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ABSTRACT

An optimal estimation scheme -s presented, which determines the satellite
attitude using the gyro readings and the star tracker measurements of a commonly
used satellite attitude measuring unit. The scheme is mainly based on the

M. exponential Fourier densities that have the desirable closure property under
i C conditioning. By updating a finite and fixed number of parameters, the condi-
c tional nrobability density, which is a exponential Fourier density, is recur-
II J sively determined.

Simulation results indicate that the scheme is effective and robust. ItI; is believed that this approach is applicable to many other attitude measuring
units. As t., linearization and approximation are necessary in the approach,
it is ideal for systems involving high levels of randomness.

When a system involves little randomness and linearization is not expected
to incur much error, the approach can provide a benchmark against which such
suboptimal estimators as the extended Kalman filter and the least-squares esti-
mator can be compared. In this spirit, simulated data for HEAO-A were processed
to compare the optimal scheme and the extended Kalman filter. The results are
presented.

I This work was supported by the Goddard Space Flight Center/NASA under
Contract No. NAS5-24217 and the Air Force 0 # . -
Force Systems Command, USAF, under Grant No AIFOSR-74-26 /iV 5-,y '/
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i 1. Introduction

The project being reported on is mainly concerned with estimating

the satellite attitude given the gyro readings and the star tracker

measurements of a commonly used satellite attitude measuring unit (SAMU).

The SAMU is used in such satellites as the high energy astronomy observa-

I tory (IIEAO) and the precision pointing control system (PPCS) [1] [2].

It is composed of 3 to 6 rate gyros and 2 star trackers. The satellite

attitude is propagated over a certain number of small time intervals by

integrating the satellite angular rates determined from the gyro reading.

Gyro drift rates, misalignments, and lack of a precise initial attitude

I reference then make it necessary to employ two gimbaled star trackers

jto provide a bench mark to the further propagation of the satellite

attitude. A star tracker utilizes an image dissector tube to locate

j the position of a star on its photisensitive surface. Due to the non-

stationary nonlinear characteristics of the image dissector deflection

Icoils and the white noise from the processing electronics, it is at this

istage that estimation is required.
A new representation of a probability density of a three dimensional

Irotation called the exponential Fourier density (EFD), was recently intro-

duced [31 141, which has the desirable closure property under the operation

of taking conditional distributions. Using the EFD's, an approach was sug-

gested in [3] [4] to derive recursive formulas for updating the conditional

densities of a rotational process given a nonlinear observation in additive

[ white noise.

(In this report, this approach is carried out for the aforementioned

satellite attitude estimation problem. The recursive formulas for updatingr
r
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the conditional densities of the satellite attitude are derived for arbi-

trary star tracker equations. These general formulas are included here to

accommodate possible future consideration of the distortion characteristics

of the image dissector deflection coils [11 (21 and possible future change

in the star tracker configuration. These general formulas also provide a

batsis on which special cases can be easily analyzed. However, they involve

a large amount of computation. Their feasibility for on-board implementa-

tion is highly questionable.

In a conversation with L. J. Lefferts of the GSFC/NASA, it was

observed by him that by choosing appropriately the mathematical description

of the star tracker configuration, the star tracker measurement can be ex-

pressed in closed form as a linear conbination of the rotational harmonic

functions of order one. This observation substantially simplifies the

optimal estimation scheme and greatly reduces the amount of computation

required in both designing and utilizing the scheme. A detailed deriva-

tion of thc associated equations is included in the sequel. It is these

equations that we use in implementation, simulation, and evaluation.

A tctal of 37 computer programs were created to carry

out essentially the following tasks:

TASK 1. Simulating the satellite attitude propagation and measurement;

TASK 2. Updating the conditional density using the recursive formulas

for its Fourier coefficients;

TASK 3. Integrating the conditional covariance matrix of the attitude

quaternion;

TASK 4. Computing the maximum eigen-value and its eigenvector of the

conditional covariance matrix and the estimation errors;

d
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I
TASK S. Searching for the maximum likehood estimate.

TASK 6. Plotting the estimation errors.

I A close look at the mathematical models (30) and (31) for the star tracker

jmeasurement, which are either used in [1] and [2] or modified by E. J. Lefferts

of the (;SFC/NASA, revealed that the measurement models are not observable.

" Me nonobservability causes a pseudo-image of each observed star. As the ex-

tended K-B filtering is merely a local processing, it does not pick up the

pseudo-image and is therefore immune from its effect. In contrast, the optimal

j scheme does not have any "blind spots" and thus assigns an equal probability

to the double images of each of the observed stars. An example illust-

I rating such nonobservability is given in Section VI.

I Fortunately enough, this difficulty resulting from the nonobserv-

ability can be remedied by introducing a "pseudo-measurement' of the

f second apparent star direction cosine u2 (k) with respect to the tracker

base reference axes. We note that u2 (k) is the component of the direc-

tion v :tor u(k) that is perpendicular to the tracker field-of-view and

( hence can not be measured directly by the tracker. However,from using

the satellite attitude estimate s(t) at the previous step t=k-1, u2 (k)

j can be predicted, which is to be used as a "measurement" of the real u2 (k).

Facilitated with such a pseudo-measurement, the pseudo-image of the ob-

Iserved star can be eliminated. For want of a mathematically rigorous

proof, only a heuristic explanation for this pseudo-measurement approach,

which is believed to be new, is given in Section VII.

Among the six tasks mentioned above, TASK 3 is most CPU-time-consuming,

[ which involves nine integrations on the 3-dimensional rotation group.
grup

IiU
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Encouraging is the fast and high concentration of the conditional probability

density at the satellite attitude under estimation. This phenomenon is

dictated by the theory and suggest two possible ways to get around the diffi-

culty of integration. One way is to localize the integration. Another way

is to use the maximum likelihood estimate instead of the optimal estimate.

Both methods were researched and implemented on the computer. The simulation

rtsults indicate that there is virtually no difference between the estimates

obtained in these two ways (at least for the models used in the project).

The maximum likelihood estimator avoids not only integration altogether

but also TASK 4-computing the maximum eigenvalue and its eigenvector. All it

needs is the updated Fourier coefficients of the conditional density, which

are obtained through simple algebraic formulas. Therefore, the maximum like-

lihood estimator is used in comparison with the extended K-B filter, a stan-

dard method for spacecraft attitude estimation.

A comparison between the K-B filtering and our maximum likelihood esti-

mator .s conducted by E. J. Lefferts of the GSFC/NASA. A. N. Mansfield of

the CSTA generated a sequence of 33 star tracker observations. The average

body rates were provided every one third of a second, and the tracker ob-

servation was taken every two minutes. The standard deviation of the tracker

measurement noises is 20 arcseconds. For such a low noise level, it is

known that linearization is a very good approximation. Therefore, it is

not surprising that the maximum likelihood estimator is not much better than

the K-B filter.

However, the comparison results indicate that the maximum likelihood

estimator is almost always better and converges faster than the K-B filter.

It is also noted that: (1) The simulated measurement data are in strict

S--- -----,-________

I .



accord with the system model, assuming all the true values of the model

parameters and the noise statistics are given. (2) There is no random

driving term in the state dynamics model for the spacecraft attitude. Under

I these two conditions in addition to the low measurement noise level men-

jtioned above, even simple-minded estimators can be expected to perform near
optimal. But these conditions are usually far from being met in reality.

JThe simulated examples in Section IX, used to compare the ML and the
optimal estimates, werechosen to test the robustness of our new schemes and

represent tougher working conditions than the real ones. The simulation

fresults to be depicted in graphs indicate that both the local integration
estimator and the maximum likelihood estimator track the signal nicely.

IUnfortunately, we did not get to use the K-B filter for these cases. But,

we believe that the extended K-B filter is no more valid especially for the

third example.

The robustness of an estimator toward uncertainty of system parameters

and the random driving term in the state dynamics is perhaps the most impor-

tant consideration in real world application. While there is every reason

to believe that the maximum likelihood estimator is superior in this regard,

the issue remains to be resolved in hopefully our next project.

A description and a flow chart of each of the computer programs are

given in the Appendix. A listing can be obtained from the data set call-

ed W9MXN.TESTAL.FORT, which is stored in the IBM360/95 at the (;SFC/NASA.

The programs involved in each of the aforementioned tasks are listed as

follows:

r
4.
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TASK 1. MOSSO3 (Main Program), TRANS, NEWO, QTN, QXQ, RANDlI

TASK 2. ADC, COEFF1, IlR12, FU, GAUSS, GAUSS4, NPAQ, INITPQ, FR, SD,

C3J, DRI

'IASK 3. ERR, INTGLE, SINCOS, INSDD, INTGL2, DMNO, BLKO, ESTIM

TASK 4. ERR, EIGEN, EIGVAL, EICVEC, QVQ, TRIDMX

TASK 5. MAXI, SEARCH, QTA

TASK 6. W6PLT, PLOTI, UPDWN

11. Propagation of the Satellite Attitude

The SAMU uses an inertial measuring unit (IMU) composed of 3 to 6

rate gyros, and two star trackers. Let the time t be indexed by a dis-

crete intergration stepT. Areading of the INIU is then taken, and com-

pensations are applied by the computer to yield the estimated rate act-

ing upon the satellite. This compensation is based upon the estimates

of the gyro misalignments and drift rates. The compensated output, the

three estimated angular velocities [W1,W 2,w3] of the satellite, is then

integrated to yield the estimated satellite attitude quaternion p =
T

as follows [1] 121:

k+l =k~k 1)

where

C0  83S -82So 1S 0

Q 3S0 0 1S0 2S0

02S 0  -e1S0 0 3S0

-OlS 0  -O2S 0  -O3S0  CO

10 20 30 0!



,1

S O  sin -- 0
0 sn2 0

0
CO Cos -2-

a. w .T, i = 1,2,3.81 1

As the 1MU parameters can be calibrated very accurately before the

satellite is launched and the gyro noise level is extremely low, the estima-

tion error of (W1 ,W2 ,w3) is assumed negligible to simplify the project. Hence

if the initial attitude were known and if the IMU and computer performed ideal-

ly, then the attitude could be predicted precisely for all future time and no

additional attitude measuring device would be required. Unfortunately this

is not the case and two star trackers are utilized once every N time steps

to acquire additional information about the satellite attitude.

As we are only concerned in this project with filtering tne star

tracker dat-, to estimate the satellite attitude, the attitude propagation

Ietween two consecutive star tracker measurements can be c~i:., i i to yield

the following state equation:

- (2)

where PkN and N-I
2k j=O QkN+j

We note that each time step in (2) is NT.

rLet Ek and qk be identified with their Euler angle representations

S k(k,Okk) and wk(ak,Bk,Tk) respectively. The equation (2) can thus be

r



rewritten in terms of Euler angles as

Sk+l (k+l '0k+l 'k~l) = wk (a kP8k'Yk) Skk,k,¢k) (3)

where e denotes the product rotation and (a,B,y) is related to the components

(D j of q through

1
2 2 + 2 2 22

11 +  2) C(2% 4 (2,31)1 (4)

sin a - - ((q)11C(2,)31 + (-,.21C941)/,

cos a = (() 3 1(Q) 2 1 - Cq)llCq)41)/X

coB - 2((q)  -+ q 0 ,

sin y - ((9) 2 1 (q) 4 1 - C9)11(0)31)/,

cos Y ' - ((!1)11(q)41 + (2)1C221)/'

Hence the time sequence [Uk.Bkyk] can be easily determined from the sat-

ellite angular velocity [w1,w2,'3] through (1) - (4). This sequence will be

used in the oitimal estimation equations to be derived in the sequel.

I1. General Recursive Formulas for Conditional Densities

The star tracker measurements (to be denoted by mk) are nonlinear

functions of the satellite attitude sk corrupted in additive white noise

(to be denoted by vk). A general mathematical model can be written as

mk a h(sk k) + vk (S)

where mk, h(skk), and vk are all r-vectors. The measurement noise vk is

caused by the processing electronics of the star trackers and it is customari-

I
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ly assumed Gaussian. We write it:; density function as

r 1

p(Vk) = (2 7T) 2(detRk) 2exp-- i? 1 R Rvkv) (6)k =1 dk V~ 6

where R j is the ixj-th component of the covariance matrix R of v = . V

As suggested in [3] ad 14], the function h(., k) for each k must be appro-

ximated very closely by a finite Fourier series. By a slight abuse of the symbol

h, it will also be used to denote its Fourier approximate, i.e.

= (k)D (Sk) (7)h(S kmk) mn mn k

where the rotational harmonic function D is defined, in terms of the Euler
mn

angles (4,ep), by

1

D (¢,0,p) : im-nexp[-i(m+n*)]d -e (0) i 2 (-1) 2  (8)mn --- n-

1

d (0) = [( 1+n) ---
(a~mn t (+m-t) 1 (t n-m) ! -n-t 1 (9)

2e+m-n-2t 0 2 t+n-m 0COS- sin22

I

As h is a real function, the above Fourier series can be written in the

alternative form, called the real form as contrasted to the complex form

(7),

h(sk,k) =2 hoo(k)Doo(sk) + h Imn (k)ReD (sk) + h4 (k)ImDZ (Sk0] (10)

m,n=-t

(m<n
or r'=n>OI
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where the real coefficients h Ina nd h 2nare related with the complex coef-

ficient ht through
Intl

mn 2 Imn - 21111

ThIe i -til comlponients of h arnd li will be denoted by h 1 and hti respectively.
inn mn

A S it of F ortrian I V p rogramls to compute III Is and the app rox imat ionill

error wais wri tt en and] successfuill1> tested onl the 1 BM360/95 at the (;SI:C/NASA.

Descriptions and flow charts of the programs are given in the Appendix.

it is asstined that the condi tional density of ski given III: {m l,..,mk-11

i s an exponent iaI Four i erI dens ity of order 2L, i .e.

1)( 1 e XI) 2L t1 -n D I(skI (12)

for k equal to a positive integer. We note that a rotational normal density is

an exponent ial Fouri er dens ity of order 1 . Trhe reason for choosing the order

2L will bccomne clear in the following derivation of the recursive formulas

for D

By Hayes' rule, we have

0P(sk~mk) C ckp(mklsk)P(sklm 1~(13)

C k =a normalizing constant

As wk is a group element, from (3) it follows that S w sl

Substituting this into (12) yieldswk S
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P(sk mk ) _ p ) (W-1

kminn Is
j:£,k- I. t -e

! = exp. P ~mn Dmq(Wk-1)Dqn(Sk)

ee ptk-I Dt ( -1 )) t( (14)

q=-

where 21 and the second equality holds becase Dn is a matrix

3 i= m,m=-e
representation of the three dimensional rotation group.

From (5), (6), and the definition of a conditional density, it is clear

that

Ir 1 rp (n (eR) 1 3 - M IJk- hi(sk k) (m3-h j  k))
PkSkO = (27) 2dtk) 2exp -k y.R (s k ,

r L i L L I

= 1 F, k(m'- F, hY (k)D(mns ))(mj- T hin(k)
i k k2 iktl=0 m,n=-. mn k) '=O m'n'=-iw n

P[ L t
= C exP C O + E E: C1 D1 (sk +

0 P=O m,n=- mn mn k

1 L e l
LI ' I l
E C~ff(m,n,m',n')Dm (Sk)Dn (sk) (15)

tjL'=O m,n=- l m',n -k n

Swhere
r

)CO =-2 m mj

i ,j=l

!r r

Cn Rj(mih (k) + m h i(k)) = E Rmkhm(k) (16)
I ~i ,j=l i,~

I
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r

C a (m,n,m',n') A ~- Rij h ti(k) h':J(k) (17)

i,j=l

Furthermore, it is known [5, p.160] that

DPI (s )z E~ ( 2 q+1) (-1 ) m,n q" q, Di q~j(8
IVn M n),,(s0)mim' _nM n n' n '' II m'n'sk) 18

in" ni + m,

m n pL (+k + 1+l-)! (j'i!j - in) - !(kn) (k -n)!f

Z (1 )t(Ze+j-n-t)!(k+n tt)! -()

t (,e+p-,) ! ft+k-j-p) !t! (ik+j-t)!

where the sum on t is c;ver values such that the argumehts of all the

factorial functions are nontnegative. Let us define the symbols:

Y q f m,) ' C'ti,n,m1,n')(2q+l) (_I)il-" e) ( q,) (20)

rq (t, t m",n') M1 (21)
-tiOnen,

n14

MI, q :mi
n"-1tn :S"+YI
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I L•= (22)

m n 
m , --

2

I jt -t' I < q< +V

IJsing essentially (18), the last term in (15) is transformed into a linear

combination of the rotational harmonics as follows:

L C l'

! r. . Z ' C(m,n,m',n')Dt (s-), (k
"1,1=O m,n=- m',n'=-p'

L t V t+'m

, ' m ,n = -t m ,n e=- t ' q~ q o0  l m n il m ( s )

2L q 111 
q @ I

q=O in 'n" qJV

- 2L q

it- mn~s) ~ (23)
q= m,n=-q

Substituting (22), (15), and (14) into (13), we obtain

k 2L Z Z D 1I p sY k ) exp E E E ,,k-1Z k-
L =O m,n=-t q=- q

+ r( + *[O,L ] (t) C Otmns, )  (24)

I
the constants Ck, c'k and CO being absorbed into the coefficient of D~0s)= 1,

I

• C•.
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which is a normalizing constant, and X[OL] is the characteristic function for

[O,L].

We note that p(sklm k) is also an exponential Fourier density of order

2L. Comparing (12) and (24), we obtain the recursive formula for p n:

Ptk L , tk-lD -11 + 1t + X ,LI(t)C1 (25)
q=- Pqn qm - m , m

where r and C are defined by (20)-(22) and (16).

The function enclosed in the brackets in (24) is a real function. It is

often easier to express it in the real form of the Fourier series. Using the

notational convention established in (10) and (11), the equation (24) can be

written as

P(sklmk) = exp= [L ploo(Sk) + Zt (Plk ReDtm(sk)

m<n
or m=n>O

~~1+ ek I E s(26)
2n mn k)

1 'Ok
21- 0 = the normalizing constant

k and

The recursive formulas for p, P2 n can be deduced from (25) as followvs

Pqn Dqn(Wk-1) qffe_21 (W + iImD q(wk_1

q&&e qn qn k-~l q= T Pqn -Y2qn RCqm k- i gi Um(k-1)

-q=-

E.]
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I pt~-IReD t(w- + p tk ImD (w- I

4= ln qm k- qn qm k-I

+ i Pt;k-l I (- I p tk-1I Dt(-11I

in kInmD (w l~i k 2n R~l(k.i

2~'= (Rk' mkhlsf -l m-t nkh2

q-q'=O < ~ lq-ql< q f q'q' t m-t

n-ql<s<n+q'

r

2s 1,m-t,n-s+ its 2,m-t,n-s

tk 2R k 1k 21kf

Plmin 2Rpm , P2m = -2m

ftk k--i 1 -if-k-i 1 I
Pm = ReDqm -1..) + P2;n Iflqm (k.1) )

+ [ 1,]iJ=l k q,qlaO -q:st,s~q4

Iq-q'1gsq+q' m- q 'St:Sq1
n:;q .Ssln~q f
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qs ,m-t,n-s 2ts 2,m-t,n-s
E "" qi h q'j~- qi sq'j (27)

t m-t -m s n-s -n ItiIm n- 2 ,mtl-

k f -I fk-1 f -1
RI)m(w ) Plqn tml),q (wk- I

r

XOLI( )-- Rj 'i hJ + - z h-1)m
- n l 2t

i,j-- q,q'=O -q<t,s<q
jq-q' j<£<q+q'. m-q'<t<q'+m

n-q'<s<q'+n

(q q' \ q q' t r q h h J  + qi q'J h28
R k h 2ts I m-tn-s hIts 2,m-t,n-s (28)

t M-t -m s n-s -nijl

IV. Star Tracker Equations in Tery's of Harmonics

A star tracker is a telesccipe-detector system mounted with two degrees

of freedom to the satellite. The field of view of the detector is a 8 by 8

degree window whose center point is on the optical axis and whose plane is

normal to this axis. A star appearing within this window is sensed by the

detector and, after some electronic processing, results in the output of two

voltages representing the position of the star within the window along two

mutually perpendicular axes.

When a star tracker observation is taken at time k, the star is identi,.

fied from a star map and its apparent direction cosines a(k) = IaI(k) , a2Ok),a 3 (k)]'

with respect to the earth-centered inertial set of coordinate system can be easily

computed from the absolute velocity of the satellite. The apparent star direction

cosines u(k) = [ul (k),u 2 (k),u 3(k)]
T with respect to the tracker base reference

axes are related to a as follows:

ii

* -- - - - -n



1 -'7-

u(k) = A t A I(k)a(k) (29)

I x x xz

where A is the constant 3 x 3 orthogonal matrix representing the orienta-
lt

xx
tion of the tracker base reference axes with respect to the satellite base

reference axes and A I(k) is the 3 x 3 orthogonal matrix representing the

satellite attitude with respect to the earth-centered inertial set at time

k.

The matheniatical model used [1] and [21 for the relationship between

the tracker output voltages [yl(l), Y3 (k)] and u(k) is the following:

y 3(k)] [ u1(k)/u 2(k) 1 n(k)

y3 (k) U 3(k)/u 2(k) + n()(0L=A I (30)

With [nl(k), n3 (k)] denoting two independent white Gaussian noise, the model

is only an approximation. It was pointed out by E. J. Lefferts of the GSFC/

NASA that the following model provides just as good an approximation to the

relatiojiship between [yl(k), Y3 (k)] and uCk):

Y3(k) Lu3(k)J n3 (k)

It will be seen later that the components of A I are simple linear com-
xz

binations of the rotational hermonics of order 1. Whence so are the components

of u(k). Using the model (31), we do not need to use the set of Fortran IV

programs provided in the Appendix to compute hu (k)'s in (7) to approximate

h(sk,k). Above all, the star observed by the star tracker changes from time

Ii
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to timc and thus h(sk,k) is a time-varing function. Using the Fortran

programs to compute h mn(k)'s for each star observation may amount to

unbearable computational burden, especially when the estimation has to

be done on board the satellite. The use of the model (31) not only

eliminates such a difficulty but also keeps minimal the number of

harmonics required to update the conditional densities of the sat-

ellite attitude. In the following, we will restrict our attention

to the model (31).

The SAMU uses two star trackers. We will use a single underline

and a double underline to refer to Star Tracker I and Star Tracker II,

respectively, e.g., (Hl , H7, u_3) denotes the apparent star direction

cosines in the Star Tracker II base reference axes (-2,-2). When

the underlines are omitted, the equations are valid for both star trackers.

We pool the measurements from the two star trackers and write

1 I hl )
k (Sk,k) vk

m2 h 2 (s )v2
mk 2(sk'k) V2

k ks k
3 mk = h(sk,k) + vk h + (32)

(sk,k)V

4 4 (
Lm k J s,

where

hI  -I (Sk k) Hsk)

h (Sk, k) u3 (sk k)

3 ( 33)

h3 (Sk, k) -u1 (sk k) (

L (skk u3 Skk)

'4.... •i
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BWe will now exprvss uas a linear combination of the rotational
hairmonics of order I : We recall that

1

mt (0)a ( ,m n (& m-) !(t -m) ! t !Ge(-n-) 2

- tjoul 2 sin 2n.m&(34)

D e) (0,0 Mip mneXp Om (v + ip)n] t ())( 5

I whence

II
I-10 D00 ReD 0 1  us-~ sins cose -2 -sinpsin6

1 1 1 1 1 ( ( e
lmDB' 01 ReD 11 --iin(.-q*)(1-c,6se) , cs~psine -i s+ (coe

The matrix A Ican then be expressed in terms of the harmonics as follows:

xz

F coscos5sincosesin costpsin +sin~pcos~cose sin1sine]
A I -sinqlcosO-cos~isin~cos) -sin~sinq,+cos~cospcosB cos~jsine

Xz L sinfsine -cosfsin6) cosej

ReD I-ReD -lmD I- ImD I /2ReD 1

11-1 11 01

-aD 1  +lmD I ReD 1 1+ReD 1  l1  (36)-11 01

-1 -10- 00--
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Let the ixj-th component of the constant matrix A be denoted by m...
xx 1

From (29), it follows that, for j = 1,2,3 and for both star trackers,

u (k) = M D3a3 (k)Dos /2k) m J I(k)ReDl (sk)+(mj2a2(k)-m lal(k)ReDll(sk)

- mjla (k)ReD Il(Sk)+(mjla(k)+mJ a 2 (k ) )R e D Il (sk

+ [€m a (k)ImD I (s k ) - (mjla (k)+m al(k)ImD I (S )

- mj 2 a 3 (k)ImDl(sk) + (m 2al(k)-mjla 2 (k))ImD1l(sk)] (37)

The Fourier coefficients, hmjk)s and -Jk)'s for h (skk) can be easily

identified from (33) and (37) and will not be displayed here. We only

note that they can be very easily determined from the star direction a(k)

and the recursive formulas are then readily applicable.

V. Updating the Conditional Densities Using Star Tracker Measurements

We .ill now display the recursive formulas for the conditional densi-

ties of the satellite to be used in the next two modules of this project..

The star tracker equations are (32), (33), and (37) developed in the pre-

vious section. We assume that the measurement noise process vk has statis-
"iO

tically independent components, i.e., R i , if i~j.
k

We recall that the function h in (33) is a linear combination of
the first order harmonics, ReD 1  and ImDI Hence hqi hmqi =0 unless

mn mn lmn 2mn

q=l. This observation greatly simplifies the multiple summation sign in

I!

'" m j m II I I I I II I
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front of the brackets in (27) and (28):

qV='O - q!.t, s q max(-lm- 1)< t!min (l,m+l)I q-q'I,< q~q' m-q'.ct~m+q' max(-l,n-l)<s<min(1 ,n+l)
n -q I 'sc.n+q'

In view of the assumption that R'3=0, for i~j, we obtain from (27) and

J(28) the following recursive formulas: f or F-= I, 2 and m, n

=k q-c -'ReDqm (wk- I~ + pt2qn ImDm(Wk.1 )

xii Llt Ze [ 4m-n+l

j=l max(-l,m-l)5t.:min( l,m+1)

I

2ts\t \ m-t -mJ s n-s -n ]j.=1k its l,m-t,n-s (8

LZI ~k1 Z - ~ m

t2k f - 1 t I z -1
P2mn 1)t2qm RDqm~w-)-PIq Im m k-I)

+ 4t [( )m n+1

MYE Rjjmjhj +

max(-1 ,n-1)!.smin(l ,n+l)

+ *h1j h Ijm s) (39)
Its ,-ns
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where, from (19),

i- iiiax (0, -in) (--)(~)Ir ~r

The conditional density p(s k/mnk ) is then obtained through (26):

k tI Z~0 ~ 7 Re s +t Pp'ImD Jpsm) 7XI exp D0k + L_ eD ((S (26)
Pkl O-0 LP0 0 k n,= lmn Mu1 k 2mn itn kJ

m<fl
or m=n>0

1 Ok
- p100  the normalizing c.instant

it is noted that there are 35 Fourier coefficients, pl and p 2mn which are

recurTsively computed by reasonably simple scalar equations (38) and (39).

11. Nonobservability of the Star Tracker Equations

lie ccnsider the mathematical model (31), to be repeated in the fol-

lowing, for the star tracker meaisurement in this section. Our argument

here applies also to the model (30). We recall that the model (31) is

yi (k) _u I(s k)k) n 1(k)
= + A31)

u(s ksk) A 1AI(k)a(k) (9
x x xz

where a(k) is the apparent direction cosines of the observed star with respect



-23-

to t he carth-centered inert ial set z of coordinate system, A tis the
x x

constant 3x3 orthojonal matrix representing the orientation of the tracker

t
base reference axes x with respect to the satellite base reference axes x,

and A l(k) is the 3x3 orthogonal matrix representing the satellite attitude

xz
with respect to the earth-centered inertial set at time k.

The SAMU uses two star trackers. We will use a single underline and

a double underline to refer to Star Tracker I and Star Tracker 1I, respective-

ly. When the tnderlines are omitted, the equations are valid for both star

trackers.

We pool the measurements from the two star trackers and write, suppressing

the time variable k,

1 Fh 1 (s)

2 2 2
m h (s) v

S = m = h(s) + V = + 3 (32)m h3 (s) v

4 l 4m~h 4 , (s)v

whe re

113 (s)

/ : =(33)

I / 3 (s)

L

We say that the measurements m are not observable, meaning that there

are two different states, s and f, that the measurements m can not distinguish,

i.e., h(s) = h(f). This nonobservability is essentially caused by the lack

of information about u2 (s) in the model (31).

I
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The vector u(s) is the apparent direction cosines of the observed

star with respect to the tracker base reference axes and its second com

ponent u2 (s) is either positive or negative /1 - u2(s) , u2(s). Further-

more, the star tracker looks in the positive direction of u2 (s). Hence,

u2 (s) = /1-- u-(s) u 2 (s) and u 2 (s) is completely determined by ul(s)1 3
and u 3 (s), which are directly measured in (31). Indeed, the physical

system that (32) and (33) try to describe is observable. But the direc-

tion of the star tracker is by no means taken into consideration in the

model (31) (nor in (30)). We will now illustrate this point with the fol-

lowing example.

Example. Assume that

A t 0 1 0 a
X x

0 0 1L0 -

1 0 0 0

A = 0 0 1 a= 0
t =
x A

0 -1 01

1 0 0

s =A I1 0 1 0

0 0 1

1 0 0

f=A : 0 -1I 0
Xz

0 0 -1



-25-

Simple calculations yield

0
= A t s = 1

xx 0

0
u(s)= A s a= t

t 0

u(f) A t f  - -1
x x

0

uff) =A f a l1
t x

I elce -u~s) 0 -u1  f

u(s) 0 u3 (f)

hu 3() 0 ( h(f)

-u (s) 0 -U (f)

0 u3 (f)

We note that this example is also valid for the model (30) for which

h(s) = [-'l(s)/u2(s),u3(s)/u2(s),ul(s)/u2(s), u_3 (s)/u 2 (s)]T

As the star trackers look in the positive u2 direction, the direction

cosines u(f), of which the second component is negative, can not be those

of the observed star. They only form a pseudo-image of the observed star,

I
E.



- 26 -

which the weastrements ( 32) and (33) can not distinguish from tile real

image of the same star.

VII. Remedying the Nonobservability

We recall that the conditional density p(mklsk) is used in calculating

s Inmk ) and that

r 1 r
) (mk S (27T 2(detRk) exp _ R (mk-h (Skk))(mj-hJ(skk )  (1S)
pktsk()= 2x I- y L m hk k , k kPk)1(5

i,j=l

where r is tile dimension of thi measurement vector m. From this equation,

it is clear that p(mklsk) takes on the same value at the state s and at the

pseudo-state f resulting respectively from the imageb u(s) and the pseudo-images

u(f) of the observed stars, since h(f) = h(s).

In order to eliminate such effect of the star pseudo-images, a new ap-

proach, which we call the pseudo-measurement technique, was developed. The

idea is pretty simple. Supposing that u2 and u were directly measured and

(32) and (33) became

n h I (S) v
h 2 ()2

m h (s) vm3 h3 (s 3
Sm4 m = hos + v= h~fs) + v4 i41

m 4  h 4 (S) 4(1
5v

m h (s)
6 h 6 (s) v 6
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ard hu (s) _ _U (s)

1h (s) l3 (s)

34 =1(42)
hW Cs) -uI Cs)

h4(s) u3(s)Ih5(s) u2(s)

h -h6(S) !2 (s)

h (S) =2(S

the equation (15) would remain unchanged with r 6 instead of 4. Of course,

6 A
mk and mR are not really available. However, if the estimate s k- of sk- 1 is

good, then u2(wk._l o k and u2(wklOSkl) should be equally good estimates of

11 and m6 .  It seems only natural to use and u2(w as
k' _ 2(klosk- d =2(wk-losk- a

measurements of u2 (s) and u2 (s) , respectively.

Now setting

5
m =u2(Wk-1osk l) - u2(s

6 V U2(Wk .3k) u u(sk=

5 (43)

m = u2(wk_1Osk_1)

we retrieve exactly (42) and (43). Here, the question is whether we still

have (15) with r=6. This obviously depends on the conditional sampling dis-

tributions of v and v6 in (44) given the state sk at time k which unfortu-

nately remains unclear as of today. We note only that Sk-1 is a measurable

function of mkl 1 = {ml, -A mk_1 } and hence vS (k) and v6 (k) are conditional-

ly independent of V'(k), i=l, ... , 4.

We recall that the nonobservability problem arises from the missing

sign of u2. Perhaps we do not need all that much information about u2 as

might be possible to obtain from a precise expression of the conditional
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sampling distribut ions of v and v , as long as the effect of the pseudo-

images of the observed stars can be eliminated without affecting (15) with

r=4. This can indeed be achieved by assuming that the conditional sampling

distributions of v5 and v6 are normal. First of all, the equation (15) is

valid again with r=6 under this assumption. Secondly, by setting R55 and

R6 6 equal to 4, we assign a probability of 95% to a positive value of u2,

leaving the equation (15) with r=4 relatively intact. Thirdly, in view of

the central limit theorem, the assumption may not be hard to swallow after

al 1.

VIIl An Estimation Error Criterion and the Optimal Estimate

In order to define an error criterion for orientation estimation, it

is necessary to have a measure of the distance between two orientations.

We will first describe such a measure, using quaternions. We recall that

a rotation about an axis in the rirection of a unit vector [1e,m,n]T through

an angle is represented by the (unit) quaternion

q = [ql,q 2 ,q3,q 4 ]T = [esin 1, msin2 , ns-in c, Cos T

Given two orientations, the minimal angle in radians required to bring

one into the other is a natural measure of distance between them and defines

a Riemannian metric on SO(3). If the orientations are represented by the

quaternions, q and p, and the minimal angle is denoted by p(q,p), then we

have qp cos 1 p(qp). As (1 - cos p) is a monotone increasing functionhaeqp = 2o -Pq~) s

of p, a measure of distance between p and q can be defined to be -(I
2

cos p (q,p)) = I (qTp) .It can be shown that if the orientations, q and
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p, are described by the 3x3-dimensional orthogonal matrices, Q and P, then

I this measure of distance can also be expressed as .1 (3 - tr pQT).

We are now ready to define the error criterion for orientation estimation.

Let q be a random quaternion and p its estimate. Then a measure of the esti-

jmation error is

J(q,p) = E(I - (qTp)2) (44)

If the probability distribution of q is given, the estimate p which

minimizes J may be obtained from observing that J(q,p) = 1 - pT E(qqT)p

It is well-known that the quadratic form p'Vp of the positive definite

matrix V = E(qqT ) is maximized when p is the unit eigenvector associated

with the largest eigenvalue1 of V. Moreover, the maximum value is A.

IHence,
min J(q,p) 1 - TE(qqT)jI P

where = the maximum eigenvalue of E(qqT)

q= the unit eigenvector of E(qqT)
associated with X .

The probability Jistributions on SO(3) are expressed in terms of the

I Euler angles ( ,0,P) in (26). The following relationships between the

quaternion components and the Euler angles will have to be used to calcu-

late the optimal estimate q and its estimation error 1 -X:

!
q= sin 0cos 2

2 2

q sin e sin .-
2 2[ . __

q3 = cos - sin 2

Jq =cos 2
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IX. Simulation Results

Three simulated examples with various system parameters and noise levels

are given in this section. They were chosen to test the robustness of the

optimal scheme and therefore represent tougher working conditions than the

real ones. The measurement noise, v in (42), is set at two different levels

to illistrate how the noise level can affect the estimator performance. The

" i -4
variance, 1/H , of v is 1/36 for A part of the examples, and is 10 for B

part of the examples. The reader is rerferred to the Module II report for

the specification of all the system parameters.

The four graphs of the A part of the i-h example are, respectively,

GRAPH (i, A, 1):

the error, ERH1, of the optimal estimate obtained by

local integration

the error, EP2, of the maximum likelihood estimate

GRAPH (i, A, 2):

The same as GRAPH (i, A, 1) except that the vertical scale is changed

and the points at k = 1 and 2 are removed to magnify the vertical variations.

GRAPH (i, A, 3):

the difference, ERHi - ERH2, of the errors

the distance between the maximum likelihood estimate

and the optimal estimate obtained by local integration

GRAPH (i, A, 4):

The same as GRAPH (i, A, 3) except that the vertical scale is changed

and the points at k = 1 and 2 are removed to magnify the vertical variations.



-31-

I The symbols to be used to specify the system parameters and noise

levels are defined as follows:I
1. The attitude propagation equation is

!
Sk+($k+1 ,  0 k+], k~ 

)  = Wk('k, k,Yk) 0 Sk( ,kP k (3)

. he initial attitude at k=0 is represented by a quaternion s 0 [ql,q 2,

4 q3,qT41

3. The initial distribution of so has a rotational normal density

4 2
P(S0) = c exp [a ( I biqii=l

4. The Euler angles ck' k' 7k are obtained from multiplying the constants

ci, c2, c3, resp., by pseudo-random numbers from the uniform distribu-

tion on the interval [0, 1].

5. The star tracker measurement and the pseudo-measurement equations are

= hi (sk, k) + vi, i=l, ..., 6 (42)
1

where - 6

P(v) (2) R R(v))

6. The apparent direction cosines u with respect to a star tracker and those

a with respect to the earth are related by

Cr

u(k) A t A 1(k) a(k) (29)I x x xz

14
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EXAMPLE I.

so (sin-( cos!-)

sin7 (sin in471

5i 1T 1

0 sn-(cosI--

OST

1 36< 5 16
siT 2ii 511

2in 36 n~-sny

- . S•r 2n 5
b 3 sin-6-cosT

Sitcos-
36

a = 2.0

[c1 . 2' C1 Ts, io1 ,

V 36.0, i=l, ., 4

R 4.0 , j=5 and 6

0 o4

A t = 0 1 0

- 0 01
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I ) 0, 1

At x I
-- -1 0

I
I

PART A

. c

- 4

I0.2

GRAPH (1, A, 1) GRAPH (1, A. 2)

- I

- - -

I jj0- ... ........I -' ,: ', - I : z 5 l

IGRAPH (1, A, 3) GRAPH (1, A, 4)

I "3€ "
I r t ... . .......- - ---,¢ £

! +I- -" . . . . . .i -
I."..t -A

| E.+ \,
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c C S_ 
_' I

GRAPI (I, B, 1) GRAPH (1 , 2)

L 
CCa.

,:

I I o 1

- I (0.0--
i - i. - - i-

0 50 
I S 2 0 i s s o200

GRAPH (1, B, 3) GRAPH (1, B, 4)

EXAMPLE 2.

sin4 (sinjcos ")

Sinf,. "(s fi !i 7 ]

sin7(cos i

COST

S! (sin!~ c s".)
b 3 3~2

2 3 3 !(cos-

b3  SfCOS )

4 cos 4
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a=2.0

[c , c 2 , c 3 ] =[27 2t T

R = 36.0, i = 1 .... 4

R = 4.0, i = 5 and 0

2 2

At 0
x x

o _1

--5- 0 01

A t 0:1x x K 01I

1),RT A

-1 04 -: A-00-

0 0:

o o6 _ -
___°-_...__i

n 3•

GRAPH ( A 1) - (

i GRPH 2, A I)GRAPH (2, A, 2)

S



I , i - - i i°-

c I.-

C ,: I I C.2O 7 ;X

0. 3

-: I A . I
I _ _ 

I •

(I 75 20 25 30

GRAPH (2, A, 3) GRAPH (2, A, 4)

PART B

4,0 
"  

- ,i 0* '7

I i ... ° I ... -I' ..- . .. ..

.i1 _

___s 0.0-

] .0

it f25 28 n5 2

GRAPH (2, B, 1) GRAPH (2, B, 2)
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EXAMPLE 3

S o I
0

b 2  ] 0

0

b

b 0
)3

b 4

a =2.0

[ci, C2 c.~ 2= [ 27!,

R =36.0, i = 1, . ,4

R =4.0, = S and 6

A t 0:1
x

0 t 0 1J

A t 0 0 I
-

0  -1 0]

I.-



Remark. Let us recall the nonobservability example given in Section II.

The pseudo-state of the real state s o is exactly [bl, b 2 , b3 , b4 ], which

is chosen to be the mode of the initial density of s O. The pseudo-measure-

ment technique thus picks wrongly the pseudo-state at the first time-point.

This example was in fact deliverately designed to work against the pseudo-

,,e:stircment technique. The simulation results to be depicted in the fol-

lowing graphs indicate without doubt that the pseudo-measurement technique

has unbelievable self-correcting power and switches to the real images of

the starsvery quickly (at the second time-point in this example).

PART A

_~~ 0.0 --. *.-

- __.se..- . .. ..-.

' I

I *t

oe ... ..:" 7: ..0 .. .... 4 

GRAPH (3, A, 1) GRAPH (3, A, 2)

I , -; . .. I

SA I "

, I 0. I

oi ' ... i ... .. .. . -- i 1

0 0

.. i 13 ft r 3 1 1Yt 1 I
GRAPH (3, A, 3) GRAPH (3D A, 4)

1 )Ii
" " " --- . . . . . - . . . . .I .. .. i .. . -I . .. ...



PART B

1 :.,: " I 7 [4
I . i 1 v .1I

C It-

7 '1 .f ' :

GRAPH (3, B, 1) A ( B, 2) • -

GRAPH (3, B, 3) GRAPH (3, B, 4)

I I .1 - I- . . -

I ' ... .. -... 1.. I ! 1

I I ' I I I"

GRAPH (3, B, 3) GRAPH (3, B, 4)

II. Comparison Between the Maximum Likelihood Estimates and the K-B Estimates

We note again that it takes much more CPU time to compute the optimal

estimates even by local integration and, based on the simulation results, the

local integration estimates are not much better than the maximum likelihood

estimates. Therefore, a comparison was made between the K-B estimation and

the maximum likelihood estimation instead of the optimal estimation.

The comparison was conducted by E. J. Lefferts of the GSFC/NASA. A. N.

Mansfield of the CSTA generated sequences of 33 star tracker observations.

The average body angular velocity was provided every one third of a second,

and the tracker observation was taken every two minutes. The standard

deviation of the tracker measurement noises is 20 arcseconds.
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For such a luw noise level, it is known that linearization is a very

good approximation and the extened K-B filter is expected to be near optimal.

Indeed, our comparison results confirmed these long-standing conjectures.

Two typical examples were included in the following. We note that the maxi-

muwi likelihood estimates are almost always better and converge faster than

the K-B esti'maLus. Ilowever they are close, especially in the steady states.

The system pa;ramieters and the noise statistics for the two comparison

runs to he reported in the following will now be given, using the rymbols

established in Section IV of the Module II report:

a = 2 * (180/2Tr)
2

Ri = [20 * (1/3600) * (i/180)]-2, i=l, 2, 3, 4

Rii = 0, i=5, 6

1 0 0

At 0 1
xx

1 0 0

t 0 o -1
x X

= 1 0

The "our graphs of the i h example are, respectively,

GRAPH (i, 1):

the angular error in arcseconds of the K-B estimate

the angular error in arcseconds of the maximum likelihood

estimate

GRAPH (i, 2):

The same as GRAPH (i, 1) except that the vertical scale is changed and

the points at k=1, ..., 4 are removed to magnify the vertical variations.
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GRAPH (i, 3):

the angular error of the K-B estimate minus that of the

maximum likelihood estimate

(;RAPH (i, 4):

The same as GRAPH (i, 3) except that the vertical scale is changed and

the points at k=l, ... , 4 are removed to magnify the vertical variations.

EXAMPLE 4.

, K L L J 

I 

7* oo. : ! .. .. AI_9 Z 39 3

....t.. .. 0 2 !i !
GRAPH (4, 1) GRAPH (4, 2)

° I I t

- " - " r

0 1 ~1 . -+1 6 " i to 2! 3 3

GRAPH (4, 3) GRAPH (4, 4)
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EXAMPLE S.

GRAPH (5, 1) GRAPH (s, 2)

1.4

--]~ r] i [,I I I

SI r i!14 l

GRAPH (5, 1) GRAPH (5, 2)

-'.... d - . .II Z C6', ... ,...J -- -- -

I I I 

G . ,I (6 I1) G A (6, 2)

_-_,___ - 1\-,__
GRAPH (5, ) GRAPH (5, 4).I

I
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APPEND I1 X

10SS03-

M:in Pro v.rain

Jo obtain the opt imal estimate sk, maximum liklihood estimate

of the sate]]itc attitude s sat isfying
5kLOk0k@0 ) = Wk(Qk,Ik,Yk) (cc 0k-1, Yk~l),

using the measurements {mP m m I acquired from two star

trackers, which are described by

in = h(sk, K) + vk

Commen variables:

/BLK1/ N, NZ, r

/BLK2/ PAl2, I11, I, 1), AXX

/BI,Ka/ AD), AA, BB, WV@, OBN, PV1, QO, PI, Q1,

/BLK4/ AK, QS, DIR, QW, RR, SINE, COSN, QSN, QII1, Q1t2, QH6, ERRN,
FRIl, ERII2, ER]2

Input:

PA 12 2v

N number of subintervals in [0, 2i]

NZ number of subintervals in [0, 2i1 for the first and

third Euler angles 4,tp

MT number of subinteryals in [0,71] for the second Euler
angle 0

ilI9 mesh for integration (= 2w/N)

ii mesh for integration (= 2n/NZ)

D mesh for integration (= T/IT)
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AXX 2x3x3 dimensional array representing each orientation
of the star tracker base reference axes with respect
to the satellite base reference axes.

5 AD 2x3 - dimensional array representing the apparent
direction cosines of a star observed by each of the
two star trackers with respect to the earth-centered
inertial set of coordinate system.

WO satellite attitude propagation, Euler angles, 3-dim.
array.

QW quaternion form of WO, 4-dim. array.

PO, QP coefficients of harmonics in P(sI mk-1), which
will be updated for P(sklmk) to Pl,-1QI, 2x5xS-dim.
arrays.

AK parameter of the rotational normal distribution of
the initial satellite attitude So.

AA, BB coefficients of {ReDln (S)} , {ImDn(sk)} in 6-dim.
function h(sk,K), 6x x3-him. arrays.

RR diagonal elements of the covariance matrix for the
normal distribution of the observation noise, 6-dim.
array.

SINE, COSN table of sir. p, cos , 33-dim. arrrays.

SDD1, SDD2 {dn1 (O ) {d2n(e)} for ReDs(COl) ImD t )
for t=1,2 , 3x3x17 and 5Sxl7-dim. arrays.

QS attitude sk1 , 4-dim. array.

QHO (k-l)th stage maximum liklihood estimate of sk_ 1 to
generate a predicted estimate of s 4-dim. array.

TXjIY0 initial random integers which create measurement
noise, satellite attitude propagation, and AD.

Output

OBN star tracker measurements, 6-dim. array.

Pl,Q1 updated coefficients of the harmonics in the con-
ditional density P(s lmk), 2xSxS-dim. arrays,
input for the (k+l)th stage.

I

r



-46- M-3

QS1 attitude sk' 4-dim. array, renamed as QS.

QSP predicted estimate of sk' generated by WV, and QIIV,
4-dim. array.

Sill estimate Sk of the satellite attitude sk, 4-dim.

array.

QH1 sequence of k S ' 4x5O-dim. array.

S12 maximum likelihood estimate sk of sk.

QH2 sequence of Isk, 4xS0-dim. array.

ER1 estimation error of the attitude estimate sk '

ERRN sequence of estimation errors, SO-dim. array.

ER2 distance between sk and Sk, P(Sk, sk).

ERH1 sequence of P( s)} , 50-dim. array.

ER3 distance between sk and Sk, P(Sk, Sk).

ER12 sequence of {p(Ck, S 50-dim. array.

ER4 distance betwjcn sk and st' .P(Sk, Sk).

ER12 sequence of ( S ) 50-dim. array.

Special Considerations:

. Parameter AD is generated at each stage k from sk considering

the deviation from the value a in the equation.

[0

I = xz(skOa

0

this is done in 'ADC'.

2. Attitude propagation WO is generated at each stage in 'NEW0'.

I
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I
3. M(easurement OBN consists of six components, which are

OBN(i) = FU(i, DD, AA, BB) + V(i) 1 - i - 4

OBN(i) = FU(i, DD, AA, 'BB) 5 < i < 6

For 1 5 i 5 4, DD represents { ReDln (S } { mDIn(Sk))

For 5 S i f 6, DD represents { ReD (sg) }, { I D 1( )}
mn k m mn ka

where k=w-k-lSkil , called predicted estimate of

In this sense, OBN is called pseudomeasurements.

4. The initial distribution p(so) is assumed to be a

rotational normal distribution on SO(3) with parameter AK.

5. In order to reduce integration time, 32 subintervals for

4, iand 16 subintervals for e are used in the trapezoidal

rule, where 0 5 *,q) S 2w, 0 !E e ii

6. In the computation of optimal estimate sk and estimation

error, tables of sinO, coso, d1 (0), d2 (0) are used instead
mn mn

of calling subprograms.

7. Integer YK indicates which stage s-hould be updated and WM

shows at (MM-I) stages, the values QSN, QHI, QH2, ERRN, ERHI,

ERH2, ERI2. Skipping given steps JMP.

8. At the end of each stage, necessary data are stored in the

disk space and will be read at the beginning of RUN by TRANS.

Subprograms Called:

INSDD, TRANS, SINCOS, QTN, INITPQ, RANDU, NEWO, QXQ, GAUSS4,

DRI2, ADC, COEFFI, FU, NPAQ, ERR.

f
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A12 6.2 2831 8530717 95%S

MX= 256
NZ=32
MT= 16 PR INTOUT
MRAN=250
NX=400 "DO YOU WANT PRINTOUIT?'

MAX=50 (OIY, 1/N)

H0=2 'I/N READ

HI =2 Tr/NZ I
D =2 flTV

SD~l ,SDD2

(=d m(0)) y

(INSDD)

PRINTOUT

DO YOU START FROM

THE BEGINNING ?' AAPITU

(O/Y, 1/N) DS TAS

READ
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IT

I Y

I KK= 1N

Initialization of test puraneter

AXX, RR, Pg. Q9

WO, AK
DIR, QH0. QS M A

Initial density

( I N I t P Q ) 
L = O ( K J P _

C GenrateLL=O 
or

New XOIYOKK= I

INDX=3

Y 6
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Y w Predicted
ND= - -=k attitud-

N (QXQ)

PR I NTOU'I
'KK th Process' -Q

RA()=.0RR -~RW

Observation noise V

and modificat ion of V(4)

IXI=IXO6*63342 (AS4

Attitude Propagation
w Deviation Vi and V2

(N EW0' of AD

- 4C v (GAIJSS4)

WO into QW __

(QTN)

w - -= s kNew attitude

(QXQ)



-51--}

AI)(=a)

(ADC) P1,Ql from PO,c7*

Coecfficients AABB , (PQ

haronics ofhis kk) k' k' error1

co[I:] F crror2, error3, error4

(ERR)

mk(i)=h'(.s ' )+00ID= N
k'k+vki) NDX 3

1< i<4

L ERI ERRN
ER2 ERMi
ER3 ERH2

mn ~ mnER4 ER12

-~QSN

s k +QH1

(FU)
Reparametri zat ion

S112 SHO
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Y

N r NN=NIM+ I

Dat a
Into
D isk(T NS

N
KK > NX

P R I NTOUT

all the result

(TRANS)

STOP
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A Subprogram

Purlpose:

To choose two appropriate sets of apparent direction cosines

AD with respect to the carth-centered inertial coordinate system.

'Q l i~ Sequence"

CAILL AW(AXX, DD, VI, V2, AD)

(oimmin Variables: 

None

Input:

AXX 2x3x3-dim. array representing the orientation of the
two sets of the start tracker base reference axes
with respect to the satellite base reference axes,
given in the main program, A t

x x

DD 3x3-dim. array representing I 11 (S 7 computed by
1DRI21. mn

VI,V2 4-dim. arrays representing random numbers from the
normal distribution.

Output

AD) 2x3-dim. array representing apparent direction cosines,

a(k).

Special Considerations:

1. First AD(=a) is chosen to satisfy the relation

1i =A *A *a
tI

then a is replaced by a+v and normalized. In the program,

the orthogonality of A t x A I is used.
xx xz
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2. v is of normal distribut ion with a relatively small variance for

the realistic simulations.

3. If Ila + v 11= 0, then vi is replaced by v.1 2 to avoid

ha + vi= 0.

Other Subprograms Called:

None.
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I Flow Chart

BEGIN

ReD -ReD -ImD -ImD -R eD I

A = Imi) +ImD I ReD I+IReD -~m
xz1 11 11 1I1 I 01

-10 -10 00

a. EA (2v). (2
1 1

y I
fz

v

* ~~~ t- a ---.------. - - - -
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BLKO

A Subprogram

Purpose:

To determine a region and parameters for local integration adjusting

a block region determined by 'DMN0'.

Calling Sequence:

CALL BLK0 (A, H, Z, T, W, NZ, NT, NW)

Common Variables:

None

Input:

A 3-dim array representing the mode of the conditional
density function.

Z, T, W 2-dim arrays representing the coordinates of 8 corner
points of a rectangular region.

Output:

Z, T, W 2-dim arrays containing the coordinates of a modified
rectangular region.

NZ, NT, NW integers representing the numbers of meshes in Z, T,
W-directions, respectively.

Special Considerations:

1. The numbers of mesh in Z, T, W-directions are adjusted so that

they approximately become 12, 6, 12 or 6, 6, 6 according to

the distribution.

2. Each number of NZ, NT, NW is a multiple of 6.

Other subprograms called:

None.

. i a,
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BEGIN

Rough estimate of

mesh in each direction

Hl = (Z(2)-Z(1))/12

H2 =(T(2)-T(l))/6

H13 =(W(2)-W(1))/12

Uniform mesh

H=(max(H1, H2, H3) + min(H1, H12, H3))/2

Number of mesh
in each direction

NZ, NT, NW

Coordinates of Z, T, W

Z(1) = A(1)-H.(NZ/2)

Z(2) = A(1)4P-(NZ/2)

T(l) = A(2)-H*(NTr/2)

T(2) = A (2) +H (NT/ 2)

W(1) = A(3)-H-(NW/2)

W(2) = A (3) +H -(NW/ 2)

RETURN
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()IT 1: 1

A SUbpj rogtIramI

I'l IrposC :

To set up tables of the coefficients of the following six

functions expressed as harmonic series on SO(3),

3 -9u 3u3 , u' Y2

who.rt i(k) i. the th direct ion o,,sine of a star tracker at

tirne k and is givenl by

11
u i(k)j " (k)' )00 (s )+ [ 1- Inj3 aI ( K.) R e D l l ( s k )

.1 j3~ '1 00 k j 110 k

4 (m.2"a 2 (k)-m.llal(l)) ReDll(sk)
- /2mjla3 (k)ReD ll(sk)

+ (m. a ( k ) + mj 2 " a 2 ( k ) ) R e o l l ( s k

+[v"2- mj3a2(k) (mD -(mjl~a2(k) + m 2 .al(k))ImDll(Sk)

-r j 2 .a 3(k) .ImDlol(sk) + (m.2al(k) - mjla 2 (k))lmD11 (S k

Ca I I i rig Sequence:

(ALL COILFFI(AXX, AD, AA, BB)

Common Variables:

None

Input:

AXX Two sets of star tracker base reference axes with

respect to the satellite base reference axes, given

in the main program, 2x3x3 dimensioril array, AXX(l,i,j)
for the first start tracker and AXX(2,i,j) for the
second, mij in the equation of u.(k).

€.J
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AI) 2x3 dimensional array representing the apparent
direction cosines with respect to the earth-centered
inertial set of coordinate system, given in the main
program, ai(k) in the equation u.(k).

Output:

AA 6x3x3 Yimensional array representing the coefficients
of ReD S in -u1 , u3, -U!, u3 , u2 and u2.

BB 6x3x3 Yimensional array representing the coefficients
of ImD (S in the six functions.

Spec ial Considerat i ons:

1. The coefficients are arranged and stored in AA and BB.
For example, the coefficients of -u1 are stored in AA
(1, , .) as follows

-(mjlal"j2 a2- 2 mJ 3 a 1  (mj2a2 - mjla1 )

AA(I,',.) - v2ml- 2m. 3
a
3  r2M. 1 3

-(mj2a2-mj l a l ) -m j3a1  (mjla 1 + aj2a2)

where the coefficientsof ReDIn(s )are placed in A(1, m+2,
n+2) .

The arrangement of coefficients are mde, so that one cn
express u.(k) as an expansion of {ReD (s )) and {lmDn(sk}
for -1 < ',n < 1, not only under the Tondktion on m, Ti:
m < n or m=n and m > 0, which is given in the original equa--
tion uj(k). Considering the fact Re1 Im(Sk ) = (- 1)n-m R e d I (s

d I n-m+l I mn -r-n k

d mn(Sk)=(-) -mrn-nsk), we use the following

matrix form to see the sign difference between the elements
(m+2,n+2) and (-m+2,-n+2).

LI -J for the real part and 1 0

f -1 1 i r H
Sfor the imaginary part.
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Other Subprograms Called:

None.
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I COEFFI -4

C _BEGIN Ot

I~~~ FX2j = 3

0X2

SGN=l

Iy
II o

fN
-I.-...- - - - -- N= I-- -- -
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COEFFI -5

y

AJ 
N

AA(I,1,1)=(AXX(k,.J,).AD(K,])+AXX(K,J,2)-AD(K,2)).SGN
AA(J ,3,3)=,kA(Il ,,1)

AA(I,1,3)=(AXX(K,J,2).AD(K,2)-AXX(K,J,1>.AD(K,1)>.SGN
AA(2,3,1J=AA(I,1 ,3)
AA(1,2,2)=AXX(K,J7,3)-AD(K,3)-SGN.2.O
AA(I,2,3)=-,F:-AXX(K,J,l) AD(K,3) SCiN
AA (1,2,1) r-AA(I,2,3)

BB(1,3,3)=(AXX(K,J,2).AD(K,)-AXX(K,J,1>-AD(K,2))-SGN,BB(I,1,1)=-BB(1,33)

BB(1,I,3)=- (AXX(K,,J,l).-AD(K,2)+AXX(K,J,2) -AD(K,1))SGN,

BB(I ,3, I)=-BB(] ,1,3)

Y N

1 >6

Ret urn cc
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I

A Subprogram

j Purpose :

Pu p s :To compute 
i l J2 3)

2.31 (-2+N I (JI J2--3) ! (j2+J3.-J1) !(.3+J]-J2)! (J3+P) !(J3-P)!

(J1-J2J-3.1) !(.Jl+m)! (,1-M)! (J2+N) ! (J2-N) I

S (-1)t (J3+Jl-N-t) (J2+N+t).
t (33+P-t) I (t+J2-Jl -P) t I(J3-J2+Jl -t)!

where MI _ t < NIl]
MI, MAXtO(,. JL+P-J2 ,-J2-N)

MU = MIN (,3+,1-N,i3+P,J3-J2+Jl)

Calling Sequence:

Y = C3J(JI, J2, J3, M, N, P)

Input

Jl, .12, 13 non-iiegative integer with a condition
max(.11-J2, J2-J1) < 33 < Jl+J2

M, N, P integers with conditions

-31 < M < I1

-J2 < N < J2

-J3 < P < J3

Common Variables:

None.

It
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Special Considerations:

1. If U ML, then Y= 0.0

2. In order to avoid the case

(-]) * * 0, (for example (-I) * *KJ),

KU is repl aced by KJ+ a ]arge even integer.

Other S;ubprogramS Called:

FR.

t
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Flow Chart

BEGIN

OMp)utat iOTI Of (J] +J2-13) (J2+J3-JI)! (J3+Jl -J2)!

(.11 -v,2 -,B) ,(2J- 1) x (J33+P)l (J3-P)! (=AA)
(J3+Jl1 -.12), (J.---P)

(.11 +.J 2 J3 +1
(JI+M) , (.Jl-M)
(32+N) , (.12-N)

F ---- ~ ____--(,JI+J2+.J3+1)!(,Jl+M)! (.J1-M)!

Ml,=MAX(J+-J2,O,-J2-N) x (J2+N)! (J2-N)! (=BB)

MIU=MIN(,J +J1-N,,J3+P,,J3-J12+ JI) - ---- __

N

(~~J (~ Y' 1 'I~ (J13+J1-N-t) !(,J2+N+t) ________

C3=(12J-K+N AA 2.

RC3J=urn
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I)MN0

A Subp rog ram

Purpose:

To determine a box region around the mode of the conditional density

flnction P(4, .,, p) =>exp(f(4, 0, 4)) for local integrations.

Calling Scquence:

CAIL, DIMN0 (P, Q, A, FMAX , , ,W)

Comon Va ri i ab es:

PA 1 2

I nput:

PAI 2 2Fr

), Q {i)Zkn, I2 k ' 2x5xS-dim arrays, respectively
{pn2m~n }

A Mode (4o, Oo, ,o) of the function f(4, 0, 4) obtained in
'MAXI ', 3-dim array

FMAX Maximun (f(s)) on SO(3)

Output:

Z First Eiuler angles 1, 2' 2-dim array

T Second Euler angles 01, 02, 2-dim array

W Third Euler angles 1' 2' 2-dim array

(Z(i), 'r(i), W(k)) 1 !; i, j , k !5 2 represents
coordinates of a corner of the resulting box region

Special Consideration:

1. Z(l)< A(2), T(l) < T(2), W(l) < W(2)

2. 1 is determined by decreasing in f( , 00, 'o) until it

reaches a constant Co . On the other hand 02 is determined by

increasing 0 in f(, 0o, 0o). The other Euler angles 01, 02,

1, *2 are obtained similarly.
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3. The constant CO i; computed by

C Max f(q, 0, S) 17.0 if Max f-165.0 > 0
° -10.0 if Max f-165.0 < 0

-)ther Subprograms Called:

I: )

I
S.
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1:10ow Chart

PAl = PAL2/2. N 1) K
It 2Tr/16.()
FPI =FMAX-16S.0

heemn 11, 12

for the I st coordIi nate

Determin a box NioH
foi thu .2iii komrLI i mte Z (2) =A(l) + NI H

T(l) = A(2) - N2 H
T(2) = A(2) + N2 H
W(I) = A(3) - NI 11

0(rmi KI Id Ka W(2) = A(3)+ NI .14

RETURN

I I -NI12 y
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I
I)R I I

A suhprogram

Purpose:

To assign values Rc(Dn (z,T,W)) or Im(D (Z,T,W)) to
mn mn

?,m,n,Z,T,W

Calling Sequence:

Y = DRI(L, M, N, Z, SI), W, JJ)

Comlhon Variables

PAI2

I 1put:

I'Al2 cojistant given in the main program

L order of function Dt (Z,T,W) to be computed
mn

M,N indices of function D (ZTW) to be computed
mn

SD value d (T)
mn

Z,W Euler angles with 0 < Z,W < 2n

JJ indicator

if , Re(D t(Z,T,W)) to be. computed
mn

if JJ=2, Im(Dt (Z,T,W)) to be computed

Special Considerat ions:

1. SI) must be precomputed in the calling program.

This is taken in order to save computing time in

integration.

Other Subprograms Cplled:

None

i
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F. 7. Flow Chart

BEGINY.S

R TRNZm 7
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DR 12

~A StIbprogram

IPurposc:

To cal ulate ReD I(s) and I mD (s) at s(ql,q 2 q 3 ,q 4 )

min mn 2q n tr h

results in the matrix DD. The following relations are used.

. ..2 2 22 1 1 -1

q, 4 0 /4.0 - ReD 1 1 /2.0 ReD 00 1 2(qI +q2

2' 11 2

2 -4 I) 1/4 + ReD 1 /2.0 ReD1 q2  q

2 l 1 1 1 3 2
qS + 1) 00/4 - ReD 11/2.0 ReD 1

= q 4  q3

2 + D1)O/4 + Re[) 1 1/2.0 ReDlIo= v2(qlq3 +q2 q4 )(14 00 4- "W 1-

qq 2  I mD 1
1/2 ReD 1 = '(q 2 q4 -qlq 3 )1 2 - 1 1 iml1l _2lq2

qlq 3  4 (ReD I 0 -Rel)01 ) ImDI= -2qq

3 10 1 mD 1 1 = 2q

q2q4 = (Re I 1 0 +ReD 0 1 ) ImD 1 2q q

q3q4  - 1l/2. 01 qlq 4 3q2 q)

42 (ImDI +m 1 ) JmD 1  2- -l'1'14 4 10 1 m W Y-(q 2 q3 _qq 4 )

1 q 42 (ID 1 -imO
]I

q2 q3  0- 10D _

Calling Sequence:

CALL DRI2(Q, DD)

Common Variables:

None.

Input:

. Q 4-dimensional array representing a quaternion.

# • ._,_,____
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O)ut ]Imt:

1l 3,'- dimensional airay for [et) (s), ImDi (S)
inni mn

Speci;al (ml-'idc'at ibus:

I. The values ReDt , ImD are stored in the following way

FImDo ReD I ReDo1
11nt -e10  -11

R10%0  0 1
( ImD1  IMoI ReD I1

lm lnt 01  11

2 2-2q 3 q4 1/2(q I cj3 q12q 4 )  q 2 -q,

I(q 2 q 3 -qlq4 ) 1-2(q2+ q2) F (q2 q4 -qlq 3)

- 2 qlq 2  -22)-(ql q q q- q

Other Subprograms Called:

M',one.
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Flow Chart

I * *jP~3)~2 2

q22

.11
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I Flow Chart

I'(ll) II4 2N

1D( 1 ,2)-- 1 (q lq +(1qq D (1,3) =q 2 -q 2

3 - 4 -I

DD1) (2, 1) v22 q 3-1q q4 )
l1l1 (2,2) = 1-2 ((l+q2  DD (2, 3) / l2(q 2C14 -ql q3)

IDD) (3,1)=-2qIq2 DD (3, 2) 2- -2(q I q 4 +q 2 q3 )

D)(3,3)=q
2 -q 2

43

Return

i
i
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LI ;L N

A S';ulh roi r.'na

,I'o ctmllpt" ei genvalucsand eigenvectors of a given real symmetric

miatrix by tridiagona]ization.

Calling Sequence:

CALL- IIGEN(N, A, E, V)

Common Variables:

None.

I nl[ut

N dimension of matrix a (< 4)

A 2-dim. array containing the symmetric matrix.

Output:

E array containing the computed eigenvalues in absolute
descending order.

V eigenvectors stored in columns.

Special Considerations:

None.

Other Subprograms Called:

TRIDMX, EIGVAL, EIGVEC.
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Flow Chart

( BEGIN

Tridiagonalization of A

(TR I DNIX)

lFigenvalucs E

(EIGVAL)

Eigenvectors V

(El GVEC)

Retrn

4
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YO comnPute the cigcnvalues of a symmetric tridiagonal matrix

using Sturn sequences.

Call inug Sequenice

CALL. I:IGVAL(,P , F, A, B, W, F)

toitorl \'a i i :11) ( ;

Noie.

11it

LI' order of tridiagonal matrix

A LP-dim. array containing the diagonal elements of
the tridiagonal matrix.

B LP-dim. array containing off-diagonal elements in
B(2) through B(N). B(l) = 0.0.

Ouit puit

1.P-dim, array containing the computed cigenvalues
in ab~solute descending order.

w 1.11-d im. dummy array.

1:, P -d im. dummy array.

Special Considerat ions

1. The diagonal matrix is not fed into the subroutine as a
matrix. Instead, the main diagonal is stored in the
A array. The off-diagonal elements are stored in B(2)
through B(N). B(l) must be equal to zero.
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2, EIGVAL is designed to be used after calling TRIDMX. The
output from TRIDMX is in the correct form for input to
I: 1GVAIL.

Other Stibitogrmaws 'Called:

None.

I

I
-1.,t
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)-'lw Chart

CBEGI1N

AM I A(I)I X1 = W(K) - (K)

X2 = IW(K) I JEI(K) I

XS MAX(X2, 10-29)

AM-MAX(AM,I At I~i X4 = XI/X3

BM=MAX(BM,I ii(1)1

1=2,3,. LP

hi rtM+ BM+ BM

A(1)A(T)BI)X=(W(K) + E(K))/2.0

P(I) =-I n

W( I 1.0 S2 =1.0

F(l) =A(l) -X

F(1)=0

SI = -1.0 Si 1.0

OtN =0 N I

1 2
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B(1~()-~S2 Sl

F (1) (A ( ) - ) 

B(I<BB().F(I-2

FI)= (()-) FI1

-Signgn(S2)B2(I)

S S
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N <N
J> IT

=x

K, ,N §

N =N+l

LN y

y LP < NLP>L

AE(J)=)XB

- E (J) 0iLI

J=J+1
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=W(J)

E(I) W(K)

I >LP N

Return
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EIGVEC

A subprogram

Purpose:

To compute the eigenvectors of a real symmetric tridiagonal
matrix using Wilkinson's method.

Cal I ing SCquencc"

CALL. lICVlC(IP, NM, R, A, B, E, V, P, Q)

I nput:

LP order of tridiagonal matrix.

NM maximum number of rows that the tridiagonal matrix
can have as specified by the DIMENSION statement
in the calling program.

R NMXNM-dim. array containing the transformation vectors
used to reduce the symmetric matrix to tridiagonal
form.

A N-dim, array containing the diagonal elements of the
tridiagonal matrix.

N-dim. array containing the off-diagonal matrix in B(2)
through B(N).
N-dim. array containing the eigenvalues of the tridiagonal

matrix.

Output:

V NMXNM-dim. array containing the eigenvectors stored in
columns of the tridiagonal matrix.

P N-dim. dummy array for temporary storage,

Q N-dim. dummy array for temporary storage.
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I
Special Considerations:

1. EIGVEC is designed to be called after TRIDMX and EIGVAL.
The transformation vectors needed in A are computed by
TRIDMX. The tridiagonal matrix itself is not fed into
the subroutine as a matrix. Rather, the diagonal elements
are in the D array and the off-diagonal elements are in
the B array. TRIDMX will put those respective elements
in those arrays.

2. The accuracy of the eigenvectors is determined by the
separation of the eigenvalues. The closer the eigenvalues,
the less accurate the eigenvectors. In case of multiple
CigCnvalues, multiple eigenvectors will be computed.

Other Subprograms Called.

None.
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Flow Chart

LPI=LPZ z -X/P(I)

X = .(I+

IX1l

LPl =1

X=A(l) -E(IX____________

Y B(2) Y Z.V(I, IX)

< P(I) =X

X I ( IQ(I) = Y
V(I,IX) =0.0

X 0

IX: X*Y
A(I.1)-E(IX) - Q(I) Y = B(1+2)

B(1+2) -~V(I,IX)
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I F-low Chart

...........(I .V(L0 PXIX+))/P(I)

VL, X = V(LPX) 2 
+(P IX)IX) F(,

= V(I,IX)/X
I=1,2, LP

V(I ,IX)

= (-(Q(I) .V(I+1,IX)+V(i,IX) .V(I+.,X)

P(I)
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Y L = .

4 y4N
y K = 2IXI>ILP

V(1, IX

- V IX)

-2.0.Y.R(I,K-1)
I=K,. .. LP

KK KK1

NI
KK > LI

yI
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I
ERR

j A Subprogr-am

P uu -pose:

I. To detcimine the maximum value of a function in the exponent

of tlhc conjlit ional density function P(Sk Imk ) and Euler angles

where the function is maximum.

k
2. To compute the normalizing constant for p(sklmk).

3. To evaluate E(q.q T ) with respect to p(sklmk) and to find

the maximum eigenvalue X of E(q.q T ) and its eigenvector

p so that

IRRi -- 1 - X= 1 - pTE(q.qT)I)

is the opt imal estimation error.

4. To find distances between sk and sk, between sk and

and between sk and sk on SX)(3), where sk the optimal es-

timate and sk the mode of the p(sklmk).

Calling Sequence:

CALL IRR(INDX, SDI)I, SDD2, P, Q, (III, QH2, I1RRI, ER.'1I, ERH2,
ERI2)

Common Variables:

N, NZ, MIT integers given in the main program.

Input:

INDX INDX=l If return without any computation
INDX=2 If the mode of distribution in terms
of Euler angles and quaternion 9,k to be computed
with error between s and .k T

INDX=3 If the makimum eigenvalue A of E(q.qT)
and its eigenvector 9 with the error estimate

between sk and 9k in iddition to the case INDX=2.

I.



- 88- ERR-2

,IMI 3x3x17 dimensional array, {d mn()

2
51)1)2 5xSx17 dimensional array {d (0))

both are precomputed in 'INSDD',

SINE 33-dim. array, {sin(o)).

COSN 33-dim. array, {cos(O)}
both are computed in 'SINCOS'.

PQ 2x5x5 dimensional arra~s representing the Fourier
coefficients in 1)(sklm ), computed in 'NPAQ'.

Out put:

QIII 1-dim. array, the unit eigenvector corresponding
to the maximum cigenvalue A' sk '

Q112  i-dim, array, the mode of the distribution.

ERRI 1-X, where X is the maximum eigenvalue of E(q.q T).

ERHM distance between sk = (ql, q2 * q3, q4) and ; =

(pl' P2' P3' P4 ) i.e. 4

ERH2 distance between sk and sk '

ERI2 distance between sk' sk-

Special (:onsideration

1. (d 1n(0)) and {sin(O), cos( )) are precomputed to save

computing time.

2. To find eigenvalues and eigenvectors of symmetric matrix

E(q.q T), first the matrix is tridiagunalized by 'TRIDMX',

then eigenvalues and eigenvectors are obtained by 'EIGVAL',

'EIGVEC' in the subprogram EIGEN.
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I Other Subprograms Called

JINTGLE, QTN, QVQ, GE

-7
4-7
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Flow Chart

+ DX_ iNDX=I ITGE

F~q.(IT) with respect

(JNTGLF)

FIAX, ANG

(I NIC, I.

4- Eigcnvalues of
E(q.qT) and their

Q112 Ei genvectors

(OT .N) (EGEN)

Fk1I12 Maximum Eigenvalue

(QVQ) EMI and

ERR1 = -EUl)

Ret urn
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T

Q 111(I) =V(I,1)/X I

(QVQ)

ERl 2

(QVQ)
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EST I I P

A Stbprog r'ilai

Purpose:

I. To compute the mode and the maximum value of the function

f(, 0, p) in the conditional density function P(s kmk)

2. To compute the normalizing constant for P(sklmk)by local

integration.

3. To evaluate the maximum eigenvalue A and its eigenvector

p( = Sk) of the matrix E(q-qT) with the conditional density

function P(Skjmk) and obtain the optimal estimation error

1 - A = 1 -p E(q.qT)'p

4. To obtain distances p(sk, Sk , P(sk , SO
, P(Sk, sk)' where sk

true quaternions, sk optimal estimates, sk maximum likelihood

estimates by P(sklmk).

Calling Sequence:

CALL ESTIM (P, Q, QT, QH1, QH2, ERRI, ERH1, ERH2, ER12)

Common Variables:

Qs

Input:

QS Sk, real attitude, 4-dim array

P, Q {Plkn } , {P2kn) , 2x5x5-dim arrays

QT predicted attitude at time k, 4-dim array

Output:

QHI Optimal estimate of sk) Sk' 4-dim array

QH2 Mode of the distribution, skP 4-dim array
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ERRI Optimal estimation error given by 1-A, where Ais the
maximum cigenvalue of E(q.qT)

1:R I I Pi stance between -;kand S k

1'. R112 1)i St anTCC b etween s k and s k

I1 Distance between S k and s k

1. o find aI mode of the conditional density function, a searching

method is taken.

2. To find eigenvalues and eigenvectors of a symmetric matrix,

L(qI-qT) , the mnatrix is first tridiagonalized by 'TRIDMX' andt

then eigenvalues by 'EIGVAL', eigenvectors by tEIGVECt are

obtained.

Other Subprograms Called:

MAXI, LNN, BLK0 INTGL2, QTN, QVQ, EIGEN
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Flow Chart

value of f( , e, Elgenvalues and eigenvectors

(MAXI) o ~-T

Rough CSt ifla'to Of

cooyrdinaites 
of 8 points

(DMN0) RI=IE)

ANormalizing constant Ck

and integrat; n of q qT

< (I NTG(-L2)

ANG +QH2 (=sk
Distance between

(QTN) 8.lk

Distance between Dsac ewe

ak k sk and k

(=ERH2) (7ERi 2)

(QVQ OV

* J clTU# N
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FR

I A subprogram

j Purpose:

I't) comnute n! for a given non-negative integer n.I
Ca lii g scquencc:

Y = FR(N).

Input:

N: integerI
Special Consideration:

1. 'f n 0 0, N assumes 0

I
i
I
I

I
I
I
I
I

,in
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G.5. Flow Chart

BEGIN

FR M!I

RETURN
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FU

A subprogram

Purpose:

To0 compute the values

ii1 (s) FU(1 , * ,)

L'.3(s)FU, ,

-u(s) F(,c

L1-2s FU(6,,,-)J

where u.(s) (or u.(s)) is given by

a.S m.a(k)D I's [Yr2m. a(k)ReD (s)uJ( mj33 0 J21 -10

+ (m.2a (k) m.1a(k))ReD 1 (s) - r2Mjla (k)ReD01 (s)

I+ (m.1a(k) m. 2 a(k))ReD I (s)I

+1 I/M.3a (k) I mfl1 (s) - (m.1 a(k) + m.2a(k))ImD I (s)

I - a (k) ImD I(s + (m. 2~ -lk k)DI()
j2 3 0s) j2k m ' )m 11()

Calling Sequence:

I Y = FU(K, DD, AA, BB)

Common variables:

None.
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K integer. FU = -!I, if K=I, FU' = !13 If K'=2

FU = -uif K=3, FU = u~ if K=4

FU = Uif K=S, FU = u2 if K=6

IMP Iaue (s) computed in
'1)R12', 3x3 dimensional array.

AA, BB coefficients of {ReD I (s)) and {lmD I(s)Imn mn
respectively, computed in 'COEFFi', 6x3x3
dimensional arrays.

Special Considerations:

None.

Other Subprogram Called:

None
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J Flow Chart

C BEGINa

IWX (I J=

N

J> 3

II>

M =1-2I N =J-2

FU =.w(i4.)

j Ret urn

Y=D(,)Y2=DD(N+2,M+2) Y=D2N,-f

I ~A K I, ) Y MXJ J = A ( , , ) Y NX 1 J . A O I J y

N y

I ~ ~ ~ ~ ~ ~ 2= D N 2 M 2 Y2=DD (2-M ,2 __________________________

1..IJ =-A K,,)Y X IJ)2A (,,)Y
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GAUSS-1

GAUSS

A subprogram

Purpose:

To generate a random numbcr from a given normal distribution

N(m, s) (The program is taken from IBM 360 scientific subroutine

package,p.77).

Calling Sequence:

CALL GAUSS(IX, S, AM, V)

Common Variables:

No,-.e

Input:

IX initial random integer to create a sequence of

random numbers from the uniform distribution.

S standard deviation.

AM mean

Output:

V random number from the normal distribution.

Special Consideration:

1. In the program, the mean is always assumed to be zero.

Other Subprograms Called:

RANDU
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I Flow Chart

t BEGIN

A=0.0

C random integer 
IY

random value Y

(RANDU)

4
IX ly

I A =A+Y

V= (A-6.O0) -SeAM

II
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(;AUSS4

A subprogram

i() iucncriatc tour independent random values from normal distributions.

Ca I i III sequence:

CALL (;AUSSI(M, IXO, R, V)

Common Variables:

None.

Input:

total number of times to use RANDU to generate

random values from the uniform distribution.

IXO initial integer for RANDU.

R l/R(i) representing the variance of the ith

normal distribution, I f- 4.

Output:

V random values, 4-dim. array.

Special Considerations:

1. Four random integers are chosen among M integers for V(1),

V(2), V(3), V(4).

Other Subprograms Called:

RANDU, GAUSS.

I
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IFlow Chart

i ( DB ) BI IN /

~ '1 fAM =0. 0

IY ,WX

)random values

V

K 1X0=IY](GAUSS)_-

Return

" I "1od (MO)

Y
I11 0

. F11 1 1

_ _ _ N

I
* --- - -
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I1N1 IIPQ

A tilpogram

Pu rpose:

.Fo give ain init ial density funct ion for the conditional (lens ity

f unct ions I (s kll I In P( 0 I'l 0 s

As all iitijal density P(s G) , the fo]llowing type of distribution

on SO(3) is chosen,

P (s;0) = C-exp (r(aIql + a 2 q 2 + a~ 3 + a 4 (14 ) 2

where (aI a', a ., a ) i s a constant quaterni .on, represc-nt myn the'

mode, and so (q, I(1) q3 ' q 4 )

In the program ,a~ I I a 2 q 2 + a 3 q 3 + a 4 (14 ) 2 is expressed as an

expanls i or, of f ReD Tull)mi , and the coefficients of the ex -Il) mn

panis ion are stored i n (110, Q 0)1

Callin rg Sequence:

C;ALL, I N ITPQ (AK, A, 110, QP)

Common 'a r jablIei

I nput:

AK parameter repiresent ing the magnitude Of Mode of'
the distribution, r.

A IdmcisiomIalrrav , mlode (a ;, a. a

Out p~ut

P0, Q0 2x~x5 dimensional arrays, coefficients of {Re)f 1 (s

{MD Im (s) , respectively.1110

f..
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Special (on:'idcrat ions:

1. The relations between (ql, q2, q3, q4) and { Dmn(so)are

given

2 1 1 1 
q (-) D00- (2) ReD 1

2 1 11 1 1

q - ( )D0 0 + ( 2-)ReD- 11

2 1 1 1 1 1
q - + () - ReD11
2 1 11

+ ( -)D + (--)ReDl
4 4 4 00 2 11

qq -(1)ImD1 qlq 3 = (ReDIo ReD11)

qlq vr-(InD 1  + ImD I q C- 'I 1  
-ImD 

1
114 = 4+ q2q3 - - I ImDl

Y2 1 1
q _(ReD + ReDq~4 -1 01+

2. In the program, the north pole (0, 0, 0, 1) is taken as a mode.

3. Coefficients of {ReDl1 } and {ImD 1 are stored in PO(I,.,-)
mn mn

and QO(1, , .) respectively: By the properties of

ReD = (I)n-m ReD
-m-n mn

=(ln-m+l iD

ImD t (-1)n-+ ImD
-inn mn

The coefficients are arranged using the following signs tables:

1 1]

-11 1 for real parts

I
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0 1 for imaginary parts

I 1 1

Ixample: If the coefficient of ReDo1 is

(-a I;1 + a2a 4 )-r, then

P0(1, 2, 3) = f- (-ala 3 + a2a4 ) .r

P(1, 4, 2)= (a la3  a a 4).r

this gives a term

lq(, 2, 3,) ReDll1+ PO(1, 1, 2)ReD 0_1

= (-a a3 + a2a4).r ReD 1 + v(-aa 3 + a a ).r ReD 1

- -3  2 a 4 .1 11 42

=2(-a a3 + a a )-r ReD01 (since Re% 1  - Re 1 )

14..4 0 010
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I Flow Chart

I BEGIN

P0(1 ,3,3)=(a4 2-a 2 )12.0

P (I,1, 1)=1=PO(1,3, 3)

1P0( 1 ,2, 3) =(aa 4-a 1a 3) /'2/2.0,PO(l,2,1) -PO(l,2,3)

110(1 , 1,3)=(aI- a 2)/2.O,P0(1,3,1)=PO(1,1,3)

P1,2,2)=(a 2+a 2_a 2_ a 2)12.0

P0(1 ,1,2)=(a a +a a )vr2/2.O, PO(1,3,2)= -P0(1,1 ,2)

QO(1,3,3)=-a a, AO(1,1,1)=-QO(1,3,3)

Q0(1 ,i ,Z)=-a Ia2 , QO(1 ,3,1)=-Q0(1,1 ,3)

Q0(1,1 ,2)=(a 2a 3-a Ia 4 )f/2.O,Q0(1,3,2)=QO(1,1,2)

P0.(1,1 ,J)=AK*P0(1 , I,J)

Q0(1 ,I,J)=AK*Q0(1,I ,J)

Return
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I NSD)

A subprogram

Purpose:

To generate a table for {d Z (0)) , where 1 < t <2, -t<m,n<_
mn

Calling Sequence:

CALL INSDD (MT, SDD1, SDD2)

Common Variables:

I)

Input:

i) mesh size, i.e. D = w/MT, given in the main program.

KIT number of meshes in[O,w] (in the program MT=16).

Output:

t
SDDL 3x3x17 dimensional array, {d mn(e*))

SDD2 SxSxl7 dimensional array, {dL (0)}

where ej = (n/MT)*(i-l), i=1,2, ... , (MT+l)

Special Considerations

1. The values d1 (0), d2 (0i) are stored in SDDl(m+2, n-2)

SDDI(m+2, n+2, 1) and SDD2(m+3, n+3, I), respectively.

Other Subprograms Called:

SD.

4..
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INSDD-2

j Flow Chart

j BEGIN

SDDl (I,J,KY)=SD(L,M,N,T k)

I1-- 3, M 1-2

J 5E3, N =J -2

T V (k-l)-D, 1< kSMl

I LL+l

SDD2 (I,J ,K)=SD(L,M,NTk)
1~I5 M 1 -3

I1~J5 N J -3

T Tk =(k-l).D 1 5k f- MI

[ Return
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INTGLE

A Subprogram

Purpose:

T1o compute the expectation E(q'q T ) with respect to the conditional

dnsity

P(sktmk) = C.exp (f(s0))

where I

f(sk[ PlooDoo(sk) + I (P ReD n(sk
m'sk =m,n- P
m<n
or

k 1 fm=n>O

~2mn im 0)

and C is the normalizing constant, q = (ql, q2, q3 # q4 ) quaternion

variable.

Calling Sequence:

CALL INTGLE(IND, SDD1, SDD2, SINE, COSN, P, Q, FMAX, ANG, C, QQ).

Common Variables:

MT, N Z, H, D

Input:

MT number of meshes in [0,T] for 0

NZ number of meshes in [0, 27w] for * and

D mesh size for 0 , i.e. D = 7t /MT

H mesh size for 0 and 4 , i.e. H=27T/NZ

The above values are computed in the main program for

integration.

. . . .• | I I
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I
SDDI)1, 51DD2 3x3x17 and 5xSxl3 dimensional array, representing

{ dn(0i)} , {dmn(0)}respectively, where

0i  = D.(i-l), i=l, 2, ... , (MT+l).

IND integer IND=O if max(f(sk))(=F IAX) on S0(3) to be
computed. IND=1 if a normalizing constant to be com-
puted and IND=2 if E(q-qT) to be computed.

SINE, COSN 33-dimensional arrays, tables of {sin(Oi)}, {cos(oi)},
respectively, where O i = H.(i-l), i=l, 2, ...,(NZ+I).

P, Q 2xSxS dimensional arrays representing {Plkn,

{P ekn respectively.

Both arc computed in 'NPAQ'.

~Output.:

O FMAX MAX(f(s)) on SO(3)

ANG 3-dimensional array representing the mode of f(s) in
terms of Euler angles.

C normalizing constant

QQ 4x4dim array, E(q-q T ).

I Special Considerations

1. In order to avoid overflow of computation exp(f(o, e, 0)),

f(O,O,4) is replaced by f - fop where f = FMAX-165.0

if FMAX - 165.0 , and fo 0 if FMAX 165.0.

2. Normalizing constant C is computed to satisfy

I
f C exp(f~s)-fo ds =I

I

r
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The mode of f at (k-1) th stage will be used to determine

a predictcd estimate of s .

. (q qlq 2  q lq4

q~1  2~ 1 3  q~ 42
q~ql q 2  q 3  q q4

is symmetric,

2q 3q] q3q2 q3 qlq 4

2

q4q q4q 2  q4 q7  q4

only the upper triangle part is computed.

t t
. For any values involving ReDmns lmD , sin , cos tables

SDDI, SDD2, SINE,COSN are used instead of calling subprograms.

For example, to compute

ReDl1 (Ojeip ) = Cos (n-(m-n) - (m + nk))dl (6i)
mn j'ik ICO - (in4).1II

an integer MN1 is computed, so that ReDl(¢ ,Oi ) =

COSN(MNI)-SDDI(M + 2,N+2, I). MNI is determined using the

following relations,

U NZ

mj+ni~ k +-4 N(J-l) + N(K-I)

2(m-n) -(mo +nfk) - ()(M-N) - M(J-l) N(K-J)

MN (mod (NZ))

=MN ifMN> 0

MN+NZ if MN < 0

.MNI MN + I



I - 113 -INTGLE -4

6. q~q Tis expressed as a function matrix of Euler angles

I (1-cosO) (1+cos( -f)/4.()

i (I-cosO)sin(4-iP)/4.0 (1-cosO)(I-cos(-')

sinO(sinP+sin')/4.() sinO(cosiP-cos4)/4.O (1+cosO)(I-cosU+))/4.0

sinfl(cosqi-cosp)/4.O sinO(sinq)-sintp)/4.0 (I+cosO)sin(O~+ )/4.0 (l +Cose)(I +Cos-$)

whiere the entries of the upper triangle are omitted.

7. In the computation of exp (f-f 0), exp, (f-f 0 ) =-O

if f-f -50.0 to avoid underfiow
0
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Flow Chart

BEGIN

Ml = MT + I Co = -50.01=orM

NI =N2 +1 C2 =16S.0

N4 = N2/4.0 HiD = j2 )NIR=

NN

FO= 0.0-C

QQ(IJ)=0.0

NI
FO<-i

44..k~
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-NGL-

N NI N
41ND 

____ IND=2

I2Y SS=SS+FR .YY.[D

I" Yy K =J- K
N Y2f

KI<

YYI=YY-FO

K2=J+ K-2

Yyl~coK2=MOD( 
I0,N2)

=exp(YYI)SINE(I)

rp
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Iy

YY=o. 0F I=4 (-TMJ-)NK1
I "O(MN]E

LIx=II

M= -L+II MN1-1~

JJ= IX SD(1J~

Ec

N=-L+JJ-1 L=

IIFR-IFRI+IFR2+IFR3 C=D2IJI

FR=2**IFR A=ReD (S
mn~s

B=Imo i (S)
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0- n

JJ=JJ+ 1

DD(L. I I.J.1)

N N

NI=

DD(L,JJ,11 L=I)

=Pz *ImD k(s) = y

2mn mn

YY=(DD(,1J ,JJ

DD(L,11, 1)1=2.
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INTGLE-8

IN
JI

N T1  N D $=

-I J ____

--- < Y2 Y YI

Y 
K1IMUD(K1 ,N2)

YI=Y2
Y

K2=J. K-2

K2=MOD( K2,N2)

-exp(YY1)SINE(I)
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Y y 
K2< 

O0

K2=K2+NZ N 1 I5.11 2 f 4

2?=K2- K=K+I

N

w (,ose(I~os( ))4.0K 
>N1

1= y~cs)1CSC~I)/.

2= (1 -Cos0) (1 -Cos(4))/4. 0

w 3= (I +Cos0) ( -Cos(4 )/ 4 .O0r =~

w 4= (1 +cos0) (1 +cos(4 )/4.O0

w 2= (1-cosO) sin(4- p/4.O

w 3= sine(sinqh,+sifl )/ 4 .0

w 4=sin6(cos4Y+coOP/
4 .()

W 2 = sill 8(cost -cos4)/ 4 . 0

w 2 = sin6(sin4-sili)/
4 .O

w 4= (1+cosO)sifl(P+I)/
4.O
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IN
J ,

~ .J>.N

NY

L '~:>

64Ml

IN= NI =
FMXC /( Q1,l
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1

INTGL2

A Subprogram

Purpose:

To compute the normalizing constant C in the conditional density

function

P(s klmk) = C-exp (fsk and evaluate

E(q-qTr) with respect to P(sklImk).

In the program, every integration is done locally arround thie mode

Of P(sklmk).

Calling Sequence:

CALL lNTGL2 (IND, P, Q, FMAX, A, NZ, NT, NW, HO, C, QQ)

Common Variables:

PAl12

Input:

PA12 27r

IND Integer, IND=l if a normalizing constant to be

computed, IND=2 if E(q-qT) to be computed.

P, Q 1PLk}{ k 1,2x5x5-dim arrays

FMAX Maximum of f(s) on 50(3), obtained in 'MAXI'

A Starting point (Z(l), T(l), W(l)) for local inte-
gration, 3-dim array

NZ, NT, NW Iumbers of -nesh in [Z(l), Z(2)], [T(l), T(2)],
CWl), W(2)], respectively.

HO Initial iieshsize for integration

Output:

C Normalizing constant

QQ E(q-qT), 4x4-dim array
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I Special Con.s iderat ions:

g 1. In order to avoid overflows of computation exp (f(@, 0, )),

f(, 0, J) is replaced by f-fo, where fo = FMAX-165.0 if

FMAX ' 165.0 and fo=0, if FMAX ' 165.0. Also to avoid under-

flows, exp(f-fo)=O.O, if f-fo-50.0.

2. Normalizing constant C is computed to satisfy

f C - exp(f(s)-fo) ds = 1.

3. Local integrations are done in four steps. At each step except

the last one, the Riemann integration is done numerically skip-

ping the 1/3 x 1/3 x 1/3 of the original box region around the

mode (center) and the skipped box region will become a new box

region for the following step. The stepsize will be one half of

the previous one. At the 4th step, the numerical integration is

done on the whole box region without skipping the middle region.

Other Subprograms Called:

FP

0I

Ir _ _ __ _ _ _ _

'K
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Flow Chart

BEiGINa

PAI = PA12/2 Lcto fmd

MO = (NW/2) + 1

FO =FMA-1650 F Initializatiun of
S, QQ, LL

S 0.0, QQ(I,J) = 0.0

0LLy=L 1

FO U.0Volume Element

HD) = HH-H

r I=1
Preparation for local integration

Z0 = A(l)
TO = A(2)
WO = A(3) 11=1

Ll = (NZ/3) + 1
L2 = 4 -(NZ/6)
M1 = (NT/3) + 1

M2 = 4 -(NT/6) I<LO
N1 = (NW/3) + 1
N2 = 4 -(NW/6)

___ ___ ___ ___ ___ __ ___ ___ ___ ___ __N 11 1+1

Xl ZO+(i1-1).II

a
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0 T1 p

'I 31=3 L W1 W0+(kl-1)i

Ll I L2

N1 N1N

S = S+ YY 1 =l * x1-

< y

N I T1 'I5C

.4 N

IIND

k O yIDIN=
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W(1, 1) =(1-cos(T1)hiI +cosXl))/4.!)
W(2, 2) =(I -cos (TI)) (1 -cos (X1))14.O0
W(3, 3) =(1+cos(T1B.-(-cos(X2))/4.O
W(4, 4) (I+cos(Tl)).(1--cos(X2))/4.O
W(1, 2) (1-cos(Tl))'sin(X1)/4.O
W(1, 3) sin(Tl)(sin(X1)+sin(Wl))/4.O
W(l, 4) sin(Tl).(cos(W1)+cos(Xl))/4.O
W(2, 3) sin(T1)-(cos(Wl)-cos(X1))/4.O
W(2, 4) sin(T1)-(sin(Zl)-sin(Wl))/4.0
W(3, 4) (1.O+cos(T1)) sin(X2)/4.O

QQ(I1, 12) QQ(I1, 12)
+ YY-W(I1, 12)

k 

+

NI
k > NW

- - 7 - -
§-



125I NTGL2 -6

0

I >NT N N

IND=l N2

L 1+1 ~

I > NZ N RETURNJ 4

QQ G,-J) C.QQ(I, j)
New set of parameters 1 5 4,

X0 = ZO04(Ll-1)41 1 5 J 5 4, (1, J) (4, 4)

TO = TO+(Ml-1)*H

WO = WO+(N1-l)*H

LL =LL+l QQ(4, 4) l -QQ(1,1.
-QQ(2, 2)
-QQ(3, 3)

LI,> 4 N________ __-44
RETURN

Ii
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MAXI

A Subprogram

Purpose:

To locate the mode of a function f(f, 0, q) in the conditional

density function.

P(O, 0, p) = C exp (f(o, 0, *)), where C is a
normalizing constant.

Calling Sequence:

CALL MAXI (P, Q, QT, B, FMAX)

Common Variables:

PA12

Input:

PAI2 2w

P, Q {P), {Pmn 1, 2x5x5-dim arrayslmn 2mn'

QT Initial quaternion to start for searching,
4-dim array

Output:

B Mode in terms of Euler angles, 3-dim array

FMAX Value of the function f($, 6, j) at the mode.

Special Considerations:

1. Two starting points are used to locate the mode. The first

point (A(l), A(2), A(3)) is given by the calling program and

the second point may be given by (A(l)+r, A(2)+r/2, A(3) r).

This is to avoid locating a local maximum instead of the global

maximum.

!1
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Other Stiiprog ram~s (Called:

QTA, QIN, FP, SIARCi
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Flow Chart

o0tH)o1 
Initial I

NX for searching miax I IIILIII

[MrX 30 [MfSII = PA12/8,

niilinto A(i) = C(k,i)

Euler an les i=1, 2, 3

C(l,i) A(i) Jj = I
I=1, 2, 3

Settinqg another starting (P

A =l A(l) +LA(2) =A(2) + 7r/2
A(3) A A(3) + Tr

Normal izat ion of s Pon
2nd point(2d

(QTN, QTA) (ERH

C(2,i) A(i) DEH5e

k= 1

Vi>N

Y

Y NF NX
DMESl
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_(~) Normalizing

[ Ck,u i QA

COMIRItt ion" of

K'' Nmode

RETURN

S()< S(?)

yN k=2

Choose larger
value

C1i = (k, i)

Eulerangles 

B(i)
into

quaternion

rrg
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.NWOt(iP ITU

M :, I ) t I ID I

To read ,', is Sk I I sk } and sequences of c,'rr

estimat(- from t he disk and draw oraph

Coimmon Variables:

None.

I rpfut:

A 17.12-dim . array containing all the values.

tlpe(lal (o1in,idcral i Irt;:

1. 'r , :.e, k' 'k' Sk are caIlIed QSN, QII1 , QIH2 in M05Sfl3

and stored in the location.

A(568) QSN(1,1)

A(768) , QHI(1,1)

A(968) QH2({,1)

2. Optimal estimate errors, s , Sk), and ,(sk, Sk),

OP(.;;k' sk) are called ERRN, ERHI, ERtl2, FRI2 in MO5SO3

and stored in the location

A(269) + I.RRN( I)

A(318) ER, El(1)

A(3(8) 1.112(1)

A(418) 1Rl2 ()

3. Quaternion representation QSN, QHl, QH2 of Sk, Sk, k

are modified so that 4th component of each quarternion

is positive.

| I
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M06PIT-2

')t ht~r ~ubj~~~rj. I I

P I I

I

I
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Flow Chart

BEGIN

Modification of com-

[ponent Of each quatenf
RWD (PLOT])

#10

Plotting of
A(l) skA Sk, sk component wise

(PLOTI)

READ

#10

Number of
points N
to be drawn

Signs of 4th component(POi
Of QSN, QH-I, QH2 into POI
SGNI, SGN2, SGN3

S TO)P
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A subprogram

Purpose:

To generate Wk(,,0,) in the process.

Sk+ 1 = wkOsk

using a pseudorandom number generator.

Calling Sequence:

CALL NEWI (IX , PAI2, Wf)

Common Variables:

None

Input:

IxO initial random integer

PAI2 27

Output

wv Wk' 3 dim.' array representing Euler's angles

Special Considerations

1. Only three numbers are chosen from the start by RANDIU.

Other Subprogram Called:

RANDU.

I

I

I



-134- NEW)- 2

Flow Chart

ly, W).

raidon number,;

(RANDU)

1X0 =IY

N
I > *

W (2)=W(2) /2.o0

.Re turn
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!.PAQ

lPu rlO .

I() lipd.t' [p k-1 and 2{ tk l of P( 'k i k )
pin 2mn lmn

to iP k and {p 4k I of P(sk mk), where
Imn 2mn 'ker

2 l..Lk + C' A

L' PI00 (1lk) ' Imn mn (
m=gNo

+ Ifmk I mle (s,))2llin mn 'k

Calling equ,-nce:

CALL NPAQ (PR)

Cmmon Variables

AA, BB, WO, OBN, 119, Qq, Pl Qi

I n po~t

IRR colnstaits given in the main program.

AA. Hit coefficients of the functions (-u-l' U3 -U1 , u 3 , u 2 , u 2 )"

OBN observed value computed in the main program

6-dim. array, {m3}

PO {1mn ) , 2xSxS dim. array

Q0 {k n 1 ) , 2xSx5 dim. array

Output:

131 {P mnQI {p Ik
Pl ironk

2mn

I
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51ec ia dI odrat ions:

Other Subprograim Called:

SI), DRIl, C3.1
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Flow Chart

BE(UIN ~

L2 =2-1, 1

z= I

i ~~ k-1 i~~J

2.~ Re (w- +~ -1 I ~-mD~ (w0 1

Z1= E (p Ek- ReD t(w - 1 pZ1 qa)i W-
q-j 2qn qm ln q

Y2 = R= k k ii

6
Z2 = F Ijmhk

i1k k 2mn
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*-n1 (21+1 1 1
max m I )Stsm n ) m )s rn-s -n

!,RI,3(h 1 3 h 13 - hl~j 0 A
jJk its l,m-t,n-s 2+s 2,rn-t. n-s

Z3 (_) -n l( 1 1 1 1 2. 1 1 2.

max(1 ,n-1)t5Jin(1,m*) ( )(s n-s -n)(1 n-s -n

E R R'(h 1 J hlj + h1J h1j
jlk Its l,rn-t,n-s its 2,m-l,n-3

(LI,) -Y+Y2IY
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I
fPLOT1

A subprogram

Purpose:

To draw one, two or three graphs with different type of lines.

Calling Sequence:

CALL PLOTI(M, N, X, Y, Z, W, ji)

Common Variables:

None.

Input:

M number of graphs to be drawn

N number of points to be drawn

Y,Z,W values for graphs

U a dummy array

Special Consideration

1. X-coordinates are determined by

X(l) = I

2. More than one graph in one picture are drawn completely

checking the size of y-values using UPDWN.

Other Subprograms Called:

IUPDWN, INITT, BINITT, NPTS, CHECK, DSPLAY, LINE, CPLOT, TINPJT.

I
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Flow Chart

BEGIN

X= coordinate

UN= X(Y( IZ.)

IJ~l) = MIN((I),Z(J),w(K

U(N) = MAX(YI),Z(,),J(K

PlottiJN

Plotigttingtne

F (TEILOAD)
EED*TKROI
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A ';ub)ro ram

To convert.A :i 1jtc lioll to l-uler aInglc-.

I. Iil i u ' Sc(iplencc:

CALL QTA (Q, A)

Coiiuton Variables:

None

Input:

Q Quaternion, 4-dim array

Outptt:

A I:zlcr ingles, 3-dim array

Special Considerations:

1. The following relations between a quaternion and Euler angles
are used.

q) = sn-- cos ((#-#)/2)

q2 = sin1 sin ((*-*)/2)

q3 = COsA sin ((#+*)/2)

q4 = cos cos

2. If Arcos( 2(q2 + q4
2 ) 1)< EPSI, then 0 is assumed to be zero.

Other Subprograms Called:

None.I
!
t
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Flow C:hart

PIAl 2 6.2831K6037199of

EPS1 = 0j.0001

A() 1 2 2

DC~A2 So A()2
DS~A2 > siP((2/2

Xl~X c (2I

DS='i Q ( A(2)/2

XI = Q(l)/DS Al A2-X

Y2 Q )[( A(3) PAI2 XI A() X

ai
M T TIIRW1
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-3

Ul=c s I (

Y =co- 1 2

N >
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tQiN

1,t ransfor i: ingles to I t"

CALL.Q!' Q)

(C(,rimon Variables

None.

r ~1nnt

A I:uler angles (d,m, ir I ray.

Out put

Q Quaternion (q '(J"2' q ,, ( )
, 1-dim. array.

Special Considerations

1. rhe formula for the transformatiii i., given by

q] = sin c os 2

2 s 2

. .. CO .O
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Ylow (i 'r

COS I -J

2 ~~~2L ~~I4 COS- CO. -~

Returnj



- 146- QVQ- I

.\ ,tui'lrog rum

Purpose:

To cornputc t he d i st ince between two quateni io.l

(; I I illg ;cueLc e :

CAL.I, (Vlt! I , I'

(ol lnmo i r a r i ab I c,;

I rq'ut

P , 0 quaterniolls, 4-dim. arrays.

Output

di. tance between P and Q.

Special Cons i d ,rat iof):

1. INistaice between two quatenions pand q is given by

4
(I = p.qi, where P ) (PIt 1 2 P3' P4 )

q = (qI I[' q3, q4 )

Ot bei Subprogranms Ca lIed:

None.
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QVQ. 2

I Plow Cha.rt

' 1

Reur

i-S
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QXQ

A subprogram

Purpose:

To compute the product of two quaternions

(rl' r2, '3 r4 ) = (Pl' P2 ' 3 14 ).(ql, q2, q3 , q
1),

where

r I = PIq 4 + P2 q 3 - P 3q 2 + P4qlq

* = plq 3 + P2q4 + P3ql + P4q 2

* = Plq 2 - P2 q1 + P3q4 + P4 q3

r4 =-Plql - P2q2 - P3q 3 + P4q4

Calling Sequence:

CALL QXQ(P, Q, R)

Common Variables:

None.

Input

P quarturnion (Pl, P2 P P3 , P4), 4-dim. array.

Q quarternion (ql, q2, q3' q4 ), 4-dim. array.

Output:

R quarternion (r1 , r2, r3, r4 ), 4-dim. array.

Special considerations

1. Considering computer round-off error, product quarternion R is

re-norm l ized.
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Flow Chart

r I = p1q4 +p2 q3-p 3 q2,piq,

r 2 =-P 1q 3 +P2 q 4 +P3 q1
+p 4 (",

r 3 =Pl q2 -P 2 ql +P3(14 P4 '(3

r4=-Pl q1 ))2q2-P3q3+P4q4

(2)-.R2 (3)+R (4)

Normalization

R(l) = R(l)/W

R(2) = R(2)/W

R(3) = R(3)/W

R(4) = R(4)/W

I

I
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ILANDLI

A ,;ubl)p|-ogram

Purpos.

To compute a pseudorandom integer and v1 iue ot" tiform dis-

tribution.

The program uses the properties of FORTRAN IV and its admissible

maximum integer 2 31-1 (=2147483647) and overflows, (the program

is takcti from IBM 360 scientific subrout ine,p.77).

(:a I I i ng Sequence:

CALL RANDU(IX, IY, YFL)

Common Variables:

None.

Input:

IX integer

Output:

IY pseudorandom integer

YFL pscudorandom value, YFL IY/(23 -1)

Special Consideral ions:

1. To generate a sequence of pseudorandom numbers RANDU can be

used repeatedly by setting IX = IY.

.I
I
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Flow C:hart

BEGIN

IY =IX- 6 5 5 3 9 j

N
Iy i(0

TY TY +2147483647 1

YFL =lY

YFL = YFL .O.465b b13 x 10O 9

~Rturn.
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S I NCOS

A ,tbprogram

;I I I i

CALL SINtCOStN, SINE, COSN)

Common Variables:

None

Input:

N Number of points in [0, 2T1] to 1e taken

Out put:

SINE values {sin x.} , N-dim. array

COSN values {cos x i } , N-dim. array

Special Considerations:

1. Tabies are used to reduce computing time.

2. In order to avoid future underflows,

if ISINE(f)l (I COS N(I)l) < 10-  then

SINF(I) = 0 (COS N(I)=O)

Other Subprograms Called:

None.

Ci.-
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EC I N~(I

PA12 =0 28318')i(s (

\0= N-1

i /NO

SINE(I) = sin(Xfl]

N

--- COSN(T)=COS(X 1 )

N I >N

( Return
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SD

A -,b 1)rugrJJ

Purpose:

To assign values dt (T) to each e,m,n and 0 T
mn

Calling Sequence:

Y = SD(I.,M,N,T)

Input:

L (I)rdctr off -ourier coeffice It, to be computed

M,N indices of Fourier coefficients with the range

-!1, <- M, N < L

T a1g1e 0 T < n

Special Considerations:

1. L,M,N must satisfy the relations

0 < L < LMAX and -L < M,N < L

Other Subprograms Called:

FR

i

s.a
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CBEGIN

MI =M-N

MI, = MAX(M1 ,0)
MU = NIIN(M2,M3)

JAM = M1J-MI,+1

SD =0.0

A I('fm) ! (Z-rn1)! (t'n)IC-l)!

11 - ((+in-t) ! (t+1-i)!t! (Z-n-t)!

SI) (I (r)
mn

- u 7 A t 2emn2

2

(FR)

RETURN
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. RCII

I ind tIe mode ut the codlition'l dCns ity tuiction with j'en

in i:il start ii g point and mesh si .,c.

Cal iig . cq I

CA;,L1 SLARCII (DMESh, NF, 1), Q, A, B, SI)

Common Variables:

PA 12

I nplit:

PA 12

DMLSII Stepsize to search thi laXimaX inun viluc of the density
function.

NY Maximum searching times in one direction at the
previous stage.

PQI.k }Q 1pk ), 2xSxS-dim arrays1 imnn 2mn

A Starting point (Euler anglos)', 3-dim array

Sl Value of f( , 0, i) at A

Out put:

i Maximum point (mode) of the function f(, 0, j) with
respect to the given mesh

Si Maximum value of f(o, 0, p)

NF Maximum searching times at this stage, which will
be used in calling program 'MAXI' to determine the
new mesh size

Special Considerations:

1. Searching the mode continues as long as the previous function

value is less than the new value.

'I
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Ik I '

kN=l

BI Al)SN k [DMESHR

Z (I
TI B(2)

WI(3
vaueS
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A subprogram

Purpose:

I. To store processes

{s.} {s.) {S.} 1 < i < (k-1), where {s.1 1 1 1

are attitudes, {s.} attitude estimates, s. maximum1 1

likelihood estimates, and

ERRN(i) = E(p(s i , .)), ERt (Ci) = P ,si i ) ,

ERII2(i) = p(si, si) ER12(i) = p(si, si).

2. To save the values of the parameters for the next step k.

3. To read all the results from disk and printout if requested.

Calling Sequence:

CALL TRANS(ID, IXO, IYO, KK, MM)

Common Variables:

AXX, AD, AA, BB, WO;
OBN, Pdi, QO, AK, DIR, QW, QSN, QHI, Q112, ERRN,
ERIII, ERH2, ER12., SINE, COSN

Input

ID indicator
the values are to be stored in the disk if ID=l.
the values are to be read from the disk if
ID = 2 or 3. If ID=3, the results are printed.

AXX, AD, AA, BB, W0, OBN, PO, QO, AK, DIR, QW, QSN, QtIl, Q112, ERRN,
ERHI, ERH2, ERI2, SINE, COSN, given in the main program.

1Xf integer, the last integer used to create a random
integer by RANDU.

IY4 integer, the last integer used to create another

random integer by RANDU.
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KK time k at which all the result should be updated.

MM integer, (M-1) values are stored for each QSN, QIII,
Q112, ERRN, ER1ll, IfRll2, ER12 for the output purpose.

Output:

AXX, AD, AA, BB, WO, PO, Q0, AK, DIR, QW, QSN, QH1, QH2, ERRN,
ERHi, ERH2, ERl2, SINE, COSN, IXP, IYO, KK, MM.

Special Cons iderat ions

1. For the use of disk, variables A, B are used to store results

with

A(1742), B(871, 2), EQUIVALENCE(A(l), B(1,l)).

2. All the values are stored in A in the following order.

A(l): KK A(168): P0(1,1,1) (50)
A(2): MM A(218): QI(l,l,l) (50)
A(3): 1X0 A(268): ERRlN(l) (50)
A(4): 1YO A(318): ERHI(l) (50)
A(S): AK A(368): ERH2(l) (50)
A(11): AXX9l,l,l) (18)* A(418): ER12(1) (50)
A(29): AD(l,l) ( 6) A(468): Blank (100)
A(35): AA(l,l,l) (S4) A(568): QSN(l,1) (200)
A(89): BB(l,l,l) (S4) A(768): QHL(1,1) (200)
A(143): RR(l) ( 6) A(968): QH2(I1l) (200)
A(149) DIR(l) ( 4) A(1168): Blank (400)

A(156): QW(l) ( 4) A(1601): COSN(l) (33)
A(160): QS(l) ( 4)
A(164): QHW(l) ( 4)

1R = 2x3x3 representing the
array of AXX and A(11)
corresponds to AX (1,1,1)
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Flow Chart

CBEGIN

RWP

y ID I N

READ

All hevluesfrOm #10

into A(=B)

The values in A
WRITE moved into the variable!

B

into #10

Printout of s

s 1, 5nERRN. EHill

ER112 ER1
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TR I DMX

A subprogram

Purpose:

To transform a real symmetric matrix to tridiagonal form using

Householder's method.

Calling sequence:

CALL TRIDMX(N, NM, A, D, B)

Common Variables:

None,

Input:

N number of rows and columns in matrix A
Also N is the number of elements in D
and B

NM Maximum number of rows A-can have as specified
by the DIMENSION statement in the calling pro-

gram.

A NXN-dimensional array containing the symmetric
matrix.

Output:

D array containing the diagonal elements of the

tridiagonal matrix.

B array containing the off-diagonal elements of
the tridiagonal elements of the tridiagonal
matrix in locations B(2) through B(N). B(l)=0.O.

Special Considerations:

1. The lower triangular half of A is changed by TRIDMX.

2. TRIDMX is designed to be used with EI(VAL and EIGVEC.

Other Subprograms Called.

[None.

I

d. ---I
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Flow Chart

A(K-1 ,K-2)

2 B(K-i)

DENOM =-2*A(k-1,K-2) + B(K-2)

KK = K-

S IJ M = A ( K 1 , K -2 ) * A K[ ) E NO2 A _-,K - ) A ( I , K - 2 )

SUM = SUM +JZKAJK2

B(K-2)=Sigfl(-A(K-l ,K-2)). fS-L)M8

OL
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B (J) =0. 0 +

J KKY

~N

B(J) -S(AL.A(J ,K-2) -- B(.,

B (J) KK < J < N

J'
y A(J, L)*A(L,K-2)

L=KK

N

B(J) =B(.J) + E A(L,J)*A(L,K-2)
L=J

Eji7= j
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AA_2(A(L,J) -2 (A(L, K-2)*B(J) +A(1K-2) *B(L))

K* A(IJ

T =A(I,I)

A(I,I) =DCl)

J = N-1

B(,J+l) =B(J), D(l) =T

I< I N

FB(N) =A(N,N-1)
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UPDWN

A subprogram:

Purpose:

To obtain maximum or minimum of two values.

Calling Sequence:

UPDIW'N(ID, X,Y)

Common Variables:

None.

Input:

ID integer, if, 1D=I, minimum, if, ID=2, maximum
of two values X and Y to be computed.

X, Y two values

Special Consideration:

None.

Other Subprograms Called:

None.

0

I

I

I 
_ _L
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Flow Chart

BEGIND

N N

UPDWN= Y

Rtrn
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