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A Comparison of Lyapunov and Hyperstability Approaches

to Adaptive Control

Kumpati S. Narendra and Lena S. Valavani

1. Introduction: The study of adaptive systems using a stability approach has

gained a wide following in recent years [1]. Using this approach adaptive problems

are formulated as stability problems of multivariable nonlinear nonautonomous

systems. Lyapunov ’s method and more recently Popov’s hyperstability theory have

been used as the principal tools in the analysis of such systems.

When Lyapunov ’s method is employed , the asymptotic stability of a set of

error differential equations is studied using a suitable choice of a Lyapunov

function candidate. While the theory has been applied effectively to autonomous

systems, it has been less decisive in the adaptive context where the equations

are nonautonomous. The difficulty lies in the fact that the Lyapunov function

candidate V(x) yields a negative semidefinite time derivative V(x,t). This, in

turn, is not adequate to assure asymptotic stability since LaSalle’s theorem [2]

for autonomous systems does not carry over to this case.

The hyperstability approach [3,4] which is being increasingly used as an

alternative to Lyapunov’s method requires the problem to be recast as the stability

of a feedback ioop with a linear time—invariant operator (corresponding to the

controller) in the feedback path. This structure, according to its proponents,

provides the designer with greater flexibility in choosing the adaptive laws)since

it is merely required to make the feedback block satisfy some passivity conditions

for the system to be hyperstable. Further , in some recently published work on

the subject,it is also implied that this approach can , in some ways, avoid the

shortcomings of Lyapunov’s method.

________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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The aim of this brief paper is to examine the conditions which have to be

satisfied for the two approaches to be successfully applied to adaptive observers

and controllers and also to demonstrate that they are entirely equivalent. Using

a typical error model it is shown that hyperstability and asymptotic hyperstability

are achieved under exactly the same conditions as stability and asymptotic stability

in the sense of Lyapunov. In those cases where the adaptive control problem remains

unresolved, the difficulties encountered using Lyapunov’s method are shown to have

their counterparts in hyperstability theory as well. ._

2. Lyapunov’s Direct Method:

The general statement of the conditions that are sufficient to guarantee the

uniform asymptotic stability in the large of the solutions of the differential

eç~iation

= f(x,t) f(O,t) 0 (1)

where x and f are n—vectors are very well known and stated in Theorem 1. f is

assumed to be sufficiently regular that solutions exist for all t ~ t0
.

Definition: A real valued function 4(p) belongs to class { K}  if it is defined ,

continuous and strictly increasing for all p , 0 
~ 

p 
~ 

p
1 
where p

1 
is arbitrary

and •(0) = 0.

Theorem 1 [Hahn]:

If a function V(x,t) that is defined for all x and t satisfies:
/
/ ~~~~~

(i) V(x,t) is continuous with respect to x and t for all t. ..,

(ii) V(x,t) is positive definite .~\

I e : : :($xifl:V (x,t) that
(iii) V(x,t) is radially unbounded

i.e. a in (ii) is such that lim cz(p) /
/

p4
~ ~

,.

(iv) V(x,t) is decrescent

. • • 
- — : :  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



i.e. there exists 8 c 1K} such that
nV(x , t) ~ 8(Iix I) for all x ~ R and t

then a sufficient condition for the uniform asymptotic stability in the large of

the solu tion of equation (1) is that

(v) there exists y c {K} such that the total time derivative of V(x,t) along

system trajectories satisfies

1
~(x ,t) ~ + ~~

Tf(x t) ~ — y(t~xII) < 0

for a l l x # O a nd t.

Positive definiteness of V and negative semidefiniteness of ~ result in stability.

The fact that V Is decrescent assures uniform stability. Condition (iii) on

radial unboundedness yields stability in the large. Uniform asymptotic stability

is guaranteed by the additional requirement that V(x,t) is negative definite.

The above theorem has been applied extensively in systems theory. Quite often

it is found tha t V(x , t) is only negative semidefinite (as in the adaptive control

problem discussed in this paper) and in such cases only uniform stability rather

than uniform asymptotic stability can be concluded.

For autonomous systems defined by

x = f (x )  (2)

a result due to LaSalle [2] assures asymptotic stability even when V(x) is semi—

def inite provided V 0 canno t occur along any sys tem trajectory other than

x( t;x
0
,t
0
) 0. LaSalle’s theorem also carries over to periodic systems where

f(x ,t + T) = f(x ,t) for some T > 0. In this case if V(x,t) = V(x ,t + T) satisfies

the conditions (i)—(iv) and V(x,t) ~ 0 and V ~ 0 on any trajectory , the system is

asymptotically stable in the large .
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From the above comments it is seen that the asymptotic stability of non—

autonomous systems cannot be directly concluded from the negative semidefinite—

ness of the func tion V(x ,t) and that additional proper ties of f(x ,t) must be used.

Recent works in this area have addressed themse lves to this problem [51,161,17).

The following lemma of Barb~lat [8] is found to be important for the proof of

asymptotic stability using Lyapunov’s method as well as asymptotic hyperstability

using Popov ’s theory.

Lemma: If g is a real function of the real variable t defined and uniformly con—

4 
tinuous for t > 0 and if the limit of the integral

J
ger)dT (3)

as t tends to infinity exists and is a finite number , then

lim g(t) = 0.
t-~co

If 1
~7(x,t) is identified with g(t) in the above lemma, then if ~ (x ,t) is uniformly

continuous, every solution of the di~fferential equation (1) would be such that

Urn V(x ( t), t) = 0.

An alte~native form of Barbilat’s lemma is also of interest.

Lemma: If g is a real function of the real variable t defined and uniformly con-

tinuous for t ~ 0 and if for every ~5 > 0 there exis ts 0 c (O,5) such that

r t+0
Urn I g(r)di = 0
t+co J t

then u r n  g(t) 0. (4)
t-,~

The questions that arise in stability problems associated with adaptive control

are best illustrated by applying the above theorems and lemmas to a typical error

model.

r 
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Error Model in Adaptive Control:

The following error model occurs very frequently in model reference adaptive

control . We use Lyapunov ’s method to analyze its stability properties in this

section and compare it with the hyperstability approach in Section 3.

The error model is described by the differential equations

T
e = Ae + b$ (t)u(t)

T
e
1

c e

T -1where the transfer function c (sI—A) b is strictly positive real (Figure 1).

U(
~1O {A ,b,c} __________ 

1

Strictly Positive Real

Transfer Function

Figure 1

u(t) and •(t) are rn—vectors, e(t) is an n—vector, e
1
(t) a scalar and A ,b,c are

matrices and vectors of appropriate dimensions. In the adaptive control problem

the vector e(t) represents the state error between plant and model and the elements

of the vector $(t) the parameter errors. Although +(t ) is unkno wn, (t)  can be

adjusted using available signals to make e(t) tend to zero as t -‘ =. If

— —r e
1

( t )u ( t )  r = rT 
> 0 (6)

is used as the adap tive law , the stability of the equilibrium state of equations

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ —‘~~ 
- 
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(5) and (6) has to be analyzed . The (n+m) equations may also be written as

[~ (t)1 
~ 

A buT(t) 1 re(t)1
E~ 1 

= 

~ 
-; (7)

Choosing a Lyapunov function candidate

V(e,~) = ~ [e
Tpe + ,

T
r
_l
+] (8)

the time derivative V(e,4’) can be written as

= ~ e
T(t)[ATP+pA]e (t) + eT(t)Pb+T(t)u(t)

T 1+ • (t) r •(t)

By the Kalman—Yacubovich Lemma [9], if CT(sI_A)
_l
b is strictly positive real, it

can be shown that

V(e,+) = — ~ e
T
(t) ~~~~~~~~~~~ (10)

where q is a vector, L = LT > 0 and c a positive constant. Hence V is a non—increasing

function of time which is bounded below and hence converges to a finite value V .

We first consider the case when the input u(t) is uniformly bounded. In such

a case we have

him ~(t)dt = V~ — V(0) (11)
t-g~c a J O

which is a finite number and ‘&(t) uniformly continuous since (t) and hence V(t) is

bounded. Hence by lemma 1

him V(t) — him 4 eT(t)(qqT+CL)e(t) — 0
t4~ t9°~~~

or him e(t) = 0. (12)
t4C0

~~~~~~~~~~~~~~~ : -~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - - • -
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By equation (6) , since u(t)  is bounded , it follows that

him 4 (t )  — O  (13)

Hence $(t) is a bounded vector whose time—derivative approaches zero as t +

It has also been shown by Morgan and Narendra [6] that if u(t)  in equation (7)

is “sufficiently rich”

him •(t) = 0.
t-+co

The results stated so far may now be summarized as follows:

1) If V(e ,~) is positive definite and V(e,q~) is negative semidefinite, e(t),~ (t)

are bounded if e(0) ,+(0) are bounded.

2) If the input u(t) is bounded, V(e ,~) is bounded and hence

him e(t) = 0 him ~~t) = 0
t4~ t-~~

3) If u( t )  is bounded and “sufficiently rich”

him •(t) = 0.
t4
~

Unbounded Input Vector u ( t ) :

The problem becomes considerably more complicated when the input vector u(t)

is bounded f or all t c [0 ,”) but is not uniformly bounded. It is now no longer

possible to conclude from the above analysis that e(t) and (t) behave as described

in condition (2). However, it was recently shown [14] that even when the inputs

are unbounded the sys tem (7) can be uniformly asymptotically stable provided the

inputs are “uniformly exciting” . Some of the principal difficulties in the

resolution of the adaptive control problem are related to these questions that

ar ise,when the input is unbounded,and are indicated in Section 4.

hIIII_~ L .
~~~~~~~
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3. Hyperstability Theory :

• In 1963 Popov introduced the concept of Hyperstabihity [10] as a natural

extension of absolute stability. Consider a feedback system with two blocks B
1

and B
2 
as shown in Figure 2. Let B

2 
have input y(t) and output v(t) and let

t

J y(r)v(r)dr ~ 0 for all t ~ 0 (14)
0

The block B
1 

is said to be hypers table if every sys tem of the type shown In Figure 2

Figure 2

is stable with any block B
2 satisfying relation (14). The most significant results

are obtained when B
1 
is a linear time—invariant operator and in this case Popov

es tablishe d the equivalence of hypers tability and positive realness of the transfe r

function B
1
. For an extensive treatment, Popov ’s book [11] on the subject is the

primary source. For a lucid presentation of key results of Popov’s theory, the

reader is referred to the paper by Anderson [12]. In this section we shall merely

state the principal theorems on hyperstability and clarify the key points using

the same example that was discussed in Section 2.

Consider a completely controllable and completely observable system B
1 
with

rn—inputs and rn—outputs described by

Ax (t) + Bv(t)
) Sys tem B (15)

y( t )  — Cx(t) + Dw(t) )

- -
~~~~~

--
~~~~ ~~~~ 

t
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where w(t) and y(t) are (mxl) vectors , x(t) is an (nxl) state vector and A,B,C,D

• are constant matrices of appropriate dimensions.

• Hyperstabihity of B1 
is then defined by the property which requires that

the state x(t) be bounded for a certain class of inputs v(t). This class is de-

fined by those v(s) which satisfy for all T

J wT t)y(t)dt ~ ô[~x(0)~ ] sup lIx(t)II (16)

0 0~~~t~~~T

where ~ is a positive constant. For the purposes of our discussion it is adequate

to limit ourselves to the class of inputs which satisfy

J w
T t y t d t  ~ (17)

where £ is an arbitrary constant independent of T.

• In the adaptive control error model used in this paper we are concerned only

with single input — single output systems and hence w(t)  and y ( t )  are assumed to be

scalars in the discussions.

Definition: The system B1 
is hyperstable with respect to any w(t) which satisfies

(17) if there exists a positive constant k such tha t

Jx( t )  ~ ~ k[Ix(0) 0 + 2.] for all t (18)

Definition: The system B1 is said to be asymptotically hyperstable with respect

to any w(t) satisfying (17) which is also bounded if the Inequality (18) holds

together with

him x( t) = 0 (19)
t-~”

The main theorems of Popov may now be stated as follows :

Theorem 2 (Hyperstability): A necessary and sufficient condition for the system

B
1 to be hyperstable is that the transfer matrix

Z(s) — D + C(sI—A)
1B (20)

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - -.  ~~~~~ ~~~~‘- -~~ . 
- . 

- - -- -----~~~~~~~~
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be positive real.

Sufficiency follows from the fact that when the system is positive real

• 
J

T 

~ x
T(T)Px(T) - xT(0)Px( O) (21)

for some p = ~T > 0 and all T. This together with (17) implies (18) and hence

hyperstabihity.

If the system is not positive real ,it can be shown [12] that an Input u(t)

defined for t ~ 0 exists satisfying condition (17) such that x(t) is unbounded .

This assures necessity in Theorem 2.

Theorem 3~iAsymp totic Hyperstability:

A necessary and sufficient condition for the system B
1 

to be asymptotically

hyperstable is that Z(s) in (20) is strictly positive real.

• If B
1 
is strictly positive real, it can be shown that a positive definite

• 

function p ( x )  exists such that

r T r T
j p (x) dx 

~ 
j vT(t)y(t)dt. (22)

0 0

When w(t) is bounded, the function p(x(t)) can also be shown to be uniformly con-

tinuous. Hence,froin inequalities (22) and (17) and Barb~lat’s lemma it follows

that him p(x(t)) = 0 or him x(t) = 0.
t-,”

Error Model: We now apply the above theorems to the error model discussed in

Section 2. The system (5) with the adaptive law (6) can be represented by the

feedback loop shown in Figure 3.

Since ~T ~T TI v( t)e
1

(t)d t = — ( • (t)~~(t)dt
• 

•‘O

= l~~~~(0)N

2 

k (T)[~~~ < !s(Q)1
2 

(23)

ItIIItIIl~ — — — ———
S -_ 
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• by Theorem 2 the state vector e(t) of B1 
is bounded. Similarly , by considering

Strictly Positive Real

• 
~~~~~v(t) I T e

~A ,b,c }  I
1 B

i

1—v(t) 
___________

Figure 3

the integrator as the system with a positive real transfer function, the state vector

4’(t) can be shown to be bounded . This corresponds to condition (1) in Section 2.

If u(t) is bounded, the input v(t) to B1 
is bounded. Since B

1 
has a strictly

positive real transfer function, by Theorem 3,e(t) and e1
(t) tend to zero as t -

~ “.

This corresponds to condition (2) in Section 2.

The convergence of 4 ( t )  to zero when u(t) is “sufficiently rich” has to be

proven along lines indicated in [5] and is common to the two approaches discussed

in this paper.

When u(t) is unbounded , Barbilat’s lemma can no longer be directly applied and

the same comments made at the end of Section 2 are also valid here.

4. The Adaptive Control Problem:

The adaptive control of a single input — single output linear time—invariant

plant was discussed by the authors in a recent paper [13]. It was shown that the

• __ i  1_ 
~~~~~~~~~ - ~4 ——
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stability approach could be applied if the relative degree (n—rn) (where the unknown

plant transfer function has n poles and m zeros) and the sign of the plan t gain are

known and the plant zeros lie entirely in the left half plane. Two cases were

considered in [13]. In case (i), if m ~ n—2 , using the error model of Sections

2 and 3 the plant output was shown to approach a desired model output asymptotically.

In case (ii)) where m ~ n—3,additional signals have to be fed back into the model

and only a conjecture was made regarding the stability of the adaptive system . With—

out going into details, our aim in this section is to relate the above two cases to

• the error model considered in Sections 2 and 3. For ease of discussion we consider

a simplified model of the plant but the results carry over to the general problem

F in [13].

A typical adaptive control problem is shown in Figure 4. The plant has p

outputs y
1

(t) ,y
2
(t)....,y (t) and p adjustable parameters

which are denoted by the elements of an output vector y(t) and a parameter vector

8(t) respectively. The output Ym
(t) of a stable reference model is the desired

output and it is required to adjust 0(t) so that y
1(t) 

asymptotically approaches

Y ( t) or

~~ 
IYm(t) 

— y
1
(t)I ~ lim 1e1(t) I = 0 

* *
It is known that a constant parameter vector 0 exists such that when 0(t) 0

the transfer function from the reference input to y
1
(t) matches exactly the model

transfer function. The aim of the adaptive controller is to adjust 0(t) in such

*a manner that him 0(t) = 0 .

Case (i): Let the model transfer function be positive real. In this simple case,

*
if 0 — 0(t) = +(t), the error between model and plant states, e( t) ,  can be described

by the error model of Figures 1 and 3 with u(t) replaced by y(t).

• 
~~~~~~~~~~~~ ,,~~~~~~ , ~ .s -

- -—-~~~~~~
.
~~~

-
- ~~~ - 
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It follows from Sections 2 and 3 that e(t) is bounded.

Since the model states are bounded,we conclude that y(t) is bounded and this,

in turn, assures that him e1(t) = 0.

Case (ii): When the model transfer function is not positive real, differentiators

have to be used after  8(t) in Figure 4 to use the same approach. If the controller

is to be differentiator free, it was suggested in [13] and [17] that auxiliary sig—

nals should be fed instead into the input of the model.

Y (t)

- MODEL

r(t) + e
1
(t)

PLANT T

-~~~

y(t)

T
(t)

Figure 4

Once again the same error model as before is obtained and,wh~.le we can conclude

stability (or hyperstability) and,hence,boundedness of e( t),we can no longer con—

elude that the state x ( t) of the model — and hence the outputs y( t) of the plant —

are bounded. This, in turn, implies that the error model of Sections 2 and 3 may

not be asymptotically stable (or asymptotically hyperstable). In other words, the

- 5 -— . ‘-5- 
____— 
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model and plant outputs may both grow without bound even while the error between

• them is bounded. The conjecture made in (13] implies that such a situation cannot

arise.

As mentioned earlier, it has recently been shown in [14) that,even when the

inputs are unbounded,the system is uniformly asympcotically stable,if they are

“uniformly exciting”. Work is currently in progress to utilize these results to

demonstrate that the boundedness of the error also implies the boundedness of the

plant output in the adaptive control problem and will be reported in [15] and [16].

Conclusion: Lyapunov ’s direct method and Popov’s hyperstability theory yield identi-

cal results when applied to the adaptive control problem. The comparison is made

in terms of an error model when the input to the model is uniformly bounded. In

such a case, stability and asymptotic stability are achieved under exactly the same

• conditions as hyperstabihity and asymptotic hyperstabihity. When the inputs to the

error model are unbounded,the problem is not completely resolved using either method.

Recent work on error models with unbounded inputs has yielded conditions for

uniform asymptotic stability. These will play a significant role in the complete

resolution of the adaptive control problem .
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