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~~ This investigation was initiated to develop analytic procedures for estimating aerodynamic

coefficient derivatives for missiles. The analytic estimates will depend primarily on the geometrical con-
figurations of the missiles.

- The problem of determining the coefficient derivatives becomes reasonably tractable for thin
airfoil-body combinations with moderate finite aspect ratios and flying at sonic speeds. Starting with
the equations for a perfect gas, a lineariza t ion of them is achieved by assuming flow over a thin
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- ~~‘profile . A further assumption of a speed of Mach I gives rise to slender body theory . The problem

is thus reduced to a potential boundary value problem in a cross-flow plane. Upon consideration of
the tota l momentum in a cross-flow slab, it Is found that the resultant latera l force may be expressed
as a contour integral of the velocity potential. The effects of missile angle of attack and control-
surface angle are incorporated by way of Neumann-type conditions on the boundary contour.

For the special case where the missile cross section is a circle with midwing,. there is an analytic
solution for the potential-flow problem. For the case where there is an arbitrary missile cross section
a computer progra m has been developed which addresses the problem using a source distribution ap-
proach. Results are given for several sample cross sections. It is shown how the cross-flow results
may be applied to a typical missile configuration to obtain the aerodynamic coefficient derivatives.
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AERODYNAMIC COEFFICIENT DERIVATIVES OF SONIC

— 

MISSILES VIA SLENDER BODY THEO RY

INTRODUCTION

The Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program is involved in
cont inu ing  development of simulation facilities at NRL to allow U.S . Navy investigation of the
interaction between ant i -sh ip  missiles and shipboard defensive electronic warfare (EW ) systems.
Over the past four years , the ENEWS Program has developed techniques for assessing evolving
EW systems using mathematical  models in simulation programs on digita l  computers.

The advent of this  new generation of models is supplemented by the arr ival  of new
methods of missile analysis for accomplishin g the intent  of EW simulations.  To achieve realis-
tic s imulat ion , it is impera t ive that the aerodynamic properties of the threat missiles to be
modeled must be closely approximated using valid analyt ic  results. This report forms a l ink  in
the chain of cont inuing  investigations intended to assess missile threats , current  and projected.
This cont inuing assessment is an essential input  to the evaluation and enhancement  of elec-
tronic warfare systems intended to counter missile threats.

At its current stage , this assessment program is developing expeditious and versatile pro-
cedures for est imating transonic aerodynamic coefficient derivatives.  These values are requ ired
in computer simulations that incorporate missile fli ght behavior. This information is also useful
in determining outer l imits  for the maneuvering capability of a missile , th us providing inputs  to
bounding the potential capabilities of threats. An anal ytic abil i ty to determine aerodynamic
coefficient derivatives is essential for the comprehensive study of missile-EW engagements.
These coefficients depend upon the geometric configuration of the missile , i ncluding contro 1
surface positions , the velocity of the air stream relative to the missi le , and the orientation o
the missile relative to the air stream. The values of the various aerodynamic coefficient deriva-
tiv es may be estimated using wind- tunnel  tests on missile models , or al ternat ively,  by means of
analytic calculation. Although wind- tunne l  tests are preferred from the point of view of accu-
racy and validity,  the great expense involved in performing them must be taken into account .
Wind- tunnel  tests will continue to be used to determine the aerodynamic coefficient der iva t ives
for a few of the more important missiles. For the mul t i tude  of others , it would be preferable to
have and uti l ize a capabi kty for making analytic estimates of these coefficients.

This problem becomes tractable for missiles with moderate aspect ratios at sonic speeds.
In such cases assumptions may be introduced which greatl y simplify the mathematical  descrip-
tion of the problem. By treating a missile of moderate aspect ratio as a th in  profile and regard-
ing the flow about the missile as a perturbation of U uniform flow , it follows that the basic equa-
lion of a perfect gas can be rendered linear. Re quir ing,  in addition , that the flow be sonic
reduces the formula t on to that of slender body theory.

Manu script submitted AUg USt 9, 1978.
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In .IsldIlttm I t)  ‘, a t I s t S  It))~ .1 I~LIIt1tW I ol iCqUi len ie f l i ’. lot ‘.ofltt , t~t t ’ .’ .tl~ atials  ‘,i ’. , these es a t t i ~t
itons would he u ’.cSul in inis ’.IIc .ii ,ils s ts  outsid e the sonIc r ange Skndei buds t l ieot  m.n he
used to find s~ in~z bIldS in ie r ler ence  I ,icto i s that can be Lised to tt~~t~~t mIne s ~did e s t i m at e ’ .  ol the
sU f )’ .~ lilt .1 itt1 sti pet ‘.t ‘It It Sal ucs

( , t t It I t ’ f l  shou ld 1w ~s~ tci ’.etf t IOS~C’S (‘I lit .I l 1$ ’ I% ~it g th e  resul t s  ui slender body I fR- lIt 1 he
tli t  e~ t r e su lt ’.  of t h s  t t i t ’i’t sh ould be 1CIII I R’I ed ss i th  sonic tin~1erstiinding uI t ra n sonle fio~ and
I t s  nun s  coniplesit te ’.. oih~ i~~tsc the  uni t ~totmed u ’.e~ could p o i e n t i i l l s  be led into a t t r i b u t i n g
pr opert ic ’.  to t ran ’ .ontc  schicle s w h i c h  a te  CIIt1iIL’IIU%

the th er i r e t ica l  des elopnicn t  on s~ I t i t h  (he e s t Im at ion  of these ci ’eflit ient  den s at  is es is

based ~ il l he outlIned bet CIII  I hi’. th~ ors educe ’. th e prob lem to one of stils ing a I s~
tli me lt si l l na I p o t en t i a l  t r t i ’ . s  - flu ~ ptob lent In I he s pet .i I ~a se is her e  ii c i t  s’. SCCI ion i ~t I he n t i s
sil t ’ is ~i cIrc le i s i t h  t itid-si ing , t h e r e  .it c anals  t ic  so lut io n s t o n  t he  po t ent i a l - f loss  probl em l t ’t

~ lh e i  t t t ) 5 ’ .  st’t I i i ’ i t S . .1 t i i i I I I ) L I tL ’t pi ogi am ha ’. l’eeii developed in th e ~‘ui se ot this  i i i ’.  e s t t g a t I t ) I )

t h at ~- ,t n 1w u sctl to sol e the tss o -• d imen sion al  po le t i l t  at eli’’.’. floss pt oble in

%( M M A R ~ 0,’ P R O ( ’EDUR F F OR ( ‘OFFFI ( ’ll ’ N 1
D E R I V A T I V E  I W E E R M I N A I I O N

This report embodies it procedure for delerminin g the sonic aerodynamic coefficient
der iv at ives of a missile , given i ts geometric configur at ion This procedure is summarized and
certain equations are re(’erred to that will  he discussed or der iv ed later in the report Accor ding
tO this proced ure, certa in cross seclioti profiles are chosen a var ious locallons along the length
of the missile Fitch individu a l  cross-section prof I le is subj ected to analy sis usin g a computer
program designed to determine cross flows. To obta in inpti (‘or this comput er program . it is
necessary to express the erosS•sectiofl profile qua n ti tat ivel ~ . to acco nipl t sh this , th e profi le may
he broken down into line segments and arcs , repres enting each with a few numer ica l parame-
ters. Another input to the computer program is a set ‘ I  b oundary conditions that is determined
by body angle and control surface deficcti ons . From these inputs , the cross-flow program com-
putes the app arent area , th at  is a q u a n t i t y  repre senting the overall aerudyii&imtc effect 01’ a cross
section. The cross-flow program repres ents the tm~j or portion of th e comput at iona l effort in
deter m ining the aerodynamic coefficients. ~~ use ut Fqs . ( 3Sf - ( 4 l  ‘I , the appa rent areas tire
translated in to the aerodynamic co efficient deri v at ive s  char act erist ic of the indivi dua l cross set’-
tt ofls

Iln’ aeio tls iu iu i t  cot’fiu ctctit  tleri s . i t t  es ch ar at ’t c i i s t t i .  ot the  us et , ill i t t  i s s i f e  a t e  ohta inet t
(ruin the t’uc tlit - icn t d e t i s a t i s  es c f u i t a t I e i  i ’ . t l t~ ot ci I” .’ . sect ion ’. usi ng I ti ’. (4 11. 1 ~ 11 .‘~moflg
th e  utlt ~ i in pu t s  to these equal ions a t e  the  posit iot ts  of t’hos~ it t i  t ) ’ . %  sect IOU ’. .intt the moment
te t e r en ce  cent el

A l ’R O l f l N A M l ( ’  ( ‘OFI ’Fft ’IFNl ’ I ) F R I V A 1 ’ I % F S  l ) EFINFI )

A number of th e  inur e impor t an t  aer odynainl t  coeflicit ’nt t tc i  is a t t \  es ssi l l  1w def ined i t t l ec
th e  int rodu ction ol’ not at ions antI ligures that  describ e and i l i t i s t  i at e  the t i i a t  f i t ’ I1l.l t i~ ,iI  C~~~I t’ ’.
st uns aitd sign convent i ons  used A ll  angles a te  expre ssed in degrees

th e no t . I I  ions used in dt’t in ln g the  aci utI~ n a i n i e  coetbtten t dci iv . i t  is  es ~tt C prese nt ed I IC\ t

tu t u iii ~g’. I and 2
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Fig I — Pitch notation and conventions

Fig 2 — Yaw not ati on and conventions
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b (reference diameter )
FN(O . 8,) (normal force)
~~~~ 8 ~) (side force )
Mka. 8,. 0) (pitching torque )
N($. 8 1, *) (yaw ing torque )
q — p V~ (dynamic pressure)
S — p r b2/ 4 (reference area)
1’ (free stream velocity )
a (angle of attack)

(sideslip angle)
8, (elevator angle)
8 

~ 
(ru dder angle)

9 (angular velocity of pitch)
p (density of air)
* (yawing angular velocity)

The pitch aerodynamic coefficient derivativ es considered are defined as follows:
i oF5

— 
~~~~~~~~~

. ( I )qS 8a

~ 
OF’.— — , (2)qS O&~

,
I OM (3)qSb &a ’

2I~., OM (4)mg qSb 2 O è ’
and

1 tiM
qSi’ oo ,, ’

These sets of coefficient derivatives may be used to express the normal force due to angle
of attack and elevator angle. Thus ,

F ’. — qS (C ~~,a + C’.5 8) . (6)

The equation for pitching torque due to angle of attack , elevator angle , and angular velo-
city of pitch is

M — qSh(C~,,cs + C,,,~6 ,.) + ,q~~
2 

C 5q f~. (7)

The yaw aerodynamic coefficient derivatives used herein are defined as follows:
I OF1C ,-~~— —
~~ 

-
~~~~~

- . (8)

4
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C I A — ‘

~~~~ ~~~~~~~~~

. (9)

‘~~ qSb 8/3 ’

C — ( I I )
~~
‘ qSb~ O,~.

and
I 8.\ )C~ qSh o~ , - ( 12

The yaw coefficient derivatives may be used to express the side force due to sideslip angle
and rudder angle. Thus ,

F1 — qS( ( ’
~~ 3 + 

~~~~ ~ 
( 13)

Yawing tor que due to sideslip angle, rudder angle, a nd an gular  velocity of yaw is
expressed as

‘s — qSh (C~,8 + (~~~~ ~) + (‘,,,qt . ( 14 1

SLENDER BODY THEO R Y

In setting forth the rationale underl ying the use of slender body th eory , it is assumed that
we are dealing with the flow of a perfect gas about a solid body. The veloc ity potential 41 for
the flow of this compressible fluid is governed by the following partial differential equation I l l

I —  ~ ~~~~~~~~~~~~~~~~~~~~~ 
(1~ 1

- O.~ 8.v ’ 0.) Or ’

+ 
1 041 02$ 1 041 841 01$
1 0: 0: 0- ’. 8.i 0’ . Os

2 041 041 o1$ 1 841 041 81,
c

2 Or’ 0: ti.vti : ~ 0-v 0: tisti:
— 0 ,

where the spatial coordinates are denoted by s . v. and The local veloc ity of sound ~ is given
by 

— — 

~ 
+ ~~~~~~~~~~~ + (16)

where the follo wing not a tion is used:

(stag nation value for the speed of sound)
— ( ‘. ‘C , (ratio of the specific heats)

Cr (specific heat at constant pressure)
C, (specific heat at constant volume)

S 
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Next , the previously given partial differen t ial equation is linearized. To do this , consider a flow
about a thin profile which is parallel to the free stream. This flow may be represented as a uni~
form flow plus a small perturbat ion. In the following equation the velocit y potenti al ~~‘ is

represented as a uniform flow potential l~~.s pl us a velocity perturbation potenti a l &

4 1 — V .,..’. +~~~~. ( 17)

Substituting Eq. (17) into Eqs. ( 1 5)  and ( 16) results in a differential equation for the velocity
perturbation p otenti al .  Upon linearization , the equation becomes

(18)
Ox 2 0.s 0:2

where

— I — .% I L. ( 19)

.tf~~— I’Jc~ . (20)

and

— — 
A — I I L .  (2 1)

The development that results when the first term in Eq. ( 18) is neg lected is referred to as
“slender body theory ”. This theory yields the following equation:

+ -
~~

-
~~~~

- — 0. (22 )
8.r ’- 8: 2

According to this approximation , only flow perturbations confined to planes perpendicular to
th e body are considered significant.

The primary application of slender body theory is , as the name suggests, to slender
bodies. These are configurations whose lateral dimensions such as span and thickness are small
compared to their length. And, for this type of missile, the expression Okb/ 0 ’. 1 in the first
term of Eq. ( 18) may be neglected , giving rise to Eq. (22 ) .

Slender body theory may also apply to sonic flows about non-slender bodies. The small
disturbance assumption is still valid for a thin wing-body combination with a moderate finite
aspect ratio , and for sonic flows y in Eq. 18 may be neglected, again resulting in Eq. (22 ) .
Under these ce~rdit ions , slender body theory will provide a first-order approximation to sonic
lifting flows (2 1.

Next , it is shown just how estimates of the aerodynamic coefficient derivatives may be
obtained using slender body theory. Consider an infinite slab of air of thickness dx perpendicu-
lar to and moving with the free stream. According to Eq. (22 ) . a two-dimensional potential
flow within the slab is assumed. The problem of the missile cutting through the slab, as illus-
trated in Fig. 3, may be treated as a plane flow with an immersed two-dimensional region. The
moving boundary contour of this region provides boundary conditions for the potential flow .
The effect of missile angle of attack is to impart a uniform velocity to the contour within the
plane , as illustrated in Fig. 4 .

6
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both ~ingte
Ofl hOund~lr% ~onditions

The effect of control surface deflection is to impart a velocity to that part of th e contour
corresponding to the control surface as illustrated in Fig. 5. An increase in size and extent  of
the missile cross section as it cuts throu gh the slab gives a point on the contour an outward
velocity as shown in Fig. 6.

An additional boundary condition is provided by a zero fluid velocity at inf in i ty  in the
cross-flow plane. These conditions determine (except for an additive constant ) “~~ tw o-
dimensional velocity pot ential th within the slab.

7
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Fig. 5 — Effect of control surface angle
on boundary conditions

~~
-J/

I
4

Fig. 6 — Effect of expanding cross section
on boundary conditions

The total momentum vector of the flow dP is expressed in the following equation as a
surface integral of the momentum density, over the region exterior to the boundary contour:

d P — d x f f p V a A . (23)

where the following notation is used:

dP (total momentum vector in slab)
dx (thickness of slab)
V (local velocity vector of fluid within plane slab)
dA (element of surface area)

The surface integral in Eq. (23) may be expressed as a line inte gral around the boundary con-
tour as follows:

dP ~- d x p ~~~ib dz , (24)

where dz is an outward normal vector representing an element of arc length along the boundary
contour.

F 8

— -
—4—.’ 

‘— ~ - .——- _ _.___.__.__.______.__.



-~ -—~ -~ -—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NRL REPORT 8203

The force vector (IF on a missile cross-sectional element will be equal and opposite to the
rate of increase of momentum in the slab.

This is expressed as

dF — — (dP) .  (25 ) 
- 

-

Taking into consideration that the missile is cutting through the slab with a velocity I ,..,. Eq.
(25) becomes

dF — — V ., —
~~

- (dP) .  (26 )
dx

Slender body theory has greatest validi ty for wings with monotonically increasing span 13 1.
In calculating par t icu lar  aerodynamic coeffic ient derivat ives , the analyst  wil l  not , in most cases ,
be deali ng with the simple case of a gradua lly expanding contour. The body may be tapered so
that it giv es a contracting cofuour , or , as at the ( railing edge of a wing, th ere may be a discon-
tinuous reduction in the ext ent  of the contour.

In order to deal with these situations , it will be taken as a hypothesis that Eq. (26) gives
the dF only when the magnitude of dP is increasing along the axis of the missile. Otherwise ,
dF will be taken to be zero.

To obtain the total lateral force vector F on a missile , the force vector dF on a cross sec-
tional element is integrated along the length of the missile , the coordinate x being used to
denote positions along that length down stream from the nose. Consider an interval along the
length of the missile over which the magnitude of dP is increasing. The total lateral force on
this interval is expressed as

‘—  ‘H

F —  f  dF. (27)
~~~~4

Here , x 4 and XH are the end points of the interval. The int egration is carried out after substi-
tut ing Eq. (26 ) into Eq. (27 ) , thus obtaining

AD
F — — V ,, -~--~-- . (28)

dx ,-,
~~

Substituting Eq. (24 ) into Eq. (28) results in the following equation for the total lateral force
on the interval:

F — —  V,,, p~~ 4i dz~~~~. (29)

A particular missile cross section wit h a specified direction of motion within a cross-flow
slab could be characterized using the conventional quantity apparent mass. However , we shall
define a related quantity, the appar en a rea of the cross section , a more convenient uni t to 
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expreu this concept . We define this vector quantity according to the following equation , where
the surface integral is over the region exterior to the boundary contour:

A _ - j ~- - f f V d A .  (30)

The expression V~ is a velocity naturally associated with the motion of the contour in the
cross-flow plane. This will generally be either the uniform velocity of the contour due to body
angle or the velocity of that portion of the boundary representing a control-surface deflection.
It is given as follows:

— 1’,,. i~. (31)

Here , ~ is the body angle or control-surface deflection. The velocity ~ may also be due to the
angular velocity of pitch or yaw denoted by u. In this case it is given by

— 1ï;~-J Ix — x $  oi. (32)

Here , x. denotes the p osition of the moment reference center measured downstrea m from the
nose and chosen to coincide with the center of gravity.

The significance of the apparent area is that the apparent mass of the cross section is
given by p ) AI d x, and the momentum of the cross flow is given by p V~Adx. The apparent area
may be expressed as the following contour integral:

A —  (33)

Note that the forgoing expression does not depend on the magnitude of V~ since the boundary
condition values and , thus , the contour integral are proportional to this velocity.

The transverse force and the moment of force on a missile may be expressed in terms of
the appa rent areas of the missile cross sections. The transverse force due to body angle or
control-surface deflection on an interval taken along the length of a missile where the apparent
area is increasing is:

IF 2 IF —  - p V . . q A ~ . (34)
10

The moment of force on this interval is given by —

s_ H a

M — f  (x — x~) LxdF. (35)

Here , I is a unit vector pointing downstream.

Substituting Eq. (34) in Eq. (35) ylelda the following for the moment of force on this interval:

to

S  

I~~~~—
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M — — -j~~
- vj,, 

~
, f (x — x1 ) Ix dA.  (36)

‘ — ‘ 4

In a similar manner , Eq. (37) is obtained for the moment of force due to angular velocity of
pitch or yaw:

‘ ‘a

M — — w f  (x — ~~) 2 Ix dA.  (37)
‘ — ‘ 4

APPLICATION TO A TYPICAL MISSILE CONFIGURATION

A method of estimating the aerodynamic coefficient derivatives of a typical missile
configuration is described here. Top and side views of the missile configuration under con-
sideration are shown in Figs. 7 and 8. Various points along the length of the missile have been
numbered as follows:

Fig. 7 — Top view of typical miuile conftguration

Fig. $ — Side view of typical missile contiguratlon
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I (a point where the cross section of the nose attains a maximum ) ,
2 (beginni ng of wing) ,
C (moment reference center) ,
3 (t railing edge of wing) ,
4 (beginning of tail ) ,
5 (trailing edge of elevator and rudder ) .

The value of x at the i th point along the length of the missile is denoted by x,.

One aspect of carrying out the method for determining the aerodynamic coefficient deriva-
tives is to determine apparent areas for the cross sections at a number of points along the
length of the missile. Notation is given below for apparent areas as given by Eq. (33) for the
cross section located at the station denoted by ~~. For angle of attack the apparent area is
denoted by A .,,, (x) , where in this case ~ in Eq. (3 1) represents the angle of attack of the mis-
sile , i. The effect of this s for small angles is to give the boundary contour a rigid motion
with velo city V . as ill ustrated in Fig. 4 , thus determining the boundary conditions for ~i .

For elevator deflection the apparent area is denoted by A va (x ) , where , in this case, i~ in
Eq. 31 represents the elevator deflection &,~. The effect of this for small deflections is to contri-
bute to that part of the boundary representing the control surfaces a velocity V~, while the
remainder of the Contour assumes a zero velocity. This is illustrated in Fig. 5 and provides the
boundary conditions for ~~ .

For side slip angles the apparent area is denoted by A 1-~(x) , where , in this case, ~p in Eq.
31 represents the angle of sideslip of the missile ~~~. The effect of this ~3 for small angles is to
give the boundary contour a rigid motion with velocity V, , thus determining the boundary con-
ditions for iii.

For rudder deflection the apparent area is denoted by A , . 6(x) , where , in this case, ,~ in
Eq. (31) represents the rudder deflection 8 ~-. The effect of this for small deflections is to con-
tribute to that part of the boundary representing the control surface a velocity F ,., while the
remainder of the contour assumes a zero velocity. This provides the boundary conditions for

The following equations introduce cross section coefficient derivatives. These are related
in a simple way to the apparent areas and are useful in expressing the aerodynamic coefficient
derivatives of the missile. Thus:

C,~~(x) — — 

~ff-~ 
A ,~,,(x) ’j . (38)

CNS (X )  — — A ,~ (x ) j . (39)

C~~(x) — — 
~~~~~~~~~ A~~(x) ’k , (40)

and

Cyg (x) — — 
~~~~~ A yg(x )’ k. (41)

12
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Here , J and k are unit  vectors in the cross-flow plane and in the directions of F N in Fig. 1 and
F in Fig. 2 , respectively. -

Formulas for estimating the aerodynamic coefficient derivatives of the missile
configuration are listed next.

C%’~ — Cs- ,, (x 3) — C%- ,, (x 1) + C~,,, (x 5) (42)

— Cs~ (x 5) (43)

Cm,, — — -
~~ 

+ 
X 2 

+ f (x — x~
) dC.~,, (x) (44)

Cmq — — -

~~~~ (5 + 5 + 

~1 (x — x c )2 dC~,,(x) (45)
0 x 2 x 4

CmH _ _ + J ( x _ X c)dCNS (X) (46)

~~~ — Cy,~(x3) — Cy~(x4) + Cy8 (x5) (47)

C~6 — C~8(x 5) (48)

C,,~ — — -
~

- + f + 
iJ 

(x — x,.) dCy~(x)
0 x 2 H4

~ 1 ~J ~S

c,,, — — -

~~

-- f+ f +  f  (x — x ,) 2 dC y~ ( x)  (50)
2 0 x 2 x 4

C,,8 — — -

~~ 
f (x — x~

) dC~ (51)

In obtaining the normal force due to body angle, two intervals are considered. One of
these extends from the nose tip to the trailing edge of the wing and the other extends from the
beginning of the tail to the trailing edge of the elevator. Using Eqs. ( 1), (34) , and (38) , the
coefficie nt derivatives for the normal force due to body angle are expressed by Eq. (42). In a
similar manner the coefficient for side force due to side-slip angle is expressed by Eq. (47) .

- The normal force due to elevator deflection is obtained as the force on the interval
- extending over this control surface. Using Eqs. (2) , (34) , and (39) , the coefficient derivative

for this force is expressed by Eq. (43). Similarly, the coefficient derivative for side force due to
- rudder deflection is expressed by Eq. (48) .

In obtaining the pitching moments due to body angle and angular velocity, three intervals
are considered. The first extends over the nose , the second over the wings , and the third over
the horizontal stabilizer. Using Eqs. (3) , (36), and (38), the coefficient derivative for the

13
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pitching moment due to body angle Is expressed by Eq. (44). Using Eqs. (4) , (37 ), and (3 8),
the coefficient derivativ e for the pitching moment due to angular velocity of pitch is expressed
by Eq. (45).

In a similar manner the coefficient for yawing moment due to side-slip angle is expressed
by Eq. (49), and the coefficient for yawing moment due to angular velocity of yaw is expressed
by Eq. (50).

The pitching moment Jue to elevator deflection is obtained as the moment on the interval
extending over this control surface. Using Eqs. (5) , (36), and (39), the coefficient derivative
for this force is expressed by Eq. (46). Similarly, the coefficient for yawing moment due to
rudder deflection is expressed by Eq. (51) .

It is apparent from Eqs. (42) , (43), (47), and (48) that the coefficient derivatives for the
nor mal and side forces , namely, Ci.,,, CNN, C~ and Cr8, are dependent on the cross flows at
the th ree stations along the length of the missile numbered 3, 4, and 5. The other coefficients
involve integrations and are evaluated as approximating sums. This evaluation requires analyz-
i ng a number of cross flows taken along the intervals of integration.

THE C IRCLE -W I TH -MEDW ING CROSS SECTION

In the special case, where the cross-section contour of a missile of angle of attack a is a
circle-with-midwing, the potential cross-flow problem has an analytic solution. The boundary
condition for a problem of thi s type is illustrated in Fig. 9. The following not ation is also m di-
cated: - 

-

R (x ,) (radius of circular cross section of missile)
s (x ,) (semi-span of wing)

1~
Fig. 9 — Circle-with-midwing cross sect ion

14
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For this case , the cross -section coefficients 141 are given by
R 4(

~~)( ‘s,, (~ — 
~~~~~~~~ s~~(~~ 

‘I — R ~~ + 
~~~~~ 

(52)

Applying this for mula , the pitch coefficie nt ~~~ may be estimated for a missile with the
configuration shown in Figs. 7 and 8, and which has circ ie-with-midwing cross sections. This
coefficient derivative is given by the formula:

— _!!. ~_ [s 2(x~ — R2 (x~) + 
R 4(.~3) 

(53)
90S s (x 3)

R4 (xç )
— R ( x .4) + s 2(x j) — R2(x 5) +

The formula given by Eq. (52) may also be applied in det ermining the coefficient derivatives
Cm., and (

‘
,,,~~. This is accomplished by substituting into Eqs. (44) and (45) .

A COMPUTER PROGRAM FOR ARB i TRARY
CROSS SECTIONS

A computer program has been developed which solves the potential flow problem for
— shapes of the type encountered with missile cross sections. This program also determines the

apparent area of the cross section through evaluation of the integra l expressed in Eq. (33) .

A missile cross section can generally be represented by a region representing the body
along with line segments representing wings and various other airfoils. The boundary of this
configuration will be the internal boundary for the potential-flow problem. Body angle or
control-surface deflection is represented by specifying the normal gradient along this boundary.
It is fur ther  assumed that the gradient of the potential goes to zero at infini ty.

The calcu lation is based upon source distribution methods similar to those which have
been used by i. 1. h ess and others ( 5— 7 1 in several computer programs. With these methods ,
a general potential function is represented as a linear sum of a fundamental system of pot ential
functions , each of which is derived from a source of some type. The source may be a point
monopole or dipole or a continuous distribution of one of these types .

Thus we may represent a general potential function as

~~~ ~
) — ~~~~~ &( ‘ t . ~~) . (54)

Here, ~ and ‘. . are coordinates in the cross-flow plane. The expression

~ (~~~. -‘~~~ I — 1  

represents the fundamental system of source-derived functions. Each of these functions takes
on a weight denoted by

C, - - i  N.

15
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We may derive the velocity field from the potential by taking the gradient of the latter , as
shown by the following equations:

V(x 1. X i) — -
~~- .-~~

- (55)
oX 1 Ox 2

and

V ( x 1, x 2) — ~~~~~~~~~ ~~~~~~
— . (56)Ox 1 Ox 2

Applying these equations to Eq. (54) results in the following general expression for the velocity
field:

V ( x 1, -‘ 2~ 
— 

~~ 
C, V , (x 1. x,) . (57)

A set of N points are chosen on the boundary of the contour as locations for imposing the
boundary condition. The coordinates of these points are denoted by x 1 and x 2 -’ where
(j  — I N) .  Also , the unit normal to the boundary at each of these locations is denoted by
n , where (j  — I N) .  As a boundary condition , the normal velocity W, is specified at each of
these points. The imposition of this condition is expressed by

N
WI — ~~ C, V , (x 1~, x 2 -~~n 1. (58)

~— 1

This relation represents N simultaneous linear equations for the weight factors C,. Solving this
system of equations determines the value of each C,, whereupon the velocity potential ~ ‘ and
the velocity V may be calculated from Eqs. (54) and (57) . The apparent area vector may be
determined by evaluating Eq. (33) with a numerical integration process. The general represen-
tation of the velocity potential is based on its expression in terms of sources. This may be done
in a variety of ways. Many investigators (See Ref. 6 for citation of additional refs.) have , for
instance , utilized continuous density distributions on the body surface.

For this investigation , the body has been treat ed differently from the airfoils. For the
body, point sources located within and at some distance from the boundary contour have been
utilized. For a point source , the velocity potential and the velocity at the point (.v 1. x 2) are
given by the formulas

— + ~~~ I ( v t 
— v 1 ) 2  + (x 2 _ v i) 2 J  (59)

and

( ‘ i — •v 1, .v~ — .r 2)
‘ (x~ — v 1) 2 + (x 2 — .v 2)

~
’ (60)

Here , v 1 and v~ are th e coordinates of th e point source. For airfoils which are represented as
line segments , conti nuous dipole distri butions are utilized. The line segment representing a
wing is divided into small elemental segments , and , on each of these , the dipole distri bution is
represented by a quadratic function. For each elemental segment , we denote its length by .~.c
and introduce coordinates x 1 and .v , such that the segment lies on the .v 1 axis centered about

16
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th e origin. To accomplish the general quadratic representation , three fundamental potential
functions are introduced corresponding to each elemental segment. These three functions are
derived from dipole distributions , the first of which is constant while the second and th ird are
proportional to x 1 and x?, respectively.

For a constant dipole distribution on a line segment , the velocity potential and the velo-
city at the point (x ,. x 2) are given by the following formulas:

— The! (x? + x? — 
~~~ 

~s x 21 
(61)

and

— 
f — 2As x 1 x 2, ~s (x ? — xi — 

~~ (62)

ftv i + ~~~~ + x?I ((x I
_ 

~-~j + xii

For a dipole distribution which is proportional to x 1, the velocity potential and the velocity are
given by

— 
x I X 2 

~
‘ (63)

and

— 
(4 , . — uj.) + X t V . — x 2U (64)

t~s
where we have introduced the following auxiliar y quantities:

X 1 + T + ~ 2
— n 

— + 

-
‘ 

- (65)

and

X 1 + j .  X 2 X 1 — 
~~~~~~

. •~ 2
— lx t + + x? 

— 

(X I — 

~~~~~~~~~ 

+ .v? 

(66

For a dipole distribution which is proportion al to v ? , the velocity potential and the velocity are
given by

The function /1w! w is defined as the angle of inclination of w in radians where ,~ < /

~~~

/ w w

17
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(x~ — ‘i) d.~ — 2 X t -~2 ~ + •
~~~ ~2 (67)

X 1 Xi 02 —x 2 ~~ + (x ?  — Xj )  V~ — 2 
~ 

— 2 x 1 x 2 U +
V Q — 

~.s 2 (68)

In order to determine the ‘V weight factors ( ‘,, an equal number of linear equations are esta-
blished. Each of these equations are generated by specifying the normal velocity 14 , at a point
on the boundar y - Those points where the normal velocities W, are specified shall be referred
to as control points. For each monopole source chosen internal to the body, a control point is
selected on the body boundar y. For each elemental segment of a wing, three fundamental
functions are derived. This requires the determination of three corresponding weights C -

Therefore, on each ~~~ elemental segment , three control points are selected.

In formulating a particul ar calcula tion , choices are made ot’ the control points and of the
sources from which the fundamen tal system of basic functions are derived. No definite pro-
cedure has been established for making these choices in a way which approaches the optimal.
Rather , making satisfactory choices requires the use of good intu i t i ve  judgment in combination
with knowledge learned from a moderate amount of computational experimentation.

Using a cir cl e-with-midwin g profile , a certain amount of computational experimentation
was performed. For this profile , analytic answers are available for comparison. Figure 10 illus-
trates how the sources were chosen for this typical cross-flow calculation. The conclusions
drawn from this undertaking are assumed to have general validit y for bodies with wings.

MONOPOLE
SOURCE

- I l - s t i l  I
E~~~~~~~1

Fig 10 — Choice of sources for missite cross~section profile
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One conclusion deduced is that in order to obtain accurate results it is necessary to let the
line segment representing an airfoil penetrate a distance into the body, as shown in Fig. 10.
When this line segment was allowed to stop exactly at the body boundary, a good approxima-
(ion to the true solution was unobtainable.

Another observation is that a modest increase in accuracy is obtained by letting the size of
the elemental segments become smaller as the tip of the wing is approached.

The information defining a particular cross-flow problem is summarized next. Associated
with the body is the position of each interior monopole along with information regarding dc-
ments on the body boundary. The latter consists of the location and orientation of each dc-
ment along with control-point positions. Associated with an airfoil is the positon and orienta-
tion of the line-segment representation along with information regarding its partitioning into
elemental segments; each elemental segment has three control points designated on it. Also
included among the given information is the normal velocity W, which is specified at each con-
trol point on a body boundary or airfoil.

Rather  than inputt ing the given information with enumerative lists , various portions of ii
are generated by subroutines using analytic formulas. For example , the program contains a
subroutine which generates all the necessary defining information for an airfoil. Another sub-
routine does this for a circular arc. A number of subroutines such as these can be used to piece
together an entire cross-section contour. Upon execution , the computer program calculates the
value of the velocity potential ~ and the velocity V at each control point. I t also calculates the
weights C, of the various fundamental functions. In addition , it calculates the apparent area
vector A as given by Eq. (33) .

TEST CALCULATIONS

In order to test the comp uter program for accuracy and computation time , the program
was executed on a CDC 6600 computer. Profiles were run for which answers could be obtained
independently using analytic formulas. The profiles used were the circle , circle with midwing ,
and wing only. These are all special cases of the general circ le-with-midwing problem for which
an analyti c result (Ref. 4) is available for comparisor The general expression for the apparent
area magnitude .4 due to a vertical cross flow is given t,~

. 4 — i r ( s 2 — R 2 + R 4/ s 2) (69)

Here , R is the radius of the circle and s is the semi-span of tac wing, as indicated in Fig. 9.
Analytic comparison values of the apparent area for the profiles used in the test computations
were obtai ned by using the following three sets of values in Eq. 69. The values used for R and
s were: R — $ — I for the circle; R — 1/2 , s — I for the circle with midwing; and R — 0, s — I
for the wing only. For the circle-with-midwing profile, test calculations were performed using
various nu mbers of fundamental function generating elemental sources. These will be referre d
to as elements. The results of the test calculations using 24 , 42 , 84, and 168 elements are sum-
marized in Table 1. In each case , the number of elements is broken down into the number of
monopole types representing point monopoles within the body, and the number of dipole types
repre senting continuous dipole distributions on an elemental segment of a wing. This table
indicates the improvement in accuracy as the numbe r of elements is increased. The 0.27%
error for 42 elements , however , should be regarded as unusually low due to chance and not
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really fitt ing the trend. Table I also indicat es the rapid increase in computation time as the
numbe r of elements is increased. It is apparent that a reasonable combination of accuracy and
computat ion time is obtained when the number  of source elements is on the order of 84. In
order to test the program for the effect of varying th e contour configuration , calculations were
performed for the circle . c t rc le -with -midw t ng.  and wing only using 84 elements in each case
The results are shown tn Table 2 . indicating in each case the individual numb er of monopole
and dipole elements used.

Tahk I (‘lick W lth Mu dw ing

3”

APPARENT AREA ANAL.’~ lid — 2 5525

I No . ot ’ No. of A pparent . I Exe cut ionNo . ot I - t ’ rror  I - -i Monopolc Dipok Area I t imeEkments  I - - . - )
E lements I leinen ts ( oniput ed) 

__________ j  t, ’.cc)

24 IS 2.32 ~7 ] S .S~
) 0.972

42 12 30 2.S594 J 0 .2 ’
$4 24 ‘ 5~ 3S 0.44 l2.~l(~S 4$ 120 2~~~33~~~~~~~~l ‘5 . 1

Table V ~~~ Protlks t ~ing 84 Source Eleme nts

Numbe r Number
~I ,‘.ciIt ~ - . App a, ent A pparent -

— ot ol Er r or( ont igu . - AR, i A rea
- M onopok’ l)pole - (_ ‘

-
_ Irat ion - - I computed I I anal v t I c )Elements -

Circle 84 0 3.l4k~ 3 .l4k ~ 0

Circle-
W ith- 24 (~0 2 .St~38 2. 5~ 2S 0.44
Midwing

Wi ng 0 84 3.1380 3 .l 4 l~ 0.11Only

~~~~~~~~~~~~~ 
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It is observed in Table 2 that near-perfect accuracy is obtained with the circular profile
(assumed typical of a body-only type of contour ) . The least accuracy or highest error (0.44%) ,
is obtained using the cir cl e -with-m idwing .  This profile (assumed typical of a wing-body combi~
nation ) is the case most useful for revealing any possible error. It is found that an intermediate
degree of accurac y, or ne xt highest error (0 . 11% ) is obtained with the wing-only profile.

SAMPL E CALCULATIONS

This computer pro gram is of general ut i l i ty  for per forming cross-flow calculat ions for
almost any shape that would be encountered with a missile cross section. Sample calculations
have been performed for a few cases where analytic rrs u lts a t ’  not available. Apparent areas
are calculated for bounda ry conditions representing pi ’ch . elevator deflection , yaw . and r udder
deflection. The results of these calculations are givi:n in Tables 3, 4 , and ~ In Table 3, a
rudder has been added to the c ir cl e-with -m idwing confi guration . Table 4 shows result s for .i
configuration consisting of simply a circular body and a rudder - Results for a t n -tail
configur ation are given in Table 5-

Table 3 — Circle With Midw ing and Rudder (114 Elements )

Type of Control Configuration A pparent Area
Magnitude

Pitch 

~~~~~~~~~~~~~~~~~ 

2.55

3 3 3 3

Elevator f t  f f t  ~ 1.14
Deflection

Yaw .s z(
5

’

~~~~

)

~___. 1.64

Rudder 0.548
Deflection

~ 

- -- ~~ - - .- ~~~~ -~~- 
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Table 4 — Circle W ith Rudder (114 Elements)

Type of Control Configuration Apparent Area
Magnitude

Yaw ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1.62

0.538

Pitch 

ó 

0.785

3 3 3 3 3

22
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Table 5 — Tn -Tail Configuration (114 Elements)

Type of Control Configuration Apparent Area
Magnitude

--
~

Pitch 2.14

Elevator
Deflection ___.

,$
~~/ 

1.00

Yaw 2.14

—

Rudder
Deflection 0.579
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CONCLUSIONS AND IMPLICATIONS FOR FURTHER EFFORT

Expeditious and versatile procedures for estimating sonic aerodynamic coefficient deriva-
tives have been developed. This endeavor was based upon the generation of ’ a computer pro-
gram to solve the potential cross-flow problem. This program is similar to certain other existin g
ones but has some necessary differences. The development is based on slender body theory
and gives estimates which can be applied to missiles flying at sonic speeds. These estimates are
also helpful in determining approximations for the coefficient derivatives in the subsonic and
supersonic ranges.

There is a considerable need for these aerodynamic coefficient estimates as inputs to com-
put er and hardware simulations. These simulations deal with a wide variety of analyses of the
expected flight behavior of actual missiles under a variety of conditions. An extensive effort is
needed to investigate the implications of certain postulated characteristics for future missiles.
Th is effort would involve working out a missile design within the constraints of the postulated
external characteristics. The resulting design would be extremely useful in hounding i/ i t ’ threa t
by indicating the outer l imits of a missile ’s maneuvering capability. Aerodynamic coefficients
based on this design would provide valuable inputs for future simulations which could be used
to study the expected outcome of missile-ship engagements involving newer missile types.

A capability for analytic determination of aerodynamic coefficient derivatives is essential
for any comprehensive investigation of missile-shi p engagements. It is needed not only for the
analysis of existing missile threats but also for the examination of possible futur e missile
th reats.
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