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Abstract

A problem is considered to determine the tracking
capabilities of an estimator, applied in optical sensing. f
The estimator tracks the centroid of a one-dimensional
Gaussian-shaped intensity based on'time—space point process
measurements. The centroid assumes to move dynamically
as a First Order Gauss-Markov process. Filter performance
is described by steady-state upper and lower bounds on
mean-square-error (MSE) which are evaluated as a function
4 of two physically motivated parameters: average number of
photons detected in a coherence time of centroid dynamics
and mean square value of centroid jitter normalized by the
square of the beam width. The parameters establish regions é
of operations where upper and lower bounds converge to the '

actual MSE. Results from the Monte Carlo simulation demonstrates !

the bounds' usefulness. Noise measurements from dark current E
F or background radiation are included in the simulation. |
P Results show that the filter is very sensitive to these

measurements, resulting in very poor tracking. Ad hoc i

methods of filter tuning and residual monitoring are !

employed to improve tracking performance; results indicate

that filter performance can be improved substantially

3 through residual monitoring.

i
i
!
i
{
!
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Fundamental Limitations
of Optical Trackers

I. Introduction

Alignment problems exist iIn any optical system. To 1image
a point object over large distances requires aligning an optical
receiver with the object. When the object is within the receiver's
field-of-view, an image 1is formed on the photodetector surface.
This is shown in Fig. (1). Because the optical receiver has a
relatively narrow field-of-view, aligning the receiver becomes
difficult. Furthermore, because of variations of index of
refraction in the atmosphere and other outside disturbances
that cause. relative motion between receiver and object, active
alignment is necessary. Thus, cptical trackers are needed to
keep the object within the receiver's field-of-view.
Background

Several methods are currently being developed in the Air
Porce to track the target in presence of several disturbances.
The disturbances include target motion, mirror vibraticn, beam
Jitter, stochastic effects of the atmosphere, and other processes
that can cause relative motion between the beam and target.

Method of Tracking. One scheme to accomplish this tracking

task uses a direct detection optical receiver tc determine the
arrival angle of the incident radiation at the receiver. The
arrival angle is converted (through optics) into a position of
a spot of light on the active surface of a photodetector array.
Once this angle arrival is determined, it can be used to

generate error signals to other tracking components to correct
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any offset alignment between the receiver and target that
may occur. Because of disturbances that cause relative motion
between the beam and target, the beam's arrival angle varies
at the optical receiver. Thus, variations of arrival angle are
therefore converted into variations of the spot's position on
the detector surface. The spot of light moves dynamically on
the surface, releasing photoelectrons statistically distributed
about the spot's position of maximum intensity.

A minimum-mean-square estimator which will be known as
the Snyder Filter estimates the position of maximum intensity
based on the observations of the photoelectrons (Ref. 1). These
photoelectrons are measurement data to the filter in order to
obtain an estimate of the spot's current position. Here,
the Snyder Filter assumes that the measurements only include the
target's signal intensity. However, other disturbances also
cause photoelectrons to be released from the surface. These
disturbances which degrade the Snyder Filter's tracking
capability are caused by background radiation from the sky, moon,
sun, stars, and other sources, and dark current present in the
absence of photoexcitation on the photodetector. Each of the
noise sources are discussed in the next chapter. It should be
noted, however, that thermal noise is ignored for photodetectors
with high gain, such as a photomultiplier or avalanche photodiode.

Quantum Effects. At higher frequences, the quantum nature

of light is an important consideration in many optical measure-
ment systems which use photon or quantum detectors to detect

these optical fields. In this case, light can be described as




a collection of discrete packets of energy called photons.

With a given probability, each photon converts into an electron.

These photoelectrons, distributed in time and space, are

released from the photodetector surface. Because of these quantum

effects In the detectlon process, especially when the field
intensity is low at the receiver's input, there is an uncertainty
associated with estimating the spot's position of maximum
intensity based on the sensed photoelectrons. Theoretically,
both the gquantum nature of light and the nature of the detection
process fundamentally limit the tracking capability of optical
trackers (in other words, the ability to detect the signal
photons is the fundamental limit).

Because of the quantum effects associated in the detection
process, the statistics of the receiver's output process must
be described accurately; the Snyder Filter is based on these
statistics. Experimental evidence indicates that the statistics
of the output can be modelled as a random point process in time
and space conditioned on knowing the optical field incident
on the receiver (Ref. 2). A random point process by definition
is "a mathematical model to describe a physical phenomenon
characterized by highly localized events distributed randomly
in a continuum (Ref. 3:2).u The discrete events are the photo-
electrons or photoconversions distributed randomly on the photo-
detector surface. Associated with each event are the temporal
and spatial location of the photoelectron. Here, the event

location is used as distributed measurement or data,
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in order to estimate the current position of maximum intensity.
To summarize, the point process model describes the fundamental
uncertainty of photon-to-electron conversion in the measure-
ment or detection process.

Measurement Models (Gaussian versus Point Process

Descriptions). To contrast the point process measurement

description with other noise models, several Gaussian
descriptions modelling different types of noise are briefly
presented. A stationary white noise is one model which describes
noise as having a power spectral density of infinite bandwidth,
having energy at all frequencies. Also, infinite bandwidth
implies that the noise samples are uncorrelated in time.

Although no noise has infinite bandwidth, the white noise model
does provide a reasonable description for wideband noise having
a wider bandpass than the physical system of interest. 1In other
words, the wideband noise appears white with respect to the
system. In many instances, however, noises are not well modelled
as uncorrelated in time (e.g., bandlimited noise), and other
models must be exploited. For such causes, a Gaussian white
noise, driving the input of a small linear system, can

generate an output that duplicates or closely approximates the
second order characteristics of a given noise source. The

linear system, or "shaping filter" duplicates the second order
statistics of the actual noise by generating a Gaussian process
with the same second order statistics. For example, the
statistics of a zero-mean exponentially time-correlated (First

Order Markov) noise can be duplicated by taking the output




statistics of a first order lag driven by white-Gaussian noise

of zero mean. This model approximates a variety of experimentally
observed random behavior that have wide or narrow bandwidths

with a flat power spectral density. Another noise model is the
Second Order Markov process model which describes phenomena
having vibration, bending or any other periodic random charac-
teristics. This process can be generated as the output of a
second order system driven by white noise.

The different models that were just described typically
model noise as due to a number of sources that are always
present (or continuous) in a dynamics system or measurement
device. By the Central Limit Theorem of Statistics, when a
number of random variables are added together, the sum of these
random variables has a probability distribution which is nearly
Gaussian, regardless of the shape of the individual densities.

The Gaussian models are exploited in many cases where macro-

scoptic phenomenon are observed. On the other hand, the
quantum effects are observed as a microscopic interaction
between the photons in the incident field and the atoms on the
photodetector surface. The result of this discrete interaction é
is the probability of releasing a photoelectron at a particular
time and location from the photodetector array. Thus, various

disturbances affecting a system or measurement device cannot

always be described as having additive corrupted noise with
Gaussian statistics. To incorporate the quantum effects or
uncertainty, the random point process description is used to
model the measurement processfrom the optical receiver under

1limited operations.




Assumptions of the Snyder Filter. This report assumes

that the point object is within the field-of-view of the
optical receiver and is imaged as a single spot on the photo-
detector array. In other words, the tracker has acquired the
target and, hence, the tracker is said to be in "fine-tracking"
mode. As mentioned previously, the solution of estimating the
position of maximum intensity based on released photoelectrons
is the Snyder Filter. For this research, the Snyder Filter is
implemented in open-loop configuration (i.e., no control or
feedback input). The Snyder Filter models the spot as having
a Gaussian-shaped intensity profile and the spot drifts
dynamically as a First Order Gauss-Markov process. These
characteristics and the Snyder Filter are discussed in detail
in the next chapter. ‘

In addition to the above assumptions, this estimator
assumes its measurements are from a photodetector array capable
of measuring the "exact" temporal and spatial component of the
photoelectron. This idealization places a 1limit in tracking
capabilities which can be accomplished with photodetectors
arrays of finite resolution, such as a gquadrant photomultiplier.
However, the Snyder Filter assumes that its measurement data
contain no extraneous (or noise) measurements. That is, photo-
electrons are not released due to background radiation or dark
current. This report investigates the tracking performance of
the Snyder Filter based on observations of the sensed photo-

electrons as input data.




Problem

The problem is to establish the performance capabilities
of the Snyder Filter. In this case, the issue is whether this
minimum mean-square-error estimator commits errors small enough
to yield good tracking. Thus, the problem is to describe the
error perfcrmance of the Snyder Filter in order to make this
evaluation. Once the performance description is established
(under the assumptions of no background or dark current), an
additional objective is to determine the sensitivity of the
Snyder Filter when noise data is presented to the filter as
input. To improve filter performance in the presence of the
above disturbances, ad hoc methods which alter the filter

structure will be investigated.

Overview and Approach

Chapter ITI describes the models employed in the tracking
scheme and establishes conditions in tracking performance under
which the Snyder Filter is evaluated. The chapter begins by
describing the model of the direct detection optical receiver
and its detection process. In this section, the semiclassical
approach is used to describe the photodetection process. The
results of this analysis are used to derive the statistics of
the output process from the optical receiver (Appendix A).
Following this discussion is a description of the detector
noise which affects the output of the receiver.

Following the model of the optical receiver is a section

on the Snyder Filter. A characterization of the spot's




intensity profile and its dynamics are given. Following the
subsection is a portrayal of position-sensitive measurements
avallable to the Snyder Filter. As noted earlier, these
measurements consist of point process photoconversions in time
and space. Concluding the section are the filiter equations
of the Snyder Filter.
Chapter II finally concludes with a description of
performance parameters.to describe the mean-square-error
(MSE) of the Snyder Filter. 1In this case, performance
descriptions of estimators and controllers that employ point
process observations in time and space are available in recent
literature (Ref. 4). However, this report addresses only the
estimation performance of the Snyder Filter. Also, the
Snyder Filter is a minimum mean-square-errcr (MMSE) estimator,
under ideal conditions (i.e., input data from background
radiation or dark current are not included). The MSE, also
denoted as E[P(t)]l, is used to determine whether the errors
commited by the Snyder Filter are sufficiently small for
tracking purposes. However, the MSE cannot be evaluated in
closed form; thus, upper and lower bounds are derived rather
than solving for MSE. 1In Appendix B, the models and conditions
of the Snyder Filter are applied in the upper and lower bounds.
In the appendix, tw6 physically motivated parameters are
defined from these bounds to establish conditions under which
the Snyder Filter yeilds good tracking: the average number
of photoelectrons in a coherence time of the spot's

dynamics and the mean square value of the spot's jitter
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normalized to the square of the beamwidth. These parameters
establish regions of operations where the upper and lower
bounds converge to the actual MSE (i.e., bounds are identical).
The parameters are discussed in detail at the end of
Chapter II. Note that the performance measures themselves
assume perfect data; that is, these measures of performance
are not valid for cases which include data from dark current
and background radiation.

To demonstrate the tracking performance provided by the
above parameters and to determine the filter's sensitivity
to noilse measurements, a Monte Carlo simulation and performance
analysis is performed on a digital computer. Chapter III develops
algorithms to simulate the models in the computer required to
perform this study. The chapter begins with a section on simu-
lating the spot's dynamics on the detector surface and the
required noise generators are discussed next. Following these
sections are time-space point process generators. Two methods
are used to generate these data measurements: one, the Binomial
Method, uses the incremental definition of the point-process,
and the other, the Conditional Method, involves Bayes' rule
and the statistics of the output of the optical receiver. The
Binomial Method involves & threshcld test to declare an event
(photoconversion) at each infinitesimal area on the detector
surface. The Conditional Method calls a uniform random variable
distributed between zero and one from the computer system and
transforms 1t into another random variable with a desired

probability distribution. This transformed variable is a

10




realization of either the time or space coordinates associated

with the photoconversion process. After describing these two
methods, the theoretical and practical aspects of implementing
each method in the computer are discussed. Concluding

Chapter III is the performance analysis which characterizes the
error process generated by the Snyder Filter. Given in this
section are the sample staticstics, plots, and test cases required
to evaluate filter performance. Assuming perfect measurements
(i.e., no background or dark current events), the actual per-
formance of the Snyder Filter is compared with the upper and
lower bounds on MSE. This analysis should indicate where the
actual performance lies with respect to the bounds. Then
noise measurements are included in the analysis to determine
the filter sensitivity to these measurements. Finally, ad hoc
methods of residual monitoring and filter tuning are employed
to enhance tracking performance in the presence of the noise
measurements.

Chapter IV contains results from the simulation. For
perfect measurements, the simulation results indicate the useful-
ness of the bounds in describing the actual performance of the
Snyder Filter. Also, these results show for low signal events
per coherence time that the upper bound describes the actual
performance. When measurements from background radiation or
dark current are included in the simulation, the estimator
was found to be quite sensitive to these noise measurements,

resulting in very poor tracking. Finally, it was found that

b |




tracking performance can be improved substantially by an
ad hoc procedure called residual monitoring.
The last chapter is a summary of conclusions and

recommendations for further research.

i




II. The Snyder Filter and Its Open Loop
Zstimation Performance

The Snyder Filter is a recursive data processing
algorithm. This algorithm employs point process observations
in time and space to estimate optimally the position of maximum
intensity on a detector array of infinitesimally fine partition.
However, its estimate 1is only as good as the model describing
the output statistics of the photodetector array (the key
component in the optical receiver). Therefore, the model of
the direct detection optical receiver and its detection
process deserves description. The modelling will involve a
statistical description of the receiver's output. Following
the receiver model, the Snyder Filter is discussed. Concluding
the chapter is the tracking performance by which this estimator
is to be judged using upper and lower bounds on MSE. For this
case, two parameters are defined to describe the actual per-
formance of the Snyder Filter. The concepts are presented

in one spatial dimension.

Optical Receiver Model

There are two classes of optical r«eceivers, direct
detection receivers and heterodyning r:.eivers. The difference
between these two receivers is that the former operates to
detect the instantaneous power in the collected field at
receiver's input and the latter operates to detect a combined
field formed by mixing a locally generated field with the

received fleld. This study is concerned with direct

413




detection receivers.

General Description. The direct detection receiver is

also known as a noncoherent detector which is shown in Fig.

P P—

2. The receiver consists of a lens system and a photo-
detector. The lens system, also referred to as the front
end of the receiver, performs two functions. One is to
focus the optical field onto the photodetector surface at ?
a focal point. Another function is to provide some degree of
reducing the intensity of the background noise (i.e., radia-
tion from the sun or sky) prior to photodetection. The photo-
detector then converts the incident field into an electrical
signal.

Photodetectors. Photodetectors consist of two types:

photon and thermal detectors. Because thermal detectors have

a slower response for the frequencies of interest, they are

not considered further (Ref. 5:87). On the other hand, photon
or quantom detectors respond quickly at the optical frequencies.
An excellent discussion on quantum detectors, their description,
performance, and characteristics, is given in Refs. 5:87 and
6:298 . However, of all the available types of detectors using
photosensitive materials, all behave according to quantum-
mechanical principles (Ref. 2:6). Figure 3 portrays the photo-
detector model. These detectors use photosénsitive materials
to produce electrical signals in response to changes in the

input field intensity. The signals are electrons, released

from the photodetector surface, and they are collected at !
the anode by an electric field. This collection and movement W
14
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Figure 2. Direct Detection Optical Receiver
(copied from Ref. 2:5)

of charge at the anode creates an output current. Because
the conversion of optical field tc electron flow and the
arrival times of electrons at the anode are probabilistic, the
observed output current is a random process in time and space
(Ref. 2:39). This fact is true even if the input field is
deterministic. TIn short, the detection operation inherently
1 induces a randomness in the detector output.

To model the relationship between the optical field and
the number of photoelectrons released involves a treatment
in quantum mechanics (Ref. 3). This treatment has two
approaches to Jescribe the above phenomenon. One is to
describe the field as a collection of discrete packets of

energy called photons. Here, each photon produces an electron

15
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Figure 3. Photodetector Model
(copied from Ref. 2:38)

at the detector surface with a given probability. This
probability of conversion is termed the gquantum efficiency,
n. The second method, referred to as a semiclassical analysis
(a direct result of quantum-mechanical considerations), treats
the focussed field as a wave,and 1t incorporates a statistical
relation to describe the interaction between the optical wave
and the detector surface. The second method is preferred for
its simplicity and the added insight it provides. An outline
of the second approach is found in Ref. 2 and a detailed
description is given in Ref. 7 . Since a detalled description
of the semiclassical analysis is quite lengthy, only results

of this semiclassical approach are given. These results are’
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as follows: in a short infinitesimal time interval, at,
the release of an electron from an atom at a differential
lenght Af on the detector is proprotional to the field

intensity over the observation area, AfLAt. That is,

in a 1length A¢ durin

one electron released
P g = yI(t,r)atas (1)
the time At '

ALAE-0

where P[.] denotes probability of, y is a proportionality
constant, I(t,r) denotes the field intensity at time t and
point r on the detector surface, and A% is located at r.
Other results from this approach are as follows:

= 1-yI(t,r)Aatas (2)

no electrons released
P from A¢ during At

ALAE->0
more than one electron
P released from A% & 0 (3)
during At
ALAt-+0

Along with these results is an assumption that the release of
electrons from disjoint observation areas AtA% are treated
as independent events. This assumption and Eqs (1) through
(3) mathematically model the photodetecting surface.

Detector Noise. With no noise sources, the output

current is given by

n
1(¢,;r) = q}
k=

ls(t-tk)s(r-rk) (4)

17
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where q is the electronic charge, t, is the kth event %

k

arrival time, r, 1is the corresponding event location, r

k
denotes a position on the detector surface, n is the number
of events in an observation area, and 6(t) and &6(r) are
delta functions. Eq. (4) assumes that the detector has infinite
bandwidth (e.g., a photomultiplier or avalanche photodiode
fits closely to this description). The relation also indicates
that the current is a random process since n, tk, and Ty are
random variables.

However, the imperfection of the optical receiver and
background radiation also affect the output current. 1In

general, the output current from the photodetector array

at (t,r) can be represented as
i(t,r) = is(t,r) + ib(t,r) + id(t,r) + ith(t,r) (5)

where 1S(t,r) is due to signal current, ib(t,r) is current
due to background noise, 1d(t,r) is due to dark current, and
1th(t’r) is current due to thermal noise. The dark current
is a result of current flowing in absence of photoexcitation.
Also, the dark current is well modelled as a point process
(Ref. 5:148) with a rate funetion that is constant (i.e., ‘

Ag{t,r) = 24 is termed homogeneous (Ref. 3:54)). Further,

d
the background noise can be associated with a point process
in nighttime operation, and its rate function is homogeneous
provided that three conditions are satisfied: (1) background
electric field has zero mean, (2) background intensity is

constant, and (3) the product between the ensemble average
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of the number of electrons, Ny and the bandwidth of the back-
ground radiation, %5’ is much less than 1. The last condition,
nb1b<<1, is known as low photon coherence which is a valid
approximation for nighttime operation. For convenience, the
dark current in this study will be the combined effects due
to the detector dark current and due to background radiation.
Finally, the thermal or Johnson ncise current ith(t,r) is
caused by thermal fluctuations of electrons in a resistor.
It is modelled as a white Gaussian random process (Ref. 5:145).
To describe the output current in Eq. (5) statistically
is very difficult. It is difficult because the output current
is a mixed process (i.e., a sum of a discrete process (Point-
Process model) and a continuous process (Gaussian model)).
Hence, limitirng cases must be considered. This study will
ignore the current due to thermal noise since one of the objec-
tives of this study is to observe the quantum effects of dark
current in filter performance. Also, if the detector is a
photomultiplier or avalanche photodiode with high gain, one
can assume for low input intensity that the optical receiver
is operating in the point process regime, and thus, thermal
noise is ignored.

Photodetector Statistics. It is assumed in the detector

model that the electrons arriving at the anode of each detector
of an array are independent. Then the output statistics of
each detector can be treated independently of one another.

One needs the statistics describing the number of events, n,

the ordered event times, t, 's, and,ordered event locations,

k
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r.'s, to characterize the detector output completely. Thus,

k
the joint density of these variables is needed. With the
results given in Egs. (1) through (3), the above joint

density of the photodetector can be derived. Before stating
the results, it is convenient to define a complex envelope
which characterizes (in part) the focussed or received field
(i.e., a classical description). Let u(t,r) denote the scalar

optical field. Then the complex envelope U(t,r).of the scalar

field is defined implicitly as
u(t,r) = Re(U(t,r)ed27EE) (6)

where R(') denotes the "real part of" the quantity in paren-
thesis, and fo denotes the carrier frequency. The intensity

of the field is represented as
I(t,r) = 3 7 [U(t,r)|? (7)
m

where |°*| denotes the modulus of the complex field, and Zm
denotes the 1mpedance of the medium (Ref. 2:10).

With the definition of a complex envelope and using
Eqs. (6) and (7), the output of the photodetector, conditioned
on knowing the optical field, can be modelled as a point process

(Ref. 2) with rate function (in one dimension)

Alt,r) = 5—'}-5 jzl U (t,r)|2d£ + g (8)
e S ——
due to signal due to dark current

(Ag(t,r) = Ag)
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where n is quantum efficiency, h is Planck's constant, fo is
the optical signal frequency, Us(t,r) is the complex envelope
of the scalar field incident on the detector surface at (t,r),
£ is the length of detector array, and df is the differential
detector length. The integral in Eq. (8) represents the
total cptical power deposited by the beam on the detector
surface and the energy of a photon is hfo. Aiso, recall from
the previous section that the homogeneous dark rate function
is due to the combined effects of background radiation (of
zero mean electric field) satisfying low photon coherence and
? dark current resulting from imperfection of the photodetector.
This dark rate function, denoted as Ad’ which is assumed to

be independent in time and space can be expressed as

= . - 2
Y = 5 L B fluy e iZfan + ag (9)
e — T —
due to background due to

radiation photodetector

Note that in Eq. (8) and (9) the optical receiver assumes to
be operating at the point-process regime. Also, the first
term at the right-hand side cf Eq. (9) is a constant rate
function, since this study assumes a constant background
intensity. In other words, the dark current, xd, is
independent of time and space. Finally with Egs. (1) through
(3), the output statistics of the optical receiver conditioned

on knowing the input field is found in Appendix A as
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£lit, },{r}, n] = exp(-fzfg A(a,B)dadB) oAt ) (10)

r
fewd k* "k

where {tk} denotes set of ordered event times, {rk} denotes the
corresponding set of event locations, ¢ 1is detector length,
n is the number of events in a time interval [0,T] on 2. Again,

this joint density completely characterizes the statistical

output of the optical receiver.

The Snyder Filter

The previous sections described the statistical model
of the optical receiver which is used in the optical tracking
problem. The lens system of a receiver focusses the received
field on a detector surface at the focal plane. The array of
detectors responds to the received field which arrives at
various angles at the receiver. Because of random disturbances,
the spot wanders randomly on the detector plane. Electrons

are released at a rate proportional to the light intensity,

given by Eq. (8). For the model upon which the Snyder Filter
is based, Ad is assumed to equal zero. The Snyder Filter
estimates the position of maximum intensity on the detector
plane in terms of these time-space photoelectrons. An outline i
of its models and results will now follow specializing for

one spatial dimension.

Characterization of Spot. The spot of light on the

detector surface is a diffraction pattern focussed by the i
receiver's lens. It 1s assumed that the spot of light has }
|

a Gaussian-intensity profile given by
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I(r,x(t),t) = Iy(t) exp[-%(r—gxo—g%%-)z] (11)

where Io(t) is the maximum intensity, o(t) characterizes the
beam spread, and x(t) is the true location of the spot
(i.e., the location at the centroid of the beam). For this
study, Io(t) and of(t) are assumed to be static (i.e., Io(t) =
I, and o(t) = o). Figure 4 portrays this intensity profile.
From the figure, the beam width (or beam radius) in this

study is defined as a point from the maximum intensity, I

-1/2
g® s or

0’
to a point in which the intensity is reduced to I

about 60.7% of the maximum intensity.

Characterization of Spot's Motion. The motion of the

spot's centroid is assumed to be modelled by the following

linear stochastic differential equation

dx(t) = F(£)x(t) + G(t)dp(t); x )= x4 (12)

where g(t), t20 is a standard Wiener process, F(t) is the
state coefficient, and G(t) is the noise input coefficient.
The spot's dynamics are governed by a number of disturbances.
The atmosphere is one such disturﬁance; characterized as an
inhomogeneous random optical channel (Ref. 9:16-26), the
atmosphere changes its index of refraction due to temperature
variation. Because of the stochastic nature of the atmosphere,
and frequency at which the field propagates, the optical wave
interacts with the foreign particles in the atmosphere. One
consequence of this phenomenon is that the received field
causes variations in the beam's arrival angle, causing the

spot to move randomly on the detector plane. Platform
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T T,

Figure 4. 1Intensity Profile of Spot
in One~Dimension

vibration of the optical receiver 1is another disturbance which
causes the spot to drift. The important point is that any
reléﬂive motion between object and receiver due to other
effects will result in the spot to drift dynamically on the
detector plane. However, it is not the purpose of this study
to model accurately the motion of the spot, but to provide a
reasonable and simple model for digital simulation. A model
was developed to describe the dynamics of the target relative
to the receiver (Ref. 10:42). This model is a stationary
First Order Gauss-Markov process, the output of a first order
1aé driven by white Gaussian noise of zero mean. This process
also describes a variety of phenomena having bandlimited

characteristics. Thus, this model will be used to describe the
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dynamics of the spot. Another name for this process is an

exponentially time-correlated Gaussian process. Figure 5

portrays the properties of a First Order Markov Process. Two
parameters of interest to describe the output of the first
order lag are the coherence time L and its mean squared
value oxz. The coherence time (or correlation time), describes
how fast the resulting output process, x(t), will vary in time.
The reciprocal of To is viewed as the bandwidth of the distur-
bance process (i.e., turbulance plus other effects). Heuris-
tically, the spot's rms value of random displacements (or
spot's rms jitter), is a measure of how much the spot will
fluctuate about its mean position on the detector array.
Finally, the strength of a white Gaussian noise driving the

first order lag is given as

E[w(t)w(t+t)] = Qs(1) (13)
where Q = 511&2 (Ref. 9:4.77). The strength, Q, describes
c

how fast the Wiener Process or Brownian Motion, g(t), diverges
in mean square value from its initial condition of zero (Ref.
9:4.29).

Position-Sensitive Measurements. As mentioned earlier in

the report, these measurements consist of event locations
which provide information about the position of maximum
intensity. Assuming no dark current, the conversion rate

at the detector surface is modelled as
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w(t) white noise of zero mean

+ I x(t)
- S

w(t)
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4) Shaping Filter for First Order
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E[x(t)x(t+1)]=0 °
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T

c
¢) Power Spectral Density (PSD) of x(t)
(0A Angular Frequency) i

Figure 5. Properties of a First Order Markov Process
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A_(r,x(t)) = nIO/Z—"_O [ 1 exp(%(r-g(t))%] (14)
g " hf /omo 20

If the detector length is sufficiently large, the quantity

in brackets, [-], in Eq. (14) integrates over the entire
detector length to a value very close to one. Note that Eq.
(14) is derived by substituting Eq. (11) as the signal intensity
in the first term of Eq. (8). The term nIO/EF o, represents
the average optical energy deposited on the detector by the
spot to release photoelectrons. The term hfo represents the
energy of a single photon, characterizing the particle

nature of light of frequency fy- Then integrating Eq. (14)
both over time (wifh limits from 0 to T) and space (over

entire detector length), yields (%%9 Y21 ¢ )T. This term
represents the ensemble average of ghe number of photons
detected at the output over the time-space observation area.
Recall that the data measurements are obtained from a photo-
detector array, capable of measuring the exact temporal and
spatial component of a photoelectron. With this idealization
the estimator's performance, derived in Appendix B, places a
limit in performance which can be achieved with arrays of
finite resolution. In other words, a decrease in spatial
resolution should result in poorer performance. It is also
assumed that the detector array is large such that edge effects
of the spot's intensity profile, described as Gaussian-Shaped
can be ignored. A good "rule of thumb" is to have the detector

large such that the distance between the center of the spot
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and the edge of the detector array is at least six beam

widths. This is "good" because with respect to a Gaussian-
shaped beam, the above "rule of thumb" closely approximates

a detector of infinite length. Also, by having the detector

length large’edge effects may be ignored as the spot moves
dynamically even with large wanderings on the detector surface.

Snyder's Filter Equations. This subsection presents the

dynamical filter equations that incorporate point-process
observations to estimate the position of maximum intensity.

These equations, specialized for one-dimension state as follows:

dx(t) = F(t)x(t)dat + [,k(t)[r-H(t)x(t) N(dtxde) (15) :
dP(t) = P(£)P(t)dt + P(£)F(t)at + G(£)Q()a(t)dt

- [ K(t)H(£)N(dtxds) (16)
K(t) = P(t)H(t)[H(t)P(£)H(t) + R()]7T (a7 %
x(ty) = 0, P(ty) = P, (initial conditions at t,)(18) |

where ;(t) is the conditional estimate of the spot's centroid
given the measurement data (i.e., event locations that are
random in time and space),. ﬁ(t) is the conditional error
variance, H(t) is the measurement coefficient, K(t) is the
filter gain, r is the location of the photoconversion from a
differential detector length df in the differential time
dt, and N(dtxd&) = dN is the differential number of events

in the differential "space-time" observation area, dtxds.
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The filter equations, Eq. (15) through (18) are recursive
relations, similar in form {o the discrete-time measurement
Kalman-Bucy Filter. They differ in that the Snyder Filter
updates its estimate and uncertainty at the event times
whereas the Kalman-Bucy Filter updates at predetermined times.
The mean and the variance of the conditional probability
density function which describes the error in the estimate

of the spot's centroid are propagated forward from the time
period of the kth photoconversion ¢t +, to the time of the

(k+1) st photoconversion, ¢t Then the filter updates at

k+1l °
time tk+1’ by processing the measurement at that time, to achieve
the estimate ;(tk+l+)’ where "=" denotes before measurement
update and "+" denotes after measurement update

It is convenient to expand further the interpretation
of the filter equations. During interarrival times between
photoconversions, the filter's conditional estimate of the

centroid's position ﬁ(t), and its error variance ﬁ(t), evolve

in time by the following equations

dgétl 2 F(t)g(t) ; tk<t < tk+l (19)
$E = 2F(E)P(t) + G()QIE)GIL) 3 ty<t < &, (20)

The above relations govern how ﬁ(t) and its associated conditional
error variance ﬁ(t) will propagate when the filter does not
observe a photoconversion. But when the filter dces observe an
event, via the detector array, it will update i(t) and ﬁ(t)

after the occurrence of the event by the following update
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equations:

Il

-1 = -y1-1
[HCE, IRTT (8 JH(E, ) + P(t, )] (21)

Lt "xle, "1 (22)

2 e & el ~_
2t} = PCE M0, BT e, B,

where tk+ is the time after the occurrence of the kth

version, t

photocon-

k
the location of photoconversion (or photoelectron). By using

is the time before this occurrence,and Ty is

the matrix inversion lemma (Ref. 1), Eqs (21) and (22) may be

alternatively expressed as

x(t,) = x(t,7) + K6 ) [r-H(t x(e, )] (23)
& ] 4 e
P(tk } = PUB.T) - K(t, )H(tk)P(tk ) (24)
where
DRSS il |
K(t,) = P(tk )H(tk)[H(tk)P(tk JH(E,) + R(tk)] (25)

Egs. (22) and (23) indicate, clearly, the recursive nature of
how Q(t) and ﬁ(t) evolve in time given the history of data '
measurements. In other words, the "recursive" nature of the
Snyder Filter does not require all previous data measurements
to be kept in storage and processed every time a photoconversion
1s observed. This saves computer resources which is an impor-
tant consideration for filter implementaton.

To summarize, the Snyder Filter is a recursive data
processing algorithm, using the available information from

the photoconversions to improve the accuracy of estimating




the spot's current position of maximum intensity. The Snyder
Filter is a minimum mean square error estimator; it attempts
to provide the best estimate possible in such a manner that
the error is minimized statistically.

The next section specifies parameters where sufficient
conditions are presented to provide actual mean-square-error

(MSE).

Upper and Lower Bounds

A question should be asked whether cr not the filter
errors are small enough for tracking purposes. Thus, the
MSE (i.e., an expectation of the conditional error variance
given the data measurements over all possible histories of

measurements taken), is used to make this evaluation.

Unfortunately, finding the mean-square-error cannot be evaluated

in closed form. Rather than attempt to solve for the MSE,
one can bound it above and below. The method involves easily
precomputed upper and lower bounds (PgA lower bound on MSE and
P*¥A upper bound on MSE).

The following is a quote from Ref. (4) in how these
bounds are derived:

"The upper bounds are derived by evaluating

exactly the performance of a parameterized family

of suboptimum design; one of these is identified

as having smaller performance than any other, thus

providing a minimal upper bound within this family

of suboptimum design. The lower bounds are obtained

directly by calculations involving inequalities."
The above results are specialized for this open-loop problem

in one dimension. Here, the upper and lower bounds are
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dP, dP*
a?-'—‘&-=0)andare

solved in steady state (i.e.,
derived in Appendix B. The solution to this steady-state
~estimation problem involves a quadratic equation yielding a

resuit given as

P
_; . _2}}(_[_1 €3 uxy)1/2] (26)
g S
i *
?_2_ ™ 2_(7(1717 [(Y-l) + {(¥-1)2 + Ll(x+1)')!}1/2] (27)
where
- g m
2
o}
o}

Several comments deserve mentioning with regard to Egs.
(26) through (29). The upper and lower bounds are normalized
with respect to the square of the beamwidfth. This normalization
is convenient since the error in estimating the spot can
be measured in terms of beamwidth (i.e., a performance or
criterion can be cstablished). Thus, for good tracking

P o
performance, it is desirable to have —%%El-and & gt) small.
o

Figures (6a-61i) are plots of the upper and lower bounds on
MSE as a function of X and Y. Note the absolute magnitude
and relative separation of the bounds as X and Y are varied
on each of these plots. Consider Figs. 6a-6d4 : for a fixed

Y, the bounds both decrease in magnitude and in relative
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seperation as X gets larger. Physically, the X-parameter can
be described as the number of photoconversions in a coherence
time of the spot's dynamics. As the number of data observa-
tions increases (i.e., X-parameter increases), the filter

has more information to correct and update its estimate of

the spot's current position of maximum intensity. Thus, the
filter can update its estimate frequently if a 1a¥e number

of events are observed in a relatively shorf period of time.
Suppose, for example, the spot drifts on the detector with
large "wanderings". Also, assume the filter has just processed
one event and does not observe another event in a relatively
long time (i.e., a low rate function or a small X). Then the
information provided by the "processed" event, has little

value at some later time if the spot is "jittering" ac

higher frequency with large "wanderings" (i.e., spot

dynamics have a small coherence time, L and a large jitter, !

o 2).

% On the other hand, if the filter frequently observes a

larger number of events within a coherence time, the Snyder
Filter has more information concerning the spot's location on
the detector surface.

Consider now a fixed X and a variation of the Y-parameter
(Fig. 6e-6i). As Y increases, the bounds increase in magnitude
and in relative sepcration. Y is the ratio between the spot's
Jitter normalized by the square of the beam width. The beam
width indicates whether the filter should track the event

locations closely in order to locate the spot. As the beam
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width increases,_photoeiectrons are distributed at larger

distances from the spot's centroid. Hence, increasing the
beam width results in having less weight in the point-process
measurements. Thus, the optimal gain, K(t), should decrease
as seen in Eq. (17).

Similarly, the noise strength, oxz, indicates stronger ﬂ
noise sources driving the dynamics of the spot or increasing .
the uncertainty in the model. Increasing °x2 increases both
the rate of growth of the conditional error covariance, ﬁ(t),
between event times. This results in increasing values of
the filter gain, implying larger weighting of}the point process
measurements. Stated another way, increasing the Jitter -
indicates that the filter must put less "confidence" 'in the
prediction capability of the filter's own internal dynamics
model.

Physically, it is desirable to have a narrow beam widthn
such that electrons can be distributed near the position of
maximum intensity. At the same time, the spot's jitter
should be small so that photoelectrons are released from a
small area on the detector. This physical reasoning is
described by the Y parameter,

With regard to the above discussion and by careful
observation of Eagqs (26) and (27), the upper and lower bounds
converge to the steady state value of the actual MSE when
X>>1 and Y<<1l. Referring back to the performance parameters,
the estimator will perform well if a large number of>éigna1

photoelectrons are observed frequently and they appear
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in a small area of a photodetector surface. This physical
reasoning is described by the above parameters derived from

upper and lower bounds. These parameters establish regions of
operation where the upper and lower bounds converge to the actual
mean square error. However, when the bounds do not converge,

s actual performance is difficult to obtain. To demonstrate

the usefulness of the bounds and to determine which bound lies
closer to actual performance,a Monte Carlo simulation is
conducted. These parameters and the Snyder Filter assumes

no dark current in the measurement process; and so an additional
objective is to include dark current in the simulation to

. determine its effects in filter performance.

Summary
The chapter began by describing the direct detection optical

receiver. The important point to remember is that the statistics
of the output of the recéiver govern the performance of optical
components performing postdetection processing and vice vérsa.
These statistics are described by a mathematical model called
tﬁe point process. The model is applied in situations when the
receiver is operating under low signal and background radiation.
In this case, the discrete nature of light at optical frequencies
and the nature of the detection process fundamentally limit the
performance of optical trackers.

The Snyder Filter was discussed next. This filter, a recursive
data processing algorithm, processes the polnt process observations

of the receiver to estimate optimally the position of
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maximum intensity on the detector surface. The Snyder Filter

assumes its observations are from an infinitesimally fine

detector array (i.e., the detector array has infinite resolution
to measure the exact location of a photoconversion).

The chapter concluded with the performance parameters
describing the mean-square-error of the Snyder Filter. The
parameters are derived from the upper and lower bound on MSE.

The two parameters are defined to establish conditions under

which the Snyder Filter should yield good tracking. One parameter
is the ensemble average of the number of photons detected in a
coherence time of the spot's dynamics, and the other is the

spot's jitter normalized by the square of the beam width. These
parameters also indicate sufficient conditions, such that the

bounds converge to the actual MSE. The MSE can then be used

to evaluate the tracking capabilities of the Snyder Filter

(i.e., to determine whether the average errors committed

by the Snyder Filter are sufficiently small for tracking purposes).
Again, these performance parameters and the Snyder Filter

assume that the events locations are only due to the spot.




ITI. Simulation of the Snyder Filter and Performance Analysis

The last chapter addressed the following concepts: (1)
a mathematical model of the output process of the optical
receiver, (2) a model of the spot's intensity profile and
its dynamics, (3) the Snyder Filter which incorporates the
measurement data {tk} and {rk} from the output of the
recelver to estimate the position of maximum intensity, and
(4) performance parameters which establish regions of opera-
tions where the bounds converge to actual MSE.

This chapter develops algorithms to implement the
above models and to simulate the Snyder Filter in a digital
computer. The algorithms that were developed are (1)
simulation of spot's dynamics, (2) a noise generator, and
(3) algorithms to generate the time-space point process
observation (two methods).

Concluding the chapter is the performance analysis used
to evaluate the tracking capabilities of the Snyder Filter.

Simulation of Spot's Dynamics

The spot's dynamics on the detector surface modelled
by a linear stochastic differential equation given in Eq. (12),
or in less rigorous form,

x(t) = F(£)x(t) + G(Eu(t) (30)

where w(t) is a white noise with zero mean and variance




Eflw(t)w(t')] = Q(t)s(t-t") (31)

where Q(t) 1s adiffusion strength variable. Consider an
equivalent discrete-time model for digital simulation. Here,
equivalence means that a discrete time process has the same
second order statistics as g(t), when viewed at the sample
times. As shown In Ref. (9:4.63), an equivalent discrete

time solution to Eq. (30) is
x(ty,9) = o(t, 1,0 )x(t,) + we(ty) (32)

where t, ,,t, are thediscrete points in time, ¢(ti+1,ti) is the
state transition matrix (scalar, in this casej, Wd(ti) is the

white discrete-tihe stochastic process with statistics:

Efwy(t)] =0

E[wg2(t,)] = q4(t,)
- 0 )G (1)Q(T)G () (t )d
i i % 1+1:T t)Q(r )¢ i+l’r T
1 . =
Pty =t
Efwg(tydwa(t)] =0 Pty # oty

Fror Ref. (9:30), the mean mx(t) and variance Pxx(t) of the

process x(t) propagate 1in time as

mx(ti+1) = ¢(ti+l,ti)mx(ti) (33)
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Pex(tig1) = @ty 0500P (B )0t 5,8,) + Q (t,)  (34)

A simple model of the spot's dynamics on the detector is
an output process of a first order lag driven by white

Gausslan noise of zero mean. This model is represented as

1

x(t) = - = x(t) + w(t) (35)
c
where F(t) = - %L and G(t) = 1. Then, its state transition
, c
matrix 1is
1
#(t,1) = ¢(t-1) = e77_(E-T)

The model therefore becomes,

At

f(ti+1) = e T §(ti) + yd(t

c i)

where At issample period (or observation time increment),
and yd(ti) is a white Gaussian discrete-time process of zero

3 mean and covarilance

t
Elwy2 (601 = [M04(t,,1,0)6(0Q(G(0)(E, ,,7)de

ty

To _2at
= = Q1 - e Ts ]

2At
2 Wl

= 0, [1 -e %o

S ! 2
where Q = = O » and Vg A mean square value of output

c
process x(t), (in this report, o;i represents the "jitter"

of spot). Q is found in Ref. 9:4.77 ; and it represents the i
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the strength of the white noise. Eq. (35) is the expression
which simulates the spot's dynamics on the detector. The
next section discusses how a white Gaussian discrete-time

process yd(t) is generated.

Noise Generators

A uniform random variable distributed between 0 and 1
is supplied by the computer system. This uniform number
generator is used to generate realizations of random variables
described by desired probability density functions or proba-
bility distribution functions. This will be shown in the
next section.

However, applying the Central Limit of Statistics, one
can generate an essentially Gaussian random variable by
adding twelve independent uniform random variables distributed
between 0 and 1. Since the mean and variance of a single
uniform random variable is 1/2 and 1/12, respectively, the
above addition yields a Gaussian random variable with mean 6
and variance 1. To obtain a zero mean and a unit variance
simply subtract 6 from the above result. Note that the
Central Limit Theorem implies that the resulting random
variable. w has a probability distribution that approximates
a Gausslan distribution (Ref. 11).

Finally, a Gaussian random variable w. of desired
varlance o, and mean - 1s given by the following transfor-

mation equation
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or
= 0.2 +
Ly cW uw

where z 1s a Gaussian random variable with zero mean and unit
variance.

The "whiteness" of the Gaussian discrete-time sequence
Yd(ti)’ is obtained by independent calls of the above algorithm
The resulting set of w's forms the white-Gausslan discrete-
time process gd(ti) (i.e., E[wd(ti)wd(tj)] = § for all
ty # tj)' Also, note that the second order statistics of
yd(ti) (or set of randem variables w) are the second order
statistics of the output process x(t), of the first order

lag. The statistics of wy(t;) are

w, = 0
2At
R ol i
| T (1 -e s )

Point Process Generation in Time and Space

In this report, two methods are employed to generate
the event locations in time and space. One, the Binomial
Method, is based on the incremental definition of the point
process, and the other, the Conditional Method, makes use
of conditional probability densities describing the output
statistics of the receiver. The latter method uses Bayes'

Rule. It should be noted that these conditional densities

are derived by the incremental definition of a point process.
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The Binomial rule will be discussed first. Next, a trans-
formation equation used by the Conditional Method 1s described;
then the Conditional Method follows. Concluding this section
i1s a discussion on the theoretical and practical aspects of
the two methods of simulation.

Binomial Method. Shown in Fig. (7) is a flowchart of the

Binomial algorithm that generates the time-space events. As
mentioned earlier, this development is based on the incremental
definition of a point process. It is the game development
describing the model of the photodetecting surface. For
the purpose of clarity, a discussion on the point process
incremental definition in one-dimensional space is given as

(1) Event in a space-time observation area, ALAt, are
statistically independent where A% 1is the incremental detector

length, At 1s the incremental time observation,

one event in
P ALAt

located at (t,r)
e -

Ar,x(t))atae + o(atag) (36)

zero events in
P AAt
located at (t,r%

1 - a(r,x(t))atas + o(atar) (37)

where P[.] denotes probability of, the "oAfAt" denotes higher

imit  o(AtAR)y _ g
AtAag~eo AtALR

location of maximum intensity on the detector surface. Note

order terms of AfAt (i.e., , and x(t) denotes

that different values of r will give different values of rate

functions, A(r,x(t).

Consider a uniform random number distributed between zero and




Generate true
position of
spot's cen-

troid, x(t )

Detector
rate,
A(r,x(t ))
[
Establish
threshold, y=

A(r,x(t ))Awx

[}

Call uniform
random
variable,

L

y

Simulate measurement (rk,tk):

Uk < ¥ = declare an event

Uk > ¢ - declare no event

Figure 7. Flowchart of Binomial Method

one. Then, the probability of a value between zero and a
number ¢, is simply ¢. So let y = A( p,x(t)))ALAt establish
a threshold to declare an event,where Uk is called from a
uniform random generator (that 1s,Uk<A(r,§(t))AtAz means an
event occurred at r on the detector surface).

The above module takes into account a different threshold
and rate function when moving from one spatial point to

another on the detector length. This method also includes

effects of dark current (i.e., Aa(r,x(t)) = Ag(r,x(t)) + Ay
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where AgA Gaussian rate functlon A,4 dark rate function). Tre
Binomial Method imposes a significant computational load in the
simulation, as will ‘be shown 1in a later section following the
Conditional Method. ©Note that this method is an approximation
for finite A2 and At and that there is an issue of coarseness
of the time and space discretization. This creates implemen-
tation and theoretical aspects which will be discussed in a
later section.

Transformation Equaticn. The transformation equation

1s used to generate a desired random variable of a given
probability distribution function by calling a uniform random
generator. In this case, either an event location or event
time 1s generated by calling a uniform random variable U

which 1is distributed between zero and one with probability
density height 1. The solution to this transformation problem

is found in Ref. (12:184) and is given as

(]
L}

FD(D) (38)

or

o
i

= By () (39)

where FD is the desired distribution function, D 1s the desired

random variable, FD-1

is the inverse function of Fy. Fig. (8)
graphically depicts this solution.

The random variable. D represents eitber the random event
location or time of the time-space point process. Similarly,

FD (or equivalently, the transformation function), corresponds
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a) Desired probability distribution function, Fyp(D)

1o =3
Fp (V)
R 1 i
b) Mapping to generate F 'l(U)

D

Figure 8. Ceneration of a Specified Probability
Distribution Function (Copied rrom Ref. 12:184)

to either the event location or time probability distribution.

In this report, these probability distributions are derived from

the densities f[rkltk,n] and f[sk] where s, 1s the interarrival
times of ordered events 1, (k=0, 1,2...,n), t, 1s the event
times from a time orgin, and n is the number of events. These
densities are shown in the next subsection.

Conditional Method. To generate the time-space point

process events from the output process of the detector surface,
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the number of events, the event times and event locations

are needed. Here, the probability density f[{rk},{tk},n] is required

to characterize output.This joint density is employed to derive
the conditional densities of event times and event locations
conditioned on knowing certain variables,where the variables
are generated by actual implementation of the simulation. The
development of this section will involve some lengthy (but not
complex) derivations of expressions needed to generate {rk} and
{tk}. Also, physical insights about the Snyder Filter's tracking
capabilities will be cited where appropriate.

In this study, the variables Io(t),c(t), piE), G(E),
H(t), and Q(t) are time-invariant. Then the average rate at
which photoelectrons appear on the photodetectors array (after
integrating the spatial dependence of the rate function,

defined in Eq. (8), over entire detector length) yields

Ag = ’—‘_fﬂa I72m o + A48 (40)
where Eq. (14) was used, and % is the detector length of array.
Eq. (40) has terms including the effects due to dark current;
however, in this relation, some assumptions were used, brought
forth earlier in the report. To explain the first term in Eq.
(40), it 1s assumed that the detector surface is large, such
that, with respect to the spot's Gaussian intensity profile,
the detector surface is Infintely large. Thus, edge effects of
the spot's intensity profile on the detector may be ignored.

On the other hand, A, is finite which means that f: rgde

d
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has an infinite value. Therefore, the integral, :gxddz
results in the second term of Eq. (40). The major point is
that the detector length must be large so that edge effects
between the spot and detector are neglible when the spot is
jittering about on the detector surface.

Consider the simulation of event times. It is known
that the interarrival time, denoted as Sies has an exponential

density function (Ref. 3:60) given as

f[sk] = Aoexp(—xos) (41)

To obtain FD[sk], integrate Eq. (41) over the time continuum
between -« and Sy Using the transformation function from

Eq. (38), Eq. (41) yields

U, ' = F[Sk] =1 - exp(-2

K 05k’ (42)

where Uk' is a uniform random variable distributed between

zero and one. It then follows that Uk =1 - Uk' is also a
uniform variable with the same statistics. By straight forward
manipulation, Eq. (42) yields

Pt
= _.>‘_ n U (u3)

s
k 0 k

To get the event times, just use a running sum. In this case,
with to as the initial time the event times. of the point process
with rate function AO can then be simulated by the following

algorithm: call a uniform random variable, U,; use Eq. (43) to

transform U1 to $15 assign s, as the time from to to the first
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photoconversion (i.e., T1 = t0+sl); call another uniform
random variable, U2; transform U2 to S5 assign s, as the time

= +

between the first and second photoconversion (i.e., T 1

2
52)’ and so forth (Ref. 3:62).

The next problem is finding an algorithm to generate
the event locations, rk's. This problem is solved by using
densities f[{rk},{tk},n] and f[{tk},n] (see Appendix A for
derivation). These densities describe the statistics of the

output process from the photodetector surface which are expressed

as
T 1 4y
FLit, ), {r, },n}] = exp(f[o A(a,B)dadg) m A(t, ) (48)
Ad k=1
£[{t, },n] = exp(-Jirla)da) B a(t,) (45)
k' 0 g K
where
2
nl -(r, -x(t, )
H{E ¥ = —?% exp ( k2 ) + gy (46)
o}
Ag(rk,tk)
L 4
A(tk) = —f.—o— 21 o + XD (47)
= AO

Note that f[{tk},n] is the marginal density of f[{tk},{rk},n]

and that A(tk) in Eq. (47) has no spatial or temporal dependence.
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Also, the integrals in Eq. (44) and (45) will both yield

AoT. Thus Egs. (44) and (45) respectively yield

(48)

n
f[{tk},{rk},n] = exp(-24T) 2

A(t, ,r
K k?

)
1 k

n
f[{tk},n] = exp(-AOT) )t A(tk) (49)
k=1
With the help of Bayes' rule, the conditional probability
density function of event locations conditioned on knowing the

event times and the number of events is given as

fl{r 3|t 3,n] = £l{t,},{r },n]

f[{tk},n]

(¢t rk) + A

LA M d
= I X
k=1 0
or r
A LEs ) # X A (tasrn) *
ek ! d A sl d
fl{r, }{t, },n] = % =
0 0
—
[
. g fg(tk’rk) + Ay
1=3 2o
3

fl[rlltl,n] £, [r,]t,,n]

n=3

filryltysnl (50)

k=3
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where Eqs. (48) and (49) were used. The above relation says

that the joint conditional density f[{rk}l{tk},n], can

be derived by forming the product of each of the densities at
the time-space coordinates, (tk,rk). Thus, for n=1 at (rk,tk),

the conditional density of ry given tk is expressed as

A CE. .2 ) )
o b A _ELif——E" + 7% (51)

Before proceeding further, it is useful to check if Eq. (51)

is normalized (i.e., [ flo, |t Jde,=1). That is,

1 o _n ~lopz) 1 3
g e g To B it e Uy B0,
0 0 20 0 3
= oL (0 o =
=% (hf.o Ig’2r o + a4e) =1

Again, it is assumed that the detector is large such that the
limits 1n the integral of the first term on the left side of
Eq.(52) are approximately valid.

To get the probability distribution function F[rkltk]
integrate f[rkltk] over the detector plane from -« to By for
the first term and from s tol e

2
(51). The result is expressed as

K for the second term in Eq.

Flr, |t ] = %a[erf v+ ag(r 48] (53)

where

59




erf v

erf v

: where
3
Ay A
: A, &
A A
:
4
Eq. (54) is used

event times given the variables defined in this expression.

Usling the transformation equation defined in Eq.

algebraic manipulation, Eq.

2
— 2
A /jr'fo exp(-2°)dz

rk-x(tk)

fie>

/2 o

(53) yields

y (== A v o= 24
—

™

> Uk - 1 &+ 2A3 x(tk) +

A4

"o

hfo

nlj
(¢ fo /21 o+ A 2)
nl

fo V2t o

o

|

s

Ag

nI

o /27 o
0

to generate the event locations at the

The event locations are generated by a table lookup method

with linear interpolation and is performed as follows:

(1)

Evaluate and obtain all necessary variables,

L
l.e., Ay, Ay, Ag, 5, Uy, and X(ti)'
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(39) and after

| =
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(2) For a specific range of values for v, solve the
expression on the left-hand side of Eg. (54), and store the
results in a table (i.e., computer memory),

(3) Derive a random variable s by calling a

uniform random variable, U distributed between (0,1) and

k’
by obtaining the true position of the centroid, x(t), from
the truth model simulation. Given these values, the right-

hand side of Eq. (54) is evaluated and the random variable

realization s 1s obtained,

(4) To find v, obtain s by a table lookup with linear
interpolation. In the table the increment of v is equal to
0.025, where erf v is plecewise linear for this approximation;
thus, linear interpolation 1s used

(5) Upon finding v, it then follows that the event location

is evaluated by the following expression:

By = (Y2 o)v + x(tk)

4 This paragraph completes the algorithm of generating the
event locations.

Since Eq. (54) governs the generation of event locations,
it is useful to examine this relation for limiting cases

(1.e., Aq = 0 and Ag(t ) = 0). This investigation will

K* K
provide insights into the tracking capabilities of the Snyder
Fillter.

= 0 and A, = 1. Eq. (5U4)

A, = 0 implies A1 = A 5

d 3

is then manipulated into a convenient form as




rk—x(tk)

172(1 + err ( —)) (55)

=]
]

g

e = Pplr t,) (56)

(=]
I

where Eq. (38) is implemented in the last expression. Corresponding

\
to FD(rkItk/ is f(rkltk) which is given as

£lr, |t ] = exp{=Slr, -x(t,)1%)2 (57)

Yono 20

The event locations are generated by calling a Gaussian

random variable of mean x(tk) and variance o, at the event
times. Note that the intensity profile of the spot being
Gaussian-shaped leads to a result that the event locations are
generated as Gaussian random variables conditioned on knowing
the event times. The Snyder Filter i1s based on the assumption
of a Gaussian-shaped profile of the spot. Thus, for Ad # 0, A1
"smears" out the Gaussian information as seen in Eq. (54).

For Ag(r,t)>>xd, the effect of dark current is examined
by dolng a perturbation analysis. This analysis is performed
by factoring out the larger of the two rate functions in Eq.
(47). Then the natural logarithm of the left and right hand

side of Eq. (47) becomes

n A b3 O S N
en £({r, }{t, },n) = ] nnxg ) _E_TKL_E_
k=1 0 k=1 0
A vt ) -
where the approximation 1n (1 + —5—751—5 ) = _5_35——5— and
d d
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A (rk,tk)

—§L7T——_-_ << 1 is used. The exponential of the left and
d

right hand side of the above equation yields

n s
f[{rk}l{tk},n] =z I %Q exp (& kL ) (58)
i=

5 R o
Again, Eq (58), can be derived by forming the product of the
above individual densities at (rk,tk). Then, setting Ag(rk,tk)

in Equation (58) and applying this condition to Eq (40),
Eq (58) yilelds

il
f‘[r'kltk] 2 = 3 - -;— < < % (59)

where n = 1. Intuitively, Eq (58) 1is reasonable, since at
any given time a dark event can occur in any differential
length on the detector surface with equal probability.

In summary, for signal-limited conditions, the event locations

are called as a Gaussian random variable with mean f(tk)
and variance 02; for dark-limited conditions the event locations
are generated as uniform random variables distributed in
(- %,%) with probability density height
event locations other than the limiting cases, Eq (54) is

and for generating

implemented. Finally, the generation of event locations is
called at the event times given by Eq (43).

Aspects of Implementing each method. The Binomial Method

has two restrictions for its algorithm to work properly:
one, is Alr ,x(t )Jazat<l and the other, 1s AfAt<<l where for

implementation purposes At A sample time or observation time
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interval. Because of these conditions, several practical and

theoretical problems arise. One 1s a resolution problem. The

Snyder Filter assumes that 1ts position-sensitive measurements are

from an infinitesimally fire partitioned detector array. No
matter how small "Ag" is, there is still a problem in
extracting the "exact" location of the event. For this report,
the detector array 1s divided into equal increments of A%, and
the value of the rate function at the center of each incremental
length, 1s chosen to evaluate the probability, A(r,x(t))asgat.
This procedure determines where an event ({f any) occurred
on the detector surface. This method is depicted in Fig (9).
Note that At 1s the observation increment during the simulation
time. From a practical point of view, this method consumes
a large amount of computer time;at each time increment of
observation,A is scanned across the detector surface from one
end to the other.

In the Binomial Method, a theoretical point that should
be considered is the question o¢f "simultaneous" events occurring
on the surface. The Snyder Filter assumes that one event is
observed at any one time. With this simulation method, there
i1s a probability that more than one event can occur. Even
if At<<l and Af<<l, there 1s still a probability (though small)
that simultaneous events can occur at different locations.
It was mentioned previously that scanning the detector surface
for small ag results in a large comsumption of computer time
at each time increment. Thus, if a smaller At or A2 1s chosen
to reduce the probability of simultaneous events, this will

result in a larger consumption of computer resources.
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Fig. 9. Resolution problem in Binomial Method

Furthermore, when dark current is included in the simulation,
the probability of simultaneous events grows substantially.
To reduce the amount of computer resources (and to observe the
errors generated by the Snyder Filter between event times),
the rate functions are chosen to have a low value. This
enables the use of a larger sample period, At, which also
implies a higher probébility of simultaneous events. It is
evident now that the Binomial method has implementation
problems. In spite of these problems this method 1is performed
in the computer, and the results are shown in the next chapter.
In terms of implementation, the Conditional Method is a
better algorithm, since the event locations are called at the
event times; (i.e., the problem of simultaneous events is
precluded). In the simulation it is desirable to sample
the, K errors committed by thé Snyder Filter between successive

event times. In this case, it is convenient to break up the

simulation time interval (observation time) into time increments,

At. At will denote the sample period in order to sample the

65




error process (as done in the Binomial Method). When the event
times are generated, there is a situation that the interarrival
times, wk's, can occur smaller than the sample period (i.e.

s, < At). This situation is shown in figure (10).

k
Performance Analysis

The objective of the performance analysis is to characterize
the error process statistically. This 1is done by generating
many samples of the error process through Monte-Carlo simulation.
The simulation uses random number generators and shaping filters
to generate the random errors. One objective in the simulation
1s to portray filter performance capabilities when parameters
that describe the problem are varied. First, consider the test
cases without dark current. Here, the signal rate function or
spot's jitter are changed and,thus, filter capabilities can
be evaluated. Note that changing the signal rate varies the
average number of photons detected per ccherence time; similarly,
changing the spot's Jitter causes variations in the Y parameter.
In this study, the test cases do not meet suffizient conditions
which are X>>1 and Y<<1l ; therefore, the results should provide
an indication of which bound is close to actual performance.

A plot which contains the sample variance and average filter
variance is a useful output to make this comparison.

Second, the measurement model (of which the Snyder Filter
is based) 1s altered by presenting dark events in the measurement
process. The above plot 1s again a useful output to evaluate
the filter's sensitivity to dark measurements.

In this study, a final objJective of the performance analysis

1s to change the filter structure, through ad hoc methods, when
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Migg 100 Sampling the Error Process with Fixed Sample Period
(Conditional Method)

satisfactory performance cannot be obtained in the presence of
dark events. Again, the above plot containing the variances
would be useful in providing insights of how to alter the
filter structure.

As previously mentioned, the error process 1is characterized by
generating many sample runs of this process. The appropriate
number should be chosen sufficiently large, such that additional
sample. runs does not appreciably change the sample statistics.
The last statement is an illustration of the weak law of large
numbers: let E[e] = e denote the ensemble average of the
error process e. Also, let <5>N denote the empirical average for

N runs. When N is large, the weak law states with high

probability that <e>_ is close to the number e. In mathematical terms,

N

2
s - e
P[|<E>y - &]>e] = =
N52
— i N
where <e>. A = J e, sample mean error, N A number of
N =N j=1 J =

statistical independent random variables, e, with mean, e

J

)
and variance UEC, and ¢ is an arbitrary constant. The
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weak law 1s a measure of the confidence of inferriny information
about the actual statistics of the error process (Ref 11:96).
Thus, as the number of sample runs increases, the confidence

In characterizing the error process accurately 1ncreases.

Sample statistics. The statistics computed at each time

point are the calculated mean error e, calculated variance

2

% > and the ensemble average of the filter variance terms

PF. These calculations are performed over the ensembtle of

runs N, for each time point tm. These expressions are

N .
cet)oy = 5 1 [x(ey) - x(t)] (60)
=1
X >
>, Z[X tm) —X(tm)]
oy (8,) = or—"%3
= § N[<e<tm)>N12 / (61)
j=1  N-1
= 1 N
PF (t,) = § 21 PF(t ) (62)
J=

The above relations are found in Ref (13). Note that the time
point tm are not event times but are the sample times
for a fixed sample period At. From Eq (61) the variance
°€2(tm) is divided by (N-1) instead of N, which results in an
unbiased estimator of variance (Ref 13).

Plots. Mentloned in previous paragraphs is that a useful
output in the analysis 1is a plot of the average filter estimate

of the error variance, along with the corresponding computed
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sample (or true) variance for all times of interest. This output
is used to compare if the sample variance of the error process
matches wilth the filter's average error variance. TIn other
words, this output should indicate how well the filter is
estimating its errors with the actual errors it commits; and
to compare with the bounds on MSE for test cases where dark
current 1s set equal to zero.

A second useful output on this analysis is a plot of the
mean error versus time. Along with this plot are the standard

deviation bounds plotted above and below the mean error. This

plot 1is useful if the Snyder Filter provides the desired accuracy.

The two plots that were just described, are used to analyze the
average error performance of the Snyder Filter. For all

cases, these plots are used to determine whether the actual
errors committed by the filter are sufficiently small to yileld
good tracking performance.

Now consider plots of individual sample of the error
pocess. For no dark current, this plot is used to observe how
the Snyder Filter minimizes its errors. When dark current is
represented in the simulation, then the Snyder Filter sensitivity
to the dark measurements can be observed. Along the zero axis
of this plot are the event times to indicate clearly how the
filter updates its estimate at the event times. Also, a plot
of the sample filter varlance is also of interest in order to
observe how the Snyder Filter propagates the uncertainty of its

estimate in time.
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Test cases. During this study, different cases using
different values of X and Y performance parameters are considered.
The test cases are given in tables (1) and (2). All test cases
are performed where there is a relative separation between the
bounds. Here, the bound lying closer to actual performance can

be determined. For the test cases in Table (1) and (2), the

dark current is set equal to zero.

When dark current is presented in the simulation separate
test cases are performed. The measurement process of the Snyder
Filter 1is altered by this addition of dark current. For these
test cases, a sensitivity parameter is defined to be the average

signal-to-noise counts ratio which is expressed as

rﬂo
—_— }/2H o
hfo

S
N

XJ-L !

Here, the degree of degradation in filter performance is

observed as the average signal-to-noise counts ratio is
varied. Because of the time constraints imposed in the study,

limited cases for Ag # 0 are examined.

Summary
The chapter developed the necessary algorithms needed to

perform this study. These algorithms consists of simulating the

spot's dynamics, and the generation of position-sensitive
measurements (i.e. time-space point process). The chapter
concdluded with a general discussion on performance analysis,
where it consists of sample statistics, plots, and test cases

needed to investigate the tracking capabilities of the Snyder Filter.
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Q, Performance Parameter
X Y
5260 (e !
5.8 0.25
5.0 16

Table 1. Test Cases for Binomial Method
(without dark current)

L, Performance Parameter
X ¥
5.0 OR5
5@ 1.0
5:0 5.0
5e0 10 .0

0.5

. 1.0
5.0

10.0

07515 5.0
1100)0] Bl
15.0 5+0
20.0 50
05 10
10.0 1.0
L5 0 1.0
20.0 1.0

Table 2. Test Cases for Conditional Method
(without dark current)
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IV Results

This chapter contains results from the Monte Carlo simulation.
The simulation will indicate how well the actual performance can
be described, when compared to the upper and lower bounds. Thus,
various values on the set of parameters, derived from the bounds,
are used to determine which bound is closer to actual performance.
The bounds are valid only when the measurement is perfect (i.e.,
there are no dark or background noise events). When dark current
is included in the simulation, the results should show the degree
of degradation in filter performance. Finally, to compensate for
the effects of dark current and to improve tracking performance,

different methods 1in changing the filter structure are exploited.

Mean and Variance Convergence

To determine the appropriate number of sample runs, two
plots are generated. One plot shows the sample mean error versus
the number of runs, and the other plot shows the sample variance
of error process versus the number of runs. These plots are shown
in Fig. (11) for the Binomial Method. On each of the two plots
are four curves corresponding to four arbitrary time points
(as indicated in the figure) during the simulation time,
By the weak law of large numbers, the mean and variance of the
error process should converge to a steady value such that the
variance or mean of the error process does not change much in
magnitude with each addition of sample runs. Based on this
reasoning and the results from the plots, fifty sample runs are
selected. This number of runs will also be used in the conditional

method. However, it does not appear that fifty runs are sufficient
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to ensure convergence for all the test cases listed in Tables

1l and 2. That is, the performance parameters, X and Y, which are

defined in Chapter II as

nIO/§1'r'
X = ( —g—) (%7,)A average number of electrons
o occurring in one-half the
coherence time of spot's
dynamics (Ad=0) (63)
and
2
o
Y = —%— A spot's jitter normalized by the square of
e} the beam width (64)

have different values. The plots shown in Fig. (12) provide

an additional illustration of confidence in the sample variances.
They are plots of the variances of the error process (calculated
from sample statistics) for different numbers of sample runs.

On the true variance curves are symbols, denoted as "x", to
distinguish from the filter variance curve. Along with the curves
are the upper and lower bound on MSE for the given set of parameters
X and Y. These plots show that as the number of simulation runs
increases, the fluctuations of the true and filter variances
decrease. The plots also indicate that the fluctuations should
settle to a value that is between the upper and lower bounds (as
expected). Hence, the number of runs indicate the amount of
confidence that the sample and average filter sample wriances
approach the corresponding true variances. Although fifty
simulation runs may not be appropriate for all the test cases,

it does provide an indication of filter performance.
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Binomial Method (without dark current)

For the Binomial Method, it was mentioned in the previous
chapter that simultaneous events can be generated at the sample
period, At. This situation would occur often if the observation
area, AtAL, is notsufficiently small. . In addition, a low rate
function, A(t,r), is selected to observe the propagation of
the conditional mean and variance of the Snyder Filter and
to reduce the amount of computer resources hy this method. During
this part of the study, it 1s found that simultaneous events did
occur even for a rate function of 10 events per second with a
sample period of 0.01 second. For X=5, simultaneous events
occurred on the average of two to three times per sample run.

To avoid this problem, a software routine is developed to randomly
pick one of two simultaneous events. Note that this routine
ruins the statistical properties of the point process.

Figs. (13a, 1ll4a) and (13b, 1l4b) are plots of the sample
error and sample filter variance, respectively, for the parameters
X=5 and Y=1. Note on the time axis of each plot are the event times.
In Figs. (13a) and (ll4a), the errors decrease as events appear
frequently in time (as expected). Similarly, in Figs. (13b) and
(14p), the conditional variance is updated at the event times,
otherwise the variance grows in time when an event 1is not observed.
Note, the filter variance is "driven" to a smaller value as more
events appear frequently in time. If the filter does not observe
many measurements, the filter will weigh the next measurement
heavily,dviving the filter variance to a lower value. If many

previous measurements appear frequently in time, this implies
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a smaller filter growth in the variance, and the next measurement
will have a lower weighting.

For this research, the coherence time, Ega of the spot
is one second; for X=5, the term %%3/5? o in Eq. (63) is equal
to 10 events per second. Thils is the average rate function of
the Gaussian spot, after integrating Ag(t,r), defined in Eq. (14),
over the detector length which approximates an infinite detector
length with respect to the Gaussian beam. It is well known for
a polisson process that the mean and variance of the counting
process N(t), defined in Appendix A, are respectively
E[N(t)] = fzjrg A(a,8)dadg and VAR[N(t)] = erg A(a,8)dads. Tt

then follows for T=4 that Ag(t,r) can be expressed as

nlovzm _(r-X(£))°
A (t,r) = —9_ u 0][.—_1— exp(—"—)
g nf‘o Verm o 202
o 2,
e, exp(-(l‘ ’é‘(tl) (64)
2m O 20

so that E[N(t)]=40 events with standard deviation of 6.3 events.
In Figs. (13) and (14), the number of events for this particular
case are 34 and 36 events, respectively. Also, in these sample
runs, simultaneous events did not occur. To the second moment
level, these results indicate some validity in the Binomial
Method in generating the point process observations in time and
space.

Finally, the test cases for this method are plotted in

Figs. (15) through (17); note the different scales on each plot.

As expected, increasing Y (the spot's jitter normalized
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by the square of the beam width) increases the error variances —
implying poorer performance. Even when the filter is initialized
with its state estimate not equal to the true position of

maximum intensity (i.e., initialize from non-zero initial conditions),

the plot in Fig. (18) shows that the error process is zero-mean.

This is expected since the conditional estimate of §(t) is unbiased

and x(t) has zero mean.

Conditional Method (without dark current)

Shown in Fig. (19) is a sample of the error process and
the filter variance generated by the Snyder Filter for the set
of parameters, X=20 and Y=1. From these plots, it is evident
that the measurements of event locations at the event times
are importanrt in minimizing the filter's error and uncertainty.
As shown in Fig. (19a), the errors are within one beam width;
and in Fig. (19b), there is little filter variance growth
as events appear frequently in time (as seen in the Binomial
Method).

For the test cases in Table 2, it is desirable to choose
values of the sample and average filter variances at selected
time points. For each case, these variance points are plotted
with the upper and lower bound curves. However, it was noted
earlier that there are fluctuations in the variances which make
it difficult to select these points. A "time-average" technique
is used to select and to plot these points easily. This
technique is depicted in Fig. (20). 1In this case, a fixed time

interval, that 1s chosen to be much greater than the sample period,

contains time points that are equally spaced. Corresponding
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h(t)

| (t,-t; )A fixed time interval

t t

1 3 2 2

Figure 20 "Time-average" Technique (h(t) denotes time
history of either true or filter variance calculated
from sample statistics)
to each time point are the values of the variances. These values
are then summed, and the resulting sum is divided by the number
of points in that fixed interval. This final value will then
be used to denote the value of the variance at the midpoint of
the fixed time interval. This time interval "runs" across the |
time axis to calculate these "time-average" values until the end
of the observation time, T.

With this technique, the sample and average filter variances
are listed in Table 3 at the time point, tj = 1.5 second. These
values are plotted with the upper and lower bound curves in
Figs. (21). The time point, tj = 1.5 second, 1is chosen after
examining the plots, similar to plots in Fig. (22), for each
case which indicates steady-state is reached. Note that the values

of the true and filter variances are close to the upper bounds’

which seems reasonable, since the values of X=1, X=5, Y=1, and

Y=5 are relatively poor conditions for good tracking performance.
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Performance Normalized Normalized
Parameter Bounds on MSE Simulation Values
e e e Se——— —
X v Py p¥ True Filter
;g ;5 Variance Variance
5.0 0.5 0.232 0.250 0.233 0.251
5«0 150 0.358 0.408 0.388 0.406
5.0 5.0 0.905 1305 1.340 1.270
540 10.0 1.320 2.240 2.370 2.180
1.0 0.5 0.366 0.390 0.340 0.389
1.0 150 0.618 O O 0.621 8703
1.0 5.0 1.790 2.870 2.570 2.845
1.6 10.0 2.900 5.420 4.900 5.380
(05 5.0 2.320 3.590 4,200 3.490
10.0 5%.0 0.659 0.880 0.935 0.854
150 50 0.545 0.698 0.670 0.654
20.0 5.0 0.496 0.542 0.592 0.558
0.5 1.0 0.732 0.816 0.898 0.803 i
10.0 150 0. 270 0.302 0.319 0.298
150 i 0.227 0.250 0.243 0.242
20.0 1.0 0.200 0.218 0.222 0.212

Table 3. Test Cases for Conditional Method
(without dark current)

95




s pS°+vt ns-al 88701 SIS ou.o sy 0s -’ 030
L ) ] 1 H L ) \
P Ty - )
[= 8
i 3}
H ve o =
| | 5 18
o 5 15
: )] >
e T 1
H eoa ()]
P .M.u
et o4
ket 19 | B
: ]
[ 3 Ay =
i o |
m reCY) o
| 5 1 -3 PR Q
! =e iR
| M B m
; { O
i :
{ 5 T 0
i : =< 0
\.\l\l\ mﬁ.ﬂ.. ”MW - o]
e o
\ oy 3 o
1 o iy
_ - s : 3
$= % E
“ o
{ = =
ITNHLINGEA  NOYY] © -
341 40 : i N
2NTYA G2133X3 INIOd VIVA @ONVI¥VA #3114 - O "
3HL 40 sonnca INIOd VIVA HONVINVA FOMI - ' 5
Y307 oMY ¥34EN 0
JA¥AD TVOILTYOHHL - — =
ke
rf st

96




&S
os ¢t s ¢l 0S°Qt C

2]
Q
w
_
:i:
o
vl
\*-
k)
$2]
N
Q
(Lg]
.
o

1=
HON

NS
c
Ej

11YH

\\ _’kr ~d
™
-on

a

&
¥oUY3

97

Figure 21b Simulation Values of True and Filter Variances
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Figure 22b VARIANCE CONVERGENCE
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Figure 22d X-POSITION VARIANCES
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That is, these results indicate that actual performance can
be described by the upper bound on MSE.

Two issues should be of concern when plotting these values.
One is that the filter performance must be in steady state, and
the other is that the number of sample runs in the simulation
must be large enough to yield some confidence of inferring
information from the error variance generated by either sample
statistics or averaging of filter outputs. Hence, a particular
case ls chosen to extend the simulation time to 40 seconds; the
results in Fig. (23) indicate that steady state is reached in
one second. Then the issue again 1s of confidence in the
values of the true variances which can be increased by performing
more simulation runs; because of time constraints, fifty simula-
tions remain unchanged. To illustrate that the number of simula-
tion runs is not appropriate in all cases, refer to plots in
Fig. (22). For this particular case, X=20 and Y=1, the mean error
is not converging to a definite value.

In summary, it appears that the upper bound describes the
actual performance of the Snyder Filter for few signal counts

per coherence time.

Conditional Method (with dark current)

Particular cases were selected to examine the effects of
dark current and to determine the filter's sensitivity in
performance as it processes these noise measurements. The
results of this analysis is that, for average signal-to-noise counts
ratio of 500, the filter was very sensitive to dark distributed

measurements. The results are plotted in Figs. (24) through
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(28) for different cases, as indicated by the figures. From
these plots, it is clearly shown that the filter performs

poorly if it processes even one dark measurement. Note that

the plots in these figures are not close to ensemble average
statistics. That is, to obtain the sample variance, it will
require a substantial amount of additional sample runs. Again,
the confidence in the sample statistics is an issue. On the
other hand, these results do provide insight into the sensitivity
of the Synder Filter to dark measurements. However, to evaluate
individual effects of dark current, Figs. (24a, 24b), (25a, 25b),
(26a, 26b), and (28a, 28b) are used to determine which sample
runs contain dark measurements. Thus, Figs. (29a, 30a, 3la, 32a)
and (29b, 30b, 31lb,. 32b) are plots of the sample errors and sample
filter variance, respectively. Figs. (29) and (30) are for average
signal-to-noise counts ratio of 500 and 50, respectively, for

X=5 and Y=1. Similarly, Figs.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>