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1. INTRODUCTION

The first approximation to the structure of liquid metals or
metallic glasses is a dense random packing of hard spheres. The structure
was initially studied by J.D. Bernall who characterized a mechanical model
of single-sized spheres, arranged without any regular crystal structure.
Other mechanical modelsz'3 and computer-generated models4 have also been
studied. The connection between these models and the structure of
metallic glasses has been reviewed by Cargill.s

Three approaches have been taken toward statistical characterization
of dense random packings. The first is by radial distribution functions,
measuring the number of pairs at various spacings. This procedure is
attractive because it can be compared directly to the radial distribution
functions of real materials, measured by x-ray techniques. The method is
limited, however, to pairwise correlation, and it can give little in-
formation about how often a particular local arrangement of three or m 2
points might occur.

The second approach is to describe the average arrangement of
spheres about a particular sphere. Scott3 introduced this approach with
a pole figure showing the average angular distribution of first shell
neighbors. This same approach was used by Finneyz when he reported the
characteristics of Voronoi polyhedra (the polyhedron surrounding a
sphere, bounded by faces which are perpendicular bisectors of the vectors
to neighboring spheres).

The third approach is to characterize the arrangments of spheres
around the holes in between the spheres. That is to describe the various -

polyhedra formed with the sphere centers as corners. This was the




approach used by Bernal and led to his five canonical holes. Recently,
this approach was revived by E.J.W. Whittaker,s who re-examined Bernal's
model and identified several shapes not mentioned by Bernal.

This paper reports a more extensive examination of this third
approach, reporting statistics on the various holes between spheres.
Bernal reported that almost all the volume could be divided into five
canonical holes (allowing for some distortion): Tetrahedron, half-
octahedron, trigonal prism, Archimedian antiprism (or square antiprism)
and tetragonal dodecahedron, shown in Figure 1. From inspection of a
mechanical model of hard spheres, he reported the number percents and
volume percents given in Table 1. With the known density, and assuming
regular shapes, the number of shapes per 100 spheres can be calculated.

There has been some confusion regarding the shapes of these holes:
Bernal used a trigonal prism with three square faces, and a square
antiprism with two square faces (Figure 1). These shapes, however, are
often pictured with the square faces capped with half-octahedra, as in
Figure 2. (They are then deltahedra--polyhedra with triangles for all
faces). Bernal also considered separate half-octahedra (Figure 1), not
full octahedra (Figure 2). Some of his half-octahedra are parts of full
octahedra; some are caps for trigonal prisms of square antiprisms.

An important point here is that in the actual packing, the square
faces on trigonal prisms or antiprisms could be capped by other
trigonal prisms or antiprisms. Thus, a structure pased on the five
small canonical holes can contain structures that are not simple delta-
hedra. 1In fact, we shall see that a dense random packing cannot be
described as being completely made up of the five simple deltahedra
with small distortions. Furthermore, it cannot be described by the five

\
smaller Bernal canonical holes. Whittaker used the five Bernal canonical




TETRAHEDRON  HALF-OCTAHEDRON TRIGONAL PRISM

ARCHIMEDIAN TETRAGONAL
ANTIPRISM DODECAHEDRON

BERNAL'S CANONICAL HOLES

Figure 1. 7he five Bernal canonical holes.




TABLE 1

| BERNAL CANONICAL HOLES

Number* per Center to
Number 8% Volume % 100 Spheres Vertex Distance

Tetrahedra 73.0 48.4 292 0.6124
Hal f-Octahedra 20.3 26.9 40%** 0.7071
Dodecahedra 3.1 14.8 12.4 0.6766
Trigonal Prisms 3.2 7.8 12.8 0.7638
Archimedian

Antiprisms 0.4 21 1.6 0.8227

.Calculated by Cargill.

L 3 ]
Counted as full octahedra.




Figure 2.

FULL OCTAHEDRON TRIGONAL PRISM WITH
HALF OCTAHEDRAL CAPS

(14 FACES-9 CORNERS,(3,6,0))

. ARCHIMEDIAN ANTIPRISM
WITH HALF OCTAHEDRAL CAPS

(16 FACES -10 CORNERS,(2,8,0))

Deltahedra generated from the Bernal canonical holes.




holes plus four other shapes to describe most of the cavities in the
Bernal model. He also deduced what approximations Bernal must have
used to get his statistics.

This paper reports the results of three different approaches to
the statistics of holes in dense random packings:

1. Triangular-faced polyhedra, called deltahedra.

2. Local arrangements, allowing three and four-edged faces.
Several shapes in addition to Bernal's five must be used to describe the
dense random packing completely.

3. Interstitial sphere sites. We have found how many small spheres
of what size could be placed in the sites between the spheres.

These statistics have been determined using variocus computer
programs for two different models of single-sized spheres; the Finney
model of a mechanical packing of spheres,2 and the Bennett computer

generated array of spheres.‘

2. DESCRIPTION OF STRUCTURAL UNITS: DELTAHEDRA

A description of the structure in terms of triangular-faced poly-
hedra can be achieved in the following manner: Any two sphere centers
within a chosen nearest-neighbor distance form an edge. Any three edges
that join as a triangle form a face. And finally, each volume that is
totally enclosed by faces describes a hole. If the nearest-neighbor
distance is changed, the hole description of any particular region may
change. 1In a large cluster, the numbers of the various types of holes

depend on the choice of nearest-neighbor distance.




If the distance is too small (e.g., less than 1.1 sphere diameters)
there will be few faces defined, and only a few volumes enclosed, leaving
most of the volume open. If the nearest-neighbor distance is chosen too
large, it may lead to ambiguous des~riptions of certain local arrange-
ments. Using a distance greater than V12/7=1.309307, the five points
in Figure 3 may be described either as two tetrahedra base to base, or as
a ring to three tetrahedra. This is the arrangement that allows inter-
penetration of tetrahedra at the minimum nearest-neighbor distance.

The possibility of interpenetration means that the deltahedra do not
always provide a suitable unique description of an array of spheres. For
example, the simple cubic structure provides no faces if the nearest-
neighbor distance is less than V2 sphere diameters. If the neighbor
distance is greater than V2 sphere diameters, then all cube-face
diagonals become edges, and the volume is filled with interpenetrating
tetrahedra.

To avoid the complications of interpenetration, we should only
consider nearest-neighbor distance less than VI2/7=1.309307.

Another difficulty with large nearest-neighbor distanceg is that
certain shapes may be subdivided into less descriptive units. The
interior distance through the tetragonal dodecahedron is 1.2892. At
any larger neighbor distance, an undistorted dodecahedron is described
as seven tetrahedra. We have used one larger distance, 1.30, at which
we find slightly fewer dodecahedra than at the smaller neighbor distance
1.28.

Deltahedra may be catalogued according to the number of faces. The

number of corners is constrained by the number of faces. Since we
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Figure 3. Arrangement showing the minimum nearest neighbor
distance that allows for interpenetrating tetrahedra.




consider both convex and concave shapes, our list is longer than previous

listings of convex deltahedra. Our list does not include all possible

deltahedra shapes, but concentrates on those that actually occur in dense

random packings. For any given number of faces larger than 12, there ;
are two or more topological shapes that occur in dense random packings.

To identify them, we can use a set of three (or four) integers, which

give the number of corners at which 4, 5, or 6 (or 7) faces meet. For

examples, the tetragonal dodecahedron is (4,4,0). No large polyhedron

can have a convex corner with only three faces, because that corner

would be considered a separate tetrahedron. For some shapes with 16 or

more faces, certain sets of corner numbers describe more than one shape.
These are separately identified by the number of edges between 4-faced

and 6~faced corners: This is adequate for shapes with 16 or 18

N6—4'
faces. Shapes with 20 or more faces have not been catalogued.
The deltahedra that are not based on Bernal canonical holes are

shown in Figure 4. The following is a complete catalogue:

4 Faces - Tetrahedron H
(6 Faces, 5 Corners: Described as two Tetrahedra.)

8 Faces, 6 Corners: Octahedron

10 Faces, 7 Corners: Pentagonal Bipyramid.

This was not one of Bernal's canonical holes because it is approxi-
mately a ring of five tetrahedra.

12 Faces, 8 Corners: The primary form is a canonical hole, the
tetragonal dodecahedron, (4,4,0). Another form, the hexagonal bipyramid,
(6,0,2) is possible for neighbor distances greater than 2/V3 = 1.1547.

This form was never observed in dense random packings, so it may be

neglected.
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14 Faces, 9 Corners. Two shapes occur: the trigonal prism with
octahedral caps (3,6,0) and an unnamed shape (4,4,1).

16 Faces, 10 Corners: Five shapes occur. The canonical shape,
Archimedian antiprism with caps (2,8,0), is not the most common.

18 Faces, 1l Corners: At least six shapes occur, as shown in

Figure 4. Other shapes are possible, but have not been found.

For 12 or more corners (20 or more faces) the topological forms
become even more numerous, and haven't been catalogued. The structures
we analyzed contained numerous holes with more than 20 faces. These
holes are not open vacancies: no unit sphere could be placed inside
them. They are flat or elongated regions where the packing is slightly
more open.

The method described above does not require that all faces and all
edges fit into the walls that divide the array into separate volumes.
It is entirely possible to have an edge that is not part of any triangle
of edges, and therefore does not border any face. Such edges are very
unlikely to occur, for the larger neighbor distances, except on the
surface of the cluster.

Similarly, it is entirely possible that a particular face is not
joined to any other face on one, two, or even three of its edges. This
is usually a surface effect, but also occurs in the interior, even at
the larger neighbor distances. We found no examples of interior faces
with three free edges, but interior faces with one free edge do occur.

Such a face must necessarily occur within one of the larger holes.
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3. DELTAHEDRA STATISTICS

The numbers and volume percent of each type of hole depend on the
choice of nearest neighbor distance. For the inner 1000 spheres of the
Finney model, the distances 1.20, 1.25, 1.26, 1.28 and 1.30 were used.
The results are given in Table 2. Figure 5a shows the volume percent
results along with the volume percents reported by Bernal for his five
canonical holes. The program was also run once on the inner 2000 spheres,
as shown in Table 2. The differences between 1000 and 2000 spheres are
within the expected counting errors.

These results and Bernal's results can only be directly compared
for the tetrahedra and dodecahedra. Bernal's higher volume fractions
for these two shapes might have three causes: A more flexible nearest
neighbor definition, the effects of boundaries of the cluster, or
differences between Finney's model and Bernal's model. Whittaker
considered this and concluded that Bernal used a flexible definition
that counted some shapes as tetrahedra that would not be so by stricter
definitions. Whittaker's own analysis of Bernal's model gives comparable
numbers of tetrahedra and octahedra to the Finney model.

The situation is more complicated for the Bennett computer
generated model, in which the density decreases with distance from the
center. The statistics of hole type should also depend on distance from
the center. It is difficult to do an exact comparison of statistics
versus distance from the center, because a large region must be examined
to get valid statistics with low counting errors.

To demonstrate this variation with density, we calculated the

statistics for five different spherical volumes, containing the inner
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TABLE 2

FINNEY MODEL DELTAHEDRA

Volume Percent

Inner 1000 Spheres

2000 Spheres

Faces
Neighbor Distance
1.25 1.26 1.28 1.30 1.30
4 29.08 30.70 35.30 40.30| 40.24
8 11.47 11.91 13.95 15.82) 15.77
10 0.59 0.58 1.04 1.37 1.34
12 8.08 8.54 9.62 9.48 9.14
14 2.14 2.71 3.40 3.88 3.75
16 2.96 3.32 3.65 2.58 3.03
18 4.35 4.28 3.76 2.47 2.52
20 3.79 | 2.72 3.27 3.69 3.48
>20 37.54 35.25 26.01 20.41| 20.73
Number per 100 Spheres
4 121.4 182.4 192.0 219.7 249.6 | 249.5% 3,.5*
8 10.7 18.2 18.8 21.9 24.7 24.9%1.1
10 0.3 0.7 0.6 1.1 15 1.5%0.27
12 4.5 7.0 7.3 8.2 7.9 7.7%0.6
14 0.3 1.4 1.8 2.3 2.5 2.5%0.35
16 0.7 1.7 1.9 2.1 1.4 1.7+0.3
18 0.9 2.1 2.1 1.8 1.2 1.2%20.24
20 0.6 1.6 1.2 1.4 1.6 1.4%0.26

*
Exrors given are counting errors, VN/20, where N is the number of
observed in 2000 points.

e e
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Figure S5a. Volume percentage of various deltahedra in the Finney model,
versus nearest neighbor distance.
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200, 348, 600, 100 and 1500 spheres. The results are presented as shells

between these limits: i.e., the difference between the 200 sphere core

and the 348 sphere core gives the 200-348 shell. Results for this are
tabulated in Table 3 and plotted in Figure 6 for the nearest neighbor
distance 1.30. For the inner 1000 spheres, the results for neighbor
distances 1.20, 1.25, and 1.30 are given in Table 4 and plotted in
Figure Sb. The reversal of the trend between the 200-348 shell and the

348-600 shell may be only a statistical fluctuation.

For both Bennett and Finney models the results according to
topological shape are given in Table 5. The trigonal prism with caps is
more common than the other l4-faced shape. The Archimedian antiprism
with caps is rare; other l6-faced deltahedra are far more common. For
most shapes, the counting errors are large because the total number of
occurrences is small. The exact numbers of the less common shapes have
little significance.

An interesting pattern emerges from these descriptions in terms of

deltahedra. For large neighbor distances, the tetrahedra form more than

408 of the volume, and become one multiply-connected region that
penetrates the entire volume. A program to find groups at tetrahedra
connected face to face, finds one large group which includes most of the
tetrahedra present. At the other extreme of small neighbor distance (1.20
or less) it appears that the unenclosed volume forms one multiply-

connected interpenetrating region in which the various deltahedra are

embedded.
No systematic investigation has been done of the different arrange-

ments of groups of tetrahedra that occur. It is relatively easy to count

o r——— W— —




BENNETT MODEL DELTAHEDRA
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TABLE 3

Neighbor Distance = 1.30
Volume Percent
Faces
0-200 200-348 348-600 600-1000 1000-1500
4 43.05 37.40 37.42 34.64 34.25
12.38 11.65 12.18 10.97 11.49
10 3.47 1.95 1.98 2.18 _2.28
12 9.08 10.64 7.92 8.29 5.08
14 3.25 3.41 6.62 3.81 3.97
16 4.07 1.92 4.31 3.64 3.76
18 2.62 2.70 3.68 3.46 2.62
20 1.42 2.09 2.11 2.88 3.13
>20 20.76 28.25 23.79 30.15 33.42




Ty

BENNETT DATA
INNER 1000 POINTS
80} —
20 FACES
18
16
%
14
- SOV- ® -
= 12
Q
L ” 10
(« B
=
- TAH
3 40 OSI AHEDRA &
o
>
TETRAHEDRA
20\— -
0 | 1 |
1.20 .25 1.30

NEAREST NEIGHBOR DISTANCE

Figure 5b. Volume percentage of various deltahedra in the Bennett model
inner 1000 spheres, versus nearest neighbor distance.
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Figure 6. Volume percentage of various deltahedra in the Bennett model,

for various shells, with the nearest neighbor distance = 1.30.




INNER 1000 SPHERES
Volume Percent Number per 100 Spheres
Faces
1.20 1.25 1.30 1.20 1.25 1.30
13.71 23.38 37.34 88.2 147.6 231.6
2.71 6.17 11.61 4.4 9.8 18.1
10 0.22 1.15 2.34 0.3 1.3 2.6
12 2.83 6.39 8.68 2.5 5.6 7.4
14 0.56 3.09 4.35 0.4 2.1 2.9
16 0.92 2.69 3.64 0.6 1.6 2.1
18 0.77 2.33 3.24 0.4 1.2 1.6
20 0.41 1.49 2.28 0.2 0.7 1.0
>20 77.88 53.32 26.53
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DELTAHEDRA TOPOLOGICAL TYPES

Number in inner 1000 spheres

Corner
3,6,0
4,4,1
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the rings of five tetrahedra around one edge. With a nearest neighbor
distance of 1.20, the Finney model has 61.9 rings (* 8.8 counting error)

per 1000 spheres.

4. DESCRIPTION OF STRUCTURAL UNITS: LOCAL ARRANGEMENTS

The previous sections demonstrate that the description in terms of
deltahedra does not provide a good description of the local arrangements
of spheres; it is not a convenient replacement for Bernal's original
description. Too much of the volume is in the large complicated delta-
hedra. For local arrangement description it is necessary to use shapes
with square (four-edged) faces. Three of Bernal's shapes have square
faces: square antiprism, trigonal prism and half-octahedron. These can
be joined square face to square face to produce large deltahedra. (The
square faces need not be capped with half-octahedra). However, most of
the deltahedra with 16 or more faces cannot be produced from trigonal
prisms, square antiprisms and half-octahedra. Several other distinct
local arrangements are required. If we limit the nearest neighbor
distance to VI2/7 or less, we can identify several different local
arrangements (in the dense random packing) that have no large interior
space and are not topologically equivalent to any of the Bernal holes.
Whittaker discovered several of them, but did not propose any exhaustive
catalogues of shapes. He reports about 10 miscellaneous unspecified shapes
per 100 spheres.

A new catalogue of possible shapes can be prepared allowing faces
with three or four edges, but not with five edges. (The "four-edged

faces" may be non-planar, in general, and are therefore not called squares
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or quadralaterals.) This is similar to Whittaker's approach, but here
includes several additional shapes he did not mention. We may first
consider only those shapes that cannot be divided into other shapes on
the list. All such irreducible shapes with up to eight points are shown

in Figure 7. They are:

4 Points: Tetrahedron

5 Points: Half Octahedron
Dihedron (Whittaker's Andalusohedron)
Pentatope (Whittaker's Oblate Trigonal Bipyramid)

6 Points: Trigonal Prism
7 Points: Diploid Heptatope (also called Seven Point Bisymmetric)

Trigonal Heptatope (identified by Whittaker)
(also called Seven Point Trisymmetric)

8 Points: Archimedian Antiprism
Antiprism missing one side edge
Antiprism missing two side edges:

a. with one intervening edge
b. with two intervening edges

c. on opposite sides

Antiprism missing three edges

Cube with one face diagonal

Cube

There are at least 28 topologically distinct arrangements of nine

points with 3- and 4-edged faces. Some of them are shown in Figure 9.
Many of them may be thought of as being square antiprisms, with one half-
octahedral cap, missing one or more edges. There are two sorts of edges
on an antiprism: base or top, and side. Removing one side edge creates

only a four-edged face, so the shape created remains an eight-point shape.

S — - - - — N B -




TETRAHEDRON HALF-OCTAHEDRON DIHEDRON PENTATOPE
4 POINTS S5 POINTS

TRIGONAL PRISM TRIGONAL DIPLOID
6 POINTS 7 POINTS

RANETNPRERE &7 SRR SIS BN RS S R E S

MISSING ONE EDGE MISSING 3 EDGES CUBE WITH FACE SIMPLE CUBE
DIAGONAL

8 POINTS

IRREDUCIBLE SHAPES
(ALLOWING 4-EDGED FACES)

All the irreducible shapes, allowing three- and four-edged

Figure 7.
faces, with up to eight points.
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Removing a base edge creates a five-edged face and a ninth point is
required to describe a shape limited to 4~edged faces. Removing two
adjoining side edges also creates a five-edged face. The shape produced
by removing one base edge is shown in Figure 8a. The inner seven points
form a shape with two five-edged faces, which we may call a Double
Diamond.

There are 12 different ways to break two edges of an antiprism.
Three ways produce eight points figures shown in Figure 7. Two ways
involve breaking one base edge on top and one on the bottom, creating
two five-edged faces, and requiring two additional points to meet the
four~-edged face requirement.

The above list of shapes does not include all the shapes needed to
completely describe the dense random packing. We have made no attempt to
catalogue the irreducible shapes with 10 or more points. Even with the
neighbor distance 1.30, there are several sites that require 10 or more
points to avoid five-edged faces.

Whittaker noted the importance of the five pointed shape which we
call the dihedron (his Andalusohedron). It is common, and may occur in
many combinations with other digedra or other shapes. For instance, we
may describe a pentagonal bipyramid as two half-octahedra and one dihedron.
Dihedra may be stacked together to form large tube-~like deltahedra
(Figure 9). The dihedron can be formed with equal distances between the
points that are not neighbors. All the dihedra in the stack can therefore
be identical. By varying the stacking order, the stack can be either
straight or curved. This large deltahedron has no interstitial site
larger than that of the single dihedron: center to vertex = 0.69422

(for the equal-diagonal dihedron).
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4 TRIANGULAR FACES

NINE POINT SHAPES

Figure 8. Some irreducible shapes with nine points.
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Figure 9. A stack of dihedra, above; and the same stack expanded to
show the individual dihedra, below.
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All the different shapes may occur with considerable distortion.
Figure 10 shows four shapes in extremes that maintain unit edges and
symmetry.

In addition to the irreducible shapes, it is interesting to find the
statistics for a few other shapes that are reducible but distinct. The
list is given in Table 6. All these shapes have intersecting four-edged
faces. The octahedron has three. The five other reducible six-point
shapes can be thought of as octahedra missing between one and four edges;
with two intersecting four-edged faces. This provides a choice of which
four-edged face to use to reduce the shape. For all shapes but one the
different division choices yield the same types of irreducible shapes.
The exception is the Double Dihedron connected, which can be divided into
two dihedra, or into a pentatope and a half-octahedron. This difference
leads to an ambiguity about the number of pentatopes, dihedra, and half-
octahedra present. Fortunately, this shape is rare, so the ambiguity
does not seriously affect the statistics observed. Although Whittaker
did not discuss this shape, he appears to have found the half-octahedra
before searching for dihedra, and would therefore count the shape as a
half-octahedron and a pentatope. The four dihedron variations cannot be
constructed with all unit length edges and a neighbor distance of VIZ/7
because they would have extra edges and become other shapes.

To correlate local arrangements with deltahedra, Table 7 gives the
local shapes that make up various deltahedra with up to 18 faces.

Three dihedron variations on which statistics were gathered are shown in

Figure 11.

o ——————
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DIHEDRON
(5 POINT NON-BERNAL SHAPE)

1.2101— t = Center to Vertex = 0.70590

-
0.705874
- Q= 54.595°
(Maximum)
“I {1

ALMOST TWO
TETRAHEDRA

050174 070834
/5
1414214

~/

L1.3229 —{ t=0.7071

. I
0.6547
A2/7 Q =49.107°
(Minimum)
e
ALMOST A TETRAHEDRON
0.5669 0756 AND AN EXTRA POINT

Figure 10a. Simple dihedron, the five-point non-Bernal shape, shown in two
extremes that maintain unit edges and symmetry.
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SEVEN POINT BISYMMETRIC

; a=449002‘ (Moximum)

O 708
1 210077 t=0.73736

0.70587‘~| \K JSert

Almost Two
Half-Octahedra

a=40.8934° (Minimum)

0.755929
R O3 1.322876

|

t=0.76376

0.65465—-| &

Almost a Trigonal
Prism and a Half-
Octahedron

7T

Figure 10b. Bisymmetric Seven-Point shape, shown in two extremes that
maintain unit edges and symmetry (called a diploid heptatope
in the text).

Al




——

-30-

SEVEN POINT TRISYMMETRIC

—
0.666640
*
0.467254
&
Al A L/lZ/?—'
most one
Tetrahedron t=0.782276
and one —
Octahedror 1.383813

—_——
t 0.52785
\ &
—
0.740586 Almost 4
Tetrahedra
0494058
¥
t =0.729397

Figure 10c. Trisymmetric Seven-Point shape, shown in two extremes that

maintain unit edges and symmetry (called a trigonal heptatope
in the text).
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DOUBLE DIAMOND

ALMOST A TRIGONAL
PRISM WITH THREE
HALF-OCTAHEDRON CAPS

RV t=0.80262

ALMOST A DIHEDRON
Q AND TWO TRIPLE
Ny DIHEDRA

—10.82833

Figure 10d. Double Diamond shape, shown with two auxiliary points, in two
extremes that maintain unit edges, symmgtry and auxiliary
point connections.
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TABLE 6

REDUCIBLE SHAPES

Results of Reduction
Half-
Points Shape Figure | Octahedra | Dihedron | Pentatope
6 Full Octahedron 2 2 0 0
Triple Dihedron (Half-
Dodecahedron) 11A 1 1 0
Double Dihedron, opposed 11B 0 2 0
Double Dihedron, connected 1 (o} 1
J1€ or
Double Dihedron, connected 0 2 0
Dihedron and Pentatope 0 1 1
2 Pentatopes sharing end
points 0 0 2
7 Pentagonal Bipyramid 4A 2 1 0
8 Full Tetragonal Dodeca-
hedron 2 2 2 0
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A) TRIPLE DIHEDRON B) DOUBLE DIHEDRON C) DOUBLE DIHEDRON
(opposed) (connected)

Figure 11. Variants of the dihedron.

a. Triple Dihedron
b. Double Dihedron (opposed)
c. Double Dihedron (connected)
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S. LOCAL ARRANGEMENT STATISTICS

The numbers of each local arrangement were found for the Finney
model and the Bennett model for neighbor distances of 1.20 and 1.30.
Examples of all possible irreducible shapes with eight or fewer points
were discovered. For the irreducible shape statistics, a double dihedron
connected is counted as a half-octahedron and a pentatope. The results
are reported in Table 8 as the number of shapes per 100 spheres. Volume
statistics were not calculated because of the ambiguity of volume for
shapes with non-planar four-edged faces. Instead of fractional volume,
therefore, the fractional number of points inside the given cluster
boundary was used as the fractional contribution to the total statistics
reported. For the various nine pecint figures, the total number of each
type discovered is given in Table 9.

The first 12 shapes in Table 8 were found by various programs that
found all occurrences of that shape. To find shapes with nine or more
points, we resorted to investigating the largest interstitial sites
within 8.0 sphere diameters of the center: the largest 400 sites for
the Finney model, the largest 200 for the Bennett model. This procedure
might miss some occurrences of the shapes. The statistics for large
shapes at 1.20 neighbor distance are only approximate. We believe that
we have found all or nearly all the shapes at neighbor distance 1.30. We
have probably missed a few shapes at 1.20. The statistics in Table 8 for
the Bennett model are for the inner 1000 spheres. With minor exceptions,
no other sample size is reported. The statistics should vary with cluster
radius, as the deltahedra statistics do, because the density varies with
radius. For the Finney model, various sample sizes were used, because

presumably the structure does not depend on radius.

e — — p——
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TABLE 9

NINE-POINT SHAPES
Total Number Discovered
(Inner 2600 Spheres)

Shape Finney Bennett Finney Bennett
(Figure 8) 1.20 1.20 1.30 1.30
A 6 0 9 4
B 4 2 7 5
Cc ) 4 0 1
D 3 0 1 0
E 5 4 1 3
F 2 0 2 0
G 2 1 1 0
H 4 2 1 1
I 2 0 1 0
J 4 4 L 1
K 1 3 0 0
L 0 1 0 o}

Others not in
Figure 8 2 (0] 0 0




There are some unexpected differences between our results on the

Finney model and Whittaker's results on the Bernal model. We originally
expected these two models to be almost identical because they appear to
be similarly constructed. The statistically significant differences are
in pentatopes, (Bernal S5%1, Finney 9.7:1.0) and full octahedra
(Bernal 7t1, Finney 10.66+1.03). The two models differ in other
statistics but not by much more than the expected counting errors.

These differences introduce the intriguing possibility that not all
mechanical hard-sphere dense random packings are identical. This study
sheds little light on how the two models might be different. Perhaps
the surface effects penetrate a significant distance into the cluster,
which affected the Bernal core more than the Finney core. Perhaps a
mechanical model changes its statistics when deformed or thoroughly
shaken. We did expect differences between the Finney and Bennett models
because they were differently constructed. The significant differences
are that the Bennett model has fewer tetrahedra and complete octahedra,
and more dihedra, pentatopes, and trigonal prisms. At a neighbor distance

of 1.20, the Bennett model has more diploid heptatopes.

6. INTERSTITIAL SPHERE SIZES

Another approach to the describing the holes between spheres of a
dense random packing is to enumerate how many inte;stitial spheres of
what size could be placed in the holes between the unit spheres. Polk7
speculated that the structure of metal-metalloid glasses may have the

metal atoms in a dense random packing, with the metalloid atoms at the

interstitial sites of the larger Bernal holes (trigonal prisms and
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Archimedian antiprisms). Polk and Cargill point out that the regqular
Bernal shapes are not large enough for the metalloids, but the Bernal
shapes are distorted in the actual dense random packing, and other shapes
also occur. We shall find that the distortions do not increase the size
of the larger interstitial sites.

We must be careful in defining our interstitial site statistics.
Any four non~-coplanar points (unit sphere centers) define a sphere. If
no other point is inside that sphere, then that sphere represents an
interstitial site. A small sphere could be placed there that would
touch each of the four unit spheres and none others. It is possible,
however, to arrange the unit spheres in such a way that one small inter-
stitial sphere would overlap with a neighboring small interstitial sphere.
It is unreasonable to count both such interstitial sites in the statistics.
If only two overlap, then we should take the larger and neglect the
smaller. It would be possible, though more difficult, to redefine the
smaller site, as a still smaller site for a sphere that just touches three
unit spheres and the larger interstitial sphere. This has not been
attempted. If three sites overlap, with the center the largest, but the
other two not overlapping each other, then we must choose between the
maximum number of sites (using the two smaller) and the maximum size of
sites (the one largest). We have chosen the latter.

The approach used was to find all interstitial sites, sort them by
size, and then eliminate overlap from the largest down. That is, choose
the largest unchosen site and eliminate from the remaining (unchosen)

list any site that it overlapped.
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The results of this analysis for the inner core of the Finney Model
are shown in Figure 12. There are very few sites larger than the one in
a regular Archimedian antiprism, 0.8227. None is larger than 0.85, which
is smaller than the site in a simple cube (0.8660) .

The same results are replotted in Figure 13, showing the total
integrated number of sites that are equal or larger than a given center
to vertex distance. Also shown are the results obtained from Bernal's
numbers, using the numbers of shapes derived by Cargill, and assuming
undeformed shapes. The actual array has more larger sites than the
simple model, but not significantly more. If we were to adequately
describe a metal-metalloid glass as a dense random packing of single-
sized spheres for the metal atoms, with the metalloid atoms occupying
interstitial sites, then the metalloid must be small enough, or scarce
enough to fit into the available sites. For a typical 80 metal - 20
metalloid glass, we would need 25 sites per 100 metal spheres. Figure 13
indicates that to have that many sites, we would need sites as small as
0.74 (center to vertex distance). The sphere in such a site has a
diameter 0.48 that of the unit sphere. Even with 91 metal - 9 metalloid,
the interstitial sphere diameter would have to be as small as 0.54. This
is substantially smaller than the metalloid sizes derived from X-ray
gtudies. Unfortunately, this study does not provide information of what
the correct metal atom packing is.

The same analysis of interstitial sites was done on the Bennett
Model. Since the density varies with distance from the cluster center,
the interstitial site statistics also vary. As expected, at lower

densities there are more large sites and fewer small sites. Figure )4
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Figure 12. 1Interstitial sphere sizes in the Finney Model.
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gives the results for the inner 1000 spheres. The average density of
this cluster is about the same as the Finney Model, and the site

statistics are about the same also.

7. CONCLUSIONS

Two different models of a dense random packing of the hard spheres
have been analyzed in terms of the polyhedral holes between spheres:
The Finney mechanical model and the Bennett computer generated model.
An accurate and unambiguous description of the structure requires more
different structural units than Bernall originally proposed. A
description in terms of deltahedra (triangular-faced polyhedra) yields
a significant volume fraction of large and complicated shapes.

The packings were also described in terms of local arrangements
allowing three and four-edged faces. All such shapes with up to nine
points were considered, including those used by Whittaker6 to describe
Bernals model, plus several others. Although there are occasional sites
that must be described with shapes of 10 or more points, the local
arrangement list provides a manageable way to describe most of the volume.

Both models were also analyzed to find the number and size of the
small spheres that could be placed at the interstitial sites. The results
confirm that there are not enough large sites in the packing to allow a
model of a metal-metalloid glass to be constructed simply by inserting

small spheres into the interstices.
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APPENDIX: COMPUTING PROCEDURES

A. Deltahedra

The computer program used to determine the deltahedra is straight-
forward, but not trivial. First, all nearest neighbor pairs were found,
each pair becoming a numbered edge. Then all edges were searched to
find all groups of three in a triangle, which become numbered faces. It
is necessary to cross-reference which edges border each face, and which
points and which faces border a given edge. All faces are then searched
to identify all groups of four forming a tetrahedron. A more sophisticated
search then identifies all the larger holes. It requires keeping track of |
which side of each face is being searched, using the numbers of the three
points of the face to define a right-handed and a left-handed side. The
search proceeds from face to face, choosing the next face as that which
forms the smallest interior angle about the joining edge. This search
continues for a given hole until there remain no edges of the faces in
the hole that are not connections to other faces in the hole. Special
provision must be made to identify interior faces that have free edges.

The exterior of the cluster is treated by this program as one very
large hole, which is excluded from the statistics.

To get good statistics on the volume fractions of the various types
of holes one must avoid surface effects and consider only the holes and
volume within an inner core (usually 1000 sphergs). The volume of each
hole that was within this inner cluster boundary sphere was used for the

volume fraction calculation. For the holes that crossed the boundary
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sphere, an approximate calculation of the fraction of volume within the
boundary sphere was done.

The volume of each hole was calculated as a group of tetrahedra
with the common vertex being the vertex closest to the origin. Each
tetrahedra was truncated by its intersection with the boundary sphere.
The truncated faces were considered to be flat, not rounded like the
boundary sphere. There are four possible cases here: One, two, three
or none of the three points of the face outside the boundary sphere.
With none outside the whole tetrahedron is used. When all three are
outside the truncated face is a triangle and used directly. If one or
two points are outside the truncation forms two faces: a triangle and
a quadrilateral as shown in Figure A-l.

This approximate volume calculation at the cluster boundary
introduces a small systematic error. If all the volume of the cluster
were assigned to different deltahedra, the total volume recorded would
not be that of the spheré. but of a many-faced polyhedron inscribed
inside that sphere. The volume percentages were calculated using the
volume of the cluster sphere, not the inscribed polyhedron, and are

therefore slightly lower than an exact calculation. The vclume of the

inscribed polyhedron is usually not known, because not all volume within

the cluster boundary is assigned to deltahedra, even when all spheres
are considered out to 2.5 sphere diameters beyond the cluster boundary.
These errors are small compared to the statistical counting errors
involved, which are shown for 2000 points.

For all deltahedra with eleven or fewer corners, a subroutine was

used to find the particular topological type. The number of faces




TWO POINTS OUTSIDE

Figure A-l.
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touching a particular corner was found by searching through all the
faces on the hole. This was done for each corner.

Groups of tetrahedra were found in a straightforward manner,
searching each face on a tetrahedron to see if another tetrahedron was
on the other side. This search was continued for a particular group
until there remained no faces in the group that had an unidentified

tetrahedron on the other side.

B. Local Arrangements

To search for the Bernal and non-Bernal local shapes various
different programs were used. All were based on finding edges and faces
in the manner described above.

To find trigonal prisms, an array was used telling which faces
touched a given point. The search started through all faces. For each
face, all faces that touched each of the neighboring points of the first
point were checked to see if there was the proper arrangement of
neighbors between the two faces: i.e., each point on each face neighbors
one and only one point on the other face.

The program to find Archimedian antiprisms searched from face to
face until the proper circuit had been discovered. The procedure is slow
because of the great number of possibilities.

The program to find dihedra is rather simple. The program first
looped over all edges. Up to six faces may meet at an edge. For each
edge, the program checked each different pair of faces that meet at that
edge. The two points on those faces that don't touch the edge are picked

out as extremal points. (If the extremal points are neighbors, the shape
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is a tetrahedron, and that pair of faces can be neglected.) All points
that neighbor both extremal points are then found. (Two of these are
the ends of the base edge.) If no such mutual neighbors (other than the
base edge points) are found, the pair of faces is neglected. The actual
shape represented by the pair of faces is determined by the number of
mutual neighbors and whether they neighbor each other and the base edge
points. The various possibilities are easy to identify, but care must be
used to correct for multiple counting. A pentagonal bipyramid will be
discovered five different times by this program. A double dihedron,
either connected or opposed, will be discovered twice. A triple dihedron
could be discovered either from a central base edge, or from the two
side edges. The second type of discovery is neglected. A complete octa-
hedron will be discovered by this program twelve different times. To
find half octahedra is more difficult, because we must distinguish between
individual isolated half-octahedra, and the half-octahedral parts of triple
dihedra, double dihedra connected, and pentagonal bipyramids. To do this,
we first identify the two points of the half-octahedron that would form
the diagonal perpendicular to the diagonal formed by the two extremal
points. One of these points is the mutual neighbor discovered, and the
other is the base edge point that doesn’t neighbor the mutual neighbor.
We then search for mutual neighbors of these two diagonal points. If
there are only three such mutual neighbors, the shape is indeed an
isolated half-octahedron. 1If there are four it is a double or triple
dihedron; if five, it is a pentagonal bipyramid. Each half-octahedron
will be discovered four different times.

To find the trisymmetric seven point figures, the program considered,

for each face, all the various combinations of three neighboring faces,
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one on each edge. The three outside points were identified (those not
on the central face). If any two (or three) outside points were
identical, the shape was rejected as a tetrahedron. If any two (or
three) were neighbors, the shape was rejected as a half-octahedron or
something related. If no outside points were identical or neighbors,
the program searched for points that neighbored all three. If none or
two or more were found the shape was rejected. If only one point was
found (the seventh point of the shape), it was checked to see whether
it neighbored any of the three points of the base triangle. If it did,
the shape was rejected. If it didn't, the shape was a seven-point
tri-symmetric shape (trigonal heptatope).

A program was written to identify the seven-point bisymmetric
shapes (dipbid heptatopes), which searched through all pairs of faces
meeting at a point to find the correct arrangement of points.

A program to find the various larger local arrangements was
attached to the program for dihedra. If no mutual neighbors were
discovered for the extremal points of a pair of faces, then a search
was made for a pair of points (e.g., I5 and I6 in Figure A-2a) that
neighbored each other, one neighbored each extremal point (I3 and I4),
and neither neighbored either base edge point. There can be more than
one 15 or I6 to satisfy these conditions, so we may find double diamond
shapes directly (e.g., Fig. A-2b). Each double diamond shape will be
found twice.

If we find only one IS5 and one 16, we may proceed to find other

shapes by looking for I7 and I8 (Figure A~2c): points which neighbor




-53=-

Figure A-2
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both I5 and I6 and also neighbor Il and I2, respectively. If we find
both I7 and 18, we have found one of the five following local arrange-
ments.

1. Archimedian Antiprism, if I7 neighbors I3 and I8 neighbors I4,
or I7 neighbors I4 and I8 neighbors I3.

2. Antiprism with one broken edge, if one of 17 and I8 neighbors
neither I3 nor I4, and the other does neighbor I3 or I4.

3. Seven-Point Trisymmetric shape (with an extra point capping a
foud-edged face) if I7 and I8 both neighbor I3, or I7 and I8 both
neighbor I4. (Assuming I7 doesn't neighbor 1I18.)

4. Antiprism with two broken edges, Type C, if neither I7 nor 18
neighbors either I3 and I4.

. 5. A group of dihedra or tetrahedra if I7 neighbors both Il and
I2 or 18 neighbors both Il and I2.

If we fail to find either I7 or I8, we may be looking at one of the
shapes mentioned above from a different base edge. This may be checked
using the numbers of the points involved. If the same points form a
standard figure elsewhere, we use that standard identification.

Occasionally, the failure to find I7 or 18 represents an antiprism
with two missing edges. To help sort out which type it might be, the
program will find all points that neighbor both IS5 and Il1, I5 and I2, I6
and Il, and I6 and I2. The exact shape must often be reconstructed by L
inspection, using a short program which will report all the neighbors of

any particular point.
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Some of the more complex shapes reported will not be found by any
of the special programs just described. These werewidentified by
plotting a projection of the points within 1.5 of each of 400 largest
interstitial sites within 8.0 sphere diameters of the center of the
Finney model (center to vertex distance greater than 0.752( and iden-
tifying by inspection the shape that surrounded the interstitial site.
This was also done for the largest 200 sites of the Bennett model

(center to vertex 0.774).

Ce Interstitial Sites

A potential interstitial site is equidistant from four sphere
centers, with no other sphere closer. To find all such sites, we must
consider all combinations of four spheres, and check that no fifth
sphere overlaps. This leads to calculation times proportional to the
fourth (or fifth) power of number of spheres, unless some restrictions
on combinations are used. Preliminary calculations found no sites with
center to vertex distance greater than 0.85. The main program, there-
fore, neglected most combinations of four spheres with any two mcre
distant than 1.8. With this restriction, sites larger than 0.90 might
be neglected.

For computing convenience, the array was first distributed to unit
cells, and the spheres in each cell were recorded in an array. The
interstitial sites in each unit cell were found using the points in that
cell and the 26 neighboring cells. Each combination of four points (not
more than 1.8 distant) was used to calculate a sphere center and radius.

If the center was outside the unit cell or the radius was larger than
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0.90, that combination was neglected. Otherwise the site was checked
for overlap with all other spheres in the 27 cells.

The calculation was done for all cells not totally outside a radius
of 8.0 from the center of the array. The array used was the central '
4000 points (or 3999 for the Bennett model), which includes all points
within 9.2301 of the center (9.2799 for Bennett). After finding all the
sites, those at radii greater than 8.0 were excluded to avoid false sites
at the edge of the array. Using these sites, the elimination of overlaps
was done, leaving an array of far fewer interstitial sites.

Of these sites, those within a radius of 7.1 were used for
statistics, to avoid counting sites that avoided being eliminated by
overlap because they were near the cluster surface. In the Finney model
there are 1825 points inside that radius. The results for the Bennett
model depend on radius and are reported for the inner 1000 points, or

inside a radius of 5.82625.
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