
AD AOb’i 704 HARVARD UNIV CAMBRIDGE MA DIV OF APPLIED SCIENCES FIG 2O~ 13
HOtE STATISTICS IN DCNSE RANDOM PACKING. (U)
DCC 78 H 4 FROST N000IQ—77—C—0002

UNCLASSIFIED YR—b

t71~~ 
_______ 

_

_ _  

tlifli I
~~Dfll

—~~~~~~~~~~~~~ END

______ 4-79
DDC

I

-
~~~~~~~~ a— —



I .0 ~ ~II~ IIII~
_ _ _  

L ~ 32 
~ 2.2

I I ~

11111 1 .25 
~~ ~

MICROCOPY RESOL UTION TEST CHART 
—



F — 
— -

~~~w ~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —

~~~~

~QLEVEV
elfin if Naval Researc h

Cnt ract 100014 77-C-0 12 11-039-136

HOLE STATISTiCS IN DENSE RANDOM PACKING

E l

- _
8 11

D D CI. Frost 
~
-F
~ n~~ c~nFEB 16 1.919 1111

December 117$

(~~ ‘T— B
Tech alca l Report No. 6 ~

[This document has been approved (or publtc re ieaeel
and sale; Its dis t ribut ion ia unl imited.  Reproduction in 4

( whole or In part is permitted by the U. S. Governmenij

Divid e. of Applied Scisaces
Harvard hiversity Cambridge , Massach usetts

79 ~ 2 ~~ 093
j -



~~~~~~~~- 
—

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

Unclassified 
_________

S* Ctj~tITY CLASS II ICATI ~)Pi (~~ . - S  - a ’; ’:  ~~~~~ ~~~~~~ I ~~~~~~~~~

REPORT L)OCU ID~TAT IO r~ ____

~. REPORT N UM B E R  ~~. GOV t AC .LS~ IO’4 14 ). 3. ,IV CIPILNr S CATA LOC,  I~~~I’i3 L~t

Technical Report No • 6
4. ‘flTLE (an d Subtitl e) 

- 
5. TYPE O~ RCP0NT 6 PERIOD COV ERZLI 

-

J~OLE STATISTICS IN QENSE RANDOM PACKING Interim Report
S. PERPORM ING ORG. REPORT hUMLL’.

• ~~. UTI4ORW C. C0k (RAGT OR GRANT NUI~UEk(aJ -

t~ :~~z~ st J (~ ~~~~~
l4-77-C~~992

5. PERFORM IN(~ ON GANIZAT ION N A M E  AND ADDRESS ID. PMQGR*N ELCULNi , PROJICT . ~ A5,ç

Division of Applied Sciences AREA S WORK Ut4IT NUM&CI~S

Harvard University
Cambridge, Mass. 02138
II. CONTROLLING OPFICE N A M E  A N D  A DDRESS /~ 

‘
~~~. REPORT DAT E

-~ 
- 

( -L )Dec_-L__ 1.978 1
a . 

. 15. WUMD L~ ~~ 
—

- - 
60 (J ~J ~ 

- 

ii
‘- 

14. MONITORING AGENCY N A M E  S AD QRESSfII diii.tunt from CanI,olIis.g Ol(ic.) IS. SECURITY CtASS. ~~Tii~ia t.pcrf)

Unclassified
ISa. OECL 1.551 FICATION .’ OQW W G HAt t 3

SCI’EDULE

IS. DISTRIBUTION STATEMENT (of :ltSa Repo rt)

This document has been approved for public release and sale; its distribution
is Unlimited: Reproduction in whole or in part is permitted by the U.S.
Government. 

-

I?. DISTRIBUTION STATEMENT (of hs abaf,.ct .nfa, .d In h ock 20. ii difi.re.,f iio~, 5.peri)

- .  

~~

.. - 

D D C
IS. SUPPLEMENTARY NOTES 

[11
~j fj Jf~~flJfl9 p

- In~ 
FEB 16 1919

15. KEY WORDS (Contin ua on tiv•rs• aids if n.c.s .asy and Id~neifr by block numb.,) U[JL!1L.~161J 1J U
Dense Random Packing B
Bernal Canonical Holes . - —• .- - —

Deltahedra
Interstitial Sites
etallic Glasses

• 20. STRACT (C.nlfnui on ,.v.r. . aid. Ii n.c.a.asy and ld.nfifr by block “~~‘~~‘)

The structure of dense random packings of hard spheres has been investigatec
Ln terms df the polyhedral holes between the spheres, Using both all triangular-
‘aced polyhedra called deltahedra, and local arrangements allowing three- and
!our—edged faces. Two models were analyzed: The mechanical model of Finney~~
m d  the computer—generated model of Sennett~~~ The number and sizes of the sites
!or small interstitial spheres were also calculated for both models. The
structural units described and the results may be applicable to the structure of
Liquid metals and metallic glasses.

DD 1 JAN 73 1473 ~ oiTsoN o:s N:vss Is osso’~~~~~ Unclassified 
-

SECURITY CLA$SIPICATION OP THIS RAGE (Ith.a n0~~
L_ / I ( ~ ~~~~h ~~~~~~~~~~ :~~~±~~~~~~~~~~~~~~~ — -~~~~~~~~~~~e~~~~~ - —  ~~~~~~~~~~~~~~~~~~~~~~ -~ - “ . -



— ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — - ~— _--.-•-‘ ~~ —.-

Unclassified
.LLI )NITY C L A S S I r I C & ’ I O N  OP THIS PLG(~ NP.•n 0., . PnI.,.4)

20. Abstract continued

~ef.rences~

1. J.L. Finney, Proc. Roy. Soc. 319A , 479, (1970).

2. Charles H. Bennett, S. Appl. Phys. 43, 2727, (1972).

I . -

( DOC .
~~~~ 51 

0

f l Y

COD(S
- - - . 

- 
1 SPECIAL

Unclassified
ICCUNITY CLASSIPIC ATION OP tb4II P AGt tWRCn 0. ,. tel s,.4)

________________________________  - 

~~~~~~~



T~ T- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Office of Naval Research

- 
Contract N00014—77—C—0002 NR—039—136

a

HOLE STATISTICS IN DENSE RANDOM PACKINGS

By

N.J. Frost

Technical Report No. 6

This document has been approved for public release and
sale; its distribution is unl imited . Reproduction in
whole or in part is permitted ~y the U. S. Government.

December 1978

The research reported in this document was made possible through
support extended the Division of Applied Sciences, Harvard University,
by the Office of Naval Research, Under Contract N00014-77-C—0002.

S

Division of Applied Sciences

Harvard University . Cambridge , Massachusetts

_ _

_ 
-~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ (
~

- ~~~~ ~~~~~~~~~~~ 
- - - 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — — — —-

~~——~
-———-— - .— - . —



1. INTRODUCTION

The first approximation to the structure of liquid metals or

metallic glasses is a dense random packing of hard spheres. The structure

was initially studied by S.D. Bernal1 who characterized a mechanical model

of single—sized spheres , arranged without any regular crystal structure.

2 ,3 4Other mechanical models and computer-generated models have also been

studied . The connection between these models and the structure of

metallic glasses has been reviewed by Cargill. 5

Three approaches have been taken toward statistical characterization

of dense random packings. The first is by radial distribution functions,

measuring the number of pairs at various spacings. This procedure is

attractive because it can be compared directly to the radial distribution

functions of real materials, measured by x-ray techniques. The method is

limited, however, to pairwise correlation , and it can give little in-

formation about how often a particular local arrangement of three or m~ ~

points might occur.

The second approach is to describe - 
the average arrangement of

spheres about a particular sphere . Scott3 introduced this approach with

a pole figure showing the average angular distribution of first shell
a

neighbors . This same approach was used by Finney2 when he reported the

characteristics of Voronoi polyhedra (the polyhedron surrounding a

sphere , bounded by faces which are perpendicular bisectors of the vectors

to neighboring spheres) .

The third approach i.s to characterize the arrangments of spheres

around the holes in between the spheres. That is to describe the various -

polyh.dra formed with th. sphere centers as corners . This was the 

-- -- - - -—~~~~~~~- — - -  ~——— - ~~~~~~~~~~~~~~~~~ 
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approach used by Bernal and led to his five canonical holes. Recently,

this approach was revived by E.J.W. Whittaker,
6 
who re-examined Bernal’s

model and identified several shapes not mentioned by Bernal.

This paper reports a more extensive examination of this third

approach, reporting statistics on the various holes between spheres.

Bernal reported that almost all the volume could be divided into five

canonical holes (allowing for some distortion): Tetrahedron, half—

octahedron, trigonal prism, Archintedian antiprism (or square antiprism)

and tetragonal dodecahedron, shown in Figure 1. From inspection of a

mechanical model of hard spheres , he reported the number percents and

volume percents given in Table 1. with the known density , and assuming

regular shapes , the number of shapes per 100 spheres can be calculated.

There has been some confusion regarding the shapes of these holes:

Bernal used a trigonal prism with three square faces, and a square

antiprism with two square faces (Figure 1). These shapes, however , are

often pictured with the square faces capped with half-octahedra, as in

Figure 2. (They are then deltahedra--polyhedra with triangles for all

faces) . Bernal also considered separate half-octahedra (Figure 1), not

full octahedra (Figure 2) .  Some of his hal f -octahedra are parts of full

octahedra; some are caps for trigonal prisms of square antiprisms.

An important point here is that in the actual packing, the square

faces on trigonal prisms or antiprisms could be capped by other

trigonal prisms or antiprisms. Thus, a structure oased on the f ive

small canonical holes can contain structures that are not simple delta-

hedra. In fact, we shall see that a dense random packing cannot be

described as being completely made up of the five simple deltahedra

with small distortions. Furthermore, it cannot be described by the five

smaller Bernal canonical holes. Whittaker used the five Bernal canonical

--- ~- --——---- 
_
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TETRAHEDRON HALF-OCTAHEDRON TR1GONAL PRISM

I •
~

ARCHIMEDIAN TETRAGONAL
ANTIPRISM DODECAHEDRON

BERNAL’S CANONICAL HOLES

Figure 1. The five ~ernal canonical 
holes.
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TABLE 1

BERNAL CANONICAL HOLES

Number* per Center to
Number % Volume % 100 Spheres Vertex Distance

Tetrah.dra 73.0 48.4 292 0.6124

Half—Octahedra 20.3 26.9 4Ø** 0.7071

Dodecahedra 3.1 14.8 12.4 0.6766

Trigonal Prisms 3.2 7.8 12.8 0.7638

Archimedian
Antiprisms 0.4 2.1 1.6 0.8227

*Calculated by Cargill.

**Counted as full octahedra .

I -- - - -  --  - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ — — 
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FULL OCTAHEDRON TRIGONAL PRISM WITH
HAL! OCTAHEDRAL CAPS
(14 F~~ES-9 CORNERS,( 3,6,0))

/ . ARCHIMEDIAN ANTIPRISM
, \ ,‘ WITH HALF OCTAHEDRAL CAPS

(16 FACES -10 CORNERS,( 2,8.0))

Figure 2. Deltahedra generated from the Ber-nal. canonical holes.
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holes plus four other shapes to describe most of the cavities in the

Bernal model . He also deduced what approximations Bernal must have

used to get his statistics. 
I 

-

This paper reports the results of three different approaches to

4 the statistics of holes in dense random packings:

1. Triangular-faced polyhedra , called deltahedra .

2. Local arrangements, allowing three and four-edged faces.

Several shapes in addition to Bernal ’ s five must be used to describe the

dense random packing completely.

3. Interstitial, sphere sites . We have found how many small spheres

of what size could be placed in the sites between the spheres.

These statistics have been determined using various computer

programs for two different models of single-sized spheres; the Finney

model of a mechanical packing of spheres ,2 and the Bennett computer

generated array of spheres.4

2. DESCRIPTION OF STRUCTURAL UNITS: DELTAHEDRA

A description of the structure in terms of triangular-faced poly-

hedra can be achieved in the following manner: Any two sphere centers

within a chosen nearest-neighbor distance form an edge. Any three edges

that join as a triangle form a face. And finally, each volume that is

totally enclosed by faces describes a hole . If the nearest-neighbor

distance is changed , the hole description of any particular region may

change. In a large cluster, the numbers of the various types of holes

depend on the choice of nearest—neighbor distance .

- ~~~~~~~~~~~~~~~ — - - - -
—
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If the distance is too small. (e.g., less than 1.1 sphere diameters)

there will, be few faces defined , and only a few volumes enclosed, leaving

most of the volume open. If the nearest-neighbor distance is chosen too

large, it may lead to ambiguous des -riptions of certain local arrange-

ments. Using a distance greater than VI~7’7.l.309307, the five points

in Figure 3 may be described either as two tetrahedra base to base, or as

a ring to three tetrahedra. This is the arrangement that allows inter-

penetration of tetrahedra at the minimum nearest-neighbor distance .

The possibility of interpenetration means that the deltahedra do not

always provide a suitable unique description of an array of spheres. For

example, the simple cubic structure provides no faces if the nearest-

neighbor distance is less than ‘~/ ~
‘ sphere diameters. If the neighbor

distance is greater than i/2 sphere diameters , then all cube-face

diagonals become edges, and the volume is filled with interpenetrating

tetrahedra.

To avoid the complications of interpenetration, we should only

consider nearest—neighbor distance less than V12/7 = 1.309307.

Another difficulty with large nearest—neighbor distances is that

certain shapes may be subdivided into less descriptive units. The

interior distance through the tetragonal dodecahedron is 1.2892. At

any larger neighbor distance, an undistorted dodecahedron is described

as seven tetrahedra. We have used one larger distance, 1.30, at which

we find slightly fewer dodecahedra than at the smaller neighbor distance

1.28.

Deltahedra may be catalogued according to the number of faces . The

number of corners is constrained by the number of faces. Since we

-~ -~-. ;:-.
___  - 
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Figure 3. Arrangement showing the minimum nearest neighbor
distance that allows for interpenetrating tetrahedra.
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consider both convex and concave shapes, our list is longer than previous

listings of convex deltahedra. Our list does not include all possible

deltahedra shapes, but concentrates on those that actually occur in dense

random packings. For any given number of faces larger than 12, ther e

are two or more topological shapes that occur in dense random packings.

To identify them, we can use a set of three (or four) integers, which

give the number of corners at which 4, 5, or 6 (or 7) faces meet. For

examples, the tetragonal dodecahedron is (4,4,0). No large polyhedron

can have a convex corner with only three faces, because that corner

would be considered a separate tetrahedron. For some shapes with 16 or

more faces , certain sets of corner numbers describe more than one shape.

These are separately identified by the number of edges between 4—faced

and 6—faced corners: N6_4. This is adequate for shapes with 16 or 18

faces. Shapes with 20 or more faces have not been catalogued.

The deltahedra that are not based on Bernal canonical holes are

shown in Figure 4. The following is a complete catalogue:

4 Faces - Tetrahedron

(6 Faces , 5 Corners: Described as two Tetrahedra.)

8 Faces , 6 Corners: Octahedron

10 Faces , 7 Corners: Pentagonal Bipyramid.

This was not one of Bernal ’s canonical holes because it is approxi-

mately a ring of five tetrahedra.

12 Faces , 8 Corners: The primary form is a canonical hole, the

tetragonal dodecahedron, (4,4,0). Another form, the hexagonal bipyrainid ,

(6,0,2) is possible for neighbor distances greater than 2/V5 1.1547.

This form was never observed in dense random packings, so it may be

neglected .

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ 
— 

-



~~~~~~~~~~~

—10—

14 Faces , 9 Corners. Two shap es occur : the trigonal prism with

octahedral caps (3,6,0) and an unnamed shape (4 ,4 ,1).

16 Faces, 10 Corners : Five shapes occur . The canonical shape,

Archimedian antiprism with caps (2 ,8,0) ,  is not the most conmon.

18 Faces , 11 Corners: At least six shapes occur , as shown in

Figure 4. Other shapes are possible , but have not been found .

For 12 or more corners (20 or more faces) the topological forms

become even more numerous , and haven ’t been catalogued. The structures

we analyzed contained numerous holes with more than 20 faces . These

holes are not open vacancies: no unit sphere could be placed inside

them. They are flat or elongated regions where the packing is slightly

more open.

The method described above does not require that all faces and all

edges fit into the walls that divide the array into separate volumes.

It is entirely possible to have an edge that is not part of any triangle

of edges, and therefore does not border any face. Such edges are very

unlikely to occur, for the larger neighbor distances, except on the

surface of the cluster.

Similarly, it is entirely possible that a particular face is not

joined to any other face on one, two , or even three of its edges. This

is usually a surface effect, but also occurs in the interior, even at

the larger neighbor distances. We found no examples of interior faces

with three free edges, but interior faces with one free edge do occur.

Such a face must necessarily occur within one of the larger holes.

-
- 

--- ‘
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3. OELTN4EDRA STATISTICS

The numbers and volume percent of each type of hole depend on the

choice of nearest neighbor distance. For the inner 1000 spheres of t~~

Finney model , the distances 1.20, 1.25, 1.26, 1.28 and 1.30 were used.

The results are given in Table 2. Figure 5a shows the volume percent

results along with the volume percents reported by Bernal for his five

canonical holes. The program was also run once on the inner 2000 spheres,

as shown in Table 2. The differences between 1000 and 2000 spheres are

within the expected counting errors.

These results and Bernal ’s results can only be directly compared

for the tetrahedra and dodecahedra. Bernal’s higher volume fractions

for these two shapes might have three causes: A more flexible nearest

neighbor definition, the effects of boundaries of the cluster, or

differences between Finney ’s model and Bernal’s model. Whittaker

considered this and concluded that Bernal used a flexible definition

that counted some shapes as tetrahedra that would not be so by stricter

definitions. Whittaker’s own analysis of Bernal ’s model gives comparable

numbers of tetrahedra and octahedra to the Finney model.

The situation is more complicated for the Bennett computer

generated model, in which the density decreases with distance from the

center. The statistics of hole type should also depend on distance from

the center. It is difficult to do an exact comparison of statistics

versus distance from the center, because a large region must be examined

to get valid statistics with low counting errors.

To demonstrate this variation with density , we calculated the

statistics for five different spherical volumes , containing the inner

~~ 
_ _
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TABLE 2

FINNEY MODEL DELTAHEDRA

Volume Percent

Inner 1000 Spheres f 2000 Spheres
Faces

Neighbor Distance

1.20 1.25 1.26 1.28 1.30 1.30

4 19.01 29.08 30.70 35.30 40.30 40.24
8 6.66 11.47 11.91 13.95 15.82 15.77

10 0.29 0.59 0.58 1.04 1.37 1.34
12 5.15 8.08 8.54 9.62 9.48 9.14
14 0.49 2.14 2.71 3.40 3.88 3.75
16 1.21 2.96 3.32 3.65 2.58 3.03
18 1.84 4.35 4.28 3.76 2.47 2.52
20 1.46 3.79 2.72 3.27 3.69 3.48

>20 63.89 37.54 35.25 26.01 20.41 20.73

Number per 100 Spheres

4 121.4 182.4 192.0 219.7 249.6 249.5±3.5*
8 10.7 18.2 18.8 21.9 24.7 24.9±1.1
10 0.3 0.7 0.6 1.1 1.5 1.5±0.27
1.2 4.5 7.0 7.3 8.2 7.9 7.7 ± 0.6
14 0.3 1.4 1.8 2.3 2.5 2.5±0.35
16 0.7 1.7 1.9 2.1 1.4 1.7 ± 0.3
18 0.9 2.1 2.1. 1.8 1.2 1.2±0.24
20 0.6 1.6 1.2 1.4 1.6 1.4±0 .26

*Errors given are counting errors, ~Ei/20, where N is the number of
observed in 2000 points .

I ~~- —~ - - - - ~~~—-~ - — - ~~~~~~~~~~~~~~~~ - ~~ ~~~~~~~~~~~~~~~~~~~~~ 
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FINNEY DATA TRICONAL

1000 INNER SPHERES LARGER 
PRISMS

(DELTAHEDRA) HOLES TETRACONAL
000 ECAHEDRA

80- -

~~~ 20 FACES

/ ,-‘i/; 16//,‘V ’~12 HALF
~ 60 - - OCTOHEDRA
Id ~~ 10
U

Ida 

-

_ _ _ _ _

OCTAHEDRA

~~~~~~~~~~~~~~~~~~~~~~ AHEDRA

VOLU M ES )

0 I I I 
— .

120 1.25 1.30
NEAREST NEIGHBOR DISTANCE

Figure Sa. Volume percentage of various deltahedra in the Finney model,
versus nearest neighbor distance.
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200, 348, 600, 100 and 1500 spheres. The results are presented as shells

between these limits : i.e., the difference between the 200 sphere core

and the 348 sphere core gives the 200—348 shell. Results for this are

tabulated in Table 3 and plotted in Figure 6 for the nearest neighbor

distance 1.30. For the inner 1000 spheres, the results for neighbor

distances 1.20, 1.25, and 1.30 are given in Table 4 and plotted in

Figure Sb. The reversal of the trend between the 200—348 shell and the

348—600 shell may be only a statistical fluctuation.

For both Bennett and Finney models the results according to

topological shape are given in Table 5. The trigonaJ. prism with caps is

more coum~ n than the other 14-faced shape . The Archimedian antiprism

with caps is rare; other 16-faced deltahedra are far more coumon . For

most shapes , the counting errors are large because the total number of

occurrences is small. The exact numbers of the less cosmon shapes have

little significance.

An interesting pattern emerges from these descriptions in terms of

deltahedra. For large neighbor distances, the tetrahedra form more than

40% of the volume, and become one multiply-connected region that

penetrates the entire volume. A program to find groups at tetrahedra

connected face to face , finds one large group which includes most of the

tetrahedra present. At the other extreme of small neighbor distance (1.20

or less) it appears that the unenclosed volume forms one multiply-

connected interpenetrating region in which the various deitahedra are

embedded.

No systematic investigation has been done of the different arrange-

ments of groups of tetrahedra that occur . It is relatively easy to count

_ _
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‘rABLE 3

BENNETT MODEL DELTAHEDRA

Neighbor Distance — 1.30

Volume Percent
Faces -

0—200 200—348 348—600 600—1000 1000—1500

4 43.05 37 .40 37.42 34.64 34.25

8 12.38 11.65 12.18 10.97 11.49
10 3.47 1.95 1.98 2.18 2.28

12 9.08 10.64 7.92 8.29 5.08

14 3.25 3.41 6.62 3.81 3.97

16 4.07 1.92 4.31 3.64 3.76

18 2.62 2.70 3.68 3.46 2.62

20 1.42 2.09 2.11 2.88 3.13

>20 20.76 28.25 23.79 30.15 33.42

i~ ~~~~~~ _ _ _
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Figure Sb. Volume percentage of various deltahedra in the Bennett model
inner 1000 spheres, versus nearest neighbor distance.
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100 I

BENNETT DATA , IN SHELLS
NEIGHBOR DISTANCE = 1.30

2’~O

80 20 
-
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16 

— 18 1500
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Figure 6. Volume percentage of various deltahedra in the Bennett model,
for various shells , with the nearest neighbor distance 1.30.
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TABLE 4

BENNETT MODEL DELTAHEDRA

INNER 1000 SPHERES

Volume Percent Number per 100 Spheres
Faces

1.20 1.25 1.30 1.20 1.25 1.30

4 13.71 23.38 37.34 88.2 147.6 231.6

8 2.71 6.17 11.61 4.4 9.8 18.1

10 0.22 1.15 2.34 0.3 1.3 2.6

12 2.83 6.39 8.68 2.5 5.6 7.4

14 0.56 3.09 4.35 0.4 2.1 2.9

16 0.92 2.69 3.64 0.6 1.6 2.1

18 0.77 2.33 3.24 0.4 1.2 1.6

20 0.41 1.49 2.28 0.2 0.7 1.0

>20 77.88 53.32 26.53
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TABLE S

DELTAHEDRA TOPOLOGICAL TYPES
Number in inner 1000 spheres

Finney Model Bennett ModelCorner _______________________ _______________________

aces Numbers N6_4 1.20 1.25 1.30 1.20 1.25 1.30

14 3,6,0 2.2 11.2 17.4 1.0 11.2 15.0
4,4,]. 1.0 3.0 7.9 3.0 9.9 14.3

16 2,8,0 1.1 1.3
3,6,1 2.0 1.7 2.2 3.3
4,4,2 6 1.5 8.0 9.0 3.7 12.0 12.6
5,2,3 3.0 1.0 1.0 2.0 0.2 4.0
4,4,2 4 3.0 4.0 1.3 1.5 1.0

18 2,8,1 1.0 1.0 2.0
4 ,4 ,3 6 0.9 4.1 1.6 2.8 4.9
4,4,3 7 7.2 11.7 6.2 2.8 7.9 5.8
4,4,3 9 1.6 0.9 1.0
6,0,5 1.0 1.0
4 ,5,1,1 2.0 1.0 1.0 4.4
5,3,2,1 0.05

L.



_ _ _ _ _ _  - V-V -- 
•
_~~ -

~~~~~
V V 

-~~~~ • V- ~~~~-—- .--~~~~~~~-V_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

—21—

the rings of five tetrahedra around one edge. With a nearest neighbor

distance of 1.20, the Finney model has 61.9 rings (± 8.8 counting error)

per 1000 spheres.

4. DESCRIPTION OF STRUCTURAL UNITS: LOCAL ARRANGEMENTS

The previous sections demonstrate that the description in terms of

deltahedra does not provide a good description of the local arrangements

of spheres; it is not a convenient replacement for Bernal ’s original

description. Too much of the volume is in the large complicated delta-

hedra. For local arrangement description it is necessary to use shapes

with square (four-edged) faces. Three of Bernal ’s shapes have square

faces: square antiprisin, trigonal prism and half-octahedron. These can

be joined square face to square face to produce large deltahedra. (The

square faces need not be capped with half-octahedra). However, most of

the deltahedra with 16 or more faces cannot be produced from trigonal

prisms, square antiprisxns and half-octahedra. Several other distinct

local arrangements are required. If we limit the nearest neighbor

distance to V12/7 or less, we can identify several different local

arrangements (in the dense random packing) that have no large interior

space and are not topologica].ly equivalent to any of the Bernal holes.

Whittaker discovered several of them, but did not propose any exhaustive

catalogues of shapes. He reports about 10 miscellaneous unspecified shapes

per 100 spheres .

A new catalogue of possible shapes can be prepared allowing faces

with three or four edges, but not with five edges . (The “four-edged

faces” may be non-planar , in general, and are therefore not called squares

- -~~~- -1V-— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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or quadralaterals.) This is similar to Whittaker ’s approach, but here

includes several additional shapes he did not mention. We may first

consider only those shapes that cannot be divided into other shapes on

the list. All such irreducible shapes with up to eight points are shown

in Figure 7. They are:

4 Points: Tetrahedron

5 Points : Half Octahedron

Dihedron (Whittaker ’s Andalusohedron)

Pentatope (Whittaker’s Oblate Trigonal Bipyramid)

6 Points: Trigonal Prism

7 Points: Diploid Heptatope (also called Seven Point Bisymmetric)

Trigonal Heptatope (identified by Whittaker

(also called Seven Point Trisynunetric)

8 Points : Archimedian Antiprism

Antipr ism missing one side edge

Antiprism missing two side edges :

a. with one intervening edge

b. with two intervening edges

C. on opposite sides

Antiprism missing three edges

Cube with one face diagonal

Cube

There are at least 28 topologically distinct arrangements of nine

points with 3- and 4-edged faces. Some of them are shown in Figure 9.

Many of them may be thought of as being square antiprisms, with one half-

octahedral cap, missing one or more edges. There are two sorts of edges

on an antiprism: base or top, and side. Removing one side edge createsIt ~~ 11T:  
face , so the shape ~~eated rem~~~s an e:~~tp0~~t 5~~~~~~~.
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TETRA HEDRON HALF-OCTAHEDRON DI HEDRON PENTATOPE
4 POINTS 5 POINTS

TRIGONAL PRISM TRIGONAL DIPLOID
6 POINTS 7 POINTS

REGULAR ANTIPR SM ANTIPRISMS MISSING 2 EDGES

- MISSING ONE EDGE MISSING ~3 EDGES CUBE WITH FACE SIMPLE CUBE
DIAGONAL

8 POI NTS

IRREDUC I BLE SHAPES
(ALLOWING 4-EDGED FACES)

• Figure 7. All the irreducible shapes, allowing three- and four-edged
faces , with up to eight points.
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Removing a base edge creates a five-edged face and a ninth point is

required to describe a shape limited to 4-edged faces. Removing two

adjoining side edges also creates a five—edged face. The shape produced

by removing one base edge is shown in Figure Ba. The inner seven points

form a shape with two five—edged faces , which we may call a Double • -
•

Diamond .

There are 12 di f ferent ways to break two edges of an antiprism .

Three ways produce eight points figures shown in Figure 7. Two ways

involve breaking one base edge on top and one on the bottom , creating

two five-edged faces, and requiring two additional points to meet the

four-edged face requirement.

The above list of shapes does not include all the shapes needed to

completely describe the dense random packing. We have made no attempt to

catalogue the irreducible shapes with 10 or more points. Even with the

neighbor distance 1.30 , there are several sites that require 10 or more

points to avoid five-edged faces.

Whittaker noted the importance of the five pointed shape which we

call the dihedron (his Andalusohedron). It is conmon, and may occur in

many combinations with other dihedra or other shapes . For instance , we

may describe a pentagonal bipyramid as two half-octahedra and one dihedron.

Dihedra may be stacked together to form large tube-like deltahedra

(Figure 9). The dihedron can be formed with equal distances between the

points that are not neighbors. All the dihedra in the stack can therefore

be identical. By varying the stacking order, the stack can be either

straight or curved. This large deltahedron has no interstitial site

larger than that of the single dihedron: center to vertex — 0.69422

(for the equal-diagonal dthedron) .
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DOUBLE DIAMOND SHAPES

8 TRIANGULAR FACES

6 TRIANGULAR FACES

V 

TRIANGULAR FACES

• NINE POINT SHAPES

Figure 8. Some irreducible shapes with nine points.
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Figure 9. A stack of dihedra, above; and the same stack expanded to
show the individual dihedra, below.
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All, the different shapes may occur with considerable distortion.

Figure 10 shows four shapes in extremes that maintain unit edges and

sytanetry.

In addition to the irreducible shapes , it is interesting to find the

statistics for a few other shapes that are reducible but distinct . The

list is given in Table 6. All these shapes have intersecting four-edged

faces. The octahedron has three . The five other reducible six-point

shapes can be thought of as octahedra missing between one and four edges~

with two intersecting four—edged faces. This provides a choice of which

four—edged face to use to reduce the shape . For all shapes but one the

different division choices yield the same types of irreducible shapes .

The exception is the Double Dihedron connected, which can be divided into

two dihedra, or into a pentatope and a half-octahedron. This difference

leads to an ambiguity about the number of pentatopes, dihedra , and half-

octahedra present . Fortunately, this shape is rare , so the ambiguity

does not seriously affect the statistics observed . Although Whittaker

did not discuss this shape , he appears to have found the half-octahedra

before searching for dihedra , and would therefore count the shape as a

half-octahedron and a pentatope. The four dihedron variations cannot be

constructed with all unit length edges and a neighbor distance of V1277

because they would have extra edges and become other shapes.

To correlate local arrangements with deltahedra , Tabl e 7 gives the

local shapes that make up various deltahedra with up to 18 faces .

Three dihedron variations on which statistics were gathered are shown in

Figure 11.
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DIHEDRON
(5 POINT NON-BERNAL SHAPE)

~~~2/7

~1.21O1— t =  Center to Vertex~ 0.70590

t 0.705874
______________ a: 54~5950

t (Maximum)

• _ _ _ _ _ _  ALMOST TWO
) I ~ TETRAHEDRA

0.50174 0.70834

-1.3229 --- t:0.7071

I,

0.6547

-

1 + ~~~~~~~~~~• / k ALMOST A TETRAHEDRON
0.5669 0.756 AND AN EXTRA POINT

Figure lOa. Simple dihedron, the five-point non-Bernal shape, shown in two
extremes that maintain unit edges and symmetry.
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SEVEN POINT BISYMMETRIC

a =44.9002° ( Maximum)

0.70834
4 1.210077 t =O.73736

1 , 1

0.70587H F— ~~~~~~ 
V 

V

_ _ _ _ _ _ _ _  

~~~~ c~ :edra 
V

a:40.8934° (Minimum) 

V

~~~~~~~~~~~~~~~ 

1.322876

t 0.76376
O.65465—Ij

Prism and a Half -

~~~~~~~~~ 

Almost a Trigonol

0c~ahedron

Figure lOb. Bisysmietric Seven—Point shape, shown in two extremes that
maintain unit edges and symmetry (called a diploid heptatope
in the text).
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SEVEN POINT TRISYMMETRIC

~~~~~~~~~~ ::~~~~~~::
Tetrahedron t 0.782276

V and one
Octahedror 1.383813 I

t I t4
0729160 0.52785

0.740586 Almost 4
Tetrahedra

0.494058

t 0.729397
0.782733—el I,—.

1.175139
-

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure lOc. Trisymmetric Seven-Point shape, shown in two extremes that
maintain unit edges and symmetry (called a trigonal heptatope
in the text). 
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DOUBLE DIAMOND

/ \ ALMOST A TRIGONAL
V PRISM WITH THREE

HALF-OCTAHEDRON CAPS
•%\ , 6~~~ t=O.80262

~~~~~~~~~~~~~~ 

~~~~~~~

ALMOST A DIHEDRON
/ 

AND TWO TRIPLE
DIHEDRA

O.147T6~-

~~~:
“ 0.483 

1.2~ 6 

_ _ _ _ _ _ _ _ _ _ _

MO.82833 I’— I
Figure lOd. Double Diamond shape, shown with two auxiliary points, in two 
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TABLE 6

REDUCIBLE SHAPES

Results of Reduction

Half—
Points Shape Figure Octahedra Dihedron Pentatope

6 Full Octahedron 2 2 0 0

Triple Dihedron (Half-
Dodecahedron) llA 1 1 0

Double Dihedron, opposed 11 B 0 2 0

Double Dihedron , connected 1 0 1
llC or

Double Dihedron, connected. 0 2 0

Dihedron and Pentatope 0 1 1

2 Pentatopes sharing end
points 0 0 2 V

7 Pentagonal Bipyramid 4A 2 1 0

8 Full Tetragonal Dodeca-
hedron 2 2 2 0
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V .

A) TRIPLE DIHEDRON B) DOUBL..E DIHEDRON C) DOUBLE DIHEDRON
(opposed ) (connected )

Figure Li. Variants of the dihedron .

a. Triple Dihedron
b. Double Dihedron (opposed)
C • Double Dihedron (connected)
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5. LOCAL ARRANGEMENT STATISTICS

The numbers of each local arrangement were found for the Finney

model. and the Bennett model for neighbor distances of 1.20 and 1.30.

Examples of all possible irreducible shapes with eight or fewer points

were discovered. For the irreducible shape statistics, a double dihedron

connected is counted as a half—octahedron and a peritatope. The results

are reported in Table 8 as the number of shapes per 100 spheres. Volume

statistics were not calculated because of the ambiguity of volume for

shapes with non-planar four—edged faces. Instead of fractional volume,

therefore , the fractional number of points inside the given cluster

boundary was used as the fractional contribution to the total statistics

reported . For the various nine point figures, the total number of each

type discovered is given in Table 9.

The first 12 shapes in Table 8 were found by various programs that

found all occurrences of that shape. To find shapes with nine or more

points, we resorted to investigating the largest interstitial sites

within 8.0 sphere diameters of the center: the largest 400 sites for

the Finney model, the largest 200 for the Bennett model. This procedure

might miss some occurrences of the shapes. The statistics for large

V 

shapes at 1.20 neighbor distance are only approximate. We believe that

we have found all or nearly all the shapes at neighbor distance 1.30. We

have probably missed a few shapes at 1.20. The statistics in Table 8 for

the Bennett model are for the inner 1000 spheres. With minor exceptions,

no other sample size is reported. The statistics should vary with cluster

radius , as the deltahedra statistics do , because the density varies with

radius. For the Finney model, various sample sizes were used , because

presumably the structure does not depend on radius.
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TABLE 9

NINE-POINT SHAPES
Total Number Discovered

H (Inner 2600 Spheres)

Shape ~ l flfl•y Bennett Finney Bennett
(Figure 8) 1.20 1.20 1.30 1.30

A 6 0 9 4

8 4 2 7 5

C 5 4 0 1

D 3 0 1 0

8 5 4 1 3

F 2 0 2 0

C 2 1 1 0

H 4 2 1 1

I 2 0 1 0

J 4 4 1 1

IC 1 3 0 0

L 0 1 0 0

Others not in
Figure 8 2 0 0 0
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There are some unexpected differences between our results on the

Finney model and Whittaker’s results on the Bernal model . We originally

expected these two models to be almost identical because they appear to

be similarly constructed. The statistically significant differences are

in pentatopes, (Bernal 5 ± 1 , Finney 9 . 7 ± 1. 0)  and full octahedra

(Bernal 7 ± 1, Finney 10.66±1.03). The two models differ in other

statistics but not by much more than the expected counting errors .

These differences introduce the intriguing possibility that not all

mechanical hard—sphere dense random packings are identical. This study

sheds little light on how the two models might be different. Perhaps

the surface effects penetrate a significant distance into the cluster,

which affected the Bernal core more than the Finney core. Perhaps a

mechanical model changes its statistics when deformed or thoroughly

shaken. We did expect differences between the Finney and Bennett m odels

because they were differently constructed . The significant differences

V 
are that the Bennett model has f ewer tetrahedra and complete octahedra,

and more dihedra, pentatopes, and trigonal prisms . At a neighbor distance

of 1.20, the Bennett model has more diploid heptatopes .

6. INTERSTITIAL SPHERE SIZES

Another approach to the describing the holes between spheres of a

dense random packing is to enumerate how many interstitial spheres of

what size could be placed in the holes between the unit spheres. Polk
7

speculated that the structure of metal-metalloid glasses may have the

metal atoms in a dense random packing, with the metalloid atoms at the

interstitial sites of the larger Bernal holes (trigona l prisms and

V ~ V V ~ 
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Archimedian antiprisms). Polk and Cargill point out that the regular

Bernal shapes are not large enough for the metalloids, but the Bernal

shapes are distorted in the actual dense random packing, and other shapes

also occur. We shall find that the distortions do not increase the size

of the larger interstitial sites.

We must be careful in defining our interstitial site statistics.

Any four non-coplanar points (unit sphere centers) define a sphere. If

no other point is inside that sphere, then that sphere represents an

interstitial site . A small sphere could be placed there that would

touch each of the four unit spheres and none others. It is possible,

however, to arrange the unit spheres in sucl’~ a way that one small inter-

stitial sphere would overlap wi th a neighboring small interstitial sphere.

It is unreasonable to count both such interstitial sites in the statistics.

If only two overlap , then we should take the larger and neglect the

smaller. It would be possible, though more diff icult , to redef ine the

smaller site, as a still smaller site for a sphere that just touches three

unit spheres and the larger interstitial sphere. This has not been

attempted. If three sites overlap, with the center the largest, but the

other two not overlapping each other, then we must choose between the

maximum number of sites (using the two smaller) and the maximum size of

sites (the one largest). We have chosen the latter.

The approach used was to find all interstitial sites, sort them by

size, and then eliminate overlap from the largest down. That is, choose

the largest unchosen site and eliminate from the remaining (unchosen )

list any site that it overlapped.
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The results of this analysis for the inner core of the Finney Mode
l

are shown in Figure 12. There are very few sites larger than the one in

a regular Archimedian antiprism, 0.8227. None is larger than 0.85 , which

is smaller than the site in a simple cube (0.8660) .

The same results are replotted in Figure 13, showing the total

integrated number of sites that are equal or larger than a given center

to vertex distance. Also shown are the results obtained from Bernal ‘S

numbers , using the numbers of shapes derived by Cargill , and assuming

unde formed shapes. The actual array has more larger sites than the

simple model , but not significantly more. If we were to adequately

describe a metal-metalloid glass as a dense random packing of single-

sized spheres for the metal atoms, with the metalloid atoms occupying

interstitial sites, then the metalloid must be small enough, or scarce

enough to fit into the available sites . For a typical 80 metal - 20

metalloid glass , we would need 25 sites per 100 metal spheres. Figure 13

indicates that to have that many sites, we would need sites as small as

V 
0.74 (center to vertex distance) . The sphere in such a site has a

diameter 0.48 that of the unit sphere . S-zen with 91 metal - 9 metalloid ,

the interstitial sphere diameter would have to be as small as 0.54. This

is substantially smaller than the metalloid sizes derived from X-ray

studies. Unfortunately, this study does not provide information of what

V the correct metal atom packing is.

The same analysis of interstitial sites was done on the Bennett

Model. Since the density varies with distance from the cluster center ,

the interstitial site statistics also var y . As expected, at lower

densities there are more large sites and fewer sisall sites. Figure 14
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Figure 12. Interstitial sphere sizes in the Finney Model.
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Figure 13. Integrated number of interstitial spheres greater than or
equal to various sizes , Finney Model.
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gives the results for the inner 1000 spheres . The average density of

this cluster is about the same as the Finney Model , and the site

statistics are about the same also.

7. CONCLUSIONS

Two different models of a dense random packing of the hard spheres

have been analyzed in terms of the polyhedral holes between spheres:

The Finney mechanical model and the Bennett computer generated model .

An accurate and unambiguous description of the structure requires more

different structural units than Bernal’ originally proposed. A

description in terms of deltahedra (triangular-faced polyhedra) yields

a significant volume fraction of large and complicated shapes . 
- -

The packings were also described in terms of local arrangements V

allowing three and four-edged faces. All such shapes with up to nine

points were considered , including those used by Whittaker6 to describe 
V

Bernals model, plus several others. Although there are occasional sites

that must be described with shapes of 10 or more points , the local

arrangement list provides a manageable way to describe most of the volume .

Both models were also analyzed to find the number and size of the

small spheres that could be placed at the interstitial sites. The results

confirm that there are not enough large sites in the packing to allow a

model of a metal-metalloid glass to be constructed simply by inserting

small spheres into the interstices.
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APPENDIX: COMPUTING PROCEDURES - V

V 

A. Deltahedra

The computer program used to determine the deltahedra is straight-

forward, but not trivial. First, all nearest neighbor pairs were found,

each pair becoming a numbered edge. Then all edges were searched to

find all groups of three in a triangle, which become numbered faces. It

is necessary to cross—reference which edges border each face, and which

points and which faces border a given edge . All faces are then searched

to identify all groups of four forming a tetrahedron. A more sophisticated

search then identifies all the larger holes. It requires keeping track of

which side of each face is being searched , using the numbers of the three

points of the face to define a right-handed and a left-handed side. The

search proceeds from face to face, choosing the next face as that which

forms the smallest interior angle about the joining edge. This search

continues for a given hole until there remain no edges of the faces in

the hole that are not connections to other faces in the hole. Special

provision must be made to identify interior faces that have free edges.

The exterior of the cluster is treated by this program as one very

V - large hole, which is excluded from the statistics.

To get good statistics on the volume fractions of the various types

of holes one must avoid surface effects and consider only the holes and

volume within an inner core (usually 1000 spheres) . The volume of each

hole that was within this inner cluster boundary sphere was used for the

volume fraction calculation. For the holes that crossed the boundary
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sphere, an approximate calculation of the fraction of volume within the

boundary sphere was done.

The volume of each hole was calculated as a group of tetrahedra

with the conunon vertex being the vertex closest to the origin . Each
H

tetrahedra was truncated by its intersection with the boundary sphere.

The truncated faces were considered to be flat, not rounded like the

boundary sphere. There are four possible cases here: One, two, three

or none of the three points of the face outside the boundary sphere.

With none outside the whole tetrahedron is used. When all three are

outside the truncated face is a triangle and used directly. If one or

two points are outside the truncation forms two faces: a triangle and

a quadrilateral as shown in Figure A-i.

This approximate volume calculation at the cluster boundary

introduces a small systematic error. If all the volume of the cluster

were assigned to different deltahedra, the total volume recorded would

not be that of the sphere, but of a many-faced polyhedron inscribed

inside that sphere. The volume percentages were calculated using the

volume of the cluster sphere, not the inscribed polyhedron, and are
j

therefore slightly lower than an exact calculation. The volume of the

inscribed polyhedron is usually not known , because not all volume within

the cluster boundary is assigned to deltahedra , even when all spheres

are considered out to 2.5 sphere diameters beyond the cluster boundary .

These errors are small compared to the statistical counting errors

involved, which are shown for 2000 points.

For all deltahedra with eleven or fewer corners, a subroutine was

used to find the particular topological type . The number of faces

- 
-. .-.
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touching a particular corner was found by searching through all the

faces on the hole. This was done for each corner.

Groups of tetrahedra were found in a straightforward manner ,

searching each face on a tetrahedron to see if another tetrahedron was

on the other side. This search was continued for a particular group

until there remained no faces in the group that had an unidentified

tetrahedron on the other side .

B. Local Arrangements

To search for the Berna]. and non—Bernal local shapes various

different programs were used. All were based on finding edges and faces

in the manner described above.

To find trigonal prisms, an array was used telling which faces

touched a given point. The search started through all faces. For each

face , all faces that touched each of the neighboring points ~f the first

point were checked to see if there was the proper arrangement of

neighbors between the two faces : i.e., each point on each face neighbors

one and only one point on the other face.

The program to find Archimedian antiprisms searched from face to

face until the proper circuit had been discovered. The procedure is slow

because of the great number of possibilities.

The program to find dihedra is rather simple. The program first

looped over all edges. Up to six faces may meet at an edge. For each

edge, the program checked each different pair of faces that meet at that

edge. The two points on those faces that don’t touch the edge are picked

out as extreme]. points. (If the extremal points are neighbors , the shape
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is a tetrahedron , and that pair of faces can be neglected.) All points

that neighbor both extremal points are then found. (Two of these are

the ends of the base edge.) If no such mutual neighbors (other than the

base edge points) are found, the pair of faces is neglected. The actual

shap. represented by the pair of faces is determined by the number of

mutual neighbors and whether they neighbor each other and the base edge

points. The various possibilities are easy to identify, but care must be

used to correct for multiple counting . A pentagonal bipyramid will be

discovered five different times by this program. A double dihedron,

either connected or opposed, will be discovered twice . A triple dihedron

could be discovered either from a central base edge, or from the two

side edges . The second type of discovery is neglected. A complete octa-

hedron will be discovered by this program twelve different times . To

f ind half octahedra is more diff icult, because we must distinguish between

individual isolated half-octahedra , and the half-octahedral parts of triple

dthedra , double dihedra connected, and pentagonal bipyrainids. To do this,

we first identify the two points of the half-octahedron that would form

the diagonal perpendicular to the diagonal formed by the two extreme 1

points. One of these points is the mutual neighbor discovered , and the

other ii the base edge point that doesn ’t neighbor the mutual neighbor.

We then search for mutual neighbors of these two diagonal points. If

there are only three such mutual neighbors, the shape is indeed an

V isolated half-octahedron. If there are four it is a double or triple

dihedron ; if five , it is a pentagonal bipyramid . Each half-octahedron

will be discovered four different  times.

To find the trisy~mnetric seven point figures, the program considered ,

for each face , all the various combinations of three neighboring faces ,

I ~~~~~~~~~~~~~~~~~~~~~~~~~~ V VV VVV
~~~~~ VV V~~V V V ~~~~~~~~~~~ 1~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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one on each edge . The three outside points were identified (those not

on the central face) . If any two (or three) outside points were

identical , the shape was rejected as a tetrahedron. If any two (or

three) were neighbors , the shape was rejected as a half-octahedron or

something related . If no outside points were identical or neighbors,

the program searched for points that neighbored all three. If none or

two or more were found the shape was rejected. If only one point was

found (the seventh point of the shape), it was checked to see whether

it neighbored any of the three points of the base triangle. If it did,

V 
the shape was rejected. If it didn’t, the shape was a seven—point

tri-synmtetric shape (trigonal heptatope).

A program was written to identify the seven—point bisymmetric

shapes (dipbid heptatopes), which searched through all pairs of faces

meeting at a point to find the correct arrangement of points.

A program to find the various larger local arrangements was

attached to the program for dihedra. If no mutual neighbors were

discovered for the extreme]. points of a pair of faces, then a search

was made for a pair of points (e.g., IS and 16 in Figure A—2a) that

neighbored each other , one neighbored each extremal point (13 and 14),

and neither neighbored either base edge point. There can be more than

one IS or 16 to satisfy these conditions, so we may find double diamond

shapes directly (e.g., Fig. A—2b). Each double diamond shape will be

found twice .

If we find only one IS and one 16 , we may proceed to f ind other

shapes by looking for 17 and 18 (Figure A—2c ) : points which neighbor

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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both 15 and 16 and also neighbor Il and 12, respectively. If we find

both 17 and 18, we have found one of the five following local arrange-

ments.

1. Archimedian Antiprisa , if 17 neighbors 13 and 18 neighbors 14 ,

or 17 neighbors 14 and 18 neighbors 13.

2. Antiprisut with one broken edge, if- one of 17 and 18 neighbors

neither 13 nor 14, and the other does neighbor 13 or 14.

3. Seven-Point Trisyimnetric shape (with an extra point capping a

foud-edged face) if Ii and 18 both neighbor 13, or 17 and 18 both

neighbor 14. (Assuming 17 doesn ’t neighbor IS.)

4. Antiprism with two broken edges, Type C , if neither 17 nor 18

neighbors either 13 and 14.

5. A group of dihedra or tetrahedra if 17 neighbors both Il and

12 or IS neighbors both I]. and 12.

If we fail to find either 17 or IS, we stay be looking at one of the

shapes mentioned above from a different base edge. This m a y  be checked

V using the numbers of the points involved. If the same points form a

standard figure elsewhere , we use that standard identification.

Occasionally, the failure to find 17 or IS represents an antiprism
V with two missing edges. To help sort out which type it might be , the

program will find all points that neighbor both IS and Il , IS and 12, 16

and Ii, and 16 and 12. The exact shape must often be reconstructed by

inspection , using a short program which will, report all the neighbors of

any particular point.
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Some of the more complex shapes reported will not be found by any

of the special programs just described. These were identified by

plotting a projection of the points within 1.5 of each of 400 largest

interstitial sites within 8.0 sphere diameters of the center of the

Finney model (center to vertex distance greater than 0.752( and iden-

tifying by inspection the shape that surrounded the interstitial site.

This was also done for the largest 200 sites of the Bennett model

(center to vertex 0.774) .

C. Interstitial Sites

A potential interstitial site is equidistant from four sphere

centers , with no other sphere closer. To find all such sites, we must

consider all combinations of four spheres, and check that no f i f th  V

sphere overlaps. This leads to calculation times proportional to the

fourth (or f i f th)  power of number of spheres , unless some restrictions

on combinations are used . Preliminary calculations found no sites with

center to vertex distance greater than 0.85. The main program, there-

fore , neglected most combinations of four spheres with any two more

distant than 1.8. With this restriction , sites larger than 0.90 might

be neglected.

For computing convenience, the array was first distributed to unit

cells, and the spheres in each cell were recorded in an array . The

interstitial sites in each unit cell were found using the points in that

cell and the 26 neighboring cells. Each combination of four points (not

more than 1.8 distant) was used to calculate a sphere center and radius.

If the center was outside the unit cell or the radius was larger than

V V -~~~~~~~~~~~ ---~~~~~~~~~~~~ • — 
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0.90 , that combination was neglected . Otherwise the site was checked

for overlap with all other spheres in the 27 cells.

The calculation was done for all cells not totally outside a radius

of 8.0 from the center of the array. The array used was the central

4000 points (or 3999 for the Bennett model), which includes all points

within 9.2301 of the center (9.2799 for Bennett) . After finding all the

sites , those at radii greater than 8.0 were excluded to avoid false sites

at the edge of the array. Using these sites, the elimination of overlaps

was done, leaving an array of far fewer interst tial sites.

Of these sites, those within a radius of 7.1 were used for

statistics, to avoid counting sites that avoided being eliminated by

V 

overlap because they were near the cluster surface. In the Finney model

there are 1825 points inside that radius . The results for the Bennett

model depend on radius and are reported for the inner 1000 points, or

inside a radius of 5.82625.
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