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ABSTRACT

A

An optimal estimation scheme .8 presented, which determines the satellite
attitude using the gyro readings and the star tracker measurements of a commonly
used satellite attitude measuring unit, The scheme is mainly based on the
exponential Fourier densities that have the desirable closure property under
conditioning. By updating a finite and fixed number of parameters, the condi-
tional rrobability density, which is a exponential Fourier density, is recur-
sively determined.
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Simulation results indicate that the scheme is effective and robust, It
is believed that this approach is applicable to many other attitude measuring
units. As u» linearization and approximation are necessary in the approach,
it 18 ideal for systems involving high levels of randomness.

When a system involves little randomness and linearization is not expected
to incur much error, the approach can provide a benchmark against which such
suboptimal estimators as the extended Kalman filter and the least-squares esti-
mator can be compared. In this spirit, simulated data for HEAO-A were processed
to compare the optimal scheme and the extended Kalman filter. The results are
presented.

This work was supported by the Goddard Space Flight Center/NASA under
Contract No. NAS5-24217 and the Air Force O
Force Systems Command, USAF, under Grant No

e mtinn. M Sy e




1. Introduction

The project being reported on is mainly concerned with estimating
the satellite attitude given the gyro readings and the star tracker
measurements of a commonly used satellite attitude measuring unit (SAMU).
The SAMU is used in such satellites as the high energy astronomy observa-
tory (HEAQ) and the precision pointing control system (PPCS) [1] [2].
It is composed of 3 to 6 rate gyros and 2 star trackers. The satellite
attitude is propagated over a certain number of small time intervals by
integrating the satellite angular rates determined from the gyro reading.
Gyro drift rates, misalignments, and lack of a precise initial attitude
reference then make it necessary to employ two gimbaled star trackers
to provide a bench mark to the further propagation of the satellite
attitude. A star tracker utilizes an image dissector tube to locate
the position of a star on its photosensitive surface. Due to the non-
stationary nonlinear characteristics of the image dissector deflection
coils and the white noise from the processing electronics, it is at this

stage that cstimation is required.

A new representation of a probability density of a three dimensional

rotation called the exponential Fourier density (EFD), was recently intro-
duced (3] [4], which has the desirable closure property under the operation
of taking conditional distributions. Using the EFD's, an approach was sug-
gested in [3] [4] to derive recursive formulas for updating the conditional

densities of a rotational process given a nonlinear observation in additive

white noise.

In this report, this approach is carried out for the aforementioned

satellite attitude estimation problem. The recursive formulas for updating
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the conditional densities of the satellite attitude are derived for arbi-
trary star tracker equations. These general formulas are included here to
accommodate possible future consideration of the distortion characteristics
of the image dissector deflectior coils {1] (2] and possible future change
in the star tracker configuration. Theée general formulas also provide a
basis on which special cases can be easily analyzed. However, they involve
a large amount of computation. Their feasibility for on-board implementa-

tion is highly questionable.

In a conversation with E. J. Lefferts of the GSFC/NASA, it was
observed by him that by choosing appropriately the mathematical description
of the star tracker configuration, the star tracker measurement can be ex-
pressed in closed form as a linear conbination of the rotational harmonic
functions of order one. This observation substantially simplifies the | ;
optimal estimation scheme and grcatly reduces the amount of computation
required in both designing and utilizing the scheme. A detailed deriva- ’
tion of the associated equations is included in the sequel. 1t is these

equations that we use in implementation, simulation, and evaluation.

A tctal of 57 computer programs were created to carry

out essentially the following tasks: i

TASK 1. Simulating the satellite attitude propagation and measurement; \
TASK 2. Updating the conditional density using the recursive formulas

for its Fourier coefficients;

TASK 3. Integrating the conditional covariance matrix of the attitude |
o

quaternion;
TASK 4. Computing the maximum eigen-value and its eigenvector of the 3'

conditional covariance matrix and the estimation errors;
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e m—




BTk AT T

-3 -
TASK 5. Searching for the maximum likehood estimate.
TASK 6. Plotting the estimation errors.

A close look at the mathematical models (30) and (31) for the star tracker
measurement, which are either used in [1] and [2]) or modified by E. J. Lefferts
of the GSFC/NASA, rcvealed that the measurement models are not observable.

The nonobservability causes a pseudo-image of each observed star. As the ex-
tended K-B filtering is merely a local processing, it does not pick up the
pseudo-image and is therefore immune from its effect. In contrast, the optimal
scheme does not have any "blind spots' and thus assigns an equal probability
to the double images of each of the observed stars. An example illust-

rating such nonobservability is given in Section VI,

Fortunately enough, this difficulty resulting from the nonobserv-
ability can be remedied by introducing a "pseudo-measurement' of the
second apparent star direction cosine uz(k) with respect to the tracker
base reference axes. We note that uz(k) is the component of the direc-
tion v -tor u(k) that is perpendicular to the tracker field-of-view and
hence can not be measured directly by the tracker. However K from using
the satellite attitude estimate g(t) at the previous step t=k-1, uz(k)
can be predicted, which is to be used as a "measurement”lof the real uz(k).
Facilitated with such a pseudo-measurement, the pseudo-image of the ob-
served star can be eliminated. For want of a mathematically rigorous
proof, only a heuristic explanation for this pseudo-measurement approach,

which is believed to be new, is given in Section VII.

Among the six tasks mentioned above, TASK 3 is most CPU-time-consuming,

which involves nine integrations on the 3-dimensional rotation group.

L e
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Encouraging is the fast and high concentration of the conditional probability
density at the satellite attitude under estimation. This phenomenon is
dictated by the theory and suggest two possible ways to get around the diffi-
culty of integration. One way is to localize the intcgration. Another way
ijs to use the maximum likelihood estimate instead of the optimal estimate.
Both methods were rescarched and implemented on the computer. The simulation
results indicate that there is virtually no difference between the estimates

obtained in these two ways (at least for the models used in the project).

The maximum likelihood estimator avoids not only integration altogether
but also TASK 4-computing the maximum eigenvalue and its eigenvector. All it
needs is the updated Fourier coefficients of the conditional density, which
are obtained through simple algebraic formulas. Therefore, the maximum like-
lihood estimator is used in comparison with the extended K-B filter, a stan- '

dard method for spacecraft attitude estimation.

A comparison between the K-B filtering and our maximum likelihood esti-
mator . .s conducted by E. J. Lefferts of the GSFC/NASA. A. N. Mansfield of
the CSTA generated a sequence of 33 star tracker observations. The average i
body rates were provided every one third of a second, and the tracker ob-
servation was taken every two minutes. The standard deviation of the tracker
measurement noises is 20 arcseconds. For such a low noise level, it is
known that linearization is a very good approximation. Therefore, it is
notAsurprising that the maximum likelihood estimator is not much better than i
the K-B filter.

However, the comparison results indicate that the maximum likelihood ‘
estimator is almost always better and converges faster than the K-B filter.

It is also noted that: (1) The simulated measurement data are in strict 'j
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accord with the system model, assuming all the true values of the model
parameters and the noise statistics are given. (2) There is no random
driving term in the state dynamics model for the spacecraft attitude. Under
these two conditions in addition to the low measurcement noise level men-
tioned above, even simple-minded estimators can be expected to perform near
optimal. But these conditions are usually far from being met in reality.
The simulated examples in Section IX, used to compare the ML and the
optimal estimates, werechosen to test the robustness of our new schemes and
represent tougher working conditions than the real ones. The simulation
results to be depicted in graphs indicate that both the local integration
estimator and the maximum likelihood estimator track the signal nicely.

Unfortunately, we did not get to use the K-B filter for these cases. But,

we believe that the extended K-B filter is no more valid especially for the
third example.

The robustness of an estimator toward uncertainty of system parameters
and the random driving term in the state dynamics is perhaps the most impor-
tant consideration in real world application. While there is every reason
to believe that the maximum likelihood estimator is superior in this regard,

the issue remains to be resolved in hopefully our next project.

A description and a flow chart of each of the computer programs are
given in the Appendix. A listing can be obtained from the data set call-
cd WOMXN.TESTAL.FORT, which is stored in the IBM360/95 at the GSFC/NASA.

The programs involved in each of the aforementioned tasks are listed as

follows:




TASK 1. M0SSO3 (Main Program), TRANS, NEWO, QTN, QXQ, RANDU

IASK 2 ADC, COEFF1, DRI2, FU, GAUSS, GAUSS4, NPAQ, INITPQ, FR, SD,
C3J, DRII

TASK 3. ERR, INTGLE, SINCOS, INSDD, INTGL2, DMN@, BLK®, ESTIM

TASK 4. ERR, EIGEN, EIGVAL, EIGVEC, QVQ, TRIDMX

TASK 5. MAXI, SEARCH, QIA

TASK 6. MO6PLT, PLOT1, UPDWN

1I. Propagation of the Satellite Attitude

The SAMU uses an inertial measuring unit (IMU) composed of 3 to 6
rate gyros, and two star trackers. Let the time t be indexed by a dis-
crete intergration step T. Areading of the IMU is then taken, and com-
pensations are applied by the computer to yield the estimated rate act-

ing upon the satellite. This compersation is based upon the estimates

of the gyro misalignments and drift rates. The compensated output, the
three estimated angular velocities [w),w;,w3] of the satellite, is then
integrated to yield the estimated satellite attitude quaternion o = [E,H,C,X]T

as follows (1] [2]:

Pre1 = %P (1)
where
C 0.5, 6,5, 8,5,
Q- -85, Co 8,5 8,5
85 %% G 9359
8,5, 0,8, -85,  Cg
| _4
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8. = w.T, i=1,2,3.

As the IMU parameters can be calibrated very accurately before the
satcllite is launched and the gyro noise level is extremely low, the estima-
tion crror of (wj,wp,w3) is assumed negligible to simplify the project. Hence
if the initial attitude were known and if the IMU and computer performed ideal-
ly, then the attitude could be predicted precisely for all future time and no

additional attitude measuring device would be required. Unfortunately this

is not the case and two star trackers are utilized once every N time steps

to acquire additional information about the satellite attitude.

As we are only concerned in this project with filtering tne star
traucker data to estimate the satellite attitude, the attitude propagation
letween two consecutive star tracker measurements can be c¢siwi .« to yield

the following state equation:
(2)

N-1
% = 500 Uavej

We note that each time step in (2) is NT.

where Py = PyN and

Let Py and Qk be identified with their Euler angle representations

sk(¢k,ek,wk )} and wk(ak.Bk,Yk) respectively. The equation (2) can thus be

-—
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rewritten in terms of Euler angles as

sk"l (¢k*1 'e’(*l 'wl“‘l) = wk(ak’Bk'yk)°sk(¢k’ek’wk) (3)

where o denotes the product rotation and (a,B,y) is related to the components

(g)ij of Q through

1
, L
e (@7 ¢ @2 (@2, + @%n? (4)

sin o = - (@), @5, * ©,;(Q /2

cos a = ((9)31(9)21 = (9)11(9_)41)/A

2 2
cos B = 2((Q); + (@3] - 1, 0< Bgm
i v+ (@@ - @), @)

Hence the time sequence [uk,Bk,yk] can be easily determined from the sat-
ellite angular velocity [ml,wz,ws] through (1) - (4). This sequence will be

used in the o>timul estimation equations to be derived in the sequel.

111. Genera! Recursive Formulas for Conditional Densities
The star tracker measurements (to be denoted by mk) are nonlinear
functions of the satelljite attitude Sk corrupted in additive white noise

(to be denoted by vk). A general mathematical model can be written as

L h(sk,k) * vy (5)

vhere LW h(skk), and vy are all r-vectors. The measurement noise Vi is

caused by the processing electronics of the star trackers and it is customari-

- ——
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Iy assumed Gaussian. We write its density function as

-3 3 1 & ijoilj
p(v;) = (2m) “(detR)) “exp|-5 i%::l R v V) (6)
- T
where RiJ is the ixj-th component of the covariance matrix Rk of vy = [vi, . v;] .

As suggested in {2] aud [4], the function h(., k) for each k must be appro-
ximated very closely by a finite Fourier series. By a slight abuse of the symbol

h, it will also be used to denote its Fourier approximate, i.e.

R Z he oot (s (7)
£=0 m,n=-

where the rotational harmonic function Dﬁn is defined, in terms of the Euler

angles (¢,9,¢), by

1
bt (4,6,0) = " Texpl-i(merny)1ds (), 1= (1) (8)
1
¢ € [(2em) 1 (£-m)t (£+n) ! (£-n)!)?
dn() = L1 (Grm-t) ! (f+n-m) 1t ! (L-n-t) ! )

2f+m-n-2t 8 . 2t+n-m @
0s 7 sin 3

As h is a real function, the above Fourier series can be written in the

alternative form, called the real form as contrasted to the complex form

(7),
hes. k) = snf ot (s.) + i [" (k)ReD (s)+h’- (k)ImD (s )](10)
Kk’ 71008 Dgo {5k 1 k k
m,n=-4
m<n
or m=n>Q
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where the real coefficients and h are related wi > ¢ exX ¢ -
here the 1] coefficients h]mn 1 2mn ted with the complex coef

ficient hf through
mn

£ L

mn imn 1—-thn) (11)

The i-th components of h and h;n will be denoted by h! and hi; respectively.

A =c¢t of Fortran IV programs to compute hﬁn's and the approximation

error wias written and successfully tested on the 1BM360/95 at the GSFC/NASA.

Descriptions and flow charts of the programs are given in the Appendix.

It is assumed that the conditional density of Sk-1 given mt T = {ml""’mk l}

is an exponential Fourier density of order 2L, i.c.

2L £
i k-1, ; £,k-1 £ )
p(sk_l|m ) = exp 2: Pon Dmn(sk—l) (12)
£=0 m,n=-4

for k equal to a positive integer. We note that a rotational normal density is
an exponential Fouricr density of order 1. The reason for choosing the order
2L wil]l bccome clcear in the following derivation of the recursive formulas

for nLk.
S mn

By Baves' rule, we have

k k-1
p(Sklm ) = Ckp(mklsk)p(sklm ) (13)
¢ = 4d normalizing constant
18 & v i = -1 -
As w, is a group element, from (3) it follows that Si-1 wk o Sy

Substituting this into (12) yields

o —




-1 - .

k- l £,k-1_ ¢ -1
p(qk]m Lpzpmn D Wk-1 ° Sk)

£,k-1 £, -1 .2
exp) p Z qu(wk-l)an(Sk)

K k-1 Z
= exp 2:( E: qm k 1))0 (s4) (14)
£
o s R 2R .
where and the second equality holds because D, is a matrix
K m,m=-£ e

representation of the three dimensional rotation group.

From (5), (6), and the definition of a conditional density, it is clear

that

r 1

T
plm|s) = (2m) *(detR) exp[ —}12 1R‘1‘J (m-h' (5, ,%)) (m) -h? (sk,k))]

‘exp[ Z R”(m-z Z ﬁ;},(k)n (sk))(m-): Z h..(k)ne(sk)
1

k=1 =0 m,n=- £'=0 m'n'=
[

!
!
I
!
!
!
l
I
l
|
]

= ¢! exp C Z Z (s )+
‘ k £=0 m,n=-£ mn mn k
i : .
i L 2 L' A
-— ) [
Z L ol spoh s (15)
3 £,£'=0 m,n=-£ w',n'=-L'
f
} where
T
Y ij i j
} Co =7 L R mem
i,j=1
‘ L ij, i ZJ J ZJ
c = Z R minld g+ minlt (o) - 1?_ R meh (k) (16)
i,j=1

NN shany ey
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A myn,mt 0ty = -1 }_‘ Rijhﬁrk)hﬁ,f‘,(k)

2
i,j=1

k mn

Furthermore, it is known [5, p.160] that

£+2'

) [:l _ m"-n" [ z’
l)mn(sl\')Dm‘n'(sl\') - Z (2q+1) (-1) (m m
q=q0

m' = m+ m'

n"=n+n

4o = max ([€-&' ], [m"], |n"])

(17)

q|[£ 2 q} q
_m..)(n o ,,) Dl (s (8

mn p

( ik 1{) ke [ (G+k-£) 1 (k+L£-3) ! (£+j-k) ! (£+p) ! (£-p)!

G+k+Z+1) 1 (G*+m) 1 (G-m) ' (k+n) ' (k-n)T

T ent__@menteengt
t (£+p-t) ! {tek-j-p) 1t! (£-k+j-t)!

N e

where the sum on t is cver values such that the arguments of all the

factorial functions are nonnegative, Let us define the symbols:

1 ] 1]
£' m' n

Qe m n '
Y ( ) : = comn,m,m) (2g+0) (D"

£ m
YQ

i

rd £,2',m"n"y :

-£<m,ngl FARE

m'-£X m <m"+£'
nn_‘els n 5n"+£'

,,( L 2

m m -m

n
n''-n

(19)
z ’
¢ q,) (20)
n n' -n"
(21)
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m o e =0

' L
i .. 3 r4(g,2',m,n) (22)
l |€ -2'|< q<2+£’

'Js1ng essentially (18), the last term in (15) is transformed into a linear

£'
E Z I CR TR A ORI e
£,£'=0 myn=-£ m',n'=-2'

, combination of the rotational harmonics as follows:
2>

L £ 2 2+L" £ m n
D S Yq( ) SR

ek

2L q L
Lz [ )M riee,e" m,nm J 3 (s))
" q=0 m",n"=-q | £,£'=0

|2-£'|< q<e+e’

.
) : ‘
DY Z "ﬁn n;‘m(sk). (23)

q=6 m,n=-q )

]

' Substituting (22), (15), and (14) into (13), we obtain

£=0 m,n=-£ qn an

£
' p(sklmk) = exp [ E: 2: ( E: 2 k- IDL (w k 1)
=-£
[ e * X0, @ cfm) of s . (24)

the constants s c'k,and C0 being absorbed into the coefficient of Dgo(sk) =1,
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which is a normalizing constant, and x[O L] is the characteristic function for
’

fo,L].

We note that p(sklmk) is also an exponential Fourier density of order

2L. Comparing (12) and (24), we obtain the recursive formula for pﬁﬁ:

£
2K _ 2,k-1

2

where ' and C are defined by (20)-(22) and (16).

The function enclosed in the brackets in (24) is a real function. It is
often easier to express it in the real form of the Fourier series. Using the

notational convention established in (10) and (11), the equation (24) can be

written as

2L 2
K 1ok e 2
P(sy|m’) = exPég% Z Proo%00 1) * 2 | PranRePma (50

m<n
or m=n>0

+ pz ImDe n (51) : (26)

1_9% -
3P100 = the normalizing constant

The recursive formulas for plzm and pzzn can be deduced from (25) as follows;
£ ¥4
£,k-1 l 1 [ Z,k41 £2,k-1 4
Z: pqn qn( k l) qé; plqn —P2qn ) ( ReD ("k l) * IIme (wk l))
q=-£

e ]

——

(4’-1

P

) ed
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£
1 Z k-1 £,k-1 £, -1
- q?_z 7] ( 1qn Re” i) * P2gn I“‘qu("k-l))
. £,k-1_ £ £2,k- 1 g, -1
* l,( Pign ™ qu(wk V- p2qn qum(wk-l){}
r
£ 1 ij 1.4 ij i, £j
Con = 2 i§;=1(Rk P L R mon,)
L L
y2 q t s
rfm = z Ix(q’q'nm)n) = z Z Y
q,q'=0 q,q'=0 -q<t,s<q q' m-t n-s
la-q'|<€ < q+q" |q -q'|<<q+q  m-q'<tZm+q!

n-q'<s<n+q'

qQ t s - q q' ¢ Q q' ¢ .
¥ = (1" 28s1) ~ ' (¢,5,m-t,n-s)
q' m-t n-s t m-t -m S n-s -n

qq’ ~t.n-s) = -= ijifpat pq'i qi 1q'i
¢ (t,s,m-t,n-s) 8 z Rk (hltshl m-t,n-s” h2tshz m-t,n- s)
i,j=1

_ 3 qi . q'j q1 . q°)
l( h2tsh1mtns hltsthtns)

£k £k £k _ £x
Pimn = ZR€Ppn » Popy = -2IMPp,
£,k-1 £,k- 1
len z ( lqn Rwqm(wk 1) * qun qm("k-l))

T
ij i £ z ) m-n+]
Cxe @ LoD LT T etz
X{o,1] i,j=lemklm q,q'=0 -st,s<q
la~a'|st<q+q'  m-q'st<q'+m

n=q'<ssn+q’
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qQ q' ¢ Q q' ¢ T L gti T
o pid [ pai Q') pai 1q'J
)J Rk ( hltshl,m—t,n-s h2tsh2,m—t,n-s (27)
t m-t -m $ n-s -n .
i,)=1
! 14 £
'SR ol BNV 28 T SRV SR k-1 -1
Pomn q:jf P2 Rtnqm(wk—]) * Pign Im“qm(wk—l)]
r . L
RIS )] RiJm;hgin D) 2. (-1y™ ! 2%:1
T i,)-1 q,q'=0 -q<t,s<q

la-a'[<€<q+q' m-q'<t<q'+m
T n-q'<s<q'+n

P . 1. . .
1j | ,qi . 4) q1 .q'j
Rk h2tshl,m—t,n-s * hltshZ,m—t,n-s (28)

IV. Star Tracker Equations in Terrs of Harmonics

A star tracker is a telesccpe-detector system mounted with two degrees
of frcedom to the satcllite. The field of view of the detector is a 8 by 8
degrce window whose center point is on the optical axis and whose plane is
normal to this axis. A star appearing within this window is sensed by the
detector and, after some electronic processing, results in the output of two
voltages representing the position of the star within the window along two |

mutually perpendicular axes. : t

When a star tracker observation is taken at time k, the star is identi«
fied from a star map and its apparent direction cosines a(k) = [al(k), az(k),as(k)]1'
with respect to the earth-centered inertial set of coordinate system can be easily ‘
computed from the absolute velocity of the satellite. The apparent star direction
cosines u(k) = [ul(k),u (k),us(k)]T with respect to the tracker base reference ‘

axes are related to a as follows:

——

e imm——— —— r
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u(k) = A ¢ A I(k)a(k) (29)
X X XZ

where A ¢ is the constant 3 x 3 orthogonal matrix representing the orienta-
X X

tion of the tracker base reference axes with respect to the satellite base
reference axes and A 1(k) is the 3 x 3 orthogonal matrix representing the

XZ
satellite attitude with respect to the earth-centered inertial set at time

k.
The mathematical model used [1] and [2] for the relationship between

the tracker output voltages [yl(l), y3(k)] and u(k) is the following:

= + (30)
y4 (k) u () /u, (K) n3 (k)

With [nl(k), n3(k)] denoting two independent white Gaussian noise, the model

is only an approximation. It was pointed out by E. J. Lefferts of the GSFC/

NASA that the following model provides just as good an approximation to the

relationship between [yl(k), y3(k)] and u(k):

l—.vl(k) -ul(k) nl(k)

= + (31)
y5(K) | ug (k) nz (k)

It will be seen later that the components of A p are simple linear com-
binations of the rotational hermonics of order 1. ;;ence so are the components
of u(k). Using the model (31), we do not need to use the set of Fortran IV
programs provided in the Appendix to compute hﬁn(k)'s in (7) to approximate

h(sk,k). Above all, the star observed by the star tracker changes from time
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to time and thus h(sk,k) is a time-varing function. Using the Fortran
programs to compute hmn(k)'s for each star observation may amount to
unbearable computational burden, especially when the estimation has to
be done on hoard the satellite. The use of the model (31) not only
eliminates such a difficulty but also keeps minimal the number of
harmonics required to update the conditional densities of the sat-
~ellite attitude. In the following, we will restrict our attention

to the model (31).

The SAMU uses two star trackers. We will usé a single underline
and a double underline to refer to Star Tracker I and Star Tracker II,
respectively, e.g., (2 » Uy, Ug ) denotes the apparent star direction

cosines in the Star Tracker 1l base reference axes (?2 2, % When

’ 2’ 3 )

the underlines are omitted, the equations are valid for both star trackers.

We pool the measurements fiom the two star trackers and write

R [ .3 ] [ 1 7]
mk h (sk,k) vk
2 2. . 2
my h (sk,k) Vi
h(s k) + v, = +
m,i ST k h3(sk,k) v:
4 4, 4
m h (Sk,k) Vi
L A L . L .
where
r~ - -
1 [
h (sknk) 'E_l(sknk)
h(s, ,k) u, (s, ,k)
X’ Uz (sy,
n3s | -u, (s, ,k)
X’ u, (sy»
h (s, , %) (s, ,k)
| M G Yz(sy» |

(32)

(33)




[Re——

ittty & [T - ,-‘\

N Sy sy cmay e
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We will now express uj as a linear combination of the rotational

harmonics of order ):

min(L-n,{+m) %
L t [(L+m) ! (L-m) ! (L+n) ! (£-n)!]
a< (o) - I
mn t=max (0,m-n) (L+m-t) ! (t+n-m) 't (L-n-t)!
.Cog2ffm—n—2t 4 2t+n-m 6
2 2
£ _ m m £
Don(¢:8,9) = exp [ - ¢Im - (5 + ¥)n] d (6)
whence
[ 1 1 [
Ilel Rel)‘10 ReD_11
Ile D1 R D1 = —l 0s¢sing 0
-10 Poo Doy oSt cos
1 1 1
ImD ImD ReD
-11 01 11
L _ -
The matrix A [ can then be expressed in terms of the harmonics as follows:
Xz
F—Eos¢cosw-sin¢cosesinw cosysin¢+sinycos¢dcosd
A = -sinycos¢-cosysingcosd -singsing+cosécosycoss
Xz sin¢sind -cos¢sing
1 1 1 1 Jinenl! |
ReDn~ReD_ll -ImD_u-ImDll - 2ReD01
= 1 1 1 1 1
-ImD_  +ImDy,  ReDj +ReD .  -/2ImDy,
1 1 1
L-/Ehcn_lo 2md_, Doo |

e e s
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We recall that

1
-%sin(¢+¢)(1+cgiq) /75ingsing %cos(¢—¢)(1—cose)

1
—%sin(¢-w)(l-oose) XECOswsine _%cos(¢+w)(1+cose)

(34)

(35)

1
—Jﬁsin¢sine

sinysing
cosysing

cosf

(36)

—

—
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Let the ixj-th component of the constant matrix A be denoted by m .-

XX
From (29), it follows that, for j = 1,2,3 and for both star trackers,

= 1
uj(k) = mjsas(k)D;O(sk)+{/2mj331(k)ReD_lo(sk)+(mjzaz(k)-mjlal(k)ReDill(sk)
J

-/Ehjlas(k)ReDél(sk)+(m.lal(k)+mjzaz(k))ReDil(sk)J

. [/Emjsaz(k)rmnfl(sk) - (mj1a2(k)+mjzal(k)Imell(sk)

/Ehjzas(k)ImDél(sk) N (mjzal(k)-mjlaz(k))ImDil(sk)] (37)

. . i i i .
The Fourier coefficients, H%mﬁk)s and H%mﬂk)s forvh (sk,k) can be easily
jdentified from (33) and (37) and will not be displayed here. We only
note that they can be very easily determined from the star direction a(k)

and the recursive formulas are then readily applicable.

V. Updating the Conditional Densities Using Star Tracker Measurements

We +il} now display the recursive formulas for the conditional densi-
ties of the satellite to be used in the next two modules of this project.
The star tracker equations are (32), (33), and (37) developed in the pre-

vious section. We assume that the measurement noise process'vk has statis-
tically independent components, i.e., R;J=0, if i#j.
We recall that the function h' in (33) is a linear combination of
the first order harmonics ReD1 and Ile Hence hqi =hqi =0 unless
' mn mn’ lmn "2mn

q=1. This observation greatly simplifies the multiple summation sign in

e — 4 —

4 -y

b iy

Al
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front of the brackets in (27) and (28):

) Lz

qQ,q'=0 = q<t,s<q
lq-q'|<f<q+q'  m-q'<t<m+q’
n-q'<s<n+q’

)

max(-1,m-1)<t<min(1,m+1)
max(-1,n-1)<s<min(1,n+1)

In view of the assumption that Ri3=0, for i#j, we obtain from (27) and

(28) the following recursive formulas: for £=1, 2 andm,n=-£, ... , £,

L
Lk 2.k-1, £ -1 4,k-1. £ -1
Pimn ~ ggl plqn Rqum(wk-l) * p2qn Imem(wk-l)
4
o, @ Sl L it
* i=1 max(-1,m-1)<t<min(1,m+1)
max(-1,n-1)<s<min(1,n+1)
S U2 O A U T 2 W A
28+1 Z: 3il.13 .13
4 Rk hltshl m-t,n-s
t m-t -m s n-s -n [j=1 ’ ’
1j 15
Mots 2,m~t,n-s) : (38)

£ .
£k £,k-1, £ -1 £,k-1. ¢ _ -1
Poon ~ ngl qum Rqum(wk-l) - qun Imem(wk-l)

4
BIRINS m-n+1
+ X @) z R‘)Jth + z (-1)
(0,1} i=1 k 7k 2mn max(-1,m-1)<t<min(1,m+1)
max(-1,n-1)<s<min(l,n+1)

» 4
2041 1 1 4 1 1 4 E: Rjj hlj hlj
j=1 k 2ts 1,m-t,n-s

13 . 1j
* hltshZ,m—t,n-s (39)

L
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where, from (19),

1
e N O R AR 272102 TY 2V
WE— ) G+OTA+O) T (1-t) ! (I+m-t) I (1-m+t) !
min{(f-m,L)
Y (et Wlomrter)t(lem-ter) !t (40)
r=max(0,-m) (L-m-T) ! (r+m) !r! (L-1)! |
The conditional density p(sk/mk) is then obtained through (26):
2 ¢ i
k ¥ 1 2k £ T £k ya £k £
p(sklm ) = exp ;:0 ZPIOODOO(Sk) * m‘;;—ﬁ \ plmnReDmn(Sk) * p2mnImDmn(sk) (26)
’ m<n i
or m=n>0

{

1 0Ok

5 Plgg = the normalizing constant

It is noted that there are 35 TFourier coefficients, pf;n and pgzn, which are

recursively computed by reasonably simple scalar equations (38) and (39).

11. Nonobservability of the Star Tracker Equations
We ccnsider the mathematical model (31), to be repeated in the fol-
lowing, for the star tracker measurement in this section. Jur argument

here applies also to the model (30). We recall that the model (31) is

y; () -u, (5, ,K) n, (k)
= + (31)
¥4 (K) ug (5 k) ny (k)
u(sk,k) = A t A l(k)a(k) (29)
X X X2

where a(k) is the apparent direction cosines of the observed star with respect
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. . | G . .
to the carth-centered inertial set z of coordinate system, A ¢ 18 the
X X
constant 3x3 orthogonal matrix representing the oricntation of the tracker
t . .
base reference axes x with respect to the satellite base reference axes x,
and A l(k) is the 3x3 orthogonal matrix represcnting the satellite attitude

XZ
with respect to the earth-centered inertial set at time k.

The SAMU uses two star trackers. We will use a single underline and
a double underline to refer to Star Tracker 1 and Star Tracker 11, respective-

ly. When the underlines arc omitted, the equations are valid for both star
trachers.
We pool the measurements from the two star trackers and write, suppressing

the time variable k,

-mﬂ rhl(S)W —vl-
m2 _ hzts) v2
3 =m= h(s) + v = hs(s) + 3 (32)
_mAJ _h4(s)J _v4d
where
b ()] P—gAl(s)—
h*(s) u (s)
Wil -u, () (33)
4
1 ()] | uy(s))

We say that the measurements m are not observable, meaning that there
are two different states, s and f, that the measurements m can not distinguish,
i.e., h(s) = h(f). This nonobservability is essentially caused by the lack

of information about uz(s) in the model (31).
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The vector u(s) is the apparent direction cosines of the observed

star with respect to the tracker base reference axes and its second com-

ponent uz(s) is either positive or negative /- uf(s) - uz(s), Further-
more, the star tracker looks in the positive direction of uz(s). Hence,
u,(s) = /l“f”;?(gy“fijz(gf" and ujy(s) is completely determined by uj(s)
and US(S)’ which are directly measured in (31). Indeed, the physical
system that (32) and (33) try to describe is observable. But the direc-
tion of the star tracker is by no means taken into consideration in the
model (31) (nor in (30)). We will now illustrate this point with the fol-

lowing exuample.

Example. Assume that

(1 0o o] (0]
A= 0 1 0 a = 1
ix
o 0o 1] 0|
[ 1 0 0] (0]
At = 0 0 1 a = 0
X X
0 -1 0 1)
1 o0 o]
s=A = |0 1 0
LZ
o o 1_}
1 0o o)
fA ;= [0 -1 o0
XZ
| 0 0 -1 |

S —— i e

e




- 25 -
Simple calculations yield
0]
u{s) = A t $ 8 = 1
X X
0
[ o]
u(s) = A P 520 1
= tx
z 0 |
[0
u(f) = A ¢ fa = -1
XX
-OJ
FO‘
u(f) = A fa = -1 .
E x
) [ 0]
Hence, . - r -
“u(s) | 0 -E_I(f)T
u.(s) 0 u, (f)
h(s) = ) = = = h(f)
'91(5) 0 -gl(f?
I 42(5)_ | 0 ] I us ()

We note that this example is also valid for the model (30) for which
o= [ - ) - T
h(s) = [-3,(s)/u,(s),ug(s)/u,(s),-u, (s)/u,(s), us(s)/u,(s)] .
As the star trackers look in the positive u, direction, the direction

cosines u(f), of which the second component is negative, can not be those

of the obtserved star. They only form a pseudo-image of the observed star,
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which the measurements (32) and (33) can not distinguish from the real

image of the same star.

Vil. Remedying the Nonobservability
We recall that the conditional density p(mklsk) is used in calculating

p(sklmk) and that

T 1 T
—-5 - l ¢ .. . . . .
pem Is,)=(2m) °(detry) < exp [-5 ) R;J(m;-hl(sk,k))(mlJ(—hJ(sk,k))] (15)
i,j=1

where rois the dimension of the measurcment vector m. From this equation,
it 1s clear that p(mklsk) takes on the same value at the state s and at the
pseudo-state f resulting respectively from the images u(s) and the pseudo-images

u(f) of the observed stars, since h(f) = h(s).

In order to climinate such effect of the star pseudo-images, a new ap-

proach, which we call the pseudo-measurcment technique, was developed. The

idea is pretty simple. Supposing that u, and u, were directly measured and
(32) and (33) became
r o ha [~ 1
nl | ht(s) v
2 2
m hz(s) v
3 3 3
m4 =m=h(s) + v = hd(s) + v (41
m h'(s) vé
m5 hs(s) vo
6 6 6
L m _ h (s)_ | v© ]

e — — e o o
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- - r— —

and hl(s) ‘H.(s)
n?(s) u (5)
h*(s) -y, (s)
h' (s) = | ug(s) (42)
h>(s) u, ()
| n°(s) | | 4,09

the equation (15) would remain unchanged with r = 6 instead of 4. Of course,

mS and m: are not really available. However, if the estimate gk-l of Sk-1 is

k
good, then gz(wk_losk_l) and gz(wk_losk_l) should be equally good estimates of

5 . 6 R 4 S : s
my and m - It scems only natural to use Ez(wk—l°sk-1) and gz(hk_losk_l) as

measurements of uz(sk) and gz(sk), respectively.

Now setting

5 . |
VT m Uiy geSyy) - (s

6 2
voE (W oSy ) - ()

: ) (43)
m = u2(wk-l°sk 1)

6_ ~

me= Uy (W peSkoy)

we retrieve exactly (42) and (43). Here, the question is whether we still
have (15) with r=6. This obviously depends on the conditional sampling dis-
tributions of v5 and v6 in (44) given the state Sk at time k which unfortu-

nately remains unclear as of today. We note only that s is a measurable

k-1
function of mk~! = {ml, vee, mk-l} and hence vs(k) and v6(k) are conditional-

. " .
ly independent of V' (k), i=1, ..., 4.

We recall that the nonobservability problem arises from the missing

sign of u,. Perhaps we do not need all that much information about u, as

might be possible to obtain from a precise expression of the conditional
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sumpling distributions of v® and vh, as long as the cffect of the pseudo-
imapes of the obscrved stars can be eliminated without affecting (15) with
r=4. This can indeed be achieved by assuming that the conditional sampling
distributions of v5 and v6 are normal. First of all, the equation (15) is
valid again with r=6 under this assumption. Secondly, by setting R55 and
R66 equal to 4, we assign a probability of 95% to a positive value of u,,
leaving the equation (15) with r=4 relatively intact. Thirdly, in view of

the central limit theorem, the assumption may not be hard to swallow after

all.

VIIL An Estimation Error Criterion and the Optimal Estimate

In order to define an error criterion for orientation estimation, it
is necessary to have a measure of the distance between two orientations.
We will first describe such a measure, using quaternions. We recall that
a rotation .about an axis in the direction of a unit vector [!,,m,n]T through
an angle ¢ is represented by the (unit) quaternion

_ T _ Y} ¢ I I
q = [ql’qZ’qE’q4] = [£sin 5» msin 5, nsin 3, cos

N6
el
-

Given two orientations, the minimal angle in radians required to bring
one into the other is a natural measufe of distance between them and defines
a Riemannian metric on SO(3). If the orientations are represented by the
quaternions: q and p, and the minimal angle is denoted by p(q,p), theﬁ we
have qlp = cos % p(q,p). As % (1 - cos p) is a monotone increasing function

1

of p, a measure of distance between p and q can be defined to be 7 (-

cos p(q,p)) =1 - (qu)z. It can be shown that if the orientations, q and

- e m——— . [SF U, - — e —— e e —— -~
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p, are described by the 3x3-dimensional orthogonal matrices, Q and P, then

this measure of distance can also be expressed as %v(s - tr PQT).

We are now rcady to define the error criterion for orientation estimation.
Let q be a random quaternion and p its estimate. Then a measure of the esti-

mation error is

J(a,p) = EQl - (qTp)?)y. (a4)

If the probability distribution of q is given, the estimate p which
minimizes J may be obtained from observing that j(q,p) = 1 - pT E(qqT)p -
It is well-known that the quadratic form p!Vp of the positive definite
matrix V = E(qql) is maximized when p is the unit eigenvector associated

with the largest eigenvalue X of V. Moreover, the maximum value is X.

Hence,
min J(q,p) = 1 - 4TE(aqNq
i =1 -2
where » = the maximum eigenvalue of E(qql)
a = the unit eigenvector of E(qql)

associated with X .
The probability Jistributions on SO(3) are expressed in terms of the
Euler angles (¢,6,¥) in (26). The following relationships between the
quaternion components and the Euler angles will ha;e to be used to calcu-

late the optimal estimate a and its estimation error 1 - X:

= sin & cos &%
q, = sin 5 cos =5

- ) ¢-v
Q, = sin 3 sin 55

- 9 sin $2¥
q; = cos 3 sin =5




1X. Simulation Results

Three simulated examples with various system parameters and noise levels
are given in this section. They were chosen to test the robustness of the
optimal scheme and therefore represent tougher working conditions than the
rcal ones. The measurement noise, vi in (42), is set at two different levels
to illustrate how the noise level can affect the estimator performance. The
variance, 1/R', of v! is 1/36 for A part of the examples, and is 10™% for B
part of the examples. The reader is rerferred to the Module II report for
the specification of all the system parameters.

The four graphs of the A part of the i—tih example are, respectively,
GRAPH (i, A, 1):

the error, ERH1, of the optimal estimate obtained by

" local integration

....... the error, ERHZ2, of the maximum likelihood estimate

GRAPH (i, A, 2):
The same as GRAPH (i, A, 1) except that the vertical scale is changed

and the points at k = 1 and 2 are removed to magnify the vertical variations.

GRAPH (i, A, 3): ‘

the difference, ERH1 - ERH2, of the errors

------- the distance between the maximum likelihood estimate ‘

and the optimal estimate obtained by local integration

GRAPH (i, A, 4):
The same as GRAPH (i, A, 3) except that the vertical scale is changed ~§

and the points at k = 1 and 2 are removed to magnify the vertical variations. 'I
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The symbols to be used to specify the system parameters and noise

levels are defined as follows:

1. The attitude propagation equation is

PR, — - ] ]

Ska1 Orars Oparr ¥ian) = Wi (00 Bl o 51 (6,6, ,4,) (3)
2. The initial attitude at k=0 is represented by a quaternion Sy T [qlxqu
;
43,G,]

3. The initial distribution of So has a rotational normal density

4
2
! p(sy) = ¢ exp [a (151 b.a;) ]

4. The Euler angles o, Bk’ Y, are obtained from multiplying the constants

i cl, ¢y, Cz, TESP., by pseudo-random numbers from the uniform distribu-

tion on the interval {0, 1].

5. The statr tracker measurement and the pseudo-measurement equations are

i i
h (Skl k) + vk, 1 1

2
]

.., 6 4a2)

N'l—l -

where . -

] P(v)

ii, i.2

Rl

e

)

>

=

—_

[}
Ny

~ o

: 6
em™> (J R

! i=1

6. The apparent direction cosines u with respect to a star tracker and those

a with respect to the earth are related by

X X x2

|

[ |

l u(k) = A A (k) a(k) (29)
I

|

e S vk e —— o b+,
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EXAMPLE 3
[1 ]
0
S =
0 0
0
[ b, 0
bz i 0
b3 0
by LV
a=2.0
2 2m 2w
leys ¢y ezl = [ = g7
R - 36.0, i=1, ...,
R 2 4.0, i=5ando
B 0
A, = o 1
_)_(_x
o 0
1 0
A = |0 0
X X
= 0 -1
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Remark. Let us recall the nonobservability example given in Section II.

The pscudo-state of the real state sy is exactly [bl’ b b4], which

20 b
is chosen to be the mode of the initial density of sg+ The pseudo-measure-
ment technique thus picks wrongly the pscudo-state at the first time-point.
This example was in fact deliverately designed to work against the pseudo-
measurement technique.  The simulation results to be depicted in the fol-
Towing graphs indicate without doubt that the pseudo-measurement technique

has unbelicvable sclf-correcting power and switches to the real images of

the starsvery quickly (at the sccond time-point in this example).
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1I1. Comparison Between the Maximum Likelihood Estimates and the K-B Estimates

We note again that it takes much more CPU time to compute the optimal
estimates even by local integration and, based on the simulation results, the
local integration estimates are not much better than the maximum likelihood
estimates. Therefore, a comparison was made between the K-B estimation and
the maximum likelihood estimation instead of the optimal estimation.

The comparison was conducted by E. J. Lefferts of the GSFC/NASA. A. N.
Mansfield of the CSTA generated sequences of 33 star tracker observations.
The average body angular velocity was provided every one third of a second,
The standard

and the tracker observation was taken every two minutes.

deviation of the iracker measurement noises is 20 arcseconds.
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For such a low noise level, it is known that linearization is a very
good approximation and the extened K-B filter is expected to be near optimal.
Indeed, our comparison results confirmed these long-standing conjectures.

Two typical cxamples were included in the following. We note that the maxi-
mum likelihood estimates are almost always better and converge faster than

the K-B estimiics. However they are close, especially in the steady states.

The system parameters and the noise statistics for the two comparison
runs to be reported in the following will now be given, using the cymbols
established in Section IV of the Module II report:

a =2+ (180/2m)°2

RIL = [20 « (1/3600) * (1/180)] 72, i-=1, 2, 3, 4
Rii = 0, i=5, ©
1 0 61

XX

LO 0 1

r-1 0o 0
‘_t = 0 0 -1
XX
= 0 1 0

o J

The four graphs of the iEh example are, respectively,

GRAPH (i, 1):
e the angular error in arcseconds of the K-B estimate
....... the angular error in arcseconds of the maximum likelihood
estimate
GRAPH (i, 2):

The same as GRAPH (i, 1) except that the vertical scale is changed and

the points at k=1, ..., 4 are removed to magnify the vertical variations.

Tt e e
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GRAPH (i, 3):
the angular error of the K-B estimate minus that of the
maximum likelihood estimate
GRAPH (i, 4):
The same as GRAPH (i, 3) except that the vertical scale is changed and

the points at k=1, ..., 4 are removed to magnify the vertical variations.
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APPENDIX

Main Program

Purpose?’

~

To obtain the optimal estimate S maximum liklihood cstimate

-

;k‘ of the satellite attitude s

satisfying
K S ving

Sk(d’k}ok)wk) = wk(akIBkIYk) o Sl\_l(¢k_ll ek_li wk_l)‘

using the mecasurements {ml, my, ... mk} acquired from two star

&

trackers, which are described by

m, = h(sk, K) + v

k k

Commen variables:

Input:

/BLK1/ N, NZ, MT
/BLK2/  PAI2, H@, H, D, AXX
/BLK3/  AD, AA, BB, Wg, OBN, Py, Q@, P1, Ql,

JBLK4/  AK, QS, DIR, QW, RR, SINE, COSN, QSN, QHl, QH2, QHD, ERRN,
ERHI, ERH2, ER12

PA12 2m
N number of subintervals in [0, 2]
NZ number of subintervals in [0, 2m] for the first and

third Euler angles ¢,y

MT number of subinteryals in [0,7] for the second Euler
angle O

Ho mesh for integration = 2T/N)

H mesh for integration (= 2m/N2Z)

D mesh for integration (= 7/MT)

- — e e . Al o el - — oo- - R ———



[Po.

AXX

AD

Wwe
QW

PR, QP

AK

SINE, COSN

SDD1, SDD2

Qs
QHp

IXp,1YP

Output

OBN

P1,Ql

- 45 - M-2

2x3x3 dimensional array representing each orientation
of the star tracker base refercnce axes with respect
to the satellite base reference axes.

2x3 - dimensional array representing the apparent
direction cosines of a star observed by each of the
two star trackers with respect to the earth-centered
inertial set of coordinate system.

satellite attitude propagation, Euler angles, 3-dim,.
array.

quaternion form of W@, 4-dim. array.

coefficients of harmonics in P(s _l|mk_1), which
will be updated for P(s,|nk) to BI} Q1, 2xsx5-dim.
arrays.

parameter of the rotational normal distribution of
the initial satellite attitude Sq.

coefficients of {ReDln(s )}, {ImD;n(sk)} in ¢-dim.
function h(sk,K), 6x9x3— im. arrays.

diagonal elements of the covariance matrix for the
normal distribution of the observation noise, 6-dim.

array.

table of sin ¢, cos ¢, 33-dim. arrays.

@ ), (2 (®} for rent (4,0,0), 1m0l (6,6 ¥ )
for £=1,2 ! 3x3x17 and 5X5x17-dim. arrays.
attitude Sy-1° 4-dim. array.

{k-1)th stage maximum 1iklihood estimate of s to

generate a predicted estimate of Sy 4-dim. array.

initial random integers which create measurement
noise, satellite attitude propagation, and AD.

star tracker measurements, 6-dim. array.

updated coefficients of the harmonics in the con-
ditional density P(s [mk), 2x5x5-dim, arrays,
input for the (k+1)tk stage.
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QS1 attitude s, , 4-dim. array, renamed as QS.

Qsp predicted ecstimate of Sk generated by W¢ and QNQ,
4-dim. array.

SH1 estimate gk of the satellite attitude Sk 4-dim,
array.

QH1 sequence of {gk }, 4x50-dim. array.

SH2 maximum likelihood estimate gk of S+

QH2 sequence of {gk} , 4x50-dim. array.

ER1 estimation error of the attitude estimate gk‘

ERRN sequence of estimation errors, 50-dim. array.

ER2 distance between Sk and Sy p(sk, sk).

ERH1 sequence of {p(sk, gi)} , 50-dim. array.

ER3 distance between Sk and Sio p(sk, sk).

ERH2 sequence of {o(ck, gk) , 50-dim. array.

ER4 distance betw.en Sk and Sy g(sk, Sk)

ER12 sequencc of {o(gk, gk)} , 50-dim. array.

Special Considerations:
1. Parameter AD is generated at each stage k from S, considering

the deviation from the value a in the equation,

= Axx'sz(Sk)“

this is done in 'ADC',

2. Attitude propagation W@ is generated at cach stage in 'NEWR'.
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Mcasurement OBN consists of six componcents, which are

OBN(i) = FU(i, DD, AA, BB) + V(i) 1 <i<4
OBN(i) = FU(i, DD, AA, 'BB) 5§ <1i<6
For 1 =i = 4, DD represents { ReD! (s.) } { 1D} (s,)}
’ mn "k ! mn "k

- 1 . 1
< <
For 5 < i < 6, DD represents { ReDmn(sk) }, {ImDmn

where -1’ called predicted estimate of s

3 H
Sk™%k-1°"k

In this scnse, OBN is called pseudomeasurements,

K

The initial distribution p(sp) is assumed to be a

rotational normal distribution on SO(3) with parameter AK.

In order to reduce integration time, 32 subintervals for
¢, Pand 16 subintervals for & are used in the trapezoidal

rule, where 0 < ¢, < 271, 0 <= B =

In the computation of optimal estimate gk and estimation
error, tables of sin¢, cos¢, d;n(e), d;n(e) are used instead
of calling subprograms.

Integer XK indicates which stage should be updated and MM
shows at (MM-1) stages, the values QSN, QHl, QH2, ERRN, ERH],

ERH2, ER12. Skipping given steps JMP.

At the end of each stage, necessary data are stored in the

disk space and will be read at the beginning of RUN by TRANS,

Subprograms Called:

INSDD, TRANS, SINCOS, QTN, INITPQ, RANDU, NEWO, QXQ, GAUSS4,
DRI2, ADC, COEFFl, FU, NPAQ, ERR.




Cean)
Iy

PA12=06-283185307179580
N=256

MX=256

NZ=32

MT=16

MRAN=256

NX=400

NZ1=NZz+1

MAX=50

JMP=1

- 4¢ -

v

H@=2 /N

H =2 1/NZ
D =2 W/MT

:

SDD1,SDD2

(=d__(0))

(INSDD)

-

PRINTOUT

DO YOU START FROM
THE BEGINNING ?°

(0/Y, 1/N)

READ

PRINTOUT

"DO YOU WANT PRINTOUT?'

(0/Y, 1/N)

e

READ

PRINTOUT
if 1D=3
(TRANS)

vy




SIN(X), COS(X) Table

ORI - o—— [ ]

(SINCOS)

L

Initialization of test paraneter
AXX, RR, Pg, Q9
Wgd, AK

DIR, QH@, QS

|

Initial density
(INITPQ)

Bl

IX@=13
1Y@=97

:

Generate
New IX@#, 1Y@
(RANDU)

M-6

LL=MOD (KK, JMP)

|

INDX=2

INDX=3
B
)




PRINTOUT
'KK th Process'

!

RA(1)=4.0
RA(2)=5.0
RA(3)=6.0
RA(4)=5.0

b

l IX1=1X+63342

Attitude Propagat1on

(NEW¢)

o W'9)~Tnt o_?)—ﬁ-h—N‘
' (QTN)

New attitude

Predicted
k ttitud-

=

-]
>

N

k=l ST

(QxQ)
QS1 - QS

I

RR > RW

I

v

Observation noise V
and modification of V(4)
(GAUSS4)

I

Deviation V1 and V2
of AD
(GAUSS4)

'

(Sk) ImD

mn(sk)
(DR12)

- —————m e — =

vy

b
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____ Ang=a) O\

(ADC)

Coefficients AA,BB
of harmonics of h(sk,k)
(COLEF1)
IR .
mk(1)=h"(s,,, )+v, (i)
I<i<4

(FU)

1

R SN
ReDm“(sk),lmDmn(sk)
(DR12)

KA
mk(l)_h (Sk! K)
5<j<6

(FU)

P1,Q1 from P¢'Q¢
(NPAQ)

.

gk’ Sk’ error 1,
error2, error3, crror4d
(ERR)

ERl 7 ERRN
ER2 ? ERHI
ER3 =+ ERH2
ER4 ~+ ER12

“k

Reparametrization
P1, Q1 Pé, Qd
SH2 SH@

. eA_ e
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I: MM=MM+1 .

T

(TRANS)

PRINTOUT

all the result

(TRANS)

STOP

M-9
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AL

A Subprogram

Purpose:

To choose two appropriate sets of apparent direction cosines

A with respect to the carth-centered inertial coordinate system.
Calling Sequence:

CALL ADC(AXX, DD, V1, V2, AD)

Common Variables:

None
Input:

AXX 2x3x3-dim. array representing the orientation of the
two sets of the start tracker base reference axes
with respect to the satellite bhase reference axes,
given in the main program, A ¢

X X

Db 3x3-dim. array representing { Dl (s,) 1}, computed by

| ' mn "k
DRI2'. ' :

Vi,v2 4-dim. arrays recpresenting random numbers from the

normal distribution.
Output :
AD 2x3-dim. array representing apparent dircction cosines,

a(k).
Special Considerations:

1. First AD(=a) is chosen to satisfy the relation

then a is replaced by a+v and normalized. In the program,

the orthogonality of A . A 1 is used,
XX xz




- 54 - ADC-2

2. v is of normal distribution with a reclatively small variance for

the realistic simulations,

3. If ]Jla + v | =0, then v; is replaced by v,/2 to avoid

|a+ v =o0.

Other Subprograms Called:

None.
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Flow Chart

BEGIN

1 1 1 1 1
!_ReD“—ReD-ll —ImD_“~ImD11 —ViheDOI
. 1 1 1 5101
ImD_, ) #ImD],  ReD  +ReD . -/21mb,)
X2
/ZRdp! VZImp} D
L -10 -10 00
a, = IA ¢ (2,k)-AA 1k, 1)
X X Xz

a; = 2/ llawvl]

:

Return

ADC-3



BLK@-1

BLKP
A Subprogram
Purpose:
To determine a region and parameters for local integration adjusting

a block region determined by 'DMNA'.

Calling Sequence:

CALL BLK@ (A, H, Z, T, W, NZ, NT, NW)

Common Variables:

None
Input:
A 3-dim array representing the mode of the conditional
density function.
Z, T, W 2-dim arrays representing the coordinates of 8 corner
points of a rectangular region.
Output:
Z, T, W 2-dim arrays containing the coordinates of a modified
rectangular region.
NZ, NT, NW integers representing the numbers of meshes in Z, T,

W-directions, respectively.

Special Considerations:
1. The numbers of mesh in Z, T, W-directions are adjusted so that
they approximately become 12, 6, 12 or 6, 6, 6 according to
the distribution.

2. Each number of NZ, NT, NW is a multiple of 6.

Other subprograms called:

None.
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Flow Chart

BEGIN

Rough estimate of
mesh in each direction

H1 = (Z2(2)-2(1))/12
H2 = (T(2)-T(1))/6
H3 = (W(2)-W(1))/12

|

H

Uniform mesh
(max(H1, H2, H3) + min(H1l, H2, H3))/2

.

Number of mesh
in cach direction

NZ, NT, NW

I

Coordinates of Z, T, W
Z{1) = A(1)-H-(NZ/2)

Z(2) = A(1)+H- (NZ/2)
T(1) = A(2)-H: (NT/2)
T(2) = A(2)+H: (NT/2)
W(1) = A(3)-H- (NW/2)
W(2) = A(3)+H- (NW/2)

]

RETURN

BLK@-2
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COLFI]
A Subprogram
Purpose:
To sct up tables of the coefficients of the following six

functions expressed as harmonic series on SO0(3),

. .th . . .
where ui(k) is the j - direction cosine of a star tracker at

time kh and 1s given by
. . 1 ARrenl
uj(k)—mjz-az(k)-Doo(sk)+[/5 mjsal(L)RcD_lo(sk)

- , v l l
+ (miﬁ,'dz(]\)-mjl-dl(])) ReD_,, (s,)- /Z_mjlas(k)ReDOI(sk)

R (mjl.a](k)+mj2.a2(k))ReDil(sk)]

V2 mgoa, (0 ImD_llo(sk)-(mjl-az(k) . mjz-al(k))lmofn(sk)

/> 4 (K- TaD} . N e 1
- V2 mjz-ds[k) ImDOl(Sk) + (mjzdl(k) mjl dz(k))lmnll(sk)
Calling Sequence:

CALL COLEFF1 (AXX, AD, AA, BB)

Common Variables:

None

Input .

AXX Two sets of star tracker basc reference axes with
respect to the satellite base reference axes, given

in the main program, 2x3x3 dimensior2l array, AXX(1,i,j)

for the first start tracker and AXX(2,i,j) for the
second, mjj in the equation of uj(k).




AD

Output:

s enmm omm M

RB
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2x3 dimensional array representing the apparent
direction cosines with respect to the earth-centered
incrtial set of coordinate system, given in the main
program, ai(k) in the equation uj(k).

6x3x3 ?imensional array representing the coefficients
of ReDmn(sk) in “Up, Ug, -Up, Ugl U, and u,.
6x3x3 ?imensional array representing the coefficients
of ImDmn(sk) in the six functions.

Special Considerations:

1.

The coefficients are arranged and stored in AA and BB.
For cxample, the coefficients of -gl are stored in AA
(t, -, -) as follows

— -
-(mj1a1+mj232) - /7hj3a1 - (ijaZ - mjlal)
AA(l,, ") = -/7hjla3 - 2n5333 /i“SIQS
L_'(ijaZ_mjlal) /7mj3al - (mjla1 + mjzaz)

where the coefficients of ReD;n(s;)are placed in A(l, m+2,
n+2). :

The arrangement of coefficients-are dee, so that one cgn

express u. (k) as an expansion of {ReD__(s,)} and {ImD (sk)}
for -1 f.*,n < 1, not only under the Mndftion on m, n:m
m < n or m=n and m » 0, which is given in the original equa-

ti (k). i i -
ion uJ( ) Considering the fact Rch (sk)=(-l)n mRedl (Sk)
1 n-m+l. ] m . men
and lmDmn(sk)=(-]) ImD_m_n(sk), we use the following

matrix form to see the sign difference between the elements
(m+2,n+2) and (-m+2,-n+2).

1 1 1 r-l 1 1
-1 1 1 for the real part and 1 0 ]
1 -1 1 -1 1 1

for the imaginary part.

— ————— e e o — - . e t—— e
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|
‘ L
1
Other Subprograms Called: 1
None.
|
8 i
-
l
|
l
i
|
4
|
[ ;
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COEFF1-4
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COEFFI -5

AA(T,1,1)=(AXX(k,J,1) -AD(K,1)+AXX(K,J,2)-AD(K,2))-SGN
AA(1,3,3)=AA(I,1,1)

AA(1,1,2)=(/2-AXX(K,J,3)-AD(K,1)) -30N,AA(I,3,2)=-A(1,1,2)
AA(T,1,3)=(AXX(K,J,2) -AD(K,2) -AXX(K,J,1)-AD(K,1)) -SGN
AA(2,3,1)=AA(I,1,3)

AA(1,2,2)=AXX(X,7,3) -AD(K,3) -SGN-2.0
AA(1,2,3)=-VZ-AXX(K,J,1) -AD(K,3) -S5N

AA(1,2,1)=-AA(1,2,3)

BB(1,3,3)=(AXX(K,J,2)-AD(K,1)-AXX(K,J,1) -AD(K,2)) -SGN,BB(I,1,1)=-BB(1,33)
BB(1,2,3)--vZ.AXX(K,J,2)-AD(K,3).SGN,BB(1,2,1)=BB(I,2,3)
BB(1,1,3}=-(AXX(K,J,1)-AD(K,2)+AXX(K,J,2)-AD(K,1))SGN,
BB(I,3,1)=-BB(1,1,3)
BR(I,1,2)=v2.AXX(K,J,3)-AD(K,2)-SGN,BB(1,3,2)=BB(I,1,2)

BB(1,2,2)=0.0

—
Return

o ———— ——— —— e
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A Subprogram

i Purpose:

To compute

= (-1

. where

Calling Sequcnce:

Y = C3J(J),

Input:

M, N, P

Common Variables:

{ None.

1)

- 63 -

Ji J2 J3

M N P

231-02+N (J142-03) 1 (32+33-01) 1 (J3+J1-J2) 1 (J3+P) ! (J3-P)!

(J1-J2+33+1) L (J1+m) ! (J1-M) ! (J2+N) ! (J2-N)!

(J3+J1-N-t) 1 (J2#N+t)!
(J3+P-t)!(t+J2-J1-P)!t!(J3-J2+Jl—t)!

ML < t < MU
ML = MANO, J1+P-J2,-J2-N)
MU = MIN (33+J1-N,J3+P,J3-J2+J1)

J2, J3, M, N, P)

non-negative integer with a condition
max (J1-J2, J2-J1) < J3 < J1+J2

intepers with conditions

SJI <M<l
~J2 <N < J2
-J3 < P < J3

IA

iA

C3J-1




Special Considerations:
1. If MU < ML, then Y= 0.0
2. In order to avoid the case
(-1) # » 0, (for example (-1) » * KJ),
KJ is replaced by KJ+ a large cven integer.
Other Subprograms Called:

FR.

C3J-2

A A=~ _a
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J Flow Chart

) o )
]
Computat ion of (J1+02-03) 1 (J2403-J1) 1 (J3+J1-J2) !
(J1+42-03), (J2+J3-01) x (J3+P)1 (J3-P)!  (=AA)
(J3+01-2), (J3-P)
(J3-P)
(J1+J2+03+1) . N
(J14M), (J1-M)
(J24N) ., (J2-N)
(J1+0243341) L (J14M) | (J1-M) !
. e e
ML=MAX (J1+P-J2,0,-J2-N) x (J2+N}! (J2-N)! (=BB)
MU=MIN(J3+J1-N,J3+P,J3-12+J1) b X ) -]

b

= p(onyt W3IL-N-) ! (J2eNet) !

(J3+P-t) T (t+J2-J1-P) ! (J3-J2+J1-t)!

I

]

1

. _ 2J-K+N ,AA 2

i Cc3J=(-1) g €
{ . b 3

{ r&;n;;}"’]




DN
A Subprogram

Purpose:

DMN@-1
- 66 - 9

To determine a box region around the mode of the conditional density

function P(¢,

Calling Sequence:

CALL

Common Vartirables:

PAL2Z
Input:

PAI2

P, Q

A

FMAX
Uutput:

A

T

W

Special Consideration:

1. Z(1)«<

5, ¢) = C-exp(f(4, 8, ¢)) for local integrations.

MNG (P, Q. A, FMAX, Z, T, W)
2m

2k 2k R o ‘ .
(Pl (P}, 2x5x5-dim arrays, respectively

Mode (¢q, 00, Vo) of the function f(¢, 8, y) obtained in
'"MAXI', 3-dim array

Maximum (f(s)) on SO(3)

First Euler angles ¢1, ¢2, 2-dim array

Sccond Euler angles 6 8 2-dim array

1t T2
Third Euler angles W1’ wz, 2-dim array

(Z(i), T(i), W(k)) 1 s i, j, k € 2 represents
coordinates of a corner of the resulting box region

A(2), T(1) < T(2), W(1) < W(2)

2. ¢y is determined by decreasing ¢ in f(¢, 65, ¥,) until it

reaches a constant C,. On the other hand ¢, is determined by

increasing ¢ in f(¢, 6,, Vo). The other Euler angles 6y, 6y,

¥y, y, are obtained similarly.




' _ 6 - DMN@-2

l 3. The constant Cq is computed by

; Max f(¢, 6, ¢) - 175.0 if Max £-165.0 > 0
-10.0 if Max f-165.0 < 0

0

om——
~_~

Other Subprograms Called

FP.
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Flow Chart

((ms “L)

I’/\I = PAI2/2.0
= 2n/16.0
lpl = FMAX-165.

bDetermine 11, 2

for the Ist coordinate

—— . .
B

I o Determine a box region

Betermine 1, 02 Z(1) = A(1) - N1 + H
for the nd coordinate 2(2) = A(1) + N1 - H
T(1) = A(2) - N2 - H

l. T(2) = A(2) + N2 - H

S W(1}) = A(3) - N1 - H

W(2) = A(3) + NI - H

Determine Ki, K2

for the srd coordinate
7 ) L*‘--—-_.—,._,v_—_
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DRI |

A subprogram

Purpose:

To assign values Rc([)z (z,T,W)) or Im(DE (Z,T,W)) to
R mn_L, ] mn s i

£,m,n,Z,T,W

Calling Sequence:

Y = DRI(L, M, N, z, SD, W, JJ)

Common Variables

PAT2

[nput:

PAL2 constant given in the main program

L order of function Dﬁn(Z,T,W) to be computed
M,N indices of function Dﬁn(Z,T,W) to be computed
SD value dﬁn(T)

Z,W Euler angles with 0 < Z,W < 27

JJ indicator

if JJ=1, Re(Dﬁn(Z,T,W)) to be.computed
if JJ=2, Im(Dﬁn(Z,T,w)) to be computed

Special Considerations:

1. SD must be precomputed in the calling program.
This is taken in order to save computing time in
integration.

Other Subprograms Cglled:

None

e —————— - = e % * - - Y e ———— e
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F.7. Flow Chart

BEGIN

Y = cos(X]) Y = sin(X1)

| l
DRI1= Y-SD

1

RETURN

e — — - . o
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DRI
A Subprogram
Purpose:
o calculate Reb! (s 1 - )
o calculate Rgnmn(s) and ImDmn(s) at s—(ql,qz,qs,q4) and store the

results in the matrix DD. The following relations are used.

o = G- Deg/a.0 - Ren’ /2.0 i ReDj = 1 - 2(qf+q§)
qg = i— - n(lm/zz + ReD{ll/Z.O Renf]f qg - qf
T AR ReD] /2.0 ReDl, = ) - q§

@ - }-+ ”30/4 R Renil/Z.O ReD}10= /2(a,a5+a,4,)
ayag = - Il /2 ReDp, = YZ(a,4,-9y4;)
q,a5 = f? (Red! | -ReDy 1) | I’ = -2q;q,

Q,9, = /g (ReD{10+ReDél) ImD}1 = —2q3q4

q3q4 = - ImD}l/Z.O ImDél =-/7(q1q4+q2q3)
944 =_{§ (ImD}lO+ImDél) ImD110= /7(q2q3-q1q4)
993 =- §A(ImDél—ImD{10) §

Calling Sequence:

CALL DRI2(Q, DD)

Common Variables:
None.
Input:

Q 4-dimensional array representing a quaternion.

DR12-1




or

.

- 72 - DRI2-2
Output:
bh a5 dimensional array for Rel)( (s) ImDZ (s)
T ) mn ’ mn
Special Consaiderations:
1. The values ReDz , ImD__ are stored in the following way
mn mn
ImD? ReD? Reb’
11 -10 -11
(-, ) = Imh’ ReD} ReD’
i -10 00 01
ImD] Imb] RcD]
-11 01 11
~ 2 2 N
| ~29349, Y2(q)a5%a,0,) 9 -9
V2(49,4,-4,q,) 1-2(q0+ 42)  VZ( - )
2937419 h* 4z 297993
2 2
_2qlq2 ",‘;-)_(qlq4+q2q3) q4 - q3 ]

Other Subprograms Called:

None.

- b




W,
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Flow Chart

C BEG INGE®

g, ) T4y

DL, v’.'fnlth*»i,

lm(Z,S)=/§-(qzq4-qlqs)

nb(3,?2 -—-/Z—(qlq4+q2q3)

L Return
SR |




——

) « et

_73-

Flow Chart

BEGIN

DRI2-3

bibrgl, 1) —.1(|%(44
bl ,._’)7/.?(<|]q_6+q,)q4)

bb(2,1)=V2(q,95-4,9,)

nn(z,z)=1-2(qf+q§

DD(3,1)=—2qlq2
Dn(3,3)=q§-q2
3

2 2
b(1 ,3)=q2"l]

DD(2,3)=/§(q2q4-qlq3)

DD(3,2)=—/2_(q1q4+q2q3)

l

Return
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L1GEN
A Subprogram
Purpose:
To compute cigenvaluesand eigenvectors of a given real symmetric

matrix by tridiagonalization.

Calling Scquence:

CALL EIGEN(N, A, E, V)

Common Variables:

None.
Input:
N dimension  of matrix a (< 4)
A 2-dim. array containing the symmetric matrix,.
Output:
E array containing the computed eigenvalues in absolute
descending order.
\Y eigenvectors stored in columns.

Special Considerations:

None.

Other Subprograms Called:

TRIDMX, EIGVAL, EIGVEC.




P
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Flow Chart

( BEGIN

Tridiagonalization of A

(TRIDMX)

N

R

Eigenvalues E

(EIGVAL)

|

Eigenvectors V

(EIGVEC)

L

Return

EIGEN.-2
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LIGVAL
A subprogram
Parpose:
To compute the cigenvalues of a symmetric tridiagonal matrix

using Sturn sequences.

Calling Sequence:

CALL EIGVAL(LP, E, A, B, W, F)

Conmon Variables

Nonc.
Input .
LP order of tridiagonal matrix
A LP-dim. array containing the dlagona] elements of
the tridiagonal matrix.
B LP-dim. array containing off-diagonal elements in
B(2) through B(N). B(1)
Output :
K ILP-dim. array containing the computed eigenvalues
in absolute descending order.
W LP-dim. dummy array.
I L -dim. dummy array.

Special Considerations

1. The diagonal matrix is not fed into the subroutine as a
matrix. Instead, the main diagonal is stored in the
A array. The off diagonal elements are stored in B(2)
through B(N). B(1) must be equal to zcro.

EIGVAL-1

abha




- -

[er—— Y
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2, EIGVAL is designed to be used after calling TRIDMX. The

output from TRIDMX is in the correct form for input to
ETGVAL,

Other Subprograms Called:

None. '

- e — i e

EIGVAL-2
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Flow Chart

[

AM = | A(DY]
BM 0.0 X1

- X2
.l, e X3

AM=MAX (AM, | A(TY] )
BM=MAX (BM,| B(I)] )
1=2,3,...,LP

i

W(K) - E(K)

HCIRNHGY

-2
MAX (X2, 10729

X4 = X1/X3
| R

P

[_ By - AM+ BM+ BM
U :I,A I

A(1)=A(1)/BD X=(W(K) + E(K))/2.0
B(1)=R(1)/BD [
E(l)=-1.0 l

W(lr)= 1.0 S2 = 1.0

F(1) = A(1) - X
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F(=(A(I)-X)-SI “
i<i:§(1-1)=0 > T

| T

-

~

;;////|r(1—1);+!r(li3§r\
58
o 70

—

F(I-1)=F(1-1)%10}7

F(1-2)=F(1-2)210"7

FOD) =(A(1)-X)-F(I-1) |

-B(1)-B(1)-F(1-2) '"“"““1

F(1)=(A(I)-X)-F(I-1)

-Sign (S2)-B(I)

I B

———— e




LFIGVAL-S

— =< N<K > R —
~—
;
W) = X
1 = K, , N
. —»
K=K+1

A(I)=A(1)-BD
B(I)=B(I)-BD
W(I)=(W(I)+E(I)-BD.0.5

I1=1,2, ..., LP

X-E(J):0




:

-8 -

_?.= :

L

E(1) =

E(I) = W(J)
J=J -1
W(K)
K + 1
L .
=141
I>LP N

EIGVAL-6

v ———— ——— -

you
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EIGVEC
A subprogram
Purpose:

To compute the eigenvectors of a real symmetric tridiagonal
matrix using Wilkinson's method.

Calling Scquence:

CALL LIGVEC(LP, NM, R, A, B, E, V, P, Q
Input:
LP order of tridiagonal matrix.
NM maximum number of rows that the tridiagonal matrix
can have as specified by the DIMENSION statement
in the calling program.
R NMXNM~dim. array containing the transformation vectors
‘ used to reduce the symmetric matrix to tridiagonal
form.
A N-dim. array containing the diagonal elements of the
tridiagonal matrix.
B N-dim. array containing the off-diagonal matrix in B(2)
through B(N).
E N-dim. array containing the eigenvalues of the tridiagonal
matrix. :
Output:
\’ NMXNM-dim. array containing the eigenvectors stored in

columns of the tridiagonal matrix.
P N-dim. dummy array for temporary storage,

Q N-dim. dummy array for temporary storage.




-y
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Special Considerations:

1.

ro

EIGVEC is designed to be called after TRIDMX and EIGVAL.
The transformation vectors needed in A are computed by
TRIDMX. The tridiagonal matrix itself is not fed into

the subroutine as a matrix. Rather, the diagonal elements
are in the D array and the off-diagonal elements are in
the B array. TRIDMX will put those respective elements

in thosc arrays. :

The accuracy of the eigenvectors is determined by the
scparation of the eigenvalues. The closer the eigenvalues,
the less accurate the eigenvectors. In case of multiple
cigenvalues, multiple eigenvectors will be computed.

Other Subprograms Called.

None.
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Filow Chart
BEGIN
LP1=LP-1 Z = -X/P(1)
i X = Z-Q(I)*Y
IX=1
O— :
l LP1 = 1 —
X = A(1) - E(IX) Y y
Y = B(2) X l Y = Z.V(1I, IX)
U |

P(1)

Iy = Y
V(I,IX) = 0.0

!

B(I+1) » P(I -
(I+1) (D X = 1.0 x 10-10 X = A@+l) - (5%%%1145(1x))
A(T+1)-E(IX) ~>Q(I) Y = B(I+2)

B(I+2) -+ V(I,IX) e

e ———— = —— = =
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| Flow Chart

X = X + V(I,IX)°

N

V(LP,IX) = 1,0/X. = 1010

l X = VX
I = LP1 l

V(I,IX)=(1-Q(I)-V(LP,IX]/P(I)

V(I,IX)

= V(I,IX)/X
I=1,2, ... LP

X = V(LP,1X)2 + Vv(I,IX)?

V(I,IX)

- (1-(Q(1)-V(I+1,IX)+V(I,IX) -V(I+2,0X))
P(I)

(::>‘__




EIVEC-5

IX=IX+1

K=LP - KK + 1
Y = 0.0

Return

l

Y = Y+V(I,IX)
* R(I,K-1)
I =X, ..., LP

V(I, IX)

= V(I, IX)
-2.0-Y-R(I,K-1)

KK = KK+l
N
L
Y

U N gy e




ERR

A Subprogram

Purpose:

9

- 87 - ERR-1

To determine the maximum value of a function in the exponent
. - . . k .
ol the conditional density function p(sklm } and Euler angles

where the function is maximum,
. .. k
To compute the normalizing constant for p(sk|m ).

To cvaluate E(q-ql) with respect to p(sklmk) and to find
the maximum eigenvalue A of E(q-qT) and its eigenvector
P so that

FRRT = 1 - A= 1 - pTE(q-qT)p

is the optimal estimation crror.

To find distances between Sk and Sy between Sk and gk’

on S0(3), where s

and between $, and gk the optimal es-

k k

timate and gk the mode of the p(sk|mk).

Calling Sequence:

CALL ERR(INDX, SDD1, SDD2, P, Q, OHl, QH2, FRR1, ER!1, ERH2,

ER12)

Common Variables:

Input:

N, NZ, MT integers given in the main program.
INDX ’ INDX=1 If return without any computation
INDX=2 If the mode of distribution in terms

of Euler angles and quaternion §k to be computed
with error between s, and . T
INDX=3 If the ma§imum eigenvalue A of E(q-q)
and its eigenvector § with the error estimate

between Sk and §k in gddition to the case INDX=2,




shibd

snn2

SINE

COSN

P,Q

Out put:

Qi1

Q2
ERR1

ERH1

ERH2

LER12

Special Consid

1.
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3x3x17 dimensional array, {d;n(e)}

. . 2
5x5x17 dimensional array {dmn(e)}
both arc precomputed in 'INSDD',
33-dim. array, {sin(¢}}.

33-dim. array, {cos(¢d)}
both are computed in 'SINCOS'.

2x5x5 dimensional arrays representing the Fourier
coefficients in p(sk1m ), computed in 'NPAQ'.

4-dim. array, the unit ecigenvector corresponding
to the maximum cigenvalue A, Sy

1-dim. array, the mode of the distribution.
1-1, where A is the maximum eigenvalue of E(q-qT).
distance between Sk = (ql, 9, 93, q4) and Sk =

(Py» Pys Pgs Py) 1ie.

L. 4
L, PiY%-
i=1

distance between sk and gk‘

~
~
S, .

distance between Sk X

eration

{d;n(e)} and {sin(¢), cos(¢)} are precomputed to save

computing time.

To find eigenvalues and eigenvectors of symmetric matrix
E(q-qT), first the matrix is tridiagunalized by 'TRIDMX',
then eigenvalues and eigenvectors are obtained by 'EIGVAL',

'EIGVEC' in the subprogram EIGEN,
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Other Subprograms Called

INTGLE, QTN, QVQ, EIGEN

b, g

PN




BEGIN

l 1D IM=1

FMAX, ANG
(INTGLL)

QH2

(QTN)

o

<

/\

EKH2

(QVQ)

r

Return

)
J
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Flow Chart

Normalizing constant C

(INTGLE)

!

E(q-qT) with respect

to P(sklmk)
{(INTGLE)

1

Eigenvalues of

E(q-qT) and their

Eigenvectors
(E1GEN)

L

Maximum Eigenvalue

E(1) and
ERRY = 1-E(1)

ERR-4

s




b
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QU1 (1)

V(I,1)/X

1

1

ERH1
(QVQ)

ER12
(QVQ)

l

Return

ERR-5




ESTIM-1
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ESTIM
A Subprogranm
Purpuse:
. To compute the mode and the maximum value of the function
k

f(¢, 6, ¢) in the conditional density function P(sklm )

To compute the normalizing constant for P(sklmk)by local

to

integration.

To evaluate the meximum eigenvalue A and its eigenvector

(93]

p( = ék) of the matrix E(q-qT) with the conditional density
function P(Sklmk) and obtain the optimal estimation error
1 - A =1 - ﬁf . E(q-qT)-p
4. To obtain distanccs p(sk, ;k), p(sk, gk), p(;k, ;k)’ where Sk

true quaternions, Sk optimal estimates, §k maximum likelihood

estimates by P(sk]mk).

Calling Sequence:

CALL ESTIM (P, Q, QT, QH1, QH2, ERR1, ERH1, ERHM2, ER12)

Common Variables:

QS
Input:

Qs Sy real attitude, 4-dim array

Lk Lk .

P, Q {len}’ {pZmn}’ 2x5x5-dim arrays

QT predicted attitude at time k, 4-dim array
Output:

QH1 Optimal estimate of Si» S 4-dim array

a
~

QH2 Mode of the distribution, S)s 4-dim array
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' ERR1 Optimal estimation error given by 1-X, where X is the
maximum ecigenvalue of E(q-qT)
; ' ERIL Distance between Sk and ;k
ERH2 Distance between Sk and ;k
) ERL2 Distunce bhetween ;k and ;k'

Specinl Constderations:
1. o find a mode of the conditional density function, a searching

method is taken.

(3]

To find eigenvalues and eigenvectors of a symmetric matrix,
E(q-qT), the matrix is first tridiagonalized by 'TRIDMX' and
then eigenvalues by 'EIGVAL', eigenvectors by 'EIGVEC' are

obhtained.

Other Subprograms Called:

MAXI, DMN@, BLK@ INTGL2, QTN, QvQ, EIGEN




Mode and maximum
value of f(¢, 6, ¥)

(MAXI)

Rough cstimate of
coordinates of 8 points
for a box region

(DMN@)

A box region
and nutbers of mesh
(BLK¢)

Normalizing constant C
and integration of q -qT
(INTGL2)

1

ANG + QH2 (=5
(QTN)

K

L

Distance between

K and sk

(=ERH2)
(QvQ)

S

- 9l -

Flow Chart

ESTIM-3

Eigenvalues and e1genvectors
of E(q-qT)

(EIGEN)

L

Optimal estimate error
ERR1 = 1-E(1)

X1l = I (@i, 1)

Optimal estimate

Sk

1§

OHL(I) = V(I, 1)/X1
1S154

>

Distance between
and Sk
%-ERHI)
(QvQ)

D1stance between

sk and sk
(=ER12)
(QVi

- ———— s s~ e e

RETURN

[ e

I
———— —
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FR
l A subprogram
Purposc:
To compute n! for a given non-negative integer n.
Calling scquence:
Y = FR(N).
} Input :
N: integer
Special Consideration:
1. 'f n < 0, N assumes 0

o n e




P

.

3

t oy
i
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G.5. Flow Chart

|

RETURN

FR-2




4
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| "

A subprogram

Purpose:
To compute the values

F—pl(s) (FU(],-,-,-)

l}'i(s) FU(2,:,",")

l‘ -l:J‘(S) FU(3,",",")
1 23(5) FU(4,-,*,")
} u,(s) FU(S,-,+,")
gz(s) ' FU(6,,",")

where Bj(s) (or gj(s)) is given by

WOR mjsas(k)D(l)o(s) + [/Zn, 3, (KReD] 1 (s)
+ (mya,00 - mjlal(k))ueofll(s) ; /2’Mjla3(k)keo(1n(s)
+ (mjlal(k) + mjzaz(k))ReDil(s)]
. [/EMjsaz(k)lmnfm(s) - (g ya, 00 + mjzal(k))rmnf“(s)
- Jﬁszas(k)ImDél(s) + (mjzal(k) - mjlaz(k))ImDil(S)]

Calling Sequence:
Y = FU(K, DD, AA, BB)

Common variables:

None.

wm—

FU-1




Taput:

Db

AA, BB

Special Considerations:

None.

Other Subpyrogram Called:

None

- 08 -

integer. FU = -Y, if K=1, FU =
FU = - ifK=3, FU =
FU = =

u, if K=5, FU

renl (s 1 .
values {Rel mn(s)] ) {Imnmn(s)} , computed in

'DRI2Y, 3x3 dimensional array,

. . 1 1
coefficients of {ReDmn(s)} and {ImDmn(s) },

respectively, computed in 'COEFF1'
dimensional arrays.

»

u; if K=2

u, if K=4

3
2 if K=6

ne

6x3x3

FU-2

[ TS
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Flow Chart

Y1=DD(2,2)

A

wX(2,2)
= AA(K,1,J) Y1

Return

Y1=DD(M+2,N+2)

Y v

N

Y2=DD (N+2,M+2) Y2=DD(2-M,2-M)
WX(1,J)=2AA(K,1,J)-Y1 WX(1,J)=2AA(K,1,J)Y1
WX(J;I)=2-BB(K,I,J) Y2 wx(z‘.M.Z'M)=BB(K‘I,J) Y2

d‘) e
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GAUSS -1

A subprogram
Purpose:
To generate a random numbcr from a given normal distribution

N(m, s) (The program is taken from IBM 360 scientific subroutine

package,p.77).

Calling Sequence:

CALL GAUSS(IX, S, AM, V)

Common Variables:

No..e
Input:
IX initial random integer to create a sequence of
random numbers from the uniform distribution.
S standard deviation.
AM mean
Output:
Vv random number from the normal distribution,.

Special Consideration:

1. 1In the program, the mean is always assumed to be zero.

Other Subprograms Called:

RANDU




Iy,
4 ™

Flow Chart
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( BEGIN )

random integer 1Y

random value Y

(RANDU)

l

A

IX = 1Y

= A+Y

= J+1

I1>12

V=(A-6.0) -S+AM

l

Return

GAUSS-2

P T DY
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GAUSS4 -1

GAUSSA
A subprogram

Purposce:

To generate four independent random values from normal distributions.

Calling Scquence:

CALL  GAUSSA(M, 1X0, R, V)

Common Variables:

None.
Input:
i total number of times to use RANDU to generate
random values from the uniform distribution.
IX0 initial integer for RANDU.
R 1/R(i) representing the variance of the izh
normal distribution, 1 < < 4,
Output:
v random values, 4-dim. array.

Special Considerations:

1. Four random integers are chosen among M integers for V(1),

V(2), V(3), V(4).

Other Subprograms Called:

RANDU, GAUSS.




L]
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Flow Chart

.
R Rl

e ]

R R
) I

{(RANDU)
random values

v

. S (GAUSS)
L IXP=1Y :J ' l
T Return
i 21 mod (M§)

IX(1) = 1y
11 = 11 +11
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INITPQ
A Subprogram
Purpose:
To give an initial density function for the conditional density
functions {I'(s ,mk}} cee P(s ]mo) = P(s ).
"k U 0 0
As apn initial density P(SG), the following type of distribution
on SO(3) is chosen,
P C 2
= C.ex 8 : : +
(SO) exp (T(i]ql Y ayd, +a.qq adqd) )
where (nl, Ay, dq, 34) 1$ a constant quaternion, represcenting the
mode, and S5y = (ql, Uys dgs q4).
In the program {ulql Fa,q, * a.qq + a4q4)2 is expressed as an
expansion of {Renin} {Imnén} , and the coefficients of the ex-

pansion are stored in (PY, Q@) .

Calling Sequence:
CALL INITPQ (AK, A, PO, Q)

Common Variables:

None
Input .
AK paramcter representing the magnitude of mode of
the distribution, r.
A A-dimensional array, mode (al, Ay, dg, 34),
Output:
Py, Q9 2x5x5 dimensional arrays, coefficients of {Renﬁn(so);

Y P .
{Imb - (s )}, respectively.

P
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Special Considerations:

1. The relations between (q;, q,, q;, q,) and { D;n(so)}are

given

@@ =1 @), R

E ot e

G L oy e,

Ga, = (I, aga - /g (ReD_ o - ReDg,)

a9, = /%'(Imoilo « Indg)), a,a = - /g (tmdg, - 1D, o)
9.9, = /g (ReD}10 + ReDél)

P4

2. In the program, the north pole (0, 0, 0, 1) is taken as a mode.

3. Coefficients of {ReD;n} and {ImD;n} are stored in PP(1,-,")

and Q@(1, -, -) respectively. By the properties of

Reb® = (-1)" MRent
-m-n mn
mt = "™t |

-mn mn

The coefficients are arranged using the following signs tables:

-1 1 1 for real parts

—
t

—

—

e Al apr— o e

-~

———
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for imaginary parts

xample: If the coefficient of ReDy is

s
5 (-a]a3 + 3244)-r, then
V2
’) = g - .
Pa(1, 2, 3) = > ( aja; + a2a4) T
V2
P@(1, 4, 2) = 5—( a,a, » aza4)-r

this gives a term

%Pﬁ(l, 2, 3,) ReDl

. %P¢(1, 1, 2)ReD}

0-1

V2 1 V2 1
=7 (-a133 + aza4)-r ReD01 + z—(-ala3 + aza4)-r ReDO_l
V2 1 . 1 B 1
= §~(-ala3 + a2a4)-r ReD01 (since ReDO_l = -ReDOl)

INITPQ.

Al
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Flow Chart

BEGIN

INITPQ-4

PO(1,3,3)=(a3-22)/2.0

PA(L,1,1)=PB(1,3,3) 4
PP(1,2,3)=(a,a,-a,a,) VZ/2.0,PP(1,2,1)=-PP(1,2,3)
PP(1,1,3)=(aT-a5)/2.0,PP(1,3,1)=PP(1,1,3)

2 .2 2 2
Pw(l,2,2)—(33+a4-a]*a2)/2.0

Pm(l,1,2)=(a1a3+aza4)/§yz.o, PP(1,3,2)= -PP(1,1,2)

Q¢(113!3)=°8384, A¢(1;131)=‘Q¢(1’3:3)
Q¢(l,2,3)=—(ala4+aza3)/§/2.0, Q®(1,2,1)=00(1,2,3)
Q¢(1;1’2)=’alaz Q¢(113,1)='Q¢(1)1,3)

Q@(1,1,2)=(a,a,-2,2,)v2/2.0,00(1,3,2)=Q0(1,1,2)

PA(1,1,J)=AK+P@(1,1,J)

QP(1,1,J)=AK«Q@(1,1,J)

l

Return

. m@.— [




INSDD
A subprogram
Purpose:

L
] To generate a table for {dmn(e)} , where 1 <£<2, -£<m,n<t

Calling Sequence:

CALL INSDD (MT, SDD1, SDD2) ‘

Common Variables:

b

Input:
)] mesh size, i.e. D = W/MT, given in the main program.
MT number of meshes in[0,n) (in the program MT=16).
Output:
SDD1 3x3x17 dimensional array, {dﬁn(ef)}
SDD2 " 6x5x17 dimensional array, {dﬁn(ei)} ,

where €, = (v/MD)*(i-1), i=1,2, ..., (MT+1)

Special Considerations

. . 1 2 .
1. The values dmn(oj)’ dmn(ei) are stored in SDD1(m+2, n-2)
SDD1(m+2, n+2, 1) and SDD2(m+3, n+3, I), respectively.

Other Subprograms Called:

SD.

- 108 - INSDD-1
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Flow Chart

( BEGIN )

v

[_' M1=MT+1]

i
L=1

)

SDD1(1,J,K)=SD(L,M,N,T,)

1=I1<3, M=1 -2
1-J<3,N=J -2

T, =(k-1)-D, 1=k=M

=L+1

v

SDD2(1,J,K)=SD(L,M,N,T})

A
1A
=
"

I -3
J -3

—
A
[
tA
[
z
{}

T, = (k-1):D  1sksM

Return

INSDD-2




e
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A Subprogram

Purpose:

; T, . o
To compute the expectation E(q-q ) with respect to the conditional

density
P(sklmk) = C.oxp (f(sk))
where
S Rk o 2
f(s) = I 5 PiooPoo 5k * I (PippReDp(s))
= m,n=- %
m<n
or
e . £ m=n>0
¥ p2mnImDmn(sk))]

ard C is the normalizing constant, q = (ql, 9, A3, q4) quaternion

variable.

Calling Sequence:

CALL INTGLE(IND, SDD1, SDD2, SINE, COSN, P, Q, FMAX, ANG, C, QQ).

Common Variables:

Input:

MT, NZ, H, D

MT number of meshes in [0,7] for ©

NZ " number of meshes in [0, 27] for ¢ and ¢
D mesh size for 6, i.e. D= 7 /MT

H mesh size for ¢ and ¢y, i.e. H=27/NZ

The above values are computed in the main program for
integration.




ey [ [ ]

Shbt, Shb2

IND

SINE, COSN

Output:
FMAX

ANG

c

Q

Special Considerations
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3x3x17 and SxSxIZ dimensional array, representing

1 .
{d (8,3} , {d_(8;)}respectively, where

6. = D.(i-1), i=1, 2, ..., (MT+1).

]

integer IND=0 if max(f(sk))(=FMAX) on SP(3) to be
computed. IND=1 if a normalizing constant to be com-
puted and IND=2 if E(q-qT) to be computed.

33-dimensional arrays, tables of {sin(¢;)}, {cos(¢)},
respectively, where ¢; = H.(i-1), i=1, 2, ... (NZ+1).

2x5x5 dimensional arrays representing {Pfxn},
2K o
Py} respectively.

Both arc computed in 'NPAQ'.

MAX(f(s)) on SO(3)

3-dimensional array representing the mode of f(s) in
terms of Euler angles.

normalizing constant

4x 4 dim array, E(q-qT).

1. In order to avoid overflow of computation exp(f(¢, 6, ¥)),

f(¢,6,¥) is replaced by f - fo, where fo = FMAX-165.0

if FMAX = 165.0 , and fo = 0 if FMAX 165.0.

2. Normalizing constant C is computed to satisfy

J € exp(£(s)-£) ds = 1




[T P

3.

4.
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The mode of f at (k—l)th stage will be used to determine

a predicted estimate of Sy -

:I‘ - 2 T
qQaq9 = q] qlqz qlqs qlq4
2
@1 9 EVRES 99
is symmetric,
2
39 939 3 939
2
4,9 q,4 q,4., q
| 4 412 413 4 J

only the upper triangle part is computed.

£

For any values involving ReDmn, imDﬁn, sin ¢, cos ¢, tables
SDD1, $DD2, SINE,COSN are used instead of calling subprograms.

For example, to compute

1 i 1
ReDmn (¢jpei»¢k) = COs (E'(m'n) - (m¢j + nwk))dmn(ei)
. . 1
an integer MN1 is computed, so that ReDmn(¢j,6i,wk) =
COSN(MN1) -SDD1 (M + 2,N+2, I). MN1 is determined using the

following relations,

NZ

> =

a

NTE

m¢j+nwk «+ N(J-1) + N(K-1)

Fn-n) - (moenpy) > (G (M4N) - MQI-1) - N(K-1)

s MN (mod (NZ))

= MN if MN > 0
MN+NZ ifMN< O
= MN] = MN + 1
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6. q-qT is expressed as a function matrix of Euler angles

?l-cosO)(l+cos(¢—w)/4.0

(1-cosB)sin(¢-9)/4.0 (1-cosB)(1-cos($-y)

e L B BN

sind(sind+sinP) /4.0  sinB(cosyP-cos¢)/4.0 (1+cosB) (1-cos($+y)}) /4.0

] sinf(cosy-cosP) /4.0 sinb(sin¢-siny}/4.0 (1+cosB)sin(¢+y) /4.0 (1+cose)(l+cos(¢—w){

wiere the entries of the upper triangle are omitted.
7. In the computation of exp (f-f ), exp (f—fo) =0

if f—fo < -50.0 to avoid underflow .

B s O e e et
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Flow Chart

( BEGIN

MI =MT + 1 CP = -50.0
Nl =N2+1 C2=165.0
N4 = N2/4.0 HD = H2.D

QQ(1,J)=0.0
IFR1=1

INIGLE-¢

e e




[ |
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K1=MUD (K1,N2)

K1<0

L

! !

K1=K1+1

:

K2=J+K-2

:

K2=MOD ( K2,N2)

= exp(YY1)SINE(I)

J

&

INTGLE-8
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MN=N4 - (M-N) -M(J-1) -N(K-1) _—J

MN=MOD (MN,N2)

N

MN=MN+N2
L —p
v
M=-L+11-1 . MN1=MN+1
JJ=1X _
C1=SDD1(11,JJ,1)
\ 4
N=-L+JJ-1 Y
A 4
N
FR=2#+IFR =ReDY
A=ReD " (s)
_ £
B—Imnm(s)
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DD (L. 11..0.0)

3 £
= P . s
llmn Rel)mn(b)

DD(L,JJ,I1)

—
DD (L, L+1-M,+1 -M)

JJ=JJ+1

4

YY=EZDD(L,11,3J)

R )
-pZmn'ImDmn(S)
T
\ .

DD(L, 11, 11)
= DD(L,II,10)/2.0

5

INTGL -7
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o IND#£O
f Yaeyy J L $S=SS+FR-YY-HD I
Kl=J-K ’
‘£L<:j s Yl |
T [ K1=MUD (K1,N2)
’ Y1=Y2 y
l K1<0
é % ) K1=K1+NZ N
~.‘~_~‘-“ L
e K1=K1+1 J
[ YY1=YY. K@ l '
K2=J+K-2
K2=MOD ( K2,N2)
YY
= exp(YY1)SINE(I) )

]

INTGLE-8

2
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INTGLE-9

QQ(I1.I12)= FR-YY-W(I1,12)-HD
1<1112<4

N
| e |

— -
W“ = (l-cose)(l+cos(¢—w))/4.0
W22 = (1-cos6) (1-cos(¢-¥))/4.0
w33 = (1+cosB) (1-cos(¢+y))/4.0
W44 = (1+cos @) (1+cos(¢+y))/4.0
le = (l-cos®) sin(¢-y)/4.0
w13 = sin®(sin¢+siny) /4.0
WM = sinB(cos¢+cosy) /4.0
Wyq = sinB(cos¢p-cosy) /4.0
Woy = sin@(sin¢g-siny) /4.0
w34 = (l+cos8)sin(¢+y)/4.0

|

P PN
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e ey

v

Return

QQ(12,Q1)
=QQ(I11,12)

v

QQ(1,J) = QQ(1,J)-C

—— e et

PR

INTGLE-10
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INTGL2
A Subprogram
Purpose:
To compute the normalizing constant C in the conditional density
function
P(sk|mk) = C-exp (f(s,)) and evaluate
E(q-qT) with respect to P(sklmk).
In the program, every integration is done locally arround the mode

of P(sklmk).

Calling Sequence:

CALL INTGL2 (IND, P, Q, FMAX, A, NZ, NT, NW, Hp, C, QQ)

Common Variables:

PAI2
Input:
PAI2 27
IND Integer, IND=1 if a normalizing constant to be
computed, IND=2 if E(q-qT) to be computed.
2k 2k . '
P, Q {len}, {len}, 2x5x5-dim arrays
FMAX Maximum of f(s) on SO(3), obtained in 'MAXI'
A Starting point (Z(1), T(1), W(1)) for local inte-
gration, 3-dim array
Nz, NT, NW  Mumbers of mesh in [z(1), 2(2)], [T(1), T(2)],
[W(l), W(2)], respectively.
HY Initial meshsize for integration
Output:
C Normalizing constant

QQ E(q-qT), 4x4-dim array

- - . o e e s o e - e e o e e e cm— e b o e e——— - -
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Special Considerations:

1.

In order to avoid overflows of computation exp (f(¢, 0, ¢)).
f(¢, 6, ¢) is replaced by f-f,, where f, = FMAX-165.9 if
FMAX 2 165.p and f,=p, if FMAX X 165.8. Also to avoid under-

flows, exp(f-f,)=0.0, if f-f,5-50.0.

Normalizing constant C is computed to satisfy

[ € - exp(f(s)-f,) ds = 1.

Local integrations are done in four steps. At each step except
the last one, the Riemann integration is done numerically skip-
ping the 1/3 x 1/3 x 1/3 of the original box region around the
mode {renter) and the skipped box region will become a new box
region for the following step. The stepsize will be one half of
the previous one. At the 4th step, the numerical integration is

done on the whole box region without skipping the middle region.

Other Subprograms Called:

FP

o S iaa prne e e ABe LT -
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Flow Chart

BEGIN

PAI = PAI2/2
Cp = -50.0
H = HP

i

Setting a parameter -
for scaling down

£(¢, 6, ¥)
FO = FMAX-165.0

Preparation for local integration

z9p = A(1)
TP = A(2)
W@ = A(3)

L1 = (NZ2/3) + 1

L2 = 4 - (NZ/6)

Ml = (NT/3) + 1

M2 = 4 - (NT/6)

N1 = (NW/3) + 1

N2 = 4 - (NW/6)

s e . e -

INTGL2-3

Location of mode
L = (NX/2) + 1
M@ = (NT/2) + 1
N = (NW/2) + 1
‘ Initializatioun of
S, QQ, LL
S = 0.0, QQ(I1,J) = 0.G
LL =1

Volume Element
HD = H-H-H

I1=1

X1




! i
| AP I, e Y

N e e
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= TP+ (J1-1) -H
T1 > PAI Y
N T1 = T1-PAl
T1 < 0.0 Y
N T1 = T1+PAI
k=1

—

INTGL2-4

= WP+(k1-1)-H

= £(¢1,

81, yl1)
(FP)

I

YY1

= YY1-Fp

sin

exp(Y!l)
(T1) -H

X1l = X1-W1
X2 = X1+W1

© e e
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w(l, 1)
Wiz, 2)
W(3, 3)
W(a, 4)
W(l, 2)
w(L, 3)
W(l, 4)
Wz, 3)
w(z, 4)
W(3, 4)

(1-cos(T1)}-(l+cos(Xx1))/4.0
(l1-cos(T1)) (l-cos(X1))/4.0
(1+cos(T1)):(1-cos(X2))/4.0
(1+cos(T1)) - (1+cos(X2)) /4.0
(1-cos(T1))-sin(X1)/4.0
sin(T1) (sin(X1)+sin(W1))/4.0
sin(T1) - (cos (W1)+cos(X1))/4.0
sin(T1) - (cos(W1l)-cos(X1))/4.0
sin(T1) - (sin(Z1)-sin(W1)}/4.0
(1.0+cos(T1)) sin(X2)/4.0

L R AT ]

INTGL2-5

- —————

A

(11, 12) = QQ(I1, I12)
+ YY-W(I1, 12)

1511 53, 11 %2712°%4

r—— o

-  eend leenee
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INTGL2-6

New set of parancters

X9
TP
wp

Zp+(L1-1)-H
TP+ (M1-1) -H
W@+ (N1-1) -H

QQ(4, 4) = 1-QQ(1, 1)
-QQ(2, 2)
-QQ{3, 3)

l

RETURN

-

PP
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MAX1
A Subprogram

Purpose:

To locate the mode of a function f(¢, 6, ¢) in the conditional

density function.

P(¢, 6, ) = C exp (£(¢, 6, ¥)), where C is a
normalizing constant.

Calling Sequcnce:
CALL MAXI (P, Q, QT, B, FMAX)

Common Variables:

PAI2
Input:
PAI2 2w
2k Lk .
P, Q {len}’ {PZmn}’ 2x5x5-dim arrays
qQr Initial quaternion to start for searching,
4-dim array
Output:
B Mode in terms of Euler angles, 3-dim array
FMAX

Value of the function f(¢, 6, §) at the mode.
Special Considerations:

1. Two starting points are used to locate the mode. The first

point (A(1), A(2), A(3)) is given by the calling program and
the second point may be given by (A(1)+w, A(2)+n/2, A(3)+m).

This is to avoid locating a local maximum instead of the global

maximum.




R Sy 0

1

- ) ] —"y

Other Subprograms Called:

QTA, QIN, FP, SEARCH

- 127 -

MAXI -2




Flow Chart

o) Ko

Lest v. “””Ol Initial mesh si.c
NX =2 for searching max:mum

MX = 300 DMESH = PAI2/8

Initial quaternion . .
= C(k,

into A1) Clk,1)

Euler angles =

C(1,i) = A(i) | JJ =1
i=1,2 3

I St Initial value
I ”.,;Lw__ . at lst point
Setting another starting ' (FP)
point :

A(l) = A(L) + =
A(2) = A(2) + u/2 ©
A(3) = A(3) +

L ] = JJ+1

[

Mode by
Normalization of Ist Point
2nd point (2nd)
(QrN QTA) __(SEARCH)

c(z, 1) = A(1)
1 21253

DMESH = DMESH/2

[

ER ol S




-y e

Mode By ‘,
into

ki) b)) j

Choose larger
value
B(i) = C(k,i)

.

Euler angles B(i)
into
4 quaternion

(QIN)
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%
C

Normalizing
B(i)
(QTA)

-

MAX1-4

omputation of
mode

(FP)

e

RETURN

Acbungtes




- 130 - MPOPLT - )
MAGP LT

Moan procram

Preerose:

To read procecwen s ), | §k} , {ék} and scquences of ¢rrvor

k

estimates from the disk and draw oraph-..

Common Variables:

None.

Input:
A 1742-dim. array containing all the values.
Spectal Considerations:

TR §k arc called QSN, QHI, QH2 in M@SSN3

1. Dproconnes s

and storced in the location.

A(768) o QHI(1,1)
A(968) «» QH2(1,1)

~

2. Optimal estimate errors, p(sk, s and g(sk, Qk),

k)’
p(gk, §k) arc called FRRN, ERH1, ERH2, ER12 in M@5503

and stored
A(268) <«
A(318) -
A{308) <>

A(418)

Quaternion representation QSN, QHl, QH2 of s

are modified so

in the location

ILRRN (1)

RN (1)

FRH2 (1)

ER12(1)

k’ gk’ ék

that 4th component of each quarternion

is positive.

J—




-

Y ey

Other subprooram. Caticd.

PrLOjY

-131 -

MP6PIT- 2




RWD

#10

A(1) = 0.0

L

READ

710

-132 -

Flow Chart

Number of
points N
to be drawn

l

Signs of 4th component
of QSN, QH1, QH2 into
SGN1, SGN2, SGN3

k) Sk’

Plottlng of

s component wise

(PLOT1)

Modification of com-

ponent of each quatemi
(PLOT))

Plotting of

(PLOT])

(
CE

Plott1ng of
ERH2, ER12
(PLOT1)

\
\

STOP

MP6PLT- ?

i
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NEWd
A subprogram
Purpose:
To generate Wk(¢,6,w) in the process,
Ske1 T Mk°Sk

using a pseudorandom number generator.

Calling Sequence:

CALL NEWS (IX ¢, PAIZ, W¢)

Common Variables:

None
Input:
X0 initial random integer
PAI2 2n
Output
W@ Wi 3 dim. array represénting Euler's angles

$,9,y.

Special Considecrations

1. Only three numbers arc choser from the start by RANDU,

Other Subprogram Called:

RANDU.
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Flow Chart

.
Yy, wy \

random numbers B

(RANDU) ///

WA(I)=2T.WY/15.0
IX@ = 1Y

WA(2)=Wp(2)/2.0

Return ,

NEWQ- 2 '




LPAQ

-135-

A cubprooram

Purpos< .

£k -1 k-1
>mn } of P(Sk-llm )

: . k-1, |
To update {len } and (P

Calling Sequoence:

Cemmon Variables

Input

Output:

4 Lk K
to {len} and {szn} of P(sklm ), where
K 21k ¢, L
Vi i . N V > \ » >
l(dk|m ) = Cexp ¥ 3P0l (5)) ¢ ) (" ReP o (5,)
£21 m,n=-f
ﬂl\)u
m=h >0
Lk £
] 3
* iZmnImLmn(Sk))
CALL NPAQ(PR)
AA, BB, Wg, OBN, PR, Q@, P1 Ql
RR constants given in the main program.
AA, BB coefficients of the functions (-gl, Ug, -Uy, Yg,
OBN obscrved value computed in the main program

6-dim. array, {mi}

£k-1 .
PP {len } , 2x5x5 dim. array
Q0 (pEk-1y | 2xsxs dim. array
Lk
Pl {len}
Q1 )

2mn

NPAQ-1

uy, u,).




Special Con:rderations:

Noene.

Othcer Subprogram Called:

Sh, DRI1, C3J

- 136 -

NPAQ-2

ey omcansmy e e 0. e . '
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Flow Chart

BEGIN ,}'

L2 = 2L + 1
= 1
J =1
Yl - % b kep® Yy ¢ pt ot wy )
7 q2-2P1gn qm- P p2qn qm P
o gkl 2,k-1
= L4 -
Z1 q)=:_’L(pzqn Rqum(wb ) plqn ImD (wD )

g P ]
nm——
3

-

-
i3 3,2
Y2 = ,'igle mkh]mn
6 ii i 2
22 = 5k mbhol
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v3 3 (Cymmley o
" max(-1,m-1)<t<min(1,mn) 4 s m-s
max(-1,n-1)<s<min(1,n+1)
6 . . . .. . se
o3 pisdp 13 i3 HERS RS
i=le (hltshl,m-t,n-s h2+s 2,m-t.n—s)]
73+ £ (et 2y b
max(-1,m-1)<t<min(1,me1) 4 7's nes
max(-1,n-1)<s<min(1,n+1)
6 .
. ij .13 . 1j 15 .13
iflkk (hltshl,m-t,n-s * hltshz.m-l.n-S)]

L

-n

1
)G

]

PI(L,1,J) = YI+Y2+Y3
QL(L,I,J) = 21422423

.
J = J+l

NPAQ- 4

Return
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PLOT1

A subprogram

Purpose:

-1%9 -

PLOT1-1

To draw one, two or three graphs with different type of lines.

Calling Sequence:

CALL

Common Variables:

None.

Input:

M

Y,Z,W

PLOTI(M, N, X, Y, Z, W, 1)

number of graphs to be drawn’

number of points to be drawn
values for graphs

a dummy array

Special Consideration

1. X-coordinates are determined by

2. More than one graph in one picture are drawn completely

checking the size of y-values using UPDWN.

X(1) = I

Other Subprograms Called:

UPDWN, INITT, BINITT, NPTS, CHECK, DSPLAY, LINE, CPLOT, TINPUT.

 lenesemme a—— e as SRR
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Flow Chart

BEGIN

X = coordinate
X(I) =1

) |
U(1) = MIN(Y(I),Z(J))
U(N) = MAX(Y(I1),Z(J))
1<I,J<N

v

PLOT1 -1

u(1)

MIN(Y(1),Z(J),W(K)

U(N) = MAX(Y(I),Z(J),W(K)

1<1I,J, K<N

Plotting
(TEKLOAD) *

‘

END *TEKTRONIX

Plotting subroutines
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A
A Subpropram

Purpose:

To convert i yuaternion to Euler angles.
Calling sequence:

CALL QA (Q, A)

Common Variables:

None
Input:

Q Quaternion, 4-dim array
Outpuat:

A Enler angles, 3-dim array

Special Considerations:

1. The following relations between a quaternion and Euler angles
are used.

q; = sing cos ((4-¥)/2)
q, = sing sin ((¢-¥)/2)
a3 = cosy sin (($+4)/2)

q4 = cos% cos (($+¥)/2)

2. If Arcos( 2(q§ + qi) - 1) < EPS1, then 6 is assumed to be zero.

Other Subprograms Called:

None.
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Flow Chart

G O

l PAL2 = 6.283185307179580D0
‘ EPS1 = 0.0001

_ -1 ., 2 2
A(2) = cos (2(q3+q4)—1)

A(2) > EPSI

_ -1
B DC = cos (A(2)/2) X1 = cos "(q,)
DS = sin (A(2)/2)
! <=

X1 = Q(2)/DS

X2 = Q(3)/bC A(1) = PAI2 - X1 A(1) = X1
Y1 = Q(1)/DS

Y2 = Qud)/nc A(3) = PAI2 - X1 A(3) = X2

] - L‘- L____M_F_____d

RETURN




'TA-3

Y1 = PAI2 - Y1

I

Y2 = PAl2 - Y2

. -
A(1) = Y1 + Y2
A(3) = Y2 - Y1




QiN
A suby cograe

P proe (A

To transform Lulor angles to a quitor voon

1 hing Sequence

CALL QINt\, Q)

Common Variables

- 1l -

None.
Tuput
A buler angles (¢,06,y), 3 dim. array.
Gut put
Q Quaternion (q], Ays Ggs Uy ) 4-dim. array.

Special Considerations

1. The formula for

CcOSs

o] @

q) = sin

.8
4y = sin 5 sin

§) .
4g = cos o sin
- 0 ~ -
q, = €Os 5 cos

the transformation i-

¢-v
2

?-

N
<

piven by

QTN-1

LY




[
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Flow (lLiari

~
( Bl I )

~ o

4

4y = sin% cosd %__‘P__

.0 :
4, = Sinzy Sint—— -

b o+

P
T COST SINTen, T

v+ |;r
( = N )\'-. - .: PR
|4 coe 5 cO: 2

Return J

OTN- 2
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A subprogram
Purposc:

To compute the distance between two quatenions,

Calling Scequence:

CALL «Qvagr 0, by

Common Variables:

None
Input:

o0 quaternions, 4-dim. arravs.
OQutput:

I distance between P and Q.

Special Consideration:

1. Distance between two quatenions pand q is given by
4

d =1 - % P; 4> where p = (p N, p

. Pyr Ve Pas )
i=]

q = (4, 9y, A5, Q)
Othe:r Subprograms Called:

None.

QvQ-1

_a
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Flow Chart

<:; BEGIN j)

Return

Q-2

PP
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QxQ
A subprogram

Purpose:

To compute the product of two quaternions

- b b .
(rps Tor vg0 Ty = (P P Py Ped oAy g, 45, ap),
where
= Y - D
Ty = Pyt Poag - Pgay + Py,
Ty = Pyds * Paay ¢ Paap ¢ Pyq,

Calling Sequence:

CALL QXQ(P, Q, R)

Common Variables:

None.
Input:
p quarternion (Pl, P2' Pz, P4), 4-dim. array.
Q quarternion (ql, 4,5 q3» q4), 4-dim. array,
Output:
R quarternion (rl, Ty, Ta r4), 4-dim. array.

Special considerations
1. Considering computer round-off error, product quarternion R is

re-normtlized,
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Flow Chart

( BEGIN \>

TP T P9gtP57 PR R
rzz;_p]q3+p2q4+p3(ll+p4q,~)
Y3°P1927P291* P34 P43

r4=—qu1 'I)Z‘IZ’P3q3+P4q4

] N , ]

W= v RE(1)+R2(2)<R%(3)+R% (4)

T

Normalization

R(1) = R(1)/W
R(2) = R(2)/W
R(3) = R(3)/W
R(4) = R(4)/W

I

Return
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RANDU

A subprogram

Purposc:
To compute s pseudorandom integer and value ot uniform dis-
tribution.
The program uses the properties of FORTRAN IV and its admissible
maximum integer 231-1 (=2147483647) and overflows, (the program

is taken from IBM 360 scientific subroutine,p.77).

Catling Scquence:

CALL RANDU(IX, 1Y, YFL)

Common Variables:

None.
Input:
IX integer
Output:
Yy pscudorandom integer
Y¥L pscudorandom value, YFL = IY/(23]-1)

Special Considerations:
1. To generate a sequence of pscudorandom numbers RANDU can be

used repeatedly by setting IX = 1Y.
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Flow Chart

s
( BEGIN__—;)

1

= 1X-65539

N

l’“" T Y >0

o .

1Y = 1Y + 2147483647 + 1

YFL = 1Y

YFL

YFL-0.4656613 x 10~

9

T
=

RANDU -2
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SINCOS
A cabprogram

' pose

o construct numerical tables of —iny, cosy for o« (.

Calling Scquence:

CALL SINCOS{N, SINE, COSN)

Common Variables:

None
Input:

N Number of points in [0, 2m] to Dbe taken
Out put:

SINE values  {sin x,} , N—dim; array

COSN values {cos xi] , N-dim. array

Special Considerations:
1. Tables are used to reduce computing time.
2. In order to avoid future underfléws,A
if |SINEQ)| (] €os N(1)]) < 10711, then

SINE(I) = 0 (COS N(I)=0)

Other Subprograms Called:

None.

~INCOS. )
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l Flow Chart

( BLCIN \,

N

e

l PALI2 = (.28318553071 .80

10
Pl = 1 x 107

o

* NP = N-1

) X} = (1-1)-H j’

SINE(I) = bin(Xl)J

y

Tosr() | <€,
: COSN (1)=0.0 S
| SINE(1)=0.0

o] _—

COSN(I)=COS(X,)

SINE(I)| < €

| ——

Return

. ———
- e e e e = e ns &

et g e e m——— X —

P N -




sD
A ~cbprogram
Purpose:

To assign va

Calling Sequ

- 1% -

lues d;n(TJ to each £,m,n and 0 - T <

Cnee:

Y = SD(L,M,N,T)

Input:
L

M,N

T

order of lourier coefficents to be computed

indices of Fourier coefficients with the range
-L <M,NZ< L

angle 0 <T <

Special Considerations:

1. L,M,N must satisfy the relations

0<Lzx<

LMAX and -L < M,N < L

Other Subprograms Called:

FR

Sh-1

oy



-155-

™,

BEGIN

M1 = M-N
M2 = [+M
M3 = I N

ML = MAX(M!,0)
MU = MIN(M2,M3)
MM = MU-MIL+1

SD = 0.0

v

1
/\t [(l'fm)!(l’-m)!(l’.wn)!(f—u)!]2
Bt - (Lrm-t)!(t+n-m)!t! (£-n-t)!
. Lo
S0 d” (TT)
MU A
= Eoentt
i ML Bt

. Sin2t+n—m( T.’].:)

(FR)

t cos2£+m-n-2t(;r_}~_)

RETURN

sD-2
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SEARCH

A b ruy i

I~ iind the mode of the conditional density function with o - iven

thetial starting point and mesh sice,

Calllog scqu acu:

CALL SEARCH (DMESH, NF, P, Q, A, B, S1)

Common Variables:

PAI2
Input:
PAL2 21
DMESH Stepsize to scarch the maximum vilue of the density
function.
NF Maximum searching times in one direction at the
previous stage.
Lk 2k . )
P, Q {len}, {PZmn}’ 2x5x5-dim dr{d)s
A Starting point (Euler angles), 3-dim array
Si Value of f(¢, 0, ¢) at A
Output:
B Maximum point (mode) of the function f(4, 0, ¢) with
respect to the given mesh
S1 Maximum value of f(¢, 9, ¢)
NF Maximum searching times at this stage, which will

be used in calling program 'MAXI' to determine the
new mesh size

Special Considerations:
1. Searching the mode continues as long as the previous function

value is less than the new value.

e
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Flow Chirt

( -G )

T

B(1) = A(I) + SN k DMESH

Z = B(1)
T = B(2)
W = B(3)

4

New Y-vilue S2
(EP)

”Y 1

B(i) « B(i)-SN -

DMESH

SLARCH 2

[ RETURN
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i
A subprogram
Purpose:
1. To store processes
{Si} {gi} {éi} 1 <i < (k-1), where {Si}
arc attitudes, {gi} attitude estimates, {éi} ma x imum

likelihood estimates, and

ERRN(1) = E(p(sj, Si))’ ERH1 (1) = p(sj, Si)’
RH2 (1) = z ) = o(5. 4
ERH2 (1) p(si, Si) ER12(i) p(si, Si)

2. To save the values of the parameters for the next step k.

3. To read all the results from disk and printout if requested.

Calling Sequence:

CALL TRANS (1D, IX@, IYS, KK, MM)

Common Variables:
AXX, AD, AA, BB, W@,
OBN, Pd, Q@, AK, DIR, QW, QSN, QHl, QH2, ©RRN,
ERH1, ERH2, ER12., SINE, COSN

Input:

D indicator

the values are to be stored in the disk if 1D=1.

the values are to be read from the disk if

ID = 2 or 3. 1If ID=3, the results are printed.

AXX, AD, AA, BB, W@, OBN, P®, (@, AK, DIR, QW, QSN, QHl, QH2, ERRN,

ERH1, ERH2, ER12, SINE, COSN, given in the main program.

1X¢ integer, the last integer used to create a random

integer by RANDU.

1Y9 integer, the last integer used to crcate another

random integer by RANDU.




-~

——

e —

KK

Output:

AXX, AD, AA, BB, W@, P@, Qp, AK, DIR, QW, QSN, QHl, QH2, ERRN,

time k at which all the result should be updated.

- 159 -

TRANS .2

integer, (MM-1) values are stored for each QSN, QH1,
QH2, ERRN, ERH1, ERH2, ER12 for the output purpose.

ERH1, ERH2, ER12, SINE, COSN, IXp, IYP, KK, MM.

Special Considerations

1. For the use of disk, variables A, B are used to

with

A(1742), B(871, 2), EQUIVALENCE(A(1), B(1,1)).

2. All the values are stored in A in the following

A(1):
A(2):
A(3):
A(4):
A(S5):
A(11):
A(29):
A(35):
A(89):

A(143):

A(149)

A(153):
A(156) :
A(160):
A(164):

KK
MM
1X¢
Ivg
AK

AXX91,1,1) (18)*

AD(1,1)
AA(L1,1,
BB(1,1,
RR(1)
DIR(1)
we(1)
Qw(1)
Qs(1)
QHd(1)

(6)
1y  (54)
1)  (54)

( 6)
(4)
(3)
( 4)
( 4)
(4)

A(168):
A(218):
A(268):
A(318):
A{368):
A(418):
A{468):
A(568):
A(768):
A(968):
A(1168):
A(1568):
A(1601):

PA(1,1,1)
Q1(1,1,1)
ERRN(1)
ERH1 (1)
ERH2(1)
ER12(1)
Blank
QSN(1,1)
QH1(1,1)
QH2(1,1)}
Blank
SINE(1)
COSN(1)

order.

(50)
(50)
(50)
(50)
(50)
(50)
(100)
(200)
(200)
(200)
(400)
(33)
(33)

* 1% = 2x3x3 representing the
array of AXX and A(11)

corresponds to AX (1,1,1)

store results
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Flow Chart

G

Initialization of A

All the values
into A(=B)

WRITE

B
into #10

READ
from #10

The values in A

moved into the variables

Printout of Sy

~
~

S, s

n n

ERH2, ER12
——‘—%‘

ERRN, ERII

Return

e e -

TRANS- 3
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TRIDNX

A subprogram

Purpose:
To transform a real symmetric matrix to tridiagonal form using
Householder's method.

Calling sequence:

CALL TRIDMX (N, NM, A, D, B)

Common Variables:

None,
Input:
N number of rows and columns in matrix A
Also N is the number of elements in D
and B
NM Maximum number of rows A:-can have as specified
by the DIMENSION statement in the calling pro-
gram.
A NXN-dimensional array containing the symmetric
matrix.
Output:
D array containing the diagonal elements of the
tridiagonal matrix.
B array containing the off-diagonal elements of

the tridiagonal elements of the tridiagonal

TRIDMX -1

matrix in locations B(2) through B(N). B(1)=0.0.

Special Considerations:
1. The lower triangular half of A is changed by TRIDMX,

2. TRIDMX is designed to be used with EIGVAL and EIGVEC.

Other Subprograms Called.

None.




[: A(1,1) - D(I)

SUM=A (K-1,K-2)*A(K-1,K-2)

A
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Flow Chart

TRIDMX -2

A(K-1,K-2)
_ SAKTLED) )
= syl 2

I

{:} DENOM -2#A(k-1,K-2) + B(K-2)

B

l

A(1,K-2)

pENOM - AULK-2)

N
SUM = SUM + T A, K-2)°

K<I<N

wn
O
=
"o
(=}
o

‘

KK

R

B(K-2)=Sign(-A(K-1,K-2))- /SUM
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J = J+1

B(J)

JJ

- L -
L=KKA(J’1‘)*A(L’K 2)

=

N
B(J) = B(J) + I A(L,J)«A(L,K-2)
L=J

l;S(IAL = SCAL + B(J)«A(J, K-2)

SR I N/:::>

Y

B(J)-S(AL-A(J,K-2)+B(.J)
KK <J <N

TRIDMX -3
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> A(1,J)

A(L,3)-2(A(L,K-2)*B(J)+A(J,K-2)-B(L))

T = A(I,T)

A(I,T) = D(I)

J = N-I

B(J+1) = B(J), D(I) = T
1<1<N

(::>___m“,wwﬁﬂ

I

[_ B(N) = A(N,N-1)

—p
B(1) = 0.0

!

Return

TRIDMX - -
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UPDWN

A subprogram:
Purpose:

To obtain maximum or minimum of two values.

Calling Sequence:

UPDWN(ID,X,Y)

Common Variables:

None.
Input:
ID integer, i¥, 1D=1, minimum, if, 1D=2, maximum
of two values X and Y to be computed.
X, Y two values

Special Consideration:

None.

Other Subprograms Called:

None.

UPDWN- 1
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Flow Chart

BEGIN )

UPDWN=X

UPDWN=Y

e

v

Return

UPDWN-,
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