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section 1

Summary of Prog r~m for

Reporting Period

Program Objectives

To develop practic al , low cost, real time methods for

suppressing noise which has been acoustical ly added to

speech.

To demonstrate that through the incorporation of the

noise suppression methods, soeech can be effectively

analysed for narrow band digita l tr3nsmission in • ractlcal

operating environments.

Summary of Tasks and Results

Introduction

This Semi-knnual techni~ a1. report describes the status

at the end of September 1978 as the result of work oerformed

during the period 1 kpril 1978 through 30 September 1978.

This Is the last techni:al report to be Issued under

— 1 —
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contract N00173-77—C—OO ll. Continuing research is still

being pursued under ARPA order 3301 and will be reported

semi—annually under contract with Naval Research

Laboratories. The next report is planned for the period 1

October 78 through 31 March 79 under succesor contract

NOO].73—79—C—0045.



.— 
- ____ ,~~V V~~- V ~~.-—,V~~~~~- , 

—

~

- —

~~

-.-.- —

~~~~

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

Suppression of Acoustic Noise in

Speech Using Spectral Subtraction V

Steven F. Boll

Abstract V

stand alone noise suppression algorithm is presented

for reducing the spectral effects of acoustically added

noise in speech. Effective per formance of digital speech

processors operating in practical environments may require

suppression ot noise from the dig ital waveform. Spectral

subtraction offers a computationa lly efficient, processor

independent, approach to effective digita l speech analysis.

The method , requiring about the same computation as

high-speed convolution , suppresses stationary noise for

speech by subtracting the spectral noise bias calculated

during non-speech activity. Secondary procedures and then

applied to attenuate the residual noise left after

subtraction . Since the algorithm resynthesizes a speech

waveform, it can be used as a preprocessor to narrow band

voice communications systems , speech recognition systems or

speaker authentication systems.

— 3 —
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Applicati on of Adaptive Noise Cancellation

To Noise Reduction in Audio Signals

Dennis C. Pulsipher

I
Abstract 

V

The LMS Adaptive Noise Cancellation algorithm has been

applied to the remova l of high—level white noise from audio

signals. Simulations and actual acoustically recorded

signals have been processed successfully, with excellent

agreement between the results obtained from simulations and

the results obtained with acoustically produced data. A

study of the filter length required in order to achieve a

desired noise reduction level in a hard—walled room is

presented . The performance of the algorithm in this

application is described and required modification s are

suggested .

A multi—channel processing scheme is presented which

allows the adaptive filter to converge at independent rates 
V

in different frequency bands. This is shown to be of

particular use when the interfering noise is not white.

Careful implementation of the scheme allows the problem to

be broken into several smaller ones which can be handled by

independent processors , thus allowing longer filter lengths 
V
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to be processed in real time .

This abstract is taken from the Ph.D dissertation of

Dennis Pulsipher. This dissertation will be published as a

stand-alone technical report.
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Estimation of the Parameters of an Autoregressive

Process in the Presence of Additi ve White Noise

William Done

Abs t r act

Applications of linear prediction (LP) a gorithms have

been successful in modeling various physical processes. In

the area of speech analysis this has resulted in the

development of LP vocoders , devices and used in digital

speech communication systems . The LP algorithms used in

speech and other areas are based on all-pole models for the

signal being considered . With white noise excitation to the

model, the all-pole LP model is equivalent to the

autoregressive (AR) model.

With the success of this model for speech well

established , the application of LP algorithms in noisy

environments is being considered . Existing LP algorithms

per form poorly in these conditions. Additive white noise

severely effects the intelligibility and quality of speech

after analysis by an LP vocoder.

- 6 -
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It is known that the addition of white noise to an AR

process produces data that can be described by an

autoregressive moving—average (ARMA ) model. The AR

coefficients of the ARMA model are identical to the AR

coefficients of the original AR process. This dissertation

investigates the practicality of this model for estimating

the coefficients of the original AR process. The

mathematical details for this model are reviewed. Those for

the autocorrelation methods LP algorithm are also discussed .

Experimental results obtained from several parameter

estimation technique s are presented . These methods include

the autocorre].atjon method for LP and a Newton -Raphson

algorithm which estimates the ARMA parameters from the noisy

data. These estimation methods are applied to several AR

processes degraded by additive white noise. Results show

that using an algorithm used on the ARMA model for the data

improves the estimates for the orig inal AR coefficients.

This abstract is taken from the Ph.D dissertation of

William Done. This dissertation will be published as a

stand—alone technical report.
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Nonparametric Rank-Order Statistics Applied to Robust

Voiced-Unvoiced-Silence Classification

B.V. Cox and L.K. Timothy

Abstract

This paper describes a theoretical and experimental

investigation for detecting the presence of speech in

wide—band noise . A robust algorithm forming the

voiced-unvoiced—silence decision is described . This

algorithm is based on a nonparametric statistical

signal—detection scheme that does not require a training set

of data and maintains a constant false alarm rate for a

broad class of noise inputs. Two nonparametric decision

procedures are investigated , the Kruskal—Wa llis and the

multiple use of the two-sample Savage statistic. The

performances of these detectors are evaluated and compared

to that obtained from manually classifying twenty recorded

utterances. In limited testing , the average probability of
V 

misclassification of voiced speech for the Savage case was

less than 6, 13 , 28, and 55 percent , correspond ing to

signal—to—noise ratios of 30, 20, 10, and 0 dB ,

respectively.
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SUPPRESSION OF ACOUSTIC NOISE

IN SPEECH USING SPECTRAL SUBTRACTION

Steven F. Boll
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Abstrac t

A stand alone noise suppression algorithm is presented for reducing

the spectral effects of acoustically added noise in speech. Effective

performance of digital speech processors operating in practical environments

may require suppression of noi se from the digital waveform. Spectral

subtraction offers a computationally efficient, processor independent,

approach to effective digital speech analysis. The method , requiring

about the same computation as high-speed convolution , suppresses stationary

noise for speech by subtracting the spectral noise bias calculated during

non-speech activity . Secondary procedures and then applied to attenuate

the residual noise left after subtraction. Since the algorithm resynthesizes

a speech waveform, i t can be used as a preprocessor to narrowband voice

cormiunicati ons systems, speech recognition systems or speaker authenticat ion

systems. -

- 10 -
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I .  Introduction

Background noise acousticall y added to speech can degrade the

performance of digital voice processors used for applications such as

speech compression , recognition , and authentication [1] [2]. DigIta l

voice systems will be used in a variety of environments and their performance

must be mainta i ned at a level near that measured using noise-free input

speech. To Insure continued reliability, the effects of background noise

can be reduced by using noise cancelling microphones, internal modification

of the voice processor algorithm s to explicitly compensate for signai

contamination , or preprocessor noise reduction .

Noise cancelling microphones although essential for extremely high

noise environments such as the helicopter cockpit , offer little or no

noise reduction above 1kHz [3] (See Figures IV.2). Techniques available

for voice processor modification to account for noise contamination

are being developed [4], [5]. But due to the time , effort, and money

spent on the design and implementation of these voice processors [6],

[7], [8), there Is a reluctance to internally modify these systems.

Preprocessor noise reduction [12], [21] offers the advantage that noise

stripping Is done on the waveform i tsel f with the output being either digital

or analog speech . Thus ex i sting vo ice processors tuned to clean speech

can continue to be used unmodified . Also since the output Is speech,

the noise stripping becomes Independent of any specific subsequent speech

processor Implementat ion, (It could be connected to a CCD channel vocoder

or a digital LPC vocoder).

— 11 —
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The objectives of this effort were to develop a noise suppression

technique , implement a computationally efficient algorithm , and test

its performance in actual noise environments . The approach used was to

estimate the magnitude frequency spectrum of the underlying clean speech

by subtracting the noise magnitude spectrum from the noisy speech

spectrum. Thi s estimator requi res an es timate of the current noi se

spectrum. Rather than obtain this noise estimate from a second

microphone source [9], [10), it is approximated using the average noise

magnitude measured during non-speech activity . Using this approach ,

the spectral approximation error is then defined and secondary methods

for reducing it are described .

The noise suppressor is implemented using about the same amount

of computation as required in a high-speech convolution. It is tested on

speech recorded in a hel icopter environment. Its performance is measured

using the Diagnostic Rhyme Test (DRT), [11], and is demonstrated using

isometric plots of short-time spectra.

The paper is divided Into sections which develop the spectral

estimator, describe the algorithm implementation , and demonstrate the

algorithm performance.

- 1 2 -
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II. Subtractive Noise Suppression Analysis

A. Introduction

This section describes the noise suppressed spectral estimator.

The estimator is obtained by subtracting an estimate of the noise V

spectrum from the noisy speech spectrum. Spectral Information

required to describe the noise spectrum is obtained from the signal

measured during non-speech activity . After developing the spectral

estimator, the spectral error is computer and four methods for reducing

it are presented.

The following assumptions were used in  developing the analysis.

The background noise is acoustically or digitally added to the speech.

The background noise environment remains locally stationary to the

degree that its spectral magnitude expected value just prior to speech

activity equals its expected val ue during speech activity . If the

environment changes to a new stationary state, there exists enough

time (about 300 ms) to estimate a new background noise spectra l magnitude

expected value before speech activity commences. For the slowly varying

nonstationa ry noise environment , the algorithm requires a speech activity 
V

detector to signal the program that speech has ceased and a new noise

bias can be estimated. Finally it is assumed that significant noise

reduction is possible by removing the effect of noise from the magn i tude

spectrum only. V

- 1 3 -
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Speech, suitably lowpass filtered and digitized , is analyzed by

windowing data from half-overlapped input data buffers. The magnitude

spectra of the windowed data is calculated and the spectral noise bias

calculated during non-speech activity is subtracted off. Resulting

negative amplitudes are then zeroed out. Secondary residual noise

suppression is then applied. A time waveform is recalculated from the

modified magnitude. This waveform is then overlap added to the previous

data to generate the output speech.

B. Additive Noise Model

Assume that a windowed noise signal n(k) has been added to a windowed

speech signal s(k), with their sum denoted by x(k). Then

x( k ) = s( k) + n( k )

Ta ki ng the Four ier transform gi ves

X (eJW ) = S(eJW ) + N(eJW)

where x( k ) <—> X (eJW )

X(e iW) =

x( k) = ~ f X I eJW )JU)kd

C. Spectral Subtraction Estimator

The spectral subtraction filter H(e~’~) is calculated by replacing the

noise spectrum N(eJW) with spectra which can be readily measured. The

- 14 -
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V
t

magnitude IN(eJw )I of N(eJW ) is replaced by its average value, p (e3~)

taken dt~ring non-speech activity , and the phase ON (e3’
~
) of N(eiW) is

replaced by the phase Ox (eiw ) of X (eJW ). These substitutions result in

the spectral subtraction estimator, S(e~°):

~(e3W) = [1X (e~~~1 - u(e~~~ ~~~~~~~

or

S(eJW ) = H(eJW )X(e JW )

wi th

H(eJW ) = 1 - _ _ _ _ _ _ _ _

IX (e’~ ) I

= E{IN(e3’~)1}

D. Spectral Error 
V

The spectral error c(e3’~) resulting from this estimator is given

by V

c(eJW ) = S(eJW )_S(eJW ) = N(e~~)~p(e3’~)eJ°X

A number of s imple modifi ca tions are ava il able to reduce the audi tory

effects of this spectral error. These include : (1) magnitude averaging ;

(2) half-wave rectification; (3) residual noise reduction ; and (4) additiona 1

signal attenuation during non-speech activity .

E. Magnitude Averaging

Since the spectral error equal s the di fference between the noi se

spectrum N and its mean i, local averaging of spectral magnitudes can 
V

- 15 -
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be used to reduce the error. Replacing tX(e~
’
~)j with (eJ

~
.I))l where:

IX(eiW )I = ~ 1X 1 (e
3w )I

1=0

X 1 (eiW) = i~~ time-windowed transform of x(k)

gives 
. -

SA (eiw) = [IX (e~~~i - u(e~~)] ei°~~

The rational behind averaging Is that the spectral error becomes approximately:

- 5(eJW ) 1WT~ -

where 1N(e~~)1 = 
~ IN~

(e3
~ )I

Thus the sample mean of IN(e3~°)I w ill converge to u(e JW ), as a longer

average i s taken.

The obvious problem with this modification is that the speech is

nonstationary and therefore only limited time averaging is allowed .

DRT results show that averaging over more than three half-overlapped

windows with a-total time duration 3f 38.4 ms will decrease intelligibility .

Spectral exampl es and DRT scores w ith and without avera gi ng are given

In the resul ts sec tion. Based upon these result s , it appears that averaging

coupled with half rectification offers some improvement. The major

di sadvantages of averag ing i s the risk of some temporal smear ing of short

trans i tory sounds .

- 16 -
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F. Hal f-Wave Rectification

For each frequency ~ where the noisy signal spectrum magnitude

is less than the average noise spectrum magnitude u(eiW ), the

output is set to zero. This modificati on can be simply implemented

by half-wave rectifying H(eJW ). The es timator then becomes

S(e JW ) = HR (eJw )X (e Jw )

where

H (eJW ) = 
H(eJWj+ IH(e

jW
)l

R 2

The Input-output relationship between X(e~~) and S (eJW ) at each frequency
w is shown In Figure 11.1.

Thus the effect of hal f-wave rectification is to bias down the

magnitude spectrum at each frequency &~s by the noise bias determined at

that frequency. The bi as va lue can of course change from frequency

to frequency as well as from analysis time wind~w to time w indow. The

advantage of half rectification is that the no’~se floor is reduced by

A lso any low variance coherent noise tones ar .~.sentially

eliminated . The disadvantage of half rectification can exhibit itself

I

— 17 —
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in the situation where the sum of the noise plus speech at a frequency

w is less than ~(eJW ). Then the speech information at that frequency

is incorrectly removed Implying a possible decrease in intelligibility .

As discussed in the section on results for the helicopter speech data

base this processing did not reduce intelligibility as measured using

the ORT.

G. Residual Noise Reduction

After half-wave rectification speech plus noise lying above ~i remains.

In the absence of speech activity the difference NR N - ~je3°n, which

shall be called the noise residual , will for uncorrelated noise

exhibit itself in the spectrum as randomly spaced narrow bands of magnitude

spikes. See Figure (IV.4). This noise residual will have a magnitude between

zero and a maximum val ue measured during non-speech activity . Transformed

back to the time domain , the noise residual will sound like the sum of

tone generators with random fundamental frequencies which are turned on

and off at a rate of about 20 ms. During speech activity the noise

residual will also be perceived at those frequencies which are not masked

by the speech.

The audible effects of the noise residua l can be reduced by taking

V advantage of its frame to frame randomness. Specifically at a given frequency

bin , since the noi se residual will randomly fluctuate in ampl i tude at

each analysis frame, It can be suppressed by replacing its current va l ue

wi th its minimum value chosen from the adjacent analysis frames. Taking

the minimum va l ue is used only when the magnitude of S (eJW ) is less

than the maximum noi se residual calculated during non-speech activity .

The motivation behind this replacement scheme is threefold: first, if

- 18 -
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the amplitude of S (eJW ) lies below the maximum noise residual and it

varies radically from analysis frame to frame, then there is a high V

probability that the spectrum at that frequency is due to noise , therefore,

suppress it by taking the minimum; second, if S (eJW ) lies below the

maximum but has a nearly constant value , there is a high probability

that the spectrum at that frequency is due to low energy speech, therefore,

taking the minimum will retain the information ; and third , if S (eJW ) 
V

is greater than the maximum , there is speech present at that frequency ,

therefore, removing the bias is sufficient. m e  amount of noise reduction

using this replacement scheme was judged equivalent to that obtained

by averaging over three frames. However, with this approach high energy

frequency bins are not averaged together. The disadvantage to the scheme

is that more storage is required to save the maximum noise residuals

and the magnitude values for three adjacent frames.

The residual noise reduction scheme is implemented as

IS i(eJw ) I = IS 1(eJw ) I , for ISi(eJ
~ ) IV ~~MAX iN R (eJw ) I

IS 1(eJw ) I = min{ IS~(e3
~ ) I j = i-i , 1, 1+1 ), for I~ 1 (e

JW )I <MAX

where

S1
(eJW ) = HR (eJw )X i (eJw)

and

MAX IN R (e
~~

) p  = maximum va lue of

noi se res idual measured duri ng
I

non-speech activity
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H. Additional Signa l Attenuation During Non-Speech Activity

The energy content of S(e~~) rela ti ve to ~i(e~~) provides an accu rate
indicator of the presence of speech activity wi thin a given analysis frame.

If speech activity is absence then S(e3~) will consist of the noise residua l

which remains after half-wave rectification and minimum value selection.

Empirically, it was determined that the average (before versus after) power

ratio was down at least 12 dB. This implied a measure for detecting V

the absence of speech given by:

(
~ S( J~~i

)I = 20 log 10 L~ 
dw

If T was less than -12dB the frame was classified as having ru speech

activity . During the absence of speech activity there are at least three

options prior to resynthesis: do nothing , attenuate the output by a

fixed factor, or set the output to zero . Hav ing some s ignal present
during non-speech activity was judged to give the higher quality result.

V A possible reason for this is that noise present during speech activity

is partially masked by the speech. Its perceived magnitude should be

balanced by the presence of the same amount of noise during non-speech

activity . Setting the buffer to zero had the effect of amplifying the

noise during speech activity . Likewi se, doing nothing had the effect of

amplifying the noise during non-speech activity . A reasonable though

by no means optimum amount of attenuation was found to be -30 dB. Thus

the output spectral estimate including output attenuation during non-speech

activity Is given by

-
- 
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— I S(e~~) I > -12 dB

L cX (eJW ) I < -12 dB

- 
where 20 10910 C = -30 dB.

1

-

- 21 -

_ _ _  

- ~~~~~~~~~~~~~~~~~~~~~~~~~



—

III. Algorithm Implementation

A. Introduction

Based on the development of the last section , a complete analysis -

synthesis algorithm can be constructed . This section presents the specifica-

tions required to implement a spectral subtraction noise suppression system.

B. input-Output Data Buffering and Windowing

Speech from the A-D converter is segmented and windowed such tha t

In the absence of spectral modifications if the synthesis speech segments

are added together, the resulting overall system reduces to an Identity .

The data Is segmented and windowed using on the result [12] that if a

sequence is separated Into half-overlapped data buffers, and each buffer

is multiplied by a Manning window, then the sum of these windowed sequences

add back up to the origina l sequences. The window length is chosen to

be approximately twice as large as the maximum expected pitch period

for adequate frequency resolution [13]. For the sampl i ng rate of 8.00

kHz a window length of 256 points shifted in steps of 128 poInts was

used. Figure 111.1 shows the data segmentation and advance.

I
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C. Frequency Anal ys i s

The DFT of each data window is taken and the magnitude Is computed .

Sinc e real data Is being transformed , two data windows can be transformed
V 

using one FF1 (14). The FF1 size Is set equal to the window size of 256.

Augmentation with zeros WaS not Incorporated . As correctly noted by

J. Allen [15]. spectra l modification followed by inverse transforming

can distort the time waveform due to temporal aliasing caused by circular 
V

convolution with the time response of the modification. Augmentin g the

input time waveform with zeros before spectra l modIfication wi ll minimIze

this aliasing . Experiments with and without augmentation using the

helicopter speech resulted In negligible differences and therefore augmenta-

tion was not Incorporated. Finally, since real data Is analyzed transform

syi~inetries were taken advantage of to reduce storage requirements essentially

In half (14].

0. Magnitude Averaging

As was descri bed in the previous section , the variance of the noise

spectral estimate Is reduced by averaging over as many spectra l magnitude

sets as possible. However, the nonstationarity of the speech l imits

the total time interva l avai lable for local averagIng . The number of

averages is limited by the number of analysis windows which can he fit

into the stationary speech time interval . The choice of window length

and averaging Interval must compromise between conflicting requirements.

For acceptable spectral resolution a window length greater than twice

the expected largest pitch period is required with a 256 poInt window

being used. For minimum noise variance a large number of windows are

- 23 -
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required for averaging. Finally, for acceptable time resolution a narrow

analys i s interva l Is requi red . A reasonable compromi se between var iance

reduction and time resolution appears to be three averages. This results

in an effective analysis time interval of 38 ms.

E. Bias Estimation

The spectral subtraction method requires an estImate at each frequency H

bin of the expected value of noise magnitude spectrum, ii N :

~ E{~N }

This estimate Is obtained by averaging the signal magnitude spectrum

lx i during non-speech activity . Estimating 
~N 

In thi s manner p la ces
V 

certain constraints when implementing the method . If the noi se remains

stationary during the subsequent speech activity , then an Initial startup

or calibration period of noise-only signal is required . During this period

(on the order of a third of a second) an estimate of can be computed .

If the noise environment Is nonstationary then a new estimate of

must be calculated prior to bias removal each time the noise spectrum

changes. Since the estimate is computed using the noise-only signal

during non-speech activity, a voice switch Is required . When the voice

sw itch is off an average noi se spec trum can be recomputed. If the noi se

magnitude spectrum is changing faster than an estimate of it can be computed ,

then time averaging to estimate cannot be used. Likewise if the

expected va l ue of the noise spectrum changes after an estimate of it V

has been computed, then noise reduction through bias removal will be less

effective or even harmful , ie removing speech where little noise is present.

- 24 -
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F. Bias Removal and Hal f-Wave Rectification

The spectral subtracti on spectral estimate S is obtained by subtracting

the expected noise magnitude spectrum ~i from the magnitude signal

spectrum lx i
Thus:

IS(k)l IX(k) I - ii (k) k = 0, 1 , ..., 1-1

or

S(k) = H(k).X(k), H(k) = 1 — k = 0, 1, ..., L— l

where L = DFT buffer length.

After subtracting, the differenced val ues having negative magnitudes

are set to zero (half-wave rectification). These negative differences

represent frequencies where the sum of speech plus local noise is less

than the expected noise.

G. Residual Noise Reduction

As di scusse d In the prev ious sec ti on, the noise that remains after

the mean is removed can be suppressed or even removed by selecting the

minimum magnitude value from the three adjacent analysis frames in each

frequency bin where the current ampl i tude is less than the maximum noise

residual measured during non-speech activity . This replacement procedure

follows bias removal and hal f-wave rectification . Since the minimum

is chosen from values on each side of the current time frame, the modifica-

tion Induces a one frame delay. The Improvement in performance was

F judged superior to three frame averaging in that an equivalent amount

F of noi se suppression resulted without the adverse effect of high-energy

-25 -
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spectral smoothing . The fol lowing section presents examples of spectra

with and withou t residua l noise reduction.

H. Additional Noise Suppression During Non-Speech Activity

The final improvement in noise reduction is signal suppression during

non-speech activity. As was discussed , a balance must be mainta i ned

between the magnitude and characteristics of the noise that is perceived

during speech activity and the noise that is perceived during speech

absence.

An effective speech activity detector was defi ned using spectra

generated by the spectral subtraction algorithm . This detector required

the determination of a threshold signaling absence of speech activity .

This threshold (1 = -12dB) was empirically determined to insure that

only signals definitely consisting of background noise would be attenuated.

I. Synthesis

After bi as removal , rectification , res idual noi se removal , and

non-speech signal suppression , a time waveform i s reconstructed from

the modified magnitude corresponding to the center window . Again since

only real data is generated, two time windows are computed simultaneously

using one inverse FF1. The data windows are then overlap added to form

the output speech sequence. The overall system block diagram is given

in Figure 111.2.
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VI. Results

A. Introduction

Examples of the performance of spectral subtraction will be presented

in two forms: Isometric plots of time versus frequency magnitude spectra;

with and without noise cancellation , and intelligibility and quality

measurement obtained from the Diagnostic Rhyme Test (DRT) [11]. The

DRI is a well established method for evaluating speech processing devices .

Testing and scoring of the DRT data base was provided by Dynastat Inc .

[l 2J . A limited single speaker ORT test was used. The DRT data base

consisted of 192 words using speaker RH recorded in a helicopter environ-

ment. A crew of 8 lIsteners were used.

The results are presented as follows : (1) short time amplitude

spectra of helicopter speech; (2) DRI intelligibility and quality scores

on LPC vocoded speech using as input the data given in (2); and (4)

short time spectra showing additional improvements in noise rejection

through residual noise suppression and nonspeech signal attenuation .

B. Short Time Spectra of Helicopter Speech

Isometric plots of time versus frequency magnitude spectra were

constructed from the data by computing and displaying magnitude spectra

from sixty-four overlapped Hanning wi ndows. Each line represents a

128 point frequency analysis. Time increases from bottom to top and

frequency from left to right.

A 920 ms section of speech recorded wi th a noise cancelling microphone

in a helicopter environment is presented. The phrase “Save your” was

filtered at 3.2 kHz and sampled at 6.67 kHz. Since the noise was

-27 - 
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V

acoustically added, no underlying clean speech signal is available.

Figure IV .l shows the digitized time signal . Figure IV .2 shows the

average noise magnitude spectrum computed by averaging over the first

300 ms of non-speech activity. The short time spectrum of the noisy

signal x is shown In Figure IV. 3. Note the fligh amplitude , narrow

band ridges corresponding to the fundamental (1550 Hz) and first harmonic

(3100 Hz) of the helicopter engine , as wel l as the ramped noise floor

above 1800 Hz. Figure IV.4 shows the result from bias removal and

rectification . Figures iV. 5.- and IV.6 show the noisy spectrum and the

spectral subtraction estimate using three frame averaging .

These figures Indicate that considerable noise rejection has been

achieved although some noise residual remains. The next step was to

quantitatively measure the effect of spectral subtraction on Intelligibi lity

and quality . For thi s task a limited single speaker DRI was Invoked to

establish an anchor point for credibility .

C. Intelligibi lity and Quality Results using the DRI
V The DRI data base cons i sted of 192 words recorded in a hel icopter

env i ronment. The data base was filtered at 4 kHz and sampled at 8 kHz.

During the pause between eac h word, the noise bias was updated . Six

output speech files were generated: (1) Digitized original; (2) speech

resulting from bias removal and rectification without averaging ; (3)

speech resulting from bias removal and rectification using three averages ;

(4) an LPC vocoded version of original speech; (5) an LPC vocoded version

of (2); and (6) an LPC vocoded version of (3). The last three experiments

-28 -
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were conducted to measure inte lligibility and quality improvements resulting

from the use of spectral subtraction as a preprocessor to a LPC anal$’sls-

synthesis device. The LPC vocoder used was a non-real time floating

point implementation [17). A 10 pole autocorrelation implementation

was used with a SIFT pitch tracker [18]. The channel parameters used

for synthesis were not quantized . Thus any degradation would not be

attributed to parameter quantization but rather to the all-pole approxima-

tion to the spectrum and to the buzz-hiss approximation to the error

signal. In addition , a frame rate of 40 frames/sec. was used which is

typical of 2400 bps implementations. The vocoder on 3.2 kHz filtered

clean speech achieved a DRT score of 88.

In addition to intell igibility , a course measure of quality [19]

was conducted using the same DRT data base. These quality scores are

neither quanti tatively nor qualitatively equiva lent to the more rigorous

quality tests such as PARN or DAM [20]. However, they do indicate on

a re lati ve scale improvements between data sets. Modern 2.4Kbps systems

are expected to range from 45 to 50 on composite acceptability ; unprocessed

speech, 88-92.

The results of the tests are suninarized in Tables IV.1 through

IV.4. Tables IV.1 and IV.2 indicate that spectral subtraction alone

does not decrease i ntel ligibility but does Increase quality especially

in the areas of increased pleasantness and inconspicuousness of noise

background. Tables IV.3 and IV.4 clearly Indicate spectral subtraction

can be used to improve the intelli gibi lity and quality of speech processed

through an LPC bandwidth compression device.
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D. Short Time Spectra Using Residual Noise Reduction and Non-Speech

Signal Attenuation

Based on the promising results of these preliminary DRT experiments

the algorithm was modified to incorporate residual noise reduction and

non-speech signal attenuation. Figure 15 shows the short time spectra

using the helicopter speech data wi th both modifications added . Note

that now noise between words has been reduced below the resolution of the

graph and noise wi thin the words significantly attenuated (compare with

Figure IV.4.
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V. Suninary and Conclusions

A preprocessing noise suppression algorithm using spectral subtraction

has been developed, impl emented , and tested. Spectral estimates for the

background noise were obtained from the input signal during non-speech

activity . The algorithm can be implemented using a single microphone

source and requires about the same computation as a high-speech convolution .

Its performance was demonstrated using short-time spectra with and with-

out noise suppress ion, and quantitatively tested improvements in

intelligibi lity and quality using the Diagnostic Rhyme test conducted

by Dynastat Inc.

Resul ts indicate overall significant improvements in quality and

i ntelligibility when used as a preprocessor to a LPC speech analysis-

synthesis vocoder.
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Table IV. I

Diagnostic Rhyme Tess Scores

Original S (No Avera ge) S (Three Average)

Voicing 95 92 91

Nasality 82 78 77

Sustention 92 87 86

Sibilation 75 83 84

Graveness 68 70 66

Compactness 88 87 88

Total 84 83 82
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Table IV.2 
V

Quality Ratings

Original S (No Average) S (Three Averages)

Naturalness of 63 60 61
Signal

Inconspicuousness 36 38 42
of Background

Intelligibility 30 -32 33

Pleasantness 20 31 25
Overall 27 33 29

Acceptability

Composite 26 32 29
Acceptability 
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Table IV .3

Diagnostic Rhyme Tes t Scores

LPC on . LPC on . LPC on
Origina l S wi thout averaging S wi th averaging

Voicing 84 90 86

Nasality 56 63 52

Sustention 49 52 56

SibIlation 61 70 88

Graveness 61 62 59

Compactness 83 83 93

Total 66 70 72
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Table IV .4

Quality Ratings

LPC on LPC on A LPC on V

Original S without averaging S with averaging

Natural ness 53 49 58
of Signal

Inconspicuousness 34 36 39
of Background

Intelligibility 28 30 28

Pleasantness 15 28 20
Overall 24 28 26

Acceptability

Composite 23 29 25
Acceptability
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Figure II.) Input-Output Relation betweenlX(eiw)I andJS (eiW)1
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[ PROCESS

Figure 111.1 Data Segmentation and Advance.
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Hanning Window 1
{ FFT j

_ _ _ _[ Compute Magnitude

[Subtract Biasj

L~~
1f_Wave Rectifyl

LReduce Noise Residual

Compute Speech Activity Detector

Attenuate Signal During[ Non-Speech Activity~J

IFFT

s(n)

Figure 111.2 System Block Diagram.
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Fi j ure IV .3  Short Time Spectru m of Helicopter Speech. 



5.

Figure IV.4 Short Time Spectrum using Bias Removal and Half -wave

Rect i f icat ion.
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H iure IV . 5 Short TLne Sp e ct rum of Hel i copter Speec hing us ing Three

Frame Avera gin g.
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Figure IV. 6 Short Time Spectrum using Bias Removal and Half-wa ve

Rectification after Three Frame Averaging.
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Figure Iv .7  Short Time Spectru m us ing  Bias Removal , H a l f -wave

Rec t i  f i  c a t i o n  • Resi  dua l ~oi se Redu~ t ion , and Non—

speech Signal A t tenu a t io n .  helicopter speech ).
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NONPARAMETRIC RANK-ORDER STATISTICS APPLIED TO ROBUST

VOICED-UNVOICED-SILENCE CLASSIFICATION

B. V. Cox

1. K. Timothy
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NONPARANETRIC RANK--ORDER STATISTICS APPLIED TO ROBUST
VOICED-UNVOICED—SILENCE CLASSIFICATION

*
B. V. Cox and L. K. Timothy

*Sperr Univac
Department of Electrical Engineering, University of Utah

Salt Lake City, Utah

ABSTRACT

This paper describes a theoretical and experimental investiga-

tion for detecting the presence of speech in wide—band noise. A robust

algorithm for making the voiced—unvoiced—silence decision Is described .

This algorithm is based on a nonparametric statistical signal—detection

scheme that does not require a training set of data and maintains a

constant false alarm rate for a broad class of noise inputs. Two non—

parametric deci8ion procedures are Investigated , the Kruskal—WalIis and

the multiple use of the two—sample Savage statistic . The ~erforaances

of these detectors are evaluated and compared to that obtained from

manually classifying twenty recorded utterances. In limited testing,

the average probability of misclassification of voiced speech for the

S~.vage case was less than 6, 13, 28, and 55 percent , corresponding to

signal—to—noise ratios of 30, 20, 10, and 0 dB, respectively.
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I. INTRODUCTION

The problem of classifying speech in noise as voiced, unvoiced ,

or silence (noise alone) is one of the most fundamental, important, and

difficult problems encountered in speech processing [1, 2, 3, 4]. The

voiced, unvoiced, or silence decision is required in most computer—

oriented speech communications, understanding, or recognition systems.

Various approaches for making this decision have been reported in the

speech literature. In most of these papers, the detection of speech

in background noise was conducted in a relatively noise—free environment

under ideal laboratory acoustic recording conditions. However, such

ideal acoustic environments are not realizable for practical usage of

speech processing systems.

Practical application of the speech process ing systems requires

the development of robust speech algorithms so that speech quality

does not degrade to an unacceptable level in the presence of acoustically

coupled background and channel noise, including telephone and radio

communication applications with speaker variations and nonstationary

aspects, tandoming and conferencing configurations, and in the presence

of communications jamming [2, 5].

The voice—unvoiced—silence decision is a difficult problem In

these real environments. This paper reports the investigation of a

nonparametric , rank—order statistical decision procedure that shows

promise. It is theoretically robust in the communication sense, main-

taining a constant false alarm rate (type I error) independent of noise

power for a large class of distributions. Although this detection
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approach is new to speech processing, it is a mature statistical

discipline. The nonparametric detection review paper by Thomas [6)

indicates that a bibliography published in 1962 gives more than 3000

V references. The application and analysis of nonparametric detections

historically has been confined to nonengineering problems , an engineer-

ing text has only recently been published [7]. Nonparametric decision

procedures have been recently applied to radar systems that must

operate in an environment of intense external interference [7].

The principal feature of nonparametric detection for this engi-

neering application is its ability to maintain a constant false—alarm

rate for large classes of noise distributions (equipment noise, weather ,

clutter , interference). Some specific advantages applied to the speech

V voiced—unvoiced—silence detection are:

1. It maintains a constant false—alarm rate with a fixed

threshold for large classes of noise distributions.

2. It is robust (insensitive to changes not under test) and

powerful (sensitive to specific factors under test) in a

statistical sense.

3. It does not require statistical information about either

the signal or the background noise (does not require a

training set of data) to set a decision threshold .

4. Performance for signals in non—Gaussian noise may often

surpass that of detection optimized against Gaussian noise.

5. It will operate where the noise statistics are nonstationary

or change from one application to another.

- 51 - 
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6. It is simple to implement digitally.

7. For large sample sizes, it can be as efficient as the Nymann—

Pearson detection for a wide class of noise distribution.

The technique developed in this paper is designed to discriminate

against wide—band noise, but is expected to do poorly against narrow—

band noise. However, with some reasonable modifications, the narrow—

band noise problem could be moderated.

Although the voiced—unvoiced—silence decision has wide speech

system application, a considerable part of this research was motivated

by the requirements of digital communications systems. The past

several years have seen notable advances in the linear predictive cod—

ing (LPC) vocoder , research, development, implementation, including

hardware and ~software realization. This effort to develop and imple-

ment an all-digital communications system has resulted in hardware

implementation of the LPC vocoder alogritbm . The LPC algorithm was

designed in a relatively noise—free environment; its quality and per-

formance degrade in the presence of background noise. Practical usage

F of the LPC vocoder in acoustically adverse environments has identified

a need for more robust speech—processing algorithms. The principal

objective of this research was to address the robust speech detection

issue in the presence of wide—band noise.

- 5 2 -
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II. BACKGROUND

The problem of detecting voice signals in the presence of noise

has only been addressed by a small number of investigations. In these

investigations, the traditional approach to distinguish between voice

and noise was to level detect waveform energy [1, 8, 9]. The threshold

normally was experimentally determined by a limited training set of

data [9, 10], by the maximum noise power recommended 1~y CCITT f or

telephone channels [4, 9, 11], or by a threshold adjustment process

updated on a fixed schedule (every half second) [12).

Recently, Atal and Rabiner [13] suggested a pattern recognition

approach to voiced—unvoiced—silence classification in five measurements

or features —— energy, zero—crossing rate, autocorrelation coefficient

at unit sample delay, first predictor coefficient, and energy of the

predictor errors were combined using a non—Euclidian distance metric

to give a reliable decision. This method was optimized for telephone

line inputs by Rabiner, et al. (14], and used for digit recognition by

Rabiner, et al. [15, 16). The algorithm was modified to do an average

signal spectrum template match using an LPC distance measure 117).

Siegel and Steiglitz [18] proposed a modification to the Atal

[13] algorithm in which a relatively small set of samples was used to

train the classifier using three features —— LPC normalized minimum
error, RMS value, and ratio of high—to—low frequency energy.

Lin (19) and Adoul [20, 211 modified Atal and Rabiner ’s pattern

recognition approach for their proposed detectors.
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Sarma and Venugopal [22] suggested a classification technique

requiring less computational effort based on the concept of variable

decision space, using only three features and by avoiding linear pre-

dictive analysis.

The pattern recognition approach to the voiced—unvoiced—silence

classification has usefulness for many speech processing systems ap-

plications. However, it does not address the robustness issue in a

communications sense since the scheme requires a training set of data

and will operate without degradation in performance only for that

particular recording condition. The nonstationary speaking environ-

ment limitation mentioned by Atal and Rabiner still exists [13].

An optimum classification detector, suggested by McAuley [23],

in which a matched digital Wiener filter was designed for each signal

class, parallel processed the signal by each of these filters. A

statistical maximum likelihood decision criterion was used to make this

final classification. Rabiner [15] indicated that this approach shows

promise, but that it requires a large amount of signal processing, and

has not as yet been extensively tested.

McAuley [24] modified his method to include an adaptive noise

cancellation algorithm. The training requirement for this algorithm,

though not as stringent as the Atal—Rabiner algorithm, requires a 300

ma speech—free interval to determine noise detection thresholds.

Jankowaki [12] developed an adaptive threshold method that operated on

a f ixed schedule every half second to train the detector.

- 54 -
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III. RATIONALE

The following rationale presents a nonparametric approach to

speech detection which requires no training sets or adaptive techniques.

A nonparametric rank—ordered statistical detection technique is used

to classify a sequence of small intervals of data as voiced, unvoiced,

or silence. The strategy of nonparametric detection used in this

paper is to compare the rank—order of samples from two or more experi-

ments. The primary problems are to select an efficient statistic and

te8t procedure which are sensitive to voiced—unvoiced—silence param-

eters but are insensitive to other variables such as signal—to—noise

ratio. Theoretical discussions of the following issues are presented

in Woinaky [25].

First consider the traditional hypothesis test involving samples

from two experiments; more than two samples are considered later.

The sets X — x2, ..., and Y 
~ {~~ 1~~ 

y
2
, ..., denote the

samples obtained in each experiment where the elements x~ and yj
represent amplitude values of random, independent samples of size is and

n, respectively. The sets X and Y are assumed to be from populations

with unknown continuous cumulative distribution functions F and Fx y

respectively. The detection problem is to make the decision F
~ 

F

or F
~ ~ 

F~. The statement H0:F~ 
— F

>, is the null hypothesis. The

alternate hypothesis is H1: - Fx # F~.
The null hypothesis H0:F

~ 
F can be tested without any knowledge

of F
~ 

and P using nonparametric rank-ordered statistical methods as

follows. Since it is assumed that 
~x 

— F
>,. 

all data from X and Y are
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pooled to form the set Z — X + Y = 
{~1~ z2, ..., . The elements

in Z are assigned ranks r(zk) 
according to relative values (larger or V

smaller) and reordered according to rank such that

R(Z) — 
{r (z1), r(z2). ..., r(zN)} 

— {i , 2 , . . . ,

where N — n+m. The basic assumption of rank—ordered statistics is

that any element in X or Y is equally likely to appear as any given

rank in R(z). Let the elements in R(z) belonging to X be r(x~). The

probability of occurrence of any specified rank—ordered subset X is

equally likely with the probability of occurrence where the

binomial coefficient is all possible arrangements (combinations) of

the subset X in Z. All probabilities of rank—ordered statistics can

be determined by counting possible outcomes and , consequently, all

probability calculations are independent of amplitude information

(signal—to—noise ratio).

The hypothesis test is completed by selecting a test statistic

T and a decision threshold T , i.e., if P(T > T \ < a , then H :F Fa — a j —  o x  y

is rejected. For the purposes of this paper, a single tail decision

is made using a threshold Ta corresponding to the probability ci of re-

jecting H0 when H0 is true (a type I error).

Two nonoptimal test procedures are considered which deal with

experiments involving multiple samples, the Kruskel—Wallis and simultane-

ous [25, 27, 28, 29, 30]. Two basic test statistics are introduced , the

Mann—Wbitney—Wilcoxon 1 7 1  and the Savage [25, 31, 32], which are modified

- 56 -
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for use in the multiple teat procedures. The modifications involve a

chi—squared and mixed statistic (33). The Mann—Whitney (7] and Savage

(31] tests, which are two sample tests, are discussed first to intro-

duce basic concepts of the Mann—Whitney—Wilcoxon and Savage nonpara—

metric statistics before the multiple sample tests are considered.

The Mann—Whitney—Wi lcoxon
Statistic and Mann—Whitney Test

The Mann—Whitney—Wilcoxon statistic S is simply the sum of the

ranks of the elements belonging to X; i.e.,

S — ~ r(x~) 
(1)

i—l

which can be modified such tha t

= ~~ r (x~ ) — .
~~
. is (m + 1) (2)

i—i

which gives -

E[T~~1 
‘~~~ nm (3)

Var {TM?,J) 
— 12 nm (n + is + 1) (4)

where £ (
~

] is the expected value and Var [ .]  is the variance operator.

As an example, consider the Mann—Whitney teat H0:F
~ 

— F based

on the samples

- 57 -
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x— {l6, 8, 32)

Y — {l0, 3, 5, 14)

with a decision threshold P(S > T
~)’a 

— 0.05. We find that

z — {3, 5, 8, 10, 14, 16, 32)

and the rank sequence is

R(Z) - {r(y2), r(y3), r(x2)~ r(~1)~ r(y4),r(x1),r(x3)}

— (1, 2, 3, 4, 5, 6, 7}

The S statistic for this case is

S — 3 + 6 + 7 — 1 6

As a matter of counting we note that the largest possible value of S

could have been 18 which could have occurred once, S 17 could have

occurred once, and S — 16 could have occurred twice (S = 3 + 6 + 7 and

S — 4 + 5 + 7), etc. The total number of possible outcomes is (
~
) —

7!/(3D(4!) 35. Consequently, the corresponding probabilities of

the upper tail are

P(S — 18) — 1/35

P(S — 17) — 1/35

P(S — 16) — 2/35
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which gives P(S > 16) — 4/35 ~ 0.114 > a — 0.05. Consequently, H :— F is accepted. The hypothesis would have been reje ted if S —
18.

For large values of m, the central limit theorem applies and

the T~~ statistic approaches normality. Tables for the T~~ statistic

can be found for n and is ranging up to 20 [7  ]. For larger values,

normal distribution tables can be used. The Mann—Whitney test remains

unbiased and consistent if F
1 
and F2 dif f er only in location of their

means (7 1. Consequently, the Mann—Whitney test is used primarily to

test the difference in mean values; i.e., R0:E[X] — E[Y1 or H1
:E(X] ~

ElY). Other tests such as the Savage are more sensitive to differences F

in variance.

The Savage Statistic and Test

The Savage statistic is the optimal nonparametric rank—ordered

statistic for random variables exponentially distributed in amplitude

considering the hypothesis H~ :o — a [31] where and a represent 
- -

the standard deviations of X and Y. To a good approximation voiced

speech is exponentially distributed. Figure 1 presents an amplitude

probability density function experimentally determined from speech

(34] which is composed of two components, voiced and unvoiced. The

unvoiced accounts for the high peak near zero which tends to be nor—

mally distributed, whereas the diff use tails near ±2o unlike the normal

density function are caused by voiced speech. Two exponential density

functions, Gamma and Laplace, are superimposed in Fig. I which better

-
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represent voiced speech in the neighborhood of ±2o.

Since the voiced—unvoiced—silence decision thresholds are usually

around the 2a diffuse tail, better decisions can be made if voiceL

speech is modeled as being exponentially distributed . In nonparaiuetric

decision theory, the optimal Savage statistic for exponentially dis-

tributed speech is [32]

N
T
s

= 
~ 

A
k
U
k 

(5)
k—l

where

1 if z
k

cX

(6)

0 if z 1(cY

N
Ak 

1 (7)
j-N—k+l ‘

N - m +  n

The term A
k 
weights the rank elements in Z belonging to X with in—

creasing value as k N. Consequently,  the Ts statistic gives more

emphasis to the statistical data near the decision thresholds than the

T~~ statistic. The mean and variance of the Savage statistic are

Et T SI  
— m (8)
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Associated probabilities for decision purposes can be found in [32]

Table 10 for n and is less than 20. For larger values, Ts approaches

normality. Consequently the normal distribution can be used in con-

junction with Eqs. 8 and 9 to establish the decision threshold T~
.

Kruskal—Wallis Multiple Decision Procedure

The voiced—unvoiced—silence decision as described in the follow-

ing section involves independent samples from four frequency bands.

The Kruskal—Wallis test is considered since it was specifically designed

to test the multiple sample problem.

In general consider K samples

x1 - {~11~ x12, ..., xin }

V 

x2 - {x21~ x22, . . . ,  ~~
2 }

- {x~~ . XK2~ 
..., 

:KnK}

with the total number of observations N 
~ 

n~ which are pooled and
i—i

assigned ranks r(xjj). The samples are assumed to be distributed F1,

- 6 2 -
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F2
, ..., FK 

and K multiple decisions are made based upon the null

hypotheses H0:P
1 (F~ — ... — F1_1 — Fi+j — — The multiple

sample problem differs from the two sample problems since two or more 
- 

-

distributions may not be equal to the remaining. Consequently the

pooled sample may be biased (upward in the case of speech). Reference

[25 ] indicates that no optimal test statistics have been found. How-

ever , a decision procedure can be formulated using the statistic

K (N
_ n~)(T 

_
n )

2

TKW 
~~~ 

N Var ETsi] 
(10)

which is asymptotically chi—squared distributed with K — 1 degrees of

freedom and, consequently, allows use of existing probability tables

to set T. The (N — n
i)IN term asymptoticall

y removes the bias from

the pooled sample. The T
si 

term is the Savage statistic for the ith

sample with

E[T sil Ii . (11)

and

Var LTsiI — 
fi~~_

_

1

n
i) (
~ 

— 

~~

. 

j~ 1 ~
) (12)

The Savage test statistic Tsi 
was selected since it is sensitive to

voiced speech and a variance alternative.
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Simultaneous Decision Procedure

The Mann—Whitney—Wilcoxon and Savage test statistics are biased

when applied to the multiple sample case as discussed in the previous

paragraph. For small a ‘. ‘~ 1 the correctl~n tactor

ci’ — 2a/K(k — 1) (13)

may be applied to remove the bias 129, p. 1791. Tests using this cor-

rec tion factor are referred to as a “Simultaneous Decision Procedure”.

Mixed Statistics

Feustal (331 demonstrated that on the order of N
2 
operations are

required to perform the ranking operation. Feustal proposed a mixed

statistical test that requires on the order of pN operations for the

case where it n~ — n~~. The n observations from each of the K samples

are divided into p groups of q observations. The amplitude values of

each group are suimned forming pK values which are then ranked and

incorporated into any of the above rank—ordered tests. Feustal

demonstrated that negligible loss in efficiency is experienced for

q ~ iS.
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IV. SYSTEM DESCRIPTION

The operation of the voiced—unvoiced—silence decision system

investigated in this paper is presented in Fig. 2. The system was

designed to discriminate against wide—band noise with a uniform power

spectrum across the audio range. A bank of four pass—band filters was

used to partition the frequency spectrum into four contiguous intervals

as presented in Fig. 3. The gains of each filter were normalized such

that the average power out of each filter were equal for the white

noise case. With voiced speech present, the probability distributions

- 
of the signal frcm the first two filters should have larger variances

than the last two filters as indicated by the typical spectrums

represented in Fig. 4. With unvoiced speech present, the probability

distributions of the signal from the last two filters should have

larger variances than the first two filters as indicated in Fig. 5.

Under this strategy a few voiced—unvoiced decisions are likely to fail

with front vowels similar to [i] which have strong second and third

formants between 3 and 4 kHz. The partitioning of the audio spectrum

by the filter bank was based upon equal contribution to the Articulation

Index and Perceptual Criteria discussed by [35]. Variations in male,

female, and children’s speech were considered .

The speech signal was low—pass filtered to 3.2 kHz, sampled at

6.67 kHz, and high—pass filtered at approximately 200 Hz to remove any

de or low—f requency hum. The output from the high—pass filter was

formatted into blocks of 100 samples (15 ma of data). Each block of

4 -65 - 
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data was then applied to the four digital filters. At the end of each

15 ma, 400 samp les from the filters were rank ordered and passed to the

detector.

______ 
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V. NONPARAMETRIC DETECTOR TRADE STUDY

As indicated in Section III , two test procedures were selected

for evaluation: Kruskal—Wallis and simultaneous which included the

Mann—Whitney—Wilcoxon and Savage statistics in conjunction with chi— ~I -

squared and mixed statistics. The evaluation was based upon correct

decisions (recognition rate) for each category —— voiced, unvoiced , and

silence (noise only). The data base was 20 words taken from a rhyme

file provided by Dyna Stat, Inc. [361. The words were: gob, sue,

taunt, nil, boast, jab, cheat, said, gnaw, weed , deck, chew, thong,

keep, got, dank, shoes, shag, pool, and dip. Wide—band noise was

added to a clean speech recording to produce signal to noise ratios

(SNR) of 30, 20, 10, and 0 dE. Reference voiced, unvoiced , and silence

classifications for the data base were established by close visual

inspection of the waveforms and by listening tests of the clean speech.

The data were divided into 15 ma blocks.

Decision Procedure

For each 15 ms data block, 100 samples from each of the four

filters were pooled and ranked. Each sample set was represented as

X1, X2, X3, and X4 with cumulative distribution functions F1, F2, F3,

and F4 corresponding to the contiguous filter banks starting with the

lowest frequency filter as indicated in Fig. 3. A test statistic T

for each filter was formed according to Eq. 2, 5, or 10, depending on

which test procedure was being evaluated. A critical value T
~ 

cor—

responding to a 5 percent false—alarm rate (type I error) was selected.
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The null hypothesis H0:?1 — F
2 

— F
3 

— F
4 
was tested. If T < T

~ 
for all

four filters, the hypothesis was accepted and the decision made that

noise only (silence) was present. If T > T
~ 

for any filter , then H

was rejected, and it was concluded that the signal was either voiced

or unvoiced. If the test statistics from more than one filter were

greater than T
~
, then only the largest T was considered. The voiced

decision was made if the largest T > T
~ 

was from the first or second

filter. The unvoiced decision was made if the largest T > T~ was from

the third or fourth filter. j

I—
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VI. TEST RESULTS

Preliminary tests were conducted to establish a testing

strategy. The Mann—Whitney simultaneous test was conducted on three

words and a 4.5—second noise file to determine if a significant non—

zero mean value existed in the amplitude data. The hypothesis that

the mean value is zero could not be rejected at the 95 percent level 
V

(a — 0.05). It was concluded that short—term 15 ma data blocks at 100

samples per filter output would not produce any significant nonzero

mean value (all data were high—pass filtered with a stop band 0 to

200 Hz). The Mann—Whitney—Wilcoxon statistic was discontinued at this

point in favor of the Savage statistic which theoretically is more

sensitive to voiced speech.

The Savage statistic was tested on the 4.5—second noise only

file using the mixed procedure. The amplitudes of 100 samples from

each filter were grouped into n 20 sets of 5 each. The average of

each group was ranked and used to form a Savage statistic. The cal-

culated mean was 19.97 compared to the theoretical mean of 20, Eq. 11.

The calculated variance was 5.97 (with a standard deviation of 0.56)

compared to a thecretical variance of 3.77, Eq. 12, which was promising.

The preliminary tests continued by comparing the mixed Savage

to the full rank (100 ranked samples per filter) Savage simultaneous

decision procedure on three words. No significant differences were ob-

served in making the voiced—unvoiced—silence decision. Values of T
a

— 3.30 and 2.39 corresponding to a’ — 0.0083 (Eq . 13, K — 4) were used for

- 73 -

V 
-- -



-~~~ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~V - _ _ _ _A ~~~~~~~~~~~~~~~~ ~~~~ ,~~~~ ~~~~~~~~~~~~~~~~~ . . .~~~~- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

the decision threshold for the mixed and full rank cases, respectively.

This test was repeated using a mixed versus a full rank Kruskal—Wallis

test procedure. Likewise no significant differences were observed.

Values of T
~ 

— 18.1 and 9.48 corresponding to a — 0.05 were used for

the decision threshold for the mixed and full rank cases, respectively.

Since fewer calculations are required with the mixed statistic, the

full rank method was discarded.

Continuing, the decision was made to complete the tests by

comparing the recognition rates of the mixed Savage simultaneous test

to the mixed Kruskal—Wallis multiple test on the 20 words from the

rhyme file. Tables I and II present the recognition rates. Data re-

ported as “—“ indicate that either no unvoiced sounds occurred in the

corresponding word or a computer failure occurred. Only recognition

rates are reported which are the complements of type I and II errors.

The complement of the silence recognition rate is a type I error, and

the average complement of the voiced and unvoiced recognition rate is

the type II error.
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Table I. Recognition rates for the mixed Savage simultaneous
decision procedure, T

~ 
— 3.30.

Percent V Silence Voiced Unvoiced
Recognition

Word SNR dE 30 20 10 0 30 20 10 0 30 20 10 0

Gob — — — — 95 79 51 28 — — — —
Sue — 100 100 100 — 100 100 100 — 92 58 25

Taunt 95 95 95 91 95 95 82 36 100 100 0 0

Nil 85 100 100 100 100 89 78 49 — — — —
Boast 82 96 89 89 100 95 84 58 100 67 0 0

Jab 90 90 90 90 84 70 38 24 100 75 50 25

Cheat 91 95 91 91 100 91 91 76 86 86 71 57

Said 73. 86 100 100 100 93 52 44 — — — —
Gnaw 75 100 100 100 100 94 86 17 — — — -
Weed 100 100 100 100 95 93 79 45 — — — —
Deck 100 100 100 100 82 77 59 41 43 29 0 0

Chew 100 100 100 3.00 96 90 90 45 86 86 71 43

Thong 100 100 100 100 95 86 84 22 — — — —
Keep 100 100 100 100 94 88 71 71 100 67 33 0

Got 90 95 86 86 83 70 61 30 100 100 0 0

Dank 100 100 100 100 89 78 50 28 — — — —
Shoes 100 — 100 100 100 — 100 77 100 — 83 50

Shag 67 100 100 100 97 87 61 42 100 91 64 27

Pool 88 100 100 100 97 95 86 51 — — — —

Dip 91 95 100 100 87 83 48 26 — — — —
Average % 90 97 97 97 94 87 72 45 92 81 44 20
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Table II. Recognition rates for the mixed Kruskal—Wallis decision
procedure , Ta 

— 18.1.

Percent Silence Voiced Unvoiced
Recognition

Word SNR dB 30 20 10 0 30 20 10 0 30 20 10 0

Gob — — — — 93 77 46 18 — — — —
Sue — 100 100 100 — 100 100 91 — 17 1 1

Taunt 100 100 100 100 95 95 78 45 100 0 0 0

Nil 100 100 100 100 100 89 46 41 — — — —
Boast 100 100 100 100 100 94 72 56 100 33 0 0

Jab 100 100 100 100 78 57 38 14 100 75 50 25

Cheat 100 100 100 100 88 88 82 82 77 71 71 29

Said 100 100 100 100 100 89 52 30 — — — —
Gnaw 100 100 100 100 100 92 67 22 — — — —
Weed 100 100 100 100 95 93 69 45 — — — —

Deck 91 91 91 91 86 73 55 27 43 14 0 0

Chew 100 100 100 100 97 93 86 31 86 86 71 29

Thong 100 100 100 100 92 86 84 30 — — — —
Keep 100 100 100 100 94 82 71 65 100 67 33 0

V 

Cot 100 100 100 100 87 74 57 17 0 0 0 0

Dank 100 100 100 100 75 72 39 10 — — — —
Shoes 100 — 100 100 100 — 100 67 100 0 83 50

Shag 100 100 100 100 90 81 50 16 100 91 50 27

Pool 100 100 100 100 97 92 86 30 — — — —
Dip 100 100 100 100 87 74 30 26 — — — —
Average Z 99 100 100 100 92 84 65 37 80 45 32 14
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VII. CONCLUSIONS

Test results presented in Tables I and II demonstrate a level

of robustness based upon the following observations. At 30 dB SNR

speech classification can be sustained at a high recognition rate

with a single threshold T
~ 

set by a theoretical value obtained from a

probability table. Measurements of noise power (training set) were

not used to set T . False—alarm rates for silence classification
ci

(type I error) remained relatively constant as the SNR was varied as

expected , although the rate was less than the predicted 5 percent in

most cases. The bias problem associated with multiple sample testing

accounts for this reduction. False—alarm rates for voiced and unvoiced

classifications (type II error) increased as the SNR decreased as ex—

pected since T was set in terms of a constant type I error.

The primary problem that caused a 10 percent false—alarm rate

f or silence classification at 30 dE SNR in the Savage simultaneous

test was traced to a nonuniform power spectrum in the background noise

of the original speech recordings. The decline in recognition rates

of voiced and unvoiced classifications as the SNR was reduced was

primarily caused by masking of the transitions between speech segments.

Misclassification of voiced as unvoiced was rare, only occurring in

the words “weed” and “keep”. No misclassification of unvoiced as

voiced occurred .

As indicated in Tables I and II, the Savage simultaneous test

was more effective in classifying voiced and unvoiced speech, whereas
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the Kruskal—Wallis test was more effective in classifying noise. De—

tails of the tests are reported in [37].
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