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SECTION 1

INTRODUCTION AND SUMMARY

The objectives of this program are to study the physics of microwave
and millimeter-wave semiconductor devices under optical illumination, to
study the techniques of modulating semiconductor lasers at microwave
frequencies, and to combine the above two aspects to achieve optical
control of microwave and millimeter-wave semiconductor devices. During
the second quarter, we completed calculations on the feasibility of
optical injection locking of millimeter-wave IMPATT oscillators, con-
tinued with the optical injection locking experiment of X-band Si IMPATT
oscillators, and carried out calculations on the mode-locking charac-
teristics of external-cavity GaAlAs injection lasers.

The feasibility of achieving optical injection locking of millimeter-
wave IMPATT oscillators was investigated by calculating the efficiency
of subharmonic optical injection locking of IMPATT oscillators. The
calculations were carried out by adding a time-varying reverse satura-
tion current term, which was generated by the incident optical signal,
to the IMPATT avalanche equation. Solving the equation yielded a diode
external current component related to the injected signal. This current
was then taken as the injection source in the oscillator equivalent cir-
cuit to calculate the locking range. The results indicated that a
locking range on the order of 100 MHz could be achieved for X-band
IMPATT oscillators if modulated optical signal was converted into rf
photocurrent efficiently.

The injection-locking characteristics of X-band Si IMPATT oscil-
lators were further investigated by measuring the locking range as a
function of locking gain. Subharmonic locking was used with a frequency
ratio ranging from 3:1 to 8:1. A locking range of several megahertz
was achievable with an oscillator at 8.11 GHz. Even subharmonic locking
was preferable to odd subharmonic locking for our oscillators.

The transmission characteristics of two different Fabry-Perot
resonators were studied to find an optimum external-cavity configuration

for the injection-laser mode-locking experiment. The first resonator




consisted of an injection laser of length Yl and a mirror located at a
distance QO from the laser. The inner facet of the laser was coated
with an antireflection (AR) coating. Therefore, this combined resonator
acted as a simple Fabry-Perot resonator with modes that are regularly
spaced in frequency by Af = C/2(?,0 + n“l), where n is the index of
refraction of the laser medium. The second resonator also consisted of
an injection laser and a mirror; the laser facet, however, was not
coated. In this case, we actually had three sets of Fabry-Perot
resonators with lengths Ro’ Ul + %0, and Rl' Therefore, the mode struc-
ture was more complicated, consisting of three sets of modes with fre-

quency spacing v/ZQO, c/Z(RO + n%l), and c¢/2nf. , respectively. However,

1’
since Qo >> 11, the first two sets of modes would have roughly the same
spacing and be located alongside one another. Since the second reson-
ator was found to have a higher Q factor than the first, it might be

easier to achieve mode-locking in this resonator.
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SECTION 2

CALCULATIONS ON OPTICAL INJECTION LOCKING OF IMPATT
OSCLLLATORS

A. BASIC EQUATIONS

The equation that describes the avalanche current density J of an

IMPATT diode is given hyI

f,

Ta dJ 2
i e = 3 — +
3 a3 Jf o dx 1 JS 5 (1)
0
where
Ta = ﬁa/v is the avalanche zone transit time

L is the avalanche zone length

« 1is the impact ionization coefficient

J is the reverse saturation current density
v 1is the saturated carrier velocity.

The ionization coefficient o is a function of the electric field in the

avalanche region and can be approximated by the following expression:

o = o == (m = 6 for silicon)

Assume that the electric field distribution inside the IMPATT diode iz
as shown in Figure 1, where the field varies from its peak, Ep’ down to

the drift region value, Ed’ with dE/dx constant. Therefore, it follows

that
v + m+
g Ed 5 Ep m+1 Ed m+1 Ep il
f o dx = f (di) dE = i = E; ~ E; y (2)
0 Ep 9% p I P

11
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Figure 1. Electric field distribution inside an IMPATT diode.




Lom+l g S R

where hd has been neglected since hd s hp 5
2.

field at breakdown under de conditions (i.e., when jgd a dx = 1). Sub-

and E is the peak
po

stituting Eq. 2 into Eq. 1 yields

- m+1
2 £ ,—‘-’) S B - (3)
I s

28 dE D
PU
The peak electric field F,l) can be written as

t
E (c) = E - E, + E sinwt - 71- J' (. =t + &') J e )de" , 4)
p po b a rfd d

t-id

where El is a constant, Elsin wt is the field from the applied rf voltage,
2 ;

Tt t :
T, is the drift zone transit time, and -1/¢T j. Gt =t & £%) Jeetide"
d d Jt-Ty4 d
is a field resulting from the so-called space-charge effect. As an
approximation, the effects of El and the space charge field can be
D,
treated by assuming that the carrier generation rate is sinusoidal but

2
has a zero at m - § instead of at m. Therefore Eq. 4 becomes

E(t) = E + E sin (wt + §)
po a

and Eq. 3 can be reduced to

E

dJ _2(m+ 1) . a _. 2

T . J 5 sin(wt + §) + : JS 5 (5)
a po a

m+1

where only the first term of the expansion of (Ep/Epo) -1 was kept.

13
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B. FUNDAMENTAL OPTICAL INJECTION LOCKING

Suppose the IMPATT diode is illuminated by an optical signal modu-

lated at frequency w; then .J can be written as
S

3= + | sin (wt + § + ¢) s (6)
s S0 sl

Substituting Eq. 6 into Eq. 5 yields
4l .2(m+1)l'l 5
== = J ———= sin(wt + § “— 13 +J, sin(wt + & + ¢
gt J —_— sin(wt + 8) + b [].;0 ]sl sin(wt o} ))] (7)
a  po a
Eq. 7 is of the form
dy
DestAC + ) z =
dt P(t) y Q(t) 5 (8)

whose solution is

-jpP(t)dt P(t)dt -|pP(t)dt
y=ef fQ(t)e’r dt+Cef

s 9)
where C is a constant.
Comparing Eqs. 7 and 8 gives
2(m + 1) E
P(t) = - ————2 sin (wt + )
a po
Q(t) = 2[5 %3 sin (wt + 8§ + )
Ta SO sl
and
2 (m+ 1) E
J}(t)dt = —~—77~¥r-~tg cos (wt + §) = xcos (wt + §) ,
wt, -

14




where
2(m + 1) Ea
X = —————~ S
w T E
a po

Therefore, the solution for J is given by

-xcos (wt+s) [ 2 ‘ ‘08
J = e xcos (wt L\)‘[ [J + J sin (wt + & + (b)]eXLos(wH_é)dt
[1 SO si

-xcos (wt+6)
e

+ J : (10)
O

With the help of the following relations

excos(wt+6) = Io(x) + 2 E In(x) cosn(wt + §)
‘ n=il
-xcos (wWt+4) n
e = Io(x) + 2 (-1) In(x) cosn(wt + §) ,
n=1
we can rewrite Lq. 10 as
. 2
J = J0 Io(x)+2 E (—1)nIn(x)cosn(wt+o) + ?~»Io(x)+2 E (—l)nIn(x)cosn(wt+6)
" a
n=1 n=1
Jsllo(x)
3[JSOIO(X) + Jslll(x)51n¢] t - T e cos (wWt+6+¢)
2Jg0 — I (x) Jsl - In(x)
“f—- ~la{~ sin n(wt+d) - o ey cos[kn+1)(wt+6)+¢]
n=1 n=1 |
JSl o] In(x)
+ ¥p E o -1 cos [(n—l)(u)t+6) - ¢]$ . (11)
n=2
15




By expanding the summations in Eq. 10 and keeping terms involving modified

Bessel functions of order 0, 1, and 2 only, J becomes:

: b R , [, (x)
J = Jd(‘, - 2 JdC [—O'(;) cos(wt+s) + 2 Jd(‘ 'l'()-()-(*')- cos 2(wt+d)
2 Ao ot
-+ ¥»'10(x) [Jsolu(x) + JSl ll(x) sing] t - 5-~]T—-"‘ cos (wt+5+¢)
a
2 Jso Il(x) J*o lz(x) J'lll(x)
+ —————z;*’——fsin(mt+8) + ~3~7;*——- sin 2(wt46) - ~2Z;—w—-cos[2(wt+6)+¢]
)T (x) J L (x)
- —"la&g cos [3(wt+d)+d] + _E}LT}ﬁ—' cos (wt+6-d)
4 ll(x) J 11 X
RPN ont [JSOIO(X)+J8111(X)Sin¢]t cos(wt+6)——j%zfl-~{cos[2(mt+6)+¢]+cos¢}
a & g A
J Il(x) J 12(X)
+ 222 gin 2(wt+s) + 2 [sin 3(wt+8) + sin(wt+)]
w 2w
To113 %) Is1 g =)
- *—zw [cos{3(mt+6)+¢}+cos(mt+6+¢)]————753——~[cos{4(wt+6)+¢}
J~112(X)
+ cos {2(wt+8)+¢pt] + ~9§Kr——-[cos{2(wt+6)-¢} + cos¢]
4 Iz(x) J‘II (x)
+ " (JSOIO(x)+JSlII(x)sin®)tcosZ(wt+6)- szmo [cos{3(wt+d)+¢}
a
J 1.(x) J Iz(x)
+ cos(wt+8-¢) ]+ —-!lo*f-w——“[sinB((ut+6)—sin(wt+(§)] + »ng sin4 (wt+6)
ngll(x) JslIZ(X)
- “;ZL; [cos{4 (wt+8)+pt+cosd]- -—Ezr—-—{cos{5(wt+é)+¢}+cos(wt+6+¢)]
JSIIZ(X)
e —[cos{3(wt+8)+d} + cos(wt+8+d) ] . (12)

16




where Jd = JO Io(x) is the dc current of the IMPATT diode. It is clear
c

from Eq. 12 that, although the applied rf voltage across the IMPATT

diode is sinusoidal, the corresponding rf current is not sinusoidal.

However, we are interested in the fundamental component only. If we

denote the fundamental component of J as J(l)’ then
J == 2] flffz cos (wt + §) + {nglﬁfl_[ﬁ_}o(xz_; i 12(X)]«-sir\ (wt +48)
(1) de [o(x) mTa

J ; ;
3 L1 [—2 I Z(x) + I l(x) + i I 2(x) cos (WE + 6 + 9)
..s:a 0 1. 3 2
[ (x) JooLeo[21 0-31,00]
” o), iy _ S0 O o it (P
= =2 3. 3 ) )cos (we+6) = 5 o sin (wt+d)
0 de a

2 2 2
41,%(x) = 61 “(x) + 31 “(x)

+ 2 J - e e cos (wt + & +¢) . (13)
sl 6 G |
Since J << J, , it follows that
S0 do
%EP jgfj)[210(x) - 312(x)] s
ld‘ (A)[a
We can rewrite J(l) as
Il(X)
} J(l) gl R T;?;j-cos (we + GS) +2J K(x) cos (wt + & + ¢) , (14)
where
1 Jso IO 21 (x) - 31,(x)]
6 = sin o + &
S Ji wt
de a
41,20 + 312 - 61 2(x)
K(x) = =

6wT
a




The external circuit current, which is obtained by propagating J

(1)
through the drift region, is given by
" b,
J - & J iy
e(l) % ) ° -
d
(8]
<ul| l)
ok - [
. .Z‘ilfl_‘ 2 . i con folle~—2 1#
m!d de IO(X) 1 2 =
2
'd
- JS] K(x) cos [(u(t - —'2) + 6 + ‘1’] (15)

To estimate the locking range, a lumped circuit is used,3 as shown in
Figure 2. YI, the admittance of the IMPATT diode, is equal to Gl + jBl,

which can be found by dividing the first term in Eq. 15 by the rf voltage
jwt

vV = —le e and adding the depletion susceptance de:
Wt wl
. d 4 d
IR Sl W i i e-J( g és>+ jwe, - (16)
1 Qig Vl Io(x) d
2

The load admittance is

YL=(R+J"‘)L)_1= 7 Rzz‘j 2wL22
R +w L R  +wl

The injection current IL is obtained by multiplying the second term in

Eq. 15 by the area of the diode:

WwT
gin —& ilue=t /2)+544)

IL =2 ———m[d—* K(x) JS1 A e s (17)

Z

where A is the cross-sectional area of the diode.

18
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Equivalent circuit of an IMPATT oscillator used for
injection locking calculations.
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The circuit equation under locking is

IL = (YI + YL) \Y . (18)

and the circuit equation under the free-running condition is

0 = [Y'I(mo) + YL(wo)] T (19)

In the following analysis, we will assume that

Wl
d

o
—at % 8
2 i 65 2

N =

% s

In this case, Eq. 16 simplifies to

4 1777 d
Y[ = T + J“)Cd Gl + j Bl s (20)
o) 1)
The imaginary part of Eq. 19 gives
w L
rucd——2~0~—2—=00r R2+w‘2)L2=~CL—
e R™ +wlL d
o
The imaginary part of Eq. 18 gives
wL
I (I,) =uwC, -~ ————
m L d R2 +m2L2
(u)o + Aw)L

(w + Awy C, -
0 d R2 + (wi + 2Aw W, + Auuz)L2

(w, +dw)L 20w woLz
w0+ B) €, o B o 1] o e B
o R N 2 & il
(o) (o]
%200 C, (W C.L) = 2Aw C 1)
WESH L4 Yo @ ® a !
20




where it is assumed that the series inductance resonates with the
1 ; 2
IMPATT capacitance at the operating frequency (i.e., moL Cd =~ 1). From

Eq. 17, it follows that Im(ll) is given by
I (L;) = - é‘K( ) X sing
m: L il ™ B

Therefore,

4K (%) lSl

DR @ e
(R R
* %5y

sind . (22)

The locking range is defined as the maximum 2Aw achievable, and, from

Eq. 22, (ZAm)mux is obtained by setting sing = *‘1:

4 K(x) Isl
(ZAm)max el 3
I
Since, from Eq. 20,
PR K
1 mTI (x) V y
i
it follows that
K(x) I (x)7] wI
1
QAw) = [— o ] S g (24)
max Il(x) QIdC
where
mCd = -1
Q= (E{— = (deR) v

Eq. 24 shows that the locking range is proportional to the optically

generated current IS and is inversely proportional to the circuit Q

1
and the bias dc¢ current. We will use a few numerical examples to

estimate (2Au)max.

21




One set of typical values is presented below:

I = 25 mA E =2 x 107 V/m

de po
_ L

Qa =1 um v=1x 10" m/sec

L. = 4 um A = '0_8 m2

d
= ¢ g0 = =
4 !Za+ 4 5 um V1 10V

Based on these values, it follows that:

L =8 [v = 10—11 sec wt = 0.63
a a a
6
E =V. /2 =2 x 10 V/m
a 1
2(m+1) E
x=————82 -9 9
Wt E
a po
Io(x) = 2.63 , Il(x) = A.91 4
K(x) = =-7.25

(2Af£) = 4.0 MHz for f = 10 GHz.
max

If we take V1 to be 15 V rather than 10 V, then
X = 3.33 , Io(x) = 6.2 Il(x) = 5.23

-30.76

K(x)

and

(2A1) = 14.7 MHz for f = 10 GHz.
max

15] = 20 A
Q= 20
m = 6
£ = 10 GHz -
Iz(x) = 0.89

s IZ(X) =\ 2975




e —

C. FIRST SUBHARMONIC OPTICAL INJECTION LOCKING

W rmpATT ®injection ~ 2°1)

Assume that the optically generated current is at the first sub-

harmonic and that the reverse saturation current is given by

JE = =

R ¢ .
. i s1/2 sin 5 (wt + 6 + ¢) . (25)

Again we use Eq. 5 to solve for the avalanche current J:

J = J0 Io(x) + 2 E (-1)n In(x) cosn(wt + &)} + 73: Io(x)

n=1

+

2 E (-1)n1n(x) cosn(wt + §) Jsolo(x)t

n=1

2J I (x)
- ——b—l/i—o——— cos -]) (wt + 6 + ¢)

(o 9] (o8]

2d I (x) 24 I (%)
so 2 n - sl/2 E n 1 ¢
+ 5 a sin n(wt + §) - = 2n+l‘os [(n-l—i) (wt+6)+2]

n=1 n=1

o0

2. L (x)
+ ———33/2 E 22_1 cos [(n - %)(mt + 6§) - %]

n=1

Expanding the summations up to n = 2 and collecting terms involving

cos wt, sin wt, cos 1/2 wt, and sin 1/2 wt yields

23




I (x) & J - : ol
o’ e s « —s3/2 Mf2 .2 . 2.2 - 12
J = =2 Jdc [o(x) cos (wt + k\s) + “”a {([15 Iz(x) 3 Il(x) Io(x)]

+ 2 ll(x) [lo(x) - l} IZ(X)] vo:;‘l) cos j we + 6 + ¢)

o 1 1 ,
+ 2 sing [1(x)[lo(x) -3 lZ(X)J sin 5> (Wt + & + p)}
L x)
= 49 Jdc I;Y;S‘COS (wt + AH) + Jl/2 ,
where
J = & 5 l(ac +8 +¢) +A sin L (wt + § + ¢)
1/2 1 cos > ) ( ) , sin y (W ( ]
A =4~M‘i12()—»"'~12<)—12<)+2 ost L)1 (x) - 11 (x)
1 wr, 15 2% T3 L 0¥ OB RN - < LG

Wil [ 3 N 1
A2 = “’[a {2 sing Il(x) [Io(x) 3 lz(x)];

1 A 1
J = cos 5 (wt + 8§ + ¢) + T——=siny (wt + 8 + ¢)
1/2 2 2
\2 + A2
1 2
1/2 1
= ] sin E‘(mt +38 +¢ +6)
=7 sinl()t+6+ ) (26)
1/20 z W %)
where
(t) = + e d - L) = ﬁ‘.
e [0} » and tan 2 A
2
24




It is clear that U is a function of ¢. A plot of U versus ¢ is shown in
Figure 3.

The avalanche current component at 1/2 wt (i.e., JI/Z) can modify
the rf electric field in the avalanche region through the space-charge

effect. The modified electric field is E + AE with AE given by:

t
/\lﬂ(t)=—l~%~/‘ (ld—t+t')J1/2(t')dt'
d
t—ld

Since Jl/z(t') varies with a period of 47/w, it can be approximated as a

constant during the integration time interval:

T

AE(t) = - Eg'Jllz(t)

=

d i L
= - fEle/Zo sin 5 (wt + 6§ + ¢S)

1
= e i — S )
= - B sin 3 (wt + & + ¢s) s (26)
where
g d J1/20
b 2¢ 2

We can now solve for the avalanche current using the equation

E E
dJ _ 2] (m+ 1) | a . e ade &
s - g sin (wt + = sin 3 (wt + & + ¢S) §
a po Do
whose solution is
-xcos(mt+6)+ycos%(wt+6+¢)
J = J e > (27)
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where

2»(m + 1) Ea ? (m + 1) Eb

wt E & wt E
a po a po

From Eq. 27,
qr= 35 {lo(x) = ZIl(x) cos(wt + 8) + 212(x) cos 2 (wt + &)

- 2[3(x) cos 3 (wt + &) + ...}

1 :
{Io(y) * 21 (y) cos 5 (Wt + 8 + ) + 21,(y) cos (wt + & + 9 )
+ 21, (y) cos §>cos (wt + 8 + ¢ )
21,4 3 7
+ 214(y) cos 2 (wt + & + @g) I= oo }

= J0 {Io(x) Io(y) - ZIl(x) Io(y) cos (wt + §)

+ ZTO(X) Il(y) cos %'(wt + § + ¢s) + ZIO(x) Iz(y) cos (wt + & + ¢S)

+ AIZ(X) Iz(y) cos 2 (wt + §) cos (wt + & + ¢S) I e
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By retaining terms involving wt only,

J = Jn {[O(x) I()(y) - 2Il(x) l”(y) cos (wt + o)
+ 2[0(x) lz(y) cos (Wt + & + ‘;)S)
5 2!2(x) Iz(y) cos (wt + & - :,S) +
L GO
= ,]0 ln(x) Io(y) IS ’I‘;"(*X”)‘ eos (Wt = O) + 2
l?(x) [2(y)
HD e OB (RGN =R I SRl
[O(X) fo(y) S
I G0 : I, (y)
= Jdc -2 Jdc I—‘(_;) cos (wt + &) + 2 Jdc T_(.ﬁ
0 o
I, (x)
———— COS wt & =
+ T 2 cos (wt + j)s)
o)
L GO : L, (y)
= ‘]dc 2 Jdc I(x—) cos (wt + 6) + 2 Jdc W
I;(x) L
e cos (wte + S8 + ¢ = ¢) <
2 S
™ (x)
o
where I (x)
e sin 2 ¢
I (x) s
tan § = 2
I, (x)
1l VIO(x) cos 2 LI)S

Iz(y)

1

+ 2

-{cos (wt + 6 + ¢ )

IZ(X)
IO(X)

==——= cos @t & O+ ¢
I_v) : s

cos 2 ¢
S
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The external circuit current is then given by

Wt

2 sin —_d 1, (x) [
Ji =] e £ J *J~*~~cos wlt - L3 " 6]
Te “de w1 “de Io(x) ; 2
[,(y) L,(x)
e g == aoa §
Lt 2 IO(X) cos 2 ¢S

Lf(x) [d
+ —,Z——-—— cos [m(t T S +¢ - ll}] : (28)
S
NEY)

The injection current is given by

Wt
sin —— L. (y) [ [, (x)
e 20 Sl ok
E IL i 21dc de Io(y) : - Io(x) €8s 2 ¢s
2
2 o2 s
+ cos |wft = —)+S8 +¢ -9
lz(x) 2 s
o
wT T -
P If we assume that = F S = 5 and § << 5 s then,

from Eq. 18, we can write:

e 4 L) I (x) 12072 ( )
2 hw = = LEe2 ——rc cos 2 ¢ o+ sin (¢ -y
Cd V1 i [O(y) Io(x) s Ig(x) s

or

Io(x) IZ(Y) W IZ(X) Ig(x) i ;
2 Aw = ?I?;S—E;z;j' a‘ 1 +2 Io(x) cos 2 ¢ + sin (¢S - )

IO(X)

(29)
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Therefore, the locking range is the maximum value of the right side of
Eq. 29. We will calculate the magnitude of 2Aw for a number of ¢ angles.

The following numerical parameters are used:

L ipp = 20 WA, B =25 A, ¥ =157
Q = 20 " Qa = 1 um , Md = 4 um .
g= 01 & E =2x107V/m, o
0 po
5 : <
v = 107 m/sec , f = 10 GHz
X =l 30330 lo(x) = 6.24 ll(x) =T ]z(x) = 2.97
5 5
Al =-7.11 x 107 + 6.97 x 10~ cos ¢
S
A2 = 6.97 x 10" sin ¢
For
¢ = 0°, 6 = 180°, ¢s = -180°, and | = 0°
we have
sin (¢s - %) =0 and 2Aw = 0
For
¢ = 10° , 6 = =22.97° , ¢S = -12.97° , | = -8.29°
. -2
y = 0.06, and sin (¢S-w) = -8.16 x 10 -
we have

2Af = 0.03 MHz.
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For
¢ = 30° ,
-
we have
For
$ = 60° ,
| 3
we have
For
L‘\ = 90° 4
we have

(w

I Eq. 5,

If we let J
s

then

0= =34.3° ,

y = 0.166, and

2Af = 0.12 MHz.

0= -61.97° ,

¥y = 0.32 , and

2Af = 0.124 MHz.
= -91.14° ,

v = 0.45 , and

2Af = 0.12 MHz.

IMPATT “injection
=g

SO

= 3:1)

p = -4.3° , Y = =2.2°

s

sin (ws - ) = =0.04 ,

p . = ~1.97° , P = =1.27°
S

52 4 / = _2
sin (qs - P) =1.27 x 10 5
P = =l e U= -0.74°
s

3

sin (b - V) = 6.98 x W,

From the above numerical values, we conclude that the first subharmonic

optical injection locking is relatively inefficient.
D SECOND SUBHARMONIC OPTICAL INJECTION LOCKING

+ Jsl/3 sin 1/3 (wt + § + ¢) and solve for J
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B

2
3= 3 fI_(x) +2 E (—1)"|n(x) cosnwr+)] + = ()
a

n=1
e n g
+ 2 E (-1) In(x) cosn(wt + §)
n=1
‘ 1 (%)
sk {3 .
)anlo(x)l - —= ‘ C— Cos 7 WE + 8 +9)
9 = :
“Jsu l“(h) ' )
+ i -, sinn (we + 0)
n=1
3.1 . — 1 (%)
‘_51_/22 L 1 - (]
= - n+l \Ob[(n + 3)(% + x\) + sj]
n=1
3J —~ I (x)
__S.l_/.“>§ S g $ B
+ Z a1 €os [(n 3)(nt + 6) 3]
n=}

Terms involving cos 1/3 (wt + & + ¢) are grouped to give

J
s1/3 12 .2 3 3 2 1
= == ke . - _ - (K )
J1/3 wr, [35 Iz(x) 5 Il(x) 6IO(x)] cos (ot + 8§ + ¢)
= J q~l-(ut+(ﬂ+/)
1/30 [ada £ 3 i {)

The electric field is modified by AE, which is given by

AE = == = B4
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Theretore,

the new rt

and the new avalanche current

-xcos (wt+8) —ysinl@ot+d+b)
J o l® e 3 5

[O(x) - 2[l(x) cos (wt + &) + 212(x) cos 2 (wt + 6)+ .-

Io(y) + 211(y) sin é-(mt + & + ¢) - 212(y) cos %—(mt + 68 + ¢)

- 213(y) sin (Wt + 8§ + ¢) + -

Io(x) Io(y) = ZIO(y) Il(x) cos (wt + &) + ZIo(y) IZ(X) cos 2 (wt + §)
+ Zlo(x) [l(y) sin %-(mt + 6 + ¢) - 210(x) Iz(y) cos %—(wt + 6 + ¢)

- ZIO(x) 13(y) sin (wt + § + ¢)

=41, (x) Ig(y) cos 2 (wt + 6) sin (wt + & + ¢) +

(m[ + (\) - B cos ,]j" (l‘)t + & (b) ’

2 (m+1) E

6 (m+ 1)




A e r———— ‘

[f we keep only terms involving wt, then

i=a )

Jo )lu(x) Io(y) - 2ln(y) ll(x) cos (wt + &)

= 210(x) lj(y) sin (wt + § + ¢)

-+ 2T, (x) 13(y) sin (wt + 5 -~ ¢) + '-"

ll(x) Ig(y) L, ()
= J. = 23, ——==cos (Wt +5) - 27 N 1 2 ——— s 29
de dc lu(x) d¢ IO(y) Io(x)
¥ o
L) 291/2
- os (i ( b=
+ I (O cos (wt + & + ¢ ) 0
0
where l?(x)
i} =GOS 20
tan § = Lo ()
i L, (x)
~— sin 2¢
L&)

Therefore, the injection current is

Wi

IE(Y) sin ‘éﬂ_ Iz(x) lz(x) 24172
Jl, = Jl/3A = —ZIdC *I:(“V)* —"—m]“‘—d ~ ¢l = 2 cos 24 + —

2

[
cos {m( = ‘2~d) + & + ‘rl, = "V} .

and the locking range is

NORNIN I, (x) 15 e07?
20 = | ————] = |1 - 2 ——~— cos 2¢ + ——— sin (4 = )
Il(x) Io(y) Q Io(x) li(x)
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Use the following numerical values:

= 92 114 = 2 =
3 y49 = 20 BA , L 5 mA ¥y =15 ¥
= 2 i = |0} X = 8]
Q0 200, » 1 ym, d 4 .m
= 11e , g =2%10 W, A=10P
O p()
5 . ;
v = 107 m/sec , f = 10 GHz

From these, we get

3= e 38 [U(X) = 6.24 , Il(x) SIS Iz(x) = 2.97
3y /30 = —8:-62 x 162, =i L = 4.21 x 1073
o IO(Y)
For
= 0° and ' = 90°, we have 2.f = 1.32 MHz.
For
b = 15° and ¢ = 68°, we have 2Af = 1.27 MHz.
For
? = 30° and 1y = 61.6°, we have 2Af = 0.99 MHz.
For

» = 60° and

71.6°, we have 2/f = 0.66 MHz.
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Es DISCUSSTON

It is clear from the above calculations that, to increase the locking

range, both x and y should be made as large as possible, where

2 (m + 1) E]

T,
a po
5 ‘
N —>(Am.i D Vnr Jl/n_ o d
£ P T
a po

5= M GER
';1 l/

Ed is the rt electric field in the diode. Therefore, in a short diode,

E is larger for a given V On the other hand, the optimum oscillation

a e
frequency of a shorter diode is higher. Thus, the optimal situation
seems to be to operate the diode in the lower portion of its frequency
band. Our limited experimental results seem to indicate that this is
the case. The best way to increase y is to have large optically gen-
erated current. Numerical values used in the previous calculations do
not represent the best situation. A simple calculation reveals that
1 mW of optical power at rf frequency can generate up to 660 LA of rf
photocurrent under ideal conditions. This would mean a locking range of
250 MHz for the case of w CW . = 3:1. Therefore, it is

osc Injection
important to investigate means of generating efficient, high-frequency,
modulated optical sources.

Preliminary experiments on subharmonic optical injection locking
of X-band Si IMPATT oscillators have shown a locking range of close to
7 MHz with a 4 to 1 frequency ratio. The photocurrent (rf) amplitude in
these experiments is estimated to be only about 5 j1A. However, the
actual numerical parameters of the diodes used are not available to
allow comparison with analytical results.

Our analysis involves several approximations,and the result is
accurate only for moderate rf voltage swings and photocurrents. Also,
the effect of circuit tuning is completely neglected. We believe that

in a real oscillator the interactiopr of the device and the circuit can

36




play a major role in determining the injection locking efficiency. A
more rigorous analytical approach is being taken to obtain results that
are applicable under even large-signal operations.

It is interesting that injection locking with an input signal
proportional to sin 2/3 wt is also possible. J2/3 can generate

o Xcoswt eyc032/3u)t

E, « sin 2/3 wt, and, from Eq. 27, contains a term

b

(Il(x) cos wt) ([B(y) cos 2wt) that produces a current component at

cos wt. This current component then acts as the driving injection sig-
nal. Similarly, any multiples of the subharmonics are possible injection
locking signals as well.

In conclusion, we have shown that subharmonic optical injection
locking of Si IMPATT oscillators can have a locking range of 100 MHz if
modulated optical signal can be efficiently converted into rf photo-
current. In view of the experimental results obtained so far (more than
5 MHz of locking range with less than 5 yA of rf optical current), we
feel that the calculated results underestimate the locking range,
although the experimental device parameters are not known well enough
to allow careful comparison. Nevertheless, we do not see any funda-
mental reason why this scheme will not work at millimeter-wave

frequencies.
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SECTION 3

RECENT RESULTS ON OPTICAL INJECTION LOCKING
OF Si IMPATT OSCILLATORS

Last quarter we reported some initial results on the successful
optical injection locking of X-band Si IMPATT oscillators. We achieved
locking of an 8.754-GHz IMPATT oscillator by injecting an optical signal
modulated at 2.918 GHz. We also observed a reduction of oscillator side-
band noise through optical-illumination and injection-locking processes.
In this quarter, we continued the experiment with particular emphasis on
obtaining the locking range versus locking gain relation for various
orders of subharmonic injection signal.

The injection-locking characteristics of IMPATT oscillators were
found to depend heavily on the cavity tuning conditions. If the cavity
was tuned such that the IMPATT oscillated with a high Q factor (i.e.,
narrow spectral width and minimum side-band noise), the locking range
typically was very small (a few hundred kilohertz). However, if the
cavity was tuned for low-Q oscillation, then the locking process became
very efficient. This observation agreed well with our theoretical
calculations, given in Section 2. Another factor that affected the
injection locking process was the dc bias of the IMPATT diode. We found
that, depending on the bias condition of the diode, different amounts of
IMPATT oscillation frequency shift could be observed for a fixed dc
optical illumination. Under certain conditions, the frequency shift was
positive; but, for different combinations of circuit tuning and dc bias,
it could also be negative. In general, a large locking range was obtained
if the oscillator frequency shift due to optical illumination was large.

One of our IMPATT oscillators, when biased at 28 mA and tuned to
8.116 GHz, could be optically injection locked to several different orders
of subharmonics. Figure 4 shows the changes of oscillator spectrum at
five different injection signal power levels. From Figure 4(a) to
Figure 4(d), the injection signal level was raised from -20 dBm to 10 dBm
in 10 dBm steps. As shown in Figure 4(a), the oscillator output was

initially at 8.111 GHz while the injection signal was at roughly
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Figure 4. Spectra of an injection-locked IMPATT oscil-
lator at various injection signal levels.

IMPATT oscillation frequency: 8.111 GHz

Injection signal frequency: 1.352 GHz

Horizontal scale: 2 MHz/div

Vertical scale: 10 dB/div

Reference level: 30 dBm.
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one-sixth ot 8.1146 GHz, or 1.3524 GHz. However, as shown in Figure 4(e),
when injection locking finally took place, the oscillator frequency was
pulled in and locked to the sixth harmonic of the injected signal
frequency.

Figure 5 is a plot of the locking band versus locking gain of the
same IMPATT oscillator tor several different subharmonic orders. The
IMPATT oscillation frequency was at 8.116 GHz. A frequency ratio as
high as 8:1 was used (i.e., the injection signal was running at 1.014 GHz)
to achiceve injection locking. The locking gain was defined as the ratio
of the IMPATT oscillator output power to the microwave power used to
modulate the injection laser. Therefore, the plot of locking band versus
locking gain actually contains the information on modulation response of
the injection laser as well. For instance, the modulation depth of the
laser at 2.03 GHz (4:1 frequency ratio) was not as efficient as at
1.35 GHz (6:1 frequency ratio); therefore, the injection locking efficiency
of the 6:1 subharmonic was better than that of the 4:1 subharmonic when
the locking gain was greater than 8 dB. It is also interesting that in
our oscillator the even arder of subharmonics is preferred to the odd
order of subharmonics with respect to the injection locking efficiency.

We believe that this is a result of the particular cavity tuning.

Further studies are needed to clarify this point.
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optically injection-locked IMPATT oscillator.
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SECTION 4

MODE LOCKING OF INJECTION LASERS

In the last report, we discussed the general effects of laser
medium dispersion, laser relaxation oscillation, and the laser spectral
broadening mechanism on the success of mode-locking CaAs injection
lasers. The first demonstration of injection laser mode locking at
Ml'l‘4 was achieved by using an external-cavity configuration and by vary-
ing the current through the laser diode at a rate determined by the
photon round-trip transit time in the cavity. This section expands on
that discussion with emphasis on the effects of different external
cavity configurations.

One of the reasons tor using an external cavity for injection laser
mode locking is to reduce the required gain modulation frequency to a
few gigahertz. Without an external cavity, the required frequency f is

80 to 130 GHz for typical diode lengths (300 to 500 im), where

oL
2n¥

f =
¢ is the speed of light, n is the index of refraction of GaAs, and L is
the diode length. Since the modulation response of the laser decreases
sharply beyond a few gigahertz, it would be extremely difficult in the
80- to 130-GHz range. Theoretically, it is possible to achieve laser
mode-locking with infinitesimal perturbation if the driving frequency is
exactly equal to the transit time frequenc_\'.5 Practically, however,
there are several limitations. First, there will always be some detuning
caused by mechanical vibrations and temperature fluctuations. Second,
the phase noise in the signal source and in the laser output will also
effectively detune the driving frequency. Thus, there is a minimum
perturbation necded for mode locking. This sets a maximum frequency
usable for mode locking an injection laser. By using an external cavity,
the problems associated with very high frequency laser modulation can be

circumvented.
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Another reason for using the external cavity configuration is that
the effects of material dispersion can be reduced signiticantly. This
is because of the large dispersion-free air space in the optical cavity,
which renders the gain medium dispersion insignificant since it con-
stitutes only about 17 of the total cavity length. The material dis-
persion effect is important in an injection laser without external
cavity since, in that case, the longitudinal modes of the laser are
spaced unequally. However, under mode-locked conditions, the mode
spacings of the locked longitudinal modes are equal. That means
that the gain perturbation should be strong enough to pull the modes to
their proper frequency locations in order to lock them together. Again,
this will set a limit on the minimum input driving power required to
obtain a given mode-locked laser pulsewidth (which is inversely propor-
tional to the number of modes locked) or on the minimum pulsewidth
obtainable for a given input driving power.

To induce coupling between longitudinal modes of a laser requires
a gain (or loss) modulation with spatial dependence. The coupling coef-

ficient between two longitudinal modes can be expressed as
“a.p = JJf ey n) B (xuy,2) By (x,y,2) dxdydz

where E,i and Eb are two normal modes of the laser cavity, Ag is the gain
variation, and the integral is over the cavity volume v. Since Ea and

E, are orthogonal, i.e.,

b
fffv Ea z Eb dxdydz = 0 ,

Ag should be a nonuniform perturbation if the coefficient of mode

coupling is to be nonzero. The use of an external cavity provides a

convenient solution for this problem.




There are two external-cavity configurations that can be used for
the injection laser mode-locking experiment. We will examine their
transmission characteristics and determine which configuration is more
suitable for our purpose. The two configurations are shown in Figure 6.
In Figure 6(a), the cavity is formed by one cleaved facet (A) of the
semiconductor laser and an external mirror with high reflectivity
(ry

semiconductor laser. Figure 6(b) shows a more complicated external

= 0.98). An AR coating is applied to the other facet (B) of the

cavity, which is essentially the same as the first cavity except that
there is no AR coating on facet B. The transmission characteristics of
these resonators can be analyzed by regarding the composite resonators
as one simple Fabry-Perot resonator of length Qo. One of the ﬁirrors of
this equivalent resonator is mirror C, the other is the semiconductor
laser. The semiconductor laser itself is a Fabry-Perot of length Kl;
its equivalent transmission and reflection coefficient can be calculated

easily. Thus, the composite resonator transmission coefficient is

[1=-r

I g i . . .. ' . v i nlio M I i (30>

where

T, = t2
! 1
2
= ]
T2 (t2)
T, = t2
3 3
9
o 41n 1
I A
o
AHQO
60 i A
o

n = index of refraction of GaAs

A = laser wavelength in vacuum.

.
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Figure 6. 1Two different external-cavity arrangements for
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Eq. 30 gives the transmission characteristics of the cavity shown
in Figure 6(b). If we use parameters typical of the GaAs laser and let

ry = 0.98, Eq. 30 can be plotted as shown in Figure 7. It exhibits the

fine longitudinal mode structure of a cavity with length %) + &1 = Vo
C

and the beating effect of the two cavities of length Lo and 10 ni= ll.
X If we set r, = 0 and T2 = 1 in Eq. 30,
we can also plot the transmission characteristic of the cavity shown in

The beat frequency is c¢/2nt

Figure 6(a). This is displayed in Figure 7. Since the cavity structure
is basically a simple Fabry-Perot, the familiar equally spaced, equal
height transmission pattern is obtained, as shown in Figure 8. How-
ever, the cavity Q is much lower in the simple structure. This can be
seen by comparing the height and width of the transmission peaks given
in Figures 9 and 10. We believe that the three-mirror cavity is a
better configuration for the mode-locking process because of the higher
Q factor and the additional beating effect (which forces longitudinal
modes to be locked in groups). Therefore, the locking process would be
more stable in this case.

Experimental work is underway. An external cavity injection laser
has been set up. We have observed laser threshold current reduction due

to the addition of the external mirror. More experimental results will

be presented in the next quarterly report.
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Figure 7. Intensity transmission characteristics of the
three-mirror cavity depicted in Figure 6(b).




INTENSITY TRANSMISSION

82583

0.3 T T T I

o

)
r~
It

0.1 }— —
0 ‘vA—}\MA—AM—AMA/
0.89980 0.89982 0.89984 0.89986 0.89988 0.89990

WAVELENGTH, um
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simple Fabry-Perot shown in Figure 6(a).
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cavity shown in Figure 6(b).
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SECTION 5

PLANS FOR THE NEXT QUARTER

In the next quarter, we will continue the injection laser mode-
locking experiment. Our initial results indicate that the external
cavity could lower the laser threshold, although the alignment would be
very critical. We will investigate a slightly different arrangement.
Instead of using a highly reflective external mirror, we will use a
semi-transparent mirror such that the transmitted optical power is the
output of our resonator. Since this approach will eliminate the need
for specially mounted laser diodes, the experiment can be carried out
with lasers that have only one emitting facet accessible. Several
optical-microwave devices will be analyzed and fabricated. The fabri-
cation of waveguide-incorporated GaAs FETs is underway. The devices
will be tested for their improvement in optical response. Major efforts
will be focused on the study of high-speed optical-detection techniques.
Our approach is to take advantage of the speed of microwave solid-state
devices and the bandwidth (and possibly the gain) derived from the

oscillator and amplifier circuits.
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