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Abstract

A problem is considered to determine the tracking

capabilities~~C ~in estimator , app lied in optical sensing.

The estimator tracks the centroid of a one—dimensional

Gaussian—shaped intensity based on time—space point process

measurements. The centroid assumes to move dynamically

as a First Order Gauss—Markov process. Filter performance

is described by steady—state upper and lower bounds on

mean—square—error (MSE ) which are evaluated as a function

of two physica]•ly motivated parameters : average number of

photons detected in a coherence time of c entroid dynamics

and mean square value of centroid jitt .-r normalized by the

square of the beam width. The parameters estab ]i~ h regions

of operations where upper and lower bounds converge to the

actual MSE. Results from the Monte Carlo simulation demonstrates —

the bounds ’ usefulness. Noise measurement s f’rom dark current

or background radiation are include-i in the  simulation .

Results show that the filter is very sensitive to these

measurements , resulting in very poor tracking. P~5 hoc

methods of filter tuning and residual monitoring are

employed to improve tracking performance; results indicate

that filter performance can be improved substantially

through residual monitoring .

v~ i
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Fundamental L imi ta t ions
of Opt ical Trackers

I. Introduction

Alignment problems exist in any 3ptical system . To image

a point object over large distances requires aligning an optical

receiver with the object .  When the object is within the rece iver ’s

field—of—view , an image is formed on the photodetector surface.

This is shown in Fig. (1). Because the optical receiver has a

relatively narrow field—of—view , aligning t he receiver becomes

di f f icul t. Furthermore , because of variations of index of

refract ion in the atmosphere and other outside disturbances

that  cause.. relative motion between receiver and object , active

alignment is necessary . Thus, cpt ica l trackers are nee ded to

keep the object within the rece iver ’s field—of—view.

Background

Several methods are current ly being developed in the Air

Force to track the target in presence of several d is turbances .

The disturbances inc lude t arget motion , mirror vibrat ion , beam

j i t t e r, stochastic e f f e c t s  of the atmosphere , and other processes

that can cause relative motion between the b eam and target.

Method of Tracking. One scheme to accomplish this tracking

task uses a direct detection optical receiver to determine the

arrival angle of the incident radiation at the receiver. The

arrival angle is converted (through opt ics)  into a position of

a spot of light on the active surface of a photodetector array .

Once this angle arrival is determined , it can be used to

generate error signals to other t racking components tr~ correct

1
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any offset alignment between the receiver and target that

may occur. Because of disturbances that cause relative motion

between the beam and target, the beam ’s arrival angle var ies

at the optical receiver. Thus, var iat ions of arr iva l angle are

therefore converted into variations of the spot ’s position on

the detector surface. The spot of light moves dynamically on

the surface , releasing photoelectrons statistically distributed

about the spot ’s positi.on of maximum intensity.

A minimum-mean-square estimator which will be known as

the Snyder Filter est imates t he pos it ion of max imum intens ity

based on the observations of the photoelectrons (Ref. 1). These

photoelectrons are measurement data to the filter in order to

obtain an estimate of the spot ’s current position. Here,

t he Snyder Filter assumes that t he measurement s onl y inclu de the

target’s signal intensity. However, other disturbances also

cause photoelectrons to be released from the surface . These

disturbances which degrade the Snyder Filter ’s track ing

capability are cause d by back groun d radiat ion from t he sky, moon ,

sun , stars , and other sources , and dark current present in the

absence of photoexc itat ion on the photo detector . Each of t he

noise sources are discussed in the next chapter. It should be

note d, however , that thermal no ise is ignore d for photo detecto rs

with high gain, such as a photomu lt iplier or avalanche photo diode .

Quantum Effects. At higher frequences, t he quantum nature

of light is an important cons iderat ion in many opt ical measure-

ment systems which use photon or quantum detectors to detect

these optical fields. In this case , light can be descr ibed as

• 3 
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a collection of discrete packets of energy called photons .

With a given probability, eac h photon conv erts into an electron .

-
• 

These photoelectrons , distributed in time and space, are

released from the photodetector surface. Because of these quantum

ef fects in the detect ion process , especially when the field

intens ity is low at the rece iver ’s input , there is an unc erta inty

associated with estimating the spot ’s pos it ion of max imum

intensity based on the sensed photoelectrons . Theoretically ,

both the quantum nature of light and the nature of the detect ion

process fundamentally limit the tracking capability of optical

trackers (in other words , the ability to detect the signal

photons is the fundamental limit).

Because of the quantum effects associated in the detection

process , t he stat ist ics of the receiver ’s output process must

be described accurately ; the Sny der Filter is base d on these

s ta t is t ics .  Experimental  evidence indicates that the s ta t i s t i cs

of the output can be modelled as a random point process In time

and space conditioned on knowing the optical field incident

on the receiver (Re f .  2 ) .  A random point process by def in i t ion

is “a mathematical model to describe a physical phenomenon

characterized by highly localized events distributed randomly
‘I

in a continuum (Ref .  3:2). The discrete event s are the photo-

electrons or photoconvers ions distr ibute d randomly on the photo-

detector surface. Associated with each event are the temporal

and spatial location of the photoelectron . Here, the event

location is used as distributed measurement or data,

14 
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in order to estimate the current position of maximum intensity.

• To summarize, t he point process mo del descr ibes t he fun damental

uncertainty of photon-to-electron conversion In the measure-

ment or detection process.

Measurement Models (Gauss ian versus Po int Process

Descriptions). To contrast the point process measurement

description with other noise models, several Gauss ian

descr iptions mo dell ing different ty pes of no ise are briefly

presente d . A stat ionary white no ise is one mo del which descr ibes

noise as having a power spectral density of’ infinite bandwidth ,

having energy at all frequencies. Also, infinite bandwidth

implies that the no ise samp les are uncorre late d in t ime.

Although no no ise has inf inite bandw idth , the white noise model

does provide a reasonable description for wideband noise having

a wider bandpas s t han the phys ical system of interest . In other

words , the wideband noise appears white with respect to the

system . In many instances, however, noises are not well modelled

as uncorrelated in time (e.g., bandlim ite d no Ise ) , and other

models must be exploited. For such causes, a Gaussian white

noise, driving the input of a small linear system , can

generate an out put that duplicates or closely approx imates t he

second order characteristics of a given noise source. The

linear system , or “shaping filter”, dup licates the secon d or der

statistics of the actual noise by generating a Gaussian process

F with the same second order statistics. For example , the

statistics of a zero—mean exponentially time—correlated (First

Order Markov) noise can be duplicated by taking the output

5 
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statistics of a first order lag driven by white—Gaussian noise

of zero mean . This model approximates a variety of experimentally

observed random behavior that have wide or narrow bandwidths

with a flat power spectral density. Another noise model is the

Second Order Markov process model which describes phenomena

having vibration, bending or any other periodic random charac-

teristics. This process can be generated as the output of a

secon d or der syst em driven by white no ise.

The different mo dels that were just des cribed t ypicall y

model noise as due to a number of sources that are always

present (or cont inuous ) in a dynam ics system or mea surement

device. By the C~nt ral Limit Theorem of Stat istics , when a

number of random variables are added together, the sum of these

random variables has a probability distribution which is nearly

Gauss ian, regardless of the shape of the individual densities.

The Gaussian models are exploited in many cases where macro—

scoptic phenomenon are observed. On the other hand, the

quantum e f f ec t s  are observed as a microsco pic interact ion

between the photons in the incident field and the atoms on the

photo detector surface. The resu lt of this discrete interac tion

is the pro babilit y of releas ing a photoelectron at a part icular

time and location from the photodetector array. Thus, var ious

disturbances affecting a system or measurement device cannot

always be described as having additive corrupted noise with

Gaussian statistics. To incorporate the quantum effects or

uncertainty, the random point process description is used to

model the measurement process from the optical receiver under

limited operations.

L _  

6
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Assumptions of the Snyder Filter. This report assumes

that the point obj~ ct is within the field-of—view of the

optical receiver and is imaged as a single spot on the photo-

detector array . In other words, the tracker has acquired the

tar get and, hence, the tracker is said to be In “fine—tracking”

mode. As mentioned previously, t he solut ion of est imat ing t he

position of maximum intens ity base d on release d photoe lectrons

is the Snyder Filter. For this research , the Sny der Filter is

implemented in open—loop configuration (i.e., no control or

feedback input). The Snyder Filter models the spot as having

a Gaussian—shaped intensi ty profi le  and the spot d r i f t s

dynamically as a First Order Gauss—Markov process. These

characterist ics and the Sny der Filter are discussed in detail

in the next chapter.

In addition to the above assum pt ions , this estimator

assumes its measurement s are from a photodetector array capable

of measuring the “exact” temporal and spatial component of the

photoelectron . This idealization places a limit in tracking

capabilities which can be accomplished with photodetectors

arrays of f inite resolution , such as a quadrant photomultiplier.

However , the Snyder Filter assumes that its measurement data

contain no extraneous (or noise) measurements. That is, photo-

electrons are not released due to background radiation or dark

current . This report investigates the tracking performance of

the Snyder Filter based on observations of the sensed photo-

electrons as Input data.

7
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Prob lem

The problem is to establish the performance capabilities

of the Snyder Filter . In this case , the issue Is whether this

minimum mean-square-error estimator commits errors small enough

to yield good tracking . Thus, the prob lem is to describe the

error perfcr mance of the Sny der Filter in or der to make t his

evaluation. Once the performance description is established

(under t he assum pt ions of no back groun d or dark current ), an

additional objective is to determine the sensitivity of the

Snyder Filter when no is e data is presente d to t he f ilter as

input. To improve filter performance in the presence of the

above disturbances, ad hoc methods which alter the filter

structure will be investigated.

Overv iew and Ap proac h

Chapter II descr ibes the mo dels emp loye d in the trac king

scheme and establishes conditions in tracking performance under

which the Snyder Filter is evaluated. The chapter begins by

describing the model of the direct detection optical receiver

and its detection process. In this section, the sem iclass ical

approac h is use d to descr ibe the photo detect ion proc ess .  The

results of this analysis are used to derive the statistics of

the output process from the optical receiver (Appendix A).

Following this discussion is a description of the detector

noIse which affects the output of the receiver .

Following the model of the optical receiver is a section

on the Snyder Filter. A characterization of the spot ’s

8
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Intensity profile and its dynamics are given. Following the

subsection is a portrayal of position—sensitive measurements

ava ilab le to t he Sny der Filter. As note d earl ier , these

measurements cons ist of po int p rocess photoconvers ions in t ime

and space. Conc1udir~g the section are the filter equations

of the Snyder Filter.

Chapter II finally concludes with a description of

performance parameters to describe the mean—square—error

(MSE) of the Snyder Filter. In this case , performance

descriptions of estimators and controllers that employ point

process observations in time and space are available in recent

literature (Ref. 4). However, this report addresses only the

estimation performance of the Snyder Filter. Also , the

Snyder Filter is a minimum mean-square—error (MMSE ) estimator ,

under ideal conditions (i.e., input data from background

radiat ion or dark current are not Inclu ded ) .  The MSE, also

denoted as E(P(t)1, is use d to determine whether the error s

coinmited by the Snyder Filter are sufficiently small for

tracking purposes. However, the MSE cannot be evaluate d in

closed form; thus , upper and lower bounds are derived rather

than solving for MSE. In Appendix B, the mo dels and con dit ions

of the Snyder Filter are applied in the upper and lower bounds.

In the appendix , two physically motivated parameters are

defined from these bounds to establish conditions under which

the Snyder Filter yeilds good tracking : the average number

of photoelectrons in a coherence time of the spot ’s

dynamics and the mean square value of the spot ’s jitter

9



normalized to the square of the beamwidth. These parameters

establish regions of operations where the upper and lower

bounds converge to the actual MSE (i.e., bounds are identical).

The parameters are discussed in detail at the end of

Chapter II. Note that the performance measures themselves

assume perfect data; that is, these measures of performance

are not valid for cases which include data from dark current

and background radiation .

To demonstrat e the track ing performance prov ided by t he

above parameters and to determ ine t he f ilter ’s sensi tivity

to noise measurements, a Monte Carlo simulation and performance

analysis is performed on a digital computer. Chapter III develops

algorithms to simulate the models in the computer required to

perform this study . The chapter begins with a section on simu-

lating the spot ’s dynamics on the detector surface and the

required noise generators are discussed next . Following these

sections are time—space point process generators. Two methods

are used to generate these data measurements: one, the Binom ial

Metho d, uses the incremental definition of the point—process ,

and the other , t he Con dit ional Met hod, involves Bayes ’ rule

and the statistics of the output of the optical receiver. The

Binomial Method involves a threshold test to declare an event

(photoconversion) at each infinitesimal area on the detector

surface. The Conditional Method calls a uniform random variable

di str ibute d between zero and one from the computer system and

transforms it into another random variable with a desired

probability distribution. This transformed variable is a

10 
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realization of either the time or space coordinates associated

with the photoconversion process. After describing these two

metho ds , the t heoret ical and pract ica l as pects of imp lement ing

each method in the computer are discussed. Concluding

Chapter III Is the performance analysis which characterizes the

error process generated by the Snyder Filter. Given in this

sect ion are t he samp le s tatistics , plots, and test cases required

to evaluate filter performance. Assuming perfect measurements

(i.e., no bac kgroun d or dark current events ) , t he actual per-

formance of the Snyder Filter is compared with the upper and

lower bounds on MSE. This analysis should indicate where the

actual performance lies with respect to the bounds. Then

noise measurement s are include d in the analys is to determ ine

the filter sensItivity to these measurements. Finally , ad hoc

methods of residual monitoring and filter tuning are employed

to enhance tracking performance in the presence of’ the noise

measurements.

Chapter IV contains results from the simulation . For

perfect measurements , the simulat ion results indicat e the useful -

ness of the bounds in describing the actual performance of the

Snyder Filter.  Also , these results show for low signal events

per coherence time that the upper bound describes the actual

performance. When measurements from background radiation or

dark current are included in the simulation , the estimator

was found to be ~uite sensitive to these n3ise measurements ,

resulting in very poor tracking . Finally, it was found that

11 
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tracking performance can be improved subs tan t ia l ly  by an

ad hoc procedure called residual monitoring .

The last chapter is a summary of conclus ions and

recommendations for fur ther  research.

,

12
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II. The Snyder Filter and Its Open Loop
Estimation Performance

The Snyder Filter is a recursive data processing

algorithm . This algorithm employs point process observations

in time and space to estimate optimally the position of maximum

intensity on a detector array of infinitesimally fine partition.

However , its est imate is only as good as the model describing

the output statistics of the photodetector array (the key

component in the optical receiver). Therefore, the model of

the direct detection optical receiver and its detection

• process deserves description. The modelling will involve a

statistical description of the receiver ’s output . Following

the receiver model, the Snyder Filter is discussed. Concluding

the chapter is the tracking performance by which this estimator

is to be judged using upper and lower bounds on MSE. For this

case, two parameters are defined to describe the actual per-

formance of the Snyder Filter. The concepts are presented

In one spatial dimension.

Optical Receiver Model

There are two classes of optical ‘- ‘ceivers , direct

detection receivers and heterodyning i ’ e  ivers . The difference

between these two receivers is that the former operates to

detect the instantaneous power in the collected field at

receiver ’s input and the latter operates to detect a combined

field formed by mixing a locally generated field with the

received field . This study is concerned with direct

13
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detection receivers.

General Description. The direct detection receiver is

also known as a noncoherent detector which is shown in Fig.

2. The receiver consists of a lens system and a photo-

detector . The lens system, als o referre d to as the front

end of the rece iver , performs two functions . One Is to

focus the opt ical f ield onto t he photodetector surface at

a focal point . Another function is to provide some degree of

reducing the intensity of the background noise (i.e., radia-

tion from the sun or sky) prior to photodetection . The photo—

dete ctor t hen convert s the inc ident f ield into an electr ical

signal.

Photodetectors. Photodetectors consist of two types:

photon and thermal detectors. Because thermal detectors have

a slower response for the frequencies of interest , t hey are

not considered further (Ref. 5 : 8 7 ) .  On the other hand , photon

or quantom detectors respond quickly at the optical frequencies.

An excellent discussion on quantum detectors , their description ,

performance , and character istics , is given in Refs. 5 :87 and

6:298 . However, of all the available types of detectors using

photosensit ive mater ials , all behave according to quantum—

mechanical principles (Ref. 2:6). Figure 3 portrays the photo—

detector model. These detectors use photosensitive materials

to produce electrical signals in response to changes in the

input field intensity. The signals are electrons, release d

from the photodetector surface, and they are collecte d at

the anode by an electric field. This collection and movement

14

--



Lens Spatial 
_____

Fil ter

I Photodetector
Received Focused Array
Field Field I

Frequency
Filter

Figure 2. Direct Det ection Optical Rece iver
(c opied from R e f .  2 : 5 )

of charge at the anode creates an output current . Because

the conversion of optical field to electron flow and the

arrival times of electrons at the anode are probabilistic , the

observe d out put current is a random process in t ime and space

(Ref. 2:39). This fact is true even if the input field is

deterministic. In short, the detect ion operat ion inherent ly

induces a randomness in the detector output .

To model the relationship between the optical field and

the number of photoelectrons released involves a treatment

in quantum mechanics (Ref. 3). This treatment has two

approaches to describe the above phenomenon. One is to

descr ibe the f ield as a collect ion of discrete packets of

energy called photons. Here,each photon pro duces an electron

15
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______________________ Res istor

Figure 3. Photodetector Model
(copied from Ref. 2:38)

at the detector surface with a given probability. This

probability of conversion is termed the quantum efficiency,

~~~~. The secon d metho d, referred to as a sem iclass ica l ana lys is

(a direct result of quantum—mechanical considerations), treats

the focussed field as a wave ,and it incorporates a statistical

relation to describe the interact ion between the optical wave

and the detector  surface.  The second method is preferred for

its simplicity and the added insight it provides. An outline

of the second approach is found in Ref. 2 and a detailed

description is given in Ref. 7 . Since a detailed description

of the semiclassical analysis is quite lengthy , onl y results

of this semiclassical approach are given. These results are •
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as follows : in a short infinitesimal time interval , ~t,

t he release of an electron from an atom at a differentia l

lenght M on the detector is proprotional to the field

intens it y over t he observa tion ar ea, ~~~~ That is ,

lone electron released 1
~ In a length ~~ during~ y I ( t ,r )~~t~~L ( 1)

Lthe t ime L~t J

where P[-.] denotes probability of, y is a proportionality

constant , I (t ,r )  denotes the f ie ld  intensi ty at time t and

point r on t he detector surface , and A2. is located at r.

Other results from this app roach are as fo llows:

~
, 

~~~~~~~~~~~~~~~~~~~~~~~ l—yI (t,r )At~~ (2)

A&ât÷0

more than one electroni
p released from 

~~ I 0 (3)
during ~t J

~ 9. ~t +0

Along with these results Is an assumption that the release of

electrons from disjoint observation areas ~tt i 2, are t reated

as independent events. This assumption and Eqs (1) through

(3) mathematIcally model the photodetecting surface.

Detector Noise. With no noise sources , the output

current is given by

i(t,r) = q~~~ 6(t_t~ )~~(r_r~) (14)

17 
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where q is the electronic charge , t k is the kth event

arrival t ime , rk is the correspon ding event locat ion , r

denotes a pos ition on the detec tor surface , n is the number

of event s in an observa tion area , and o(t) and cS (r) are

delta functions. Eq. (14) assumes that the detector has infinite

bandwidth (e.g., a photomultiplier or avalanche photodiode

f i t s  closely to this  desc r ip t ion) .  The relat ion also indicates

that the curr ent is a random process since n , tk~ and rk are

random variables.

However , the imperfection of the optical receiver and

background radiation also a f f ec t  the output current . In

general , the output current from the photodetector array

at (t ,r )  can be represented as

i.(t,r) = i5(t ,r) + ib (t ,r) + id (t ,r )  + i
~h

(t ,r ) (5)

where i5 (t ,r )  is due to signal current , ib (t ,r )  is current

due to backgroun d no ise, id(t,r )  is due to dark current , and

ith (t ,r) is current due to therma l no ise. The dark current

Is a result of current flowing in absence of photoexci ta t ion.

Also , the dark current is well modelled as a point process

(Ref. 5:148) with a rate function that is constant (I.e.,

X~~
(t ,r)  = is termed homogeneous (Ref .  3 : 5 1 4 ) ) .  Further ,

the background noise can be associated with a point process

in nightt ime operation , and its rate funct ion is homogeneous

provided that three conditions are sat isf ied: (1) background

electric field has zero mean, ( 2) backgroun d intens ity is

constant , and ( 3 )  the product between the ensemble average

18 

• - -  —--—~~~~--~~~~~~ - ---- - - - -~~~~ —~~~~~~~• - - - -_ - ~~~~--~~--“--—- -



— - -------
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i~~~...

of the number of electrons , nb , and the bandwidth  of the back—
1ground radiation , — 
, is much less than 1. The last condition ,Tb

nbtb <<l , is known as low photon coherenc e wh ich is a val id

approx imat ion for nightt ime operation . For conven ience , the

dark current in th is stu dy will be the combined ef fec t s  due

to the detector dark current and due to backgroun d ra diat ion.

Finally, the thermal or Johnson no ise current i
~h

(t ,r )  is

caused by thermal f luc tua t ions  of electrons in a resistor .

It is modelled as a white Gaussian random process (Ref .  5 :1 145) .

To describe the output current in Eq. (5) stat ist ical ly

is very difficult . It is difficult because the output current

is a mixed process (i.e., a sum of a discrete process (Point—

Process model) and a continuous process (Gaussian model)).

Hence , limitirg cases must be considered . This study will

ignore the current due to thermal noise since one of the objec—

tives of this study is to observe the quantum effects of dark

current in filter performance. Also , ii’ the detector is a

photomultiplier or avalanche photodiode with high gain, one

F can assume for low input intensity that the optical receiver

is operating in the point process regime , and thus , thermal

noise is ignored.

Photodetector  S ta t i s t ics .  It is assumed in the detector

model that the electrons arriving at the anode of each detector

of an array are independent . Then the output statistics of

each detector  can be treated independently of one another.

One needs the statistics describing the number of events, n,

the ordered event t imes , tk’S~ and~
ordered event locations ,

19
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rk s, to characterize the detector output completely. Thus,

the joint  densi ty of these variables Is needed.  With the

results given In Eqs.  ( 1) through (3) , the above joint

density of the photodetector  can be derived . Before stating

the results, it is convenient to define a complex envelope

which characterizes (in part ) the focussed or received field

(i.e., a classical description). Let u(t,r )  denote the sca lar

optical f ield . Then the c omplex enve lope U ( t ,r).of’ the scalar

• f ield is defined implicit ly as

u( t ,r )  = Re(U (t ,r ) e~ 2~~ t ) (6)

where R(’) denotes the “real part of” the quantity in paren-

thesis, and f 0 denotes the carrier frequency. The intensity

of the f ield is represented as

I(t ,r )  = 
~ ~~~~~~~~~~~ 

(7)

where I ’  I denotes the modulus of the complex field , and Zm
denotes the impedance of’ the medium (Ref. 2:10).

With the definition of a complex envelope and using

Eqs. (6) and (7), the output of the photo detector , conditioned

on knowing the opt ical field , can be modelled as a point process

(Ref. 2) with rate function (in one dimension)

A ( t ,r) = y~
.— f 1j U (t ,r ) 1 2 dL + A d ( 8)

----~~~~~~~~~~~~~~~~

due to signal due to dark current
( X d (t ,r) =

20
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where n is quantum efficiency, h is Planc k ’ s constan t, f0 is

the optical signal frequency, U5(t ,r) is the complex envelope

of the scalar f ield inc ident on the detector surface at ( t,r) ,

£ is the length of detector  array , and dP. is the d i f f e ren tIa l

detector length. The integral in Eq. (8) represents the

total opt ical power depos ite d by the beam on the detector

surface and the ener gy of a photon is hf 0. Also , recal l from

t he prev ious sect ion t hat t he homogen eous dark rate funct ion

is due to the com bine d effects of bac kgroun d radiation (of

zero mean electric field) satisfying low photon coherence and

dark current result ing from imperf ect ion of the photo detector.

This dark rate funct ion , denoted as which is assumed to

be independent in time and space can be expressed as

Xd = iTç S L E [IUb (t ,r)t 2]dZ + (9)

due to backgroun d due to
radiation photodetector

Note that in Eq. (8) and (9) the optical receiver assumes to

be operating at the point—process regime. Also , the f irst

term at the right—hand side of Eq. (9) is a constant rate

funct ion, since this study assumes a constant background

intensity. In other words, the dark current , A d~ is

independent of time and space. Finally with Eqs. (1) through

(3), the output statistics of’ the opti.cal receiver conditioned

on knowing the input field is found in Appendix A as

21 
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f[
~
tk
},{rk}, n] = exp(—f 9.f~ A (a ,

~~
)dad

~
)
~~~~

A ( t k,rk
) (10)

where {tk} denotes set of or dere d event t imes , (rk} denotes the

corres pon ding set of event locat ions , 9. is detector length ,

n is the number of events in a time interval [0,T] on 9.. Again ,

this joint density completely characterizes the statistical

output of the optical receiver.

The Snyder Filter

The prev ious sect ions descr ibed the stat ist ical mo del

of t he opt ical rece iver which is use d in the opt ical track ing

problem . The lens system of a receiver focusses the received

field on a detector surface at the focal plane. The array of

detectors responds to the received field which arrives at

various angles at the receiver. Because of random disturbances ,

the spot wanders randomly on the detector plane. Electrons

are released at a rate proportional to the light intensity,

given by Eq. (8). For the model upon which the Snyder Filter

is based , Ad is assumed to equal zero. The Snyder Filter

estimates the pos it ion of maximum intens ity on t he detector

plane in terms of these time—space photoelectrons. An outline

of its models and results will now follow specializing for

one spatial dimension.

Characterizat ion of Spot. The spot of’ light on the

detector surfac e is a diffract ion pattern focussed by the

receiver ’s lens. It is assumed that the spot of light has

a Gaussian—Intensity profile given by

22
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I(r ,x (t ) ,t )  = I0(t) exp [— .~.(~~~~~~~)
2

J (11)

where I0(t) is the maximum intensity, c(t) characterizes the

beam spread , and ~ (t )  is t he true locat ion of the spot

(i.e., the location at the centroid of the beam). For this

stu dy, I0(t) and a(t) are assumed to be static (i.e., I0
(t )  =

1a and a(t) = a). Figure 14 portrays this intensIty profile.

From the f igure , the beam width (or beam radius) in this

stu dy is def ine d as a po int from t he max imum intens ity, 10,
to a point in which the intensity is reduced to I0e~~

”2 
or

about 60.7% of the maximum intensity.

Characterization of Spot ’s Motion. The motion of the

spot ’s centroid is assumed to be modelled by the following

linear stochast ic different ial equat ion

dx(t) = F(•t )x (t ) + G(t )d~ ( t ) ;  x (t0) X~~ (12)

where f~(t ) ,  t~ 0 is a stan dard Wiener process , F(t ) is the

state coeff icient , and G(t) is the nOise input coefficient .

The spot ’s dynamics are governed by a number of disturbances.

The atmosphere is one such disturbance; characterized as an

inhomogeneous random optical channel (Ref. 9:16—26), the

atmosphere changes its index of refract ion due to temperature

variation. Because of the stochast ic nature of the atmos phere ,

and frequency at which the field propagates , the optical wave

interacts with the foreign particles in the atmosphere . One

consequence of this phenomenon is that the received field

causes var iat ions In the beam ’s arr iva l angle , causing the

spot to move randomly on the detector plane . PlatfQrrn

23
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Figure 14. Intensity Profile of Spot
in One—Dimension

vibration of the optical receiver is another disturbance which

causes the spot to drift . The important point is that any

rela lMve mot ion between object and re ceiver due to other

effects will result in the spot to drift dynamically on the

detector plane. However, it is not the pur pose of t his stu dy

to model accurately the motion of the spot , but to provide a

reasonable and simple model for digital simulation . A model

was develo ped to descr ibe t he dynamics of the target relat ive

to the receiver (Ref. 10:142). This model is a stationary

First Order Gauss—Markov process , the output of a first order

lag driven by white Gaussian noise of zero mean. This process

also describes a variety of phenomena having bandlimited

characteristics. Thus, th is mo del w ill be use d to descr ibe the

24
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dynamics of the spot. Another name for this process is an

exponentially time—correlated Gaussian process. Figure 5

portrays the properties of a First Order Markov Process. Two

parameters of interest to describe the output of the first

order lag are the coherence time 
~ C ’ 

and its mean squared

value ~~~~ The coherence t ime (or correlat ion t ime ) , describes

how fast the resulting output process, x(t), will vary in time .

The reciprocal of is viewed as the bandwidth of the distur-

bance process (i.e., turbulance plus other effects). Heuris-

tically, the spot ’s rms value of random displacements (or

spot ’s rms jitter), is a measure of how much the spot will

fluctuate about its mean position on the detector array .

Finally, the strength of a white Gaussian noise driving the

first  order lag is given as

E[w(t)w(t+tfl = Q~ (T) (13)

where Q = 
~
?-ax

2 (Ref. 9:4.77). The strength, Q, describes

how fast the Wiener Process or Brownian Motion , B(t), diverges

in mean square value from its initial condition of zero (Ref.

9: 14. 29)

Position—Sensitive Measurements. As mentioned earlier in

the report, these measurements consist of event locations

which provide information about the position of maximum

intensity. Assuming no dark current , the conversion rate

at the detector surface is modelled as

25 
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w(t) white noise of zero mean

w ( t ) J i  x ( t )

-

~~~~~

, I s
I 1 

_ _

a) Shaping Filter for First Order
Markov Process x ( t )

E[x (t)x (t+t)]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~

b) Autocorrela tion of Out put Process , x ( t )

PSD = 

2a 2/T
~ PSD

w
2

+(
1 

)
d

~~~~~~~~~~~~~~~~~~~~~~~~

c) Power Spectral Density (PSD) of x(t)
(
~~ Angular Frequency)

FIgure 5. Properties of a First Order Markov Process
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A Cr x(t)) = 
(flIO

/
~7c \1l e x p {

_1 (r x ( t ) ) 2}] (114)
g ‘ \hf 0 J Lv~7~ 

2o J

If the detector lengt h is suff ic iently large , t he quantity

in brackets , [- i] ,  in Eq. (l’4) integrates over the entire

detector length to a value very close to one. Note that Eq.

(114) is derived by substituting Eq. (11) as the signal intensity

in the first term of Eq. (8). The term ~ I0 /~~ a, represents

the average optical energy deposited on the detector by the

spot to re lease photoelectrons. The term hi0 represent s the

ener gy of a s ingle photon , characterizing the particle

nature of light of frequency f0. Then integrating Eq. (114)

both over time (with limits from 0 to T) and space (over

ent ire detector length), yields ~~~~ v’~~~a)T. This term
0

represents the ensemble average of the number of photons

detected at the output over the time—space observation area.

Recall that the data measurements are obtained from a photo-

detector array, ca pab le of measur ing the exact temporal and

spatial component of a photoelectron . With this idealization

the est imat or ’s performance , derived in Appendix B, places a

limit in performance which can be achieved with arrays of

finite resolution . In other words, a decrease In spatial

resolution should result in poorer performance. It is also

assumed that the detector array is large such that edge effects

of the spot ’ s intens ity prof ile , described as Gaussian—Shaped

can be ignored. A good “rule of thumb” is to have the detector

large such that the distance between the center of the spot

27
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and the edge of the detector array is at least six beam

widths. This is “good” because with respect to a Gaussian—

shaped beam, the above “rule of thumb” closely app rox imates

a detector of inf inite length. Also , by havin g the detector

length lar ge, edge effects may be ignored as the spot moves

dynamically even with large wanderings on the detector surface.

Snyder ’s Filter Equations. This subsection presents the

dynamical filter equations that incorporate point—process

observations to estimate the position of maximum intensity.

These equat ions , specialized for one—dimension state as follows:

dx(t) = F(t)x(t)dt + J9.K(t){r—H(t)x(t) N(.dtxd9.) (15)

dP(t) = F(t)P(.t ) dt + P( t ) F( t ) dt + G( t ) Q( t ) G( t ) dt

— f9..K(t)H(t)N (dtxdz) (16)

K(t) = P(t)H(t)[E( .t)P(t)H(•t) + R(t)]~~ (17)

x (t 0) = 0, P(t ~ ) = P 0 (init ial  condit ions at t0)( 18)

where x(t) is the conditional estimate of the spot ’s centroid

given the measurement data (I.e., event locat ions that are

random in time and space) , P(t) is the conditional error

var ianc e, H(t) is the measurement coefficient , K.(t) is the

f ilter gain, r is the location of the photoconversion from a

differentIal detector length dl. in the differential time

• dt , and N(dtxdL) = dN is the differential number of events

in the differential “space—time” observat ion area , dtxd9..

28 
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The filter equat ions , Eq. (15) through (18) are recursive

relat ion s, similar in form co the discrete—time measurement

Kalman—Bucy Filter. They differ in that the Snyder Filter

updates its estimate and uncerta int y at t he event t imes

whereas the Ka1man—~ucy Filter updat es at predeterm ine d t imes .

The mean and the variance of the conditional probability

density function which describes the error in the estimate

of the spot ’s centrold are propagated forward from the time

period of the kth photoconver sion t k~~ to t he t ime of t he

(k+l) st photoconvers ion , tk+l . Then the filter updates at

t ime t k+l~ by proce ss ing t he measurem ent at that t ime , to ach ieve

the est imate x (t k+1
+), where “ -.“ denotes before measurement

up date and “ +“ denotes after measurement update

It is conven ient to ex pand further the inter pretat ion

of the filter equations . During interarrival times between

photoconv ers ions , the filter ’s con dit ional est imate of t he

centroid’ s pos it ion x ( t ) ,  and its error variance P(t), evo lve

in t ime by the fol low ing equations

dx (t )  
= F(t)x(t) ; t~ <t 

~ 
tk+l (19)

= 2F(t)P(t) + G(t)Q(t)G (t) ; t~ <t < tk+l ( 20)

The above relations govern how x(t) and its associated conditional

error variance P(t) will propagate when the filter does not

observe a photoconversion . But when the filter dces observe an

event , via the detector array , it will update x(t) and P(t)

after the occurrence of the event by the following update

29 
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equations :

P(t k~ ) = {H(tk)R
~~

(t k)H(t k) + P(t ki]~~ (21)

x (t k~~
) = P(t k)[H(tk )R

~~
(tk

)r
k + P ’(t k )x ( t

k )] (22)

where t k
+ is the time after the occurrence of the kth photocon—

vers ion , tk is the time before this occurrence ,an d rk is

the location of photoconversion (or photoelectron). By using

t he matr ix inv ers ion lemm a (Ref. 1), Eqs (21) and (22) may be

alternatively expressed as

x (t k~
) = x ( t k ) + K(t k )[rk

_H(t
k)x (t k )] (23)

P(t k~
) = P(t k ) — K (t k )H( tk)P(t k ) (24)

where -

—1
K(t k) = P(t k )H(t

k)[H(tk
)P(t

k )H(t k) + R(t k)] (25)

Eqs. (22) and (23) indicate, clearly, the recursive nature of

how x(t) and P(t) evolve in time given the history of data

measurements. In other words, the “recurs ive ” nature of the

Sny der Filter does not re quire all prev ious data measurements

to be kept in storage and processed every time a photoconversion

Is observed. This saves computer resources which is an impor—

tant consideration for filter implementaton .

To s ummar ize , the Snyder Filter is a recursive data

process ing algor ithm , using the available information from

the photoconversions to improve the accuracy of estimating

30
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the spot ’ s current position of maximum in t ens i ty .  The Snyder

Filter is a minimum mean square error estimator ; it at tempts

to prov ide t he best es timat e poss ible in such a manner that

the error is minimized stat ist ica lly.

The next section specifies parameters where sufficient

conditions are presented to provide actual mean—square—error

(MSE).

Upper and Lower Boun d s

A quest ion shoul d be asked whet her or not the f ilter

errors are small enough for tracking purposes. Thus, the

MSE (i.e., an expectation of the conditional error variance

given the data measurements over all possible histories of

measur ements taken ) , is used to make this evaluation .

Unfortunatel y , finding the mean—square—error cannot be evaluated

in closed form. Rather than attempt to solve for the MSE,

one can bound It above and below. The method involves easily

precomputed upper and lower bounds (P~~ lower boun d on MSE and

P*& upper bound on MSE).

The following is a quote from Ref. (4) in how these

bounds are der ive d :

“The upper bounds are derived by evaluating
exactly the performance of a parameterized family
of suboptimum design ; one of these is identified
as having smaller performance than any other, thus
providing a minimal upper bound within this family
of suboptimum design. The lower bounds are obtained
directly by calculations involving inequalities.”

The above results are specialized for this open—loop problem

In one dimens ion. Here , the upper and lower boun ds are

- 31
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dP~ dPsolved in steady state (i.e., ~~~~~
— 

~~~~~
- = 0) and are

derived in Appendix B. The solution to this steady—state

estimation problem involves a quadra t ic  equation yielding a

result given as

= 
2X [_i + (1 + 14xY ) ] (26)

= 2(X+l] [
Y_1 + {(Y-l)2 + 14(x+l)Y}h/’2] (27)

where

X = (a— I~ V~~~a)(l/2t ) (28)
L U .  0 ~ 0

Y = — ~-— (29)

Several comments deserve mentioning with regard to Eqs.

(26)  through (29). The upper and lower bounds are normalized

with respect to the square of the beam width . This normalization

Is convenient since the error in estimating the spot car’

be measured in terms of beam width (i.e., a performance or

cr iter ion can be osta blishe d ) .  Thus , for good tracking

performance , it is desirable to have ~~~~~~~~~~ 
(t) small.

Figures (6a—6i) are plots of the upper and lower bounds on

MSE as a function of X and Y. Note the absolute magnitude

and relative separation of the bounds as X and Y are varied

on each of these plots. Consider Figs. • 6a—6d : for a fixed

Y, the bounds both decrease in magnitude and in relative

32
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seperation as X gets larger. Physically, the X—parameter can

be described as the number of photoconversions in a coherence

time of the spot ’s dynamics. As the number of data observa-

tions increases (i.e., X—parameter increases), the filter

has more informat ion to correct and update its est imate of

the spot ’s current position of maximum intensity. Thus, the

f ilter can update its estimate frequently if a la!fr~e number

of events are observed in a relatively short period of time.

Suppose , for example , the spot drifts on the detector with

large “wanderings” . Also, assume the filter has just processe d

one event and does not observe another event in a relat ively

long time (i.e., a low rate function or a small X). Then the

information provided by the “processed” event , has little

value at some later time if the spot is “jittering” a~

higher frequency with large “wanderings” (i.e., spot

dynamics have a small coherence time, rc, and a large jitter ,

On the other hand, if the filter frequently observes a

larger number of events within a coherence time, the Snyder

Filter has more information concerning the spot ’s location on

the detector surface.

Consider now a fixed X and a variation of the Y—parameter

(Fig. 6e—6i). As Y increases , the bounds increase in magnitude

and in relative sep~.ration. Y is the ratio between the spot ’s

jitter normalized by the square of the beam width . The beam

width indicates whether the filter should track the event

locations closely in order to locate the spot . As the beam
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width increases, photo~~ectrons are distributed at larger

distances from the spot ’s centro-Ld. Hence , increasing the

beam width results in having less weight in the point—process

measurements. Thus , the optimal gain, K(t ),  should decrease

as seen in Eq. (17).

Similarly, the noise strength, o~~
2
, indicates stronger

noise sources driving the dynamics of the spot or increasing

the uncertainty in the model. Increasing a
~~
2 increases bot h

the rate of growt h of the condit ional error covariance , P(t ) ,

between event times. This results in increasing values of

the f i l te r  gain , implying larger weighting of the point process

measurements.  Stated another way , increasing t~t e  j i t t e r

indicates that the f ilter must put less “conf idence ” in the

prediction capability of the filter ’s own internal dynamics

model.

Physically, it is desirable to have a narrow beam width

such that electrons can be distr ibuted near the pos it ion of

maximum intensity. At the same time, the spot ’s jitter

should be small so that photoelectrons are released from a

small area on the detector. This physical reasoning is

described by the Y parameter.

With regard to the above discussion and by careful

observation of Eqs (26) and (27), the upper and lower bounds

converge to the steady state value of the actual MSE when

X>>l and Y<<l . Referring back to the performance parameters,

the estimator will perform well if a large number of signal

photoelectrons are observed frequently and they appear
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in a small area of a photodetector surface. This physical

reasoning is described by the above parameters derived from

upper and lower bounds. These parameters establish regions of

operation where the upper and lower bounds converge to the actual

mean square error. However , when the bounds do not converge ,

actual performance is difficult to obtain. To demonstrate

the usefulness of the bounds and to determine which bound lies

clos er to actual performan c~~ a Mont e Carlo simulat ion is

conducte d . The se parameters and the Snyder Filter assume s

no dark current in the measurement process; and so an additional

objective is to include dark current in the simulation to

determine its effects in filter performance.

Summary

The chapter began by describing the direct detection. optical

receiver. The important point to remember is that the statistics

of the output of the rece iver govern the performance of opt ical

components performing post dete ction process ing and vice versa.

These stat ist ics are descr ibed by a mathemat ical model ca lled

the point process . The model is applied in situations when the

receiver is operating under low signal and background radiation.

In this case , the discrete nature of light at opt ical fre quenc ies

and the nature of the detection process fundamentally limit the

performance of optical trackers .

The Snyder Filter was discussed next . This filter, a recurs ive

data process ing algorithm, processes the point process observations

of the receiver to estimate optimally the position of 

- -~~~~~~~ -- ----—-—- • ~~~- - —  --•~~ *•- --~~ ~- _ - _ -
-
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maximum thtensity  on the detector  sur face .  The Snyder Fil ter

assumes its observat ions are from an inf in it esima lly f ine

detector  array ( i . e . , the de tec tor  array has i n f i n i t e  resolution

to measure the exact location of a photoconversion).

The chapter concluded with the performance parameters

describing the mean—square—error of the Snyder }‘ilter. The

parameters are derived from the upper and lower bound on MSE .

The two parameters are defined to establish conditions under

which the Snyder Filter should yield good tracking . One parameter

is the ensemb le average of the number of photons detected in a

coherence time of the spot ’s dynam ics , and the other is the

spot ’s jitter normalized by the square of the beam width. These

parameters also indicate suffic ient condit ions , such that the

bounds converge to the actual MSE. The MSE can then be use d

to evaluate the tracking capabilit ies of the Snyder Filter

( i . e . ,  to determine whether the average errors committed

by the Snyder Filt er are sufficiently small for tracking purposes) .

Again, these performance parameters and the Snyder Filter

assume that the events locations are only due to the spot .
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III. Simulation of the Snyder Filter and Performance Analysis

The last chapter addressed the following concepts: (1)

a mathematical model of the output process of the optical

receiver , ( 2) a model of the spot’ s intensity profile and

its dynamics , (3) the Snyder Filter which incorporates the

measurement data {tk} and {rk} from the output of the

receiver to estimate the position of maximum intensity, and

( 14) performance parameters which establish regions of opera-

tions where the bounds converge to actual MSE.

This chapter develops algorithms to implement the

above models and to simulate the Snyder Filter in a digital

computer. The algorithms that were developed are (1)

simulation of spot ’s dynamics , (2) a noise generator , and

(3) algorithms to generate the time—space point process

observation (two methods).

Concluding the chapter is the performance analysis used

to evaluate the tracking capabilities of the Snyder Filter.

Simulation of Spot ’s Dynamic s

The spot ’s dynamics on the detec tor surface modelled

by a linear stochastic differential equation given in Eq. (12),

or in less rigorous form,

x (t) = F(t)x(t) + G ( t )w ( t )  (30)

where w(t) is a white noise with zero mean and variance
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E[w (t)w (t’)] = Q(t)o(t—t’) (31)

where Q(t) is a diffusion strength variable. Consider an

equivalent discrete—time model for digital simulation. Here ,

equivalence means that a discrete time process has the same

second order statistics as x(t), when viewed at the sample

times. As shown ‘n Ref. ( 9 : 1 4 .63) , an equivalent di scre te

time solution to Eq. (30) is

x (t i+1) = •(t
~÷1,

t1
)x (t j) + wd (t i ) (3 2)

where t~~~1, t 1 are thediscrete points in time, 
~

(t i÷1,t~~
) is the

state transition matr ix (sca lar, in this case ) , !d (t i) is the

white discrete—time stochastic process with statistics:

E[wd (t i) ]  =

E[wd
2(t

i)] = Qd
(t
i)

=

t i ; t i = t j

E[w
d

( t
i

) w
d

(t
J

) ]  = 0 ; t1 ~ t,~

Fror Ref. (9~ 30),the mean m
~

(t )  and varianc e P
~~

(t )  of the

process x(t) propagate in time as

= $(ti÷1,ti
)m
~

(t j) (33)
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Pxx (t i+j.) = •(tj÷i,tj)P
~~

(t i)~~
(t j÷1,t~

) + Qd~ti
) ( 3 14 )

A simple model of the spot ’s dynam ics on the detec tor is

an output process of a first order lag driven by white

Gaussian noise of zero mean . This model is represented as

c (t )  = — ~~~ c ( t )  + w ( t )  (35)

where F(t) = — and G(t) = 1. Then, its state transition

matrix is

1
= ~(t-~ ) = e (t_T)

The model therefore becomes ,

x(t i+1 ) = e~~~ x (t 1) + ~d
(t
i)

where at issample period (or observation time increment ),

and wd (t i) is a white Gaussian discrete—time process of zero

mean and covariance

t
E[wd

2(t j)] =

ti

-r 2~t

2 2~t
= a

x 
[1 — e - r

~~
)

where Q = 
~~— a~

2 , and ~~~~ mean square value of output

process x(t), (in this report , ~~ represents the “J itter”

of spot). Q is found in Ref. 9:4.77 ; and it represents the
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the strength of the white noise. Eq. (35) is the expression

which simulates the spot ’s dynamics on the detector . The

next section dIscusses how a white Gaussian discrete—time

process 
~d
(t) is generated.

No ise Generators

A uniform random variable distributed between 0 and 1

is supp lied by the computer system. This uniform number

generator is used to generate realizations of random variables

described by desired probability density functions or proba-

bility distribution functions . This will be shown in the

next section .

Howeve r, applying the Central Limit of Statistics , one

can generate an essent ial ly Gaussian random variable by

adding twelve independent uniform random variables distributed

between 0 and 1. Since the mean and variance of a single

uniform random variable is 1/2 and 1/12, res pect ive ly, the

above addition yields a Gaussian random variable with mean 6

and variance 1. To obtain a zero mean and a unit variance

simply subtract 6 from the above result . Note that the

Central Limit Theorem Implies that the result ing ran dom

variable - w has a probability distribution that approximates

a Gaussian distribution (Ref. 11).

Fina lly,  a Gaussian random variable w. of’ desired

variance and mean is given by the following transfor-

mat ion equat ion

z = 

w.:w
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or

w = +

where z is a Gaussian random variable with zero mean and unit

variance.

The “whiteness” of the Gaussian discrete—time sequence

is obtained by independent calls of the above algorithm

The resu lt ing set of w ’s forms the white—Gaussian discrete—

time process wd (t i) (i.e., E{wd (t i )w d (t
J
)J = 0 for all

t~ ~ ti
). Also , note that the second order statistics of

~d
(t i ) (or set of ran dom var iab les w) are the second order

stat ist ics of the out put process x ( t ) , of the first order

lag. The statistics of 
~d

( t i ) are

— 0

2At
aw ax l — e T ~ ~

Point Process Generation in Time and Space

In th is report , two metho ds are employed to generate

the event locations in time and space. One , the Binom ial

Metho d, is based on the incremental def init ion of the point

process , and the other , the Con dit ional Metho d, makes use

of conditional probability densities describing the output

statistics of the receiver. The latter method uses Bayes ’

Rule. It should be noted that these conditional c~ensit ies

are derived by the incremental definition of a point process.
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The Binomial rule will be discussed first. Next , a trans-

formation equation used by the Conditional Method is described ;

then the Conditiona l Method follows . Concluding this section

is a discussion on the theoretical and practical aspects of

the two methods of simulation.

Binomial Method. Shown in Fig . (7) is a flowchart of the

Binomial algorithm that generates the time—space events. As

mentioned earl ier , this development is based on the incremental

definition of a point process. It is the same development

describing the model of the photodetecting surface. For

the pur pose of clar it y , a discussion on the point process

incremental definition in one—dimensional space is given as

(1) Event in a space—time observation area, ~~~~ are

statistically independent where ~L is the incremental detector

length, ~t is the incrementa l t ime observat ion s

[one event in 1
P A2d~t J = X ( r ,x ( t ) )~ t~~ + o(~ tt~& ) (36)

located at (t ,r)J

1zero events in 1
P I t~L1~t = 1 — A ( r ,x ( t ) ) ~ t~ L + o(~ t~~ ) (37)

[locate d at (t,r)J

where P[.] denotes probability of, the “o~~~t” denotes higher

order terms of t~~ t (i.e., ~~1~Ø 
(~~~~~2i) = 0) , and x ( t )  denotes

location of maximum intensity on the detector surface. Note

that different values of r will give different values of rate

func t ions , A ( r ,x(t).

Consider a uniform random number distributed between zero and

51

---- -~~~~~~~~~~~—---- ~~~~~~~~~ - • ~ -~~~~~~~~~ 
-
~~~~~~~~~~-- - • -~~~~~~~~~~- - - -



— --- .--- - — - - - —- -  — -_
-

IGe nerate true 1
position of
spot ’s cen—

troid , x (t~~j

Detector
rate ,

X(r ,x(t ))

Establish
threshold, ~P 

=

A ( r ,x (t  ))E~9~x

[Call uniform
random

variable,
U
k

Simulate measuremen t (rk,tk
):

Uk 
< ~ declare an event

Uk > ,p -*. declare no event

• Figure 7. Flowchart of Binomial Method

one. Then, the probabilit y of a value between zero and a

number p , is simply ‘p. So let ,p = x (  r,x ( t ) ) ) ~~~ t establish

a threshold to dec lare an event ,where U
k 

is called from a

uniform random generator (that is ,U k
< A (r,x ( t ) )

~
tM. means an

event occurred at r on the detector surface).

The above module ta kes into account a di f fe rent  threshold

and rate function when moving from one spatial point to

another on the detector length. This method also includes

effects of dark current (i.e., X ( r ,x ( t ) )  = A ( r ,x ( t ) )  +
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where Gaussian rate function dark rate function). The

Binomial Method imposes a significant computational load in the

simulation , as wIll be shown In a later section following the

Conditional Method . Note that this method is an approximation

for f inite ~~ and ~t and that there is an issue of coarseness

of the t ime and space discret izat ion. This creat es implemen-

tation and theoretical aspects which will be discussed in a

later section.

Transformation Eguaticn. The transformation equation

Is used to generate a desired random variable of a given

probability distribution function by calling a uniform random

generator . In this case , either an event locat ion or event

time is generated by calling a uniform random variable U

which is distributed between zero and one with probability

density height 1. The solution to this transformation problem

is found in Ref. (l2:l8~4) arid is given as

U = FD (D) (38)

or

D = FD (U) (39 )

where F0 is the desired distribution function , D is the des ired

random variable, FD
’ is the inverse function of FD. Fig. (8)

graphically depicts this solution .

The random variable . D represents eitber the random event

location or time of the time—space point process. Similarly ,

FD (or equivalently, the transformation function), corres ponds
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FD ( D )  

- 
-

a) Desired probability distribution function, FD
(D)

F0~~ (U)

b ) Mapping to generat e F0~~ ( U )

Figure 8. Generat ion of a Specified Probability
Distribution Function (Copied from Ref. 12:1814)

to either the event location or time probability distribution .

In this report , these probability distributions are derived from

the densities f[rklt k,n] and fisk] where Sk is the interarr i~a1

times of ordered events 1, (k=0, 1,2... ,n) , tk is the event

t imes from a t ime orgin , and n is the number of events. These

densities are shown in the next subsection .

Conditional Method. To generate the time—space point

process events from the output p rocess of the detector surface ,

511
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the number of event s, the event times and event locations

are needed . Here, the probability density f[{rk),{tk),n] is required

to characterize output .This joint density is employed to derive

the conditional densities of event times and event locations

conditioned on knowing certain variables,where the variables

are generate d by actual Implementation of the simulation . The

development of this section will involve some lengthy (but not

complex ) derivations of expressions needed to generate {rk} arid

{tk}. Also , physical insights about the Snyder Filter ’s tracking

capabilities will be cited where appropriate.

In this study, the variables 10
( t ) ,a(t), F ( t ) , G ( t ) ,

H(t) , and Q(t) are time—invariant . Then the average rate at

which photoelectrons appear on the photodetectors array (after

integrating the spatial dependence of the rate function ,

defined in Eq. (8), over entire detector length) yields

= _t I~ 1’~~ a + X~ 2.. (140)11 0

where Eq. (14) was used, and 9. is the detector length of array.

Eq. (~ O) has terms including the effects due to dark current ;

however , in this relation, some assumptions were used , brought

forth earlier in the report . To explain the first term in Eq.

( 1 4 0 )
, It is assumed that the detector surface is large , such

that , with respect to the spot ’s Gauss ian intens ity prof ile ,

the detector surface is infintely large. Thus,edge effects of

the spot ’s intensity profile on the detector may be ignored .

On the other hand, Xd is finite which means that L~
55
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has an infinite value . Therefore, the integral, A~ d9.
2

results In the second term of Eq. (40). The major point is

that the detector length must be large so that edge effects

between the spot and detector are neglible when the spot is

jittering about on the detector surface.

Consider the simulation of event times. It is known

that the interarrival time, denoted as Sk, has an exponential

density function (Ref. 3:60) given as

= A 0exp(—A 0s) 
( 14 1)

To obta in FD[sk], integrate Eq. (41) over the time continuum

between —~~ and 5k~ 
Us ing the t rans formation func tion from

Eq. (38), Eq. (41) yields

Uk’ = Fisk] = 1 — exp(_A
Osk) (4 2)

where Uk’ is a uniform random variable distributed between

zero and one . It then follows that Uk = 1 — Uk ’ is also a

uniform variable with the same statistics. By straight forward

manipulation , Eq. (142) yields

= —~~~— 9.n Uk 
(113)

0

To get the event t imes , just use a running sum . In this case ,

with t0 as the init ial time the event times , of the point process

with rate func tion A~ can then be s imulate d by the following

algorithm : call a uniform random variable , U1; use Eq. 
( 14 3) to

transform U1 to s1; assign ~l 
as the time from t0 to the f irst
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photoconversion (I.e., T1 = t0+31); call another uniform

random variable , U2; transform to 
~~ 

assign 
~2 

as the time

between the first and second photoconversiori (i.e., T2 = T1 +

s2), and so forth (Ref. 3:62).

The next problem is finding an algorithm to generate

the event locations , rk’s. This problem is solved by using

densities f[{rk},{tk),n] and f[{tk},n] (see Appendix A for

derivation). These densities describe the statistics of the

out put process from the photodetector surface which are expressed

as

= exp (ff~ A (
~~,~~

)dc
~
d
~

) l l A(tk,rk
) ( 1114 )

f[{tk},n] = exp(_5~ x (a)dct ) 9 A (t~~) ( 14 5 )
k=l

where

n b
A ( t k , rk) = —p-- exp(— 2 ~ + A d 

( 14 6 )
0 2a

A g (r k~
tk )

T 11
A ( t k ) = —

~
- I~~ a + A ( 117)D

= A 0

Note that, f[{ti~
},n] is the marginal density of f[(tk},{rk

},n]

and that A (t k) In Eq. ( 117) has no spatial or temporal dependence.
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Also , the integrals in Eq. (1411 ) and (115) wIll both yield

A 0T. Thus Eqs. (414 ) and (145) respectively yield

= exP (_ A
OT) II A(t k, rk ) ( 118)

n
f[{tk},n] = exp(—x 0T) II A (t~~) ( 14 9 )

k=l

With the help of Bayes ’ rule , the conditional probabilIty

density function of event locations conditioned on knowing the

event times and the number of events is given as

f{{ r k } I{ t k } ,n] = f[{tk},frk
},n]

f[{tk},n]

n Xg
(t 1(~I~j)~ +

= Ak=l 0

or 

f [ { rk } J { t k },n] = 

A g (t 1~r1) + A

d][A

(t23r 2) + A

d]

n 
~~

(t k,rk) + A d

1=3 A 0

= f1[r11t 1,n] f’2 2 h t 2 ,~~

k=3 
fk[r k lt k, n] (50)
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where Eqs. (118) and (119) were used. The above relation says

that the joInt conditional densIty fi{rk}({tk},n], can

be derived by forming the product of’ each of the densities at

the tIme—space coordinates , (tk,rk) .  Thus , for n= l at (rk,tk),

the conditional density of rk given tk is expressed as

A (t ,r ) A
f[rk jt k] 

= g 
A 

k_ + .5:a (5 1)
0 0

Before proceeding further, It is useful to check if Eq. (51)

is normalized (i.e., J’
~~
f[zk lt k]dcLk=l). That is,

— (c& —x)1 n k -  1 2
~~ y  10 exp ~~

- 

2 )dc&k + r— f 9. A ddx k0 0

= 
~~— (—

~~
-_ 10 I~~ a + A

~ ~~) = 1
0

Again, it is assumed that the detector is large such that the

limits In the Integra l of the first term on t he left side of

Eq.(52) are approximately valid .

To get the probability distribution function F[rk lt k]

integrate f[rk lt k ] over the detector plane from —~~ to rk for

the f irst term and from to rk for the second term in Eq .

(51). The result is expressed as

F[rk lt k] 
= .

~— [erf v + A d (r k+.~
.)] (53)

where
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2
erf v ~ ,, f~ exp(—Z

2)dZ

rk
_x(tk)

Using the transformation equatIon defined In Eq. (39) ~ind after

algebraic manipulation , Eq. ( 5 3 )  yields

erf v + (—f-—- A ) v 2A U — 1 + 2A x ( t  ) + .&. (5 14 )2 k  3 k 2

where

A1 A.

hf0

n 10A2 A. 
~~~~~~~~~~~~~~~ a +  A L )

fl’0
hfo /

~~~
a

A ~ 
A d

ni

hr0

Eq. (511) Is used to generate the event locations at the

event times given the variables defined in this expression .

The event locations are generated by a table lookup method

with linear interpolation and is performed as follows :

( 1) Eva luate and ob ta in all necessary var iab les ,

i.e., A1, A2, A3, .

~~
-
, Uk, and x ( t 1),
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(2) For a specific range of values for v, solve the

expression on the left—hand side of Eq. (54), and store the

results in a table (i.e., computer memory),

(3) Derive a random variable s by calling a

uniform random variable, Uk, distributed between (0,1) and

by obtaining the true position of the centroid , x(t), from

the truth model simulation. Given these values , the right—

hand side of Eq. (514) is evaluated and the random variable

realization s is obtained ,

(14) To find v, obtain s by a table lookup with linear

interpolation . In the tab le the increment of v is equal to

0.025, where erf v is piecewise linear for this approximation;

p thus , linear interpolation is used

(5) Upon finding v, it then follows that the event location

is evaluated by the following expression:

rk = (IT a)v + x ( t k)

This paragraph completes the algorithm of generating the

event locations.

• Since Eq. ( 5 14 ) governs the generation of event locations ,

it is useful to examine this relation for limiting cases

(i.e., A d = 0 and Ag(t;k~rk
) = 0). This Investigation will

provide insights into the tracking capabilities of the Snyder

Filter .

A ä 
= 0 Implies A1 = A

3 
= 0 and A2 = ~- Eq. ( 5 14 )

is then manipulated into a convenient form as
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r —x(t
Uk = 1/2(1 + erf ( k k (5 5)

Uk 
= rD(r k tt k/ (56)

where Eq. (38) is implemented in t3-ie last expression. Corresponding

to FD (r
k lt k) is f(rk lt k) whIch is given as

f{r1 f t k ] = 
1 expf-z2

~irk
_x (t

k
)] 2}2 ( 57 )

2a

The event locations are generated by calling a Gaussian

random var iable of mean x ( t k) and var iance a, at the event

times. Note that the intensity profile of the spot being

Gaussian—shaped leads to a result that bhe event locations are

generated as Gaussian random variables conditioned on knowing

the event times. The Snyder Filter is based on the assumption

of a Gaussian—shaped profile of the spot . Thus , for A ä ~ 0, A 1
“smears ” out the Gaussian information as seen in Eq. (54).

For A g (r
~
t)>> A d~ 

the ef f e c t  of dark current is exam ine d

by doing a perturbation analysis. This analysis is performed

by factor ing out t he larger of the two rate funct ions in Eq .

(47). Then the natural logarithm of the left and right hand

side of Eq. (147) becomes

n A d n A (r ,tk)9..n f ({ r k } I f t k },n ) ~ th~— + ~ g k

k=l 0 k=1 A 0

A (r k , tk)~ A (r k,tk)where the approximation ln 1 + g 
A 

g 
A and

d d
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A (r , tc k k < <  1 is used. The exponential of the left andA d
right hand side of the above equation yields

~ ‘d A (r,,t1 )
f[{rk}J {t k},n] n i— exp ~ g (58)

1=1 o

Again , Eq (58), can be derived by forming the product of the

above individual densities at (rk,tk
) .  Then , setting A g (r k~ tk) = 0

in Equation (58) and applying this condition to Eq (140) ,

Eq (58) yields

f[rk jt k] ~ ; — < rk <

where fl 1. Intuitively , Eq (58) is reasonable , since at

any given time a dark event can occur in any differential

length on the detector surface with equal probability .

In summar y , for signal—limited condItions , the event locat ions

are called as a Gaussian random variable with mean x(tk)

and var iance a2; for dark—limited conditions the event locations

are generated as un iform ran dom var iables distr ibute d in

(_  ~.,4) with probability density height ~; and for generating
event locat ion s ot her than the limiting cases , Eq (511) is

imp lemente d. Final ly,  the generation of event locations is

called at the event times given by Eq (113).

Aspects of Implementing each method. The Binomial Method

has two restrictions for its algorithm to work properly:

one, is A [r ,x(t )]~ zt~t< l and the other, is ~L~ t<<l where for

implementation pur poses ~t ~ sample time or observation time
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interval. Because of these conditions , several practical and

theoretical problems arise. One is a resolution problem . The

Snyder Filter assumes that its posItion—sensitive measurements are

from an inf inIt esima lly fire partitioned detector array . No

matter how small “A Z” is, there Is still a problem in

extract ing t he “exact” location of the event . For this report ,

the detector array is divided into equal increments of ~L, and

the value of the rate funct ion at the center of each incrementa l

length , is chosen to evaluate the probabili ty , X(r,x(t))A9.i~t.

This procedure determines where an event (I f  any) occurred

on the detector surface. This method is depicted in Fig (9).

Note that ~t is the observat ion increm ent dur ing the s imulation

time . From a practical point of’ view , th is method consumes

a large amount of computer time; at each time increment of

observation ,~1Is scanned across the detector surface from one

end to the other.

In the Binom ial Me thod, a theoret ica l point that  should

be considered is the question of “simultaneous” event s occurr ing

on the sur face.  The Snyder Filter assumes that one event is

observed at any one time . With this simulation method ,, there

Is a probability that more than one event can occur . Even

if At<< l and ~9.<<l, there is still a probability (t hough small)

that simultaneous events can occur at different locations .

It was mentioned previously that scanning the detector surface

for smal l 
~~ results in a large comsum pt ion of computer time

at each time increment . Thus, if a smaller ~t or ~.L Is chosen

to reduce the probability of simultaneous events , this will

result in a larger consumption of computer resources.
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Gaussian Intensity
profile of spot

A(r ,x ( t ) )  
,~/

/ 
\~~~~~~

L--r J

Fig. 9. Resolution problem in Binomial Method

Furt hermore , when dark current is included in the simulation ,

the probability of simultaneous events grows substantially.

To reduc e the amount of computer resources (an d to observe the

errors generated by the Snyder Filter between event t ime s ) ,

the rate funct ions are chosen to have a low value -. This

enables the use of a larger sample per iod, ~t, which also

implies a higher probabll. ty of simultaneous events. It Is

evident now that the Binom ial met hod has imp lementat ion

problems . In spite of these problems this method is performed

In the com puter , and the results are shown In the next chapter .

In terms of imp lementat ion , the Con dit ional Metho d is a

better algorithm , since the event locations are called at the

event times; (i.e., the prob lem of simultaneous events is

precluded). In the simulation It is desirable to sample

the , errors committed by the Snyder Filter between successive

event times. In this case, it is convenient to break up the

simulation time interval (observation time) Into time increments ,

~t. ~t will denote the sample period in order to sample the
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error process (as done in the Binomial Method). When the event

times are generated , there Is a situation that the interarrival

t imes , wk’s, can occur smaller than the sample period (I.e.

Sk < st). This situation is shown in figure (10).

Performance Analy sis

The objective of the pe’r~fo rman ce analys is is to character ize

the error process statistically. This is done by generating

many samples of the error process through Monte—Carlo simulation.

The simulat ion uses ran dom number generat ors an d shaping filters

to generate the random errors. One objective in the simulation

Is to portray filter performance capabilities when parameters

that describe the problem are varied. First, consi der the test

cases without dark current . Here, the signal rate function or

spot’s jitter are changed and,thus , filter capabilities can

be evaluated. Note that changing the signal rate varies the

average number of photon s dete cted per coheren ce t ime ; similarly,

changing the spot ’s jit ter causes var iat ions in the Y parameter .

In this study, the test cas es do not meet suff icient con dit ions

which are X>>1 and Y<<]. ; therefore,the results shoul d provide

an indication of which bound is close to actual performance.

A plot which contains the sample variance and average filter

variance is a useful output to make this comparison .

Second , the measurement model (of whi ch the Sny der Filter

is based) is altered by presentir.g dark events in the measurement

process. The above plot is again a useful o~itput to evaluate

the fi iter ’s sensielvit y to dark measurements.

In this study, a final objective of the performance analysis

is to change the filter structure , through ad hoc methods , when
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Pi~ J O .  ~amp l~~r i~ t h~~- ~‘Jrror Process  wi~ h Fixed ~amp1e Pe r iod
( C ~~id i t  lonal  M e t h o d)

~at i s f ’ac t or y  per f ~ovrn~in ~~e cannot  be ob ta ined  in the  presence  of

dark eve n t s .  ! \ p -t in , the 3hove plot c o n t a i n i n g  the  va r iances

wou l~ bu u : u ru l  in p r n v i d i n ~ i n s i g h t s  of how to a l te r  th~
f i l t e r ’  st r ’u c t  u iu ’ .

As p r e v i o u s ]j  m u r i t i o ned , the  error  process  is c h a r a c t e r i z e d  by

~ener a t I n t ’” ma ny samp J e  runs  of ’ t h i s  process .  The appropr ia te

number  s h o u i d  be chosen s u f f i c i e n t l y  large , such  tha t  a d d i t i o n a l

sample runs does not app rec i ab ly  change the  sample s t a t i s t i c s .

The last s t a t e m e n t  is an i l l u s t r a t i o n  of the  weak law of large

numbers : let E [ e j  = ~ de note the  ensemble  average of’ the

error process  e. Also , let denote  the empirica l  average for

N runs . When N is large , the weak law s t a t e s  wi th  high

p r o b a b i l i t y  t h a t  is close to the number e. In m a t h e m a t i c a l  te rms ,
2

0—
— e~ >c 1 =

2Nc
N

where  e .  sample mean error , N ~~ , number  of
j = 1  ~

s t a t i s t i c a l  i n d e p en d e n t  random va r i ab les , ej  w i t h  mean , e

and v a r i a n c e  ~~~~ and c is an arbitrary constant . The
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weak law is a measure of the confidence of Iriferriny information

about the actual statistics of the error process (Ref 11:96).

Thus , as the number of sample runs increases, the confidence

in characterizing the error process accurately increases.

Sample statistics. The statistics computed at each time

point are the cal culate d mean error e, calcu lat ed var iance
2
, and the ensemble average of the filter variance terms

FP. These calculations are performed over the ensemble of

runs N , for each time point tm • These expre3sions are

N

~ ~~~~~ 
— x(t )J (60)

j =1

N

2 — 
~[x t )

c’~ ( t )  — 

j=i N—l

— 

N N[<e(trn )>N]
2 

(61)

~~ (t ) = ~ PF(t  ) (62)m 
~~~~~ 

m

The above relatIons are found in Ref (13). Note that the time

po int tm are not event times but are the sample times

for a fixed sample period ~t. From Eq (61), the var iance

Is divided by (N—l) instead of N, which results in an

unbiased estimator of variance (Ref 13).

Plots. Mentioned in previous paragraphs is that a useful

output in the analysis is a plot of the average filter estimate

of the error variance , along w ith the corre sponding computed
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sample (or true ) variance for all times of’ i n t e r est .  This output

Is used to compare if’ the sample variancn of the error process

matches w ith the filter ’s average error variance . Tn other

wor d s , th is output should indicate how well the filter is

~~timating its errors with the actual errors tt commits; and

to compare with the bounds on MSE for test cases where dark

current is set equal to zero.

A second use fu l o u t p u t  on th is a n a l ys i s is a p lot of t h e

mean error versus time. Along with this plot are the standard

deviation bounds plotted above and below the mean error. This

plot is useful if the Snyder Filter provides the desired accuracy.

The two plots that were just described , are used to a n a l y z e  the

average error performance of the Snyder Filter. For all

cases , these plots are used to determine whether the actual

errors comm itted by the filter are sufficiently small to yield

good t r ack ing pe r fo rmance .

Now consider plots of individual sample of’ the error

~‘ocess. For no dark current , this plot is used to observe  how

the Snyder Filter minimizes its errors. When dark current is

represented in the simulation , t hen  the Sn yder Filter sensitivit y

to the dark measurements can he observed . I%]on~ the zero axis

of’ this plot are the event t imes to Jnd~~~a~ e c J e ar l y how the

filter ‘Tr-dat es its estimate -at the event ~ i m n s . A l s o , a p lo t

of the sample filter var iance Is also of in t er e st  in order to

observe how the Sny der Fl iter nrorneat es. ~ h~’ ~iricnrta nt~y of its

estimatr’ in time .
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Test cases. During this study, different cases usIng

different values of X and Y performance parameters are considered .

The test cases are given In tables (1) and (2). All test cases

are performed where there is a relative separation between the

bounds. Here~ the bound lying closer to ac tua l per formanc e can

be determined. For the test cases in Table (1) and (2), the

dark current is set equal to zero.

When dark current is presented in the simulation separate

test cases are performed. The measurement process of the Snyder

Filter is altered by this addition of dark current. For these

test cases , a sensitivity parameter is defined to be the average

signal—to—noise cc~unts rat io which is expressed as

11]:

hf 0

Here , the degree of degradation in filter performance Is

observed as the average signal—to—noise counts ratio is

varied. Because of the time constraints imposed In the study,

limite d cases for X~ ~ 0 are examined.

Summary

The chapter deve loped the necessary algorithms needed to

perform this study. These algorithms consists of simulating the

spot ’ s dynamics , and the generation of position—sensitive

measurements (I.e. time—space point process). The chapter

L 

concluded with a general discussion on performance analysis ,

where It consists of sample statistics , plots , and test  cases

needed to investigate the tracking capabilities of the Snyder Filter.
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Performance  Parameter

x Y

5.0 0.1

5.0 0.25

5.0 1.0

Table 1. Test Cases for BInomial Method
(without dark current )

Per formanc e Parame ter

x Y

5.0 0.5

5.0 1.0

5.0 5.0

5.0 10.0

1.0 0.5

1.0 1.0

1.0 5.0

1.0 10.0

0.5 5.0

10.0 5.0

15.0 5.0

20.0 5.0

0.5 1.0

10.0 1.0

15.0 1.0

20.0 1.0

Table 2. Test Cases for Conditional Method
(w ithout dark curr en t )
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IV Resu lt s

This chapter contains results from the Monte Carlo simulation.

The simulation will indicate how well the actual per formanc e can

be described , when compared to the upper and lower bounds . Thus ,

var ious va lues on the set of parameter s, derived from the bounds ,

are used to determine which bound is closer to actual performance.

The bounds are valid only when the measurement is perfect (i.e.,

there are no dark or background noise events). When dark current

is included in the simulation , the results should show the degree

of degradation in filter performance. Finally, to com pensa te f or

the effects of dark current and to improve tracking performance ,

different methods in changing the filter structure are exploited.

Mean an d Var iance Conv ergen ce

To determ ine the appropriate number of sample runs , two

plots are generated . One plot shows the sample mean err or versus

the nu.rnher of runs, and the other plot shows the sample variance

of error proc ess versus the number of runs.  These plots are shown

in Fig. (.11) for the Binomial Method . On each of the two plots

are four curves corresponding to four arbit rary t ime points

(as indicated in the figure) during the simulation time .

By the weak law of large numbers , the mean and var iance of the

error process should converge to a steady value such that the

variance or mean of the error process does not change much in

magnitude with each addition of sample runs. Based on this

reason ing an d the results from the plots, f if t y sample runs are

selected. This number of runs will also be used in the conditional

method. However , it does not appear that fifty runs are sufficient
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to ensure convergence for all the test cases listed in Tables

1 and 2. That is, the performance parameters , X and Y , wh ich are

def ined in Cha pter  II as

n 10 ~~~X = 
~ hf ~ ~~

Tc~~ 
average number of electrons

0 occurring in one—half the
coherence time of spot ’s
dynamics 

~~d °~ 
(63)

and
2

Y = —
~~-— t~ spot ’s jitter normalized by the square of

the beam width (614 )

have different values. The plots shown in Fig. (12) provide

an additional illustration of confidence in the sample variances.

They are plots of the variances of the error process (calculated

from sample statistics) for different numbers of sample runs .

On the true var iance curves are symbols , denote d as “x” , to

distinguish f rom the f i l t e r  variance curve . Along with the curves

are the upper and lower bound on MSE for the given set of parameters

X and Y. These plots show that as the number of simulation runs

increases, the fluctuat ions of the true and f ilter var ian ce s

decrease. The plots also indicate that the fluctuations should

settle to a value that is between the upper and lower bounds (as

expected). Hence, the number of runs indicate the amount of

confidence that the sample and average filter sample ~ar iances

approach the corresponding true variances. Although fifty

simulat ion runs may not be app ropriate for all the test  cas es,

it does provide an indication of filter performance.
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Binomial Method (without dark current )

For the Binom ial Me thod , it was mentioned in the previous

chapter that sim ultaneous events can be generated at the sample

period , t~t. This situation would occur often if the observatIon

area , ~~~~~~~~~ is not sufficiently small. - In addition , a low rate

fun ct ion , A(t ,r ) , is selected to observe the propagation of

the conditiona l mean and var ian ce of t he Sny der Filter and

to reduce the amount of computer resources by this method. During

this part of the study, it is found that simultaneous events did

occur even for a rate function of 10 events per second with a

sample period of 0.01 second. For X=5 , simul taneous even ts

occurred on the average of two to three times per sample run.

To avoid this problem , a software routine Is developed to randomly

pick one of two simultaneous events. Note that this routine

ruins the statistical properties of the point process.

Figs. (l3a , l11a) and (.l3b, 114b) are plots of the sample

error and sample filt er var iance , respect ively, for the parameters

X=5 and Y=l. Note on the time axIs of each plot are the event times.

In Figs. (13a) and (114a), the errors decrease as events appear

frequently in tIme (as expected). Similarly, in Figs. (13b ) and

(111b ) ,  the con dit ional var iance is update d at the event t imes ,

otherw ise the var iance grows In t ime when an event is not observed .

Note, the filter variance is “driven” to a smaller value as more

events appear frequently in time . If the filter does not observe

many measurements , the fIlter will weigh the next measurement

heav ihy~driving the filter variance to a lower value . If many

previous measurements appear frequently in time , th is impl ies
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a smaller filter growth in the variance , and the next measurement

will have a lower weighting .

For this research , the coherence time , -r e, of the spot

Is one second ; for X=5 , the term a in Eq. ( 6 3 )  is equal

to 10 events per second . This is the average rate function of

the Gaussian spot ,, after integrating Xg
(t~ r )~ defined in Eq. (114).

over the detector length which appr’oximates an infinite detector

length with respect to the Gaussian beam . It is well known for

a poisson process that the mean and variance of the counting

process N(t), defined in Appendix A , are res pect ively

E{N(t)] = 51T dc~d~ and VAR[N(t)] = 1J
T X(~~,~~)dad~ . It

£0 £0
then follows for T=14 that xg(t ,r) can be expressed as

Ag
(t~ r )  = [ ‘

~~~
°}[p i

~~~a 
exP (_~~~~~

tfl
)]

= 
10 exp(_~~~~~

t
~)._) (614)

2a 2

so that E[N(t)J~ 140 events with standard deviation of 6.3 events.

In Figs. (13) and (114), the number of events for th is part icu lar

case are 314 and 36 events , respectively. Also , in these sample

runs , simultaneous events did not occur . To the second moment

level, these results indicate some va lidi ty  in the Binom ial

Method in generating the point process observations in time and

space. 
-

Finally, the t est cases for  this metho d ar e p lot ted in

Figs. (15) through (17); note the different scales on each plot .

As expecte d, increasing Y (the spot’s jit t e r  normal ize d

op
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by the square of the beam width) increases the error variances —

implying poorer performance. Even when the filter is initialized

with its state estimate not equal to the true position of

maximum intensity (i.e., initialize from non—zero initial conditions),

the plot in Fig. (18) shows that the error process is zero—mean .

This is ex pecte d since the conditional est imate of x ( t )  is unbiase d

and x (t) has zero mean .

Condit~ -na 1 Method (without dark current)

Shown in Fig. (19) is a sample of the error process and

the filter variance generated by the Snyder Filter for the set

of parameters, X=20 and Y=l. From these plots , it is evident

that the measurements of event locations at the event times

are important in minimizing the filter ’s error and uncertainty.

As shown in Fig. (19a), the errors are within one beam width;

and in Fig. (19b ), there is little filter variance growth

as events appear frequently in time (as seen in the Binomial

Method).

For the tes t cases in Table 2, it is desirable to choose

values of the sample and average filter variances at selected

time points. For each case, these var iance points are plotte d

with the upper and lower bound curves. However, it was noted

earlier that there are fluctuations in the variances which make

it difficult to select these points. A “time—average” technique

is used to select and to plot these points easily . This

technique is depicted in Fig. (20). In this case, a fixed time

interval, bhat is chosen to be much greater than the samp le period ,

contains time points that are equally spaced . Corresponding
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h(t) (t2—t1 )A fixed time interval

I I~~~~ tt1+t 2 T
ti 2

Figure 20 “Time - average’t Technique (h(t) denotes time
history of either true or filter variance calculated
from sample statistics)

to each time point are the values of the variances. These values

are then summed, and the resulting sum is divided by the number

of points in that fixed interval. This final value will then

be used to denote the value of the variance at the midpoint of

the fixed time interval. This time interval “runs” across the

time axis to calculate these “time—average” values until the end

of the observat ion time , T.

With this technique, the sample and average filtor variances

are listed in Table 3 at the time point , t~ = 1.5 second. These

values are plotted with the upper and lower bound curves in

Figs. (21). The time point , t~ = 1.5 second, is chos en after

examining the plots, similar to plots in Fig. (22), for each

case which indicates steady—state Is reached. Note that the values

of the true and filter variances are close to the upper bounds,
which seems reasonab le, since the values of X=1, X=5, Y=1 , and

Y=5 are relatively poor conditions for good tracking performance.
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Performance Normalize d Norma lize d
Parameter Bounds on MSE Simulat ion Values

True Filter
—
~ 

Var iance Var ianc e

5.0 0.5 0.232 0.250 0.233 0.251

5.0 1.0 0.358 0.1408 0.388 0.1406
5.0 5.0 0.905 1.305 1.3140 1.270

5.0 10.0 1.320 2.2140 2.370 2.180

1.0 0.5 0.366 0.390 0.3140 0.389

1.0 1.0 0.618 0.707 0.621 0.703

1.0 5.0 1.790 2.870 2.570 2.8145

1.0 10.0 2.900 5.1420 14.900 5.380

0.5 5.0 2.320 3.590 14 .200 3.1490

10.0 5.0 0.659 0.880 0.935 0.85’4

15.0 5.0 0.5145 0.698 0.670 0.6514

20.0 5.0 0.496 0.542 0.592 0.558

0.5 1.0 0.732 0.816 0.898 0.803

10.0 1.0 0.270 0.302 0.319 0.298

15.0 1.0 0.227 0.250 0.2143 0.2142

20.0 1.0 0.200 0.218 0.222 0.212

Table 3. Test Cases for Conditional Method
(w ithout dark current )
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That is , these results indicate that actual performance can

be described b~/ the upper bound on MSE.

Two issues should be of concern when plotting these values.

One is that the filter performanc e must be in stea dy state , and

the other is that the number of sample runs in the simulation

must be large enough to yield some confidence of inferring

information from the error variance generated by either sample

statistics or averaging of filter outputs. Hence, a part icu lar

case Is chosen to extend the simulation time to 40 seconds ; the

results i.~i Fig. (23) indicate that steady state is reached in

one second. Then the issue again is of confidence in the

values of the true variances which can be increased by performing

more simulation runs ; because of time constraints , fifty simula-

tions remain unchanged. To illustrate that the number of simula-

tion runs is not app ropriate in all case s, refer to p lots in

Fig. (22). For this particular case , X=20 and Y=l , the mean error

is not converging to a def in i te  value .

In summary , it appears that the upper bound descr ibes the

actual performance of the Snyder Filter for few signal counts

per coherence time.

Condit ional Met hod (w ith dark current )

Particular cases were selected to examine the effects of

dark current and to determine the filter ’s sensit ivity in

performance as it processes these noise measurements. The

results of this analysis is that , for average signal—to—noise counts

ratio of 500, the filter was very sensitive to dark distributed

measurements. The results are plotted in Figs. (24) through
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(28) for different cases , as indicate~i by the figures. From

these p lots , it is clearly shown t hat the filter per forms

poorly if it processes even one dark measurement . Note that

the p lots in these figures are not close to ensemble average

statistics. That is, to obtain the sample variance , it will

require a substantial amount of additional sample runs. Again ,

the confidence in the sample statistics is an issue . On the

other hand, these results do provide insight into the sensitivity

of the Synder Filter to dark measurements. However , to eva luate

individua l e f f e c t s  of dark current , Figs. (214a , 214b), ( 25a , 25b),

(26a , 26b), and ( 28a , 28b ) are used to determine which sample

runs contain dark measurements. Thus, Figs . (29a , 30a, 31a , 32a)

and (29b , 30b , 3lb ,. 32b) are plots of the sample errors and sample

f ilter variance , respectively . Figs . (29) and (30) are f or average

signal—to—noise counts ratio of 500 and 50, respect ively , for

X=5 and Y 1 . Similarly, Figs. (31) and (32) are for average

signal—to—noise counts ratio of 500 and 5, respect ively , for

X=20 and Y=l. These results clearly show that the Snyder

Filter is very sensitive to dark measurements. Thus, the

Snyder Filter cannot distinguish between a dark or signal

measurement (i.e., it treats all events as signal).

To enhance f ilter performance , filter—tuning (In this case ,

Increasing the beam—width) and residual monitoring were

considered. In filter tuning, the beam width is increased,

which corresponds to weighing t he measurements less heavily

from the photodetector surface. In other words, the f ilter is

having less confidence in its measurements. Conversely , if
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the beam width is decreased , which means that the signal events

are dis t r ibuted at locations very near the posit ion of maximum

intensity, then the filter should weigh the measurement heavily

since there is less “corru pt ion ” in the measurements. Recall

that the filter assumes the photodetector array is very large;

and for dark limited conditions , the dark events can occur any-

where in the array with equal probability. Thus, the beam width

must be very wide in order to put less weight in the dark ~zneasure—

ments. Since the filter cannot distinguish between a dark or

signal even t, the signal measurements will also have less weight .

In other words, the beam is assumed to be wide in order to “wash”

out the dark events; and the signal events are also assumed to

be distributed at larger distances from the spot ’s centroid of’

maxim um intensity. From this discussion , it becomes ev ident that

altering the beam width in order to compensate for the dark

events has some problems, especially if the photodector array is

dark current—limited. It would be preferable to try to distinguish -

signal events from dark events and weigh them properly.

In residual monitoring, the sequence of res iduals are

monitored in real—time to decide whether the current measurement

value can be discarded as a “bad” data point . Consider Eq. (23)

which is repeated below as

x(t
k+) = x (t

k~
) + K (t k_)trk_x(tk

_)] (65)

residual

where H(tk)=l. From Eq. (65), a res idual is simply the

difference between the measurement , rk ,  and the conditional
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mean x (t k
_ ) of the measurement~ con di t ioned on on ly t he

previous history of measurements. Residual monitoring would be

used to test for events that are not due to the spot . If the

event s fa il the test , then the filter does not process the

dark mea suremen t .  Instead, the filter propagates its conditional

mean and covariance until it senses another event which passes

the test . For this study, if the residual in Eq. (23) is

greater than three t imes the beam width, then t he event is

discarded. Note that in residual monitoring , there is no need

to increase the beam width. In other words, the event locat ions

(due to the spot)have the same distribution about the spot ’s

centroid, as before . Thus, res idual monitoring can be

exploited effectiv~ly for high signal—to—noise counts ratio ,

since few events will fail the test. Physically, res idual

monitoring is a better method of compensation than filter

tuning in order to handle the dark current effects.

As a rough comparison in performance improvement between

the above metho ds, the square of the mean errors at the sample

times are all summed. The results from this method are listed

in Tables 3 and 4. The tables indicate that residual monitoring -

is a better method to handle the dark current effects than

altering the beam width.  For particular cases , pl ots of the

variances in which these methods are employed are shown in Figs .

(33) through (36). These plots show that the Snyder Filter

performance can be enhanced substantially through residual

monitoring by not processing the dark measurement . As expected ,

these results correspond to the physical arguments mentioned in

previous paragraphs.
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Average Sum of the
Signal—to—Noise Method of Beam Width Square of the
Counts Ratio Compensation (xO.01 cm) Mean Error

None 5.0 207.0

500 None 5.0 555.0

500 Residual Monitoring 5.0 80.2

500 Filter Tuning 7.5 323.0

500 Filter Tuning 10.0 223.0

500 Filter Tuning 15.0 166.0

500 Filter Tuning 20.0 167.0 -

500 Filter Tuning 30.0 196.0

50 None ~.0 3150.0

50 Residual Monitoring 5.0 66.3

50 Filter Tuning 10.0 1230.0

50 Filter Tuning 20.0 198.0

50 Filter Tuning 140.0 110.0

50 Filter Tuning 20 .0  377.0

1 None 5.0 2860.0

1 Residual Monitoring 5.0 33.0

1 Filter Tuning 30.0 350.0

1 Filter Tuning 140.0 70.7

Table 14. Test Cases for X=5 and Y 1
(with dark current)
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Average Sum of the
Signal—to—Noise Method of Beam Width Square of the
Counts Ratio Compensation (xO .Ol cm) Mean Error

None 5.0 142.7

500 None 5.0 171.3

500 Residual Monitoring 5.3 33.6

500 Filter Tuning 6.o 1142. 14

500 Filter Tuning 7.0 122.3

500 Filter Tuning 8.0 - 95.1

500 Filter Tuning 10.0 83.7

500 Filter Tuning 20.0 57.8

500 Filter Tuning 30.0 50.9

50 None 5.0 1160.0

50 Residual Monitoring I 5.0 111.0

50 Filter Tuning 10.0 423.0

50 Filter Tuning 15.0 208.0

50 Filter Tuning 30.0 97.2

50 Filter Tuning 40.0 105.0

5 None 5.0 89140.0

5 Residual Monitoring 5.0 60.6

5 Filter Tuning 20.0 882.0

5 Filter Tuning 30.0 396.0

Table 5. Test Cases for X=20 and Y=1
(w ith dark curr en t )
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Summary

For the test cas es cons idered , the filter ’s average

performance lies near the upper boun d curv es which seems reasonable

since the set of parameters is selected to yield relatively

poor tracking (i.e., few signal counts per coherence time).

When dark current is inc luded in the measurement model

of the Snyder Filter , the estimator is found to be very

sensitive to dark measurement s and tracking performance is

degraded substantially.

Based on physical arguments and simulation results, residual

monitoring provides a better method to compensate for the effects

of dark current than filter tuning .
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V C o n c l u s i o n s  and Recor r imen da t  i ons

C o n c l us  ions

A s s u m i n g  no da rk  c ur r e n t , t h e  average e r ro r  p e r f o r m a n c e

of t he  Snyder  F i lt er  cm be de s c r i b e d  by s t e a d y — s t a t e  uppe r

and lower  bounds  on ue - in s lu a r e  e r ror  ( M S E ) .  These b o u n d s  are

evaluated as a f’uncti n of two physically motivated parameters .

These parameters a t e  described as: (1) the average number of

signal photoelectrons observed in a coherence time of spot ’s

dynamics , and (2) the spot ’s jitter normalized by the square

of the beam width. Based on these parameters , sufficient

conditions are presented such that the bounds converge to the

actual performance. When sufficient conditions are not estab-

lished , the results from the Monte Carlo simulation indicate

that actual performance can be described by the upper bound

(in this study, the conditions correspond to low signal counts

per coherence time).

Presenting the dark measurements in the simulation ~ave

further insights into the tracking capabilities of the Snyder

Filter. Even for an average signal—to—noise counts ratio of -

500, the results show that this estimator was highly sensitive

to dark measurements. r1lF1t~ S , the Snyder Filter treats all events

as signal .

Based on simulation results and physical arguments , residual

monitoring is a better way to handle the dark events rather than

increasing the beam width. This can be explained as follows:

by increasing the assumed beam width , the Snyder Filter puts less

1149
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weight on the dark measurements. At the same time , more events

will be assumed to be distributed from the spot ’s centroid.

Thus , the filter will not weigh heavily the measurement due to

the spot ’s Gaus sian intensity prof ile. Also , the Snyder Filter

assumes the measurements are from a large photosensitive surface,

and therefore the beam width must be very wide to “wash” out the

dark current effects. On the other hand , residual monitoring is

a method that involves testing for dark events. In this study,

if a measurement (i.e., event location ) occurred that is three

beam widths away from the position of maximum intensity, the Snyder

Filter would not process this measurement . Hence , it is unnecessary

to increase the beam width in residual monitoring . For high signal—

to—noise counts ratio, residual ~nonitoring can be used effectively .

Results from the simulation demonstrate this physical reasoning .

Recommendations

An area of recommen ded research is to con duct th is study in

two dimensions which would investigate different equal intensity

ellipsoidal shapes of the spot ’s intensity profile. Also,invest-1—

gation of other intensity profiles besides the assumed Gaussian—

shaped may warrant further research. The effects in filter

performance can then be investigated.

Another issue of research is how to incorporate the point—

process measurements. This study was performed in which the

rate funct ion was chosen to have a low value , but in the real

world, rates of io 10 events per second can occur on the detector

surface. This imposes a very strict requirement of computation

on—line . A suggestion was made to store trie photoelectrons in
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charged—coup led devices. Then the Snyder Filter can process

its measurement at fixed time intervals. In this case, mul t i ple

measurements are ava ilable to the Sny der Filter . Then , how

does one process these stored or “batch” mea surements , and how

does one account for different arrival times (if at all)? This

creates an area of research that warrants further investigation. - -

Another illustration in how to incorporate the point—process

measurements is the issue 01’ simultaneous event s encountere d in

the study. I-low would one process these multiple measurements

at single t ime ins tan t  in the structure ? Obviously there is more

information concerning th~ spot ’ s posit ion of maximum intensi ty

(assuming no dark c u r r e n t) .  This question should be answered

with further research .

This study analyzed the Snyder Filter in open—loop configura—

tion; thus , a follow—on study with control inputs to position—

sensitive devices , such as a mirror , warrant s furt her invest iga-

tion .

A final issue and recommendation is to develop ad—hoc

methods in how to handle the dark current e f fec t s  for low signal—

to—noise counts ratio. Since residual monitoring was found to

be a more e f fec t ive  method of’ compensation than f ilter tuning~,

different methods using residual monitoring should be investigated.
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Appendix A

Statistics of a Time—Space Point Process

The purpose of this appendix Is to derive the s t a t i s t i c s

of a point—process in time and space based on an incremental

description. In its application of this report , we define

a rate funct ion to be

— — 2 -a’ aX (t ,r) = 
~~~~~ ‘A lU~

(t ,r)I dr; dr = dxdy
o d

where t denotes the time continuum , F is the dummy variable

representing a locat ion on a phot odete ctor sur face , n is the

quantum efficiency, h is Planck’s constant , Ad 
is the

detector surface area , U
~ 

is the complex field envelope , f0

is frequency of the input field, dx is differential length

along x—axis , dy is d i f fe ren t ia l  length along y—axi s  and 
~~~~~~

Is modulus of field envelop. This rate function describes the

intensity of event s appearing on the detector surface in t ime

and space.

Shown in Fig. Al is a detector array of photon or quantum

detectors which can measure the temporal and spat ial locat ion

of a photon—to—elect ron conversion .

It is assumed that each photon—to—electron conversion or

event on the detector  surface is independent . Then based on

its Incremental properties the x—axi s , y—ax l s , and t— axi s  are

part i t ioned into intervals as shown in Fig. P~—2:

Then, with r
~~

(x k,yk), the incremental description is as follows :

- 
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ev ent o~~~~~i~t -~ n.-
P in  ~tt~i~ = X ( i -  ~~~~~ ÷ o(~~t L~~)

( t ,, r
~k

)

no ~~VCf l t  ~r-r 1fl -~
P in At~ A at i — ? ( i  ,r)Ct~AA + o(~~t~ A) ( / ~_~~ )

(t k ,  r k ) 
-

I more tL an  One
P eve nt in A U A A  e (~~tL ;~) ( A — 3 )

(tk,rk
)

whe re P [ ]  denotes  p r o b a b i l i t y ,  of o(A tAA) are higher  order

te rms  of o ( A t ~~A )  w i th  l imi t  o(~~t~~A) 
= 0.  It is des i rab le  to

Lt L~A-~0 ~t~~A
ob t a in  a s t a t ist i c a l  de s c r i p t i o n  of event t imes  t

k
’ S event

loca t ions  r k s , and. t h e  number  of events  n , appear ing on en t i r e

de t ec to r  s u r f a c e  A d ,  in a t ime in te rva l  [o,t]. Thus , we need

the jo in t  p robabi lity  d e n sit y  func t ion  of these random va r i ab les

t k~ 
Fk ,  and n ( i . e .  f [ ( t k

) , f r k
} ,n]  where C . )  denotes set of event

locations  or t imes. f [ f t k ) , (
~~k

} , n] comple te ly  c h a r a c t e r i z e s

the output  process from the d e t e c t o r  s u r f a c e .

To ob ta in  f [ f t k
} , {

~~k
) ,n ] ,  cons ider  a counting process Nt

which is depic ted  in Fig.  A — 3 .

The po in t  pr ocess p r o b a b i l i ty  d i s t r i b u t i o n  for  N t ( i . e . ,

P[N t = nf l  wi l l  be derived using characteristic functions. Note

that  the process N t is the number of events  regardless of when

and where the event occurred.  Since Nt is a d i sc re te  random

variable ,

E[e t] = ~~~~~ P [N = 0) + eJv P~ Nt =
t

+ eJ2v p [Nt = 2)+ . . .  + ej V  PEN t =

- 

l5~

L __ -
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x

x

x
X :-: ~f o t o c un v e r s i o n  in time and space

FL; A . l  I n f in i te Sir lnfl ly r~ r~e~ de t ec to r  a r r a y .

x ,y ,t are
I cen tered  in

I I i t *~X i n t e r v a l s  ~x ,
t~y , L~t , r e spec—
t i v e l y .

A ‘ k -  ‘
yk

I,. )

k

F’ic~ A . 2  Par t i t i o ns  of x — a x i s , y — a x i s  and t — a x i s

N t
: ,

__  

-

F i r ; A.  T i m e— s p a c e  Count  in~ P rocess
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l e t n 1 be a rati~ om v ur t ab le t h a t  is equal  to  a one in which

an ev ent  OccurvL - -J I r i ?~ t !It or i z ero in ~h ieh  case  no ev e n t

occu rc e - i . T i~ t h e n ~o l lo ws  that 
~~ k=l k wh e r e  k = O , l ,~~, 3 . . . n .

Then 
~ i . 

(A— n ) l~ cC o r ~~:-s

E[ e t j ~ [e x P ( i v ~ n~~) ]

= flt L-:[exp(jvn )] (A-5)
k= l  k

where we have use the property of statistical independence of

events. Upon using Eqs. (A—l) through (A—3 ) , Eq. (A—5 ) becomes

E[0 t
] = 

~~ 

e3 X ( t k ,~~k )
~~

t
~~

A + eJv o [ l _ X ( t k ,~~fr )~~t~~A J + o(~~t~~A )

= II A (tk , rk)~~t A A ( e Jv _i) + 1 + o (~~t L~A )
k=l

= exp~~ ln[ 1 + A ( t k ,~~k )~~t~ A ( e Jv _ 1) + o ( A t ~~t ) ]  (A - 6 )

and us ing  ln ( l + z )  z for small z , Eq ( A — 6)  becomes
Nj v N  t

E[e t] = exp [ ~k=l -

Also , as ~t t~A÷ O , the  sum in the  above relation becomes a definite-

integral so that
j vN . —

E[e ~] = exp [(e3’T—1) j ft A (c~,~~)dc~d~) (A—7)
A 0d 2

w i t h  the  ser ies  e xp a n s i o n  of e x p ( x )  = 1 + x + ~~~-~- + .
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Eq (A—7) yields

jvN
~E[e ] e x p (_ U A 

) .
d ,t

2jv  2/ e [exp( J i A ~~I jv d ,t1 + e exp (
~
.tA 

) + 2!d,t

+ ... + e
~~

’[exp ( I J A ) J
fl 

\
d,t (A—8)

n! /
wnere 

~A = f f t A (t,r)dc~,dd ,t Ad O

Comparing Eq. (A—8) with Eq. (A-.11), we obtain

~~~ 
) ‘1exp 

~~~~ ~
P[Nt = nJ = d,t — d,t (A—9)

n!

Eq (A—9) describes the counting process Nt in interval

[0,t] without regard to the event times and event locations .

To obtain f[Ctk
}, {rk},nJ, and using independence of events,

consider the following probabilities:

P[one event at (t1,~ 1)] = A(t1,~ 1)At~ A (A—la)

P[one event at (t1,r1) and no events In [t,T]]=

= x (t1,r1)~ t~ A exp(— f f~ x ( c* ,~~)dad j  (A- l i)
Ad t l
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Fina lly , the probability density function of the ordered

event times, event locat ion s, and the number of events in

[O ,T] on Aä is defined

f[{tk},{rk},n] = lim P[;] (A-l 2)
~tL~A+O C Lt~ A )~

where P [ ;]  denotes the probabi l i ty  of one event at (t 1,F1), one

at (t 2,r2), . . .,  one at ( t k , rk ) .  Using the Eqs (A— b ) and

(A — l i ) ,  ( A— 12 ) will yield

f [ { t k }, { rk }, nJ = ex p ( - f f
t A C  dc~d~ )fl A ( t k , rk ) ( A-l3)

Ad 0 k l

Eq (13) completely character izes  the s ta t is t ica l  output process

of the detector surface.

Since this report simulates the detector output in one

dimension , simply replace 
~k 

with rk ,  to yield

f(t ,r ,n} = exp(— f ~, f ~ X(c~,8)(a,8) ii A (t ,t ) (A—114)
0 k=l

where 9. 1~~detector length.

To obtain the joint probability density of event times and

number of events without regard to where the events occurred

(i.e. f{{tk},n}), Eq (A—li) will yield the marginal density

t n
f{{t },n} = e x p ( —  f f A (ct,B)(ct ,~~) II f X (ct,~~)dcik £ 0 1=1 2.

where the rat e func t ion  c~ A ( r k , t k ) is integrated over the

detector length yielding no spatial dependence on f X (czk , tk)dc~9.

- 
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This completes the s ta t i s t i ca l  descr ip t ion  of a t ime—space

point process which characterizes the output of a photo-

sensitive surface.
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Appe ndi x B

Uppe r and Low er Bounds on Mean Square  Error

The Snyder Filter is a minimum mean—square—error estimator

that uses time—space hoint process observations. The purpose

of t h i s  appendix  is to  solve the  upper  and lower bounds  on

m e a n — s q u a r e — e r r o r  ( PISE ) in order to evaluate the estimation

pe r f o r m a n c e  of the Snyder  F i l te r .  Also , the  bounds , d er ived

in R e f .  ~ are solved in s t e a d y— s t a t e  ( i . e . ,  = dP = 0 ) .

Parameters  are d e f In e d  from the  dynamica l  equa t ion  of’ P~ and P~
to provide  m e a n i n g f u l  p h y s i c a l  d e s c r i p t i o n s  about the actual

pe r fo rmance  of the  Snyder  F il t e r .  Based on these parameters ,

s u f f i c i ent cond i t ions  can be e s t a b l i s h e d , such t ha t  the  bounds

are i d e n t i c a l ;  t h u s , a c t u a l  pe r fo rmance  can be d e t e r m i n e d .

H o w e v e r , when the  paramete rs  do not e s t ab l i sh  s u f f i c i e n t

e o n - l i t l o n s , th e  bounds are no longer iden t ica l , and ac tua l

p e r f o r m a n c e  is d i f f i c u l t  to ob t a in s These parameters  wi l l

now be derived in one dimension which involves onl y e s t i m a t i o n

performance.

The parameters are derived in one— dimens ion  for  a spot ’s

dynamics to be modelled as a Scalar First—Order Markov process.

In addition , this solution only involves estimation performance.

Consider the spot ’s centroid (or position of maximum intensity)

which is modelled by a linear stochastic differential equation

dx(t) = F(t)x(t)dt + G(t)d~ (t) (B—l)

where x(t)A position of maximum intensity, ~(t) is a Wiener

process , F(t) is the st-ate coefficient , and 0(t) Is the noise

1 Ga
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input coefficient . The time— space point process h-as ~ rat- c-

function rnodell~ d as

X(r ,x(t),t.) = ~(t)y(r ,x(t)) (B-?)

where

nI C t )
p ( t )  = ° ( f l _ 3 )

hf 0 

2
y ( r , x~~) = ~~~ — CXP~~

r x(t)) 
-} (p - li)

2o2

w i t h r is a dummy va r i ab l e  for  s p a t ia l  l o c a t i o n  on de t e c t o r ,

~ Is th e  b eam w i d t h .

The lo wer bou n d on MSE ,de noted as P~~( t ) ,  is desc r ibed  by

the  f o l l o w in g  d i f f e r e n t i a l  equat ion tha t  is spec ia l ised  in

one—dimens ion a l  space as

dP~
dt = F( t )P~~( t )  + P~~( t ) F ( t )  +

- P~~( t ) [~~~~]

where p = E [u(t)]; E[.] = expec ted  value opera tor

Q ( t )  is s t r e n g t h  of ~~t )

The lower bound is spec i a l i z ed  for  the  f o l l o w i ng  a s sumr ~~i o n s :

( 1) x is m o d e l l e d  as an o u t p u t  proc ’— ss of a F i r s t  Order
— lLag; then F(t) = — and i t s  s t a t e  t r a n s it i o n  f u n c t i o n  is

= e
_ ( t _ t ) / T :. The s t ren gt h  Q of the  w h i t e  noise

L 

d r i v i n g  the  First  Order lag is g tv e n  in R e f  ( 9 )  as 0 -
~~~~

--- e,- T X
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to obtain stationary statistics at the output . a 2x
Is the mean square value of the spot ’s displacement on

2the detector surface (i.e. E [x(t)x (t+t)] = a
~ 

e C

and (2) 0(t) = 1. Eq (B—6) will yield ,

= —~--~P~ + Q - ~ P~ (B -6)

Solving for s teady s t a t e  dP~ = 0 , y i e l d s  a qu a d r a t i c
dt

eq ua t ion  which  is expressed as

= 2a 2 
+ ~ [ ~2-~-) 2 + ) 4 ( Q~ ) J ½  ( B — 7 )

= (4 c~~~~3 (_ i  
+ 

[1 
+ QG

2 T
C P )23½ )

= ~~~~( 1 
))(_

i + [1 + C ) ( C P

)]½) 
(B-8)

Dividing Eq (B—8) by a and defining X -
~~~~~

, y —~~
2s -

yields

P ft i-S

= 
~~~ (

~~1 + [1 + ~4 x Y ] 7 )  (B—9)

2
But , ~ = f~~~a and Q = , and s u b s t i t u ti n g

Into X and Y gives

2

x = 
~hr~ ~~ ~~~~~ ~ 

-
~~~~~~ = -+‘ (B-b )

_ _  
~~~~~—- —-- - - -- -- -- -~~~~~~~~~~~~~

..
.
-- —5-- 



X descr ibes  the  average number of’ photons dptecteri in a coherence

t ime of t h e  spot ’s dynamics and Y results in th e spot’s jitter

normal i-~~1 by the s luare of the beam width. These parameters

ar ’ - d lsc n~se-l In d e t a i l  in Chap te r  I I .

The r~’1ation for the upper bound on MPE is expressed as

* —ldP * — 2= FP + P*F + GQG — i iP *[P* + a ]  p * ( B — i l )

Applying the same assumptions as in P~,, Eq (B—li) yields

*dP = —2 
~~~~~~~ 

_ p P *
dt t * 2c p -f e

dP*For = 0 yields another quadratic equation which solves for
cit

2 2
2

* 1 C C
P = 

~~

‘ 2 — 
+ 2 — 

+ 2 — 
-

— + u — + ~~~I T I

— 
1 ;Tc

_2a2 

+ 
QT:

_202 ) I C 2
T

c 

½

- 

~ 
2+~ t~ 2+~~T 

+

= 
~~~ ~7~+tr; 7~ 

( ~ 
— l ) 

+[(

h t ~~ 

~~~~~~~~~ 

2

+ ( )(~ 
+

U T  U t
Again , letting ‘1 , Y = , an d  — 1 i v l c l l n r ~ a

2

2

i n
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Into Eq (B—l2) yields

= 
(2(~ ÷l) ) (Y_i)2 + [ ( y + i ) 2 

+

where X and Y is defined in (B—ia). Note that, for X > >  1

Y<< l, the bounds converge to actual mean square—error . Thes-

cond.it ions are discussed In Cha p ter  I I .  
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