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(d&/dN) r is the rate of fatigu. crack growth an inert environment , and ,
theref ore, represents the contribution of “p*~re” fatigue. (da/dN) cf represent~
a cycle—dependent contribution requiring syn~rgistic interaction of fatigue
and environmental attack. (da/dN) 5~~ is the( contribution by sustained—load
crack growth (i.e., stress corrosion cracki4) at I( levels above Kiscc. The
cycle—dependent term has been shown to arise\ from the reaction of the environ-
ment with fresh crack surfaces produced by fA~igua , and is a function of the
extent of reaction during one loading cycle. ‘~ For highly reactive alloy—envi-
ronment systems, cracking response may depend also on the rate of transport of
the aggressive environment to the crack tip. For gaseous environments, a
f ormal basis for estimating pressure and frequency dependence has been developS
ad. The franework and approach are expected to be applicable to other aggres-
sive environments (such as, aqueous environments) , and should provide a basis
for the development of appropriate material evaluation and life prediction
procedures.

ACCESS!ON
f

DOC 
~c :~~~m o

o
JLJST~ ..

CIJIJE$ 
_ _

UNCL.ASSIFI~~
SECURITY CLASSIFICATION OF Till S PAGL(~~ai 0 Lw.atm)



— —~~~~

RECENT PROGRESS IN UNDERSTANDING ENVIRON~IENT ASSISTED
FATIGUE CRACK GROWTH

BY

B.. P. Wei and G. W. Simmons
I Lehigh University

..

~

. f Bethlehem, PA 18015

I
• This document has been approved for public release and sale;

its distribution is unlimited.

Prepared for presentation at the Third International Conference
• on Mechanical Behaviour of Materials (ICM—3) , Cambridge , England,

August 20—24 , 1979 , and for publication in the Conference Proceedings.



• • . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _

ftZc~ T PROGRESS UI UNDEBSWIDUIG EllVt2LtIb~~T ASSISTEO
FATIGUE CRA~~ GROWTH

R. P. Wei~ and G. W. S1~~otses

£..M.gil University
R e t h ’ b ,  PA 1.5015 USA

*~~pt of Nuchanicai. Engineering and Mechanics
~~Dspt of ~~aiuatry and CEr for Surface and Coatings Research

n a ~ ucri~i
Metal fatigue has beat veil. recognized as an Important. cause for f a ilure of engi-
o..ring stroCturs.. In neat applicattoSS. fatig ue danige results f von the can~oint
action s of the cyelie.tLly app U.ed stress and external. (chanical) enviroensut • and
is therefore a tiat dependent phenos.non. Under tes~~ng of this Load-environnsnt
interaction in faUgta. is essential to the forati.aticn of rat tonal Lit, prediction
procedures and to thu develO~~enC of realist ic eateriaLa evaluation and quail1 ice—
tion tests. Quantitative character ization and underst M g. hcv.v.r • have been
h~~~ered by the couplezity of the pbeno.’~~~ • by difficulties in separating the ef-
fect s assoc iated with crack initiation f rat hos, associated w ith crack grovtk, and
by the inf luence of external ~‘.~~ -a l  .oviro~~~~ts on both the initiation and growth
process...

With the increased ~~~hgsis placed on fatigue crac k growth in asny applicatiO ns
h oc. the early 1.930’ s and he developeent of fracture iechati cs technology , sepa-

rate considerations of the processes associated with fatigue crack growt h evolved
ocr. or Less aa.curally. This sepa ration baa provided better definition and focus,
and has been by and large beneficial in tern . of developing understanding of envi—
ronsent assist ed fati gue crack growth. In this paper . th. background and recent
progress in understanding enviroonent assisted fatigue crack growt h are described.
laplicacions of cur rent underst anding in tur ns of service pert ornance and life pre-
diction procedures are cons idered .

3ACXGROUND

Studies of the influence of snvtronaent on fati gue crack growth began in th. aid
1.960 . and have continued throughout the pest 13 years. The results fr at tile vari-
ous studies have been reviewed sad s* arized in a nusber of papers (Gallagher and
Wet. 1972; Mclvtly sod Wei, 1972; Wet . 1.970) aid In the proceedingS of conferencee
(Fattlue Crack Pronesatica . 1967; Corrosion Fatigue. 1972). Most of the .ariy
sjGdies were direct ed at characterizing fatigu. crack growth response , atd at e x —
loin; the t~ f lusflces of different Lo ading vstiables on .nvtro ~~~~ftt assisted fati gue
crack growth. Results fran these early studies served to denonstrate cite compLexity
of the prablan, and showed that neny of the obser ved effects of loading variables
can b. traced direct ly to their intera ctions with tile ezvtronneut (~icRvtLy and Wet ,
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• 1972; ~ei. 1970). tc becam e appare nt also chat a better understa nding of the under-
lyi ng processes f or environment assia ted fatigue crack growth ii needed to provide
a rational basis for the interpretati on of crack growt h data. A mobir of issues
began to crystallize by the early 1970’ s • These issues re late to the reported dif-
ferences in response to f requency and vavef arm for alumina alloys (Bradshaw and
Wheeler. 1968; Sarrm and cow ork ers , 1.967; tudak and Vii , 1972; Vii, 1968) and
steels (Sarsos, 1972; C51 11h*r, 1971; W.t . TaJ.da and Li, 1967). the relationship

~etween environment assisted sustained—lead crack growth (stress corrosion cracking)
and fatig ue crack growth (corrosion fatigue ) (Miller, ffudak and Wet, 1973 , Speidsi.
and coworkers, 1972; Vii. and andes, 1969) , and the cause or ~echsnist f or environ-
ment assisted fat igue crack growth below the so—called stre ss corrosion cracking
threshold (Ktscc) 1 (Vet sad SpeidsI. 1972; Jet and Sistons, 1977) . Th. most Impor-
tan t issue. Insofar as it relates to phenatenolagi4al understanding of Load—environ—
eeoc interactions, appears to be the identification of the rate controlling process
for envir~~~~~ ass isted crack growt h (Si~~~~~. Pao and Wet , 1978; Wet and Si ons,

• 1977) . The possible sequential. processes involved in environment assisted crack
growth are illustrated schenaticaily in Rig . 1, for sza.pl e. for a fsrrous alloy
exposed to a h$rog nnous gas (Wei, 1979) . Th, need for and develop ment of a funda-
mental approach f or addressing these issues ar. discussed by Wet and S ianons (1977),
ei (1979) and Williams. Pao and Wet (1.979).

Locel S rus

1,~1OOvt Pvtcselei

• 2. P~iyanal AdeovDII~fl ______

3. ois~~~~s al.I IICaI AdIQrptJCfl
4 ~~~~~~ 

Re~~ICr

5.0~ffusesi

Fig . 1. Schaiatic illustration of various sequential pro-
cesses involved in sabrittl t by external gu—
eons envir onments . (Rebrtttlaisnt reection is de-
picted by the Fi—6—F. bond.) (Alter WSi, 1979.)

Using an Integrated tnterdiaciplimary approach. Si au , P.o end Wet (1978) sought
to identify the rate controlling process for crack growth in veter/veter vapor for
a high—strength (*151 4340) steel. To this sad. sustainsd—loed crack growth expert—

~~Iscc La the apparent threshold stress intenetty (L) level for stres s corrosion
cracking and is def ined as the aspmptotic value of R as the rate of crack growth
under sustained load approaches zero (Stove aid 8.ah . 1965; Wet , Movak and

Williams, 1972).
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• c meets ‘era carried out in hydrogen and in water to deter mine the kinetics of crack
growth as a function of tenperaturs. Coepanion experlasnts we re carried out on the

J sane steel to determine the kinetics of ‘iater—eetal. surface reactions using Anger
electron spec tr oscepy (ASS). These studies were suppl snted by detailed funda-
ment al stu dies of reactions of water vapor with iron single ctyatal.s by ASS and
tIED ( low energy electron diffract ion) (Dwyer . Si_ous d Wet , 1977) , and by ASS
analysis of the el_ontal couposittom of fracture surfaces produced by envtroneent
assisted crack growth (Wet sad 34 ’ne, 1976) . Through these coordinated interdis-
ciplinary studies and c~~~azisoos of activation energies for crack growth aid for
surface reactions • the rate coatroll .tng process for crack growt h was identified to
be a stow step in the reaction of water/water vapor wi th iron end, perhape , iron
carbide (Dwyer, St_one aid Vii, 1977; 34,~~~~~ Pa. d Wet , 1978) . This reaction
st ep is associated with the nucleation and gr~~~h of ~~4a on the ardace, d the
prem~~ d concomitant production of hydrogen (5(~~~~~, lao aid Vet , 1978) .

faring identified the rate limiti ng process for sustained—Load crack grow th for this
high—strength steel in wat er/water vapor, Pa., Vii aid Wet (1979) — 1,’ed its ~~~

—

plication in terms of en,trmee~ .t assisted fatigue crack growth response. Their
results indicated th.t both steady— state and ecesteady—state crack growth response
can be adequa tely exp lained in relation to the kinetics of surface reactions.
tssed on this success, the integrated interdiscip linary approach ass been extended
to the study of envi~~~~sat assisted fatigue creck growth response in an a . — ’ — —
alloy (Wet aid c~ .orkezs, l97~). This Lacer study expends on am earlier suggestion
by Rraish .  aid Wheeler (196$) that the sobaicaisat of fatigue crack growth in .1—
•~~ “~~ all oys by water vapor in dac.r iaa~ by the expoeure (pressure x time) d&r—
Lag each bed cycle. The resu lts fron these recent imsestigatians axe ~~~ artzed
end their engineering sigmificaice are considered.

_______ 
~ ‘~~~~ +

~~~

4 ~~~~~

~ — sw~~~ ~~~ (~~L

Fig. 2. Loon tenperacure fatigue crack growth kinetics on
£152 4340 steel test ed in d’~”~~d{fied argon and
in water vapor (below State ) at L — 0.1. (Alter
lao, Wet aid Wet , 1979.)
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P.ECSST PROGRESS C4 t~ DERSTAND1~tG EN11RON~~~TAL EFFECT

lao . Jet and Wet (1979) examined the effect of cyclic—Load frequency (0.1 to 10
tir ) on fatigue crack growth in a high—strength (1151 4340) steel tested in water
vapor at r oom tempe rature. ~ water vapor pressure of 383 Pa was selected to pre-
clude capillary condensation at the crack tip. Steady—state crack growth 4ata
fran this study are shown in Fig. 2, and confirm tha existence of a substantial
effect of frequency at ~~~ Levels well below that required for producing signif-
icant crack growth under sustained loads (that La, below KIson ) (Raraan, 1972;
Gallagher, 1971) . Fractographic data indic ated that at the higher frequencies
(namely. 10 l iz) , the fracture surface morphology was akin to that for “pure ” (me-
chanica l) fatigue. At the lover frequencies (that is, below 1 liz ) ,  on the other
hand, the morphology exh ibited increasing amounts of int.rgranular separation along
prior—eustenite grain boundaries that is typical for sustained—load crack growth in
water/water vapor ($i~~~ns, lao and Wet, 1978) . These observations , taken in con-
junc t ion with previous studies, suggested that the steady—sta te fatigue crack growt h
rate in an aggressi ve environment is com posed of two components — one for “pure”
fat i~U5 and the other represe nting the environmental contribution. Because the
rat e controlling process has been identified to be a slow— step in tha water-natal
surf ace reaction in this case, the environmental component is expected to depend
on the ti ne available for this reaction (n e.ty • the cyclic Load period ) and on
the reaction kinetics . La other wo rds , the extent of crack growth during one load-
ing cycle is expected to be proportional to the extent of reaction (or surface
coverage ) during that cycle . 5ssed an data on the kinetics of surface reactions
(Siamoas , lao and Wet, 1978) , Cbs environment contribution2 should vary almost
Linearly with the cyclic load period or Inversely with frequency, over the range
of frequencies used in their investigation , Figs. 3 and 4 (lao, W.i and Wet, 1979).
An high frequencies, euviroonental effect shou ld be essentially negligible; at Low
frequencies , it should reach a —4— or a saturation value. This general trend
is consistent with data reported by Gallagher (1971) f or fatig ue crack growth in
a high—strength (02—80) steel in 3.3 pet ~aC1 solution (Fig . 5),  and by Bredahaw
and Wheeler (1968) on an aluminum (DTD 50701) alloy in water vapor .

To further veri ly the concept of surface reaction control and to follow up on the
earlier suggestions by Bradsbaw and Wheeler (1968) and by Rudak and Vi i (1972), a
combined surface chemistry and fracture mechanics study of fatig ue crack grouch in
water vapor was carried out on an aluminum alloy by Jei and S iamons and their co—
worksrs (1979). Fatig ue crack growth exper iments were carried out as a function
of water vapo r pressure at room temperatu r. for an Al—Cu (2219—7851) alloy. The
reactio ns of this alloy with water vapor was also determined by Auger electron
apectroscopy (ASS) and by x—ray photoelectr on apeceroscopy (ES). the fatig ue
crack growth and surface reaction dat a are shown in Figs. 6—8 . Comparison of Figs.
7 and 8 indicates the trend in the fatigue crack grouch and su rfac. reaction data
are similar, excep t that the exposures (expressed as pressure x time or press urs /
frequency) differed by about 3 orders of magnitude . Recognizing that at the Low
pressures used in these experiments and for this highly reactive system, the en—
viromeental effect may be Limited, in addition, by the rate of transport of the
environment to the crack tip3 (that is, ‘ay st ep 1 in Fig. 1) • an estimate of this

The environmental contribution is represented by the difference of two empirical
constants , C — C0, determ ined by least—squares fit to the data in Fig. 2 using
da/dN — CAS~

2 . This empirical relationship provided a convenient means for repre—
senting these data, but does not have general validity .

3 trensport limitation has been suggested by the companion fractographi c obsarva—
tions (Wit a~d coworkers, 1979).
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influence has been made (Wet and coworkers, 1979) . This estimate showed that by
incorporating the transport process , good correlation between surface reaction
kinetics and the rate of environment assiated fatig ue crack growth in the aluminum
alloy can be obtained (see Fig. 9).

• FI5QUtNC~ (Ml)
0 I 0.1I -~~

trT~~
7L1

pan~o

Fig. 3. Environment dependent component of fatigue crack
growth par ter ma a function of cyc lic load
period for £131 4340 steel tested in water vapor
at room temperature. (After Pan , Wei and Wet ,
1979.)

V(PO1URt (pft 1 w r t

—

Il

Fig. 4. Kinetics of reaction of LISt 4340 steel with water
vapor at three temperatures. (The steel surface
was ion etched prior to each exposure to water
vapor.) (After Simeons , lao and Wet , 1978.)

4 — 5 —

YRiUM Cu.L .~ ~. ~~ ~‘L 
‘

~ 
- A

- 
‘~ — 

-
~~ ~~~

• -
~~~~~~~~~~~~

----
~~
-—-

~~
~_



-
~~~~~~~~~~ 

—
~~~

-- --
~~~

- -
~~~~~~~~~~~~~~~~~~~~~~~~~ - —_~~_- 

~~~~~~
-,

FusNuiecy y~ ,

~ ~~~~ r ~~‘

— ~~ .4$~~~~~~ ’N
/ £~~~ N.~~p (~~~ —01_ /~

. -~~~~ f
Fig. 5. Envir~~~~~t dependent component of fat igue crack

growth rats as a function of cyclic load period
for liT—dO steel tested in 3.5 pct NaCi sointion
at roan temperature. (After GaLlagher, 1971;
Gallagher and Vii, 1972; lao , Wet and Wei, 1979.)
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Fig. 6. Influence of water vapor pressure on the kinetics
of fatig ue crack growth in 2219—7851 a1 ” 4 ’ ~~ alloy U

at room temp erature . (After Wei and coworkers ,
1979.)

— 6 —

T~ I S P A G E  ~~~~~~~~~~~~~~ - - •~~_ - ‘ i 
-- - ~ ,I 

-~~ - ,l. ~.’ 1t~~ - __ __e.L___

LI -

~~~~~~



- - -

~SIs5.5t / ~RL CY. IsO,

~~~, ~~~~ M.U~~~IIM MJ.OY
IN ~~~~ veFow
t.au.a.one 

~~~~~~~~~~~~~~ : 
~ s 1y~ 1 5

__4t

• __________

_ _ _

U I~~~~~tmeI~~ • $ ~ I~~

I ~~~~~~~~~~~~~~~~~ I LI

0~’ 
‘ • 

0 
‘ •

~0•
*AT)AI. latsamS 0~ emits ui~~5. Re

Fig. 7. Influence of water vapor pressure ~at prsssu re/
frequency) on fatigue crack growt h rate in
2219—7853. e1u~4~nua alloy at roan t~~~erature.
(After Wei and coworkers , 1979.)
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Fig. 8. Kinetics of reactions of 223.9-7851 aluminum alloy
with oxygen and with wate r vapor at roan tempe r-
ature. (After Wei and coworkers. 1919.)
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Fig. 9. C~~~erisou between the obse rved fatigue crack
growth respo nse , for 2219—7853. al uminum alloy
tested in wat er vapor at room temperature, and
preduction of a transport—United model. (Af ter
Wet sad coworkers, 1979.)

These recent stud ies have contributed significantly to the phenoesnoiogical under-
standing of environment assisted fatigue crack growth. Correlation between the sur-
face reaction kinetic s and the dependence of fatig ue crack growth response (below
Ktscc ) as a function of freq uency and water vapor pressu re has now been estab lish—
ed for these two very different alloy—environment systems. Two separate regimes
can now be identified , utters environment enhancement of fati gue cr ack growth is
determ ined by the extent of surface reaction dur ing one Loading cyc le. For alloy—
environment systems with ‘slow” reaction kinetics (&~~

. stee l-water vapor syste m) ,
environmental effects are evident at “high” pressures and “low” frequencie s , and
crack growth enhancement is only a function of the surface reaction kinetic s. For
alloy—environment systems with “fast ” reaction kinetics 

~~~~~ 
aluminum-water vapor

syst em) , on the other hand , environmental effects now manifest themselves at “low”
pressures and “high ” frequencies , and the enhancement of crack growt h nov also de-
pends on the rate of transport of the exte rnal .nvir~~~~nt to the crack tip. The
8 orders of magnitude difference between the rates of water vapor reactions with
aluminum alloy, and with steels (compare Figs. 3 and 8) can readily account for the
observed differences in environment assisted fatigue crack growth response for these
alloys (}tudak and ‘j et . 1972). The correlation developed in these s tudies (Pao, iei
and Wei , 1978 ; Wet and coworkers , 1979) appear s to have ~eneral applicability for
the enhancement of fatigue crack growth in gaseous euvi ra~~~mts , and p rovides a
basis for assessing environmental effects. Extension of the basic conce pt and ap-
proach to the consideration of cracking problems in aqueons envi ronments should
prove to be useful and is being explored.
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~WDELING A~D E~GI~EUING ~~~tICATIONS

3ased on the recently developed understanding and on research over the past 15
years , a rational basis for treatin g environment assisted fatigue crack growth has
been suggested (Wei , 1979). The rat e of fatig ue crack growth in an aggressive en—
-iirenment , (da/d?fle, is considered to be the sun of three components.

(da /dN)~ — (daldN)r ‘F 
~~~~~ cf +

(da/dN)r + (d /d3.flof + J tdaldt(K) i ft

(da/dE~ 
is the race of fatigue crack growth in an inert environment and, tb.ere—

fore , represents the contribution of “pure ” (mechanical ) fati gue, This component
is essentia lly independant of frequency at t~~~eratures where Creep is not lapor—
tant . (da/d1Ocf represent s a cycle—dependent contribution requiring synergistic
interaction of fatigue and environmenta l attack. (da/d14)sco is the contribution

• by sustained—load crack growth (that is, stress cor rosion cracking) at K levels
above KIsuc (Wet and L amdes , 1969).

Detailed ~~—~“ .rioms of the contribution by sustained—Load crack growth, that is
the (daIdN).~~ term, have been sade previously (f iller , Rudak and Wet , 1973; Wet
and andes , 1969) . For usual engi neering applications , however • alloys that are
highly susceptible to sustained—Load crack growth (stress cor rosion crack ing) wou ld
not be uSed, and the (da/dN)scc te rm is primarily of academic interest . The cyc le—
dependent term , (da/d8) ~j  • an the other hand , La quit. important . tt s existence
has been recognized by researchers for sass time (Bsrs o., 1972; Gallagher , 1971;
Parkins and Greenwell, 1977; Speidel and coworkers, 1972; Wet, 1970) . A f ormal
framework for est imating the frequency and pressure dependence in gaseous environ—
memts is beg4~~~~g to ~~~rge.

The cycle—dependent term , however, has not been full y appreciated by nost of the
engineering cc—” (ty . Its impact moat be recognized and taken into account in
the development of design dat a, end particularl y in the use of the so—called accel-
erated tests . By the sane token, reliabilit y of service Lif e predictions depend
on a proper accounting of the envtrnnmsncally induced affects.

SU~~ ARY

Recent fract ure mechanics and surface chemist ry based studies have contribu ted to
further understanding of environm.nt assisted fatig ue crack growth in high—
strength alloys. The rate of fatigue crack growth in an aggressive environment,
(da/dl~

)e. say be consider ed to be the sun of three components.

(dA/dZOe — f*a’~~
)
~ 

‘F (da/d2i)of + 
~~~~~scc

(deIdN) r is the rate of fati gue crack growth Lu an inert enviromeent, and, there-
fore , represents the contribution of “ pure ” fatigue. (da/dEcf represen ts a cyc le—
dependent contr ibution requiring synergistic interaction of fatigue and environ-
mental attack. (da/dS) icc ~~ the contribution by suataimed—load crack growth (ak’
stress corrosion cracking) at K levels above ~tscc The cycle-dependent te rm has
been show n to arise from the reaction of the emvi,..~~~~.t with fres h crack surface .
produced by fatigue , and is a function of the extent of reaction during one load-
ing cyc le. For highly reactive alloy—envit~~~~ C systems , crecking response may
depend also on the ~ate of transport of the aggressive environment to the crack
tip. For gaseous environments, a formal basis for est imat ing pressure and frequen-
cy dependence has been deve loped. The f ramework and approach are expected to be
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applicable to other aggressive environm ents (such as , aqueous environments), sad
should provide a basis for the development of appropriate nateriai. evaluation and
Life prediction procedures.
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