to meet the future

capacities was soivea using the SALP. program . It was found

that for the specified capacities , a solution did indeed

exist , and the resource usages of this solution are given in

the fourth column of the table. The main point to rote is

tri -~ t a f te r  rea l l oca t i on , we find v e r y  l it t l e  spare ~a p- ic i .y

in most resources , showing that the problem as specified is

not an easy one to solve. (Resources whose future usige is

up to their design capacity are marked with “ = “ or “ - “ in

the tab le .)

The costs A computed by SALA for each resource are

shown in the final column. If the MP~1 were ready, and parts

had been assigned as recommended by SALA , then new parts

arriving at the warehouse would be as~ i~~ned using these

4. . -s
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costs to compute their best allocation. Also , for the

design problem , if management decided to try a different

design , these cos ts  ‘would be a good s tar t ing point for the

next set of iterations.
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Table 5—I : Design Evaluat ion Ex ample

RE SOURCE USAGE USAGE —- SALA —ALLOCATION ——
NAME TODA Y LIMIT USAGE COST

M— 1 1 Part Nos 0 291 289 2798
M— 2 0 Part Nos 0 353 340 4178
M— 60 Part Nos 0 20 20 171498

Q— 1 1 Part Nos 3’49 > 292 292 2756
Q— 20 Part Nos 63 > 50 50 4 9 5 8

~—6O Part Nos 7 7 6 17383

(1+M) — 11 Shelf Slots 2314 1 2337 23314 - 
2 5 5

(1+M)—20 Shelf Slots 3~40O 4201 4200 1109
(1÷M)— 60 Shelf Slots 2091 2177 0 2171 3105

1— (11+6 0 ) Crane—m ins 516 )> 190 167 11385
1— 20 Crane .-mins 1063 >> 175 155 16800

2— 11 Shelf Slots 2562 > 2078 1 8142 450
2— 12 Snelf Slots 1002 > 853 826 236

2— (11-s .12) Crane —m ins 397 >> 98 96 5001

3— 15 Shelf Slots 2351 2733 2564 79
3— 16 Shelf Slots 21493 > 1309 1017 180

3— (15+16) Man—mins 2149 175 166 14500
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5.5 DISCUSSION

This Chapter extended the theoretical work of the

previous chapters to the design of a practical system. We

illustrated our methods with details of the system

imple:nented at the FIAT warehouse in Volvera. In addition

to the operational aims of the Resource Management task ,

this system is being used ex tensively as a design tool , for

evaluating possible modifications to the warehouse.
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APPENDIX 5A 
-

EXAMPL E OF CALC ULATION OF USAGE FUNCTION

This Appendix shows a typical calculation of u’(d ,x
1)

for  a par t , according to the approach of sec.5.2.1. The

resource in concern will be the crane— time for a part stored

in the “High Shelf Area ” and picked at the “bays ” (see

Fig .2— 1 and accompanying description).

Containers for such parts arrive at the High Shelf Area

via an input ramp. From there , they are loaded into the

shelves by a crane.. Picks for these parts are serviced by a

crane taking a container down to a manned bay, and after the

pick is done , by returning the container to the shelf. When

a container is emptied by a pick at the bay, it is taken to

an exit ramp, instead of back to the shelf.

We now demonstrate the calculation of total crane— time

per -day used by such a part. We have kept the calculation

simple for illustration purposes ; more sophisticated

assum ptions and calculations could easily be mad e in the

same way.
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The part—data ~J
1 required for this calcu lation can be

summar ized in: -

C no. of Containers emptied per day.

The warehouse operating data required is:

TL crane Time to Load new containers into shelf

from input ram p

TS crane Time to Supply container to bay from shelf

TR crane Time to Retrieve container from bay to shelf

TU crane Time to Unload empty container from bay

to ex it ram p

(All the above data items are mean values.)

Let (C] integer part of C

(C} fractional part of C ( C—IC ] )

Since partly full containers are replaced on the shelf .

a frac tion al value of C , say 0.25, means that (on average)

the container will be bay—picked and rep-laced on 3 days , and

bay—picked and emptied on the fourth . Thus:

Bay Picking Crane Time/day -

C’TL + (C]’(TS+TU) + {C}’(TS+TU) + (1— (C})’(TS+TR)

= C’TL + C’(TS+TU) + (1—{C} )’(TS+TR)

( loads) (empties) (part l y—fu l l s )
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CHAPTER 6

APPLICATION TO THE FILE ALLOCATION PROBLEM

6. 1 INTRODUCTION

6. 1. 1 Overview Of Chapter

With the growing size of distributed computer networks ,

the problem of allocation of resources in these networks is

becoming increasingly important. This Chapter addresses one

specific aspect of the problem : that of File Allocation .

When some information (say, a “file ”) is shared by several

sites (“nodes ”), the question arises as to where copies of

the file should reside. The decision for a particular file

may depend on -its Query and Update traffic at each node , on

the Storage costs , the Transmission costs , on Res ponse -time

constraints , and Reliability — level constraints. Thus the

problem for a single file is itself quite complex .

Now , when several thousand files are to be allocated in

a network , in addition to minimizing the above costs , the

network cons t ra in ts  (storage c~ p~ cities , linI. trai.!mi~~ ior.

capacities) have also to be taken into account. In this

case the problem becomes extremely complex; in fact,
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solutions in the l .iterature have (typicall y) addressed

problems with less than 20 files (see sec.6.1. 14 ).

In this Chapter we show how , by appropriate formulation

of the problem , a decentralized approach is possible. This

brings previously intractable problems (with several

thousand files , say) within the realm of known solution

methods. Our aim is to show the appl icabi l i ty  and

advantages of the decentralized approach. For the general

optimization problem , we do not go into details of solution

algorithms , but give a framework for future research. We do

however , consider one case in detail —— the problem faced by

a “ Network M a n a ger ” whose task is to keep a given network

operational (that is , all resource usages withi n the

constraints) in the face of constant arrivals of new files ,

and changing characteristics of’ old files.

4-
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6.1.2 Problem Statement

The general problem is to allocate a number of files to

different nodes in a computer network , so as to minimize the

total storage costs (of the files) and communication costs

(of queries and updates) , subject to various constraints.

The cost trad eoff can be illustrated by a simple argument

for one file. At one extreme , if a copy is stored at each

node , then quer ies at any node can be rapidly answered ,

w itnout  any t ransmission c o s t s .  Ho wever , in this case  an -

update at any node has to be t ransmi t ted  to all the other

nodes. Hence , the storage and update— transmission costs

will be high for this case . At tne other - extreme , if the

file is stored at only one node , then queries arising at all

other nodes need to be transm itted to this node. and in this

case the query cost is high , but the storage and update

cos ts  are low.  (The response t ime for quer ies  wi l l  also be

la rge .)  This argument is mad e prec ise in the fo l lowing

description.

4
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Basic Parameters (Given)

Set of Files f 6 (1 ,...,F}

Set of Nodes n 6 (1 ,..., N}

Set of Links k 6 (1 ,..., K) Unidirectional links which
co n n e c t  cer ta in no d es
according to (given) topology

File Length Vector b b f length (in bits) of
fi le F.

Query Traffic Matrix Q Qfn transmission traffic
(bits/see) generated at node
n , for queries to file f.

Update Traffic Matrix U Uf~ analogous to Qf~~, butfor upd ates to f.

Node Reliability Vector r rn reliability of node n
(probability that node n is
functioning at any time) - 

-

Link Reliability Vector 
~
‘ reliability of link k

Link Capacity ~ector h hk = capacity of link k
(bit s/see)

(Parameters relating to cost are described under a separate

heading.)
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Decision Var iab les  (Al l  zero—one va r i ab les )

These are def ined formal ly be low.  X is tne dec is ion as

to how man y copies of each f i le are to be sco red , and where .

Y is the decis ion as to how updates  or iginat ing at a

part icular node , and for a part icular f i le , wi l l  be routed

(to all copies of the fi le) . 1 is the similar decis ion for

queries (which need only be routed to one copy of the file).

Fi le Alloca tion Ma tr i x X X fn 1 if file F is
al located to node n.

Update Path Al locat ion Y 
~f knt~ 

1 if upda tes  for
Ar ray  f i le f , or ig inat ing at

node n and -destin ed for
node ñ , will use link k.

Query Path A l locat ion Z 7
~fkn = 1 if queries for

A r r a y  f i le f , or ig inat ing at
node n , will use link k
on their way to some copy
of the fi le.

4

-5-
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Cons tra in ts

File Availability Vector a a~’ = minimum probability
that at least one copy of
file f is accessible at
any time (depends on node
and link reliabilities).

Storage Capacity Vector s s~ on— line storage
capacity (bits) at node n.

Traffic Intensity Vec tor 2 traffic (bits/see) over
link k must not exceed
Pkh k.

(The availability constraint also ensures that at least one

copy of each file is allocated.) The significance of certain

terms above will be discussed further in sec.6. 1 .3 .

Costs and Objective Function

Storage Cost Vector ~
S c~ cost of storing one bit

for one second at node n.

Transmission Cost ~
T cost of transmitting

Vector one bit over link k.

The objective is to find [X ,Y ,Z} to minimize :

Total Storage Costs (function of X)
+ Total Transmission Costs (function of X , Y , Z)

subjec t to the constraints on:

File Availability (function of X)
Storage Capacity (function of X)
Traffic Intensity (function of X , Y , Z)

A mathematical formulation of the above will be ~iven later.
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6. 1.3 Comments And Compariso n With Other M3dels

In the literature on the File Allocation Problem ,

altho ugh the flavour of the problem is the same , when we

investigate details we find no generally accepted model.

Retrieval time , which is given so much emphasis in 1C2] and

[ M l ]  is completely missing in [C3] and [L7]. Similarly,

File Availability is considered only in [Ml], and Storage

Capacity appears only in [C2]. Thus there appears to be a

wide range of acceptable models in this field. In

comparison with other work , our model has the following

features:

1. File Availability . This rather complex constraint ,

which 
- 

leads to highly nonlinear constraint

equations (see analysis in (MiD , is retained in

our mo d el , and we shall see that it is easily

incorporated in our analysis.

2. Link Capacity . In so~i~e for :nulations [Mi] choice of

link capacity is also included as a decision

variable in the model. We assume an existing

network with given capacities .

3. Retrieval Time. Instead of using this constraint

directly, as in [C2]  or [ M l ] , we have a traffic

ir~te i lsit y (or congestion) constraint for each link.

The justification for this is that tr~e average

retrieval times between nodes are a function of the
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t r a f f i c  in tensi t ies (see Lii]) , and by specifying

the latter , we can calculate upper bounds for the

re t r i eva l  t imes.

~~~ . Decisions. We are able to incorpora te  even  the

(very high— dimensional) arrays Y and Z in our

formulation , and to solve for them quite easily.

5. Program Allocation. IL-i some formulations (e.g, .

IL?]) the file—a llocation problem is considere-J

simultaneously witn the program allocation proble m .

We do not consider program allocation at all.

The approach taken by Chang [Cl ] is of a diffe rent

nature. He considers an extremely general model of the

Distributed Com puter System Design Problem , with a v e r y

large number of parameters. His goal , however , is to find a

system con figu— at ion satisfying various performance

requir~~nents and design constraint s . The criter ion of

optimality is thus replaced by user satisfaction with a

design.

A major c r i t i c i sm of all the ex is t i ng  models has been

given by Rothn ie and Goodman [R - ~4]. They state that these

models neglect three important factors:

1. The models do not adequately reflect user demand

for database access involv ing more than one file at

the same time.



—1 63—

2. The models completely neglect tne synchronization

costs involved in upd at ing redundantly stored data.

This cost varies in a complex way witn th,e other

design decisions.

-3. The models assume that complete files should be tne

unit of assignment to nodes. (There are situations

in which an optimal partition of a file will give

better results.)

Their criticis m is well— taken , and our model also suffers

from these shortcomings. However , we feel that even the

existing models have not yet been solved efficiently. Our

efforts are a step in the direction of solving such models ,

and only after this can we hope to solve the even more

complex ones obtained by including the suggested features.

6.l .’4 Comments On Existing Solution Methods

A cross— section of recent work in this area is

represented by [C2] , [C3], [L7]. [Ml], [Wi]. A review can

be found in 1L7]. The solution methods var y from integer

programming 1C2] and linear programming [Wi ], to a

heuristical technique combining dynamic programming and

search methods Ill ]. All methods suffer from intractability

as soon as the problem becomes large. Typical prob lems

solved are given in Table 6—I , where we see that a prob lem

with 5 files and 20 nodes would be of the order of the
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largest solved , and would take 16 minutes of CPU time. The

area wnere we intend to research this problem —— 1 , 000 to

100 ,000 files and 10 to 20 nodes — -  is clearly out of range

of these methods.

Anot~ e~ shortcoming of the solution methods relates to

a problem encountered in everyday systems: how to allocate

a new file that has appeared in the system? The methods

offer no simple way of making this decision , short of

re— solving the whole problem for the new set of files.

Again , this is an area where we can make a contribution.

A useful method from our point of view , and one we

shall return to in sec.6.2.3, is that of Casey [03]. He

solves the allocation problem for copies of one file onl y,

w i t h  storage and communication costs , but no constraints.

Since we shall refer to his results , we summarize the

problem solved by Casey in the next sec t ion .

0
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Table 5—I : Typical File—Allocation Problems Solved

Ref~ rence Probl em Si ze C PU Time Com puter Used

[C2] Chu 5 Files 25 sec IBM 350/65
3 Nod es

Only 1 copy
of each file

[C3] Casey 1 File 2 sec IBM 360/ 9 1
1 9 Nod es

[Mi] Mahmoud 95 (Files x 16 mm XDS Sigma 7
& Riordan Nodes)

170 (Links x
Capacities)

:~o tes :

1. It is not possible to make an even comparison ,
since the assumptions used differ so much in each
case abov e. For exam ple , [C2] and [Ml] used
com plex cons tra ints , while [C3] had no constraints.
[C2 ]  did riot a l low copies of f i les , whi le the
others did . [Mi] includ ed decisions on
l i nk—capac i t i es .  Thus the above Table should not
be used to compare the different solutions , but
only to get an idea of the computer times involved .

2. Casey ’s num bers  were  for  a to ta l of 6 run s , so our
figure above is an average of those runs. Also ,
Case y solved for both a “ l inear ” and a “nonlinear”
relaying assumption for updates ;  the f igure above
is for the linear case .
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6.1 .5 Casey ’ s “One—File ” Pro blem

To avoid duplication of notation , we shall describe

Casey ’s problem for one file using our notation of

s e c . 6 .  1 .2 , but w i th  the value of the subscr ipt f fixed , that

is , a specified file. The given parameters are Query and

Update traffic (Qfn and Uf n ,  for each n) , file length (bf)

and storage cos ts  (C S ) Instead of deciding on query paths

and update paths as above , Casey assumes simply triat a cost

of unit transmission from node n to node ?~ is given (=d ~~~)~

and tnere are no link capacity constraints. The decision to

be made is only the file allocation (Xfn, for each n) , that

is , at which node should copies of f reside ? For a given

allocation , sa y X fn = l for n 6 N~~, the total cost incurred is

a function of

[6.1 .1] c(N~~)~~~~ ~~fn~~~~f~~ n~~ ~fn  ~~~~ d~~ + b fc~~Xfn]

This can be seen as follows —— for a given node , say n , all

updates arriving at n must be transmitted to all copies of n

(see first term above) , queries will be answered from the

“cheapest” node (second term) , and there will be a storage

cost (third term). C(N~~) is now obtained by summing over n.

Casey ’s solution method is best visual ized usin g the

hypercube of all possible allocations for file f. Fig.6— l

i l l us t ra tes  this for N= L~ nodes. Each vertex of the

hypercube represents  a value of the N—dimensional  b ina ry

vector (X f l ,xf2,..., x f N )  Each down ward edge joining two
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ve r t i ces  represen ts  an add i t ion  of e x a c t l y  one copy of the

f i le.  Let us consider  all possible down ward paths , from

(0 ,0 ,... ,0) to ( 1 , 1 ,... , 1) .  A theore m by Casey s t a t es  that

along any such patn , 0menever a cost  increase is encount ered

in a step from a v e r t e x  V to tne next  v e r t e x , that path can
4

be abandoned , since it wi l l  not lead to any points lower in

cost than V. Using this property, a “path tracing ”

algorithm of Casey can be used to f ind the optimal

al locat ion , without computing the cos t  of e v e r y  v e r t e x .

0000

1000 0100 00~0 0001

1100 1010 tooi 0110 ole ooii

1110 1101 to it 0111

4

— I I I  I

Fig. 6- 1:  Hype rcube of A l locat ions for ~4 Nodes

4.-.
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6.2 ANA LYS I S OF MODEL

6.2.1 Mathematical Formulation Of Problem

[6.2.1] Transmission Costs

Let TCf(X ,Y ,Z) ~ Total Transmission costs for file f
when decisions X ,Y ,Z are taken

/ . \N ‘ Cost of Updates Cost of Quer ies
~~~ <

‘ from n to all + from n to the
copies of f specified copy 

)of f

/ \
N ’  N K K
1< ’ Ufn ~~ (Xf~~~~C~ Yfkn~~)+ Qfn rc~ Zfkn ~

)
k:1 1

[6.2.2] Traffic over Links

Let Tfk (X ,Y ,Z) Total Traffic over link k due to
file f when dec is ions X ,Y ,Z are taken

( Traffic over k Traffic over k
N I due to Updates + due to Queries I

~~ from n to all from n for f >
nT~i 

copies of f

ti

~~~ <
‘ U f’~ ~~~ 

X f~ Y fkn~ + Qfn Zfkn ~>

1
[6.2.3] Remark: Note that re— arrangement of the equation

for t ransmission cos ts  [ 6 .2 . 1 ]  g ives

K
[5.2. 14) TC f ( X , Y , Z )  

~~~~c~ T f k ( X , Y , Z )
k:1

as is to be expec ted , since the total  t ransmission cos ts  can

be thought of as arising in either of these two ways . 

--—-------- ------- - _ _ _ _  - - -
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[t.2.5] Proolem Statement

)efine tr~e set ~ of a d m i s s a b l e  decisions to consist of

decisi ons (X ,Y ,Z) which satisfy the following:

X is such that each file f sa t i s f ies  i ts ava i lab i l i t y
constraint.

Y is such that for each f , the set of links
ik 

~fkn~~~
1} form a path fr om node n to P~.

Z is such that for each f , the set of links (k Z fkfl~~i)  -

form a path from node n to some node ~ with Xf~ :1.

Tne problem can then be sta te .d as

F N - F
[6.2.6] mm 

~~ 7 c~ b fX fn  + 7 
TC f (X , Y ,Z )

(x ,Y ,z)ew f:1 n~~1 f~ l

(storage costs) (transmission costs)

subject to

F
7 

b~’X~~ < S~~ for each n (storage capacity)
f:  1

Tfk (X ,Y ,Z) ~ pkh k for each k (link capacity)

6.2.2 Lagrange Multipli er Approach

For the problem above , we use conventional optimization

theory [61 ] ,  1L 5] ,  E L I ) ,  to formulate the Lagrang ian. Let

D Multiplier for T ra f f i c  Const ra in ts

Mult ip l ier for Stor ag e Constra ints

- - - - —  -
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The Lagrangian L is then given by

F N F
L ~~~ ~~c~ b fXfn + rTCf(X ,Y,Z)

(;-:,, n -i

N F
+ ( ~~ bç X f~ —

n~ 1 f~ i

K F
+ 

~~~~ (rT fk (X ,Y ,Z) — Pkhk)
k:1 f:1

Using [ 6 .2 . 14] and also defining the modif ied “ cos ts ”
Tu~~~ u + c

v £ ~ + cS

we rea r range L to get -

N K \,
L(X ,Y ,Z ,u ,v) r b frv n Xffl +~~~uk

Tfk (X ,Y ,Z)>
f:1 (~ n~ 1 k:1 1

N K

— rv~~~ 
— 

~~Ukpk hk + cons ta n t s
n~~1 k~~1

The saddle—point theorem [Li) states that a solution to

the original problem [6.2.6] will be obtained if we can find

(X* ,Y* ,Z* ,u* ,v *) which simultaneou sly satisfy:

[ 6 . 2 . 7 )  (X* ,Y* ,Z*) ~~arg mm L (X ,Y,Z,u * ,v *)
(X , y,z)ew

• [6 . 2 . 8 a ]  u* ar g max TL ,
~
t ,Z ,

~~!
)

u > c

[6 . 2 . 8 b]  arg max 3L ( X * , Y* , Z* , u * , v )
V > c

where the vector ine qual iti es ar e to be inter preted

componen tw ise .

_ _ _ _ _  _ _  _ _
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6.2.3 Decen tralized Solution Technique

This approach has a l ready been desc r ibed in Chapters 2

and 3, an d is suggested by the statements [6.2.7] and

[6 . 2 . 8]  above. The decentralized solution algorithm starts

with initial guesses for u and v , an d solves [6.2.7] to get

~~~~~~ ~~~~~~ and ~~~~ say.  It then uses these values of X ,

Y , Z, to modify u and v slightly, so that improvements in

the objectives in [6.2.8) are obtained . This process is

repeated until equilibrium is obtained , at which point the

val ue s of X, Y, Z, will be solutions to the optimization

problem [6.2.6). Details of this approach , as well as

conditi ons for its conver gence , can be foun d in [A l]. Our

aim here is to examine its applicability, which will be

brought out in the Theorem below.

[6 . 2 . 9 ]  Theorem 6—I (Decomposition of File—Allocation

Pro blem )

The optimization problem (for given u , v):

[6.2. 10) Find (X~~,Y’,Z’) = arg mm L(X ,Y,Z,u ,v)
- (X,Y,Z)6W

is equivalent to a set of F independent individual

file—allocation problem s, an d eac h of these indi vi d ual

problems is equivalent to the problem solved by Casey

(sec.6.1.5). [)
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Proof: ,Ie will omit terms not containing X , Y , or Z. Also ,

for notational convenience we define the following vectors:

1~ fvector x such that x n
- fn~S fnP~[o.2. 11 ] vector ~ such that 

~fknfl
fn fnvector z such that Zk Zfkn

In the above , if we restrict (X ,Y,Z) to range over W , then

the value s of x 1 ~fnF~ ~fn  generate the corresponding sets

of aimissable decision v e c t o r s .  These sets w ill be denoted
f fn ?~ fn  . -by X , Y , Z respectively. Al so define

d n~ 
= cost of minimum — cost path from node n to LI (for

given transmission cost vector u).

The problem is -

K N
mm :<: rukTfk cx ,Y,z) + b f~~~V n X mn :>

f= 1 t
\ k=i n= 1 1c x , Y ,z)ew

-9nich , using [6.2.i)— [6.2.14) becomes

F N (  N K K
mm ~~ <~ Ufn ~~XfLI 7u kYfknfl+Qfn ~~ukZfkn +b fv n Xfn >

(x ,Y ,z)ew f:i n i  t~ L I 1  k 1  k:l

Now , by consicering the indepen dence of certain decisions

(since there are no constraints for this problem ), we can

interchange some of the “m m ”  and “ p” operations , to get:

F N (  N . K

E ~~~~~~~~~~~~~ 
E< u fn Ex~ ~

fn~~~ fnLI (yuky~~
LI )

f:1 n= 1 ~ 11= 1 k:l

K
+ Qfn fP~~~fn  ( Eukz~~ + b fv~ x~ >

— k= 1 1
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Def in ing the set of nodes N~ = t n  x~~= l )  and using the

de f in i t i on  of d n~ 
a b o v e , tnis equals

~~~ ~~~
( U f nT X ~

d n + 
~fn ~~~~ d

LI 
+ bfV n X~

’ ’>
f:1 n:1~~ LI:i 1

which , for each file f , is exactly the file allocation

4 
- problem solved ~~ Casey [6.1.1). (The availability

constraint x~ex~
’ 
can be added or’ with ease . We simpl y

constrain Casey ’ s algorithm to start from the set of highest

vertices in the hypercube , which satisfy the availability

cr terion , i.e. are members of X1 . For a calcula tion of

availability, see [Mi]. Note that the above set of vertices

need only be calculated once , for each file.)

Thus the optimal decisions are given by:

• N (  N

arg ~~~~~ 7 <: U fn
— n=l~~

\,
.min

+ 0f~ LIeN~ 
d ñ + bfV nX >

/

[6.2.12] ~fnLI = arg 
~~~~~~~~~ 7~’kY k

~fn 
arg 

rninfn ~~~~~~~

Note that can be calculated using Casey ’s algorithm ,

while ~fnfI and are simply the minimum cost paths between

certain nodes , as calculated for dn~ 
above.  H
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[6 . 2 . 1 3 3  I n te rp re ta t i on  of ’ Theorem

We have thus derived rigorously the appealing result that

the problem f6 .2.10] cor b: apprca3h~ d ind~ v idual1 y ~
‘or Cd~~ i1

file. Note tha t  the actual costs are replaced ~~ the

artificial costs (u ,v) when we solve the individual file

allocation problem . Conceptually, we have created a “File

Manager ” for each file , whose job is to allocate his f i le in

tne cheapest  manner , for given ar t i f ic ia l  costs  u and

. [3

[6.2. 114 ] Remark: Morgan and Levin [M2) showed that the

multif i le minimizat ion problem could be decomposed into

individual file minimizat ion problems. Their proof however ,

was in the absence of any link capac i t y  or storage capac i t y

cons t ra i n t s .  Our result  is therefore much more

significant. []

6.2.L4 Conjectured Iteration Algorithm

Analogous to the File Mana gers solv ing [6.2.10) for

each file , we can think of a Network Mana&er who is in

charge of satisfying the network constraints , and who

changes the artificial costs by small amounts so as to get

an improvement in the objective functions of [6.2.8).

Inspection of these objectives shows that (in accordance

with our intuition) if the usage of a resource is over its

limits , its artificial cost will be increased by tne Network
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~anager , and vice-versa , except that the artificial cost

wil l  not be l o w e r e d  be low the ac tua l  c o s t .

L6. �. 15] Al gorithm (Simple Version)

The simplest decentralized solution algorithm would thus

consist of a FM (File—Manager) Subroutine , which would solve

[6.2.7] for each file , followed by a NM (Network—Manager)

Subroutine , which would change the resource usages as above.

The algorithm would iterate as described in sec.6.2.3.

6.3 ALG ORITHM FOR THE FEA SIBILITY PR OBLEM

The iteration method above is ratner crud e , and may

converge extremely slowly, or not at all. In this section ,

we describe a special case of the File Allocation problem ,

for which an efficient algorithm exists , and for which the

condi t ions for convergence are , by compar ison , cons ide rab ly

less s t r ingen t .

Suppose the ne twork  has a ve ry  large number of f i les

( s a y ,  10 ,000) and is managed by a network manager whose task

is to keep the network  opera t iona l , i .e. all the resource

usages within the cons t ra i n t s .  Suppose also that he must

find al locat ions (in r ea i— t im e )  for severa l  newly  c rea ted

f i les e v e r y  d a y .  In addi t ion he must per iod ica l ly

re—allocate existing files accordin g to their changing

characteristics , and according to the changes in total
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r~ sour-ce us~i~ es. His tasks can thus be summarized as:

1. Find an in itial feasible solution .

2. Find a rationale for allocating new files in

real—time (hence must be a simple algorithm).

3. Maintain the resource usages below their

constraints by periodic re— allocation.

The main problem above is to find a feasible solution , that

is , a set of allocations and query/update path decisions ,

which satisfy all the storage constraints , link capacity

constraints , and file availability constraints. For a large

number of files , this in itself could be a major problem .

An economic interpretation of this problem would be as

follows : Suppose a network has already been constructed

witri certa in storage and link capacit ies , and the additional

cost of using these facilities is negligible in comparison

with the original investment. Then the main concerr~ of the

Network Manager ~s one of feasibility. A design — time

interpretation of this approach would be to say it is of the

type advocated by Chang [Ci) , as described in sec.6. 1.3 .

The feasibility problem has already been studied by us

in Chapters 2 to 4~ Our results are applied below to the

file allocation problem . We only outline the application .

The detai~~s are an easy extension of the work in previous

Chapters.
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6.3.1 A pplication Of Our Results

E6.3. 1] 3tdte~nen~ of’ the Fea~~
’oility Problem

Find (X ,Y ,Z) such that

(X ,Y ,Z) e W (in~ 1udes avai la b ility constra int)

F
Ebrxfn < S~~ for each ii (storage capacity)
f=1

F
rTfk (X ,Y ,Z) 

.~~ Pk~’k for each k (link capacity)

[6.3.2) Statement of’ the Lagrangian Problem

Let u >0 and V >0 be given , ari d let X £ (u ’ ,v ’)’ . Let

1
fnf~ ~~~~~~~~~~ be as in (6.2.12]. The Lagrangian Problem is to

find the “decentralized solutions” XO ), Y(A), Z(A) where:

X (X) is such that Xf~ =

Y (X ) is such that 
~fknf1 

= Y~~
Z ( X )  is such tr~at Zfkn

(6.3.3) Existence Theorem

(For a formal statement see Chapter 3). This theorem says

that if the problem (6.3.1] is still feasible for a sl ightly

tighter set of storage and link capacity constraints , then

there will exist multipliers A* such that the decentralized

solut ions XC>’ ) , Y(A’), ZO~’), will be feasible for the

problem (6.3.1]. (3
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(6.3.14) Remarks

1. A major drawback to the use of decentralized

solutions in general , is the existence of problems

for which no decentralized solutions exist —— see

the remarks on “duality gaps ” in Chapter 2, Sec.7.

Our theorem above gives conditions which ensure the

existence of a suitable A* , and also , the remarks

in Chapter 3 show that these conditions are likely

to be true for a large system.

2. As pointed out in Theorem 6—I , for given A , the

decentralized solutions are relatively easy to

find . The problem (6.3.1] is thus reduced to one

of finding an appropriate A ’. This will be our

next topic of discussion .

6.3.2 Finding Suitable Multipliers

In Chapter 14 we gave algorithms for finding multipliers

such that the decentralized solutions solved the feasibility

problem. Consider the SALA— 3 iteration scheme (4.6.11).

The reader can see that a simple modification of this scheme

(replace the step “INITMCA” by a solution of (6.2.12), and

define the resource usage vector to be the storage and link

capacity usages for a given solution) gives us an algorithm

for the file allocation problem . Theorem 4— IV in Chapter 4
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shows that , under suitable assumptions , such an iteration

scheme converges to a solution in a finite number of

iter ation5 . at ~ better thafl geometric ~onve~~erice rate.

Discussions in Chapter 14 also demonstrate that the

assumptions are reasonable for a large system , and this has

been upheld by use of the algorithm in practice (Chapter 5).

6.3.3 Conjectured Efficiency Of Iteration Methods

Ex periments with the SALA algorithm (see Chapter 5)

have shown that it converges in 5 to 15 iterations ,

irrespective of the number of items (in this case , files).

The solution time on average is (say) 10 iteration cycles.

The time for each iteration is proportional to

(no . of files) x (time to solve one— file problem )

Now Casey ’s algorithm for solving the one— file problem has

been shown to be NP—complete EE2], as a function of the

number of nodes (N). However , for a small number of nodes

(under 20), the time to solve the one— file problem is still

reasonable (2 CPU—sees for 19 nodes , see Table 6—I). The

solution time for our method is therefore expected to

increase linearly with the number of files and exponentially

with the number of nodes. The time for Integer Programming

solutions would be ex ponentially proportional to each of

these . Thus our approach is expected to be superior for

problems with a very large number of files (1000 to 100,000)

and a moderate number of nodes (10 to 20).

- 
~~~~~~~~— - -- - -  - -- - - - --
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However , note that since the changes in A at each

iteration are small , it may be possible to re— solve the

une— uile problem s in a more efficient manner , using the

results of the previous iteration. This would extend

applicability to problem s with a larger number of nodes , and

is a subject for further research.

6.3.14 New Files And Periodic Re—allocation

The previous sections considered the (static) file

allocation problem . In an operational network , we have the

two additional problems , “new file allocation ” and “periodic

reallocation ” (see.6.3.1). The solution of these problem s

in an operational system has been discussed in Chapter 5.

The reader can see that this approach can be used for the

file allocation problem . Briefly, the new file allocation

problem is solved by using the current “costs” A to solve

the one— file problem for a new file (can be done in

Real—Time ) , and the periodic review problem is solved by

finding a small change in A such that the resulting

re—allocation will restore usages to their desired levels.

See Chapter 5 for details.

6.14 SUMMARY

We have demonstrated the scope for application of

decentralized solution techniques to the file allocation

- I
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problem . Our formulation allows the incorporation of

several different types of constraints , includin g the rather

complex file availability constraints . We outlined a

possible solution algorithm for the general problem . In a

special case of this problem , we showed how results from

Chapters 3 to 5 could be used directly for solution of the

problem . Our methods are efficiently applicable for systems

with a very large number of files , and a moderate number of

nodes. Further research may extend applicability to

problems with a large number of’ nodes too . The size of

problems that we can solve efficiently (10,000 files and 10

nodes , say) would certainly be considered intractable for

ot.her existing solution techniques.

I
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CHA PTER 7

CONCLUSIONS: A NEW APPROACH TO LARGE SCALE SYSTEMS?

We have studied the task of’ Resource Management in

Large Systems. This task was defined as having three main

objectives: Initial—Assignments , New—Assignments , and

Periodic Review. The importance of this task was

illustrated by examples from a large warehouse , and from a

com puter network.

The Resource Management task was formulated as a

certain “Feasibility Problem ” . The decentralized approach

was mad e possible by formulating an equivalent “Artificial ”

optimization problem , and decomposing it through the use of

Lagrange Multipliers. Chapter 3 studied the existence of

optimal multipliers for this artificial problem , while

Chapter 14 developed iteration algorithms to find these

multipliers. Chapter 5 demonstrated the application of our

techniques in a practical system , and Chapter 6 illustrated

the applicability of’ our methods to the file allocation

problem in computer networks . 

---~~~~ - _ _ _
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The advantage of decentralized techniques is that they

make possible the efficient solution of very large problems.

However , the applicability of these techniques has been

restricted to problem s which satisfy strict conditions. The

main contribution of our work is to extend the applicability
4

of decentralized solution method s to problem s where the

resource usage functions are not well—behaved . We give

conditions for the existence of decentralized solutions , and

also give algorithms to find such solutions , without

requiring strict conditions on the functions.

The type of assumptions and conditions required for our

results in Chapters 3 and 14 , reflec t properties of the

system as a whole , rather than the properties of the

individual items in the system. We feel that this is an

important viewpoint for dealing with large systems:

Results in man y areas of’ Large—Scale Systems theory

depend on str ict conditions on the functions

characterizin g the elements of the system , wnich we

might call the local properties of the system . We

feel that the structural properties of a large

system (which we might call the i~~~! 
properties)

may enable us to make statements about the system ,

without requiring stringent conditions on the local

properties. This may greatly extend our ability to

apply known techniques , and develop new technique s ,

for problem s in t t s area of Large Scale Systems.
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The advantage of decentralized techniques is that ey

make possible the efficient solution of very large problems.

However , the appiicaoility ox these techniques has been

restricted to problem s which satisfy strict conditions. The

main contribution of our work is to extend the applicability

of decentralized solution method s to problem s where the

resource usage functions are not well—behaved . We give

conditions for the existence of decentralized solutions , and

also give algorithms to find such solutions , without

requiring strict conditions on tne functions.

The type of assumptions and conditions required for our

results in Chapters 3 and 14 , reflect properties of the

system as a whole , rather than the properties of the

individual items in the system. We feel that this is an

important viewpoint for dealing with large systems:

Results in many areas of Large—Scale Systems theory

depend on strict conditions on the functions

characterizing the elements of the system , which we

might call the local properties of the system . We

feel that the structural properties of a large

system (which we might call the 
~~~~~

j properties)

may enable us to make statements about the system ,

without requiring stringent conditions on the local

properties. This may greatly extend our abilitj to

apply known techniques , and develop new techniques ,

for problems in the area of’ Large Scale Systems.

F ’

_ _ _  hh~
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~e have already noted , in Chapter 1 , the

grow ing importance of Large-Scale systems and

Decen tralized Control . In tnis context , two

fun damental questions come to mind :

1 . When is a sys tem “lar ge” ?

2. When is decentralized control “good enoug h” ?

The assumptions and results of our work suggest

that perhaps these questions should be related ~~

definition , that is , a sys tem should be cons id ere d

“large ” when decentralized control can provide

acce ptable performance.

I
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