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ELECTROCHEMICAL BEHAVIOR OF SURGICAL ALLOYS

The usefulness of certain chromium—containing alloys for the

fabrication of orthopedic , maxillofacial and dental implants is based

largely upon their alleged ability to resist corrosion. Although

the rate of interaction of these materials with the physiologic

environment may be relatively slow, their dissolution (corrosion)

1—7does occur.

Implant applications of chromium—type alloys require consideration

of the probability of the occurrence of (1) galvanic interaction of

dissimilar metals,
8 
(2) stress corrosion9 and (3) cervice corrosion)0

The effects of galvanic interaction can be minimized by insuring that

all portions of multiple component prostheses be fabricated from the

same alloy. For the most part , yield assisted (stress) corrosion can

be precluded by selection of alloys exhibiting suitable mechanical

properties and by the application of rational engineering principles

in the design of implant prostheses. Unfortunately, the juxtaposi—

tional relationship of a metallic implant to soft and hard tissues

creates crevices which encourage electrochemical attack (crevice corro-

sion). Structural weakening and adverse tissue response are possible

manifestations of the prolonged dissolution of an implant by crevice

corrosion.

The present investigation was conducted to study the electrochemical

behavior of three biomedical alloys and to determine their relative

susceptibilities to crevice corrosion in a chloride medium .
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Materials and Methods

Specimens for in—vitro testing were fabricated from each of two

* +surgical grade base metal casting alloys (Vitallium and Ticonium )

and from a proprietary low carbon stainless steel orthopedic pinJ~

Rods (4.0 mm X 8.0 mm) were cast from Vitallium and Ticonium through

the use of conventional lost—wax dental laboratory procedures. Seg-

ments (4.0 mm X 8.0 mm) were cut from the cylindrical shank of the pre-

fabricated bone pin.

The planar test surface of each specimen was polished manually on

600 grit metallurgical paper , cleansed in detergent and rinsed with

alcohol. Each metallic piece was force—fitted into a Teflon fixture

(Figure 1). The metal—Teflon juncture created an interface of minis—

cule width which simulated a circumferential implant—tissue crevice.

Additionally, the assembly provided a means for establishment of a

stable electrical connection.

Cyclic polarization of the alloys was accomplished in lactated

Ringer ’s solutions (chloride ion concentration 109 m Eq per liter).

* Cobalt (-.60%), chromium (—30%) and molybdenum (—4%) alloy .

Howmet Corp., Chicago, IL.

+ Nickel (54%), chromium (25%) and cobalt (—15%) alloy.

CMP Industries , Albany, NY. Buff Section 
~
0

# Steinmann Bone Pin. The device was obtained through the medical _______

supply system of the uniformed services.

§ Cutter Laboratories , Inc., Berkeley , CA.
a~~’ or SPECIAL
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• Temperature of the medium was maintained at 37°C. The polarization

cycle was initiated at a potential of about —1.0 V versus a saturated

calomel electrode (SCE). The potential of each specimen (working

electrode) was made increasingly anodic at a rate of 0.010 V/sec

with the use of a programmable potentiostat.~ The anodic change in

potential was allowed to progress until a maximum current density of

lXlO3 h A/cm
2 was experienced by the working electrode. Then the

direction of change of the applied potential was reversed . Completion

of the polarization cycle was marked by the return of the externally

applied potential to a value of about —1.0 V versus SCE.

Output of the potentiostat was monitored continuously on a Cartesian

coordinate recorder.~ Graphic displays of changing current density

with impressed potential produced anodic and cathodic potentiodynamic

polarization diagrams which reflected the electrochemical behavior of

the test substances in the simulated physiologic environment .

Results

Cyclic potentiodynamic polarization diagrams for surgical

stainless steel, Vitallium and Ticonium are presented in Figures 2—4 ,

respectively. The anodic portions of these diagrams depicted transi-

tion from a cathodically protected rnetastable condition to a reactive

Q Universal Programmer , Model 175, Analytical Instrument Division ,

Princeton Applied Research Corp., Princeton, NJ.

¶ X—Y Recorder , Model 9002A , Analytical Instrument Division , Prince-

ton Applied Research Corp., Princeton , NJ.

—3—



— state and subsequently delineated the active,
a 

passive
b 

and trans—

passiveC ranges of the alloys. Corrosion potentiaid was marked by

intersection of the anodic (oxidation) and cathodic (reduction)

curves.

The behavior of the test materials became predominantly anodic

• at potentials which ranged from —0.575 V for Vitallium to —0.300 V

for stainless steel. The active linear ranges of the alloys were

relatively short. The corrosion potentials and breakdown potentials

of the three implant materials were remarkable similar. Stainless

steel exhibited the highest passive current density .

An additional relationship of the paired curves contributed in-

formation relevant to the electrochemical behavior of the alloys. The

diagram produced on cyclic polarization of the low carbon steel (Figure 2)

rt.vealed a distinct hysteresis between its anodic and cathodic components.

On the other hand, the diagrams for Vitallium (Figure 3) and Ticonium

(Figure 4) exhibited little or no hysteresis.

a Marked increase in current density with little or no change of impres-

sed anodic potential.

b Little or no change in current density with the increase of impres-

sed anodic potential.

c Breakdown of passivity.

d Potential at which oxidation and reduction of an alloy occur at

equal rates.
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Discussion

Understandably, a functional surgical prostheses is not subjected

to externally controlled polarization . However, an appreciation of

impressed potential—current density relationships is essential to the

rational clinical application of metallic implants.

Any alloy exposed to a corrosive medium will, in time , spontaneously

reach its so—called equilibrium (corrosion) potential. The degree of

activity or passivity exhibited by an alloy at equilibrium with its

environment is governed by compositional and structural features of the

alloy and by the oxidizing power of the environment . Ideally, an

active—passive biomedical alloy should passivate spontaneously when

exposed to extracellular fluid or to a synthetic medium of comparable

chloride ion concentration.

Under simulated physiologic conditions the passivating tendency

of stainless steel, Vitallium and Ticonium is weak. Furthermore , at

their corrosion potentials , the behavior of the three alloys is active

rather than passive. The findings infer that in vivo passivation of

implants fabricated from these materials may not occur . Failure of a

metallic implant to passivate would , undoubtably, result in the con-

tinuous release of metallic ions to the adjacent tissues and their

subsequent transport to distant target organs.

The hysteresis displayed by the cyclic polarization curve of

surgical grade stainless steel merits careful attention. Industrial

V 
chromium—containing alloys that exhibit a similar hysteretic tendency

on cyclic polarization have been shown to be highly susceptible to
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crevice corrosion .11 The likelihood of the prolonged dissolution of

stainless steel at the implant—tissue phase boundary crevice should

be considered in all imp lant applications of this material.

Summary

j The electrochemical behavior of three surgical alloys was studied .

In a simulated physiologic environment , the active—passive transition

of the test materials was weak. At their respective equilibrium

potentials the behavior of stainless steel, Vitallium and Ticonium

was characterized by active dissolution. The low carbon ferrous alloy

appeared to be more susceptible to the detrimental effects of crevice

corrosion than either Vitallium or Ticonium.
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Legends for Figures

Figure 1. Assembly employed in cyclic polarization of surgical alloys.

Figure 2. Cyclic potentiodynamic polarization diagram for surgical

stainless steel.

Figure 3. Cyclic potentiodynamic polarization diagram for Vitallium .

Figure 4. Cyclic potentiodynamic polarization diagram for Ticonium .
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