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Introduction

The purpose of this report is to describe a technique for comb ining infor-
mation from several different data sources to obtain an improved description of
the earth's gravity field.

The specific data which we wish to use in this combination solution are the
following:

1. A set of potential coefficients (such as GEM 9 (Lerch et al,, 1977))
derived solely on the basis of satellite observations. We can assume that we
have a variance-covariance matrix for this data but in practice we will be using
a diagonal only form of this matrix.

2. A setof 1°x1° mean free-air anomalies and their standard deviations
based solely on terrestrial measurements. Sych a set will not be global in nature.

3. Information derived from Geos-3 (or any other) satellite altimeter. The
specific question is exactly what form this information will take. The altimeter
data can be processed to yield geoid undulations (neglecting sea surface topography)
along the altimeter track (Rapp, 1977a, 1979). These geoid undulations can be
used to determine mean undulations and mean gravity anomalies in various size
blocks. One could work with either set of values. For our purposes we wish to
work with a set of independent values that exist for land areas. Such values are
the terrestrial anomalies mentioned in item 2. A possibility would be to use
existing data to compute geoid undulations on land, to combine with the altimeter
derived undulations in the ocean areas. However, in this case the land undulations
would all be statistically correlated and any reasonably rigorous treatment of the
data would be practically impossible. We thus decided to use the altimeter implied
mean gravity anomalies for one of the basic data sources in the general combination
solution.

We now need to consider the goals of the combination method. The method
that we choose must yield results that give a consistent representation of our
data without sacrificing or losing information that exists within the data. For
example, one might visualize a solution for a least squares estimation of a set
of potential coefficients using the data items previously mentioned. If the only
solution parameters are the potential coefficients to a low degree, (say 15, 30,
40, etc.) we will have not represented all the information in the data set. Yet
to carry out a very high degree (180 for example) solution using a rigorous least
squares procedure is practically impossible because of the large number of
unknowns that are involved.

The method that we will describe in the next section will be designed to meet
the objectives stated in the above paragraph.

After developing the theory for this combination solution we will describe
various test computations with real data. Our final results will be a set of po-
tential coefficients complete to degree 60 and a set of 64800 1° x 1° mean anom-
alies.
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The Method

The theory to be used here was originally suggested by Kaula (1966) for the
combination of satellite derived potential coefficients and terrestrial gravity data.
Deatils of this method can be found in Rapp (1968) with a Fortran program de-
scribed in Snowden and Rapp (1968). We outline the theory below,
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Let C " §“ be a set of fully normalized potential coefficients which occur
in the following description of the earth's gravitational potential V:

1
2, 4 e ok £ o
Vv = 5—3’1— 1 B8 Z (—i) Y (Cgn cOs MA + Sy, sin mA)Py,(sin @) (1)
The notation is standard (Rapp, 1977b). (Actually Rs, the radius of the Bjer-
hammar sphere interval to the earth is usually replaced by an equatorial radius
& Je

If we are given a set of global mean anomalies, Ag, the potential coef-
ficients (with respect to an ellipsoid of specified flattening) can be computed
from (ibid., equation (5 or 6) )

§ 1
wl = T
z-}AE amy(1-1) 8,4 1THV2
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where :
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2
8 = (——Ra> with R = an average earth radius

R
B =[] ® (o) oo

where A, is the block in which the mean anomaly is given and B, is the aver-
aging operator defined by :

e cos ¥o Pla(cos ¥o) (4)

2 2(4+1)

where {, is the radius of a spherical cap having the same area as the block A,
(Rapp, 1977c). Note that (2) is a spherical approximation and neglects terrain
and other effects as described in Rapp (1977b). Values of the integrals in (3)
have been computed by Katsambalos (1978, private communication) using infor-
mation supplied by Paul (1978, private communication). The principle of the
combination solution is simply the comparison of the potential coefficients com-
puted from (2) with those derived from satellite data with an adjustment being
performed, recognizing all the data is to be weighted, to obtain a consistent set

of potential coefficients and anomalies.
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We briefly describe this adjustment process as follows: A general function F
is defined :

F = F(Lgs Lys) = 0 (5)

where L are the adjusted observations and Lx# are the adjusted parameters.
A linearized observation equation is then formed -

ByVy + ByVy + W = 0 (6)
where
_ OF _ dF WL
Bl = ﬁz, Bx = ﬁ:x, W = F(Lg, Ly%) (7)

where Iy are the actual observations and Lx® are the observed values of the
quantities to be regarded as parameters (e.g. the potential coefficients) of the
adjustment. If P, and P, are the weight matrices for the observations and
parameters, respectively, we have for the correction to the observed parameters
Vi

Vi = ~(BY M'Byx + P)' B, M w (8)
with the corrections to the observed quantities (e.g. the gravity anomalies), Vy:
Vi = =P B M7 (Byvx + W) 9

where
T = =1 ]
M B, B B, (10)

In our case we have :
F = on s Lxc (11)
where L,° are the given estimates of the potential coefficients (e.g. the GEM 9
coefficients) and L,° are the coefficients computed from (2) with the observed

set of gravity anomalies. In this case :

Bx = I (12)

i = Kz,,
[Bylec any(L-1) st(zu:w {-ﬁzn (13)

where the bracket around B, indicates that the expression on the right side is
simply one element in the B, matrix.
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We should note here that (13) applies only for the partial derivatives with
respect to potential coefficients. We may also desire to impose information on
the spherical harmonic expansion (coefficients aj, ,by.) of the anomalies such
that (for example) the mean anomaly of the adjusted set is zero (2¢,0=0); and
the first degree terms (51,0 3 T)no) are also zero. Equation (13) is then
written :
e 1 (Agy ) 3
[BZ]As i 4,7825([&2)/3 1@1;'”} (14) lg

which is usually only evaluated for (0,0), and (1,0). Using (12) in (8) we have:

Vi = - ((B,P B, ) + Py)} (BB, By yiw (15)

and equation (9) reduces to:

Yoo P[‘ Bz' Py Vi (16) ;‘
Equation (15) and (16) form the core of the adjustment process. Equation (15)
yields corrections to the original potential coefficient estimates while (16) gives
the ocrrections to the original anomaly estimates. We point out here that the
adjusted anomalies can be developed into potential coefficients using equation (2)
to as high a degree as is reasonable. The resultant coefficients will agree ex-
actly with the adjusted coefficients with the higher degree terms ( i, e. those above
the degree solved for in the adjustment) needed to describe the higher frequency
information in the data.

Previous applications (Kaula, 1966, Rapp, 1968) have been restricted to the
use of 1654 5° anomalies and potential coefficients up to degree 14. In our
applications we intend to use 64800 1°x 1° anomalies and to adjust as many
potential coefficients as possible consistent, however, with our computations
designed to demonstrate a method. The size of the task can be seen by noting
that for every coefficient included in the adjustment process, 64800 elements of
the By matrix must be computed, stored and manipulated.

The Data

As 1mplied in the introduction we intend to use three data sources for the
combination solution. The first data source are the GEM 9 potnetial coefficients
and their standard deviations given by Lerch et al. (1977). This set is complete
to degree 20 with additional higher degree coefficients. Not all coefficients of
this set will be used in our final solution. We also note that the weight matrix,
Py, for these coefficients will be regarded as a diagonal matrix based on the
standard deviations given by Lerch (ibid.).

The next data source is the set of 1°x 1° anomalies that will have to be
used in equation (2 ). To form this data set we merged our most recent ter-
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restrial 1° x 1° data set (the June 78 update, Rapp (1978a) ), with the anomalies
derived from the altimeter data (ibid.). The terrestrial set contained 39405
anomalies and the altimeter set contained 29478 anomalies. The merger of these
two data sets took place by replacing all oceanic terrestrial anomaly estimates
with the altimeter derived anomalies where available. The total number of
anomalies in this combined data set is 50650 v ith 28176 values based on the
altimeter data. A plot of this data is shown in Figure 1. For the remaining
14150 anomalies (needed to complete a global 1°x 1° field) we let the anomaly
be zero with a standard deviation of + 30 mgals which is approximately the
square root of the variance of the 1° x 1° anomalies.

In the anomaly merger it was necessary for us to subtract 0.87 mgals from
the altimeter derived anomalies as they referred to a gravity formula without
atmosphere while the terrestrial anomalies referred to the gravity formula of the
Geodetic Reference System 1967 in which the kM value includes the mass of the
atmosphere.

Computer Timing of the Various Solutions

A solution of the type proposed here is a costly one in terms of actual com-
puter time and space requirements. The job can be broken down into the following
steps:

1. Observation equation formation, specifically the elements of the B,
matrix as given in equation (13).

2. The time for the evaluation of the potential coefficients implied from the
input anomalies (i.e. equation (2) ).

3. The formation of the M matrix, i.e. equation (10).
4, The inversion of the M matrix.

5. The inversion of the inverted M matrix after the Py has been added
(see equation (15) ).

6. The solution vector computation after the inversions have been completed
and the adjusted potential coefficients.

7. The evaluation of the anomaly residuals (equation (9) ) and the adjusted
anomalies.

A number of trial solutions were made for checking and timing purposes.
The different solutions primarily depended on the maximum degree for which the
input coefficients were to be adjusted. Timings for these steps are given in
Table 1 where the runs have been made on a Amdahl 470V/6-1I. The timing
for step 6 has been omitted as the value for degree 12 was only 0. 22 secs.
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Location of 50650 1° x 1° Anomalies from
Combined Terrestrial-Altimeter Data.

Figure 1.
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Table 1. Actual Running Times for Combination
Solutions Using 1° x 1° Anomalies.

Maximum Number of Step (see text) units = seconds
Degree Unknowns 1 and 2 3 4 5 7
2 9 22 13 .11 .16 8
4 25 32 62 .14 Skl Akl
6 49 47 219 .25 .30 15
8 81 65 544 5 .82 61
12 169 1! 2302 5.78 5.96 77

The maximum degree for which adjusted coefficients were found for this report
was degree 12. If we had gone to include the complete set of GEM 9 coefficients
to degree 20 the solution time was estimated to be six hours which was beyond
our capability. In addition the storage requirements for the observation equa-
tions are quite large. For example, solutions were tried that failed because
two 2400 reel tapes had been filled up with information and more tape space
was needed.

Solutions and Analysis

Two solutions were made for this study that merit discussion. The first
solution adjusted the coefficients to degree 8 and the second solution adjwsted
the coefficients to degree 12. In both cases the (0,0), and (1,0) terms were
forced to zero by specifying an a priori weight of £0.01 mgal. The immediate
results of each solution were an adjusted set of potential coefficients and an ad-
justed set of 64800 mean 1° x 1° anomalies. As remarked earlier these ad-
justed anomalies could be developed into potential coefficients using equation (2).

We now will compare these solutions in several ways. First we developed
the adjusted anomalies into potential coefficients to degree 30 and compared these
coefficients to the corresponding coefficients in the GEM 9 solution. The differ-
ences were expressed in terms of root mean square (RMS) coefficient differences,
percentage differences ( (P.C. set - GEM 9)/ GEM 9 in %), RMS undulation dif-
ferences, and RMS anomaly differences. The results are given in Table 2.




Table 2. Comparison of Potential Coefficients Implied by Adjusted 1° x 1°
Anomalies for Solutions to Degree 8 and 12 with the GEM 9 Potential

Coefficients.
Degree Coefficient . Percentage | Undulation Anomaly
Difference (x 10°) | Difference |Difference (cm) | Difference (mgals)

8 12 8 12 8 12 8 12
2 .08 .08 ol .1 1 1 .0 .0
3 a9 =9 .8 .8 16 16 L o ¥
4 .4 .4 .8 it) 8 8 .0 .0
5 1.8 1.9 5 5 38 40 2 .2
6 2.1 2.1 8 8 48 48 .4 o
7 2.6 2.3 13 12 64 57 .6 .5
8 2.6 2.4 21 20 67 62 0 il
9 3.7 2.6 37 27 | 102 74 1.3 .9
10 4.0 3.0 51 38 | 117 87 1.6 1.2
11 3.6 3.0 66 54 | 111 91 1.7 1.4
12 1.9 1.3 53 37 59 41 1.0 ot
13 2.2 2.1 52 59 72 69 1.3 1.3
14 2.7 2.6 94 90 94 91 159 1.8
15 2.1 2.1 90 88 76 75 1.6 1.6
16 2.1 2.0 114 112 76 74 1.8 1.7
17 1.7 1,7 110 108 64 63 1.6 1.5
18 1.5 1.4 81 79 57 55 1.5 1.4
19 1.3 1.3 86 82 53 52 1.5 1.4
20 1.3 1.3 99 100 51 52 1.5 1.5
21 1.3 1.3 132 134 46 47 1.4 1.4
22 1.2 1.3 105 107 44 45 1.4 1.4
23 1.1 1.1 102 101 23 23 0.8 0.8
24 .9 0.9 120 121 20 20 0.7 0.7
25 .5 0.5 50 48 12 11 0.4 0.4
26 .9 0.9 172 168 13 13 0.5 0.5
27 1.0 1.0 90 89 19 18 0.7 0.7
28 .8 0.8 76 76 17 18 0.7 0.7
29 1.1 1.1 102 101 19 19 0.8 0.8
30 2.8 2.8 100 101 25 25 1.1 1.1

2.1 1.8* 70° 68| 313" 279" T il E

* RMS Coefficient Difference
* Mean Difference
™ Overall RMS Difference

We see from this table that for the coefficients adjusted in the degree 8
solutions the maximum RMS difference (for the undulations) by degree is 67 cm




(at degree 8) with the corresponding value for the degree 12 solution being 91 cm
at degree 11. The coefficients just beyond degree 8 (say 10 thru 12) of the degree
8 solution disagree with the GEM 9 coefficients more than the coefficients of the
degree 12 solution. However beyond that the coefficient differences are essen-
tially the same indicating that the additional coefficients solved for in the degree
12 solution do not play a strong role in the coefficients at the higher degrees.

We have also compared the two coefficient sets to degree 30 of the degree
8 and degree 12 solution. Over the whole set the RMS coefficient difference was
+0.0037 x 10~°, the average percentage difference was 7%, the RMS undulation
difference was 74 cm and the RMS anomaly diffe rence was 1.1 mgals. At degree
8 the undulation difference was 11 ¢m increasing to 40 cm at degree 9. At de-
gree 12 the difference was down to 26 cm and at degree 30 it was 2 cm. These
results again indicate that the higher degree terms are not strongly influenced
by the maximum degree of the adjusted coefficient set.

We have also examined the adjusted 1° x 1° anomalies from the two so-
lutions. The root mean square difference of the two anomaly fields was +1.4
mgals with the maximum difference being 78 mgals. For the degree 8 solution
the RMS (area averaged) residual was +3.1 mgals while the corresponding
value for the degree 12 solution was +3.6 mgals. The largest residual in the
degree 8 solution was 44 mgals while for the degree 12 solution it was 93 mgals.
These large residuals are applied to anomalies having the highest standard de-
viations in the combined starting set. These values could reach +81 mgals.

It is clear from examination of the residuals that the largest residuals occur
for those blocks having the largest standard deviation. To demonstrate this we
have computed the RMS 1° x 1° residual as a function of the standard deviations
assigned to the anomalies. These results for both the degree 8 and degree 12
solution are given in Table 3.

Table 3. RMS 1°x 1° Anomaly Residuals as a Function
of the Anomaly Stnadard Deviation.

Anomaly Standard RMS Residual (mgals)
Deviation Range (mgals)
L = 8 L = 12

1to 5 o2 .3

6 to 10 .6 a1l
11 to 15 s 2.1
16 to 20 3.0 3.6
21 to 25 4.3 5.1
26 to 30 T 1.9
31 to 35 15.5 27.9




In effect what appears to happen is that most of the anomaly correction is put
into blocks having the poorest accuracy. This has positive and negative as-
pects.

For additional analysis we computed potential coefficients to degree 60
from the adjusted anomalies of the degree 12 adjustment. With this set we com~-
puted the anomaly degree variances defined by:

2
=77 (4-1)° ) (Tl + Fh) (17)

where the Ez »o ( 2 even) coefficients were referred to an ellipsoid whose
flattening was 1/298.247. Such values are shown in Figure 2 along with the
GEM 9 values (to £ = 20) and values from 5° mean anomalies based on a
previous terrestrial data set (Rapp, 1977b), and those implied by the 10~°/ ¢°
rule of Kaula. Between degrees 2 and 12 the GEM 9 degree variances and
those from the adjusted 1° anomalies agree fairly well as would be expected.
Between degree 13 and 20 the adjusted anomalies imply somewhat more power
than the GEM 9 coefficients. Between degrees 22 and 35 the degree variances
from the 1° data agree well with the previously determined values from 5°
anomalies; from degree 36 to degree 52 the 5° results are consistently larger
than the 1° results. This occurence may be due to the unwarrented application
of the smoothing operator at this high degree for the 5° anomalies.

Another way to look at the potential coefficients implied by the 1° x 1°
adjusted anomalies is to look at the root mean square potential coefficient
variation by degree (Rapp, 1977b). Such variations are shown in Figure 3 for
the 10°°/ £° rule; the values implied by the adjusted 1° x 1° anomalies; and
values computed by Wagner (1978) from a spectral analysis of Geos-3 altimeter
arcs. We see excellent agreement with the Wagner results and that obtained
from our adjusted 1° x 1° anomaly field. Again it is clear that the 10”5/ 22
rule gives too large coefficients out to about degree 60. This fact is also clear
from Figure 4 of Rapp (1977b) when comparisons were made with results from
the analysis of the 5° terrestrial anomalies. Additional conclusions in this area
await the development of the global 1° x 1° field into a higher degree spherical
harmonic expansion.

Summary and Conclusions

This report has described and implemented a procedure that can be used to
combine satellite derived potential coefficients, altimeter derived 1° x 1° gravity
anomalies, and terrestrial 1° x 1° anomalies. This combination takes place in
an adjustment process considering the accuracies of all data types involved.

The specific results will include a set of adjusted potential coefficients to a
? aax Plus an adjusted set of 1°x 1° anomalies that are exactly consistent with
the adjusted potential coefficients and that still retain the high frequency infor-
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Figure 3. Root Mean Square Potential Coefficient Variation vs Degree ( ¢)
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mation inherent in the 1° x 1° data independent of the chosen £ gox .

For the most general applications one would take the complete coefficient
set which may be given to degree 20 plus additional terms, and carry out the
combination solution. The adjusted values will thus represent the "best' es-
timate of the quantities involved considering the data and standard deviations of
that data. For this report we carried out a combination solution with the £ ,a,
of the satellite potential coefficient set (GEM9) being 8 or 12. After the degree
12 solution we developed the adjusted anomalies into potential coefficients to
degree 60. With more efficient computer programs this development could
easily have been taken to degree 180.

A usual product of this type of investigation is a set of potential coefficients.
They are not given in this report because of space reasons but they are available
from the author or AFGL (LW), Hanscom AFB, Massachusetts 01731. In addition
another specific result is the adjusted 1°x 1° anomalies. Again these 64800 values
are not given in this report because of space reasons.

In comparing the degree 8 and degree 12 solutions we found the maximum
differences in the coefficients implied by the adjusted anomalies to occur at
degree 9 thru 14 after which the coefficients are quite close. (The percentage
difference at degree 8 was 3%; at degree 10, 16%; at degree 12, 26%; at degree
14, 11%; at degree 16, 8%; and at degree 30, 5%). This implies that the higher
degree terms are not sensitive to the £ .., used in the actial adjustment process.

We have computed the anomaly degree variances implied by these coefficients
as well as the root mean square coefficient variation. They were compared to
values from other sources (see Figures 2 and 3). We saw that the 10 °/ 2% rule
give variations too large with respect to our data (except that at degree 60 there
was fairly good agreement). We compared the spectra implied by our adjusted
anomalies to that found by Wagner (1978) from the analysis of altimeter tracks
and found excellent agreement with Wagner's results falling as an average thru
our results,

A number of things can be done to improve the solution described in this
report. We might extend the £ .« to a higher degree. Incorporating such data
from satellite derived potential coefficients would enhance the resulting coeffi-
cients for satellite orbit computations. However we found that the estimated time
for a solution to degree 20 would take 6 hours on an Amdahl 470/6-II. This time
and space requirements are beyond our capability at the present time.

In addition we should consider the effect of correction terms due to the
spherical approximation, in equation (2), the neglect of the topography in
computing Ag,, and the effect of the atmosphere. These effects are discussed
in detail in Rapp (1977b) when 5° anomalies have been considered. The most
critical effect seems to be the terrain but the errors in neglecting it only reached
an estimated 6% at degree 36 based on our previous 5° analysis.

=18~




The real advantage of the solution described here, above the combination
itself advantage, is that we have obtained a set of 1°x 1° anomalies consistent
with the adjusted coefficients that also retain the high frequency information

inherent in the 1° x 1° anomalies. Such anomalies could be used for orbit
computation, geophysical interpretatim, and for geoid and deflections of the

vertical computation.
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