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Preface

The ability to objectively measure speech intelligibility

has long been a goal of the communications-engineering community .

A few automated techniques have been developed in the past years ,

but to date , no technique has fulfilled all the requirements

desired of an automated system . The subjective scoring of speech

intelligibility by trained listeners still remains the most

reliable , though maybe the most expensive , means of measuring

intelligibility .

Linear predictive coding has appeared on the horizon of com-

munications theory of late , and in preliminary systems has proven

quite effective in producing synthetic speech. The question

P 
arises, if linear predictive coding can be used to produce high

quality synthetic speech , then why can’t it be used to measure

• the quality of human speech? This study addresses i~tself to

this question by developing objective measures of speech intelli-

gibility based on linear predictive coding and measuring their

effectiveness.

I am deeply indebted to Mr. William Hall and Mr. Dave McGrew

for their invaluable help in processing the analog speech data

and for the use of the computer resources of the Analog/Hybrid

System Branch of the ASD Computer Center . I wish to thank

Major Joseph Car l, my advisor , for his guidance , assistance , and

encouragement during this study and to Mr . Richard McKinley of

the Aerospace Medical Research Laboratory for the use of their

audio test equipment .
Donald M. Ottinger , Jr.
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Abstra ct

Four distance measures of speech intelligibility based

on linear predictive coding (LPC) are developed and evaluated.

The data base used for evaluating the measures consisted of

lists of 58 words from Diagnostic Rhyme Test IV. The lists

were transmitted over a spread spectrum radio communications

channel and subjected to 7 different levels of non-white , non-

Gaussian jamming noise. The lists were all scored subjectively

for intelligibility by a trained listener panel. The subjec-

tive scores were used to judge the effectiveness of the four

distance measures.

The Articulation Index was also calculated for each of the

word lists and compared to the LPC measures as to effectiveness

and efficiency in measuring speech intelligibility . The Arti-

culation Index was significantly more effective than the LPC

measures. The best LPC measure provided 42% correlation with

the subjective scores. The Articulation Index provided 69%

correlation. The overhead associated with data tape alignment

and parameter computation makes LPC measures extremely ineffi-

cient as compared to the Articulation Index.
iS
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OBJECTIVE MEA SURE OF SPEECH

INTELLIGIBILITY USING

LINEAR PREDICTIVE CODING

I. Introduction

A continuing need exists within the military to measure

the intelligibility of speech produced on communications

systems. While methods exist for measuring system parameters

such as signal-to-noise ratio and idle channel noise , very

few tests are available for measuring the actual intellig ibil-

ity of the speech produced at the receiver of the communication

channel. Examples of situations in which a measure of speech

intelligibility is needed include the comparative testing of

similar voice Communications equipments , on-line evaluation

of voice channel quality , and measurement of the effectiveness

of spectrum jamming in destroying communications capabilities.

The purpose of this thesis is to explore a relatively new

technique used for speech analysis called linear predictive

coding (LPC) to determine if LPC can form the basis for a

measure of speech intelligibility .

Present Measurement Systems

The oldest and most reliable test of speech intelligibility

is subjective scoring . Subjective scoring involves trained

speakers reading a list of words over a communications channel ,

while a panel of trained listeners subjectively scores the

1
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intelligibility of the received speech . The method is

extremely reliable due to the fact that actua l human listen-

ers are involved and no equipment is required to attemp t to

model the human hearing process. However , the fact that

human listeners are used accounts for the numerous disadvan-

tages of subjective scoring . If two communications systems

are to be comparatively tested , the same group of listeners

must be used to prevent distortion of the intelligibility

scores due to a difference between the hearing abilities of

two groups. If a significant number of intelligibility tests

are required or the number of systems to be tested is quite

large , considerable time must be spent in the testing process.

If the listener group is large , considerable manhours and ,

therefore , expense will be expended in testing the systems.

For tests evaluating the quality of speech over on-line commu-

nication channels or measuring the effect of jamming on dis-

rupting communications , the use of a controlled listener group

is impractical if not impossible.

The decrease the manhours, expense , and impracticality of

subjective intelligibility tests , an automated system is needed

that will accurately measure speech intelligibility without the

use of listener groups. The most important quality of any

automated system developed is the ability to produce the same

results that a listener panel would have produced. To date ,

the only automated technique in widespread use is the

Articulation Index .

The Articulation Index (Al) is an automated speech intelli-

gibility measure that was first described by French and
2
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Steinberg in 1947 (Ref 1:10). The Articulation Index is

computed by measuring the signal-to-noise power ratio (SNR) in

twenty separate audio frequency bands. The SNR value for each

frequency is then weighted according to its contribution to

the intelligibility of speeLil . The American National Standards

Institute has established weights to be applied , dependent upon

the communications environment and the type of distortion pre-

sent in the communications channel (Ref 2). The sum of the

weighted SNR’s are scaled to produce an intelligibility score

• with a range from zero to one . An Articulation Index of one

indicates that the speech is perfectly intelligible , while a

value of zero indicates a total lack of intelligibility.

Hardware is presently available that can calculate the

Articulation Index directly. One system which has been used

extensively in military applications is the Voice Interference

Analysis System (VIAS) (Ref 1:11). The system measures the

SNR in fourteen separate frequency bands , as opposed to twenty

bands as specified by French and Steinberg , to calculate the

Articulation Index . Reasonably accurate results have been

achieved using the equipment as long as the interfering noise

present was white and Gaussian , and any other distortion pre-

sent in the communication channel was known apriori.

The VIAS system appears to provide a system for evaluating

speech intelligibility when testing communications equipment

performance in the presence of known channel distortions.

However , the system is not suited for on-line channel measure-

ments or for studying the effects of real-time jamming r~f

3
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communications where the type of distortions present are not

known beforehand . The need , therefore , is for an automated

system that can accurately predict speech intelligibility

without prior kn’wledge of channel distortion types.

Purpose

The purpose of this thesis is to evaluate the use of a

mathematical technique called linear predictive coding (LPC)

as a basis for developing an objective measure of speech

intelligibility. Linear predictive coding is not a new tech-

nique and can be traced back to the works of Gauss in 1795

(Ref 11:10). However , the use of linear prediction in commu-

nications theory only first appeared in 1949 in the works of

Norbert Weiner (Ref 12). More recently , Saito and Itakura

began applying linear prediction to the formulation of a humai~
vocal tract model used to synthesize speech. The use of linear

prediction for the synthesis of speech suggests that the tech-

nique might be successfully applied to the analysis of the

intelligibility of speech. A study done by Hartman (Ref 8)

has proven that linear prediction can , in fact , form the basis

for an accurate measure of intelligibility when the distortion

present is additive white Gaussian noise. In a similar study

done by the Georgia Institute of Technology (Ref 4), several

intelligibility measures based on LPC were tested. The tests

were made on a communications system subjected to various types

of distortion that could be expected to occur in Communication

channels and with digital voice equipment. Of all the4



- -

objective measures tested , the LPC based measures provided the

best results. However , the data base used was severely limited

and , therefore , resulted in large estimated standard deviations

for the measures.

This thesis will evaluate the LPC based objective measures

developed by Hartman and the Georgia Institute of Technology

against the data base created by subjecting a spread spectrum

communications system to non-white jamming noise. The data

base was created by J.E. Bauer (Ref 5) and consists of mono-

syllabic words selected from the Harvard Diagnostic Rhyme

Test. The data base has been subjectively scored for intelli-

gibility as well as being scored by use of the Articulation

Index . The evaluation of the LPC measures will be based on

their correlation with the subjective scores and their relative

advantage or disadvantage over the Articulation Index.

5 
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II. Data Base

The data base used in this study was created by J.E. Bauer

(Ref 5) and modified to the form used in this test by Wayne R.

Beeson (Ref 6). The core of the data base consists of fifty-

eight rhyming word pairs from the Diagnostic Rhyme Test Number

IV (DRT-IV). DRT- IV was used since the list is phonetically

balanced and tests for six specific speech attributes. The

speech attributes are voicing , nasality , sustenation , sibila-

tion , graveness , and compactness (Ref 6:9). Table I shows

the word pairs used in the data base and the specific attribute

associated with each pair.

Four master lists of fifty-eight words each were created

by randomly selecting one word from each rhyming pair of

DRT- IV. Two speakers were used as test subjects , one a male

subject with a southern accent (Arkansas) and the other a male

subject with no noticeable regional accent (Minnesota). Each

speaker recorded two of the four fifty-eight-word master lists.

The lists were recorded on stereo audio tape with one channel

used for each word list and the other channel for timing marks

between each word. The timing marks consisted of a one kilo-

hertz (kHz) sine wave , one-half second long , which was used both

to cue the speaker to say a word and to provide a marker separ-

ate from the actual data channel to identify the interval of

tape in which a word was recorded. The timing marks were spaced

seven seconds apart , and Beeson found that the reaction time of

6 



TABLE I

Diagnostic Rhyme Test

PEST - TEST -(filler)- FAN - PAN
VAULT - FAULT - (voicing)- CHOCK - JOCK
DUES - NEWS - (nasality) - NOTE - DOTE
VEE - BEE -(sustention)- TICK - THICK

THANK - SANK • -(sibilation)- CARE - CHAIR
ROD - WAD -(graveness)- DONG - BONG
SO - SHOW - (compactness)- ~ou - RUE

LID - RID -(filler)- REEK - LEAK
DENSE - TENSE - (voicing)- GAFF - CALF
BOSS - MOSS - (nasality)- BOMB - MOM
FOO - POOH -(sustention)- DOUGH - THOUGH
ZEE - THEE -(sibilation)- GILT - J~~T
FAD - THAD -(graveness)- PENT - TENT
HOP - FOP -(compactness)- YAWL - WALL
ROW - LOW -(filler)- LOOT - ROOT
GIN - CHIN - (voicing)- VEAL - FEEL

BEND - MEND - (nasality)- NAB - DAB
CHAW - SHAW -(sustention)- BON - VON
JUICE - GOOSE -(sibilation)- SOLE - THOLE
PEAK - TEAK -(graveness)- THIN - FIN
BAT - GAT -(compactness)- KEG - PEG

ROCK - LOCK -(filler)- LONG - WRONG
GOAT - COAT - (voicing)- TUNE - DUNE
MIT - BIT - (nasality)- MEAT - BEAT
THEN - DEN -(sustention)- SHAD - CHAD
GAUZE - JAWS -(sibilation)- GOT - JOT
NOON - MOON - (graveness)- DOLE - BOWL
KEY - TEA -(compactness)- DILL - GILL

RAMP - LAMP -(filler)- L~ND - REND

7 
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the speakers was such that the word was spoken (and , therefore ,

recorded) within the first two and one-half seconds after the

timing mark. The master tapes represented the baseline speech

signal from which all intelligibility distances were measured .

The baseline tapes were played through a spread spectrum

communications system with seven different levels of jamming

noise added to the signal . The recordings of the receiver out-

put were labeled as to the signal-to-signal jamming ratio

present in the system . The output tapes were labeled 1 through

7, with 1 signifying the lowest jamming level and 2 through 7

signifying an increasing level of jamming (Ref 5).

Since the data base was entirely in analog form , the data

had to be converted to a digital format to allow digital com-

puter processing . The analog to digital conversion was done

by the Analog/Hybrid Branch of the Aeronautical Systems

Division (ASD) Computer Center , Wright-Patterson Air Force

Base , Oh io.

Analog Processing

A Comcor CIS000/6 analog computer was used to pre-process

and sample the data. Figure 1 is a block diagram of the analog

data processing . To insure that the analog data effectively

used the full range of the analog-to-digital converter , the

speech signals were amplified so that the peak-to-peak voltage

swings were from -75 to +75 volts. The amplifiers were followed

by a 4-pole Chebyshev low-pass filter with a cutoff frequency

of 4 kHz. The output of the low-pass filter was then fed into

8
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the sampling circuit.

The 1 kHz timing marks were used to activate the sampling

circuit. As the speech waveform was being amplified and

filtered , the timing marks were being amplified and detected.

To detect the 1 kHz sine wave and activate the sampling cir-

cuit , a network consisting of a comparator and delay flip-flop

was used. After being amplified to a peak voltage of approx-

imately 125 volts , the sine wave was applied to a comparator .

The other input of the comparator was tied to a 100 volt DC

• level. Whenever the input tone was greater than 100 volts ,

the comparator output was a logical 1 (+5 volts); any other

time the output was a logical 0 (0 volts). As long as the

tone was present , the output of the comparator was a pulse

• train with the same period as the sine wave input.

The output of the comparator was used as a clock signal

to a delay flip-flop with the interval timer set at 2 milli-

seconds . The delay flip-flop is trailing edge triggered , so

that on the trailing edge of a clock pulse , the output of the

delay flip-flop is a logical 1 for a time interval equal to

the interval timer setting . When the 1 kHz sine wave was

present , the clock input to the delay flip-flop was a pulse

train with a 1 millisecond period , twice the amount of time

set on the interval timer. Thus , as long as the sine wave was

present at th~ input to the circuit , the output of the delay

flip-flop was a logical 1. Upon the occurrence of the last

cycle of the sine wave , the pulse train input to the delay

flip-flop would end and the output of the delay flip-flop

10 
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would drop to logical 0, 2 milliseconds after the presence of

the trailing edge of the last pulse. The transition from

logical 1 to 0 of the delay flip-flop was used to activate the

data sampler .

The data was sampled at 8 kHz (Nyquist rate) and quantized

to 12 bits by the analog to digital converter . The sampler

took 20,480 samples each time it was activated. The 20,480

samples represent a time interval of approximately 2-1/2

seconds after the timing mark, the time interval in which

Beeson observed that each word was recorded. The samples were

converted to actual voltage values and stored on digital mag-

netic tape using a Xerox Sigma 7 digital computer integrated

with the Comcor C15000/6. In all , eleven word lists were

samples (four baseline lists and seven noise corrupted lists)

and stored on magnetic tape.

All of the words in the data base are monosyllabic so

that the speech signal lasts for a time interval somewhat less

than 2- 1/2 seconds. The problem now was to detect which of

the 20,480 sample values taken after each timing mark actually

represented the speech signal.

Digital Processing

Since the baseline tapes were recorded in an almost noise

free environment , the data words would be detected in the

stream of data samples by using average energy criteria to

establish thresholds . The data stream (20,480 samples) for

each word was divided imito 160 128-point windows and the average

11
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squared sample value for each window calculated . The noise

that is present in the sample values is due primarily to

analog tape hiss , receiver noise , and quantization . This noise

was assumed to be additive white Gaussian noise with a one-

sided spectral height of N0. By physically observing the

average squared sample values of each window of the baseline

words , it was evident that an upper threshold could be set for

N0. Anytime the average squared sample value was greater than

the threshold , the presence of signal energy due to the spoken

word was indicated. With the assumption that the noise is

Gaussian with a flat spectrum , the signal detection scheme is

optimum . The windows at which the word started and ended were

stored on a disk file as well as the number of windows and

samples each word contained .

Since the analog data tapes were re-synchronized every 7

seconds and only the first 2-1/2 seconds of the 7 second

interval was actually used , it was assumed that the location

of the noise corrupted data words would be at the same relative

position within their data stream as the baseline words were in

their respective data streams . The optimum receiver for a

channel corrupted by additive white Gaussian noise is a correl-

ation receiver . Therefore , to prove that the lists were indeed

synchron ized , a cross-correlation between the detected samples

of the baseline word and the data stream containing the same

word plus jamming noise was made . It was hoped that a sharp

peak indicating maximum correlation , and therefore word align-

men t, would occur .

12



Unfortunately, the cross-correlation showed the two

sequences to be uncorrelated , and no information on tape

alignment could be gained . Figure 2 shows the cross-correla-

tion of a baseline word with the receiver output signal at

the lowest jamming level. Two factors may explain the absence

of correlation between the baseline word and the noise corrupted

word. First , the jamming noise , though intended to be addi-

tive, could have also had a non-linear effect on the signal .

The correlation receiver can no longer be expected to work when

the noise component is not additive. Second , spread spectrum

communications involve many non-linear processes as well as the

spreading and despreading of a signal over a wide bandwidth.

Either the non-linear processes of the spreading/despreading

could change the spectrum of the speech enough to cause zero

correlation between the baseline signal and the received signal .

The possibility of the occurrence of the last factor is streng-

thened by the results of computing the Articulation Index . The

results are discussed in Chapter VI.

The synchronization provided by the timing marks is repre-

sentative of the data gathering techniques available in field

organizations . Thus , for purposes of this study , the tapes are

assumed aligned within a close enough tolerance to objectively

evaluate the use of LPC based measures. Whether the failure of

the LPC based measures is associated with the inability to accu-

rately measure intelligibility or with inadequate tape alignment

is immaterial as far as this study is concerned. The main

thrust of this study is to evaluate the effectiveness of the LPC

13
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measures in an environment representative of the environment

in which the Articulation Index is presently used.

1~

14
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III. Linear Predictive Coding

Linear predictive coding (LPC) has found widespread use

in communications theory over the past few years. Specific

areas of interest have included voice encoding , speaker iden-

tification , word recognition , and spectrum approximation .

This chapter presents the basic theory behind linear prediction

of speech and one solution algorithm for formulation of the

linear prediction speech analysis model.

Linear Prediction of Speech

The linear prediction of speech is based on the idea that

at a par t icular  instant  in time , a sample of a speech signal ,

S( nT) , can be approximated by a weighted sum of the preceding

P samples of speech , where P is an in teger .  This idea can be

expressed mathematically as

P
S(nT) = E a~ S( nT - iT)  (3.1)

i=l

To simplify notation , Equation 3.1 is most often written in

the form shown below

P
S(n) = E a~ S( n - i )  ( 3 . 2 )

i—l

where it is assumed that S(m) represents the mth sample value

of a speech signal sampled every T seconds. Equation 3.2

represents an approximat ion to the speech signa l and , thus , is

16



not exact. The error between the exact speech sample during

the nth sampie interval and its approximation can be defined

by

P
e(n) = S(n) - Z a.S(n-i) (3.3)

i=l 1

The goal is to find the weights (predictor coefficients) that

will minimize the error in some sense over some specified time

interval.

A common minimization technique is to minimize the total

squared error over a defined interval. By defining the total

squared error as E, the goal is to minimize the expression

P
E = E[S(n) - E a.S(n-i)]2 (3.4)

n i=l 1

where the limits on n define the interval over which the error

is to be minimized and are deliberately left undefined for now .

Equation 3.4 can be minimized by taking the partial derivative

of E with respect to each predictor coefficient , a1, and set-

ting the result equal to zero . The resulting equation is

shown below .

P
E 2[S(n) - E akS(n-k)] [-S(n-i)] 

= 0 (3.5)
n k=l

where

i = 1, 2, . . . , P

By rearranging terms and changing the order of summation ,

Equation 3.5 can be rewritten as:

17
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P
E ak ~ S(n-k)S(n-i) 

= -
~~~ S(n)S(n-i) (3.6)

k=l n n

At this point the limits on n must be defined in order to

solve Equation 3.6.

The l imits  on n are specif ied by the choice of solut ion

technique for Equat ion 3 .6 .  Two common solution techniques

are the Covariance and Autocorrelation Methods . The Covariance

Method defines the minimization of E for an interval of n = 0,

1, ..., N-l consecutive samples. The Autocorrelation Method

defines the minimization of E for an interval - < n < +

but defines the speech signal as

~S(n) , n = 0, 1, ..., N-l
S(n) 37)0, otherwise

For this study , the Autocorrelation Method was chosen since it

requires fewer calculations in the solution and insures the

speech analysis model constructed is stable. A detailed

analysis of both solution methods is contained in Reference 11.

Having specified the use of the Autocorrelation Method for

solution , Equation 3.6 can be rewritten as

P +00 +00

E ak E S(n-k)S(n-i) = -Z S(n)S(n-i) (3.8)
k=l f l=-00

• With a change of index , j = n-i , Equation 3.8 can be written as

P +00 
+

00

k=l
ak . Z S(j+i-k)S(j) = .-E S(j÷i)S(j) (3.9)

18

.- - —- - - - - - --- - - ---- -.—--- -- -- -_- - _ - - - • •  ---•- -• - • -- • - -—.--••-•.-.
~~

•- ---_ 



The estimate of the autocorrelation function of the signal

S(n) is

+00

R(i) = Z S(n)S(n+i) (3.10)
n= -~

where

R ( i )  = R ( - i )

Using the definition of S(n) as given in Equation 3.7 , Equa-

tion 3.10 can be wr i t t en  as

N-l -i
R(i) = Z S(n)S(n+i) (3.11)

n=0

For cases in which I. = 1, 2, ..., P, Equation 3.11 will be

defined as the short-term autocorrelation of the signal S(n).

Substituting Equation 3.11 into Equation 3.9 yields

P
E akR (i-k) 

= -R(i) , i = 1, 2 , . . . , P (3. 12)
k=1

Once the shor t - te rm autocorrelat ion has been computed ,

Equation 3.12 represents P linear equations that can be solved

simultaneously for each ak. Linear algebra techniques exist

for efficiently solving Equation 3.12 , but a recursive solution

has been developed by Levinson that provides even greater com-

putational efficiency (Ref 12:129-148).

Levinson ’s Algorithm

Levinson ’s algorithm provides a recursive solution to

Equation 3.12 that is both s imple and e f f i c i en t  to implement.

To simplify the notation for recursive computation , the

19
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following quantities are defined:

= the 1th predictor coefficient of the ~th order
prediction model

r(n) = normalized short-term autocorrelation coefficient

r~ ~ = 
R(n

~~~ R(0

Using the above definitions , Equation 3.12 can now be written

as

P p
-r(j) = Z AJ ~ r(i-j) , j = 0, 1, ..., P (3.13)1

To start Levinson ’s algorithm , define a new quantity , K0, as

K0~
0
~ = (3.14)

and solve recursively for ~~~~ using

P-l PP P
K (P) [r(0) - Z K. ~ 

- 
~ r(P-i)] = r(P+l) - E K .1r(i) (3.15)

i0 1 i=l 1

K (P) = K (P-l) 
- ~ (P) ~~~~i i-l o P-i , i = 1, 2, ... P (3.16)

Having calculated ~~~~~ A~~~~
’) can be calculated from the

following equations ; define A0~
0
~ = 1

[r(0) - E K. (P) r(P+l-i)] = r(P-l) - E A. ~~r(P+l-i) (3.17)
‘ ~ i=0 i=0 3

= A
~
(P) 

- K
~
(P) 

~~~~~ , i = 0, 1, . . . ,P (3.18)

20
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Two vector quantities are generated as a result of the recur-

sive computations , ~~~ and ~~~~ ~~~ is the vector of

predictor coef f ic ien ts  for a p th order model.  ~~~~ can be

interpreted as a vector of r e f lec t ion  c o e f f i c i e n t s ;  each K
J

(
~

)

is analogous to the reflection coefficients of a P-section

transmission line. As mentioned earlier , the autocorrelation

method allows the model to be checked for stability prior to

implementation. In transmission line theory, if any reflection

coefficient is greater than 1, the circuit is unstable.

Likewise , if any K~
(
~~ is greater than 1, the model is unstable.

In addition to producing the prediction coefficients and reflec-

tion coefficients , the algorithm also generates the minimum

total squared error for the model. Define E0 
= 1 and solve

recursively for Ep+i as shown below .

E~~1 = E~ + A
~~:~~

[R(P÷ l) - Z K i~~~
r(i)I (3.19)

Levinson ’s algorithm not only provides the prediction coeffi-

cients , reflection coefficients , and total squared error for

a P order model, but also , since the algorithm is recursive ,

provides the same quantities for all models less than order P.

A flow chart for implementation of Levinson ’s algorithm is

illustrated in Figure 3.

21 
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X(l) = r(0)

K(l) = -r(l)/r(0)

E(l) = r(0)[l-K(l)2]

A1(l)= -K(l)

J =  1

YES 1~~~~~~~~~~ A.(P)

J = P? K(i) l<i<P

NO E(P)

I j = j + i  I
‘L.

J-l
X(J) = r(J)- E r (J-i)Ak(J- l)i=l

K(J) = -X(J)/E (J-l)

E(J) = E(J-l)[l-K (J)2]

A
~
(J)= A i(J~

l)+K(J)AJ l (J
~
l) , l < i<j - l

A~(J) = -K(J)

Fig 3. Flow Chart for Levinson ’s Algorithm
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IV . Distance Measures

This chapter describes four objective measures of speech

intelligibility which are based on a vocal tract model created

by linear prediction . The term distance measure , as used here ,

indicates the relative distance between some aspect of a base-

line speech signal and a distorted version of that same speech

signal. For a distance measure to be valuable , it should be

highly correlated with subjective scoring results. The four

distance measures described here were all tested against the

subjective scores and Articulation Index results of the data

base. The results are contained in Chapter V.

Vocal Tract Analysis Model

In Chapter III the error between a predicted speech signal

and the actual value was defined as

P
e(n) = S(n) - Z a.S(n-i) (4.1)

i=l

By defining a0 
= 1, the above equation can be written in

Z-transform notation as

E(Z) = S(Z) H(Z) (4.2)

where
P

H(Z) = 1 - Z a.Z 1

i=l 1

H(Z) is defined as the vocal tract analysis model and can be

interpreted as an all zero filter of the ~th order.

23



Fant has developed a very detailed model of the human vocal

tract which is described as a time varying all pole filter (Ref

11:5-8). The filter is time varying since it must mode l the

changes in the vocal tract which are made to produce different

• sounds. Fant has shown , however , that the vocal tract and ,

therefore , the model filter pole locations remain stationary

for a period of 15-20 milliseconds during speech production.

Thus H(z), the analysis model , can be interpreted as the in-

verse of the vocal tract model described by Fant , and must be

updated every 15-20 milliseconds . The updating of the analysis

model is required in order to account for the changes in the

time domain characteristics of speech caused by changes in the

vocal tract.

As described in Chapter II , the digitized data base was

sectioned into 128-point rectangular windows for detection of

the baseline words . The 128-point sections represent a 16

millisecond interval of speech and , therefore , a stationary

analysis model can be developed for each section . Markel and

Gray have shown that to preserve the spectral properties of

speech when using linear prediction analysis , a tapered window

should be applied to each section of speech (Ref 11:157). A

Hamming window of the form shown in Equation 4.3 was used.

W(n) 0.54 - 0.46 cos (~!.~) , 0 < n < N-i (4.3)

To analyze an entire word required the development of a

collection of analysis models , each representing a separate

16 millisecond segment of the word. The collection of analysis

24
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models describing the characteristics of the word formed the

basis for all four distance measures.

Distance Measure 1

Distance Measure 1, DM1, is based on the ratio of the total

squared error (TSE) produced by passing a baseline word through

its analysis model and the TSE produced by passing a distorted

version of the word through the same model. Figure 4 illus-

trates the block diagram description of DM1. S(n) is a

128-point segment of speech and S’(n) is the same speech segment

• corrupted by some type of distortion . As each new segment of

speech is to be analyzed , the baseline speech signal is analyzed

to determine the linear prediction coefficients that define the

analysis model. DM1 is calculated for each 128-point section

of the word and averaged over all word sections to produce an

average distance measure for the word. DM1 is defined in

Equation 4.4.

N S rl28 [e (n)f 1 1/2
DM1 =~~~ Z E ~ i 2 ~ 

(4.4)
k=l Ln=O [ek (n J J  

~
where •

NS = the number of 128-point speech segments in the word

being analyzed

denotes a quantity associated with the noise corrupted

word

The masimum value of DM1 is 1.0 and can occur only when

S (n) and S’(n)  are identical . As the distortion present in

S’(n) is increased , the TSE produced by S’(n) should increase

25
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Baseline
peec ANALYSIS

ANALYSIS e(n) 2
!4DDEL
H(Z)

re(n)2 ~ 1/2
Le ’ (n) 2J

Distorted ANALYSIS 2
~ ~‘-h ~43DEL e (n)

F1(Z)

Fig 4. Calculation of Distance Measure 1
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and , therefore , decrease the value of DM1.

Distance Measure 2

Distance Measure 2 , DM2 , is identical  to DM1 wi th  the

exception that the ratio of the total squared errors of the

two speech sections is normalized , based on the sum of the

squares of the speech samples. DM2 is defined in Equation 4.5.

DM2 = 
~ NS 128 [e(fl)]2 (4.5)

k= 1 ~ n=0 [e ’ (n) ]

where

R0(k) is the sum of the squared sample values in data

section k of the master word

R0 ’(k) is the sum of the squared sample values in data

section k of the distorted word

Distance Measure 3

Distance Measure 3, DM3 , is based on an intelligibility

measure developed by Hartman (Ref 8). A block diagram illus-

trating the signal processing for DM3 is shown in Figure 5.

Hartman ’s measure is based on the ratio of total  squared error

between two data sequences but , as opposed to DM1 and DM2 , the

measure is calculated from the short-term autocorrelation and

LPC coefficients of the two signals , instead of creating an

analysis model and pr ocess ing both signals. DM3 is based on

four quantities: E , E ’ , D, and D ’ , which are defined below .

E Minimum total squared error calculated from Levinson ’s

algorithm by analyzing an undistorted section of speech

27
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Distorted LPC E’
Speech ANALYSIS

ml
ln(E ’/D ’) ThRE~ -IOLD

ANALYSIS
MODEL

+ m2
2

D
L ANAiySIS

- MODEL 
_____________

F
in(E/D)

Baseline .~ LPC
Speech ANALYSIS

ThRESHOLD
A~3US1~~~T

Noise J LPC
Sample

Fig 5. Calculation of Distance Measure 3
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E’ Minimum total squared error calculated from Levinson ’s

algori thm by analyzing a d is tor ted section of speech

D Total squared error created by comparing an undistorted

section of speech with the predictor coefficients cal-

culated from the corresponding section of the distorted

speech

D’ Total squared error created by comparing a distorted

section of speech with the predictor coefficients cal-

culated from the corresponding section of undistorted

speech

All four quanti t ies  can be expressed in matr ix  notation by the

following equations.

E AT R A (4.6)

= A P T R ’A’  ( 4 .7 )

D A P T R A ’ (4 .8)

= AT

where 
—

primed quantities indicate the value associated with

distorted speech

T denotes the transpose of a vector

AT is a P+l element vector of predictor coeff ic ients

AT 
= (1 , -a 1, -a 2 , ...,

P. is a P+l by P+l matrix of short- term autocorrelat ion
value

~~~ 
= R ( j i - j ~~)

As stated earl ier , E and E ’ are a direct result  of Levin-

son ’s algorithm , but D and D’ must be calculated using

29



Equations 4 . 8  and 4.9. However , computational time for D and D’

can be saved by exp lo i t ing  the symmetr ica l  p roper t ies  of the

autocorrelation matrices. The R matrix is structured such that

the elements of each diagonal are equal so that D and D’ can be

calculated from Equations 4.10 and 4.11.

P
D = Z g ’( i ) r ( i )  (4 .10)

i=O

P
= Z g(i)r ’( i )  (4.11)

i=0

where

g(i) = 2 
k=0 kak+1 , i=l , 2 , .. .P

2g (0) = Z cikk= 0
p

g ’( i )  2 . E ci kci k+i , i=l , 2 , . . . P
k= 0

2g ’ (O) = Z
k= 0

and are the kth elements of the A and A’ vectors of

predictor coefficients. Two distance measures are defined

based on the ratios D’/E’ and D/E .

El = ln (D’/E’) (4.12)

E2 = in (DIE) (4.13)

where in denotes the natural logarithm .

30 
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To facilitate the comparison of El and E2 to the subjec-

tive scores , thresholds are established for El and E2 and the

thresholded quantities are scaled to a range of 0 to 1. A

value of 1 indicates that the speech is completely understand-

able , while a value of 0 indicates complete misunderstanding .

Hartman established thresholds for determining whether a

segment of speech is completely understood or completely mis-

understood based on the work of Flanagan (Ref 7) and S~bur and

• • Jayant (Ref 12). Initially, the thresholds were set so that

a value f&r El or E2 greater  than 2 . 4 6  indicated the speech

was totally unintelligible. At the 
•
other end of the scale , a

value less than 0.82’ indicated’that the speech was completely

intelligible . An intellig ibility metric was , therefore ,

defined by

= 1, if El < 0 .8 2  completely in te l l ig ib le

METRIC 1 = 0 , if El > 2.46 completely unintelligible (4.14)

= 
2.46- 

- E l  
, otherwise

= 1, if E 2 < 0.82 compl et e ly int e l l ig ib le

METRIC 2 = 0, if E2 > 2.46 completely u n i n t el l i g i b l e ( 4. l 5 )

= 2 .4 6 -  0 .82  otherwise

Hartman found that the establishment of fixed thresholds

proved unsatisfactory for predicting intelligibility and he ,

therefore , suggested that the thresholds be adjusted depending

on the character of the noise present. In determining the

threshold adjustments , eight 128-point segments of noise were

taken from the data tapes and LPC analysis performed on the
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samples. For the noise segments with the largest and smallest

values of the sum of the squares of pr edict or co efficients ,

E1N and E2N were calculated as defined below

E1NH = ln(D’/E’) calculated for noise segment with (4.16)

• E2NH = ln(D/E) largest sum of squares (4.17)

E1NL = ln(D’/E’) calculated for noise segment with (4.18)

E2NL = ln(D/E) smallest sum of squares (4.19)

where primed quantities in these equations indicate values

associated with noise samples , and unprimed quantities indicate

values associates  wi th  samples of the basel ine word.  E1NH and

E1NL are averaged to produce E1N , and EZNH and E2NL are aver-

aged to produce E2N. E1N and E2N are calculated for each

segment of speech to be analyzed and the intelligibility thres-

holds are adjusted according to the following equations .

TlEl = 0.82
if E1N < 2.46 (4.20)

T2E1 = 2 . 4 6

T1E1 = 0.82 + 0.82(E1N - 2.46)
if E1N > 2.46 (4.21)

T2E1 = 2.46 + 0.82(E1N - 2.46)

T1E2 = 0.82

= 2.46 if E2N < 2.46 (4.22)

T1E2 = 0.82 + 0.82(E2N - 2.46)

T2E2 = 2.46 + 0.82(E2N - 2.46) if E2N > 2.46 (4.23)

With the adjustment of the thresholds based on the character of

the noise , the two metrics as defined in Equations 4.14 and

4.15 were modified as shown next .
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= 1, if El < TlEl

ME TRIC1 = 0 , if El > T2E1 (4.24)

T2E1 - E1
= 
T2E1 - TlEl’ otherwise

= 1 , i f E 2 < T 1E2

METRIC2 = 0 , if E2 > T2E2 (4.25)

= 
T 2 E 2 - T 1E2’ otherwise

Modified thresholds were established for each segment of

speech to be analyzed and METRIC1 and METRIC2 calculated.

METRIC1 and METRIC2 were averaged over all segments of the

word being analyzed to produce METRIC1 and METRIC2. METRIC1

and METRIC2 are then averaged to produce DM3.

________ 
NS

MBTRIC1 = Z METRIC1 (k) (4.26)
k= 1

_______  
NS

METRIC2 = Z METRIC2 (k) (4.27)
k= 1

DM3 = 
METRIC1 ÷ ME TRIC Z (4.28)

where

NS is the number of 128-point speech segments contained

in the word being analyzed.

Distance Measure 4

Distance Measure 4, DM4, is identical to DM3 except that

METRIC1 and METRIC2 are a weighted average based on the dis-

tribution of signal power in the word being analyzed. The

average power, ~~~~~, in the word being analyzed is calculated

33



by computing the average sample squared value of the undis-

torted word. Values obtained for METRIC1 and METRIC2 when the

average signal power in the segment of speech being analyzed

was greater than ~~/2 were averaged to produce MTTT and ~T2!1,

respectively . Conversely, values for METRIC1 and METRIC2 for

segments with an average signal power less than ~~/2 were

averaged to yield MIT and M2t. DM4 was then defined by

DM4 = (4.29)

• where

2

~~~~~M~T t + M ~2t
2

In general , only about one-third of the speech segments

will have an average power less than ~~/2. Therefore , the

weighted average used to calculate DM4 has the effect of

emphasizing the intelligibility of low power segments more

than high power segments.

34 
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V. Results

As mentioned in Chapter II , the data base used in this

study had been subjectively scored by a listener group of ten

people. Each listener was given a score sheet containing each

pair of rhyming words from the master lists. As the listener

heard each word of the data (noise corrupted) list , he marked

which word of the master pair he perceived was said. A sub-

jective score was developed for each data list by calculating

the percent of right answers on each listener ’s score sheet.

The average subjective score for the listener group was used

as the subjective measure of speech intelligibility. The re-

sults of the subjective scoring for each word list are shown

in Table I I .

TABLE II

Subjective Scores

Jamming Level 1 2 3 4 5 6 7

Subjective Score 90 92 93 84 84 86 79

The sub j ective measure for each word l ist was the standard

by which the effectiveness of the LPC based measures and the

Articulation Index were judged.

Articulation Index

The Ar t i cu la t i on  Index (A l )  was calculated using the one-
third octave band method (Ref 2:11-15). This method differs
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slightly from the standard 20-band method described in Chapter

I , but can be more easily calculated in an automated manner

using existing audio test equipment . Table III illustrates

the measurements and calculations involved in the one-third

octave method.

A Bruel and Kjaer Digital Frequency Analyzer Type 2131 was

used to measure the signal power in each of the one-third

octave bands , and a Sony Model TC-850 tape recorder was used

for analog data input to the analyzer . A Hewlett-Packard 9845A

mini-computer was used to control the frequency analyzer and to

calculate the Articulation Index . The steps involved in com-

puting the Al are detailed below .

Step 1. A baseline analog tape was played into the fre-

quency analyzer. The analyzer computed the average power in

each of the one-third octave bands over a period of 128 seconds .

Step 2. At the end of 128 seconds , the mini-computer

sampled the average power figures for each of the frequency

bands and stored the results (Column 2 of Table III).

Step 3. A noise corrupted data tape was played through the

frequency analyzer and the average power calculated in each

band over a 128 second interval.

Step 4. The mini-computer sampled the average power figures

for the noisy tape and stored the results (Column 3 of Table III).

Step S. The average noise power in each of the bands was

calculated by subtracting the baseline signal power from the

si gnal plus noise power (Colum n 4 of Table I I I ) .

Step 6. The signal-to-noise ratio (SNR) was calculated for

36
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each frequency band (Column S of Table III).

Step 7. The SNR value for each band was adjusted according

to Equat ion 5.1.

• SNR = 30 , if SNR > 30

• SNR = 0 , if SN R < 0 (5. 1)

Otherwise no adjustment is made

Step 8. The adjusted SNR for each band was multiplied by

the weighting factor shown in Column 6 and the values for each

band summed to produc e the Articulation Index .

TABLE IV

Articulation Index

Jamming Level 1 2 3 4 5 6 7

L~~
ticulation Index .49 .50 .52 .44 .37 .37 .36

• The Articulation Index was calculated for each of the noise

corrupted tapes. A scatter plot comparing the Al to the sub-

jective scores is shown in Figure 6. The correlation between

the Al and the subjective scores was computed using Equation 5.2.

C = 
1 1 1 

(5.2)

1~~~
(X

~~
-X

~) 9 ( Y~~
-Y)

2
1
”2

where

X~ denotes the ith value of the Articulation Index

is the mean value of the Ar t i cu l a t ion  Index
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denotes the ith subjective score

is the mean value of the sub jec t ive  scores

LPC Measures

Computer programs were developed for computing each of the

LPC based distance measures. A Xerox Sigma 7 computer was used

for exercising each of the measures on the data base.  Figures

7 through 10 are scatter plots comparing each of the measures

to the subjective scores. As with the Articulation Index , the

correlation between the LPC measures and the subjective scores

is shown .

TABLE V

LPC Distance Measures

Jamming Level 1 
- 

2 3 4 5 6 7

DM1 .47 .09 .17 .07 .05 .05

DM2 .27  .10 .16 .10 .11 .09 .10

DM3 .96 .89 .93 .62 .88 .85 .94

DM4 .96 .89 .94 .63 
~ 

.88 .87 .95
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V I .  Conclusions and Recommendations

Conclusions

No LPC based distance measure produced a correlation with

the subjective scores that can be considered significant for

a valid distance measure . As mentioned in Chapter II , two

reasons may explain the failure of the LPC based measures.

First , inadequate tape alignment procedures may have caused

the noise corrupted word samples to have been shifted relative

to the corresponding baseline word samples. However , as

stated before , the intent of this research was to evaluate the

use of LPC based measures under conditions similar to those

under which the Articulation Index is presently used. The

use of timing marks on the analog data tapes can be considered

a reasonable and realistic way of providing tape synchroniza-

tion under normal data collection conditions. The failure of

LPC measures solely because of tape alignment does not invali-

date the findings of this report , but rather reinforces the

claim that LPC measures require synchronization in excess of

what can be realistically provided under field use outside the

laboratory. Hartman reported that software implementation of

his LPC based measures resulted in 70% of the computer time and

85% of the manpower requirements being directly attributable

to the data alignment procedures. Un les s LPC based measures

can be proven to be considerably more effective than the

Articulation Index , the extensive overhead associated with data

4 5



al ignmen t makes the LPC measures impractical for field use.

The second reason the LPC measures may have failed is

that LPC measures may be incapable of predicting speech intelli-

• gibility in the presence of the distortion types used here.

Computation of the Articulation Index did provide some in-

sight into the differences between the baseline speech signal

spectrum and the noise corrupted data that may indicate the

• types of distort~.on present . The dig ital frequency analyzer

indicated that in the frequency range 0-355 Hz, the baseline

speech signal contained more power than the baseline signal

plus noise as output from the receiver. Two possible explana-

tions may account for this inconsistency in power spectrums.

First, spread spectrum communications involve spreading a

relatively narrowband signal (4 kHz) into a relatively wide-

band signal (30 mHz). The spreading of the signal , in

addition to any non-linear processing within the transmitter!

receiver pair , could cause a frequency translation in the

speech signal. Second , the use of high pass filters , such as

in pre-emphasis , would have the effect of decreasing the power

in the lower frequencies of the transmitted speech signal.

Since the baseline speech signal represents speech before it

enters the transmitter , it is conceivable that the low fre-

quency spectrum of the baseline signal would be greater than

the received version of the baseline signal plus noise.

Hartman showed that like the Al , LPC intelligibility measures

compare the frequency spectrum of two signals (Ref 8:29).

This indicates that if there is frequency distortion present

L _  
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in the signal to be measured for intelligibility, the

accuracy of LPC measures is in doubt . It is interesting to

note , however , that the Al apparently predicts intelligibility

in the presence of frequency distortion of the kind evident

in this experiment .

The Articulation Index proved to be significantly more

efficient to compute in terms of manhours and equipment as

compared to the LPC based measures. The inefficiency of LPC

measures is primarily due to the synchronization requirements

and the present lack of commercially available LPC hardware.

Additionally, the Al provided much more accurate results.

Since the LPC based measures , like the Al , are based on the

comparison of the frequency spectrum of two signals , a per-

formance advantage of LPC measures over the Al is doubtful .

Interestingly, both studies of LPC measures mentioned in this

report , References 4 and 8, failed to compare LPC measures

with the Articulation Index . Unless a clear performance advan-

tage of LPC based measures over the Al can be proved , the

continuation of research measuring speech intelligibility

using LPC measures is questionable. Once the superiority of

LPC measures is proven , work must be done on developing an

efficient LPC based system which can function with limited

overhead and under field conditions such as real-time testing

of voice communications channels.

Recommendations

As mentioned in the introduction to Chapter I, a real need

exists within the military for an efficient and effective
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automated speech intelligibility measure. The most success-

ful automated measure presently used by the military is the

Articulation Index . Research into the use of LPC for intelli-

gibility measures must first examine the sensitivity of LPC

• calculations to data alignment . If adequate alignment

techniques can be developed and proven useable under field

conditions , the further development of LPC measured is

warranted.

The most pressing need identified during the conduct of

this research is the need for an extensive data base of

testable speech received over an actual communications

channel in the presence of common channel distortions . To

date , the majority of data bases are extremely small and

involve distortions simulated in the laboratory or by com-

puter , rather than real word distortions . Once such a data

base can be created , an extremely useful and valuable tool

will be present for judging the relative merits of automated

speech intelligibility measures.
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