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Preface

In March, 1978, the Air Force Weapons Laboratory proposed a thesis
topic which involved calculating the electric field inside a spacecraft
which had been exposed to a ficld of incoming current density. This
problem interested me for two reasons. First, it has a weapons appli-
cation, and the results of this project would be useful to the sponsor-
ing office at AFWL. Secondly, working on this type of problem would
strengthen my background in electromagnetism.

I would like to express my sincere gratitude to my advisor,

Dr. Donn G. Shankland. Without his guidance this project would not

have been possible. I would also like to thank Dr. David A. Lee for his
assistance with variational calculus, and for his explanation of logarithmic
potentials. Special thanks are also due to 1LT Dave Hardin, who helped
clarify difficulties encountered with natural boundary conditions, and to

Dr. John Jones, who reviewed and critiqued my analytical solution.

Richard A. Passow

.
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Abstract

If a spacecraft is exposed to a steady stream of current density, the
charge of which is deposited on the surface of a cylindrical, conducting
spacecraft, internal electromagnetic fields are generated. [f the internal
fields are of sufficient strength, undesirable electronic noise or damage
may result. This thesis presents three approaches for calculating the induced
E-Field: separation of variables, variational calculus, and the use of Green's
functions.

The spacecraft is modeled as a hollow, infinite cylinder. The fields
are calculated for the case in which the incoming current is incident per-
pendicularly to the longitudinal axis of the cylinder. Basic electro-static
theory reveals that the governing equation for the potential is Laplace's
Equation, subject to Neumann boundary conditions. This equation is first
solved by separation of variables. The E-Field predicted for representive
values of incoming current density are on the order of 10 7 volts/meter.

Several pitfalls encountered with the variational approach are explained.
These include the importance of natural boundary conditions, ensuring continu-
ity of the first derivative across all mesh points, and difficulties encountered
in trying to reduce the size of the matrix through "decoupling". The results
of this section show that the variational method tends to approximate the
analytic solution as the mesh becomes finer.

The Green's function approximations of the potential distribution were

consistent with analytic results to at least two significant figures.




1 Introduction

This thesis concerns the calculation of the electric field induced
inside a spacecraft (modeled as a cylinder), which has been irradiated
by a steady stream of current density. The source of the incoming
current is not a factor under consideration. This problem was proposed
by the Air Force Weapons Laboratory, and this paper provides an examina-
tion of several approaches to the problem's solution.

This project is limited to the study of a non-rotating cylinder
which is exposed to a steady stream of current, incident perpendicularly
to the cylinder's longitudinal axis. Also, the cylinder is considered
to be infinite. This reduces the problem to two dimensions. Thus, the
answers calculated will not give the exact fields inside an actual
spacecraft. However, the answers are useful as "first cut'" approxima-
tions to the electric field generated inside a spacecraft. (The fields
calculated for a steady stream of incoming current are also valid for
the case of an incoming pulse of current, provided it can be assumed
that the incoming charge distributes itself around the cylinder very
rapidly in comparison to the duration of the pulse.)

Through the use of several simplifying parameters and assumptions,
it is shown that the problem reduces to one having a fairly straight-
forward solution. Thus, the primary emphasis of this thesis will be a
comparison of two numerical techniques used to solve the differential
equation governing the problem. These two techniques are the use of
variational calculus aund the use of Green's functions. Initially, the

differential equation (Laplace's Fquation) and the boundary conditions

1




are derived. This cquation is then solved using separation of variables.
The results of this section are used as a basis of comparison with the
two other techniques. This is followed t. a presentation of the
variational approach. First, the appropriate minimization functional is
derived. It is then converted to a matrix problem using Simpson's Rule
and a three point quadrature formula. The matrix equation is then solved
using a Choleski decomposition. The following section contains a discus-
sion of the Green's function method. The Creen's function is first derived
and then evaluated numerically. The final chapter contains a discussion
of the electric field generated using representative values for the dimen-
sions of the cylinder and the magnitude of the incoming current.

The individual chapters contain only the basic logic behind the math-
ematical techniques and the results of applying them. Detailed derivations
of all equations can be found in the appendices. The appendices also con-

tain a discussion of the computer program that was used with each of the

three mathematical approaches.




IT Deve 1(_)1_~_"r:,_(”_() f a ll.'_l)_l:[ ical Model

Physical Analysis

The spacecraft is modeled as a non-rotating, hollow, metallic
cylinder with a finite conductivity. If this cylinder is irradiated
with a uniform, steady stream of current density, charges will be
distributed around the cylinder. This distribution of charge will
cause a distribution of potential throughout the cylindrical shell,
including its inner surface. These potentials, and the resulting cur-
rent flow, will in tura induce an electric field within the hollow por-
tion of the cylinder. TIf this electric field is strong enough, undesirable
electronic noise or damage may result. Knowledge of the strength of this
induced electric field is desirable for obvious military reasons. The
procedure for obtaining the electric fiecld is quite straightforward.
Qace the potential distribution on the inner surface is known, the poten-
tial distribution induced in the hollow portion of the cylinder can be
calculated. The gradient of this distribution will then give the strength
of the clectric field within the cylinder.

¥For a finite cylinder with end caps the current flow throughout
the cylindrical shell wculd have components both parallel and perpen-—
dicular to its longitudinal axis. Also, current flow throuvgh the end
caps would have to be considered. TFurthermore, the problem would
require a solution in threc dimensions. However, by considering an
infinite cylinder, the end effects can be neglected, and all current flow
will be perpendicular to the longitudinal axis of the cylinder. This

cimplification reduces the problem to a manageable two-dimensicnal L[orm.




The electric field predicted by this infinite cylinder model will approx-

imate the electric field near the plane z = height/2 of a finite cylinder.
The two-dimensional form of the problem is illustrated in Fig 2-1.
The incoming current density is incident perpendicularly to the longi-
tudinal axis of the cylinder over the interval - w/2<0<u/2. As the in-
coming current continues, charge will continue to build up on the outside
of the cylinder. It is assumed that this charge has no effect on the
incoming beam. The radially outward 'leakage'" current functions to make
the boundary conditions consistent with the mathematics. It is discussed

in the section explaining the boundary conditions.

Method of Solution

The current through an arbitrary surface is

f‘f I (2-1)
3

For a closed surface this integral must equal the rate of decrease of
charge within it. With the charge designated as q, the result may be

written

it — " _-a-i' _
IJ_o CJS - 35t (2-2)
S

Through application of the divergence thecorem, this surface integral
can be changed to a volume integral. Also, when the charge is represented

as a volume integral of charge density, p, Eqn (2-2) can be written

f(v‘?)JV = "ga-fffdv = —f—a-gdv (2-3)
v

Vv v

4




e = Incoming Current, I (—5-—9-5)
<mmmmm = Leakage Current, L ( of of 27)
a = Inner Radius
b = Outer Radius
¥ = Arbitrary Radial Distance
] = Arbitrary Angular Displacement
I = Metallic Region Through which Current Flows
II = Region in which the Induced Fields are Desired

Fig 2-1. Schematic Drawing of the Theoretical Model.




Since the surface is constant, the partial derivative with respect to
time can be brought inside the integral. Equating integrands yields

the continuity ecquation

e f
VT = 3 (2-4)
ot
For the steady state condition %% = 0. For an isotropic medium (both

regions I and I1 are considered to be isotropic), J = GE. Thus

—D

VeocE = O (2-5)

Replacing E with ~V¢ yields Laplace's Equation
2
V¢ =0 (2-6)

This equation is valid for both regions of the cylinder. Thus, Laplace's
Equation, subject to appropriate boundary conditions, must first be solved
for Region I. This will yield the potential on the inner boundary. Then
Laplace's Equation is solved for Region II, subject to the previously cal-
culated values of ¢ at the inner boundary. This gives the values of ¢

throughout Region 1I. The strength of the E field in this region can then

be determined from E = =Vé.

Boundary Conditions

Current density, the electric field, and potential are related by

- ot -3

J = ok = -V =

or

A 3 (2-8)
Ve -

On the outer boundary, only the normal component of the incoming

D




current, I, is known. The tangential component cannot be specified
because the current flow around the cylinder is unknown.

On the inner boundary the normal component of Vé (i.e. the cur-
rent) is zero. This is because the inside wall is not being irradiated,
.and all current flow at the inner boundary is tangential to the bound-
ary. There 1s no current flow from Region T of the cylinder, across
the inner boundary, into Region II. As before, the tangential com-
ponent of V¢ cannot be specified because the current flow is unknown.

Thus, the apparent boundary conditions are, for the outer boundary,

/ -(-I. c;c')sO-) 2

2¢ . 29 - (2-9)
an Ay
FLteor om
o 2 "0.-— "'.é"
and for the inner boundary
ot & .‘?_‘? = O 0¢¢¢ 2w (2-10)

on  9r

However, the divergence theorem states

]vﬁ;; da = é?.% ds (2-11)
A §

Since Y24 = 0, it is obvious that

2¢ y o
953;\ ds = O (2-12)
)

However, integrating around both boundaries with the boundary conditions

as specified in Eqns (2-9)and (2-10) yields




- )
f.?,.‘.’l ds 4 j."..‘? ls = O (2-13)
S or

or
inner Sou'fe\’
iy
2
TcosH ?
O + bl =£22de = 0 (2-14)
—Tr
2z

2bl £ O (2-15)

a

Thus, the boundary conditions as stated in Eqns (2-9) and (2-10) must
be modified to satisfy the divergence theorem. This wodification con-
sists of adding a radially outward "leakage current" on to the outer
boundary. Its value is taken to be constant over the outer boundary,
as shown in Fig 2-1. With the addition of this term the outer boundary

condition becomes

..(-Icos@- +L) -

|
in
b
in
e

a 2
2% . (2-16)
v
- T toe dr
o 2 2

where L is a value such that
an
2% = (2-17)
bfaf do = O
o

1 g g
When the values for 5% are substituted over the appropriate angular

regions, Eqn (2-12) becomes




" an
i z
bf(.-?é.s_.":-‘:it:if.)de- & bf....’:. d& = O (2-18)
a o
-‘!! 1o
2 2
Simplifying and evaluating the integrals yields
T e
=1 s'mﬁ‘" e L'&’ z D (2-19)
ﬁ% L
From which
L = e (2-20)
w

Thus, the differential equation and boundary conditions are,

V=0 (2-21)

o

— = O
oY
i rza
1 ! - ™
: ~(ceso - %) 7693
9| _
or i
I o™
b . =& H ¢ 3T
r=b o < 2




IIT Solution by Separation of Variables

Solution in Region I

Through application of the method of separation of variables, the
general sclution for Laplace's Equation, subject to the boundary

conditions as listed in Eqn (2-21), is

(DI(Y'G') . Ibcoso (r+ gz) &

20( - ) ¥
= nel o 2nel

(+1) Ib cos(2n®) (,,-"‘,, i (3-1)
, NOT () {L" a™) v
nsi

This equation gives the potential distribution throughout Region I.
A dcetailed derivation of Eqn (3-1) can be found in Appendix A. Appen-

dix B contains the Fourier expansion of the boundary conditions.

Solution in Region II

Laplace's Equation must also be solved for the potentials through-
out Region II, subject to Dirichlet boundary conditions because the po-
tentials on the inner boundary are now known. The boundary condition

for Region II is
$(a,0) = £(a,0) o
19

where f(a,8) is given by the solution to Region I at r=a.
The solution of Laplace's Equation, subject to the boundary condi-

tion as given in Eqn (3-2), for Region II is

10

R e ————



¢ (no) = Il;lwcos-&- P
RN e

oD +

-1 a2n =
Z «) 2T L " cos(2n®) (3-3)
'11} d-("'/n?ﬂ'i}(bqn— a‘fﬂ)

na!

This equation is derived in Appendix A.

P—Ficld in Region II

. =x . . . . . .
{ Since E = -V¢, and the gradient of ¢ in cylindrical coordinates 1s
|
1
A 124 A
bz 22F G e (3-4)
ot T

e
the E-field given by the potential distribution in Eqn (3-3) is

~ e el 2n+! 2“-' .
-é, = I‘b':”gs' 7 (") 4Ib v _C'c»,C(Zn‘g‘) T
o S oy py

n+)

nt , .2 T S
TL} ('»)M‘i’) Z{.ﬂ 5T 3, 7 {-sin 2!\"3-) :9‘_ (3-5)
Tl ot ) T (/n=-1){b - a™)

Appendix C contains a computer program based on Eqn (3-5) which

3 S : :
calculates the magnitude of the E-field for an arbitrary r and 8, using

- K 2
!t- =~ V(a,) + (@o) e

Test Solution in Region I

The solutions given in the previous paragraphs represent solutions
for the problem as derived in Chapter II. However, to aid in the com-
parison of the results of the two other techniques, a simpler outer

boundary condition was used. This condition is

2¢ = co8 © pceL2m  (3-7)
oY
rzb
11

W—_r -




This conditicn has the advantage of reducing the Fourier expansion of
£(9) to only one term.
The solution to Laplace's Equation, subject to the above outer

boundary condition is

iy 2
¢>(r,c--) = ._?.l.’..,,_ (‘ré_g_,) cos 9 (3-8)
(5= o) '

For ease of calculation, the inner and outer radii will be 2 and 4

respectively. Substitution of these values yields
- Hfc+ YYcos© "
Qv = "j'( e (3-9)

which will be used to conpare the accuracy of the resulte of the varia-

tional and Green's function approaches.




IV Variational Calculus Approach

Solution Procedure

The principle behind the variational approach is that of minimizing
a functional. For the problem as outlined in Chapter I the functional,

S; is
& = ' 2 ! (4-1)
= gf(*?q’) da + z[29Ff9)rde
A <>

where the second integral is over the outer boundary, and £(0) is the
outer boundary condition. There is no integral term for the inner
boundary because £(8) = 0 on the inner boundary. This functional is
derived in Appendix D.

Through the use of a 3-point quadrature formula and Simpson's

Rule, Eqn (4-1) can be written in matrix form as

S= $9A¢ ~ Faf@®b (4-2)

where A is the coefficient matrix resulting from application of Simpson's
Rule and the quadrature formula, and B is a column vector containing the
Simpson's Rule coefficients for the mesh points on the outer boundary.

~

Taking the variance of S with respect to ¢ yields

S . A4 - BFf@b (4-3)
§¢ T e e

Since S is to be minimized, the variance must be zero, so

¢ - B“('o')b s O (4-4)

>

13




Thus, the matrix equation is

Ad= BFf@ b (4-5)

Equation (4-5) can be written in the form
Lo

LL® =¥ (4-6)

—— -
—

where L is a lower triangular Choleski decomposition of A.

Equation (4-6) can be easily solved by letting

Lx= Y ol

and solving for x using forward substitution. Once x is known, ¢ can be
calculated using backward substitution.

Since the original problem contains Neumann boundary conditions, it
is only possible to specify ¢ to within an additive constant. This is
manifested in the fact that the coefficient matrix, A, will be singular.
When A is decomposed via a Choleski decompositiorn, the lower right term
in the main diagonal of L will be zero. Thus, the last term in each of
the x, y, and ¢ vectors cannot be solved for directly, because that would
entail dividing by zero. This difficulty can be alleviated by »nly solving
for the first N-1 terms in each vector, and arbitrarily setting che Nth
term equal to zero. The solution so calculated will be correct within an
additive constant. To arrive at the minimum solution, (one which is ortho-
gonal to é = (1,1,1,...1), the zero eigenvalue-eigenvector of A), it will
be necessary to normalize the solution. That is, total all the terms, find
the average, and subtract this average from each term in the solution vector.
A computer program for the variational approach is listed and discussed in

Appendix G.
14




Matrix Form of the Double Integral

The first integral in Eqn. (4-1) can be converted to a dovtle integral

over r and 6, using the relation dA = rdrdd. The integral is then expressed

as a double sum.

| [gifda = % f fv(w)drde )

= 2;%‘ Ai Aj y'J (V@,&j AT AG (4-9)

where Ai and Aj are Simpson's Rule coefficients.

Since

2 2
(ve) = (3%) + L(2%) (410

QJ‘U

it will be necessary to have difference relations for both r and 6.
Also, since each difference relation will have to be squared, it will
be advantageous to use ones which don't have too many terms, yet are
reasonably accurate. The following 3-point formula are accurate to

order h? (Ref: 8, 96).

| - . - -lla
g_t T 3b,+ 44, ~ 4,) (4-11a)

(4-11b)

’Ql
<
i
SN

I
-©-
&
2
N

| 2¢ =S (¢ - 1./4, 34’»1.3) (4-11¢) 1

)it
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Eqn (4-1la) is used for all mesh points on the inner boundary, and

Equ (4-1lc) is used for all mesh points on the outer boundary. However,

care must be used when approximating the derivative at the interior mesh

points.

Initially, Eqn (4-11b) was used to approximate the derivative at ali

interior mesh points. However, this produced the scalloping phenomena
shown in Fig 4-1. No matter how fine a mesh was used, the scalloping

was always present, and always over 3-point segments. The reason the
scallops are present can be explained by the following analysis:

If the boundary term is ignored, the functional has the form (in one

dimension)

b
& = «?!:j(@')a dy (4-12)

The variance of S with respect to ¢' is

b
£s =f(é-¢,,) e (4-13)

If § is a minimum, 8§S = 0. Also, if the curve (a,b) is approximated by

. . ‘ as +
two piecewise continuous functions in the intervals, (a,c ) and & ,b),

Eqn (4-13) can be written

¢ b
f(“"‘?’) $dr + f(d“?') ¢’'dr = © (4-14)
c‘

[~

16




If both integrals are integrated by parts, this equation becomes

<

c b b
J'@("’L e J¢¢,¢’* "“fo"«?@"df —!th(i’"dr = 0 (4-15)

a

Evaluating the first two terms and combining the integrals yields

b

[46 = S48 + S0, = a4 ~
b
fo((?@" = O (4-16)
4 e

\

" and "b" are

Due to the boundary conditions, the terms cvaluated at "a
both zero. Also, since the function in the interval from a to ¢ to b is

continuous, Eqn (4-16) can be written

b
J6 (0= 4) = [roo G-17)
@

Thus, since continuity of the first derivative is not enforced across each
segment, the functional has been given the freedom to absorb some of the
"cost'" of minimization by letting the slope be discontinuous across each
piecewise continuous segment. The reason the scallops occurred in groups
of three points is because both Simpson's Rule and a 3-point quadrature
formula were used in the numerical approximation, implying a quadratic

function over a 3-point range.

To eliminate the scalloping, Eqns (4-1la) and (4-1lc) were used to
approximate both the left and right derivatives at the mesh points which
are junctions for each of the 3-point segments (e.g., mesh point 65 3 in

)

Fig E-1). This procedure more accurately calculates the actual value of

17
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the derivative on either side of the break-point, so that large slopes
(scalloping) will be suppressed.

Eqn (4-11b) can be used to approximate the derivative at the middle
mesh point of each 3-point segment. In this case continuity is enforced
through the use of Simpson's Rule. Use of the approximation formulae
in this manner produced a smooth curve for the approximation in the radial
direction.

Similarly, care must be used when approximating the angular deriva-
tives of Eqmn (4-10). Initially, angular derivatives at all mesh points
vere approximated with Eqn (4-11b). As can be scen in Fig 4-2, the results
of this approximation bracket, but never approach, the analytic answer.
The values along the even numbered radials are always greater, and the
values along the odd numbered radials are always less than the analytic
answer. Again, this results from an improper approximation of the first
derivative in the angular direction. This was corrected by using Eqns (4-1la)
and (4-11b) to approximate the left and right angular derivatives at all mesh
points. Again, an additional factor of % was included in both Eqns (4-1la)
and (4-11b) to account for the use of both left and right derivatives. Use
of the approximation formulae in this manner produced a smooth curve for the

approximation in the angular direction.

Matrix Form of the Single Integral

The second integral in Eqn (4-1) can be converted into the following

summation:

?":_['2' fo)rele = -Z B; f(9);, b A® (4-18)
e A

19
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No difference formulae are needed because there are no derivatives to
approximate. In fact, the only non-zero terms in the left hand side
vector will be those terms corresponding to a value of $ on the outer

boundary.

Summary

Initially, the boundary conditions were enforced with Lagrange
Multipliers, without considering the nitural boundary conditicns of the
functional. This produced a scalloped curve with endpoints at or near
zero. (This initial attempt is discussed in Appendix F.) When the
natural boundary conditions were included in the functional, the curve
was "pulled up" so that its endpoints more closely approximated the
analytic values. However, the scallops were still present no matter
how fine a mesh was used. These scallops were present because continuity
of the first derivative was noE'rigidly enforced in the numerical approx-
imation. When both left and right radial derivatives of the mesh points
which were junctions of the 3-point secgment were used, the numerical
solution did indeed become a smooth curve. However, it still did not
satisfactorily approximate the analytic solution. Finally, both left
and right derivatives in the angular direction were approximated for all
mesh points. 5; illustrated in Fig. 4-3, the numerical solution approaches
the analytic result as the mesh becomes finer. However, for a 9 x 32

mesh it was necessary to use 168 K of computer storage.
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Fig 4-3. Comparison of the Analytic Solution with the Variational
Solution Along the Line 6 = 0.




V Solution Using Green's Functions

In this chapter the equations developed in Chapter 1 are solved
using a Green's function. First, a solution for ¢ is derived in terms
of a Green's function. Second, an iterative scheme for obtaining the

values of ¢ is presented.

Reduction to Integral Equation

The basic equation is

2 =

7'éd = 0 (5-1)
with boundary conditions

24l . o
%

Yra
290 = feo)
af

Ts

The Green's function expression for Eqn (5-1) is
(5-2)

z w-—d wh — b
’
V G((X%X’) = 4(%-X)
e ; = §
where x is the observer's point and x' is the source point, as measured

from the origin. Since the Green's function only depends on the difference
> * b £ el e
between the two vectors, x and X', it can be written as G(x-x').

Multiplying Eqn (5-1) by G(x - x') and Eqn (5-2) by ¢(xX) yields
G(X-%)9*9(X) = o (5-3)
and
PE)V'GIX-F) = (X-%) &(F) i
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Subtracting Equ (5-3) from Eqn (5-4), and integrating over the

volume of the cylinder results in

fl-a@-®vedm + 6@ Fa@-Fdv = o(F) 6
Vv

If one of the "del" terms is factored out of the brackets, the volume integral
can be converted to a surface integral through application of the divergence

theorem.

f[‘”"vo(""‘ )~ G(R-F) vo (W) da’ = O(X) G
A

. . . >
Since the Green's function is symmetric, the observer's point, x, and the

. =¥ . . .
source point, x', can be interchanged. This change results in

o) :[[6(F) Ve (H-R) - GE= D) VB ()] da’ O
A

If a new function, ¥(X), is defined as
b v b ’ (5-8)
¥(x) ="f6=(:<'- () V'p(X)-da
A
Eqn (5-7) can be written as
- o>, o™ ’ (5-9)
G (X) = Y% '!“f@(X)Vu(X—X)’da
A
Equations (5-8) and (5-9) can be solved by iteration, viz.,

¢° (3“) - \'{/(‘5‘.‘) (5-10a)

S (x) = Y(X) +jc§?w(?) Ve (X-X) da’ (5-10b)
A
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where ;
o A = ,n [3?:';?’ X |
C::(k s X) - (5-11)
a1y '
and
’ e X=X
VCz(?{"—- X) = (5-12)

- -
T R-%)®
Eqns (5-11) and (5-12) are derived in Appendix H. Also, a more rigorous
derivation of the integral equation, Eqn (5-7) can be found in Appendix I.
The iteration scheme is explained in the following six steps.

1. The cylindrical shell is divided into an even number of equally

spaced angular intervals. Since Eqns (5-8) and (5-9) only contain surface
integrals, there is no need for interior mesh points. (This is one advan-
tage of using Green's functions - the number of mesh points can be dras-

tically reduced, thus saving computcr storage space.)

2. Equation (5-8) is used to calculate the value of y(x) for each
mesh point on the inner boundary due to contributions from every mesh
point on the outer boundary.

3. Equation (5-8) is used to calculate the value of $(Z) for each
nmesh point on the outer boundary due to contributions from every mesh
point on the outer boundary.

Note: 1In both steps 2 and 3 there is no contribution from the inner
boundary because V¢-da = 3¢/8r = 0 on the inner boundary.

4. Equation (5-9)is used to calculate the value of ¢ for every mesh
point on the inner boundary due to contributions from all mesh points on
toth boundaries. The corresponding value of ¥ is then added to the sum of
these contributions.

5. Step 4 is repeated for all mesh points on the outer boundary.
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6. Steps 4 and 5 are repeated until all values of ¢ converge to within
some tolerance limit.

A computer program implementing the above iteration scheme can be found
in Appendix J.

The values of ¢ calculated by this method are in agreement to three
significant figures with the values predicted by the test solution of Egn
(3-9). In this calculation, 128 mesh points were used around each boundary
and the values of the conductivity and incoming current were set to unity.
The computer program was then modified to accommodate the boundary condi-
tions as listed in Eqn (2-21). Once again, the values of ¢ were in agree-
ment to three significant figures. A comparison of the results was not

plotted because the curves would be indistinguishable.

Solution in Region IT

The procedure is the same as that used in the previous section up to

Eqn (5-7). On the inner boundary vo(x') = 0, so Eqn (5~7) can be written

O(%) = [ Ya R %) $(7)- da’ 7
A

where VG(x' -X) is given in Eqn (5-12) and the values of $(x') have been
calculated by the method presented in the previous section.

Thus, it is not necessary to iterate a solution, just sum the contri-
butions from all points on the inner boundary. The summation expression

for Eqn (5-13) is

(]
o4 . aa®\" cos i $(H)n (5-14)

; By = 5 :
where y is the angle between x' -x and the outward unit normal at x'.
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The potentials obtained with this formula are in agreement to two

significant figures with the values predicted by Eqn (3-3).

. 3 .
Calculation of the E-Field

It is not necessary to calculate the values of ¢ throughout
region II. Eqn (5-13) can be used to calculate the electric field
. o = - = .
directly. Since E = -V$, Eqn (5-13) can be written (after the dot

product operation is performed)
~-7d(X) = -~f§;‘c-, =% d(F)ds 19
3

. . . . > > -
The gradient operation is with respect to z, not x', so Eqn (5-15) becomes

—h - |3 3G\ A t 9 EICANIN *
£ = = 000) > :(-m-)Y e (-.....)-{} ds (5-16)
’ 27 \dn v I )
S
Summary

The Green's function method approximated the values of ¢ as predicted

by the analytical formulas of Chapter III to at leastr two significant

: <
figures. Thus, the Green's function method gave an independent vefifica—

tion of Eqns (3-1) and (3-3). Time did not permit a computer implementa-

tion of Eqn (5-16).
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VI Representative Values of the

5 ~ L
Magnitude of the E-Field

.

In this chapter the electric field induced inside the hollow portion
of the cylinder is calculated using Eqns (3-5) and (3-6). The following
representative values are used for the input parameters:

Outer radius: .5 meters

Cylinder thickness: varied from .254 to 2.54 millimeters (10 to 100 mils)

Conductivity (Aluminum): 3.82 x 107 mhos/meter

Incoming current density: .01 amps/meter2

Fig 6-1 illustrates how the maximum strength of the electric field
varies with the thickness of the cylinder.

Fig 6-2 illustrates the magnitude of the electric field as it varies
with angle. Each curve plots the field along an equi-radial arc. Since
the electric field is symmetric with respect to the line € =0, only the
fields in the upper half of the cylinder are plotted. As can be seen

; ; Eo :
from the figure, the maximum value of the E-Field occurs at the inner

boundary when 6 =0.

Both figures indicate that for an incoming current density of .0l

2, the strength of the electric field inside the cylinder is on

amps/meter
the order of 1077 volts/meter. Eqn (3-5) indicates that the magnitude of
the electric field varies directly as the incoming current. Thus, to start

getting appreciable fields inside the cylinder, the incoming current density

would have to be on the order of 10°-10° amps/meter?.




(volts/meterxr) x 10 4

max

E]

rJ

Outer Radius = .5 meter

Condnctivitg of the Metal =
3.82x10° mhos/meter

Incoming Current Density =
.
.01 anmps/meter”

1 ] | | | | | | | L

20 40 60 80 100
Cylinder Thickness (mils)
-5

Fig 6-1. Plot of lnlmax vs Cylinder Thickness

for an Aluminum Cylinder with a Radius
of .5m.
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VIT Coonclusions and Recommendations

Conclusions

The results of Chapter 1V indicate that it is possible to use the
variational method to numerically solve for the potential distribution,
provided a fine enough mesh is used.

The results of the Green's function method indicate that it can
satisfactorily approximate the potential distribution throughout both
regions of the cylinder. Unfortunately, an examination of the electric
field predicted by this method was not accomplished. Towever, since
the method was quite successful at predicting the potentials, it seems
reasonable to expect similar success in the prediction of the E-Field.

A comparison of the variational computer program with the Green's
function program shows that the variational program requires less execu-
tion time, whereas the Green's function program requires less computer
storage. Thus, for a problem which cannot be solved analytically, the
best numerical approach would depend on whether computer storage or execu-
time is more critical to the user.

Lastly, given the representative values for the cylinder's dimensions
and the incoming current density as listed in Chapter VI, the magnitude of

the induced E-Field is on the order of 1077 volts/meter.

Recommendations

1. The computer programs developed in Chapters IV and V only calculate

the potential distribution. It would be interesting to develop them one

> . .
step further to calculate the E-Field, and then compare the two numerical
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methods.,

2. To improve the prediction of the electric field inside a space-
craft, the problem should be solved for a finite cylinder with endcaps.

One possible model is a thin ellipsoid. This would alleviate the problem

of calculating the current flow across the edge of the endcaps.
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Appendix A

Dur}ylkjon_gf the Solution to 725=0

Using Separation of Variables

The method of separation of variables is used to solve V24 = 0.
The boundary conditions are then expanded in a Fourier series to obtain

an infinite sum expression for §(r,9).

Solution in Region Ii
2 (A-1)
v dhd=z O A

Assume ¢ = R(r) 0(0). 1In cylindrical coordinates
vh=tl2 (v.:'.?. PR ] RO (A-2)
Y o7 o7 re 99

After expanding and multiplying by r2,

2 ”
el (r:;? L5 40 At East

= A° (A-5)

R = A lnr + B, (4~6)




Solving for O:

2‘:2 = 0 (A-7)
de-*
Q@ = C,0 + D (A-8)
Thus
¢ = (Ao fn v + 80) (Co-o. 2 Do) (4-9)

Since ¢ is periodic, C, must be zero. Absorbing Do in the remaining

constants yields

F

¢ = A, Ine + Bo (A-10)

Solution if )2 is Positive

Solving for R:
\
rf.(r.:ﬁﬁ s AZR = O (A-11)
T v

This is Euler's Equation, which can be solved by letting

Z %
r=e (A-12)
and
dR _ dRdz _ J*dR (A1)
dv dz dr dz

Solving for O:
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—— - AD = O
de
@ = C cos Ao + D sinde
For solutions periodic in 2w, A = n, where n = 1,2,3,... . Thus the
: tion for a positive A2 is
O "+ B ) C_cbs nd D sinnd Bz, &,
\. e Anr 4 " ) " o -~ + ‘n*’ 2 )
l The solution when A2 is negative can be ignored because it contains
sinh € and cosh 8 terms, which are not periodic.
Thus, the general solution is,
= A,lnvr + B, +
=
n -n N -n\ ..
- oy
}_‘[(A“‘a + B, r )cas nt 4 (C"Y - Dnr }sm wD—]
nzi
The boundary couditions are
¢
——s & {}) - O
av( ’
E(cose---.!-) T S
3 o ™ 2 2
- [ -
r—(b,ﬁ) = ¥(8) =
R - I o~
2 2
Applying the first boundary condition yields
/q n=1 en={
n® ~ Dpe = O
nel -n-|
ne - [)“cx s O
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(A-15)

(A-16)

solu-

(A-17)

(A-18)

(A-19a)

(A-19b)

(,\~l9c)




TR

Applying the second boundary condition yields

P | T |

n-| nel ’
[{"Anb ~nB, b )°°5 nd -}'(nCnb -~ nD,b )s'm m’}].—:. f(o) (420

~1s

3
W

The Fourier expansion for £(8) is given in Eqn (B-9) Appendix B. Since
there are no sine terms in the expansion

el el

ACb - nD b = 0 (a-21)

(2 (4}

Solving this equation simultaneously with Eqn (A-19¢) yields
- = (A-22)
Ca® D=0

Equating coefficients of the cosine terms in Equs (A-20) and (3-9) for

n =1 yields

-2 I
5 e - -'» - -~ (.’\"‘23)
A - Bb 5%
Solving this equation simultancously with Eqn (A-19b) for n = 1 yields
2
Ib (A-24a)

A o~ o ————
p 2
212
B = Ia'b (A-24b)
' 22‘7'(&3- Cf)
Equating coefficients of the cosine terms in Eqns (A-20) and (8-9) for

n=2,4,6,... yields
ne

- “Z
Y\Anbh.'~ n Bnb ’ = (") ZI ns 2,‘,, b’“, (A-25)
ot L (112-1)

Solving this equation simultancously with Eqn (A-19b) for n>l yields
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n-2

n
/.\ X (—-') ?..I 3’3 ns 2 £ 6,..a (A-26a)
. ~— > % "~ )
"o (ah ) (75T f
nz 3
J — " idel
i} ¥ 27 451 i
Bn - ( ,\,'\) . ns 2,"’6,"' (A-26b)
ho"n-‘ \“ " (o -

The coefficients of cos(nf) are zero for n = 3,5,7,... . Thus Ap=B,=0
when n = 3,5.7,

The equation for ¢(r,d) can now be found by substituting Eqns (A-19a),
(A-24), and (A-26) into Eqn (A-18):

T ces
bl = e (7

\/
*.

n-2
< 2 21 n 2n \
(1) b cosnd [+ o ) ne2,4,6 (A-27)
(\'\ - 3/ ( .n "':“) . g

Equation (2-27) can be rewritten with an infinite sum by substituting

2n for n.

2 2
- X bcos ¢ r o+ a
q)x("”e) - 20,(5&_ aa) ( ‘."') 4
o -t

2n+l
Z c-.) b »m,<zn+>) (,.2" * a""> (A-28)

noar (q,,.:)( 3 a_“") e

n=l
Equation (A-28) gives the potentials throughout Region I. The constant
B, in Eqn (A-18) has been set to zero. Since Vé is the term of interest,

o

any constant term would vanish when the gradient is calculated.

Solution in Region II

The equaticp to be solved is
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Vaf,’) = 0 (A-29)

1 with boundury condition ¢ (a,0) = f(a,0) where £(a,6) is given by the
solution to Region L.

Using the same procedure as before, the general solution is

o
\ . -
G=A,Inr + 3, -? [(An L B, n)co-‘i nd "'(Cn"“* D ¥ 'n) . ne] (a-30)
e
visl

Since $ must be bounded at r = 0, A =B 7D =0. Also, the additive con-

stant, By, is set to 0. Since the gradient of ¢ is desired, B, would
drop out anyway. Thus, the general solution is reduced to
’ O
n _
¢ "Z A T cos n® + Cr sinnd (=313
nszl
Applying the boundary conditicn at r = a yields
o0
n / N n . W =
A e cos(nd) 4 ¢ oa sin(nd)| =
’ ]
s o0 ! I
. i3 W T bl 2
_3::\,'!.&) cog £, (—l) Ib c,os(Zn*D)(Za") (A-32)
’;v.g_":u‘gm'--,-wz';._, .;;,—. .i'. = —""\ ;7. - k* q R dd
o W) Zﬂ. ne T (Gni D) (67 @)
=
Since there are no sine terms in the right-hand side, Gy = 0
Equating the coefficients of cos 6 for n = 1,
2 §
A - Iba (A-33) |
‘CL - &g " :
(6~ a®) 5
which simplifies to
2
A = _._E_bi____ (A-34)

' o,(b?._ az)

Equating the coefficients of cos 0 for n = 2,4,6,...,




oo

2n+l
}: A, a. }: ’) 2I b 2™ (A-35)
™ 5 & o,
e no (qn 'l)(6n~ W n)

Solving for the constant A,

nel
= (=1) 2152

2n ha'ﬂ'("in.-l)(‘;’n- a‘in)

When mn = 3,5,7,... the constant coefficients are zerao.

Substituting Eqns (A-34) and (A-36) into Eqn (A-31) yields the

potential distribution for Region II,

2

4 IThb rcos €
D (v, = .
7)1( ) ) c (b&" az) +

= SRoES 2n

Z. Ik v cos(2n®) (A-37)

na"rr 4r2=1) (K" g7
- (4n%1) (b )
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Appendix B

Fouric: t<pansion of the Boundary Conditions
e

In Appendix A a - lution for v2¢ = 0 was derived in terms of an
infinite sum of sinc -+l cosine terms. The boundary conditions, repre-
sented as £(9), were 'ton expanded in a Fourier series to determine the
coefficients for the -ine and cosine terms in the solution. The purpose

of this appendix is t+ present the Fourier analysis used to dctermine

those coefficients.
The solution at + = b can be written in the form, (Ref: Eqn (A-20)),

(B-1)

o0
Z [En(;,.v-. (n2) + Fn Sin (V\G)] = £(9)
ns|

where

I(ewso-7) Feocd

£(®) =

< £ & 3T
= é

M}

"w

onty even functions, its Fourier expansion will not

Since f(8) contains
have any sine terms. !ence Fy = 0 in Eqn (B-1).

The expression fr Ej 18

E = .i.jg-(e)cos(ﬂ.‘g.)dg ne ,2,3~  (3-2)

Foo this problem the period is 2w,

where 2L = Period.
When the equations for f(8) are substituted in Eqn (B-2) and integrated

over the appropriate linits, the following equation results,
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1
Z
E = A ..I;._(aos ¢ ~ ) cos(n®)de 4+
n T o 1
by
3r
2
1 -.-: ~ {2 'l
""F &‘;;“:' Co.,'j (1"‘9) dv n:a, ) ) (8_3) Ez
1® i
<
When n = 0 the above expression is zero. Hence there is no constant term
in the Fourier expansion. Egn (B-3) can be rewritten as
{4 !
I ,
= 4 |
S (n6) '
~ © 1 |
= =/ |cos® cos(ne) — L23LNTHAEG _ x
En or [ 5 € casint] T i .
=1E !
2
2 |
I - ' 3 ee o ( = E
—, ces(ns) e n=42,3, B-4) ,
o {
T ;
- |
Integration of this equation yields :
, 3 3
2 ! |
2o, since)_sms]_ Ifane] ..
ol 2 y w on? |
.z o
2 2
P = J (B-5)
n
b 8 3T
2 2
_]_:_ sin (n-1)6 -+ gin(n+l)d  Sin(nd I |sin(nf) nsi
o™ 2(n-1) 2(n+1) nm ot n
-
> m
. 2
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E = J ..I:. = . !

“n ———" '.‘-_
cwin-l ' n+l
E I & g 2
gl nre gt n
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(B-6)

(B-7)

(B-8)




When Eqns (B-1) and B-8) are combined and simplified, the Fourier

expansion for f(6) over the interval 0 to 27m can be written

n-2
- a o~
'F(@') = IS;SB. " ( '2,’-13- 2(3:\:.0))’ —— n= 2,4, 6, (8-9)

This expansion was used with Eqn (A-18) to evaluate the constants in the

general solution for ¢(r,9).
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Appendix C

Computer Program to Calculate the

>
Magnitude of the E-Field

This program computes the magnitude of the electric field at
various points throughout the hollow portion of the cylinder. It is

essentially a program of Eqn (3-5).

Cards 1 - 28: Self explanatory.

Card 29: The value of the inner radius is calculated.

Cards 33, 3&: These cards convert the angular and radial increments
into DO LOOP indices.

Card 35: A DO LOOP is initialized which spans all the angular increments.

Card 36: THETA is the angular displacement of each radial line.

Card 37: A DO LOOP is initialized which spans all the points along a
given radial line.

Card 38: R is the radial displacement of the point being calculated.

Card 39: This card ensures that all points lie in the hollow portion
of the cylinder.

Card 40: THETA is converted into radians.

Cards 41 - 49: The radial component of the electric field is calculated
as given in Eqn (3-5). The summation is continued until two successive
values differ by less than .0001.

Cards 50 - 58: The angular component of the electric field is calculated
as given in Eqn (3-5). The summation is continued until two successive

values differ by less than .0001.
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Card 59:

Card 60:

. - R :
The magnitude of the E~Field is calculated.

THETA is converted back to degrees.
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FORMAT (LY " INSOMING SUERENT DENSITYI=",ELl .5y
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READ? 4Py THICYySIG1A44CT430A40R
IF(:.(C(N."U"JT)o\':.])S"Op
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KA=1£0/01+1

K2=A/DR+2

No 5 I=1,%A

TUETA=(I-1)*0A &
PO % J=1,KR

R=(d=1)*0OR

IF(RWGTWAIR=A
THETE=THETA® 2.*P17 350 ¢

RAD=C,

PO 2 N=1,50

SAVE=RAD

RAG=RARE (=1 ;) CPAN=TN C L ECTY QR (244 ) ¥R> (2% N1 ) *
al COSCZ=N>THETA )/

2 (SEGMANEL® (g #NF Hi=d, )X (BFE (g Y=A%s CxFNY )Y
IF(ATS(SAVE=-RAD) « . Te s 0701 .8NDNJ53T41L)GO [ 2
CONTYNUE
RAD=-FAD~-CI®*R*BFCISCTHETAY/ (SIGHNF(3¥B-~-411]))
ANG=0
00 2 N=1,50
SAVE=LANG
ANG=2HG# (=1 4) 22 (N=1) 2L H#CI*R¥*(2F{+1L) *¥R-¢F(2%5N=1) ¥

3 SIN(2*¥N®IHETY) /

2 (SIGHATPLITEL o F {RK-d )% (BN 3 FN) ~AFE (5FNY))
TF‘(AF\S(S‘:"VE-:\I‘F‘,O.TQOO‘:O 0':”3.“03[01)60 f) L
CONTIMNUL
ANG=LNGH+CIYW F<SIY(THFTA) /(S1GMIF(3+3=A%1))
E=SO0FT(RAD*RADFANG = ING)

THETh=THETAR 350472 ./P1
MRITE GaaRyTHITA,C

G932 TC 10

END
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Appendix D

Derivation of the Minimization Functional

This appendix contains the derivation of the functional, Eqn (4-1),
which was minimized in the variational approach. The discussion method
used will be to first present a general functional for the problem being
solved. This will be followed by a presentation of a specific functional
compatible with the given boundary conditions as listed in Chapter II.

It will then be shown that this functional, J[ﬂ , 1s a minimum by adding
another non-zero function, v, to ¢, and showing that J[i+9]> J[¢].

The general problem is listed in Eqn (D-1). The equation is inhomo-

geneous and nust satisfy mixed boundary conditions.

v2.¢ = s (D-1)

On the Inner Surface,
2¢
5% + 0 ¢ = f)l
fza

On the Outer Surface,

Te
57 + %d = 92
vzb

The applicable functional is

T(8 = z[[(vey-245]da  +
A

+[( ¢~ 202)ds + [l ¢-269)ds 0
S

inngy Seuter
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For the problem as derived in Chapter II, S = ¢, = 0, = g; ™ 0, and

g, = £(8). So Eqn. (D-2) becomes
2 r
JL$] = éﬁv@ JA + -,"?J-Zdw?(e)bde- (p-3)
A e

where the second integral has been converted to an integral over 6 by
use of the relation ds =rd® =bdb.

It will now be shown that if a non-zero function, v, is added to ¢,
then J[p+v]>J[j]. (Both ¢ and v belong to the class of functions which

has a continuous second derivative.) If this is true, then fqn. (D-3) is

the correct functional to be minimized.

JLd+V] = -};f[(vn’p)z + 2vdevv + (VV)z]dA +
A

~2(0FV)H0)bde T

N~

£

= Tre3 + £f(ovfda +[os-vvda ~
A A

j’v-ﬂmbde (0-5)
4

The second term is positive for any non-zero v. Thus, if it can be shown

that terms three and four are zero for any v, then J[¢+v] is greater than

J[s]-

s < e A e -




An identity from vector analysis gives the relation
—-— P— - -
ol o~ : (Db-6)
Ve(wa)= WT-A 4+ A- VW

. - o .
By letting v=w and V¢ =A, the above equation becomes

Ve (vvd) = VY- Vo +yd-yV (D-7)
Thus
VUV = T(Vyd)= VTV (0-8)

Integrating Eqn (D-8) over the area of interest yields

f(vqp.vv)d/l :f\?o(&/”\y;'))q‘/} “f{VV’VC}’)dA (D-9)
A A A

Through application of the divergence theorem, the first integral on

the right side can be expressed as

f\? (Vv d)dAa = v-"f = +fv;ff (p-10)
A Slnnc'r ou'lc\‘

Substituting back into Eqn (D-9) yields

f(v¢ VV)dA ..fV--—-cLa +I(Vv V¢)dA (D=11)
So..tor
3 _ 3 _

Note: AT 3T - 0 on the inner boundary.

As stated in the discussion after Eqn (D-5), it must be shown that

f(?d“VV)dA -IV-F(G)bdG' = O (D-12)
A 4




Substituting Eqn (D-11) into first integral yields

?
fv§$bde "fVV’V‘? da —fvf(@)bd& = o @19
© A >

where the integral over S has been converted to an integral over 6 using
ds = rd0 = bdo.

Equation (D-13) can be rewritten as
2 2% 2) o ? (D-14)
\/ Q? d’C’IQ ‘+‘ Vv é;;: i 4:(1’/ E7CJ - C?
A -

The first integral is zero from the initial equation V2¢ =0. The second
term is zero from the outer boundary condition. Thus J[i+v] J[¢] for any
non-zero v. Hence Eqn (D-3) is the proper minimization functional for the

given equation with Neumann boundary conditions.
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Appendix E

Reduction of the Coefficient Matrix

This appendix contains an explanation of the use of symmetry in reducing
the size of the variational matrix problem. Also included, is a discussion

of an attempt to further reduce the matrix through "decoupling".

Use of Symmetry

The coefficient matrix, A, generated by Eqns (4-9), (4-10), and (4-11)
becomes very large as the mesh becomes finer and finer. However, it is
possible to reduce the size of this matrix by taking advantage of the symmetry
of the problem.

Figure E-1 illustrates a 5 x 8 mesh over the shell portion of the cylinder.
A mesh this size was chosen for explanation because it illustrates the salient
features of the matrix reduction without becoming tco cumbersome. The points
of discussion can be generalized to any size matrix which has an odd number
of radial mesh points, NR, and an even number of angular mesh points, NA. The

matrix generated by Eqns (4-9), (4-10), and (4-11) has the form

d fgooog EW

fefhoooh ]
g fdfgooo

oh fefhoo (E-1)
oogfdfgo

ooohfefh

g o0 ogfdt |
fhooohfe

The terms d, e, f, g, and h are block submatrices of size iR x NR.
Since the incoming current density is the same above and below the line

6 = 0, the values of the potential will be the same for those mesh points
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B, = Outer boundary value for a given radial line.

8

Fig E-1.

Sample Mesh for Calculating ¢ in the Cylindrical Shell.
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. . = b, . o Thus
Fijer T %, 5en)e Thus,

which are symmetric about the line 6 = 0, (i.e.,
the number of mesh points actually calculated can be cut approximately in half.

The matrix form of the problem is
Ad = B (E-2)
A new variable ¥, 1s defined as
W= 0 ¢ (E-3)

where

\ NA
= = {5,, i = NS 0, 2y -
i\K “ <"‘)'n = ¢','s) S A G
Y = Gb - O . j=K"£J.- = '12)"'”’{/\“
i,K i3 i) - 2

Thus $ = @Y, and Eqn (E-2) becomes

AOVW :é (E-4)

— -
o=t

Pre-multiplying Eqn (E-4) by 0 yields a new matrix problem

6_,4_\‘@\_}_} = 65 (E-5)

— —— —
- —

The form of 0 is such that

‘é = [%] (E-6)

That is, all the terms of B lying below the axis of symmectry become zero. As

IO,

can be seen from Fig E-1, the values of B which are equal are B, = Bg, B, = B,

and Bu = Be. Since BG’ B7, and B8 all lie below the axis of symmetry, they

must be set to zero. Thus, it is necessary to find an 0 ! matrix which,

when operating on B, sets B, = B,= Bg= 0.
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An 0 ! matrix which satisfics this condition is

= — g o i
1 @ ¢ 0 9 0 0 @ Hl Bl
0 % 00 0 0 0 %}|s, B,
0 0 ¥ 0 0 0 & ( B, B,
000 % 0 % 0 of(s]|=]s, {g-7)
OF 8 e G S SO ) 35 BS
G ¢ 0 T @=1I O 06 56 0
g ¢ 1 6 6 ¢-L 6 H7 0
g e 0r G @ @l =l B 0
- - 18] L .
el
0f course the 0 matrix can be expanded to accommodate any E vector gen-

erated by an even number of angular mesh points.
The effect of the operations O0AQ and OB can be calculated once 0! is

known. The matrix generated 1s significantly smaller than the original coef-

ficient matrix.

- -
a 2E8 2g 0 0 o 0 0
28 2k 25 2R 0 0 0 O

o 2¢. 2f 2d 2f£ 2g @ O © (£-8)
0AD = @ 2h 2E Zk 2E @ @ @
0 0 2g 2f d 0 0 @
0 0 0 0 B X XX
0 0 0 0 0 = x X
L_O 0 0 0 0 X X f_

where k = e+h.

The lower right submatrices, indicated with an x, are unimportant because

the corresponding terms in B will be zero through the operation 0 B.

(E-9)

o ¢
|=
1

Thus, the matrix problem reduces to
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28 2¢ 0 0 13
2k 2f 2h 0 3
260 2d 2f 2g} ¥ S 3 (£-10) |
2h 2f 2k ZE 3 }
0 2g 2F d 3

| The matrix on the left side is decomposed via a Choleski decomposi- |
| tion, and the resulting equation is solved using the procedure outlined |
in Eqns (4-6) and (4-7). Also, with the definition of ¥ as indicated in
Ecn (E-3), the values of ¥ calculated from Eqn (E-10)are actually the

I values of the potential, ¢.

Decoupling

An attempt was made to reduce the large matrix problem to two smaller
problems by '"decoupling". 1If Eqn (4-11b) is used to approximate the angular
derivatives at each mesh point, every other radial line is linked together.
All the mesh points along the even—-numbered radials are linked together,
and all the mesh points along the odd-numbered radials are linked together.
Thus, for the sample mesh in Fig E-1, the 40 x 40 matrix could be reduced
to two 20 x 20 matrices. (These could be further reduced through the use
of symmetry.)

This technique did not work because, as explained in Chapter IV, use
of Fqn (4-11b) is an improper way of approximating the angular derivatives.
Bo left and right derivatives must be approximated at each mesh point,

and this destroys the '"decoupling'" nature of the matrix.
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Appendix F

Importance of Natural Boundar
D4

Conditions when Minimizing a Functional

The first attempt at the variational approach was to minimize the
functional
' . \2 ’
S = a-‘-f(x;;@) dA (F-1)

Z,
A

and impose the Neumann boundary conditions through the use of a Lagrange
Multiplier, X.

In matrix form, the attempt was to minimize

e =

2 L=

subject to the constraint

9

Db~ a= 0 (F-3)

- -

H

where B and a were determined from the quadrature formulae and the boundary
conditions.

Imposing Eqn (F-3) on Eqn (F-2) through the use of Lagrange Multipliers

led to a new functional, S¥*:

s*zé.gég +2(8¢ -~ a) (F-4)

(Note: X is used to be consistent with the definition of matrix multiplica-

tion.)




Then S$* was varied with respect to ¢ and X,

*
S —~ o
%

-{-S— a2 gf“" Q = Q (F-6)

&R

Matrix Eqns (F-5) and (F-6) were then solved to determine ¢. Figure F-1
illustrates the results of the calculation.

The error in the above procedure is that the functional in Eqn (F-1)

has inherent in it homogeneous Neumann boundary conditions. This can be
seen by setting g, equal to zero in Egn (D-3). Thus the functional was

trying to minimize an equation with inherent (naturai) homogencous Neumann
boundary conditions on both boundaries. But, through the use of Lagrange
Mu "ipliers, it was also being told to satisfy inhomcgeneous Neumann
conditions on the outer boundary. These two conflicting conditions pro-
duced the unsatisfactory curve in Fig F-1.

An investigation was also made to dctermine the effect of imposing
Neumann boundary with Lagrange Multipliers on a functional in which the
Neumann conditions were alreaw, imposed through the natural boundary condi-

tions. The following one dimensional problem was used for this purpose:

i d 7. dR R
:-'3?(" ‘;{?) - T
R(@) = ©
R(b)

(o) (F-7)

The corresponding functional is
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Trrl = =z [{R") +

2

ch!r+

rZ

+-2Rm )b (k-5)

In matrix notation, the problem is

l

H]

B (F-9a)

O (F-9b)

where A = coefficient matrix from the integral term

C = coefficient matrix generated from the boundary conditions

B = vector generated by the second term of the functional

a = boundary condition vector

As illustrated in Fig F-2, the additional enforcement of the boundary

couditions through the use of Lagrange Multipliers magnifies the scallops.

For this reason the two-dimensional problem was solved by enforcing the

Neumann conditions through the use of natural boundary conditions.
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Fig F-1.
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Radial Distance

Potentials alcrg the Line 8 =0 as Solved by
Imposing the Boundary Conditions with Lagrange
Multipliers and Ignoring the Natural Boundary
Conditions.




e
Analytic €olution R = g(r +~{)
X
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Multipliecrs
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Fig F-2. Solution of the 1-D Proklem Using Lagrange
Multipliers and Natural Boundary Conditions.
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Appendix G

Variational Computer Program

The purpose of this appendix is to explain the computer program used
to solve the matrix equation generated by the approach using variational
calculus. The main program and each subroutine will be explained in a
separate sub-section. The format includes an explanation of all variables,
references to all equations, and, when necessary, a card-by-card explana-

tion of the program.

Main Program
The purpose of the main program is to call various subroutines which

first set-up and then solve the matrix equation.

Q = Coefficient matrix (stored as a liumear array).

Y = Boundary condition vector.

NR = Number of radial mesh points; must be an odd integer.
NA = Number of angular mesh points; must be an even integer.
RI = Inner radius of the cylinder.

RO = Outer radius of the cylinder.

CI = Incoming current density.

H = Radial mesh spacing.

W = Angular mesh spacing.

NQDIAG = Length of the main diagonal of the coefficient matrix. It is the
minimum allowable dimension for the Y array.

NQL = Minimum allowable dimension for the Q array.

SIGMA = Conductivity of the cylinder.
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Cards 4, 5: LLL is any non-zero integer. [ts purpose is to allow for the

input of more than one sct of data. A card containing a value for LLL
must be placed before every card containing input data. The last card
in the data deck must be the integer zero. This will stop the program.

Cards 13, 1l4: The values of the potential are printed out.

Subroutine Data

This subroutine reads in the data and calculates all the parameters
required for the solution of the matrix problem.
Card 2: Input data is read in. Free format is used.
Card 5: The length of the Y vector is calculated. This number is the minimum
allowable dimension for array Y.
Card 6: Q is a symmetric matrix. The lower triangular of Q is stored in a

linear array, the length of which is determined by the given formula. It

is the minimum allowable dimension for array Q.

Subroutine QSETUP

This subroutine sets up the coefficient matrix, Q.

Cards 3, 4: The Q array is zeroed.
Card 5: A DO LOOP is initiated for the calculation of the coefficients of

the mesh points.
Card 6: A subroutine is called which calculates the appropriate Simpson's

Rule coefficient for each mesh point.
Card 7: The radial distance to each mesh point is calculated.
Cards 8, 9: The constant coefficients from Eqns (4-9) and (4-11) are calculated.
Cavds 10 - 20: The appropriate subroutine for is called for the mesh point

under consideration, depending on whether it lies along the inner radius,

the outer radius, or somewhere in between.
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Card 22: Since the matrix is singular, the lower left clement will be
zero after the Choleski decomposition is applied. This card sets that

element to zero.

Subroutine SC

This subroutine calculates the Simpson's Rule coefficient for each mesh
point.

Cards 2 - 10: Modular arithmetic is used to determine the radial position
of each mesh point, and assign a value according to the following pattern:
L4832 % 0 b52:8, 1

Card 11: Since a two-dimensional mesh is being used, Simpson's Rule has to
be applied in the angular direction also. This card assigns a value of
2 to mesh points along odd radials, and a value of 4 to those lying along
even radials.

Card 12: The angular and radial contributions to the Simpson's Rule coef-

ficient are multiplied together.

Subroutine QINNER, QOUTER, QMIDDLE, and QJUNC.

: These subroutines calculate the contributions of each mesh point to the
'\‘ Q matrix. FEqns (4-10) and (4-11) are used to generate the equations in the

subroutines. The constant term was not included in these subroutines because
Y

it was accounted for in the calculation of Cl and C2 in QSETUP. .Since linear
symmetric storage is being used, it is necessary to convert from a two-dimen-

sional array to a linear array using Q (I,J) = Q(K) = Q(1 (1-1)/2 + J).

Subroutine LSETUP

This subroutine performs a Choleski decomposition of the Q matrix. The

diagonal elements are calculated using




§ 2
[' = Q. — (G-1)
AL 4 4 Aj
J=)
The remaining elements are calculated using
| A=l
= Y . (G-2)
- ——— .o \
Zjl s A _—}: ZJK Z).K J2 A
AA K=

Cards 3, 5: A DO LOOP is initialized which spans all but the final element
of the lower triangular matrix. This c¢lement has been set to zero in the
previous subroutine.

Card 6: 1IB is used to span the elements in the first column of the matrix.

Card 7: JB is used to span the row elcments.

Card 8: 1ID is used to span the main diagonal elements.

Card 9: 1l is a paramecter used by VPROD to indicate the number of pairs of
elements being multiplied together. It is always one less than the column
index of the element being calculated.

Card 10: Eqn (G-1) is used to calculate the main diagonal elements.

Cards 11, 12: A DO LOOP is initialized which spans all elements beneath the
main diagonal element just calculated.

Cards 13 - 15: Eqn (G-2) is used to calculate the elements below the main

diagonal.

Subroutine YSET

This subroutine calculates the inhomogencous boundary condition vector.
It is the right side of Eqn (4-5). (Its infinite sum representation is
shown in Eqn (4-18).) The only non-zero values of this vector will be those

corresponding to a mesh point lying on the outer radius.
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Cards 3, 4: The Y array is reset to zero.
g

Card 5: A DO LOOP is initialized which spans all mesh points.

Card 6: If the mesh point under consideration does not lie along the outer

boundary, the DO LOOP continues without assigning it a value.

Cards 7, 8: The appropriate Simpson's Rule coefficient is determined
PPTO] I

depending on whether the point lies along an odd or even radial.

Card 9, 10: Eqn (4-18) is used to calculate the boundary value. In this
case, f(0) = cos 0.
Card 12: The last value of the vector is arbitrarily set to zero, as

explained in the last paragraph on page l&4.

Subroutine SOLVE

This subroutiue solves the matrix equation LL ¢=y by first calculating

X in Lx=y using forward substitution, and then calculating ¢ in L¢ = x using

backward substitution.

Card 5: A DO LOOP is initialized whichk spans all but the lower left element

of the matrix.

Card 6: Il is used with VPROD to indicate the number of pairs of clements

being multiplied tcgether.

Card 7: 1IB is an index which enables VPROD to calculate the row products of L.

Card 8: 1ID spans each element of the main diagonal.

Card 9: The vaiues of x are calculated and stored in the Y array.

Card 10: The last element of x is set to zero.

Card 11: This card initiates the back substitution scheme by calculating the
sccond last element of ¢ and storing it in the Y array.

Cards 12, 13: Since the last element of the ¢ vector is zero, and the second
last element has just been calculated, the DO LOOP must be indexed to span

NQDIAG-2 elements.
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Card l4: T is used to index the calculation of the Ith element of 4.

Card 16: L spans each elewent of the main diagonal.
Cards 17 - 19: This loop calculates the column products of L with the cor-
responding terms of the $ vector,

Card 20: The terms of the ¢ vector are computed and stored in the y array.

Cards 21 - 26: The ¢ vector is normalized as explained in the last paragraph

on page l4.
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Appendix H

verivation of the Green's Function

and Iteration Formulas

This appendix contains three derivations. First, the form of the
T = . E =¥ . .

Green's functicn, G (x-x') is derived. Secoundly, detailed iterative

~ . 75 . . o

fortulas are derived for {(x) and ¢(x) as used in Equs (5-8) and (5-9)

respectively.

Derivation of the Cresen's Function

. v o el o . . =
As stated in Chapter V, if G (x-x') is a solution to V2¢ = 0, then

? B — iy sl -
«y ! _-":’) - £ v/ )
V& X-%X’) = S(x-% ) (1-1)
Since the problem is being solved in cylindrical coordinates, the delta

unction takes the form

J(X - :‘?’) = d (%) (H-2)

> >,
where r = |x-x

This equality can easily be seen from the following:

o

f [£(%)d (%) d% = £(0) i)

where E(Z) is a test function, (Ref: 11, 29).

In terms of an integral over r and 9, the left side of Eqn (H-3)

becomes




29r €9

£
ff{:{f) }.f.r.). v drdo £ ¢o) (1-4)
iy
© O

HELNY

o 2
2‘[{:(,() g (¥) dr = (o) (1-5)
2[5 4] = e (1o

The equality holds, therefore Eqn (1i-2) is valid.
Substituting Eqn (H-2} into Eqn (il-1), and writing V2 in cylindrical

coordinates yields

<
, - D G r
J_ éi. i 1,;1) «+. .l; fi.?k - :{___? (H-7)
v ar af re g& wyr

Assuming the Green's function does not depend on angle, the partial deriva-

tive with respect to 6 vanishes. Thus Eqn (H-7) becomes

_f;i., (T' .f".‘;]) = d l__ (H-8)
dv \  dv "

Integration of Eqn (H-8) yieclds

4 |
r -:-j--? S —— (H-9)
ofr L
Equation (H-9) is easily sclved for G:
rs ,’ -t B,
C;;(Y—x') = .%_.L + H(x,Xx’) (1-10)
o '

where

YiH(X,X) =0
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and
- - -3,
r= |X~ x’|

Ref (8, 92~102) contains a detailed discussion of logarittmic potentials,
including derivations which awplify on the factor of /m.

> o ; 3
If H(x,x') is set to zero, the gradienr of G is

VGX-X")= ¥ = (-11)

! A
o (F'F) Y (B-12)

(H-13)

Since the Green's function is symmetric

-, -;

- x -
— g n”‘.[

%) —— (=14

S

VG (R~

Equations (H-10) and (H-14) are used in conjunction with Eqns (5-8)

and (5-9) to solve for ¢.

Iterative Formula for #(x)

The formula for y is given in Eqn (5-8) as

W(X) = _fe (Z-%) 7 d(x’)e da’ (1-15)
&
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Substituting Eqn (H-10) and performing the dot product operation

yiclds

o [n lx’-‘«'l oD 4
3 A (S R U R 1 o
W(%) = o (11-16)

S

Since there is only a contribution from the outer boundary, Eqn (H-16)

can be simplificd to
2w
-6l P

-, = DD 46
<o n Xl v (H-17)
o

»

Y{X) =

Or, as a summation over N mesh points on the outer boundary

N
— . -{:)A‘s‘)' [ m_—y s 3¢’
Y(X) = —~;n-:~*§: in IX-XL’-;;n (1-18)
nzi

When calculating ¥ on the inner boundary due to the source points on the

outer boundary, the above formula presents no problem. However, when

>
|

7 =
calculating ¥ on the outer boundary, the term lx'-x, approaches zero as

S

+ .
x' approaches x. Fortunately this "

self-contribution" term can be calcu-
lated analytically.

Figure (H-1) illustrates the schematics for the calculation of the
"self-contribution" term. The point ¢0 cannot be evaluated numerically.
Points ¢, and ¢_ are neighboring mesh points.

If the points are close together, 8' is very small, and 24/5r is

approximately constant over the interval. So for a small interval,




Radius of the arc = b

Fig (H-1). Schematic for Calculating the Singular Portion of Eqn (H-17).

Eqn (1i-17) can be written

G+d&
-1 26 ’
W - 5;_. H }n jbf}] d'9' (H~19)
Pedd

With a change of variable, b9' =x, this equation becomes

& put
-
- PR A PP % (1-20)
Y = w ‘c)rj““" e
o

The factor of 2 is needed because the integration is over two segments of

length bd@. Eqn (H-20) evaluates to
~ :..?.. éﬁ? o d{)—(]n bdG’-—I) (H-21)
™ v
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Nyl

Phis expression must be added to the numerical non-singular summation of

Lqn (H-18).

terative F

“»
ormuta for ¢ (x)

The formula for ¢(x) is given in Eqn (5-9). If the surface integral
over 8 is factored iuto integrals over the inner and outer boundaries,

the equation can be written as

7 . 'Y -l
and Yy | A ;":".'?’ ( > :- 'V) a -!,1
DX) = Y(3) WA Sl .
fu 3 ) H (. ) 3 | e Fear “”}"'
Ef J A e A

For this derivation, the values of ¢ will be evaiuated on the

ilaner

boundary. Figure H-2 iillustrates the wethod of evaluating the integrals

in Eqn (H-22). Consider first the contribution from all points on the inner

boundary. Once the dot product operation has been performed, the first inte-

gral of Eqn (H-22) can be written as

- 3 ,,? .ﬁ ._:., I —-—
..,:.f.:.:}.'.i__.(.:.‘_‘.’:.__,.). a5 (H-23)

PRy AL .
As can be seen in Fig H-2, the angle between xq'ux and n i1s -a. Also since

the triangle 0-x,'-x is isosceles, 2a+0=7

a 2 . Thus

Re ()= %) = |R;-%|cos (o) e

= =|%e-%|

L
05 (-52 (H-25)




¥,

x b

SIREIRIE st

>
-X

Fig u-2.
Boundary.
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Schematic Diagram for Calculating ¢ () on the I[nner




PR WA -
- b o
ans ixq—-,' i :::'n(*‘?:) (”"2())
Further, utilizing the Law of Cosines
2
‘)l Pl " - 2 2
l KQ... X i LAl - Z LGOS < (H-27)

After factoring 2a2 and applying a half-angle identity for the sine,

2. ”n 3—
.‘-A., wd i 2 Lo o
l ,{Q-a x} - L;’ a o {‘/3_) (11-28)

When Eqns (H-26) and (H-28) are substituted into Eqa (H-23) the result is

y . X )
[,._‘ ‘..f.w.?..i“_,f_,..““ A5 = _.3- j G(X)ds (1-29)
P v X% i

However, as a consequence of the boundary condition

24
f{w 2ds = O (1-30)

o
inner

Eqn (H-29) is also zero. Hence it is not necessary to evaluate this term

when calculating 6.

Next, the contribution from all points on the outer boundary is
determined. The second integral of Eqn (l1-22) can be written

g(/‘,x :‘:&’ ; o 3
G s ‘ ‘f,__. = s/ ca‘s (11-31)

l“b :‘(‘

b

P -> >
where £ 1s the angle between xb'-x and the outward normal at the source
point. The above integral can be written as the following summation,

N
bad " cos B, H(9),

1 e e
nzi Ko xg'n

(H-32)
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> > -~ 2
where 8 and th’x can be determined from the Law of Cosines.
n )

= > . 2
I'ne iteration formula for ¢(x) on rhe inner boundary can ncw be

8

found by substituting Eqn (H-32) into Eqn (H-22).

T WA\ coal. 9 s
(\‘ha ( ::{&') = ‘j’(.!. ( A } ": - -‘-':-:-"“ w——ar e _"l ( [-33 )
wol ! o~ n

. . ~ »* P
A similar formula for calculating ¢(x) on the outer boundary can be
& ¥ o

found by following a siwilar procedure. The formula is

N

BT o BB
%) = Y(X) 4 222N e ¥ PMOn. (g
“/a & wn ‘b v 3 o / p ~.:.’;, -‘_:
e i, ~ X%
nz| A ™ n

5
where vy is the angle between Xy and the outward unit normal at the source

points.

A computer program using Eqns (H-18), (H-21), (H-33), and (H-34) to

iterate values of ¢ can be found in Appendix J.




Appendix L

p:r?‘/;lt_ion of the [ntegral Equation for #(x)

This appendix coutaians a more rigorous derivation of the iuntegral
equation for the potential, Eqn (5-7), and its associated G

a Green's function.

Figure I-1 illustrates the domairn for this derivation.

- v s — L m ar —

T e
= Region Ag

-

- ——————— ..

B e, o

=
il

Domain of i
Boundary of
Ag = Circle of ¢
4 on point X.
S5 = Boundary of Ag
X,y = Arbitrary vectors
i = ¥oX

terest
A

adius ¢ (vhere & is arbitrarily small) centerad

n

w
I

Fig [-1 Domain for the Derivatcioa of the Integral Equation.
: The equaticn for the problem is

If 4 = f(r), in cylindrical coordinates Zqn (I-1) is

(ré’) =

O (1-2)




which tmplies

-~
e -
s

witere C and D are constants of integration. Coasider £ =
stitution into Egn (I-1),
\72.; = O v# O
Thus, V2f, 1like f, is not defined ar r = 0. Now, recall Green's
theorem in the form
[y 1 f {):*ﬁ_ - 2Y

Le," \‘)Z("p -Cp” k;ii.‘;!,/—‘- = | [
A

i ls\‘!' + D

A=A
Ag
. o, A s . w oL ~ i
fly 22 _ 6 2%14s - [Ty _ 42¥14
J-L‘ oV PRI B .,; *c,f'.\ a0 3
S <

Suppose

W= odnly-xl

Then, in region S6

W= nd

and

Ci%{ =

S50

tdf}

1) %

(1-3)

tpon sub-

(1-4)

socond

(1-5)

(1-6)

(1-7)

(1-8)

(1-9)

(1-10)
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As § approaches zcro, the integral on the right approaches -2n¢(x), so

upon substitucion of Eqns (1-7) and (I-10) into Eqn (I-6)

rln ly=x| 9*¢ dAa =

p

.\“(!) ) )
f[ln [v-x] &5 ~ b 2= In ]ynzl]ds 4 2W4x) (1-11)

i A ! .
' P(x) = ;‘_':;.ﬁﬁ ly-x| v'odA —
-
A
- ; in P ¥ ‘ii ..”.. s !nlv..xl 5:\3 (1-12)
(JI? q ki)a'n Y
s
Since 724 = 0,
r.
G(x)= ;;{f (1) o= in y=x} — ?n!Y~w¢a-§]A$ (1-13)
P
5

Consider a point, n, on the boundary, S. As x approaches n

livn ju,;(\/) 2 |n|y-n]ds =

®=->N

THO [cpm In [y-1} ds (1)

Thus, Eqn (I-13) becomes

é $n) = -z Dl 4 %—,‘j’;(y)‘,“ Inly-nlds -

mﬁnh’ nl 55 ds o
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Note: Eqn (I-14) is derived in Apperndix A of Reference 8.

Finally,

G = ;‘;ffE"(Y)% Inly-wlds —

S

' " Y I
= In |/..ys‘]5~‘.‘. ds (1-16)

5

Eqn (1-16) is valid at the boundary, and if

A -

X =n (1-17)
-,

xX = Y (1-18)
G = in IX=-%I1 (1-19)

it is seen to be the same as Eqn (5-7).




Appendix J

Green's Function Computer Program

This program is divided into seven main parts by groups of three
comment cards. Basically, the program follows the iteration scheme out-

lined in Chapter V.

Part l: 1Iaput data is read in and all required constants are calculated.
Part 2: The value of Yon the inner ard boundaries is calculated as given
3 in Eqns (H-18) and (H-21).

Eqn (H-33) is used to calculate ¢ at cach inncr bountary mesh point.

w

Part
Part 4: Eqn (B-34) is used to calculate ¢ at each outer boundary mesh point.
Part 5: All values of ¢ are tested for convergence.

Part 6: Eqn (5-14) is used to calculate ¢ in Region II.

Part 7: The boundary conditions are calculated as given in Eqn (2-21).
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OO0

5

1

b

1
2

1

1

PROGFAM GREEM(INPUT,JUTRPUT)

BIMENSTON SA(2003 ,53(280) ,PA (200),P3:(200),
FLASAVE(200),285AVFE(200)

READ® 5 A, 7,51 ,STGUA A

SS=A*A+37 1

ST=2,*4%8

$8S8S=2,78* 3

S"\S=?.'\"l\

pPSg=3*Q

AS=A* A

PT=3¢16152265359

CA=2¥FT/NA

CALCULATE PSI ON IMNWER AND OUTER 30INDARIES ¢

f) 1 I=1,NA

S2(I)=0,

SA(I) =0,

CC 3 J=1,NA

SIMP=(44=2,*¥MI0(J+T,2)) 73,

THETL=(T-J)*DA

SACT) =SA(I) +STMF “MY( ), DA ST »SIGHA) *
ALOC(SAST(SS=-ST*CCS(THETA) M)

IF 4L «EQL J)YGO O &

IF(MOO(T +J,2) e ENB)STMP=L /3,

TF CHCRICE €52 wNE 3 S TMP= 25/ 5

TE(ILBS(HOD(Ty NAY=HMITCIyNA)) o EDelsI0
TARS (MON(T, M) =-4M0N(JyNA))
o ENeMA=1)STMI=14/7,

SUI)=5R(I)+SINP*INI(JIsDA4CI ,SIGHA)*
A.OS(328T (SES-S53S* COS(THETA)))

CONTINUIE

S3(1)==2=0A/PTI2S58( 1)

SA(I) ==A*DA/PIL*SA(])

S3(XI)=53(L)=2.,73ND(T,PPA,CI,SIGMA)/PL*
RENA* (ALIG(R*NY) =1)

CONTINUE

DO & TI=1,NA

PASAVE (L) =SA(TI)

PASAYE(T)=SR(T)

PA(I)=SA(])

P3(I)=SA(I)
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CALCULATE °9HI ON I!'MER S0UNDARY.
NG & I=L.+NA

TEMPR=Q,

ng 6 J=1,MNA
SINP=(to=2,*MOD(JeT,2)Y) 723,
THET2=(1~J)*»DA
XS=SS=ST+*COS(THETA)
COSA=(XS+AS=AS)Z (2 ,*3*¥ENRT(XS))
TEMPP=TEMPI ST MR SOSA*PE (J) /SQART (XS)
COMNTIMUE
PA(I)=SA(I)+8*DA/PI*TENMPB
CONTINUE

CALCULATE PHI OMN JWUTFR SOUNDARY,
0C 16 I=1,NA

TErPA=0,

00 11 J=1,NA

SIMP= (L =2.+M30(J+1,2}))7/3,
THETf=(I~-J) DA
XS=SC=-ST"COS(THETA)
COSR=(XS+AS=83)/(2,*A*SQRT(XS))
C0SG=CCS(PI-A505(2052))
TEMPL=TEMPA+SIMPY 30S6"PA(J) /SART (X5)
CONT INUE
PR(I)=S3(I)+A*DA/PI*TEMPA
TONTINUE
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TEST F’ CONVERGENCE,

N0 2¢ I=1,NA
TESTA=A7S (PA (L) =24 SAVE (1))
TESTO=ATS (P8 (1) =23SAVE (1))
IF(TESTALGT.,7001)50 To 21
IF(TESTI,GT..3071) 60 To 21

60 70 22

DO 22 I=1,NA

CLSAVE (I =PA(T)
BISAVE(T) =PA (L)

SRINT*,"ONS ITERATION™

60 TG 2

DO 2¢ I=1,NA :
PRINT*,84(1),P(I),"  NA=",NA

CALCULATE PHI IM REGION II,
PEAD* ,RP

D0 31 J=1,NA
THETAP=(J~1)*360./NA

- TEMP=Q

DO 30 T=1,NA

THETL=(T=1) % 35 o /NA

TEP=(THET AP THET ) 82 '”IIS‘O.
PRPS=RF*IP+A*A -2 ,*RP*AXCOS(TTP)

COSG= (RFTSHLS=RPIRIPY /(247 AY SART (RPST))
TEVP=TEMI+C0SG*PE (I) /SORT (RRPS)
TEMP=TEMP*A®*QA/O]
CRINT*,RPyTHETAR,TEM4P

END

FUNCTION "‘ID(J-D‘,CI,S?GMA)
CT=CCS((J=-1)*IN)

JF(CﬁoLT ) )CT C).
END=CT/SIGHA~(CT=-,318303885134)
PETUFN

END
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The spacecraft is modeled as a hollow, infinite cylinder. The fields
are calculated for the case in which the incoming current is incident per-
pendicularly to the longitudinal axis of the cylinder. Basic electro-static
theory reveals that the governing equation for the potential is Laplace's
Equation, subject to Neumann boundary conditions. This equation is first
solved by separation of variables. The E-Field predicted for representive
values of incoming current density are on the order of 1077 volts/meter.

Several pitfalls encountered with the variational approach are explained.
These include the importance of natural boundary conditions, ensuring continu-
ity of the first derivative across all mesh points, and difficulties encoun-
tered in trying to reduce the size of the matrix through "decoupling'. The
results of this section show that the variational method tends to approximate
the analytic solution as the mesh becomes finer.

"The Green's function approximations of the potential distribution were
consistent with analytic results to at least two significant figures.nr
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