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ABSTRACT
Spectral representations of Schridinger operators

T =-a+0Q(y)

are constructed, where A is the N-dimensional.Lap'lacian and Q(y) is

a real-valued long-range potential; i.e.,
aly) = 0(ly]™®) , |yl »=,0<e<1

A limiting absorption principle for these operators is developed in
Chapter I. The asymptotic behavior of radiative functions is derived in

Chapter II. The spectral representatiorsare derived in Chapter III.
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INTRODUCTION

In this series of lectures we shall be concerned with the spectral

representations for Schrddinger operators
(0.1) T = -a+Q(y)

on the N-dimensional Euclidean space RN . Here

y= (y]!.yza ces 9 yN) ERN o

(0.2) N 2
A=) 12- (Laplacian) ,

J=1 a.Yj

and Q(y) , which is usually called a "potential", is a real-vaiued function
on RN 8
Let us explain the notion of spectral representation by recalling the

usual Fourier transforms. The Fourier transforms F are defined by

0+

(FoeF)(E) = (21) 2 1.4.m. { e" Y85 (y)dy
(0.3) T yl<R

in LZ(R';) :

where f € LZ(R';) s E = (s,.sz, a4 sN) eng , 1.i.m. means the limit

in the mean and y& 1is the inner product in RN s 1@y

N
(0.4) y& = A3
i 4%

Then it is well-known that Fo: are unitary operators from LZ(R:) onto

0+

LZCR';) and that the inverse operators F%* are given by




N
(F8,F)) = (21) 2 1.4, { e*Ver(e)ar
R+
|E]<R

(0.5)

in LZ(R;)

for Fe LZ(RQ) . Here it should be remarked that e*Y& are solutions of
the equation

N
(0.6) (-8-1&1%)u = 0 (el®= I &) .
=1

that is, etiya are the eigenfunctions (in a generalized sense) with the
eigenvalue |£|2 associated with -A . Further, when f(y) is sufficiently
émooth and rapidly decreasing, we have

Foe(-8)(8) = 1€13(F, ) (E)

(0.7) X,

(-86)(y) = F8, (165, ) y)

which means that the partial differential operator -A 1is transformed into

the multiplication operator IElzx by the Fourier transforms FO* :

Now we can find deeper and clearer relations between the operator -A
and the Fourier transforms if we consider the self-adjoint realization of
the Laplacian in LZ(RN) . Let us define a symmetric operator ho in
L,®") by

D(hg) = Cym")

(0.8)

hof = -Af "

where D(ho) is the domain of h0 . Then, as is well-known, h0 is essentially
self-adjoint and its closure HO = EO is a unique self-adjoint extension of

hy . H

0 0 is known to satisfy

i




( o(g) = (e L, @)/ 1e1%(Fy N L@ (= H®Y) ,

Hof = -of  (FED(Hy))

(0.9) {
FoulHgP) (&) = [€12(Fp, /(&)  (feD(Hy)) |

Eo(s) - F*: X/-B_ Fot »

where HZ(RN) is the Sobolev space of the order 2,B 1is an interval in
(0,=) , X5 is the characteristic function of /B = {EER’;/IHZEB} ’
and Eo(-) denotes the spectral measure associated with HO g
tial operator -A 1is acting on functions of HZ(RN) in the distribution
sense. Thus it can be seen that the Fourier transforms FO: give unitary
equivalence between H, and the multiplication operator |£[2x :

Let us next consider the Schr8dinger operator T . Throughout this
lecture Q(y) is assumed to be a real-valued, continuous function on

RN and satisfy

(0.10) y) + 0 (lyl + =)

Then a symmetric operator h defined by

o(h) = GGRY)
(0.11)

hf =Tf

can be easily seen to be essentially self-adjoint with a unique extension

H in LZ(RN) . We have

D(H) = D(Ho)

(0.12)

Hf =T¢ (f €D (H))

The differen-
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Here the differential operator T 1in (0.12) should be taken in the distribution
sense as in (0.9). These facts will be shown in §12 (Theorem 12.1). Our final

aim is to construct the "generalized" Fourier transforms F,_ which are unitary

operators from LZ(R';) onto Lz(Rg) and satisfy

’

o) = treL, @)/ (el2(F AR L@

(013 1 £ me)e) = lelAF, N (Fen(H))

£8) = P xyg F s

.

where B and X /g are as in (0.9) and E(-) 1is the spectral measure
associated with H . It will be also shown that the generalized Fourier
transforms Fz are constructed by the use of solutions of the equation
Tu = |&|2u :

Now let us state the exa'ct conditions on the potential Q(y) in this

lecture. Let us assume that Q(y) satisfies

(0.14) y) = olly|™) (ly| + =)

with a constant £ > 0. When € > 1 the potential Q(y) is called a
short-v:'ange potential and when 0<e <1 Q(y) is called a long-range
potential. The more rapidly diminishes Q(y) at infinity, the nearer
becomes the Schrdinger operator T to -A and T can be treated the
easier. In this lecture a spectral representation theorem will be shown
for the SchrBdinger operator T with a long-range potential Q(y) with
additional conditions

(%) (y) = o(ly|™ )
(0.15)

(lyl + =0 3= 0,042, wov umg)




where DJ is an arbitrary derivative of j-th order and my is a constant
determined by Q(y) . Without these additional conditions the spectral
structure of the self-adjoint realization H of T may be too different from
the one of the self-adjoint realization H, of -A . The Schrdinger operator

0
with a potential of the form

(0.16) a(y) = T;Tr"““ T

for example, is beyond the scope of this lecture.

The core of the method in this lecture is to transform the Schrddinger
operator T into an ordinary differential operator with operator-valued co-
efficients. Let I = (0,@) and X = Ly(s"™") , s""! being the (N-1)-sphere,
with its inner product ( , )x and norm | lx . Let us introduce a Hilbert
space LZ(I.X) which is all X-valued functions u(r) on I = (0,x)

satisfying

(0.17) tut? - r lu(r) |2 dr < =
0 X

Its inner product ( , )0 is defined by

(0.18) (vlg = [ (ule) o vtr)), ar
0 X
N-1
Then a multiplication operator U = r 2 x  defined by
N-1

N

L?_(n")a fly) »r? f(r) e L(1,X)

(r=]y| » w= T},TG o

(0.19)

can be easily seen to be a unitary operator from LZ(RN) onto LZ(I,X) .

S ————




Let L be an ordinary differential operator defined by

2
(0.20) L=- f’;z + B(r) + C(r) (reiy ,

where, for each T >0,

(c(r)x)(g) = Arw)x(w) (x €X)
(0.21) | (B(r)x)(w) = :‘, (- () + LEDED) )
(x € D(A))

and AN is a non-positive self-adjoint operator called the Laplace-Beltrami

operator on SN'] . If polar coordinates (r.el,ez, ’BN-l) are intro-

duced by
, y; = tsing sing, ... sinej_]'cosej
(3= 1,2,...481)
(0.22) {  yy = Tsine, sine, ... singy , sineh_l
(r20,0< 91’92""9N-2 €2r,0g eN_] < ox)

then ANX can be written as

(A0 (875855 ..,8y ;)

i Lt 2 N+j+T D
- : Mg+
. (sine,...sine; 1) %(sine,) 5= { (1))

§=1 3

N-j-1 3x_

aej

for xe C2(SN'1) (see, e.g., Erdélyi and al. [1], p. 235). The operator

(0.23) with the domain CZ(SN']) is essentially self-adjoint and its closure

e e v

}




is AN‘ The operators T and L are combined by the use of the unitary

operator U in the following way

1

(0.24) To = U LU

for an arbitrary smooth function ¢ on HQN. Thus, for the time being, we
shall be concerned with L instead of T, and after that the results ob-
tained for L will be translated into the results for T.

Our operator T corresponds to the two-particle problem on the quantum
mechanics and there are many works on the spectral representation theorem
for T with various degrees of the smallness assumption on the potential

Qy). Let Q(y) satisfy
(0.25) ay) = o(ly]™) " (ly] »= €>0).

In 1960, Ikebe [1] developed an eigenfunction expansion theory for T in
the case of spatial dimension N =3 and € > 2. He defined a generalized
eigenfunction (y,£) (y,£€ R3) as the solution of the Lippman-Schwinger
equation

oilEl ly-z]

Azp(z,8)dz,
IR3 I.Y'Zl

(0.26) o(y,€) = e¥* - L [

and by the use of &(y,£), he constructed the generalized Fourier transforms
associated with T. The results of Ikebe [1] were extended by Thoe [1] and
Kuroda [1] to the case where N 1is arbitrary and € > %(N + 1). On the
other hand, Jadger [1]-[4] investigated the properties of an ordinary differ-

ential operator with operator-valued coefficients and obtained a spectral

S i = A

representation theorem for it. His results can be applied to the case of
N23 and € > %. Saito [1],[2] extended the results of Jager to include
the case of N2 3 and € > 1, 1i.e., the general short-range case. At

almost the same time S. Agmon obtained an eigenfunction expansion theorem for




general elliptic operators in IRN with short-range coefficients. His
results can be seen in Agmon [1]. Thus, the short-range case has been
seti]ed. As for the long-range case, after the work of Dollard [1] which
deals with Coulomb potential 2(y) = T%T' Saito [3]-[5] treated the case
of € >3 along the line of Saito [1]-[2]. Ikebe [2],[3] treated the
Schrddinger operator with e > 3 directly using essentially the same ideas
as Saito [3]-[5]. After these works, Saito [6],[7] showed a spectral
representation theorem for the Schrdodinger operator with a general long-
range potential Q(y) with € >°0. S. Agmon also obtains an eigenfunction
expansion theorem for general elliptic operators with long-range coeffi-
cients.

Let us outline the contents of this lecture. Throughout this lecture,
the spatial dimension N is assume to be N = 3. Then we have B(r) =0
for each r > 0. As for the case of N =2, see Saito [6], §5.

In Chapter I we shall show the limiting absorption principle for L

which enables us to solve the equation

(0.27)
(- V=0 (r==),

2 2

for not only k“ non-real, but also k-~ real.
In Chapter II, the asymptotic behavior of v(r), the solution of the
equation (0.27) with real k, will be investigated. When Q(y) 1is short-

range, there exists an element Xy, € X such that the asymptotic relation

(0.28) v(r) ~ eirkxv (v + =)

holds. But, in the case of the long-range potential, (0.28) should be
modified in the following

DL




'h‘k-i)\(r" ’k)i

(0.29) v(ir) ~ e *

with iv € X. Here the function A(y,k), which will be constructed in
Chapter II, is called a stationary modifier.

This asymptotic formula (0.29) will play an important role in spectral
i representation theory for L which will be developed in Chapter III.

The contents of this lecture are essentially given in the papers of ?
Saito [3]-[7], though they will be developed into a more unified and self-
contained form in this lecture. But we have to assume in advance the
elements of functional analysis and theory of partial differential equations:
to be more precise, the elemental properties of the Hilbert space and the

Banach space, spectral decomposition theorem of self-adjoint operators,

elemental knowledge of distribution, etc.




CHAPTER I
LIMITING ABSORPTION PRINCIPLE

§1. Preliminaries.

Let us begin with introducing some notations which will be employed
without further reference.

R: real numbers

C: complex numbers

€ = {k = k; + ik, € C/k; # 0, k, > 0} .

Rek: the real part of k.

Imk: the imaginary part of k.

I =(0,o)={reR/0<r<x},
T=[0,=)={reR/0%rc<w},
X = L2(SN']) with its norm | Ix and inner product ( , ),

LZ,S(J’X)’ s € R, is the Hilbert space of all X-valued functions f(r)
on an interval J such that ('l+r)slf(r)lx is square integrable
on J. The inner product ( , )s,J and norm | 's,J are
defined by

(f.9)g 5 = jJ(1+r)ZS<f(r>, g(r)) dr

and

o3 b
lfls’J 5 [(f’f)S,J] ’

respectively. When s =0 or J =1 the subscript 0 or I

may be omitted as in LZ(J,X), I "s etc.
CS'(J,X) = UCS(QJ), where J 1is an open interval in I,

N-1

Q = {y GRN/Iyl €J} and U = rTx is given by (0,18).

H(]):g(d,x), s €ER, is the Hilbert space obtained by the completion of

— o ' R e - mana : '




a pre-Hilbert space Cy(J X) with its nomm
Tolg ¢y ® []J(l+r)25{|¢'(r)li + |35(r)¢(r)|i & |®(f)|i}dr]5
and inner product

(0s9)g 5,00 [ (140300 (0D (D) + (B%(ra(r) , B(rIU(r)),
+ (o) u(r)), Jar

where Bk(r) = (B(r))’i with B(r) given by (0.21) and
¢'(r) = %% . When J =1 or s =0 we shall omit the subscript
I or s as in 1! 'B’ Hg‘s(l.x) etc.
FB(J.X). B >0, is the set of all anti-linear continuous functional
t on H'BLX), e,
e WP sve et
such that

Il €lifg,y = suptl<e,(14r)Pa>(/0 € CHLIX) , Hobg o = 11 > =,

FB(J.X) is a Banach space with its norm ||| Hk g+ When 8 =10 or

J = 1 the subscript 0 or I will be omitted as in F(J,X),
M Mgs M 1g ete.

Cac(JsX)y J being an (open or closed) interval, is the set of all
X-valued functions f(r) on J such that f(r) is strongly
absolutely continuous on every compact interval in J and there
exists the weak derivative f'(r) for almost all r € J with

f'(r) € Ly(J',X) for any compact interval J' cJ.

e




CJ(J,X) is the set of all X-valued functions on J having j strong

continuous derivatives. Here j 1is a non-negative integer and

J is an (open or closed) interval.
LG (HA’B(I,X)1OC) is the set of all X-valued functions f(r)

such that pf € LZ(I.X) (of € H&'B(I,x)) for any real-valued
1

C' function p(r) on T having a compact support in 1. i
B(Y,Z) is the Banach space of all bounded linear operators from Y
into Z with its operator norm | IY,Z’ where Y and Z are
Banach spaces. We set B(Y,Y) = B(Y) and the norm of B(X) is
denoted simply by 1 I,
D(W) means the domain of W.
A= AN = -y * %(N-1)(N-3), where Ay is the Laplace-Beltrani operator

(as a self-adjoint operator in X).

D = D(A).

D% = D(A%). i
C(xsB, ...) denotes a positive constant depending only on «, B, ...
But very often symbols indicating obvious dependence will be

omitted.
Hj(RN) is the Sobolev space of the order j, i.e., the set of all
L2 functions with Lz distribution derivatives up to the j-th

order, inclusive.

CZGRN), LZ(Q), LZ(Q’ (1+|y|)25dy) etc., will be employed as usual,

where Q is a measuable set in R\. |

Let L be the differential operator defined by (0.20) and (0.21).
The remainder of this section will be devoted to showing some basic

properties of a (weak) solution of the equation (L - kz)v = f. To this {




end, we shall first 1ist some properties of HA’B(I. X).

PROPOSITION 1.1. (i) Let J be an open interval in I and let

Q= {y €RY|y| € J}. Then

(1.1) Ho*B(3.%) = UK, (2,)
and
(]2) (uﬂa W’)B,J - (?;‘P)‘J}J (WP’ Y € H](QJ))!

where U is given by (0.18) and ( , )]’Qa is the inner product of

H](QJ), i.e.,

(1.3) 09y, = [ {Fe0) - TIOT + w077} @
J

1,8 1.8
(i1) Let ve Ho (I,X) (or vE€ Ho (I’x)loc)' Then
VE CdTuX) nLy(1,X) (or v € (T.X)  Ly(I,X);,.) with the weak
derivative v'E€ LZ(I,X) (or v'e LZ(I’X)loc)‘ Moreover v(r) € D*

for almost all re 1 with B e L,(I,X) (or Biv € L,(I,X), ). The
2 2 loc

inner product ( , )B and norm I Ig of HA’B(I,X) have the following

form:
(u,v)g = II {(U'(r).V'(r))x + (Bl’(r)u(r).Bl’(r)V(r))x
(1.4) + Qu(r)v(r), far
Tulg = [(u,u)a]lﬁ
(111) Let veHyB(1,X) .. Then we have the relations

(1.5) v(0) =0,




(1.6) [v(r) - v(s)lx < ir-slls 'V'B,(O,R) (r,s € [0,R])

with

R %
0.1 'V'B,(O.R) = [JO {|v‘(r)|§ + |Bg(r)v(r)|§ + |v(r)|2} dr]'

(1.8) lv(r)lx < /2 vt (r € [0,R]) .

B,(0,R*1)

PROOF. (i) follows from two facts that H](QJ) is the Hilbert space

obtained by completion of CB(QJ) by the norm (1.3) and that the relation

'U”'B,J = |¢|1’QJ holds for ¢ € CO(QJ). The second fact can be easily
2
d

14

P = "1 =
obtained from the relation (-A)¢ = U LoUv " where we set L0 b B B(r).

dr
Let us show (ii) only for v € Hé’B(I.X), because the statement

about v € H(])’B(I,X)wc can be shown in quite a similar way. By the
definition of Hé’B(I,X) v E H&’B(I:X) if and only if there exists a
sequence {¢n} G CE(I,X) such that the sequences {¢n}, {¢ﬁ}’ (B%¢n} are
Cauchy sequences in LZ(I,X) and ¢, converges to v in L2(I,X). We

set 1im ¢6 =V and lim Bg¢n = Vy. From the estimate
N N

g
(1.9) 0alr) = 00l 5 [ 10a8) - aq(e)]at

it follows that the sequence {@n(r)} is convergent in X uniformly for

r € [0,R] with an arbitrary positive R. Therefore v(r) = s-1im ¢n(r)
N+
is an X-valued, continuous function on T. Letting n + = in the relation

"
(1.10)  (o,(r)-0,(s),x)y = L (0p(t),x)ydt (X € X, 0 g5 <r<w)

we arrive at

e e z - — . — it




(1.11) (v(r) - v(s), x)x-Lr(v1(t).x)xdt.

whence follows that v € C, (T.X) and the weak derivative v' = v, in
LZ(I,X). Since B&¢n~ converges to ) in LZ(I.X), there exists a null
set e of I such that Bk(r)¢n(r) converges to vz(r) in X for
r€1 - e. Therefore v(r) € D% with B*(r)v(r) = vz(r) for rel -e
because of the closedness of the operator B%(r). Thus we obtain

3
(112) vuig = 1im totg = [ {iv(nif + (85I + 1vir 3} o]

In a similar way we can show the first relation of (1.4) which is related
the inner product (u,v)B.

F}nally, let us show (iii). Take a real-valued C~ function o(r)
on T such that o(r) =1 (rgR+1),=0(r32R+2). Then, since
ov € Hy*B(1,X), there exists (o} € CG(I,X) such that lov - ¢1p + 0

as n + o, whence follows that

(1.13) v - ¢n'B,(0,R+1) +0 (n + =) .

Then, as is seen in the proof of (ii), ¢n(r) converges v(r) in X for
re€ [0, R+ 1]. (1.5) follows from the fact that ¢n(0) =0 for all
n=1,2,... (1.6) and (1.8) are obtained by letting n + » in the

relations
% b
(1.14) [6q(r)-0,(s)]y = ”S dp(t)dt|y s [r-s|® 1oplg (g p)
(0sr,s<R)
and

R e R . Y ST T,




A

2(]0,(r)-0,(t) 1% + |6 (£)13)

(1.15) lo,(r)|2

t r+l
2fr-t] [ log(s)1g ds + [ oo @)
r

A

A

2
2|¢n|0,(0,R+]) (0 ; r S_ R)

respectively, where t € [r, r+1] has been taken to satisfy
o (t)]|y = min |o (s)]y-
n X ressrl n X Q.E.D.

The interior estimate for the operator L 1is shown in the following:

PROPQSITION 1.2. Let L be as above and let 2(y) be a continuous

function on RV. Let ve HA’B(I,X)]°c satisfies the equation
(1.16) (v, (L-R))y = <, 6> (0 € (LX)

with k€€ and ¢€ F(I,X). Let R be a positive number. Then there
exists C = C(k,R) such that

L R NS C{""'0,(0,R+1) i ”l“”O.(O,RH)} :

The constant C(k,R) is bounded when the pair (k,R) moves in a bounded

set of € x I.

PROQF. Since v € H&’B(I,X)]oc, we have by (ii) of Proposition 1.1

£ (v(r), 0 (Mg = (VP 81 (r))y + (v(r), 8"(r))y
(1.18)
(v(r), B(r)o(r))y = (BE(r)v(r), BH(r)o(r)),

for almost all r € I. Therefore from (1.16) it follows by partial

16




17

integration that

R+1
(1.19) L {v(rrier ey + BV, B%rI0(),
+ (v(r)s (C(r)-R)o(r)) g Jdr = <2, &>

for any ¢ € C;(I,x). Set ¢ = w2¢n in (1.19), where oy € C;((O,R+2),X)

such that 1Iv - °n'B (0,R+1) ~ 0 as n-> o and Y(r) 1is a real-valued

¢” function on [0, R+2] such that O

([ VaN

vl ulr)=1 (0<rgR),
w(r) = 0 (R+1 < r g R+2). Then, letting n > =, we have

R+1 R
(1.20) L WZ{IV'Ii + IBlivli + IVI‘E}dr + 2 L w'(v'.v)xdr

R+1
=‘L Vv, (K2 + 1 - Clv)ydr + <¢, W
(1.17) is obtained from (1.20) by the use of the Schwarz inequality. -
Q.E.D.
PROPOSITION 1.3 (regularity theorem). Let L be as in Proposition
1.8. Lot v & LZ(I’X)loc be a "weak" solution of the equation (L—kz)v = f

2

with k€ €™ and f e L2(I,X)]°c, i.e., let v satisfy

(1.21) (v (LKE)8) = (£.0)g

for all ¢ € C:(I,X). Then v satisfies following (1) ~ (4):

(1) v e H B, n c(1,X). v(r) €D* foreach r30. v(r)€D
for almost all re€ 1 with Bv € LZ((a,b),X) for any 0 <a<b <=,

(2) v' € Cuo(I.X) with the weak derivative v" and v'(r) € D
for almost all r € 1I. B%v' € Lz((a,bxx) for any 0 < a <b < o,




(3) B™ € Cuc(I,X) with the weak derivative (B%)'.
(1.22) (B%(r)v(r))* = - L8%(r)v(r) + B%(r)v'(r)

holds for almost all r € I.

(4) We have
(1.23) v (r) + B(r)v(r; + C(r)v(r) - K3(r) = £(r)
for almost all r € I.
PROOF. Set v =U"'v and f=U"'f. Then v, f belong to
LZ(RN)1oc and from (1.21) the relation
(1.24) (v, (T - kz)«p)Lz 2 Putly, Tee ce®"))

follows, where ( , )L denotes the inner product of LZORN). As is
2

well-known, (1.24) implies that v € HZGRN)1oc (see, e.g., Ikebe-Kato

(11). Therefore there exists a sequence {¢ } C CEORN) such that

+v i N > =
¢ v in HZOR )1oc as n . Set ¢n Uy

n Then ¢n -V in

n*
H]’B(I X) as n-+« and {¢"}, {B¢ !} {B%¢‘} are all Cauchy sequences
0 **oc n’ '’ n
in Ly((a,b}X) (0 <a <b <=). From these relations we can easily
obtain (1) ~ (4).
Q.E.D.

Now that Proposition 1.3 has been established, let us introduce

one more function space. Let J be an open interval in I. D(J) denotes

the set of all functions v on J which satisfy the following (a) and
(b):

I ———
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(a) vec'(3.x). v(r) €D* for each reJ. For almost all
red vir) €D and v'(r) € D%. Bv and B2y belong to

LZ(J',X) for any compact interval J' in J.
(b) v', B € Cue(J,X) with

(B%)' = - %-B&v + Bv'

for almost all r € J.

It follows from Proposition 1.3 that the solution v € LZ(I’X)loc
of the equation (1.21) belongs to H(])‘B(I,X)]oc A D(I1).

The unique continuation theorem for the operator L takes the

following form.

PROPOSITION 1.4. Let L be as in Proposition 1.2 and let v € 0(J)

satisfy the equation (L-kz)v =0 on J with k€L, where J is an
open interval in I. Suppose that vir) =0 in a neighborhood of some

point ro € J. Then v(r) =0 on J.

1y as in the prei € of Proposition 1.3. Then Vv

PROOF. Set v = U
js a solution of the equation (T-kz)V =0 and v(y) =0 for
y € {y E'RN/lly[ - rol < nt with some n > 0. Thus we can apply the unique
continuation theorem for elliptic operators (see, e.g., Aronszajn ()
to show that v =0 on {y ERN/IyI € J}, which completes the proof.
Q.E.D.
Finally we shall show a proposition which is a version of the Relich

theorem.

g < PN R P B
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PROPQSITION 1.5. Let L be as in Proposition 1.2 and let J be a
bounded open interval in I. Let {vn} be a bounded sequence in H;‘B(J,X).
Then {vn) is a relatively compact sequence in LZ(J,X), i.e., there
exists a subsequence {um} of {vn} such that {um} is a Cauchy

sequence of LZ(J,X).

PROOF. Set v, = Ulv . Then, by (i) of Proposition 1.1, (v} is
a bounded sequence in H](QJ) with Q,=1{ye RN/!YI € J}. It follows
from the Rellich theorem that there exists a subsequence {am} of {Vn}
such that {um} is a Cauchy sequence in LZ(QJ). Set wup = Uu,. Then
{um} is a subsequence of {vn} and is a Cauchy sequence in LZ(J,X).

Q.E.D.

————




§2. Main Theorem.

We shall now state and prove the limiting absorption principle for
the operator
d2
(2.1) L =-S5 +B8(r) +C(r)
dr
which is given by (0.20) and (0.21). The potential 2(y) 1is assumed to

satisfy the following

ASSUMPTION 2.1.
(2) 2y) can be decomposed as 2y) =2 4(y) + 2(y) such that Q,, and

Q, are real-valued functions on RY with N> 3.
TmN
(%) 4 €C®RY) and

(2.2) 030, (0] £ cp1 + IyDNFE (yeRY, =0, 1)

with constants c; >0 and 0 <e g 1, where D’ denotes an

arbitrary derivative of j-th order.
() ¢ e c’®") and

. N
(2.3) 14 s co1 + |y]) (y€R)

WA

with a constant € > 1 and the same constant Cg as in (QO).

We set

(Clr) = Gy(r) + Cyr)
(2.4)
tcj(r) = Qro)x  (3=0,1).

Then, by (Qo) and (Q1), we have




R i et W I A

22

ICO(r)I
(2.5) |C6(r)|

A

-€
c0(1+r) 3

A

-1-¢
c0(1+r) 3

']‘e]

1, (r)1 2 cy(1+r) -

A

where 1| 1 denotes the operator norm of B(X) and Cb(r) is the strong
derivative of Co(r) in B(X).
Let us define a class of solutions for the equation (L-kz)v = ¢ with

ket" and ¢€ F(1,X).

DEFINITION 2.2. (radiative function). Let & be a fixed constant
1 | ; +
such that F<8g m1n(z(2+e), %e]). Let 2€ F(I,X) and k€ C be
given. Then an X-valued function v(r) on 1 is called the radiative

function for {L, k, £}, if the following three conditions hold:

1,8

1) ve H0 (I’X)loc'

2) Vl~' ikve LZ,G“](I,X).

3) For all ¢ € cg(r,x) we have
(v (L-KE)0)g = <2, >.

For the notation used above see the list of notation given at the

beginning of §1. The condition 2) means %% - ikv is small at infinity,
and hence 2) can be regarded as a sort of radiation condition. This is why

v is called the radiative function.

THEOREM 2.3. (1imiting absorption principle). Let Assumption 2.1 be
fulfilled.
(i) Let (k, ) e t* x F(I,X) be given. Then the radiative function

for {L, k, £} 1is unique.

P————
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(ii) For given (k, &) € ¢t x FG(I,X) there exists a unique

radiative function v = v(-, k, &) for {L, k, £} which belongs to
HA:EG(I.X).

(iii) Let K be a compact set in t+. Let v = v(+, k, £) be
the radiative function for {L, k, £} with k € K and £ € Fg(I,X). Then
there exists a—pﬁs+tive—eanstastw—C»!_C(K)._deggggigg_gglx_gg__!L_iggg E)
such that

(2.6) Ilg s s Cllllllg
(2.7) Iv'-& + Iv'-1'kvl6_1 * IB%vla_] s C|“£“|5 ’
and

(2.8) WIS o (rmy § BN e

(iv) The mapping: €% x Fg(I,X) (K, £) > v(+, k, £) € H)*B(1,%)
is continuous on t+ x FS(I,X). Therefore it is also continuous as a

mapping from ¢t x FG(I,X) into Hé’B(I,X)]OC.

Before we prove Theorem 2.3, which is our main theorem in this chapter,
we prepare several Temmas, some of which will be shown in the succeeding

two sections.

LEMMA 2.4. Let k € t+ and let v be the radiative function for
{L, k, 0}. Then v 1is identically zero.

The proof of this lemma will be given in §3.
For f € L2 B(I,X) with B > 0 we define £[f] € FB(I,X) by
<L[f], 6> = (f, ¢), for ¢ € Cy(I,X). It can be seen easily that

- IflB ¢

(2.9) [HIGIN




LEMMA 2.7. Let k€ ¢t with Imky > 0 and let &€ Fy(I,X)

with B8 2 0. Then the equation
-2 )
(2.]5) (Va (L'k )¢)0 = <'e’ ¢> (¢ € co(lox))

has a unique solution Yo in Hg’s(l,x) and Yo satisfies

e e AT

(2.16) Ivglgas Clllelly (€ = Clkg, 8) .

Therefore Yo is the radiative function for ‘L, ko. L}.
Lemmas 2.5, 2.6 and 2.7 will be proved in 4.

LEMMA 2.8. Let e H:)'s(l.x) A Lz s“’ be a unique solution

Yo
of the equation (2.15) with ¢ € Fs“‘” and  k, € Y. Inko > 0. Let
k€ . Then the following (a) and (b) are equivalent:

(a) v 1is the radiative function for <L, k, {}.

(b) v 1is represented as v = Vo * W, where w is the radiative

function for {L, k, ([(kz-kg)vol} ‘

25

PROOF. Lemma 2.8 directly follows from the relation for v € LZ(I'X)]oc

(2.17) (v = vgs (LFD)8)g

= (v, (LRD)e) - <2, &> + ((C-k3)vg, 0),

(s € C3(1,X)

and Lemma 2.7.

Q.E.D.
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LEMMA 2.5. Let k€ K and let v be the radiative function for
{L, k, £[f]} with fe L, s(I,X) and let ve€ Lz’_G(I,X), where K is

a compact set in t+ and & is as in Definition 2.2. Then

B%v €L, 6_](I,x) and there exists a constant C = C(K) such that

(2.10) Iv' - kvl g + 1B | < c{lvl_6 + |f|6} ,
- and aEy
(2.11) g oy sC r=(26-1) {lvl % |f|§} (rz1).

LEMMA 2.6. Let vn(n =1,2,...) be the radiative function for {L, kn’ Zn},
where k € C' and £ € F (I,X). Assume that

kn +~ k € [+
(2.12)
Zn S in FG(I,X)
as n > o, and that there exists a constant C0 such that

Ivn"-d+ 'Vﬁ 1 iknvnls-l : C0 s

(2.13)

b ¢ 22y

2
n -8,(r,») £
for all n=1,2,... Then {vn} has a strong limit v in Ly _G(I,X)

which is the radiative function for {L, k, £}. Further we have

; 1,B
(2.14) V> v o H0 (I’X)1oc

as n > o,
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By the use of these lemmas Theorem 2.3 can be proved in a standard
way used in the proof of the 1imitfng absorption principle for the various
operators.

PROOF of THEOREM 2.3. The proof is divided into several steps.

(I) The uniqueness of the radiative function for given
(k, &) € € x F(I,X) follows from Lemma 2.4.

(II) Let us show the estimate (2.6), (2.7) and (2.8) with H|£H|6
replaced by Ifl, for the radiative function v for {L,, 2[f}}—with
k€K, vel, ((I,X) and feL, (I,X). In view of Lemma 2.5 it

suffices to show

(2.18) Ivi_. < CIfl

-8 6"

because (2.6) and (2.8) with |||£|||6 replaced by Ifl; easily follow
from (2.18) and Lemma 2.5. Let us assume that (2.18) is false. Then for
each positive 1ntegef n we can find kn € K and the radiative function

v, for {L, k, £[f 1} with f, € LZ,G(I’X) such that
(2.19) i =1, Ifl. st (n=1,2..).

We may assume without loss of generality that kn + k€K as n -+ o, Thus

it can be seen that (2.12) and (2.13) in Lemma 2.6 hold good with L, = tf.l,
£=0 and C0 = 2C, where C is the same constant as in Lemma 2.5 and

we should note that Il[fn]I6 S lfnla +0 as n + », Therefore, by Lemma
2.6, {v.} converges in L2’_6(I,X) to the radiative function for

{L, k, 0} which satisfies lvl_(S = 1. But it follows from Lemma 1.4 that

v is identically zero, which contradicts the fact that Ivl_; = 1. Thus

we have shown (2.6), (2.7) (2.8) with |||£|||6 replaced by Ifl. for the

$

-
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radiative function v € Lz,_G(I,X) for {L, k, £[f]} with k € K and
fe€ LZ,G(I’X)’

(IT1) The existence of the radiative function for (k, £) with
ket’, Imk >0 and £ € Fg(I,X) has been shown by Lemma 2.7 with 8 = 8.
Let us next consider the case that k € R - {0}. Set kn =k+imec
and denote by n the radiative function for (L, kn’ L}. Let k0 ec¢
with Imk, > 0 and let v, be the radiative function for (L, kj, £}.

The existence of Yo

and Vg are assured by Lemma 2.7. Then, using

———

(2.16) with B = §, we have ; e — SETEIEEE A

(2.20) 'Volg’s £ CIH£H|5
with C = C(ko), whence easily follows that

(2.21) Wi g oy £ B e ez

On the other hand, by making use of Lemma 2.8, Wy "V, =¥y is the radiative
function for {L, K t[(kﬁ-kg)vo]}. Since Y and v, belong to

LZ,G(I’X)’ (kﬁ-kg)v0 and w, = v, -V, belong to Lz,G(I,X), and hence,

n
as has been shown in (II), we have

' 2_,2
tw b o+ twp = dkw b o < Clko-kg| Tvgls s
(2.22)
2 2 -(28-1) , 2,22 2
Mol s, (r,) £ €T tkp=kgl Ivgls (ra ),

where C = C(Ko) and Ko = {kn} U{k}. It follows (2.20), (2.21) and
(2.22) that {kn} and {vn} satisfy (2.12) and (2.13) with t,=£ in
Lemma 2.6. Hence, by Lemma 2.6, there exists a strong limit v in

Lz,-a(l'x) which is the radiative function for {L, k, £}. Thus the

o - — g oo “""""1’”“ e T — ‘
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existence for the radiative function for {L, k, £} has been established.

(IV) Finally let us show (2.6), (2.7) and (2.8) completely. Let K
be a compact set in ¢t Let k0 and v, be as in (III). Then the
radiative function v for {L, k, £} (k€ K, L€ FG(I,X)) is represented
as v = v, +w, w being the radiative function for (L, k, L[(kz-kg)vol}
by Lemma 2.8. It follows from (II) that the estimates

: g .2
Il _g+ Iw'-ikl o+ 1B, < ClKE-KD| vy

-§ §

(2.23)

o (*"%35_;(7,;) - '?‘-—('—26-])-{k2-k{2)—{2 0. '%-—--(—?‘—;—3—% I AL o

hold with C = C(K). (2.23) is combined with (2.20) and (2.21) to give
the estimates (2.7) and

(2.24) Ivlg’(r’“) s Czr-(26°1)”|£“|§

(2.6) and (2.8) directly follow from (277) and (2.24). The continuity of
the mapping: (k, &) + v(+, k, £) in H;’?G(I,X) is <asily obtained
from ( III) and Lemma 2.6.

Q.E.D.

e el

— - : ’

ik i e i




§3. Uniqueness of the Radiative Function.

This section is devoted to showing Lemma 2.4. It will be proved along
the line of Jdger [1] and [2]. But some modification is necessary, since
we are concerned with a long-range potential.

We shall now give a proposition related to the asymptotic behavior
of the solution v € D(J), J = (R,») with R >0, of the equation
(L - kz)v =0 with kK €R - {0}. Here the definition of D(J) is given
after the proof of Proposition 1.3 in §1.

PROPOSITION 3.1. Let Assumption 2.7 be—satisfied. Let v € D(J)
(J = (R,=) » (R20) satisfy the following (1) and (2):

(1) The estimate
(3.1)° [(L-kP)v(r) | s c1+r) 2 v(r)| (red)

holds with k € R - {0} and some ¢ > 0, where & 1is given as in Definition
2.2, |

(2) The support of v is unbounded, i.e., the set {r € J/lv(r)lx>0}
is an unbounded set.

Then

(3.2) 2img|v' ())]2 + k3 Jv(r) |2} > 0.
M

The proof will be given after proving Lemmas 3.2 and 3.3. Set for
vVED(J)

(3.3) (kv)(r) = |v'(r)|§ + k2|v(r)|)2( = (B(r)v(r), v(r)),

= (Co(rdv(r), v(r))  (red).




Kv(r) is absolutely continuous on every compact interval in J.

LEMMA 3.2. Let veD(J) and let (3.1) be satisfied. Then there exist
4 >0 and R]>R such that

(3.4) () (r) 3 - ¢ (1) 2 (k) (r) (a.e. r2R),

where a.e. means "almost everywhere".

PROOF. Setting (L-kz)v=f and using (3.1) and (Ql) of Assumption

2.1, we obtain

1K) = 2ReTv",v' )+ Ko(v,vt), = (Bv,v')

- (Cquav')} - aF ((Br) + Co(r)hxx) |, o

(3.5) = 2Re(C,v-f, v')x + %(Bv.V)x - (Cg vsv),

'2 1 -2- ~1
-2c2(l+r) 6|v|x|v |x + v (Bv,v), - (Cov.v)x

nw

with ¢ = C+ CO’ CO being the same constant as in (Q]) of Assumption

2.1. From the estimate
(3.6) 2|vl,Iv'l, = 1’% 2 (% VI V'L, s -]/-%-(Iv' 12 + E§|v|§)
and (3.5) it follows that we have with ¢, = czﬁ/llq

d—i-Kv 2 - (1+r) 2 |v |§ + %k2|v|§) + 2(Bv,v),

- (C(‘)v,v)x

(3.7)

-¢p (140 B(kv) + (& - q(1+r)72) (By,v),
(38 (1+r) 282 - (1e (1) 78+ Chdvav)

+

-6 (14r) B (kv) + 33(r) + 3,(r).




1

J](r) > 0 for sufficiently large r, because r"’ - c1(1+r)'26 20

for sufficiently large r . By (QO) of Assumption 2.1 'c](l +r)'25(‘.0(r) +
G (Pl = o(r"2%) (rem) holds, and so J,(r) 3 0 for sufficiently large r
too. Therefore there exists R,> R such that (3.4) is valid for r 2 Ry

Q.E.D.

Let us next set

(3.8) Nv = r{K(edv) + (mz—-tog r) r'zuledvli} .

where M s a positive integer, ,}< u < % , d=d(r) = m(1-u)']r1'” :

LEMMA 3.3, Let ve€D(J) satisfy (1) and (2) of Proposition 3.1. Then

for fixed w€ (3, 172) there exist—my3-t—2nd R, > R such that .

e —

(3.9) (Nv)(r) 20 (r3R,, mZm)

PROOF. Set w = edv. Then (d/dr)(Nv)(r) 1is calculated as follows:

a"-‘;(Nv) = (Kw) + rad;(l(w) + (I-Zu)r'zu(mz-l,og r) |w|)2(

- P-zulwli + 2(m2 - Log r)r1'zuRe(w; w)x

(3.10) w12+ (k2 4 (1-2)r P (mP-tog 1) - 2y w2

(BW,W), = (Cow,w), + r;}’;(KW)
Zr]'zu(m2 - Log r)Re(w' ,w)

+

Now we make use of the relations

d
d

v' o+ mr W
-ued

W =e

(3.11) wo= edy + mriedyt + mrMet - e e

= edyv + 2mr W - (umrHl 4 m2r~ 2% )w




to obtain

d

ad;,-(Kw) = 2Re(w" +k o - Cow - Bw.w'), -gr ({B+ Co}x,x)xl

ZedRe(C]v - fw') + 4mr'“l~'|x2
(3.12) - 2(ume T 4 mzr'z“)Re(w.w')x

d
- HF({B + CO}X,X)XIX.N

It follows from (3.10)~(3.12) that

ar W) = ('™ 4 1) w12+ 02 + (120 P n? < 2og r) -r 2y w2

(3.13)
“2umre M + r]'zutog r)Re(w.w')x

= + (BW,W)X

By the use of (3.1) and Assumption 2.1 we arrive at

v

Lw) 3 1% + mP(1-20)r" B - ((1-20) Log v + 1)rR

€ wl? 1-u 12
(3.14) 2¢5(T+r) ™1 Wl + (me™™ 4 1) fwe |

Thus we can find R3 > R, independent of m , such that

a‘-’F(Nv) 2 {,]zkz + mz(l-zu)r'zu}lwli

-2 {2r1'2“£og r+ umr'"}lwlxlw' l

(3.15) + (4mr'™¥ 4 1) IW'lf

=P (r,m) lwli - 2Q{r,m) (Wl Iw' [, + S(rm)|w' li

iRy - ({C0 + rE('T} W.w), + Z{mdﬁe(clv - f,Aw'")'x—

2{(c + ¢,) (14r)"(28°1) e o r1=2g0g rHwl Iw'],

(rgR3.m;l )

32
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This is a quadratic form of |w|x and |w'|x . The coefficient P(r,m) i
of |w|i satisfies
(3.16) P> k%2 (r>0, m>0)

Further we have |

Ps - @ 3 amr'™¥p - @@

ke ™M 4 4(1-2u)m3r! " L (2l
aumr )" 3eog v + ar2M(2og )%
m2{4(l-2u)m E qu-1+u}r1-3u

m(k2 - 4ur-2u£og r')r'1'u

{mk? - 4r1'3“(£og \r')z}r]'u

K%/2

-+

SIPIT - TSR

(3.17)

+

+

nv -

Fi (r3R4,mg1) cal

with sufficiently large R4>R3 - R4 can be taken independent of m21 .

Thus we obtain
p _
(3.18) ar (W) (r) 20 (a.e. r2 R, m2 1)

On the other hand Nv(r) 1is a polynomial of order 2 with respect to m,
that is, Nv can be rewritten as

2d - ‘e 2112
(3.19) (W) (r) = reO{|mr Hvtv |x + k Ile - (Bv,v), - (COV.V)x

+ Wl Log r) |v|§}
= reZd{Zr'z“lvlim2 + 2r'“Re(v,v')xm+(Kv-r'2“|v|§£og r} .

By (2) in Proposition 3.1 the support of v 1is unbounded, and hence there
exists R, 2 R, such that

(3.20) V(R,) |, > 0




Then, since the coefficient of m2

there exists m, 2 1 such that
(3.21) (Nv)(Rz) >0 (m 2 m;)

(3.9) is obtained from (3.18) and (3.21).
' 0.E.D.

PROOF of PROPOSITION 3.1. First we consider the case that there exists

a sequence {tn}CJ. tnm(m«'), such that (Kv)(tn) >0 for n=1, 2,

Then there exists re 2 Ry such that (Kv)(ro) >0, R, being as in Lemma

3.2. Let us show that (Kv)(r)>0 for all r 2 ry . In fact, multiplying

o
(3.4) by exp{c1 Jro (1+t)'25dt}. we have

B T

' 5 -28
(1+t dt - v
(3.22) 4 {ec‘Jfo : .(Kv)(r)} T e
whence directly follows
-c,Jr (Hr) 284t
(3.23) (Kv)(r) 2 e "o (Kv)(ro) >0 (r 2 ro) 4

It follows from (3.23) that

v (e 12+ kB v(r) 12 = (ke + (BU)V(r), v(r)),

+ (Colrivlr), vir)),

\3:28) -c]jr (W) ™20t
2 e o (Kv)(ro)

- e S BV (12 + KB D) (r 2 ),

in  (Nv)(r) 1s positive when r = Ry




which implies that

(3.25) B (vt () 12+ K2 Jv(r) [3)

2e -fry (1ve) e (Kv)(rg) >0

Next consider the case that (Kv) (r) g0 for all r Rg with some

Rg > Ry, R, being as in Lemma 3.3. Then it follows from (3.19) and (3.9)
that

(3.26) 22 |y(r) |2 m? + 2r™"Re(v(r),v' (r)) m - r‘2“|v(r)|§zog r>0

(rgRs'mgm]) ’

which, together with the relation

(3.27) | mad;l\;-(rili 2Re(v(r), v'(r)),

implies that

nv
e

(3.28) g%lv(r)ls r'“{%ﬁ Log r - 2m1}|v(r)|§ :0 {r

with sufficiently large R6 2 R5 . Because of the unboundedness of the
support of v(r) we have [v(R7)], > O with some Ry 2 Rg » and hence it
can be seen from (3.28) that

(3.29) lv(r)lx 2 lv(R7)|x >0 (r2 R7) g

whence follows that

(3.30) (v ()12 + E1v(r) 12 2 E|v(ry) |2 >

S——————
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In order to show Lemma 2.4 we need one more proposition which is a

corollary of Proposition 1.3 (regularity theorem).

PROPOSITION 3.4. Let Q(y) be a real-valued continuous function on

RN and let v€L2(I,X) Yoe be a solution of the equation
(3.31) (vo (L-R9)9)g = (fa0)y  (6E€CG(IX))
3 +

with k€€ and f € L2(I,X)]0c . Then

(3.32) v(r) =k v(r) 2 = (v () + kpu(r) 12 + i u(r) |2

2, . 2
+akjkylivilg (g Ly *+ 21 (Fv)g (g

holds for all r € I, where k] = Rek and k2 = Imk

PROOF. As has been shown in the proof of Proposition 1.3,

vGUHZ(RN) loc and there exists a sequence ‘{wn} c C;(RN) such that

vy v = U']v in HZ(RN) loc

(3-33) ] h N
f L LZ(R )1oc

(T-k%)g, » F = U

as n-+o, where T =-A+ Q(y). Set ¢n=U¢n

Then, proceeding as in the proof of Proposition 1.3 and using the relation

(L-k2)U = U(T-k?), we have

.
o ¥ in L2(I,X)]°c’
¢n(r) > v(r) in X (rel),

(3.34) {
op(r) > v'(r) inX (rel),

2
‘ (L-k )¢n +> f in LZ(I’X)'IOC
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) 2 : 2 )
as n-»>o, Set fn = (L-k )¢n , integrate ((L-k") 0> ¢n)x = (fn ¢n)x

from 0 tc r and make use of partial integration. Then we arrive at

(80 g (0.r) * (BHC-KI8, 0000 (0 1y = (81(r) 8, (r)),
(3.35)
= (fos %o, (0,r)

By letting n + « in (3.35) after taking the imaginary part of it (3.35)
yeilds

(3.36) Tn(v' (r)sv(r))y = =2kpklivilg g 1y = L(Fav)g 9.y

(3.32) directly follows from (3.36) and
(3.37) v (r) = ikv(r) (2 = vt (r) + kov(r) 2+ KE]u(r) |2

-2k1 Im(v'(r),—v(r))x
Q.E.D.

PROOF of LEMMA2.4. Let v be the radiative function for {L,k,0}

with ke’ It suffices to show that v = 0. Let us note that we obtain
from (3.32), by setting f=0,

2 2

(3.38)  |v'(r) - ikv(r)Ii = |v'(r) + ikzv(r)li + kflv(r)li + 8kykaiVlg (o,r) .

Let us also note the relation
3 11 2
(3.39) ?E- [v'(r) - ikv(r)|l =0

which is implied by the fact that v' - 1kaL2 G-I(I’X) . k, >0,
then it follows from (3.38) and (3.39) that
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1
(3.40) i) (0,r) £ ok, B v (r) - ikv(r)[ =0,

which means vlg (0, =) =0, that is, v =0 . Next consider the case

that k2 =0, i.e., k = k]E R - {0} . Then from (3.38) and (3.39) we
obtain

(3.41) B (vt 2+ Blv(e)[2) =TI v (e - ikv(r) |,

Therefore Proposition 3.1 can be applied to show that the support of

v(r) is bounded in I, and hence v = 0 by Proposition 1.4 (the unique

continuation theorem).

9.E.D




§4. Proof of the lemmas
Now we shall show the 1Temmas in §2 which remain unproved. After that,
some more precise properties of the mapping (k,2) + v = v(+,k,2) in
Theorem 2.3 will be shown.

PROOF of LEMMA 2.6. Applying Proposition 1.2 (the interior estimate)

with v = Vi k = kn and 2 = 2“, we have
(4.1) v igeo,r) S CUVAlg co,re1) * M 2 0, (0,R41))

(Rel, n=1,2,...) |
with C = C(R), because {kn} is a bounded sequence. Since {vn} and

{Qn} are bounded sequences in L, _G(I,X) and FG(I,X), respectively,
it can be easily seen that "Vnno,(O,R+1) and MQAM 0,(0,R+1) are uni-~
formly bounded for n = 1,2,... with a fixed positive number R. There-
fore, for fixed R € I, the right-hand side of (4.1) is uniformly bounded
for n=1,2,.... Thus, Proposition 1.5 can be applied to show that there

exist a subsequence {v_} of {vn} and v € LZ(I’X)1oc such that v,

n
m m
converges to v in LZ(I’X)loc' Moreover, the norm v, I _g (r,=) tends

m ’ )

A A A B T A R 03 e s S it o o i cSinn

to zero uniformly for m=1,2,... as r -+ = by the second relation of

(2.13), and hence we arrive at i

(4.2) vnm +v in L2,-5(I’x)

as m-+ o, By letting m~+ » in the relation
(4.3) (.Vnm,(l. - .Era‘m)(b) o= <9:nm’@> (° € CO(I,X)),

v 1is seen to be a solution of the equation

(4.4) (vy(L= Ea)o) = <, (v€ cg(x,x)).

N e
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e, 10

Since u=v -V satisfies the equation
L np

2 & =2 o
(4-5) (U,(L‘F'Z‘m)¢) i <l[(knm-knp)vnp] + lnm'lnp»db (Q € co(I’x))s

Proposition 1.2 can be applied again to show that

2
(4.6) Hv C{Hv -v_ |l + |k IHv H
m B (0 R) = T Mp 0,(0,R+1) nm b 0,(0,R+1)

+ Mme =2 }+0
M T 0,(0,RH )

as m,p + ©, whence follows that
»B
(4.7) vnm +v in Ho {1, x)loc
as m -+, Thus, .letting m >« in the estimate

n

(4.8) tv! =ik v Il¢ % Cos
= M M §-1,(0,R) 0

which is obtained from the first relation of (2.13), we see that

(4.9) ffv' - 'ikvll5 1,(0,R) S CO,

and hence, because of the arbitrariness of R >0, v'-ikv € Lz,é_](l,x).
Therefore v 1is the radiative function for {L,k,2}.

As is easily seen from the discussion above, any subsequence of {vn}
contains a subsequence which converges in L2 5(I X) n H0 B(I x)1°c to
the radiative function v for {L,k,2}. Therefore, it follows that
(v} 1itself converges to v in L, _(I,X)n Ho' (LX) e Q.E.D.

Let us turn to the proof of Lemma 2.7. To this end, we have to in-
vestigate some properties of the function space H0 B(I X). It is a
Hilbert space obtained by the completion of CO(I,X) by the norm

2

2 o= 110281002 4 8% 2 + |0 21

(4.10) 180
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Obviously HA’?B(I,X) c H:)'B(I,X).‘oc and the inner product and norm are

represented as

("’V)B,-B = II(1+r)'ZB{(u',v')x + (Bl’u-B}’v)x + (u,v)x}dr,
(4.11)
tulg _g = [(u,U)B’_e]l’-

Let t be a positive number. Then the norm | defined by

'8,-8,t

(4.12) g ¢ = [pte)2eut i + 18%)2 + juder

is equivalent to the norm | = | The set of all anti-

'B"B ( |B"891).
linear continuous functional on Hé’?s(l,x) is FB(I,X), because we can

easily show that the norm W2l 8 of L& FB(I,X) is equivalent to the

norm

4

(4.13) el o = sup{|<2,&>]/0 € CG(1,X), ol = 1).

B B,'B

It can be easily seen, too, that the norm WM 8 is equivalent to the

norm defined by

(4.14) nam o= sup{|<a, (t+1)P0>| /0 € C(1,0), oty = 1)

for all t > 0.
PROOF of LEMMA 2.7. Consider a bilinear continuous functional A
1,8 1,8

on HO,-B(I’X) x HO,-B(I’X) defined by

t

(4.15) At[u’v] . (u’v)B’-e’t'ZBII(tﬂ')-zs-](U.V')dr‘
+ [t 700 - - D) g,

where t >0 and KO € c+ with Im k0 > 0. Let us show that At is

positive definite for some t > 0, i.e., there exists to >0 and
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C= C(to,ko) > 0 such that

2

(4.16) [Ato[u,u]I 2C "“"B.-e,to

(u € HyBo(1,0)).

It suffices to show (4.16) for u = &€ Cy(I,X). Set kg B o

(u#0) and E(r‘) = C(r) - 1 - X. Then we have

(4.17) lAt[¢.¢]|2 = (Hdlg’_e’t + fI(t+r)'23(Eo,¢)xdr

28[ (t+r) 28" TRe(0,0") ar)?

+

(uII(t+r)°23|¢|§dr

ZBfI(t+r)'ZBIm(¢,¢')xdr)z. ‘

By the use of a simple inequality (a£ b)2 2 (1 - c:)a2 + (1 - 0.-1)b2
(a >0, a,b € R) we have from (4.17)

(4.18) A 10,0112 2 sl(101f o o+ [i(t+r) 2B (Ca,0) r)?
w2 (t+r) 2810 2ar) )
- 452{([I(t+r)'23']Re(¢,¢')xdr)2
+ ([, () Tin(e,00) ar)?)
= 3 1(t) - 487L,(t).
I1(t) can be estimated as follows:
(4.19)  1,(t) 3 (1 - a)l¢lg’_8’t + 0l - (- e (eer) 280 2ar)
(0<ac<1),

Set o = 20CI(21C1 + uz)"l in (4.19). Then we arrive at
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(4.20) I,(t) > Il o % I
ncn+u2 Bu=8 |
On the other hand, we have ?
4 -2 S 2 |
(4.21) L(t)/elg o 4 € 2([ (t+r) Blal, lo'] dr) /t%lﬂ!g,-s,t 9

(t +=).

It follows from (4.20) and (4.21) that A is positive definite with some

to
to.
Let L€ FB(I,X). By the Riesz Theorem, there exists a unique

f € HyBo(1,X) such that

<Ly9> = (f’°)B -g,t_?
"B Ly

(4.22)
<sCilzel

fl
B»'Boto B

where C = C(B,t;) does not depend on f or 4. Now the Lax-Milgram
Theorem (see, e.g., Yosida [11, p. 92) can be applied to show that there
exists w € H0 B(I X) such that

Ato[w,ﬂ = (f"”e,-e,to (¢ € Cy(1,X))
(4.23)

w'B!-Bsto ) le'Bs'Bsto (c 3 C(B’to))'

By partial integration, we obtain, from (4.22) and (4.23),
(4.24) ((tg + 172, (L - K§)e)g = <t,0> (0 € CH1X)).

(4.22) and (4.23) can be used again to see that v = (t0 +'r)'23w satis-
fies the estimate (2.16). Thus, v = (ty +r) 28w is the radiative func-

tion for {L.ko,z}. The uniqueness of the radiative function has been

already proved by Lemma 2.4. Q.E.D.




In order to show Lemma 2.5, we have to prepare two lemmas.

LEMMA 4.1. Let K be a compact set in ¢ Then there exists

a positive constant C = C(K) such that

(4.25) kzlv'led" C{Ivl_d + v - 1kVI6_1 + Ifls}

holds for any radiative function v for {L,k,2[f]} with k = ky + ik, € K,
k2 >0 and f € LZ,G(I’X)'

Proof. Llet k € K with Imk =k, > 0 and let fe LZ,G(I’X)'
Then, by Lemma 2.7, there exists a unique radiative function v = v(+,k, ¥ f])
such that v,v' € L, ((1,K). Moreover, v & D(I) N H*®(1X) o0 by
Proposition 1.3 and v satisfies the equation (L - k2)v = f for almost
all re . Multiply the both sides of ((L-kz)v(r),v(r))x'= (f(r).v(r))x
by (1+r)2'26, integrate from R to T (0 < R< T < ) and take the

imaginary part. Then

T
(2-26)tm [ (14r) 200 ) ar - (1) (1) w1,

.
(4.26) + (4R 22 m(v! (R),V(R)), - 2Kk, [ (1+r)2720)v)2ar
R

2-26

T .
= Im [ (1+4r) (f,v)xdr.
R

Since v,v' €L, G(I,X), Hm(1+r)2'25(v'(r),v(r))x = 0 holds, and
9 r_’w
lim Im(v'(r),v(r)) = 0 follows from (3.36). Therefore, letting T + »
r
along a suitable sequence {Tn} and R+ 0, we have

k2||v||$_6 < 2[1 ‘ {(2-2¢8) II(1+r)1'2<S|V- [ IV dr + J‘I(1+r)2-25‘f|x|v|xdr}
(4.27) ]‘
= 1 ((2-26)9, + J,).

Let us estimate J] and Jz.

e —
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Iy SV _gIvily_s € Qiv'~ikvil_g + aivi_;Hiviy o (a = nk::|k|),
(4.28)
Jp S, _ivily g

where we used the Schwarz inequality. Set b = min |k1|. Then it follows
keK
from (4.27) and (4.28) that

]
Kl Vil y_s € 5 (V' =Tkvll o + alvil s + 1, )

(4.29) :
S gp (v -Tkvil gy + allvil_g + 1),

where it should be noted that -8 < 6-1 and 1-8 < §. (4.25) follows
directly from (4.29). Q.E.D.
LEMMA 4.2. Let v € D(K) and k ett. Let &(r) be a real-valued

C2 function on I_ such that 0 € ¢S 1, and
0 (r € R)
(4.30) E(r) =
1 (r &€ R+1)
with R > 0.
T T
%{E(]#)a"lv'-ikﬂid?‘ +(1-9 {g(m)“";a"v[iar
T T
< Re {E(Hr)“(f,v'-ikv)xdr - Re [E(1+r)*(Cyv,v'=1kv) 4T
R
+ 1 ! 1 Qran a T G']
7 {E( +r) (COV’V)xdl" ty £E(1+r) (Cov,v)xdr
(4.31)

T (o }
- ky [Rs(w) (Cov.v)xdr

+

M-—'

:
. 2

{E (1+r-)°‘{l13"v|x + (Cquav)

(

+ 3 (N (M =1kv(DIZ = (Co(MVT VM),
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where f = (L-k’)v, o€ R and T3 R+l.
PROOF . The relation (L-kz)v = f can be rewritten as

(4.32) -(v'-ikv)"' - ik(v'-ikv) + (B(r) + Co(r) + C1(r))v = f
whence follows that

(4.33) ~((v'=ikv) v =1kv), = Tk|v'-Tkv|2 + (B + €y + Cp)v,v'-ikv)
= (f,v'-ikv)x.

Take the real part of (4.33) and note that k2 2 0. Then we obtain
- paivtid 3 el - § (S,
(4.34) + kz(cov,v)x - %-é% {(Cov,v)x} - %-(C('Jv,v)x
+ Re(C]v.v'-ikv)x-s Re(f,v'—ikv)x.

Multiplying both sides of (4.34) by &£(1+r)%, integrating from R to T
and making use of partial integration, we arrive at (4.31). Q.E.D.

PROOF of (2.10) of LEWMA 2.5. Let v &L, (I,X) be the radiative

function for {L,k,2[f]} with k€K and f € LZ’G(I,X). Then

v ED(I)Nn HA’B(I,X)IOC by Proposition 1.3 and we have (L-kz)v(r) = f(r)
for almost all re€ [, let a=28<1and R=1 in Lemma 4.2. Then, it
follows from (4.31) that

w-%méwuwnﬁqxhn+(§-&uﬁﬁﬁ4“J)

I 25-1 . 3 -28 :
<€ {§(1+r) |f|x|v -ikledr *+ ¢ {E(Hr) I"lxlv -ikv] dr

Ca T
(4.35) + -2-0— {E(]q.r)'zslvlidf + 2—62:-1— co {E(]+r)'25|vlidr

—

T 2
+ coky {e(m)‘ 28 v)2ar + } {le'mw)“ '118%)2 + colvidrar
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258-1

+ H 2Ty ()-ikv(1) 12+ co (1) 128 w(m) 21,

where €, is the constant given in Assumption 2.1 and the following estimates
have been used:

26-1-¢

(1425 Te, (M) scq (141) U gco (14177 =ey (14r) 848,

(14r)28°y cy(rl s¢, (14r)28-27€ ¢ c0(1+r)’26.

(4.36) 1

(1+r)2821co (M & ¢ (14r) 2827 g ¢ (14r)728,

L(1+ r‘)25°lllco(r‘)ll s Co(l+r)25'1'€ < c0(1+r)]'25.

By Lemma 4.1 and the Schwarz inequality, we have

the right-hand side of (4.36)

L Y000
S Il XV =Tkv )il _y +Cqlv il _glg™(v =Tkv)il ¢

Q

+ scgivi?y + CIVE_ UV _g + Iv' =Tkl o_y + I )
(4.37) : :
" 2(1+co)c€325"nvua’“’2)

+ HDLN 252y (1)-ikv(T) |2 + c(141) 28 v(M) )

with CE = max|E'(r)]. Since v'-ikv € L, 5-1“"‘) and v €L, _6(I,X).
r ? ?
the last term of (4.37) vanishes as T + = along a suitable sequence

{T,}» and hence we obtain from (4.35) and (4.37)

IV ikl g o o) + B;’vlls_]’(z’,,)
(4.38)
SV _g + 1l +Uvi=TkWlg (g o) +iMIg (7 o))

(2.10) follows from (4.38) and Proposition 1.2 (the interior estimate).
Q.E.D.




PROOF of (2.11) of LEMMA 2.5. From (3.32) in Proposition 3.4, we have

(4.39) Iv(e) 12 < k2w () -Tkv(t) |2+ 20kg | 7T v
Multiply (4.39) by (1 + t)'za and integrate from r to . Then, it fol-
Tows that
2 | -258,.,
5, (e S 7 L 40000 -ikv|2dt
1 r
+ —2 (1) g
|k]((25‘1)
(4.40) 1 -2(25-1) 2
< ;Z (1+r) "V"1kV"5-1,(r,m)
1
¢ —2 (1) (Vg g
|k [ (26-1)

(2.11) is obtained from (4.40) and (2.10). Q.E.D.
Now that all the lemmas in §2 and Theorem 2.3 have been proved completely,

we can show more precise properties of the mapping
(4.41) € L, (1,X) 2 (ks2) + v(+,k,R[f]) € L, _(1,X)

by reexamining the proof of the lemmas in §2.

LEMMA 4.3. Let {fn} be a sequence in LZ,G(I'X) such that f_
converges weakly to f € LZ,G(I’X) as n > o, Let {kn} be a sequence
in € such that ky > k € €* with ket’ as n+wo Let v, be the
radiative function for {L,kn,z[fn]}. Then, there exists a subsequence

{vnm} of {vn} such that

N
(4.42) vnm *¥ L2 6(I X) n HO (1, x)loc

as m-+> o, where v denotes the radiative function for {L,k,2[f]}.




PROOF. Since {fn} is weakly convergent, {fn} is a bounded sequence

in L, 6(I.X). Therefore, it follows from (2.7) in Theorem 2.3 that {vn}
is a bounded sequence in LZ(I’X)loc’ that is, {vn}(vn = U']vn) is a
bounded sequence in LZ(EQN)]OC. Noting that vn satisfies the equation

- 5 2. W)
(4.43) -0V + Q¥ - kT = ?n (?n UTf,),

we can see that {vn} is really a bounded sequence in Hz(!!N)]oc. Then,
by the repeated use of the Rellich Theorem, it can be shown that there exists
a subsequence {Vnm} of {Vn} which is a Cauchy sequence in H](IRN)1OC.
Therefore, {vm } is a Cauchy seugence in HE)’B(I,)().loc with the limit
v € Hé’B(I,X)]oz. Moreover, it follows from (2.8) in Theorem 2.3 that
{vnm} converges to v in L2,46(I’x)' too. In quite a similar way to
the one used in the proof of Lemma 2.6, we can easily show that v is the
radiative function for {L,k,2[f]}. Q.E.D.

From the above lemma, we obtain

THEOREM 4.4. Let Assumption 2.1 be satisfied.

(i) Then the mapping
(4.44) " 5 k> v(k2e]) € L, (1,X)

isa B(L, ((I,X),L, _s(I,X))-valued continuous function on ¢t, that is,

if we set
(4.45) v(ekaalf]) = (L= k&) (Fel, (1)),
then (L - k%)™ € B(L, (1)L, 4(1,X) and (L - kA is continuous

in k€€’ 1in the sense of the operator norm of B (L2 6(I,X),L2 _G(I.X)).

(ii) For each k € c*, (L - kz)'], defined above, is a compact operator
from LZ’G(I,X) into LZ.-G(I’X)'




PROOF. Suppose that the assertion (i) is false at a point k€ (€', |

Then, there exist a positive number B > 0 and sequences {fn} C L2 G(I,X) l

(k,} €€ such that . I

’lfn e T s 1, 2an),
(4.46) ky > k (n + =),

Iv(esko2 [F ) = v(eskL2lf DE2e (n=1,2,...).

With no loss of generality, we may assume that fn converges weakly in
L, 5(I,X) to f with fe€ L, G(I’X)‘ Then, Lemma 4.3 can be applied to

show that there exists a subsequence {nm} of positive integers such that

v(sky S20F, 1) > v(e,k,2[f1),
m m
(4.47)

V(e ko 2[f 1) > v(+,k,2[f])
m
in L, (I,X) as m+ . Therefore, we obtain

(4-48) IV(',k,l[fn ]) I v('an 92'[fn ])'_6 -0
m

m m
as m -+ «, which contradicts the third relation of (4.46). Thus, the proof
of (i) is complete. (ii) follows directly from Lemma 4.3. Q.E.D.

Finally, we shall prove a theorem which shows continuous dependence
of the radiative function on the operator C(r). This will be useful in §6.

THEOREM 4.5, |Let Lps n=1,2,..., be the operators of the form

d2

(4.49) Ln i e E;Z'+ B(r) + cn(r)v cn(r) - con(r) + co](r)
(rel)

with CJn(P) = an(rw)x for j = 0,1. Here QOn(y) and Q]n(y) are
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assumed to be real-valued functions on IRN which satisfy (Qo) and (Q])
of Assumption 2.1 with QO and Q] replaced by QOn and Q]n' respec-
tively. The constants €§ and <o in (QO) and (Q1) are assumed to be

independent of n = 1,2,.... Further assume that

: N
4.50 1i = = 0,1, R
(4.50) bgy %al¥) = () ( y € R7)

with Qo(y) and Q](y) which satisfy Assumption 2.1. Let Vne = 1,200

+
be the radiative function for {Ln,kn,zn} such that kn el’, %, € FG(I,X)

and

ky >k in ct
(4.51)
R, > 2 in FG(I,X)

as n+o with ke’ and 2 GFG(I,X). Then we have

(4.52) vo v in o8 (),

where v 1is the radiative function for {L,k,2}. And there exists a con-

stant C such that

(4,53) b=tk vty + lB:vn:G'] fc nen o,
2 -(26-1
'Vn'B,-s,(r,c») sC°r et o (r21)

for all n =1,2,.... C = C(k) 1is bounded when k moves in a compact set
in ¢*,
PROOF, Let 9n be the radiative function for {Ln,ko,zn} and let

+
w, be the radiative function for {Ln.knz[(kﬁ-kg)gn]}. where k, € ¢,

Im ko > 0. We have v +w_ by Lemma 2.8. Reexamining the proof of

n" 9n n
Lemmas 2.5 and 2.7, we can find a constant C, which is independent of
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n=1,2,..., such that

(g . + UB% Il . + g il . & C M2l

nsg ng né n é

(4.54) Jiws = kWl o o+ 1B o & Cllig l, + MWyl ),

w25y  Cr (28D gl + uwnufa) rz1)
for all n =1,2,.... Thus, we obtain, for all n

v = kvl g+ UBR e & O o+ w i),
(4.55)

v 2 ey € A7 V0na 2 enpZy € 3

with a constant C > 0. The estimate
(4.56) ""n"-s Clilg "6 (o = 1,2,...}

can be shown in quitea similar way to the one used in the proof of Theorem
2.3 and Lemma 2.6. In fact, if we assume to the contrary, then there is a
subsequence {hm} of {wn/uwnu_s} which converges to the radiative function
for {L,k,0}, where we have used the interior estimate (Proposition 1.3),
(4.54) and (4.5C). We have Ihl_g = 1. On the other hand, h = 0 by the
uniqueness of the radiative function (Lemma 2.4), which is a contradiction.

(4.53) follows from (4.54) and (4.56). Proceeding as in the proof of Lemma

2.6, we can show the convergence of {v } to v in L2 G(I X) n H0 B(I x)loc’

which, together with (4.53), implies that {Vn} converges to v in
By Soltn)., Q.
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Chapter II. Asymptotic Behavior of the Radiative Function

§5. Construction of a Stationary Modifier
Throughout this chapter, the potential ¢Q(y) is assumed to satisfy

the following conditions, which are stronger than in the previous chapter.
ASSUMPTION 5.1,

(Q ao(y) can be decomposed as Q(y) = Qo(y) + Qq(y) such that g,
and Q1 are real-valued function on nz", N being an integer
with N> 3.

(§0) There exist constants €; > 0, 0 <e <1 such that Qu(y) fisa

Mo
C function and

(5.1) 109901 < 601 + YN (ye RY, §=0,0.2,...m)

where DV denotes arbitrary derivatives of jth order and Mo is

the least integer satisfying

(5.2) my > -ez- 1 and my > 3.

Let m, be the least integer such that mje > 1. When My > My,
we assume that (m] - 1)e < 1. Further Qo(y) is assumed to satisfy

(5.3) Q) =0 (lyl <M.

(Q]) Q1(y) is a continuous function on RV and there exists a constant
€ > max(2 - €,3/2) such that

€

(5.4) I 250+ 1y | (ye rY

with the same constant Co as in (QO).

REMARK 5.2. (1) Here and in the sequel, the constant &§ in Defini-
tion 2.1 is assumed to satisfy the additional conditions

AN € - s

b




54

§ < min(e,e]-]) when % <e< 1,

(5.5)
€.-1+e

§ < m'ln[i—(moﬂ), —]—2—] when 0 < e < k.

From the conditions (5.2) and (5.4), it is easy to see that (5.5) does not
contradict the condition & > %,

(2) If e>%, then my=3andm =2,

(3) The condition (m1-1)e <1 1is trivial. In fact, when % is
an integer, we can exchange € for a little smaller and irrational €'.
The condition (5.3) is also trivial, because Qo(y) and Qi(y) can be
replaced by ¢(y)Qy(y) and (1-0(y))(y) + Q;(y), where ¢ is a real-
valued €° function on RN such that ¢(y) = 0 (lyl <1 =1(ly] 2 2).
(4) A general short-range potential

-1-80

(5.6) 2 (y) = o(lyl ) (gg>0, |yl +=)

does not satisfy (5.4) in Assumption 5.1. In §12, we shall discuss the
Schrodinger operator with a general short-range potential.

The following is the main result of this chapter.

THEOREM 5.3. ( asymptotic behavior of the radiative function). Let
Assumption 5.1 be satisfied. Then, there exists a real-valued function
Z(y) = Z(y,k) on RY x (R - {0}) such that Z € C3(1R N) as a function
of y and there exists the Hmit
(5.7) F(ki2) = s - 1im e M(rsK)y () 4n x

r
for any radiative function v for {L,k,2} with k€ R - {0} and
% € Frug(1,X), where u(y,k) is defined by




55

uly,k) = rk - A(y,k)
(5.8)

Ay k) = Z Z(tw,k)dt

with r = |y|, w=y/|yl and

s if 0<ec<k
(5.9) LB

1
0 1f§<€<1-

This theorem will be proved in §7 by making use of the next.
THEOREM 5.4, Let Assumption 5.1 be satisfied. Let v be the radi-
being as in (5.9). Then we have u' - iku, B4 € L, B(I,X), where

u= e“‘v and A 1is given by (5.8). Further, let K be a compact set in

ative function for {L,k,2} with k€ IR - {0} and 2 € F

R - {0}. Then, there exists C = C(K) such that

(5.10) lu'-ikul g + lta"ul‘5 sCllilly,, (u= ell)
and
(5.11) Iv(r-)Ix = C|||:7.||l]+‘3 (rel

for any radiative function v for {L,k,2} with k€ K and & € F1+8(I,X),
where B is as in (5.9).

As was proved in Jager (3], we may take Z(y) = 0 when Qo(y) = 0.
Saito [3] (and Ikebe [2]) showed that we may take

(5.12) 2y) = 7 9(¥)

in the case that % < e < 1. It will be shown that (5.12) is the "first

approximation” of Z(y) in the general case. The function A(y,k) is
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called a stationary modifier.

In the remainder of this section, we shall construct the kernel Z(y,k)
of the stationary modifier A(y,k). To this end, let us consider the fol-
lowing problem: Find a real-valued function A(y,k) on RN (R - {0})

such that
(5.13) [(LkE) (™) [ =00r™) E> 1, roaaw)

for any X € D, where u is given by (5.8). If Qo(y) = 0, then

Xy) = 0 is a solution of this problem. In order to solve this problem,
we have to investigate some properties of the Laplace-Beltrami operator
N-1
Spira

AN on

as in (0.22), i.e.,

Let us introduce polar coordinates (r,e].ez,...,eN_])

y-l = rCOSe],
(5.14) lyj = rsine]sinez...sinej_1cosej 03 = 2.3,.0uaB=1),
Yy = rsin;sing,...sinby_,sinby ;.

by = 1,
(5‘]5) ‘bj = bj(e) = SfﬂG]S'inez...S‘inej_] (j = 2,3,-..,"']),
My = My(0) = by(e)! a—g-; (5 = 1,2,..00N-1).
Then we obtain from (0.23)
N-1 : :
(5.16) AyX = jZ]bj(e)‘z(s,inej)‘”"i'"' a:g: {(sinej)”‘J" §gJ-}

and hence, setting A = -Ay + %(N-1)(N-3), we have
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N-1
(5.17) WG LI s eyt (G = e (-a)),

where X(w) is a sufficiently smooth function on SN'1. It follows from

(5.17) that the operator M‘j can be naturally extended to the operator
on Dlﬁ i.e., for Xe€ Dls we define MJX by ij- s-Tim Mj n’ where

{Xn} is a sequence such that X € C](SN 1), R =R in x as n-+®

and A;‘Xn-»A”X in X as n -+ =, In the sequel MJ. will be considered

as the extended operator on D}‘. Let A(y) be a C2 function on RN

and let us set

v e oly) = olyin) = v 2 T (M, :
=1
(5.18) P ="p(y) = P(ysn) = r2(a2)
N-1
L jz (M X)M ‘

r -
LEMMA 5.5. Let X€ D and set A(y) = £Z(m)dt (r=lyl» w=y/ly])
with 2(y) € c3(RY). Then we have

(*P8(r) - B(r)e* ) x = etA g+ 20r7M 1 iPIX

(5.19)
= (0 £ 2ir~2M = ip) (et TPy,
and
(L-kz(e‘“x).- eM{(B(r) + 2ir"2M)x + (1P + 12" + €)X
(5.20)

(2kZ - Cy - 2 -v )x},

2 = 3, and uly) = rk - ()

where ¢, P, M are given in (5.18),
with k€ R - {0}.

PROOF . (5.19) and (5.20) can be shown by easy calculation if we note




e ML A 2k A P i bk

o R I g o 7

(5.21) ayet M = e P iagx s 2imx = i) A |

Q.E.D.

In order to estimate the term P(y), we need

LEMMA 5.6. Let h(y) € CZ(RM). Then

N

- -1

(5.22) (Mjh)(.Y) pzj bj(e) Yp,j ay
|
N-T N 22 2%h
(5.23) (A y) = 321 p,zﬁ 55(8) "Yp, .3 3,5y,
N

-1 Loy 2

where Y . = 552 Let A(y), Z(y) be as in Lemma 5.5 and let P(y) be
J

as in (5.18). Then

r

(M; A (y) = I Z by (0)”
0 psj 3

(5.24) :

O3

Ply) = 5
.

where r = |y|, w = y/|y|.
PROOF. Let us start with

N
dh
(5.25) 2= 1 Ve dyy
J P

where it should be noted that yp j =0 for p < J.

Ni1 vg
{J‘ﬂ P»q=1

{ - (N-1) pg][p ay] "y }dt.

dh_ ¥

YA
dt,
[P J B.YF] y=tuw

2
-2 371
b;(6) [ y }
J Y0,570,3 Yg | yeta

(5.22) directly follows

from (5.25). It follows from (5.25) that

32h 3h

(5.26) = y
5?? PZJ P ayp

N Zh
2 ,3¥9,3 By 3y,




Here we have used the relation

2
dy Ty
(5.27) —;%‘1= =-y, (Jspgh Tgish-1)
j -335 P

Thus we obtain

-1 -2 9%
RO CORE S SRS RR

cos 8, .p
s
aej

n Gj 90

J

N-1 N 2 N-1 N
(5.28) sl F By g sl § B LT
J=1 p,q=j J 7p,J7a,d a‘ypa'yq j=1 sztﬁ

oh_
Yoav
Pay,

cos 0
; 321 pZ b-z(" "=V ej Yp,J a?

P

and, hence, we have only to show

N-1 . cos
-2
P pzjb i GN By s'“ o i } Yp
(5.29)
= - (N -1
(N-1) pz]yp T

The order of summation in the left-hand side of (5.29) can be changed as

N-1 N N-1
(5.30) ol ) E +
J=1 p=j p=1 j=1

)
i1

Therefore, it is sufficient to show
(

% g . 22 cos 9, _ N1}
I & 5(0) 1 (N=3-1) o7 i Rl Rl (N-1)y,

(p = 1,2,...,N-1)

N-1 cos 8.,
= -2 &
N jz1bd(°) {(N-j-1) sin Bj Yp,j ~ yN} o (N-])yN'

(5.31) 1

To this end, let us note that
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[—-}—-1]yp (3<p <N, |
cos 6. 3

(5.32) ~ e ‘
s |

J

% (i =p <N-1),

whence follows that

sin” 9,

d * pi]b'(e)-z (N-3-1) [—— - 1| - 1}y - b_(8)"2(N-p)y
P j=1 -_-2_7; P P P

4 = T -2
(5.33) - (:J_Zl{bjﬂ(e) (N-3-1) - b,(6) (N-J)} - b,(8) (N-p):lyp

- (N - 1)yp (1 <p g N-1).

The relation JN = -(N - l)yN can be proved in a quite similar way, which
completes the proof of (5.23). (5.24) follows from (5.22) and (5.23). Q.E.D.
Let A(y) be as in Lemma 5.5 and let Z(y) satisfy the estimate

0z(y) =0yl 7€) (ly| » = §=0,,2),
(5.34)

2K2(y) - Qp(y) - L2 e (y) =0(Iy| ™) (1 <& < e

ly| + =).

Then the estimates (ij)(y),(ANA)(y) = 0(ly|1'€) (]y] + =) are obtained
from (5.24), where we should note that ij(e)'lyp’jl < lyl for j<op.
Therefore, it can be seen from (5.20) in Lemma 5.5, that I(L-kz)(ei“x)lx =
O(r'g) holds good under the condition (5.34). In order to obtain A(y),

which satisfies (5.34), let us consider three sequences {on(y.k)}, {Wn(w,k)},
M (ysk)} (v € RY, wes™, ke R -(0}) defined by




01(y) = 2 %)

i
Y(y) =0 '
MO)=&@%&MM (r=lyl, w=y/lyl),

8 (¥) = 2 QoY) + (8. (y)% + wlysr (Y} (n=1,2,...,
(n = 1.2,....m0-l),

(5.35) < 0 (m = 2,3,...,m-1),

¥ (w) =

'g?on(‘*-m) = on_"(t(li)}dt % ‘0n_-| (W) (n' = m<| lm]"']..,ﬂb),

r
A(9) = ] e(tldt + ()7 (w)

| (r = |yl, w=y/lyl, n= 2,3,....m0).

where E( ) is a real-valued C -function on T such that

g sl
(5.36) 0<elr) <, &'(r) >0, and &(r) =

1 Ar 22),

and mg,m; are as in Assumption 5.1. If my < m, then we set wn(w) =0
for all n = 1,2,...,m0-1. In the following lemma, it can be seen that
| 4 these sequences are well defined by (5.35).
‘ LEMMA 5.7. (i) 0, (y,-k) = -® (y,k), ¥ (w,-k) = -¥ (w,k) for any
pair (y,k) € IRN x (R - {0}) and any n = 1,2,...,m0- Further,

R R

¢n(y,k) =0 for |y| <1 and n = 1,2, .00 ,mg-

-
(1) o) ec®

n L ],2,..-,“‘0'

m~ +1-n
(RY) and v (wec?® (s"1) for
n

(iii) There exists a constant C > 0 such that

(5.37) 090, (y)] < €1+ [ypIE

a8 VR T < T A %

Y .Q.:'ﬁ.-u:n_ By A

75
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and

(5.38) IDj{¢n(y) - ¢n_](y)}| <c(1+ lyl)-j-ne

hold for any y € IRN, n= 1,2,...,m0 and j = 0,1,2,...,m0+1-n, where
Dj denotes an arbitrary derivative of the jth order.

mg*ti-n N
(iv) As functions of k, %, and Y, are C (R™)-valued

continuous functions on R - {0}. The constant C 1in the right-hand
side of (5.37) and (5.38) is bounded when k moves in a compact set in

R - {0}.

PROOF . (i), (ii) and (5.37), (5,38) can be shown by induction. Here
it should be noted that Qo(y) =0 for |y] <1 and

(5.39) (M;h)(y) = 0(ly]"™™) if Dh(y) = 0(ly|™)

(t >0, [y]+=),

which follows from (5.22). If My < M then \vn(w) = 0 for all
n = 1,2,...,m0-1 and we may simply set An(y) = f5<1>n(t¢u)dt. In the case
that m < my, any logarithmic term does not appear in the estimation

because (m]-l)s < 1. (iv) is clear from the definitions of e, and Y
Q.E.D.
DEFINITION 5.8. We set

(2(y) = 2(y,k) = ¢m0_2(y) + E'(r)vmo_z(w).
r
(5.40) D) = Aak) = 2 () = [2(talat,
Y(y) = Y(y,k) = 2KkZ(y) = Qo) = Z(y)? - wly3})

with r = |y|, w=y/lyl|.
REMARK 5.9. (1) From Lemma 5.7, it can be easily seen that
2(y) € cXRY), 2(y,-k) = -Z(y,k), Z(y) =0 for [y| <1 and
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9D e+ Iy (yerY, j=0,1,2.3),

(5.41)
j -J-my -1)e N
[(0'Y)(y)| £ cC1 = |y]) (ye R, j=0,1).
Further, taking account of (5.5), we have
(5.42) 10| < e+ [y)I22 (yerY, -0,

where B is given by (5.9).

(2) As a function of k, Z is a C3(IRN)-valued continuous function
on IR = {0}. The constant C in (5.41) and (5.42) is bounded when k moves
in a compact set in IR - {0}.

(3) Let us consider the case that % < e < 1. Then, my = 3 and

(5.43) Z(y,K) = Zy(y,k) = o 2(¥).

This case was treated in Saito [3] and Ikebe [2] (cf. (12) of Concluding
Remarks).

s e A I e

e PN ——
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§6. An estimate for the radiative function
Let Z(y) and A(y) be as in §5. Now we are in a position to
prove the first half of Theorem 5.4.

Let us set for a function G(y) on D!N

(6.1) 0, (6) = sup (1 + [y])*|6(y)].

yerN
The following proposition is an important step to the proof of (5.10) in
Theorem 5.4.

PROPOSITION 6.1. Let Assumption 5.1 be satisfied. Further assume

that Qo(y) has compact support in IRN.

Let K be a compact set in

R - {0}. Let g8 be as in (5.9) Then there exists C = C(K,Q) such
that

(6.2) hu'~ikul g + 182l < COIFL, + IvI_

8 8 8 st

holds for any radiative function v for {L,k,2[f]} with k€ K and
felL, 1+B(I’X)’ where u = e'’v and A(y) 1is given in (5.40). The

= i j i =
constant C = C(k,Q) 1is bounded when °e1(Ql?’°j+e(D QO), j 0,1,2,...,m0,
are bounded. Here My is given by (5.1), DY means an arbitrary deriva-

tive of jth

order and €,6; are given in Assumption 5.1.

In order to show this proposition, we need several lemmas.

LEMMA 6.2. Let v E€D(I)Nn HA’B(I,X) be a solution of the equation
(L-k¥)v = f with k€ R - {0} and fe Ly(I,X);,.. Set u=e''v with
A(y) defined by (5.40).

(i) Then we have

(6.3) -(u'-iku)' - ik(u'~iku) + Bu

= ' - 2iz(u'-iku) + (Y-iZ'-iP)u - 2ir "M,




where Y is as in (5. 40) and P,M are given by (5.18).
(i1) Let V(y) = )ngc;j with ¢l functions g; on r" - {0}
and operators GJ in X such that GJU € Cac(I X) with (G u)' =

in LZ(I’X)loc' Then
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T T
I(Vu,u'-iku)xdr = fl_ {[(Vu,u -1ku) ] f(V{u’-iku},u'-iku)xdr
R R

T
- [(V'u,u '-iku) dr + 21 f(ZVu u'-iku), dr
R
T iX

(6.4) + [(Vu,{Y-C-1Z2'-iPlu + e’ f) dr
R
| -2
- f(vu, Bu) dr + 2i f(Vu r-Mu) dr}
R

(0<R<T)
39
with V' = ) =i i
j=° 5§

PROOF. (i) is obtained by an easy computation if we take note of
Lemma 5.5 and the relation (L-kz)v = f. Take the complex conjugate of
both sides of (6.3), multiply it by Vu and integrate on SN"1 x (R,T).
Then, by the use of partial integration, we arrive at (6.4). Q.E.D.

LEMMA 6.3. Let %X €D and Tet S(y) bea C -function on RM.

Then
(6.5) (SMx,x')x + (Sx,Mx')x = -r2(SPx,x') - ((MS)x,x')x.

PROOF . By partial integration, we have

a6

(5, (M2)Myx1), = JS'N_1S(rm)X(w)(Mj>\)(rm)bj(e)-1 3"J d

(6.6)

(dw = (sin ei)N'z...(sin ej)N'j'1...sin Oy-2)
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- iN_Fg—j{S(m)x(w)(MjA)(rw)(sin 0,371 36,(0) %" ()

y -2 N-j-1
iN-]{(MjA)Mj(Sx) + bej(e) (sin ej)

36"

. a_ae-— ((sin e.)N-j-'I 9 )x"' }dw
j y i

whence we obtain

(s ,Mx')x -(M(Sx) + Sx(ANA),x')x

(6.7)

- (SMx,x'), - ((MS)xx'), = rP(SPxx'). .

This is what we wanted to show. Q.E.D.

LEMMA 6.4. Let Qo(y) be as in Proposition 6.1. Let v be the
radiative function for {L,k,2[f]} with k€ IR - {0} and f € L2’1+B(I,X),
where B is as in (5.9), i.e., B=8-¢ (0<eck), =0 (ls<e<l).
Then we have v'-ikv,B%v € LZ,B(I’X)

PROOF. Let kn =k + %- (n =1,2,3,...) and let Vi be the radiative
function for {L,k,2[f]}. From Lemma 2.7, it follows that
va-ikv B, € Ly 1 (1,X). Multiply both sides of

' 1 : ") 2 f
G 8)-((vn-1kvn) ,v"‘-iknvn)x - 1knlvn-1knvn|x + (an,vn-iknvn)x

' = '
+ (Cvn,vn iknvn)x (f,vn 1kvn)x

by &(r)(1 + r)28+], g(r) being given by (5.36), take the real part and
integrate from 0 to T. Then, proceeding as in the proof of Lemma 2.5

and using (5.5), we arrive at
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T T
28, 2 % |2
(8 + -;—) (j)'&r B{vn-iknvnlxdf‘ + (%' - B) 55"28'8 nlxdr

< H{147) 28] lva(M) =ik v, ()2

}dr

T
(6.9) + %‘(f)i'(” r)28+1{|B"vn|§ . IV,;-iknvnli

T ’
o £€(]+") 6+B|V6‘1knvn|xlvnlxdr

i
+ (f)a(m)zs” £, Jvi-ik v | dr,

whence, by the use of Proposition 1.2 (the interior estimate) and Theorem

2.3 (the Timiting absorption principle), it follows that

T 0 U s il S ol b i il Bt e —

(6.10) bvi-ikval + 1B% 1o < CIfl 0 (n=1,2,...)
) with a constant C which is independent of n = 1,2,.... Let n+ o in
i
i the estimate
(6.11) tva-Tkvolg o py * 18% 1 (0 )y < CIFL .
[ Then it follows from Theorem 2.3 that

s

]

holds for any arbitrary R >0, which implies that v'-ikv,Bl’v el, B(I,X).
Q.E.D. '

A AR R o S5

LEMMA 6.5. Let Q(y) be as in Proposition 6.1 and let K be a com-

i
|
2

pact set in R - {0}. Let v be the radiative function for {L,k,2[f]}
with k€ K and fe L, 1+B(I’x)’ B being as in (5.9). Let a(y) = aR(r) =

g(r-R*1), where £&(r) 1is given by (5.36). Then we have for
T2R¥I >R 21

- v——— ——— i 0




i
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T R+1
forze(Iu'-iku|2+l8%u|2)dr (1) +Cp [ (Iu|2+|u'-1ku|2+|8%u|2)dr
R X X R X X X
(6.13) +C I r23'5(| k| + |B* |2)dr s 1£12 4 a2 1
A 1 éa u'-fku| ul)d 148 'SI
g AR Y
+C k" 'Re [ar®®~'(z"Mu,Bu) dr|,
S { X
where u = eixv, n(T) 1is a function of T satisfying 1lim n(T) =

00
my is as in Assumption 5.1, CR is a constant depending only on R and

= b 3
K, and Cp = Cp(K,Q), p=1,2, are bounded when Pe (Q1 TN (D QO)

)= 0,1,2,...,m0, are bounded.

PROOF. Multiply both sides of (6.3) by ar28+1(u'-iEu>, integrate

N-1

over the region S x (R,T) and take the real part. Then we have

s
|

T
= Re farzsﬂ{-((u'-iku)',u'-iku)x + (Bu,u'-iku)x}dr
(6.14) .

T
Re farzsﬂ{(e“‘f,u'-iku)x + ((Y - C1)u,u'-iku)x}dr
R

3
+ Im [ar®B (2" + P)uu'-iku) dr
X

T

+ 2Im farzs']

(Mu,u'-iku)xdr = Ky + Ky + K.
The left-hand side K of (6.14) is estimated from below as follows:

i
K2 (8+7) [or®lut-ikulfer + (7 - 8) { r?818%| 5

(6.15) R

+ 1 {a'r28+]{lu'-ikuli-]Bliuli}dr - ST (n)-iku(T) 2.

K] can be estimated as

! R+1]
(6.16) K] §'C{Ifl]+8 [zarZBlu--ikulid{]+lfll+8+(R+1)1 =26 £ 'lul dr N lvl2

-§




+ T-2slu(m 2,

where we integrated by parts and used (5.42) in estimating the

: T ‘
term Re £ arze*l(Yu,u'-iku)xdr. Here and in the sequel, the constant i

depending only on K and Q(y) will be denoted the same symbol C.
It follows from (6.14) - (6.16) that i

T 1
) farzs(lu'-ikuli + |B%u|§)dr i
R

: e 6
(6.17) < ¥ uraikul2 + T2+ (1 4 R)ZEHT [ o' [B%u|2dr

PR L 2
L {“ lulldr + 1175} + Ky + K3 (¢ = %(%-8)).

In order to estimate K2 and K3 in (6.17), we have to make use of Lemma

6.3 (11). set v=a?®l(z' +P) in (6.4). Then
Ky < - ¥ ReCT2E* (2! (T)+0(T) Ju(T) 0’ (T)-Thku(T)) 3 + F(T) + G(R)

T
(6.18) + %-Im ar23+](Z(Z'fP)u,u'-iku)xdr

T :
+F Im {arze'1((z‘+P)u,Mu)xdr,
where F(T) and G(R) are the terms of the form
T
FT) = Cllftfyg + [or®S(lur-thul? + (8% )ar + vi2

R+1
6(R) = G [ (lul2 + Ju'~tku|2 + |8%|%)ary,

b,
(6.19) :

Cé being a constant depending only on R and K. Here, (5.17) is neces-

sary to estimate the term ((Z' + P)u,Bu)x. Let us next set V = ar28'1M

in (6.4). Then it follows that
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K3 £ - 1]; R“-‘{TZB-](MU(T),U'(T)-iku(T))x} + F(T) + G(R)

T 2g-1 |
+~% Im far®™" (ZMu,u'-iku)xdr ;

(6.20) 2
) Im rZB-‘(Mu (2'+P)u) dr
3 &“ > X
T

+ %-Re éar B'](Mu,Bu)Xdr

Here we used the relation Re(M(u'-iku),u'-iku)x = - (r2/2)(P(u'-iku),u'-1'ku)x
which follows from (6.5) with X = X' = u'-iku and S(y) = 1. Lemma 6.3
was also used in order to estimate the term Re(Mu,Yu)x. Thus, we obtain

from (6.17), (6.18) and (6.20)

3
&arzs(lu'-ikuli " IBHUIi)d” Sl EIRRY o R

T
+ C{% Im £ar23+1(Z(Z'+P)u,u'-iku)xdr
(6.21) ¢ i
+21m {arzsq(ZMu,u'-iku)xdr + & Re £a¥‘28- (Mu,Bu) dr)
: n1(T) + F(T) + G(R) + C{dy + 93 + s
where we have used the fact that Im{((Z'+P)u,Mu)x + (Mu,(Z‘+P)u)x} = 0, and

(6.22) ng(T) = Cr28* T (1)-tku(n) (2 + T 28u(m) 2 + 7284 18%(T) 4.

Since v'-iku,B%v €L, B(I,x) by Lemma 6.4 and the support of Z(y) 1is com-
pact in IRN by the compactness of Qo(y), it can be easily seen that
u'-1ku,8%u € LZ,B(I’X)‘ which implies that %EE n(T) = 0. Jz and J3 in

(6.21) can be estimated in quite the same way as in the estimation of Ko

and K3 respectively. By repeating these estimations, we arrive at

3
(6.23) {arzs(lu'-ikul’z( + |8%|2)dr




< n(T) + F(T) + G(R)

m]-l 5
+ ) ™' pe gxrzs'](ZnMu,Bu)xdr
n=0

-m i m
+ k 1 Im {arzeﬂ(l 1(Z'+P)u,u'-1ku)xdr

-m T m
+2k ' Im £ar23"(z ‘Mu,u'-iku)xdr o

where n(T) is the term satisfying lim n(T) = 0. By noting that Z(y)m] =
O(lyl']), (6.13) is obtained from (GTg). Q.E.D.

We have only to estimate the terms Re(Z"Mu,Bu)x in order to show Propo-
sition 6.1 completely.

LEMMA 6.6. Let S(y) be a real-valued ¢! function such that

Isty)[ze  (ye RY),

(6.24)
10s(y)| <er™' (lyl 2 1)
with a constant ¢ > 0, where D = 3%— (j =1,2,...,N). Then the estimate
J
(6.25) |Re® MX,AX) | < Cr"e(lA’*xl,z( +lxi§) (r>1, kek, xeD)

holds with C = C(c,K,Qy) which is bounded when c and 0j4e(Q)s
j =0,1,2,...,Mp are bounded. K is a compact set in R - {0} and
A= -AN + 5%(N - T)(N - 3).
PROOF . We shall divide the proof into several steps.
(I) By the use of (5.17) J = Re(SMX,AX)x can be rewritten as
N-1

J = Re(SMX.AX)x - Re{ Z](Mn(sm)’Mnx)x}
na

(6.26)

2 =
*ey Re(SMX.x)x J1 + J2.




Throughout this proof we shall call a term K an 0.K. term when K is

dominated by Cr]'e(IAkxli + lei) for r>1 with C=C(c.K,Q).

I, < orl € IR,

we have only to consider the term J].

(II) Let us calculate J1.

&ye

(6.27)

+ Re1

By noting that M S(y)

an 0.K. term.

(6.28)

which is obtained directly from the definition of Mj

(6.28), we have

N-1, n-1
Jyg = [ l {(5 1 (M X)bJ] ;1'“——‘1 (M

(6.29)

+ Re

el

L"‘ =1

Ln: J—

-(SZ

(N-1
Ref T ((M S, x) }
Ln‘]

N-1 N-1

Z (s Z (M

jA)(ij),Mnx)x

X (s Z (M52) (M M:x) .M x)

Before calculating J]3, we mention
cos 6.
-1 J
b;" sTm C My (n
- MjMn = 40 (n =
.1 ¢os o
‘-bn sin 8, M3 (n

n=1\' j=}

(M L Jpa
J=n+

>J),

i),

<3

we can easily show that J2 is an 0.K. term.

In

(see (5.15)).

) M)y
n ‘in_e_ (ij)’Mnx)x}

N-1
' Re{nz1(SM(Mre(),Mr3()x} & Gy '+ s

Since

Thus,

x} =ty g

is bounded on {y € R'/|y| > 13,

is seen to be

Using

Here, J132 is an 0.K. term, because, making use of (6.5) with x = x" =

Mnx s, We have




(6.30) Jgp = - 2- Zl{rz(SP(M x),(Mx)) + ((MSMX,Mx). }.
n=

Therefore, let us consider le + J131.
(ITI) Set

r
Z (rw) = 6 L tdt (p=1,2,....N),

(6.31) |

7. (rw) (b.b )-] %{ ? 322
L. (rw) = : .y dt
L Jn Jn p=j 0 3ypayq p:J g,n y=tw

q=n

(jsn = ]!2""!N'])’

ay
where yp 1% 3 f Then, setting cos 8 = 1 and starting with (5.24), we
obtain
cos

(6.32) Mgk = b3 (b2 p_J+1 b2, ETﬁlcos 6.},
and

ijn (3 >n),

N
= { - -2 i =
(6.33) MnMjA T ~ 0 pZanbpcos ) (3 =n),
1 cos ©
L Zjn + bj T 95 (MnX) (§j < n).

Then 012 is rewritten as

o]
{nsl(s Z b ETF_§1 (Mnx)(ij),Mnx)x

N-T L,
(6.34) - Y (sb Z Z, by, cos ep(Mnx),Mnx)x}

n-l " p=n

{ 1 (s 2 ¥ (ij).Mnx)x} = 11 * dy22¢
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Here, J,o, 1is an 0.K. term because Zjn(Y) = O(Iyl]'e) by the first
estimate of (5.34). Hence, in place of J12 + J]3], it is sufficient to

consider
J' = dygp t g
(6.35)
N-1 N-1 ' .
= Re nZ](SFn(Mnx),Mnx)x + Re nZ](SG"’M"x)x = J.l + 5
with
n-1 -1 cos 9. N 2
- Fn = z](M A)b ~ z Zp cos ep = Fn] - Fn2 :
j= J pP=n
(6.36) <
cos S 8,
. Gn= an—el(m)(r«x)- z bn -s-ﬁ—(m)(r«x)

J'IJ j=n+1
© (IV) Now let us calculate J'. Using (6.32) and interchanging the

order of summation, we arrive at

N
. -2
(6.37) : ):]Zpbp cos 9, + pZn by bpZ,C0S 85
and hence
(6.38) Z]Zpbpcos 8,

which implies that Ji is an 0.K. term. As for Jé, we can interchange

the order of summation to obtain




(5.37) 0% (y)| < c1 + [ypIe

Thus, we have shown that each term of J = Re(SMX.Ax)x is an 0.K. term,
which completes the proof. Q.E.D.

Proof of Proposition 6.1. By Lemma 6.6, the last term of the right-
hand side of (6.13) is dominated by the term of the form F(T), where
F(T) is given in (6.19). Therefore, by letting T + = along a suitable

sequence {Tn} in (6.13), we obtain

Zazs(lu'-ikul)z( + 18%2)dr
(6.40)

< G(R) + C{&arzs'e(lu'-ikqi + 18%|)dr + 113, vt }

where C = C(K,Q) is independent of R > 0. Take R = Ry sufficiently
large in (6.40). Then it follows that

(6.41) J’rzs(lu'-ikul2 + IB;‘uIZ)dr
Ry+1 » ™
Since G(RO) is dominated by the term of the form C{!fl$+8+lvlfs} by

using Proposition 1.2, (6.2) easily follows from (6.41). Re-examining

A

c{lfl12+8+lv|2 P+ G(Ry) (C = C(X,Q)).

the proof of Lemmas 6.2 - 6.6, we can easily see that C = C(K,Q)
remains bounded when Pe (Q]),p (D ~0), J =012 -y
are bounded. Q.E.D.

Now that Proposition 6.1 has been shown, we can prove (5.10) in

Theorem 5.4,

PROOF _of (5.10) in THEOREM 5.4. Let v be the radiative function i

for {L,k,2} with k € K, the compact set of R - {0}, and ¢ € F1+B'

where § -1<B<1-4. Llet ky€ t" such that Im kg > 0. Then v i

can be decomposed as v = Vo tW» where Vo is the radiative function for

{L,ko,z} and W is the radiative function for {L,k,2[f]}, f = (kz-kg)vo.




TYms WA, T, \t) rrum LEemma 2.7, tL LAl VC Taos il 1) ot&il Wk s

2(y) € ¢ARY), 2(y,-k) = -2(y.K), Uy) =0 for |y| <1 and

It follows from Lemma 2.7 that
(6.42) |V6']+B * |B;§v0|]+8 * IVOIHB < coll,’z’l”].,.s (CO ® CO(kO’B))‘
Set ug = eixvo. Noting that
(6.43) ug - iku0 = eiA(vb - ikvo) + iZeiAvo,
and

0 < (B(r)ugeug), = (B(r)vgavg), = ({iP + 2ir™2M-v}v,vy). s

(6.44)
< 18512 + ctivgl2 + 8%, 1D

with C = C(K), which follows from (5.19) in Lemma 5.5, we obtain from

(6.42)

(6.45) ug-ikugl , + nB“iuonB <Cllellgey (€ = Clkga,g))-
Therefore, it suffices to show the estimate (510) with u = eikw. To
this end, we shall approximate Qo(y) by a sequence {QOn(y)}, where we

set

y
(6.46) Qon(¥) = p{iTllqo(y) (n=1,2,...),

and p(r) 1s a real-valued, smooth function on T such that p(r) =1

*- J :
(r<1), =0 (r>2). Then it can be easily seen that pj+€(D QOn) is
bounded uniformly for n =1,2,... with j = 0,1,2,...,m. Let us set

2
(6.47) Ly * = jLZ *+ B(r) + Cop(r) + Ci(r)  (Cgp(r) = gy (ru)x),
r

and let us denote by W, the radiative function for {Ln,k.z[f]} with
£ = (k2 - kg)v0 (n=1,2,...). Foreach L , the function Z(n)(y)




can be constructed according to Definition 5.8 with Qo(y) replaced by

QOn(y)‘ and we set ;

(n) r
(6.48) = e 0 = 2.

Now, Proposition 6.1 can be applied to show
LI | = 1,2,.-., )
(6.49) Luj-ikuglg + 18Rl < ¢ (1wl ) (n )

with C = C(K). Since DJQOH(y) converges to DjQO(y) as n > o uni-
formly on IRN for each j = 0,1,...,m0, it follows that A(")(y) + Aly)
as n >« uniformly on every compact set in HRN. Therefore, by the use

of Theorem 4.5, we obtain u_ -+ u in Hé:g(l,x) as n > o, Let

n
n > in the relation

(6.50) Vup-ikugls o0 gy * 180, g py < COFLLo + wi

with R > 0, which is a direct consequence of (6.49) . Then we have

6.51 =3
( ) IU' 1kul8’(0’R) + lB;iu'B,(O,R) .<_ C{'f']+8 + IVI-G}.
Since R > 0 1is arbitrary, we have obtained
’ 1.
(6.52) lu'-1kul6 + lB’uIB < C{If"I.H_B + IVI-G}'

(5.10) follows from (6.42), (6.45), (6.52) and (2.7). Q.E.D.
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§7. Proof of the main theorem
This section is devoted to showing (5.11) in Theorem 5.4 and Theorem
5.3 by the use of (5.10) in Theorem 5.4 which has been proved in the
preceding section. |
PROOF of (5.11) in THEOREM 5.4. Let us first consider the case that
(I,X).

v is the radiative function for {L,k,2[f]} with k€K and feL
Using (i) of Lemma 6.2, we have for u=eikv

d . 2ick;. . _ 2ikr

e (u'(r)-iku(r),u(r)), }=e”""g(r),
(72.1) g(r)=|u'-iku[)2(-IB%ul)z(-(e“‘f,u)x+2'i(Z(u'-iku),u)x

-((Y-c.-iz'-ip)u,u)x+2ir‘2(Mu.u)x.

2°1+8

It follows from (5.10) that g(r) is integrable over I with the estimate

Jllg(r)lxdrsju 1kul0+IB%ul0+lfI50vl_6

(7.2) +C{lu'-iku|Blvl_6+lvl€6+IB%ulBlvl_a}

it d (Bes-e(oceg),m0(xesl)),
Where C=C(K),C'=C(K) and we have made use of (2.7), too. Integrate the
first relation of (7.1) from r to R (O<r<R<e), multiply the result by
e'Zirk and take the imaginary part. Then we have

2

kIv(r)|z=k|u(r)|2
t Zik(R-V‘), .

(7.3)  =ylu(0)u(r)) Ty (u' (R)-1ku(R) u(R)), }

+Imj e21k(t'r)g(t)dt.

r

By letting R+ along a sequence {R,} such that (u'(R,)-iku(R,),u(R,) ) +0
(ns) (7.3) gives
7.9 )% <y 1t )t et e .

Let us estimate Im(u'(r).u(r))x. Since

T (1 () ou(r)) =1 () yu (), )

(7.5) -
=tm(e 21k"3%- e?k (! (r)- iku(r),u(r)), I = La(r),
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and

(7.6) I (u'(r)ou(r)),=(Z(r)v(r),v(r)) #1 (v'(r),v(r)) 0
(r>0)

by (3.36), it follows that

0.1 I ), ls [ atolae.

Thus we obtain from (7.4), (7.7) and (7.2)

(7.8)  |v(n) [ Ll (rel)

with C=C(K). Let us next consider the general case. v is now assumed

to be the radiative function for {L,k,2} with k€K and 2F,, (I,X).

1+
Then, according to Lemma 2.8, we decompose v as VEV W, whefe Vo is
the radiative function for {L,ko.ﬂ.} with koer,"', Imk0>0 and w is the
radiative function for {L,k,% (K?-k3)vgl}. It follows from Lemma 2.7
and (1.8) in Proposition 1.1 that

|
(.9 | MollLEY =g (),
lvol 1_’_B§Cll2.lll1_'_‘5
with C=C(k0). On the other hand we obtain from (7.8)
(7.10) lw(r)lxiclvol 148 (rel)
with C=C(K,k0). (5.11) directly follows from (7.9) and (7.10).
Q.E.D-

The proof of Theorem 5.3 will be divided into the following four
steps. Lemmas 7.1, 7.2, 7.4 and Corollary 7.3 will be concerned with
the asymptotic behavior of the radiative function v for {L,k, f]} with
ke R-{0} and f6L2’1+B(I,X).

LEMMA 7.1. Let v be the radiative function for {L,k,% f1} with
ke R-{0} and feL (I,X). Then |v(r)|, tends to a limit as rue,

2,148 X

PROOF, Let Ry>0 be fixed. (7.3) are combined with (7.5) to give




r
(7.11) lv(r)lf:lg{rm(u'(Ro),umo))xﬂmfR g(t)dt

0
+!:e21k(t'r)g(t)dt},

whence follows that
. 21 '
(.12) 1) 2= (RO)’U(RO))x+ImI: a(t)dts,
which completes the proof. 0
0.E.D.
LEMMA 7.2. Let v be as in Lemma 7.1. Then there exists the weak limit
(7.13)  F(k,f)=w=-Tim e'i“(r"k)v(r)
oo
in X, where u(y,k)=rk-A(y) and A(y) is given by (5.40).

PROOF. Let us set
I o (P =i Ay (r)ir ()

=shee! ™ (u! (r)+iku(r)-iz(r )V (r))
( 3, (r)=e""™(u’ (r)-Tku(r))

e TRHAP ) (o1 () ikv (r)+1Z (e YV (r))
with u=e 'y, Let x€D. Then, by (i) of Lemma 6.2, :
(o () x) ==t (- (ut k) -k u =Tk +Z w2 (0 k) )
=gtre (0B ), (" ) 41 (2(u" 1) )

#((C1=iP=Y)u, 0 -2ir2(u M) Y=k g(r ),

(7.14)

(7.15)

where we have used the relation (6.5) in Lemma 6.3 with x=u, x'=x and

S(y)=1. Similarly we have

(7.16) g-;(&k(r),x)=ewk{(u,8x)x-(e”‘f,x)+2'i$Z(u'-iku),x)x
-((v-cl-iz-+ip)u,x)x-2ir'2(u,M-x)x}=e"‘kh(r.x)

-€
I

Therefore, by (5.10) in Theorem 5.4 and the fact that IMXngprl A%X[x,

g(r,x) and h(r,x) are integrable over (1,~), which implies that there

exist limits




81

]. ] = k’ ]
r_m(ak(r‘) x)=a(ksx)

1im(d, (r),x)_=8(K,x).
£(ak(r) x),=8(K;x)

(7.17)

Here d(k,x)=0. In fact, since u'-ikuel, B(I,X), there exists a sequence
’
{rn} such that I&k(r n”x tends to zero as n+~. Therefore, by taking
account of the fact that (Z(r-)v(r),X)x*O as r+» , which is obtained
from the boundedness of |v(r)|x (rel), it follows from the second relation
of (7.17) that
1im e =tuir: ’k)(v (r)=ikv(r), x)
reo ]
(7.18)
= vim (e 21K(a, (r),x) -1 TR (7 (re )y (r) ) =0
r+o
Thus we obtain from (7.18) and the first relation of (7.17)
vim {(e (e k)yi(r) x) sik(em MKy (r) x) 1=21k a(k,x)
r-+w ;
(7.19)
vim (e 1K)y ~ik(enilre KDy (), x),}=0
r—+o
Whence follows the existence of the Timits
a(k,X) = 1im (e~ tu(re ’k)v(r),x)

r-+wo
(7.20)

= L 1im(e" =tu(re,ky, '(r)sx),
ik roe
for X€D. Because of the denseness of D in X and the boundedness
of ]V(r)lx on I, which completes the proof.
Q.E.D.

COROLLARY 7.3. Let {Rn} be a sequence such that Rn+w and

|v'(R )-1kv(R )[+0 as n+=. Then there exists the weak limit
(7.21) F(k,f) = w=-Tima (R ) in X.
nee K

PROOF, Since {]|v' (Rn)lx} is a bounded sequence as well as
{IV(R )}, it follows from (7.20) that the weak limit




e ——————

s
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w-31m e'i”(Rn"k)v'(Rn) exists in X and is equal to ikF(k,f).
Therefore, (7.21) is easily obtained from the definition of
ak(r).
Q. E.D,

LEMMA 7.4. Let v be as above. There exists a sequence
{r,} such that r te (n+«) and
(7.22) }1m|v(rn)|x = [F(k.f)lx.

PROOF. Let us take a sequence {rn} which satisfies
(€ 1+e 2518 % e dutr 0 ], 5 €
1im 1+ )BYE8% (e Ju(r )] = 0
[v(e )y 2 Coo

Gimlv' (ry)-ikv(r )], = 0,

(7.23)

for all n=1,2,..., where C0>0 is a constant, u=e1Av, and 8 is as
above. Such a {rn} surely exists by Theorem 5.4 and Theorem
2.3. Let us set

(7.28) a_y(r) = = g e™ Mkl (yoir)tinv(n)).

Then we have

(7.25) v(r) = ei“(r"k)ak(r) + e'i“(”"k)u_k(r),

the definition of ak(r) being given in (7.13), whence follows
that

(7.26) A FE RN LRI e TR

tHu(r «,k) e
+ (a_k(rn). e n’ v(rn))x ot RS W
Here bn+0 as n+» because of the third and fourth relations of
(7.23). Therefore, it suffices to show that an+|F(k,f)|3 as

n+o, Setting
(7.27) F(k,f) = e 1e(rp=ek)y(py,
we obtain from (7.15)

rere et i s b e -




R |
a, = (a (R).F, (k. F)), - J oy (£),F, (ko)) dt |
(7.28) n |

1 R
= (@ (R)LF (K, F)) - e [

e tk(Ernlg (e, u(r ))at,
»
where R
(7.29) g(r,x) = (Bu.x)x * ((C1-1P-Y)u-e“f.x)x "

+ 1(Z(u'-1ku),x), + {-Zir'z(u,Mx)x} = Zlgj(r,x).
Now let us estimate g(r,u(rn)). It follows from (5.5), (5.42)
and the third relation of (7.23) that
(7.30) [gp(rsu(r ))] < ColIf(r)], + C(1+r)'26|v(r)|x) = ggp(r).
As for g3(r,u(rn)) we have similarly
(7.31) lgg(roulry )] g CoC1+r) 78| (14r)B(ur-iku) |, |
CoC(1+r) 78 (14r) Bur=iku) | = goq(r), |
X

A

ia

because

-€ i =G (B=O)!
(7.32) -¢-8 =

-e-(8-g) = -¢ (B=6-€). | 4
g4(r,u(rn)) can be estimated for r > r, (>1) as
c(rer) 20 1em) 1€y (A%u(r )|
T R S L T TS TR Lo IO YOI

CCo(1+r) S B v, < €' (14r)7H = gy (r),

lgq(roulr ))|
(7.33)

0o A

in

where a=§ (0<egk%), = € (%<e<l). Here we have used (5.11) in
Theorem 5.4, (7.32) and the first relation of (7.23). Let us
enter into the estimation of g(r,u(r )). We have from the %
inequality ag < k(a2+32)

|gl(r.u(rn))l s %IB¥u|i+gr°2|A%u(rn)|§
5] (14r) Bo%u | 2ungr =2 Yy (r )| 2
4 gol(r)+%r'2|A5U(rn)|§
Set gq(r) -legOJ(r). Then g, is integrable and it follows

A

(7.34)

ia




from (7.28) that ; .
(7.35) |a -(a, (R).F (k.f)),| 5'7%FTIr go(r)dr+z%pTlA&u(rn)lif

n rn

. (R 3 5 .
£ zTETIr go(r) r+ITFTrn|B (rn)u(rn)lx (r21).
n

Let R»= in (7.35) along a sequence such that |v'(Rn)-ikv(Rn)|x+0

as n+», Then, using Corollary 7.3, we arrive at

(7.36) la - (F(k,f),F (k,f)) | < Q%FT{“ 9o (r)dregterr, 1B (r Julr )2,

"n

By the second relation of (7.23) and Lemma 7.2 the right-hand
side of (7.36) tends to zero and (F(k,f).Fn(k,f))x coverages to
|F(k.f)|§ as n+», which completes the proof.
Q.E.D.
PROOF of THEOREM 5.3. Let v be the radiative function for

{L,k,2} with k€ R-{0} and zeFB(I.X). According to Lemma 2.8
v is rewritten as V=V W, where Vo is the radiative function
for {L,ko.z} with koec+, I.kp>0 and w is the radiative function
for {L,k,2[f]} with f=(k2-k§)vo. since vyeHs*B(1,X), it can be
easily seen that

(7.37) s-}im vg(r) =0
In fact, letting R+» in the relation
R
2 2 -
(7.38) Tvg(r)I% = vg(RIIZ - 2] Re(vg(t)ivg(e))at
along a sequence {Rn} which satisfies IVO(Rn)|x+0 (n+=), we have
2 o ! 2
(7.39) |vo(r)ly 2[ Ivg(t) ] 1vg(t) ], dr < Wols, (r,=),
whence (7.37) follows. As for w we can apply Lemmas 7.1, 7.2

and 7.4 to show

(7 40){w°‘r1»“«!»e'1"(""‘)w(r) = F(k,f) in X,

SUILIC TMENTICR ST

dr
v




which implies the strong convergence of e'i"(r°'k)w(r).
Therefore the existence of the strong limit
F(k,2) = s-llm e'i“(r°’k)(vo(r)+w(r))

= F(k,f) (fF = (k2-kZ)v
has been proved completely.

(7.41)
o)




§8. Some properties of 1lim e'i“v(r)
roc

In this section we shall investigate some properties of F(k,2) =

s - lim e'i“(r’k)

roo

v(r), whose existence has been proved for the radiative

function v for (L, k, &} with k€ R- {0}, 2€ F (I,%. The
results obtained in this section will be useful when we develop a

spectral representation theory in Chapter III.

LEMMA 8.1. Let Assumption 5.1 be satisfied and let F(k,2) be as in

Theorem 5.3, i.e.,

(8.1) F(k,2) = s - Tim e M(resk)y () in X,
R

wherg v is the radiative function for {L, k, &} with k€ Fj+B(I.X),

where 8 is given by (5.9). Then there exists a constant C = C(k) such

that

(8.2) [F(k,2)], = clll2lll g

C(k) 1is bounded when k moves in a compact set in R - {0}

PROOF. As in the proof of Theorem 5.3 given at the end of §7, v
is decomposed as v = v0+w. Then, as can be easily seen from the proof

of Theorem 5.3,

(8.3) [F(k,2)[, = Vimlw(r)|
o

Set g, = (k2 - kg) Vo2 k0 being as in the proof of Theorem 5.3. It

follows from (3.32) with v=w , f=g, k]=k. k,=0 that

2




W12 5 B{lw () = ()12 - 2 I (g1 0.1

k
1 ot s 2 . 2
o ;2| (r) 1kw(r)| TET Clgyls
1 2 2 ‘
- ik C'|lj2 ,
;2 lw' (r) w(r)|% T_T Ml |
with C =C(k) and C' = C'(k). Here (2.7) in Theorem 2.3 and Lemma 2.8 ii

have been used. Let roe along a sequence {rn} such that p, o and
|v'(rn) - ikv(r'n)lx + 0 as m . Then we obtain (8.2).
QO E.Do

Since the radiative function v(-,k,2) for {L,k,2} is linear with
respect to £ , which follows from the uniqueness of the radiative

function, a linear operator F(k) from F., _(I,X) into X is well-defined

1+8
by

(8.5) F(k)L = F(k,2) (€ F,, _(I,X), B= 6-e(0<es§ . 0(-]2<e§]))

1+8

In the following lemma the denseness of F]+B(I,X) in FG(I,X) will be
shown, which, together with Lemma 8.1, enables us to extend F(k) uniquely

to a bounded linear operator from FG(I.X) into X.
LEMMA 8.2. Let 0<¢ < B. Then FB(I,X) is dense in Fw(I,X)

PROOF. As has been shown before the proof of Lemma 2.7 in §4,
LEF (I,X) can be regarded as a bounded anti-linear functional on

H] 8 (I X) which is defined as the completion of CO(I X) by the norm

@6)  voig =] 0 @0 v 18I + ot Dar

By the Riesz theorem there exists w = W, € H5'§¢(I.X) such that




e —————————

(8.7) (V) = (nV)g _, el () .

: ],B
where ( , )B,-w is the inner product of HO’_¢(I.X) . The norm
l"ll”¢ is equivalent to Iwl, . Let ¥(t) be a real-valued, smooth

function on R such that ¥(t)=1 (tg0), =0 (t21) , and set

(8.8) S (R V)= (W V)B,aw (n=1,2,--)

with wn(r) = Y(r-n)w(r) . Obviously L € FB(I,X) and we have

lw-w_ I +0 as n» , which implies that

n B,~¥
(8.9) e - 2,1ll, »0 ()
Thus the denseness of FB(I,X) in Fw(I,X) (0s¢ < B) has been proved.

QoEoD-
From Lemmas 8.1 and 8.2 we see that the operator F(k), k € R - {0} ,

A RN ks R P K A

can be extended uniquely to a bounded linear operator from FG(I,X) into

R AR i

X. Thus we give
DEFINITION 8.3. We denote again by F(k) the above bounded 1inear

2 SRR

el

£

extension of F(k) . When &=2[f] with f € L2 G(I,X), we shall simply write

(8.10) F(k)f) = F(k)f

Now we shall show that F(k)% can be representeéd by £ and the
radiative function v = v(<,k,2) for {L,k,2} . As we have seen above,
fol= FG(I,X) can be regarded as a bounded anti-linear functional on
H;:?G(I,X) . On the other hand any radiative function v for {L,k,2}
(k € t+,£ € FG(I,X)) belongs to Hé:?a(l,x). Therefore <(%,v) is

well-defined, and we have

(8.11) (L,v)= ]iin(ﬂ.,vn) :




1,8
where Vo € Ho (I,X) satisfies v, in HO G(I 1). I

THEOREM 8.4. Let Assumption 5.1 be satisfied. Let v,(j=1,2) be |
the radiative function for {L,k,zj} with k €R - {0} , zj € FG(I,X)
(3=1,2) . Then

o 2 ]
(8.12) (F(k)z.l, F(k):zz)x 57K « 9.2, 2 ) ”1"’2’} . ,

where the right-hand side is well-defined as stated above and the bar

means the complex conjugate. In particular

(8.13) F(k)212 = - Im <20

for the radiative function v for {L,k,2} with k €R - {0} and
L € FG(I,X) . When zj = llfjl with fj € LZ,G(I’X)’j=1’2’ (8.12)

takes the form

5 & ke "
(8.14) (F(k)f], F(k)fz)x * 3K {(v],fz)0 (f v2)0}
Further we have

(8.15) F(k)F|Z = L In(v,f),

for the radiative function v for {L,k,2 [f]} with k€R - {0} and
fe Lz,a(l'x)

PROOF. Let us first consider a special case that zje F]+B(I.X), i=1,2,
where B is given by (5.9). Starting with the relation (v]. (L-k2)¢)0 = |

(29,0 (0 € c;’(I,X)), we obtain

(8.16) jl{(v;,w o + (8% B%) + ((C-KP)vyu0) }dr = (21,00
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Let p(r) be a real-valued C] function on I such that

Oso(r)sl , po(r)=1 (rgl) , =0(r22) and let us set

(8.17) Pa(r) = o(F) (n=1,2,...)

Then it can be easily seen that

if r<n or r>2n,
(8.18)

(r & 1, Fomxlo (1)), r

Substitute ¢ = pnv2 in (8.16). Then we have

(8.19) [I [pr"(vi,vz)x + o {(vi,vs) + (B’fv].e”vz)x + ((c-|<2)v1 vz)x}]dr
= (2,], pnv2 DL

Quite similarly, by starting with ((L-k2)¢, vz) = <I?¢'), it follows
that

(8.20) J: (o090, *Pnlviavy), + (B%;,8%,), + ((c-kD)y, v2)x}]dr
= (22,pnv] )
(8.19) and (8.20) are combined to give

2n

(8.21) J Pp(vysv5)

y - (vi.vé)x}dr = <22,pnv] ) - (21,pnv2 )\

X

Since

(vy(r)avy(r))y = (vi(r)s vy(r)),

(8.22) = (vylr)y vy(r) = dkvy(r)), = (vilr) = dkvy(r), vy(r)),
= 2ik(vq(r),v,(r)),




and
(8.23)  (vp(r)avy(r)), = (€M (r), e Myy(r)), = (F(K)2)s F(K)Z,), + hir)

with h(r)»0 as r= by Theorem 5.3, we obtain, noting that (8.18) and
2n

(8.24) IinpA(r)dr 3 [P“(r)]n g

2n
(8.25) l I . pr"{(v]'vz)x - (v],vé)x}dr - Zik(F(k)l1,F(k)22)x|

UA

2n
c Jn { LnﬁﬁlL + (v 1S vy = dkvgl) + 8Ty kg 1)

x(r'alvzlx)} dr

nA

< { nax |n(r}] + 1lg, (n,)'¥2 = K2 5.1, (n,)

i lvi 2 ikvll6-1,(n,w)uv2|-6,(n,w)}

+0 (nmee)

On the other hand, o v, tends to v, in Hé’? (I,X) as n»», and

hence
(8.26) <z2,pnv] ) - (2],pnv2 )+ (Rpyvy ) - (2],v2)

as m, (8.12) follows from (8.25) and (8.26). Let us next consider the
general case that ljéFG(I,X) . Then there exist sequences {2".} and

{£2n} such that

zjn € Fm(l,x) (e l,25.c0s J51:2)
jn - zj in FG(I,X) (§=1,2)

(8.27) %
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Let Vin (3=1,2, n=1,2,...) be the radiative function for {L,k,ﬁnj}.

Then we have from Theorem 2.3

: 1,B
(8.28) Vin ™Y in HO,-G(I’X)

as n for j=1,2. (8.12) in the general case is easily obtained by

letting n» in the relation

=(% ) -

(8.29) (F(K)%y,s F(K)R ot

2n)x <2"|n’v2n &

which has been proved already. (8.13)~ (8.15) directly follows from
(8.12).
Q.E.D.
‘ Now it will be shown that the range {F(k)f/f € LZ,G(I’X)} contains
D, and hence it is dense in X . Let E&(r) be a smooth function on I

defined by (5.36), i.e., 0gg(r)<1 and &(r)=0 (rgl), = 1(rg2) . Set

Wo(r) = g(rjelu{reskl, |

(8.30) folr) = (|.-k2)w0

for x€D and k€ R - {0}. Then, as can be easily seen from the

definition of u(y,k) and (5.20) in Lemma 5.5, 1"0€L2 G(I,X) and

Wy is the radiative function for {L,k,£[f0]}.
PROPOSITION 8.5. Let xXx€D and let 1"0 be as above. Then
(8.31) F(k)f0=x .

PROOF. Let Xn(") be the characteristic function of the interval

(04n), n=1,2,..., and let o and N, be the radiative functions

for {L.k,ﬂxnfo]} and {L.k.ﬂ(l-xn)fol} , respectively. Note that
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xnfoe L?’]+B(I,X), because the support of ano is compact. Then, by

the relation Wy = W, + nn and Theorem 5.3, we have

(8.32)  F(K)(X ) = s-1im {e”M{rak)y (r) - @mTulreakdy ()
r—+o

in X . Since e'iuwo(r) = x for r22, there exists the limit

(8.33) e B lim e'i"(r°’k)nn(r) in X,
roo

and hence the relation

(8.34) F(k)(xnf) = X=X

is valid for each n=1,2,... . On the other hand, proceeding as in the

derivation of (8.4), we obtain from (3.32),

(8.35) In (P12 gklé Ia(r) = tkn, ()5 + TEp V(1% )fgh

(n=1,2,...)

with C=C(k), whence follows by letting r+= along a suitable sequence
{rug in (8.32) that

2 C 2
(8.36) Ixnlx < -[-ETl(l-xn)fol6 (n-1,2,...)
Thus we arrive at

(8.37) IF(k)(ano) 'x'x§ CI(]'Xn)fOIG

{C = C{k), n=1,2,..)

When n tends to infinity, xnfo-rfo s Tollus (1-xn)f0-r0 in L2 G(I,X),

and (8.31) is obtained from (8.37).
Q.E.D.

Fr———




In the remainder of this section we shall consider the restriction
of F(k) to LZ,G(I’X) » Wwhich is denoted by F(k) again. Let us

consider the mapping

(8.38) t sk - Fk)e B(L, 4(1,X),X)

By the use of Lemma 4.3 F(k) can be seen a B(L2 S(I,X),X) - valued
continuous function on R-{0} . Further we can see that F(k) is a

compact operator from L, 6(I,X) into X

THEOREM 8.6. Let Assumption 5.1 be satisfied.

(I) Then F(k) is a B(L2 6(I.X),X) -valued continuous function
on R-{0} .

(II) For each k € R-{0} F(k) is a compact operator from
LZ,G(I’X) into X .

PROOF. Let us assume that (i) is not true at a point k € R-{0}.

Then there exist a positive number ¢ > 0 and sequences {fn} C L2 G(I,X),

{kn} C R-{0} such that

' Ifnl6 = (n=1,2,...)
(8.39) kn >k (ne)

[FCk I, - FIRIF | 2 ¢ (ne1,2,...)

With no loss of generality {fn} may be assumed to converge weakly in
L2 6(I.X) to some 'f"EL2 B(I’X) . We shall show that there exists
subsequence {nm} of positive integers such that {F(k)fn } and

m

{F(kn )fn } converge strongly to the same limit F(k)f as ms ,
m m

which will contradicts the third relation of (8.39). We shall consider




the sequence {F(kn)fn} only, because the sequence {F(k)fn} can

be treated in quite a similar way. It follows from (8.13) with

= f= =

(8.40) F(kF 12 = peIm(vaf )y (n=1,2..)
h

where v = is the radiative function for {L.kn.llfn]} . By Lemma 4.3

a subsequence {v_} of {v_} can be chosen to satisfy {v_1}
N n N

converges in L2 -G(I'X) to the radiative function v for {L,k,2f]},
whence we obtain

¢l 2
(8.41) Tim|F(k )f_ | = =Im(v,f) = |F(k)f|
apies Ny "m X K X

Let x€D and set

W, () = g(r)e™(m ek )y,
m

(8.42)

gy (1) = (L-kﬁm)wnm(r> :

where §&(r) 1is defined by (5.36). Then it follows from Proposition 8.5
that

(8.43) F(kn )gn = x
m m

By taking note of Remark 5.9, (2) it can be easily seen that

wnm" wo 1“ LZ._G(IOX)
(8.44)
g9, * fo in LZ,G(I'X)

==
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as m with w, and f0 defined by (8.30). Therefore we have,
using (8.13) in Theorem 8.4,

lim (F(k

lin )y = m (F(ky ), o (K Yy ),

)f
"m "m Mmoo m m

1
ey ’ - (f ’ )
Ziknm {(vnm g"m)o ( "m wnm 0}

13

(8.45)
= 7ip ((aFg)g = (Fawg)g}
= (

F(K)F, F(K)fg), = (F(K)F, x)

which, together with (8.38) and the denseness of D in X , implies

that {F(kn )1"n } converges tc F(k)f strongly in X . Thus we have
m m

shown (i). In order to prove (ii) it is sufficient to show that
{F(k)fn} is relatively compact when {fn} is a bounded sequence
in LZ,G(I’X) . This can be shown in quite a similar way used in the
proof of (i).

Q.E.D.

THEOREM 8.7. Let Assumption 5.1 be satisfied. Let feL2 d(l'x) and
let k€R-{0}. Then
(8.46) FIOF = s - time B klye ) n x,

n-m
where v is the radiative function for {L,k,4f]} and {rn} is an
sequence such that r 4= and v'(rn) - ikv(rn)*o in X as noe,

Before showing this theorem we need the following the Green

formula.




LEMMA 8.8. Let vJGLZ(I,x)]OC satisfy the equation

(8.47) (vj (L= B o)y = (Fu0)g (o€ CULX), §1,2)

with fJELZ(I’x)Ioc and k€R-{0}. Then we have

r
jo {(V]afz)x g (f~|9vz)x} dr

(8.48)
= (vi(r) = dkvq(r), vo(r)), = (vy(r)svy(r) = dkvy(r)),

+ 21k (vq(r)s vy(r)),

for re€l.

PROOF. The idea of the proof resembles the one of the proof
of Proposition 3.4. As has be shown in the proof of Proposition 1.3,
~ a) N my ¥ 3
vj-ru vjeHz(R )loc (j=1,2). Therefore we can proceed as in the
proof of Proposition 3.4 to show that there exist sequences {¢1n} and
{95y} such that ¢ ¢, €Co(I,X) and

.

e in Ly(1X) 00
(8.49) ) ¢jn(")*vj(") in X (rel)
635 (r) +v5(r) in X (rel)

4
(L-k )¢jn = fnj"fj in LZ(I'X)'IOC

as nme (j=1,2) . Integrate the relations

((L;kz)¢ln.°2n)x " (fln’°2n)x

(8.50)

(°'ln’(|"k2)°2n)x B (¢1n’f2n)x




from 0 to r and make use of partial integration. Then it follows

that

- (¢in(r)’ ¢2n(r))x + (¢1n(r):¢'2n<r))x k. (f1n9¢2n)0’(0,r)

(8.51) ™ (¢1n'fzn)0,(0.r)

where we should note that (¢in(0),¢2n(0))x = (¢1n(0)'¢én(0)) =0
(8.48) is easily obtained by letting n+= in (8.51).

Q.E.D.

PROOF of THEOREM 8.7. Set in (3.32) k]=k. k2=0 and r = Vi *

Then we have
(8.52) |v(rn)|i < iz lv-(rn) - 1v(rn)|§ - %Jm(f.v)o.(o‘rn) R

which implies that {([v(r )[,} 1is a bounded sequence. Next set in
(8.48) v, = Vp=v, fi=f,=f and r=r . Then it follows
that

Ie-iu(rn-,k)v(rn)lx - %—Im(v,f)o’(o’rn)
(8.53)
+ -]k- Im(v(r’n). V'(rn) = 1kv(rn))x

The second term of the right-hand side of (8.53) tends to zero as
n+ because |v’(rn) - 1kv(rn)(x+0 as n+= and lv(rn)lx is
bounded, and hence we have

@58)  1im [ ) [T = Fintu ) = FOOFIT




where (8.15) has been used. Let x€D and let wq and f‘o as in
(8.30). Then, setting in (8.48) VISVs VoW, f]-f, fz-fo and r=r_,

we obtain

(e'1U(rn' 'k)V(?‘n); e"“‘(rn"k)wo(rn) )x

(8.55) = s (v(ra)awg(r) = Tkwg(ra)), = (v (r)-kv(r,)s wo(r)),

* (vfodo, o,r ) = (Fo%adg, (0,r,)?

Since e""(rn°’k)w0(rn) =x (r,22) and wolr,) - ikwo(rn)

= -iZ(rn-)wo(rn)-»O in X (rn-bw) , it follows from (8.55) that

M(e-‘u(rn.’k)Y(rn)s x)x b '2'}'[ {(v’fo)o = (f’wo)o}

(8.56)
= (FOIF, FIKIFQ), = (FK)F,x),

where (8.14) and Proposition 8.5 have been used. From (8.54), (8.56)

and the denseness of D (8.46) is seen to be valid.
Q.E.D.

e T T———




CHAPTER III
SPECTRAL REPRESENTATION

§9. The Green kernel

In this chapter the results obtained in the previous chapters will
be combined to develop a spectral representation theory for the operator
(9.1) L--122-+ B(r) + C(r)

dr

given by (0.20) and (0.21) . Throughout this section the potential
Q(y) is assumed to satisfy Assumption 2.1.

Now we shall define the Green kernel G(r,s,k)
(r,se€T=1(0,®) , ke €’) and investigate its properties. Let
s€T, x€ X and let £[s,x] be an anti-linear function on H]aa(l,x)

defined by
(9.2)  <Ls,x1,6> = (x:8(s))y (o € W' 2B(1,X)) .

Then it follows from the estimate

(9.3) [6(S) 1y S 72 ollg (o € H](’)B(I.X)) ,

which is shown in Proposition 1.1, that £(s,x] € FB(I,X) for any B8 3:0

and the estimate
(9.4) Il 2ts.x1 lll g £ 72 (0 + $)P1xiy

is valid. Denote by v = v(°,k,s,x) the radiative function for
{L,k,2[s,x]} . Then, by the use of (1.8) in Proposition 1.3 and (2.7) in

Theorem 2.3, we can easily show that

Iv(r)ly < €00+ 5)8Ix|y

(9.5)
(C = C(R,k), r€ [O,R], s€T, x€X)




for any R€ I . Therefore a bounded operator G(r,s,k) on X is well- 9

defined by

(9.6) G(r,s,k)x = v(r,k,s,x) . ié

DEFINITION 9.1. (the Green kernel). The bounded operator

G(r,s,k)(r,s €T, ke t+) will be called the Green kernel for L .
The linearity of the operator G(r,s,k) directly follows from the
linearity of £[s,x] with respect to x . Roughly speaking, G(r,s,k)

satisfies

(9.7) (L - K2) G(r,s,k) = &(r - ) ,

the right-hand side denoting é&-function. The following properties of

the Green kernel G(r,s,k) will be made use of further on.

PROPOSITION 9.2. Let Assumption 2.1 be satisfied.

(i) Then G(-,s,k)x 1is an LZ’_G(I,X)—valued continuous function
on Tx¢€ xX. Further, G(r,s,k)x is an X-valued function on
TxTxe xx, too.

(i1) 6(0,r,k) = G(r,0,k) = 0 for any pair (r,k) € } o A

(ii1) Let (s,k,x) € T x ¢" x X and Tet J be an arbitrary open

interval such that the closure of J contained in I - {s} . Then we

have G(:,s,k)x € D(J) , where the definition of D(J) is given after

the proof of Proposition 1.3. q
(iv) Let R>0 and let K be a compact set of ¢ . Then there

exists C = C(R,K) such that H

(9.8) NG(rys,k)l < C (0<r, 3 <R, k€ X) s

where |l || means the operator norm.

EE———— O -

e -
o




(v) We have for any triple (r,s,k) € T x T x ¢t
(9.9) G(T,S.k)* = G(S,F,-F) ’ i
G(r,s,k)* denoting the adjoint of G(r,s,k) .

PROOF. Let us first show the continuity of £[s,x] in
FB(I,X) » B20, with respect to s €T and x € X . In fact we obtain

from Proposition 1.1.
|<2ls,x] - 20s'sx' 1, (14r)Pe>] = |(x, (1+S)B¢(S)x - (x', (145")Pg(s"))

<= x' (149)P0(s))y |+ (x'y (145)%(a(s) - o(s"))), |
(9.10) 8 8
+ [(x's ((1+s)" = (14s")%)o(s"))|
< (VZ|x-x' |x(1+s)B + |x' |X(1+s)3|s-s' Il’+/’2'|x' |X|(1+s)8- (1-0-5‘)B|}ll¢>ll‘s

whence follows the continuity. By recalling that the radiative function

v for {L,k,£} is continuous both in Lz’_G(I,X) and in H]ae(l,x)loc

with respect to R € ¢t and 2 € FG(I,X) , (i) follows immediately.
Since G(+,5,k)x € H'g%(1,X); . we have G(0,5,k)x = 0 for all

(sokox) T x C+ x X , which means that G(0,s,k) = 0 . On the other
hand, <2[0,x],¢> = (x,4(0))y = 0 for all ¢ € H](’JB(I,X) » and hence
G(+,0,k)x 1is the radiative function for {L,k,0} . Therefore !
G(r,0,k)x = 0 by the uniqueness of the radiative function. Thus (ii) |

is completely proved. Let us show (iii). Take a real-valued, smooth

function y¢(r) on I such that y(r) =1 on J and ¢(r) = 0 in a
sufficiently small neighborhood of r =s . Then it is easy to see that
3(r)1= ¥(r)G(r,s,k)x is the radiative function for {L,k,£[g]} with
g(r) = =" (r)G(r,s,k)x - Zw'(r)ad; G(r,s,k)x . Proposition 1.3 can be
made use of to show that v € D(I) , which means that G(-,s,k)x € D(J) .




T e

(iv) is obvious from (9.5). Let us enter into the proof of (v). Set

v(t) = G(t,s,k)x and w(t) = G(t,r,-k)x with x,x' € X . Then, setting

¢ = YW and eV in the relations

(v'i0')g + (B, Bi)g + (v,(C - B)o)y = (x,6(5))y »
(9.11)
(o'2w')g + (B%,8%)  + ((C - K)o, W)y = (a(r), x'),

respectively, and combining them, we arrive at
(9.12)  (x,w(s))y = (v(r),x'), j:; PtV (£)m(£))y - (V(t),w' (1)), Jdt

R i SR,

where wn(t) = w(n(t-to)) » v(t) 1is a real-valued, smooth function on
R such that ¢(t) =1 (t<0),=0(t>1), and ty is taken to
satisfy ty > max (rys) . Let n -+« in (9.12) and take note of the
fact that w'n(t) - -G(t-to) as n +«= ., Then we have

(x,6(s,r,-K)x" )y = (G(r,s,k)x,x"),
(9.13)
= (v(ty), wh(ty) + Tkw(ty))y - (v'(tg) - ikv(ty), wity))y

(ty > max(r-s)) .

By making th*" along a suitable sequence {tn} » the right-hand side

of (9.13) tends to zero, whence follows that
(9.14) (x,{G(s,r,-k) - G(r.s,k)*}x')x =0

for any x,x' € X . Thus we have proved (V) .

Q.E.D.
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§10. The eigenoperators

The purpose of this section is to construct the eigenoperator
n(r,k) (r€T,k€R-{0}) by the use of the Green kernel Gr,s,k) which
was defined in §9. In this and the following sections Q(y) will
be assumed to satisfy Assumption 5.1 which enables us to apply the
results of Chapter II.

We shall first show some more properties of the Green kernel in

addition to Proposition 9.2.

+

PROPOSITION 10.1. Let Assumption 5.1 be satisfied. Then the fol]owing’

estimate for the Green kernel

¢(k) (ke €%, Imk>0,r,s€T)

10.1
o Rimskll 2 Cyming(1+r)™* B (141 F

(keR - {0},r,s€T)

holds, where B =6 - € (0<e§%-), =0 (e< -lz-g'l) and the constants C, (k)
and Cz(k) are bounded when k moves in a compact set in {k€¢+/Imk>0}

and R - {0}, respectively. Further
(10.2) vir,k,2 [f]) = J 6(r,s,k)f(s)ds  (reT)
I

holds for any radiative function v(+,k,2 [f]) for {L,k,R[f]} with
$
ket and fELz’s(I,X) .

PROOF. (i) Assume that keC' with Imk>0 . Then it follows from
Letma 2.7 that v = G( ,s,k)x (s T, x X) belongs to H(])’B(I,x) . The
first estimate of (10.1) is obtained from (9.3), (2.16) in Lemma 2.7
and (9.4) with B=0 . Next assume that k€R - {0} Applying (5.11)




in Theorem (5.4) and using (9.4), we have l(i(w,s,k)xlx < C(k)(1+S)]+B|x|x ,
which implies that

(10.3) 16(r,s,k)l < C(145)1*8 (r,seT) .

The second estimate of (10.1) follows from (10.3) and the relation j

G(r,s,k)* = G(s,r,-k) ((v) of Proposition 9.2). (i) Let feLZ(I,'X)
with compact support in T and let ke’ , Imk>0 . Then

u=G6(*,r,-k)x and the radiative function v for {L,k,2[ f1} belong
to H})’B(I,X) and satisfy

il (¢,0')g + (B2u,B%), + ((C-Kluse)g = (x:6(r)), »
(6'2v")g + (B%,8%) + ((C-KD)p,v), = (8,F).

for ¢GH;')’B(I,X) . Set ¢ =v in the first relation of (10.4) .
Then, using the relation G(s,r,-k)*= G(r,s,k), we have

(x,v(r)), = (u',v'), + (B%,B%) + ((C - E)u,v)
(T0) X 0 0 Us¥Jo

= (G(5rs-k)x,F)g = (x,[,G(r,s,k)f(s)ds),

whence (10.2) follows. Let f be as above and k € R - {0}. Then we
can approximate k by {k +1ﬁ} (n=1,2,...) to obtain (10.2),
where we have made use of the continuity of the radiative function
v(e,k,2{ f]) with respect to k and (9.8) in Proposition 9.2. Thus
(10.2) has been established for k€ € and fe Lo(I,X) with compact
support in T. In the case that f & LZ,G(I’X) we can approximate f
by {fn} , where anLz(I,X) with compact support in T . Then,
taking note of the continuity of the radiative function v(<,k,Y f])
with respect to f and the estimate (10.1), we arrive at (10.2).
Q.E.D.




let k€ER-{0},s€T, x€X and set v(r) = G(r,s,k)x .

v 1is the radiative function for {L,k,2{s,x]} and s,x] € F,, (I,X)

1+8
with |||ds,x] '"HB <V?2 (l+s)]+8[x|x , where B8 is given by (5.9).

Therefore Theorem 5.3 can be applied to show the existence of the limit

‘1U(r"k)

(10.6) F(k)s,x] =s - lime v(r) in X .
oo

It follows from Lemma 8.1 that

(10.7) [FOfs x| g Cll Usox1 [ 5 = V2 c(149)° x|

with C = C(k) , and hence for each pair (r,k)€T x (R - {0}) a

bounded linear operator n(r,k) on X is well-defined by

(10.8) s - Tim e~ Mt K)gre r k)x - nlrk)x (x € X)
ro

DEFINITION 10.2. The bounded linear operator n(r,k) defined by

(10.8) will be called the eigenoperator associated with L.

The appropriateness of this naming will be justified in the

remainder of this section (especially in Theorem 10.4).

PROPOSITION 10.3. Let Assumption 5.1 be satisfied. Then we have

(10.9) s = 1m 6(r,s,-k)e M{5°sK); a n*(r,k)x

s-oa
for any triple (r,k,x) € T x (R - {0})xX, where u(y,k) {is defined by
(5.8) and n*(r,k) is the adjoint of n(r,k) .

PROOF. Suppose that there exist r >0, k0 €R - {0}, Xy € Xe

By >0 and a sequence (s} such that syt and

|vn(ro) - “*("o"‘o)"olx 2 By holds for all n=1,2,..., where we set

vn(r) = G(r'.s.-ko)e“’(‘c'n‘'k)x0 . By the use of the interior estimate
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(Proposition 1.2) and (10.1) it can be seen that the sequence
{IlvnIIB.(O,R)} is bounded for each R>0 . By Theorem 1.5 (the
Rellich theorem) there exists a subsequence {wp} of {vn} such that
{wp} is a Cauchy sequence of LZ(I’X)loc' Make use of the interior

estimate again. Then {wp} is seen to be a Caucy sequence in

HA’B(I’X)Ioc . Therefore it follows from (1.8) that {w (ro)} is a

P
Cauchy sequence in X . Since G(ro,s,-ko)e1u(s"k)xo converges
to n*(ro,ko)xO weakly in X by (10.8), wp(ro) converges

to n*(ro.ko)x0 strongly in X , which is a contradiction.

Q.E.D.
Let us summarize these results in the following
THEOREM 10.4. Let Assumption 5.1 be satisfied.
(i) Then
(10.10) n(r,k)x = s - 1im e°1“(5°'k)G(s,r.k)x in X ,
S+
and
(10.11) n*(rok)x = s ~ 1im G(r,s,-k)e (57 K)y  4n x
g+
for any triple (r,k,x) € T x (R - {0})xX . We have
(10.12) I nlr) Il = [l n*(r k)| 5 CO1#r)8
where || || means the operator norm and C = C(k) is bounded when

k moves in a compact set in R - {0} .

(i1) The relation

(10.13)  2ik(n(s,k)x, = ({G(r,s,k) = G(r,s,=k)}x,x")




holds for any x,x'€X , k€R - {0} and r,s€T.
(i14) n*('.k)xeH;’B(I,X)IOCND(I) and satifies the equation

(10.18) (L - k2)v(r) = 0

where r€T , keR - {0} , x€X .

PROOF. (i) follows from (10.8), Proposition 11.3 and (10.7). Set
in (8.12) L.* Us,xl 5 2, = Mrax'l . v]=G(-,s,k)x and v, = G(+,r,k)x .
Then, noting that F(k)Ys,x] = n(s,k)x and F(k)Yr,x] = n(r,k)x’',

we obtain,

(n(s,k)x , n(r,k)x), = ﬁ;{<ur.x'ﬂ G(*,s,k)x

(10.15) - (Us,x], Gle,r,k)x") }

= ?;T(.{ (G(rsSak)x,x')x i (x,G(s,r,k)x')x} .

which, together with the relation G(s,r,k)* = G(r,s,-k), completes the
proof of (i1). Let us show (1ii). Set v (r) = G(r,s,~k)e™(S2k)x,

vs(r) satisfies
(10.16)  (vgs (L - K2)), = (™K 0s)), (o e cf (LX) .

Let {sn} ’ snEI , be an arbitrary sequence such that Ll & -,
Then, as we have seen in the proof of Proposition 10.3, there exists
a subsequence {tp} of {sn} such that {vt } is a Cauchy sequence in

P
LZ(I.X) . This means {vs} itself converges to n*(+,k)x in

L2<I’x)1oc . Letting s+ in (10.16), we arrive at
(10.17) (n*(+2k)xs (L = K2)p)g = O (peCq1X)) .

Proposition 1.3 can be applied to show that n*(s,k)x € Hé’B(I,X)]oc A oo(1) .

Q.E.D.
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The following two theorems will show some relations between the

eigenoperator and the operator F(k) .

% THEOREM 10.5. Let Assumption 5.1 be satisfied. Let F(k) , k€ R - {0},

be as in §8. Then we have
R
(10.18) F(k)f = s-1im I n(r,k)f(r)dr in X
R+ I
for any 1'€L2 G(I.x) . In particular
(10.19) F (k)f = I n(r,k)f(r)dr
I

holds for fel..2 B(I,X) with B > %-+ §, where the integral is absolutely

convergent.

PROOF. Let fe LZ’G(I’X) and define fR(r) by
{f(r) 0srzh), |

(10.20) falr) =
(r > R).

Then it follows from Theorem 5.3 and (10.2) that

F(k)fp = s = I e H(rk)

=

e V(F,k.ﬂfR]) :

= s - tim e MK G(r,s k) fp(s)ds

(10.21) R

= JO s - liz {e'iu(r"k)e(r,s.k)f(s)} ds

=

. j“ n(s,k)f(s)ds ,
0

where we should note that we obtain from (10.3)

(10.22) l6(r,s,k)F(s) ], S C(k) (1) ™*B18(s)),

and hence the dominated convergence theorem can be applied. Since fR

converges to f in LZ.G(I'X) as R+ and F(k) is a bounded linear




i
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operator from L, 6(I.x) into X, (10.18) 1is obtained by letting

me in (10.21) . If fel, ((I,X) with B >3+ 6, then it follows
]

from (10.12) that In(s,k)f(s)lx is integrable over I . Therefore we

obtain (10.19) from (10.18) .

Q.E.D.

THEOREM 10.6. Let Assumption 5.1 be satisfied.

(i) Let k&R - {0} . Then n*(-,k)x€ L (I,X) for any

2’-6
X € X with the estimate

(10.23) *(eak)xt_o < Clx|, (x€X) ,

where C = C(k) is bounded when k moves in a compact set in R - {0} .

(i1) We have
(]0-24) (n*('sk)x9f)0 = (on(k)f)x
for any triple (k,x,f) € (R - {0} )x X x LZ(I,X) "

PROOF. (i) Let g € LZ(I,X) with compact support in T . Then we obtain

from Theorem 10.5
(10.25) (F(k)g,x), = (jln<r.k)g<r)dr, X),

- [ (atr), nvtrk) o
I

Set in (10.25) g(r) = xR(r)(1+r)'26n*(r.k)x. xR(r) being the characteristic

function of (O,R) . Then, noting that F(k) is a bounded operator from
L2 G(I,X) into X , we arrive at




R
I (1+r)'26|n*(r.k)XI,2(dr " (F(k){xR(l'ﬂr')'?'sn“*(-.k)x}.x)x
0

!

(10.26) s Ck) 'XR(1+r)'25n*(°.k)x16 x|,

. c(k) 'n*(.'k)Xl-s,(O,R)lxlx ’

PR TP NI

which implies that

(10.27) In*(eak)xl g (g.p) < CCk) Ix],

i N G s i

Since R>0 1is arbitrary, (10.23) directly follows from (10.26).
(i1) Let 'feLQ‘G(I,X) . Set in (10.25) g(r) = xR(r)f(r) and let
R+x . Then, since (f(r), n*(r,k)x)x is integrable over I by
(10.23), we obtain (10.24), which completes the proof.
Q.E.D.
In order to show the continuity of n(r,k) and n*(r,k) with

respect to k we shall show

PROPOSITION 10.7. Let x € D . Then we have

(10.28) n*(r,k)x = E%F E(r)ei“(r°’k)x - h(r,k,x)
(reT, kK€R - {0}),
where E(r) 1is a real-valued smooth function on I such that &(r) =0

(rg1),=1(r22), uly,k) is as in (5.8) and h(+,k,x) is the
radiative function for {L, -k, Y f]} with

(10.29) f(r) = E};{L -k2)getulreskly)
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PROOF. Let wo(r) = E(r)ei“(r°’k)x and fo-(L-kz)wo as in (8.30).
Then foe L2 G(I,X) and Wy is the radiative function for

Lk, " f1} . Let g€ c‘g(l.X) . Then, setting in (8.11) f,=fy , f,=g
and making use of the fact that F(k)fO'x by Proposition 8.5, we have

(10.30) (6F(K)G), = Fp ((Wge9)g = (Fgav)g} -

with the radiative function for {L,k,Ygl]} .
By (ii) of Theorem 10.6 the left-hand side of (10.30) can be rewritten

as

(10.31) (6,F(k)g), = (n*(=,k)x, 9,

As for the second term of the right-hand side we have, by exchanging

the order of integration,

(fO’V)O = J:(fo(r)o J:é(r,s.k)g(s)ds)xdr

(10.32) o
= J: (JOG(s.r,-k)fo(r)dr, g(s))xds

. (Zikh(')’g)o ’
where we have used (10.2) repeatedly. (10.30) ~ (10.32) are combined
to give
& T hwinis v
(10.33) (n*('.k)x-g)o ( 71K Wo h, 9)0

(10.29) follows from (10.33) because of the arbitrariness of g € c:(l,x) :

Q.E.D.
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THEOREM 10.8. Let Assumption 5.1 be staisfied. Then n(r,k)x and

n*(r,k)x are strongly continuous X-valued functions on Tx (R - {0} ) xX.

PROOF. Let us first show the continuity of n*(r,k)x . To this end
it is sufficient to show that n*(rn,kn)xn tends to n*(r,k)x strongly

in X, where r -+r in ; 4 ko*k in R - {0}, X, *Xx in X as me
Let € >0 given . Then, by the denseness of D and the estimate
(10.12), there exists Xg € D and a positive integer no such that

In*(r.k)x - n*(r:k)xol <€,
(10.34)

In*(rpakp)x, = n*(rak )Xol < €
for n 2 ng - Therefore we have only to show that

(10.35) s - lim n*(rn,kn)x = n*(r,k)x in X
N

for x€ D . In fact it follows from Proposition 10.7 that

ﬂ*(r,k)x = n*(rnykn)x

(10.36) = gig (6(r)e™{rek) _g(p yetulrn sko)yx

> {h(rnok’x) = h(r,k,X)}
+ {h(rn.kn.x) = h(r .k.x)}

Since wu(y,k) 1s continuous in (y,k) by (1) of Remark 5.9 and the
definition of u(y,k) (see (5.8)), the first term of the right-hand

side of (10.36) tends to zero as n+ . The second term of the right-hand
side of (10.36) tends to zero because of the continuity of the radiative
function h(r,k,x) . It follows from (1) of Remark 5.9 that (L-kﬁ)
(5e1u(r°’kn)x) converges to (L-kz) (Eeiu(r"k)x) in LZ.G(I’X) '




which implies that h(',kn.x) converges to h(+,k,x) in
Lz._G(I.X) n H&’B(I.X)loc . Since the convergence in H(])'B(I.)()]oc

means the uniform convergence in X on every finite interval
[0,R] on T, we have

(10.37) s - lim {h(rn.knx) - h(rn,k.x)} =0 .
)

Thus (10.35) has be proved. The proof of the continuity of n(r,k)x

is much easier. In fact, the continuity follows from the facts that

(10.38) n(r,k)x = F(k)&{r,x] (rel, k€R - {0}, x€X) ,
and that as has been seen in the proof of Proposition 9.2, r,x] is
an FG-valued, continuous function on T x X and that F(k) is a
B(FG(I,X),X)-valued, continuous function on R - {0}.

Q.E.D.




§11. Expansion Theorem

Now we are in a position to show a spectral representation theorem
or an expansion theorem for the Schrodinger operator with a long-range

potential. To this end the self-adjoint realization of T = -A + Q(y)

Here let us note that these properties were never used in the previous
sections (§1 - §10).
Let Q(y) be a real-valued, bounded and continuous function on

Then two symmetric operators h, and h in Lz(n!N) are defined by

0

[ D(hy) = D(h) = Cy(R") ,

(11.1) { hyf =T, f = -Af

0 0

hf = Tf = -Af + Q(y)f .

\

As is well-known, h0 is essentially self-adjoint in LZ(IIN) with a
unique self-adjoint extension H0 defined b

D(HO) = HZ(IRN) R
(11.2)

Hof = Tof = -of .

tion sense. Further, it is also well-known that we have

(11.3) o(HO) = oac(HO) = 0,») .

should be defined and some of its spectral properties should be mentioned.

where the differential operator T0 should be considered in the distribu-
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Here a(HO) is the spectrum of Hy and °ac(H0) is the absolutely

continuous spectrum.

THEOREM 11.1. Let Q(y) be a real-valued, continuous function on

rY

with Q(y) 0 as |y| *=. Let h be as in (11.1). Then h is
essentially self-adjoint in LZ(D!N) with its unique self-adjoint

extension H . We have

D(H) = D(Hy) = Hy(R™)
(11.4)
Hf = Tf = -A + Q(y)f (in the distribution sense).

H 1is bounded below with the lower bound k0 §:0 and oe(H), the essen-
tial spectrum of H , is equal to (0,») . Therefore on [ko,O) the
continuous spectrum of H 1is absent, and the negative eigenvalues, if
they exist, are of finite multiplicity and are discrete in the sense
that they form an isolated set having no limit point other than the

origin 0 . There exists no positive eigenvalue of H .

PROOF. Let V = Q(y)x be a multiplication operator Q(y) . Then

V is a bounded cperator on Lz(]RN) and h 1is rewritten as

(11.5) h=hy+V.

Since h0 is'essential1y self-adjoint, h 1is also essentially self-
adjoint with a unique self-adjoint extenstion H = Ho + V and the
domain D(H) 1is equal to D(Ho) (see, e.g., Kato [1], p. 288, Theorem
4.4). V can be seen to be Hy-compact, i.e., if L = D(Ho) and
{Hofn} are bounded sequence in LZ(I!N) » then the sequence {Vf } fis
relatively compact in LZ(HQN) . In fact this can be easily shown by

the interior estimate and the Rellich theorem. Therefore the essential

e A s
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spectrum oe(H) of H=Hy+V is equal to the essential spectrum
oe(Ho) of Hg (see Kato (1], p. 244, Theorem 5.35). Finally we

shall show the non-existence of the positive eigenvalues of H .
Suppose that A > 0 1is an eigenvalue of H and let ¢ € Hz(]!N) be
the eigenfunction associated with A . Then v = Uy is the radiative
function for {L,/Xx,0} and hence v = 0 by the uniqueness of the
radiative function. This is a contradiction. Thus the non-existence

of positive eigenvalues of H has been proved.

Q.E.D.

Set

= *
M UHOU s

0
(11.6)
M = UHU* ,

where U is defined by (0.19). M, and M are self-adjoint operators

0
in LZ(I,X) with the same domain UHZ(BIN) and are unitarily equiv-
alent to H0 and H , respectively. Let E(+;M) be the spectral
measure associated with M . We shall be mainly interested in the
structure of the spectrum of M on (0,») , because the spectrum on

(-=,0) is discrete.

PROPOSITION 11.2. Let Assumption 5.1 be satisfied. Let J be a

compact interval in (0,) and let f,g€ LZ,G(I’X) . Then




(E(I:M)f,g), = [ %'%E (F(k)f, F(k)g),dk
(11.7) /I

J aé (F(-K)f, F(-k)g).dk
5 ol it 15

where /T = {k > 0/k’ € J} and F(k) is given by Definition 8.2.

PROOF. We denote the resolvent of M by R(z;M) , i.e.,
R(zzM) = (M - Z)'] . Let us note that R(ziM)f = v(-.,/z_,L[f]) for
z€C-R and fE€ Ly, (I,X) . Here vz 1is the square root of z
with Imv’T;O and v(+,/z,L(f]) 1is the radiative function for
{L,/Z,£[f1} . In fact this follows from the uniqueness of the radiative
function and the fact that R(z3;M)f € UHZ(B!N) . Moreover let us note
that

Tim R(k% £ ib; M)f = v(-, £ |K|, £[f]) in L

(I,X)
(11.8) b¥0

2,'6

(k € ]R '{0}) fe LZ’G(I’X)) L]

which follows from the continuity of the radiative function with respect

to ke € . Then from the well-known formula
(E(;M)f,9),
(11.9) 2—-:- Hm L{(R(A + ib;M)f,g)o - (fsR(a + ib;M)g)o}da
= 2;—1 1imJ {(f,R(a - 1b;M)g)0 - (R(a - ib;M)f.g)o}da
J

b+0
it follows that

(E(3:M)f,9),

(1n.10) = QJTH'L{(V(""T'“”)"-‘)O - (fov(+,/a,L0g])) }da
i RURTER I STV IR N IS

= e R a—p— |
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By the use of (8.14) in Theorem 8.4 (11.7) follows from (11.10).

e — . Q.E.D.

Let us set

r— |

(11.11) E, (k) = :/'% ikF(+k) (k >0) .

COROLLARY 11.3. (i) E((0,«);M)M 1is an absolutely continuous I*

operator, i.e.,
aac(M) 2 (oo”) .
(i1) B (-)f e Lz(O,w),X,dk) for f€ L2 &(I,X) with the estimate

2 2 2
(11.13) Elﬂuw|dk=uummnmmosnfno-
5 =

PROOF. Obvious from (11.7) and the denseness of L2 5(I’X) in
Lz’(I,X) ]

Q.E.D.

DEFINITION 11.4. The generalized Fourier transforms Ff, from
LZ(I,X) = L2(I,X,dr) into LZ((O,w),X,dk) by

(11.14) (th)(k) = ﬂii.m. Ft(k)fR in L2((0.w),X,dk)

for f € Lz(I,X) » Where fR(r) =‘XR(r)f(r) and XR(r) is the character-
istic function of the interval (O,R) .

It follows from Corollary 11.3 that Ft are bounded 1linear oper-
ators from L,(I,X) into L,((0,#),X,dk) . F, denote the adjoint
operators from Lz((o,w),x,dk) into L2(I,x) . By the use of the rela-

tion between F(k) and n(r;k) . Let us set

* &
n, (rsk) = +/ m ikn*(r,+k)
(11.15) '

* i
n, (rsk) = +/ m ikn*(r,+k)




for reT, k>0.

PROPOSITION 11.5. Let Assumption 5.1, (5.4) and (5.5) be satisfied.

Let F: be as above.
(i) Then F: and Ft are represented as follows:

R
(11.16) (F f)(k) = 1.i.m. Ion;(r.k)f(r)dr in L,((0,=),X,dk)

R+ ®

2 R
(1.17) (K = 11 [R_] n(r.k)F(K)dk  in Ly(1,X) ,

where f € LZ(I.X) and F € Lz((O,w),X,dk) .
(ii) Let fe€ L, G(I,X) . Then for each k>0

R

(11.18)  (F,A(Kk) = s - Hmj n,(rk)f(r)dr in X .
R+

In particular, if fe€ L, (LX) with 8 >;—+ § , the integral of the

right-hand side of (11.18) is absolutely convergent.

PROOF. Let fR(r) = xR(r)f(r) with the characteristic function
xR(r) of (0,R) . Then it follows from (10.19) in Theorem 10.5 that

Z Z
F(K)fg = £/ KF (£iK)F = +/Tik I n(r.#k)Fg(r)dr
(11.19) ) ;
- [0 ny(rk)F(r)dr

which, together with the definition of F_f ((11.14)), proves (11.16) .

In order to prove (11.17) it suffices to show
* *
(11.20) (FiF)(r) = !: nt(r,k)F(k)dk

*
for Fe Lz((O,w),X,dk) with compact support in (0,») , because F,
are bounded linear operators from Lz((O,m),X.dk) into LZ(I,X) :
Denoting the inner product of Lz((O.w), X,dk) by ( , )0 again, we




- ———————r

have for any f € C: (I,Xx) .

(F,Faf)g = (Fy #F),

]0 (F(K) j;ni(r.k)f(r)dr);dk —
5 J:|U:ni(r.k)F(k)dk . £(r) (dr

z U: n;_(-,k)F(k)dk X f]o :

which implies (11.17). Here it should be noted that the integrals
I: n:(r,k)F(k)dk and I: nt(r,k)f(r)dr are continuous in r and in k ,
respectively, because of Theorem 10.8. (ii) directly follows from
Theorem 10.5 and Definition 11.4.

Q.E.D.

Thus we arrive at

THEOREM 11.6 (Spectral Representation Theorem). Let Assumption
5.1 be satisfied. Let B be an arbitrary Borel set in (0,») . Then

(11.21) E(B;M) = F;'xm_ Fe o
where )(')_!r is the characteristic function of VB = {k > O/k2 € B} .

In particular we have

+ *

(11.22) E(0,=);M) = F_F

PROOF. It suffices to show (11.21) when B is a compact interval
J in (0,») . From (11.7) it follows that

(E@MT0)g = | (FAK) 4 (F9) )k
(11.23) U IC IO
- (F: x/‘J‘Fif’g)O

for f.g€& L, 6(I.X) , which implies that




(11.24) E(0;M)f = F:*XJT P (e, (1X)

Since E(J;M) and F, Xr'r‘ F, are bounded Tinear operators on

LY =

Ly(L,X) and L, ((I,X) fis dense in L,(1,X) , (11.21) follows from
(11.24).
Q.E.D.

In order to discuss the orthogonality of the generalized Fourier

transforms Ft » Some properties of F: will be shown.

PROPOSITION 11.7. Let F, be the generalized Fourier transforms

associated with M .

(i) Then
(11.25) FEBM) =x o Fe s
(11.26) FLE((0,%);M) = F,
(n.27) E(B;M)F*= F X
(11.28) E((0,=);M)F *= F ¥,

where B and are as in Theorem 11.6.
43

(i) Fth(I.x) are closed linear subspace in LZ((O,m),X,dk) "

(ifi) The following three condition (a), (b), (c) about F (F)
are equivalent:

(a) F+(F_) maps E((O,w);M)LZ(I.X) onto Lz((O,w).X,dk) .

(b) 2 b 1 (F_F: = 1) , where 1 means the identity operator.

(c) The null space of F+ (F_) consists only of 0 .
PROOF. (i) Let us show (11.25). Let f € LZ(I,X) . Then

2
K= IF E(B;M)f ~ x F il
- 5 T 9

—— e - -
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2 2
(11.29) = WF_E(B;M)fIl + Uy F.fll - 2Re (F _E(B;M)f, X F.f)
. . e » /Tt
SR s e =J; +J, - 2Red, .
From (11.21) and the relations
(11.30) E(B;M)? = E((0,);M)E(B;M) = E(B3M)

we can easily see that J] = JZ = J3 , and hence K = 0 , which completes
the proof of (11.25). (11.26)-(11.28) immediately follows from (11.25).
(ii) Assume that the sequence {F+fn} .'ﬂ\e LZ(I,X) , be a Cauchy
sequence in Lz((O,m),X,dk) . By taking account of (11.26) f~may be
assumed to belong to E((0,%);M)L,y(I,X) . Then {F:F+fn} is a Cauchy

*
sequence, since F+ is a bounded operator. Thus, by noting that

»*
FFFf = E((O,w);M)fn = fn » the sequence {fn} itself is a Cauchy sequence

++n

in L2(I,X) with the limit f € L (I,X) . Therefore the sequence

o
{F+fn} has the 1imit F_f , which means the closedness of F+L2(I,X)

in LZ((O,w),X,dk) . The closedness of F_LZ(I.X) can be proved quite
in the same way. (iii) By the use of (i) and (ii) the equivalence of
(a), (b}, (c) can be shown in an elementary and usual way, and hence the

proof will be left to the readers.
Q.E.D.

When the generalized Fourier transform F_ or F_ satisfies one
of the conditions (a), (b), (c) in Proposition 11.7, it is called
orthogonal. The notion of the orthogonality is important in scattering

theory.

THEOREM 11.8 (orthogonality of F, ). Let Assumptions 5.1, (5.4),
and (5.5) be satisfied. Then the generalized Fourier transforms are

orthogonal.




R

~ using (11.27), we obtain from E(B;M)F:F =0

PROOF. We shall show that F, satisfy (c) in Proposition 11.7.
Suppose that F:F = (0 with some F € Lz((O,w).x,dk) . We have only
to show that F =0 . Let B = (az,bz) with 0<a<b<=, Then,

w*
(11.31) F F=0,
E
which, together with (11.17), gives
b«
(11.32) [IEXCOLOITE
a

Since a and b can be taken arbitrarily, it follows that there

exists a null set e in (0,») such that
(11.33) n:(r,k)F(k) =0 or n(rk)F(k) =0 (rgT, kee),

where we have made use of the continuity of n:(r,k)F(k) in rel
(Theorem 10.8). Let x € D and take fo(r) as in (8.30). Then,
noting that F(k)f0 = x by Proposition 8.5 and using (ii) of Theorem

10.6, we have

(FK)ax)y = (F(K), F(K)EQ),
(11.34) X
= (n ('ik)F(k)s fo)o =0 (k e, XE€E D)

whence follows that F(k) = 0 for almost all k € (0,») i.e., F =0

in Lz((O,w),x,dk) . The orthogonality of F_ can be proved quite in

the same way.

Q.E.D.

Finally we shall translate the expansion theorem, Theorem 11.6

for the operator M into the case of the Schrodinger operator H . Let

us define the generalized Fourier transforms F: associated with H by
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(11.35) F, = U'k] FU .,

N-1

- N
where Uk = k © x 1is a unitary operator from LZ(R , dg) onto
L,((0,%),X,dk . F, are bounded Tinear operators from L,(R",dy) into
Lz(RN.dE) . If the bounded operators T\t(r,k) and

E:(r.k), rel, k>0, on X are defined by

ny(r.k) = r (N1 )/zk'("'])/zm(r.k) .
(11.36) o

Tigtnyieje W ARSI Sk
then we have

3 R
Foe) = i G (rksr)wher 0 L(RY,d0)
410 o BRSaRs =

~% R w
(F)(y) = ];il'l"'J (g (rk)¥(ke) ) (w)dk A LZ(IRN,dy)

R
~* -~
where F,_ are the adjoint of F_ and y =rw, § = k' . Let E(*;H)

be the spectral measure associated with H . Then we have from Theorems

11.6 and 11.8.

THEOREM 11.9. Let Assumption 5.1, (5.4) and (5.5) be satisfied. Let
B be an arbitrary Borel set in (0,) . Then the generalized Fourier
transforms E, defined as above, map E((O,«);H)LZ(IRN.dy) onto
L(RY,dg) and

4+

~Wa, ~
(11.38) E(B;H) = F:X/E-F
where ;(/_E_ is the characteristic function of the set {& € IRN/

ige RV |52 e 8.




§12. The General Short-Range Case- -

In this section we shall consider the case that the short-range
potential Q] is a general short-range potential, i.e.,

o2 (y) = o(lyl‘]'e) . Throughout this section we shall assume

ASSUMPTION 12.1. The potential Q(y) = Qo(y) *+Q (y) satisfies

() » (Q]) in Assumption 2.1. Further, Qo(y) is assumed to satisfy
(50) in Theorem 5.1.

Then all the results of Chapter I and §9 of Chapter III are valid
in the present case. Therefore the limiting absorption principle holds
good and the Green kernel G{(r,s,k) is well-defined. In order to make
use of the results of Chapter II and §10 - §11 eof Chapter III, we shall
approximate Q] (y) by a sequence {Q]n(y)} which satisfies
121 (¥) | =0 ([y|™®1) (n=1,2,...) with a constant’ g > max (2 - e,%) ;

To this end let us define Q]n(y) by

(12.1) %aly) = ellyl - n)g(y)  (n=1,2,...) ,

where ¢(t) is a real-valued continuous function on R such that

e(t) = (t;O) ,=0(t;1) , and let us set

Ty = -8 + Qly) + Q4(y)
(12.2)
Lp = = =7 +B(r) + Co(r) + G (r) (G (r) = ¢ (nu)x) .

Since the support of Q]n(y) is compact, all the result in the preceding
sections can be applied to Ln . According to Definition 8.3,




Fn(k) , RER - {0}, is well-defined as a bounded linear operator
from FG(I.X) into X . The eigenoperator n(r,k)(r€ T, k€ R - {0})

is also well-defined. Here we should note that the stationary modifier

Ay,k) and its kernel Z(y,k)are common for aii Ly

because the long-range potential Qo(y) is independent of n .

We shall first show that an operator F(k) associated with L is
well-defined as the strong limit of Fn(k) and that F(k) satisfies
all the properties obtained in §8.

PROPOSITION 12.2. Let Assumption 12.1 be satisfied. Let

Fn(k)(k € R-{0}, n=1,2,...) be the bounded linear operator from
FS(I,X) into X defined as above.

(i) Then the operator norm an(k)u is uniformly bounded when
n=1,2,... and k moves in a compact set in R-{0} . For each
k € R-{0} , there exists a bounded linear operator F(k) from

FG(I,X) into X such that

(12.3) F(k)e=s - lim F (k)¢ (2 € Fs(1,X))

n-—+o
in X . UF(k)l 1is bounded when k moves in a compact set in R-{0} .
(ii) F(k) satisfies (8.12) for any )54, € FG(I,X) , 1.e., we

have

(12.8)  (F(K)gFKIEy), = mpl<TGovy> - <£,v,>) ,

vj(J = 1,2) being the radiative function for {L,k,vj} . (8.13)-(8.15)
are also satisfied by F(k) .

(i1i) Let x€ D and 1let fo(r) be as in (8.30), i.e.,
£o(r) = (L - k2)(8e™ (™ *k)x) with &(r) defined by (5.36) and uly.K)
defined by (5.8) . Then
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(12.5) F(k)fo =X,

where we set F(k)t[fo] = F(k)f0 .

(iv) As_gnvgpgrgtgr,from__LzTﬁilgx)ﬁ~into,Al . F(k) isa
B(LZ'G(I.X).X)-valued continuous function on R- {0} . Further, for
each k € R- {0} F(k) is a compact operator from LZ,G(I'X) into X .

(v) Let fe LZ,G(I’X) and let k € R- {0} . Then
(12.6)  F(f =s - time MM klyr ) dn x,

n—+o©

where v 1is the radiative function for {L,k,£[f]} and {rn} is a

sequence such that r,te and v'(rn) - ikv(rn) +0 in X as n+» ,
PROOF. Proceeding as in the proof of Theorem 8.4 we obtain

(Folk)s F(k)2),
(12.7)

= ] -
for L€ FS(I,X) and n,p=1,2,..., where vn(vp) is the radiative

function for {Ln,k.Z} ({Lp.k,f.} . Set p=n in (12.7) and make use

of Theorem 4.5. Then we have

2
1 2 -
(12.8) IR0l < 7y W2l ¥yl - < C2l

with C = C(k) which is bounded when k moves in a compact set in
R- {0} , where |l llg o 1s the norm of Hé’?s(l,x) . On the other
hand we obtain from (12.7)
2 2 2
k)2 - F (k)2| = |F (k)2| + |F.(k)2| = 2Re(F _(k)&,F (k)&
[F,(k)e p( ) Ix |F (k) lx I p( ) lx (F, (k) p( )2)
(12.9) 1

as n,p + = , because by Theorem 4.5 both n and vp converge to the




radiative function v for {L,k,£} in L, _6(I.X) and C]n(r) - C“§r)

satisfies

ICy (r) - C]p(r)« = [e(r-n) - o(r-p)| IC;(r)]] < ¢4(1 + )1 (re)

- (12.9)

1Cy,(r) = Gy led 0 (np+=). — S

Therefore the strong limit F(k)£ = s-lim Fn(k) exists in X and we

n+w

have the estimate IF(k)l < C , where C 1is as in (12.8), whence (i)

follows. (12.4) immediately follows by letting n + = in the relation
-l
(12.11) (Fn(k)I.],Fn(k)Lz)x Vil {<Zz, vn]> -<£], vn2>} ’

vnj,jsl.z, being the radiative function for {Ln.k.lj} and Theorem 4.5

being made use of. Thus (ii) has been proved. Let us show (iii). Set
(12.12) fon(r) =L, - yge™ (k) (ae1,2,..0) .

Then it follows from Proposition 8.5 that

(12.13) Fn(k)fOn(r) = X i S BN

Further, it is easy to see from (5.20) in Lemma 5.5 that

(12.14) Toe " To P *=t W0 Lo stra .

(12.5) is obtained by letting n +« 1in (12.13) and using (i) and
(12.14) Re-examining the procf of Theorems 8.6 and 8.7, we can see that
(iv) and (v) are obtained by proceeding as in the proof of Theorems 8.6
and 8.7, respectively. This completes the proof.

Q.E.D.

Let us now define the eigenoperator n(r,k) associated with L by

(12.15) n(r,k)x = F(k)2[r,x] (reT,keR -{0},xe€X),




where £[r,x] 1is as in (9.2), i.e., <2&[r,x],¢> = (x.¢(r))x for
¢ € H]68(I.X) . At the same time, as will be shown in the following

proposition, n(r,k) can be defined as the strong 1imit of the eigen-

operator nn(r,k) associated with Ln .

PROPOSITION 12.3. Let Assumption 12.1 be satisfied. Let n(r,k) -~ - — —

be the eigenoperator associated with L .

(i) Then for each (r,k) € T x (R -{0}) n(r,k) is a bounded

(12.16) Iniol < ¢ +r)®  (reT)

with C = C(k) which is bounded when k moves in a compact set in
R -{0} . n(r,k)x is an X-valued, continuous function on
Tx (R-{0}) xX.

(ii) We have

(12.17) 2ik(n(s,k)x,n(r,k)x")y = ({G(r,s,k) = G(r,s,-k)}x,x"),

for any x,x' € X, k€ R -{0}, and r,s,€ T .
(iii) The operator norm llnn(r,k)ll is estimated as

(12.18)  In (rk <€+ 1)°  (reTne2,..0)

with C = C(k) which is bounded when R moves in a compact set in
R - {0} . Further, we have
(12.19) n(r,k)x = s - Jjﬂ;ﬂn(r.k)x in X
for any triple (r,k,x) € T x (R -{0}) x X .
(iv) Let f e LZ,G(I’X) and let k€ R -{0} . Then




R
(12.20) F(k)f = s - lim I n(r,k)f(r)dr in X.
R+=/(

PROOF. (i) and (ii) can be easily obtained by proceeding as in the

proof of Theorems 10.4 and 10.8. Since we have

(12.21) T Tnprkx = F(K)EES,K] 5 - .

>

the uniform boundedness of unn(r,k)ﬂ and the strong convergence of
nn(r.k)x to n(r,k)x follows from Proposition 12.2. Let us show (iv).
It is sufficient to show |

(12.22) F(K)f = [I D

for f € L2(I,X) with compact support in T . Applying Theorem 10.5 to

Ln , we obtain

(12.23) Fall) = [ mytrikeieer
whence (12.22) follows by letting n + =
Q.E.D.

Let n*(r,k) be the adjoint of n(r,k) . Almost all the results

with respect to n*(r,k) obtained in §10 are also valid for our
n*(r,k) .

PROPOSITION 12.4. Let Assumption 12.1 be satisfied. Let

n*(r,k) be as above and let n;(r.k) be the adjoint of the eigen-
operator n"(r,k) associated with L .

(i) Let R€ R-{0} . Then n*(:,k)x € Lz’_G(I,X) for any x € X
with the estimate

(12.24) n*(cok)xil_g S Clxly  (x€X),




where C = C(k) is bounded when k moves in a compact set in R-{0} .

We have

(n*('nk)x:f)o = (va(k)f)x
(12.25)
(k € R‘{O}, X € x’ fe LZ'G(IQX)) .

(ii) Let x€ D . Then

— _— .

(12.26) n*(r,k)x = -2-1—,( g(r)e (oK) nirkx)

where &(r) is as in Proposition 10.7 and h(*,k,x) is the radiative

function for {L,-k,z[fol} with
(12.27) folr) = 2-‘1.? (L - KBy (gen(rsklyy

(i11) There exists C = C(k) , which is bounded when k moves in

a compact set in R-{0} , such that
(12.28) g (k)X _g S Clx|y,  (x€X) .

g ; . « 1,8
{ng(,k)x} converges to n*(+,k)x in L, _o(1,X)OHI2%(1,X), . for

each x&€ X .

(iv) (-, k)x H‘éB(I.X)loc n D(I) and satisfies the equation
(12.29) (L-k)v(r) =0 (reT,k€ R-{0},x € X) .
n*(r,k)x 1is an x-valued, continuous function on T x (R-{0}) x X .

PROOF. (i) and (ii) can be obtained by proceeding as in the proof
of Theorem 10.6 and Proposition 10.7, respectively. Let us turn into
the proof of (iii). The uniform boundedness of IInn(°,k)x||_6 follows

from the relation

e et

el e e

| —
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(12.30) (k)X = (XF (K)F),
(f € LZ,G(I’X)’ n= ],2,...)

and the uniform boundedness of nFn(k)u . Now that (10.28) has been
established, in order to show the convergence of {n;(-.k)x} to

n*(+,k)x in L, ((I,X) it is sufficient to show for x €D
(12.31) Np (+2k)x > n*(.,k)x  (k € R-{0})

in Lz’_G(I,X) . Applying Proposition 10.7 to Ln » we have
(12.32) A (r,k)x = i g(r)elH(reskly h (r,k,x)

for x€0, (r,k) €T x R-{0} , where hn(-,k,x) is the radiative

function for {Ln,-k,llfn]} and f = (Ln - kz)(gei“(r"k)x) . Since

Oyn
{fo,n} can be easily seen to conver;e to f0 = (L - kz)(aeiU(r"k)x) in
Lz,G(I,X) , Theorem 4.5 is applied to show that {hn(',k,x)} converges

to h(*,k,x) in Lz,_G(I,X) » which implies (10.31). Noting that
n;(r,k)x satisfies the equation (Ln - k2)v = 0 , we make use of the
interior estimate and the convergence of {n*(-,k)x} in LZ,-S(I’X) to

show the convergence of {n;(-,k)x} in H](’)B(I,X)1°c . which completes

the proof of (iii). We have

(n*(2k)x, (L = kB))y = 0
(12.33)
(k € R-{0}, x € X, ¢ € CG(I,X))

by Tetting n -+ » 1in the relation
*(. 2 A
(nn( ’k)x» (Ln -k )¢)0 0

(12.34)
(n=1,2,...,k € R-{0},x € X, € Cy(L,X)) .

R S — - -
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The first half of (iv) follows from (10.31) and Proposition 1.3. The
continuity of n*(r,k)x can be shown in quite the same way as in the
proof of Theorem 10.8, which completes the proof.
Q.E.D.

Now the Propositions 12.2, 12.3, 12.4 have been established, we
can show the expansion theorem (Theorem 11.6) with the orthogonality
of the generalized Fourier transforms Fy (Theorem 11.8) in quite the
same way as in the proof of Theorems 11.6 and 11.8. Therefore we shall

omit the proof of the following

THEQREM 12.5. Let Assumption 12.1 be satisfied. Then the gener-

alized Fourier transforms F,_ is well-defined by Definition 11.4. F

- -

and the adjoint F: can be represented as (11.16) and (11.17), respec-

tively. F

, are orthogonal and (11.21) holds good.
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Concluding Remarks

1° For the proof of the unique continuation theorem (Proposition

1.4) we referred to the unique continuation theorem for partial

differential equation. On the other hand Jdger (3] gives the unique
continuation theorem for an abstract ordinary differential operator
with operator-valued coefficients which can be referred to in our
case.

2° OQur proof of the limiting absorption principle was along
the line of Saitd [3]. In Ikebe-Saito [1] and Lavine [1] the
Schrodinger operator was directly treated and the limiting absorption
principle for the Schrddinger operator with a long-range potential
was proved.

3° In §5 we introduced the kernel Z(y,k) of the stationary

modifier A(y,k) as a solution of the equation
(13.1) 03 2kzly) - Qly) - 2% - ey} = o(ly|IF) (3=0,1, B1) .
Noting that Z(y)z + ¢(y) = (grad x)z , we can rewrite (13.1) as

) -j=-£ -
(13.2)  0f @k g -2 - (grad 0 = 0(ly[7F) (=01, B>1)

4° Qur proof of Theorems 5.3 and 5.4 is a unification of the ones
in Saito (3] and (6]1. The method of the proof has its origin in
Jdger [3] in which he treated an differential operator with operator- i

valued, short-range coefficients.
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5° In §5 we defined the stationary modifier by a sort of

successive approximation method. The condition (éo) was assumed
so that the successive approximation process may be effective.
As a result our long-range potential Qo(y) is assumed to satisfy
the estimates for the derivatives DJQO, j=0,1,2,...,m and m fis
a rather large number. Here it should be mentioned that our proof of
Theorems 5.3 and 5.4 is effective as far as we can construct a
stationary modifier which satisfies (1) of Remark 5.9. H@rmander
{11 constructed the time-dependent modifier W(y,t) for a type of elliptic
operators with more general long-range coefficients than ours. Kitada
[2] showed that a stationary modifier satisfying (1) of Remark 5.9 can
be constructed by starting with H3rmander's time-dependent modifier.
If we use Kitada's stationary modifier we can replace (QO) by

(§0) . There exist constants co and 0 < e ¢ 1 such that

Qo(y) is a C4 function and
ID3gg(y)] ¢ Co(1+ly[)74) (yerY,§=0,1,2,3,4) ,

where DJ denote an arbitrary derivative of j-th order and d(j) = j+e0
(j=1,2,3) , d(4) > 0, d(1) + d(4) > 5.
But in this lecture I adopted the pr1m1f{;;—;;thod of successive
approximation, because we need further preparations with respect to the
theory of partial differential equation in order to introduce the more
minute method which starts with Hérmander [1].
! 6° Theorem 8.7 was first stated and proved explicitly by
Kitada (2] .
7° 1lkebe [4] gave the proof of the orthogonality of the generalized
Fourier transforms by treating the Schrédinger operator directly and

making use of the Lippmann-Schwinger equation. Our proof of the




orthogonality of F, is different in using Proposition 8.5 instead
of the Lippmann-Schwinger equation.

8° The modified wave operators. The time-dependent modified
wave operators HD.+ for the Schrddinger operator with a long-range
potential we defineJ by Alsholm-Kato [1], Alsholm (1] and Buslaev-

Matveev [1] as

(13.3) My 4 = s-1im ol HemTtHo=ix

the X

where X 1is a function of H0 . On the other hand from the,viewpoint
of the stationary method the stationary wave operator ”D + should

be defined by

i Aoy %4
(13.4) Vs S5 0n
?6 + being the generalized Fourier transforms associated with H0 X

From the orthogonality of the generalized Fourier transforms the

D.+ follows immediately. Recently the relation

is shown by Kitada [1], [2], [3] and Ikebe-Isozaki

completeness of W
Wp,+ = Wp,+
(1], whence follows the completeness of the time-independent modified

wave operator ND +°

9° In §12 we treated the case that Q1(y) is a general short-
range potential. Then we approximated Q1(y) by a sequence {Q]n(y)}.
where Q1n(y) has compact support in g . But there is another
method which starts with the relations

(13.5) (L-k2) =(Ly k%) 1 (L-k2) T
2
where Ll = . j%f + B(r) + Co(r) ,» 1 1is the identity operator and




vV = (L-kz)']f means the radiative function for {L,k,4f]} . Then
F(k) can be defined by

-1

(13.6) F(k) = Fy(k) (1=C,(L-k2)"")

This method was adopted in Ikebe [3].

10° In Theorem 11.9 we introduced the generalized Fourier
transforms ; associated with H. Let FO + be the generalized
Fourier transforms associated with Ho » the self-adjoint realization
of -A . In this case the Green kernel 0(r,s.k) can be represented
by the use of the Hankel function and the exact form of F0’+ is

known as

il g
(13.7) (Fo.9)(8) = ¢ (N)(2m) 2 1.5 D1 & Ealney

in LZ(RN,dE) where

(13.8) ¢ (N) = e gN-1)

~

For proof see Saito [2], §7. This means that F0'+ are essentially
the usual Fourier transforms and the ?+ are the ;eneralization of
the usual Fourier transforms in this se;se.

11° As was stated in the Introduction, an oscillating long-
range potential Qb(y) such as Qo(y) = T%T sin|y| does not satisfy

any assumption. As for the Schrdodinger operator with an oscillating

long-range potential we can refer to Mochizuki-Uchiyama [1], [2].
12° Finally let us give two remarks on the condition (5.2)

in Assumption 5.1 on a long-range potential Clo . In order to give




'; a unified treatment for 0 < e < 1 we assumed the condition (5.2). But }
in the case of %-< e < 1 we can adopt a weaker condition my = 2.

In fact in this case we have

(13.9) IL(y) = flli' J; 2p(twidt (y = rw),
and the first condition of (5.41) can be weakened as

(13.100 || ¢ cO+yDIE (5=0,1,2),

because the condition

(13.11) I0%2(y)| 5 cO+lyl) e

is used to estimate the term ((Z' + P)u ,Bu)x in the proof of

Lemma 6.5 only and we can directly estimate this term without making

use of (13.11) in the case of %f< es1t. Thus (5.2) can be replaced

by

2

(13.12) 2.1 (0<eg)) and my=2 (F <egl).

>

Mo
Next let us consider the case the Qo(y) is spherically symmetric,
i.e. 4(y) = 4(lyl) . In this case the stationary modifier Z(y)
is also spherically symmetric and the operator M , the functions
o(ysA) » P(y;)) are all identically zero. Therefore the proof of

Theorem 5.4 becomes much simpler. For example, we do not need

Lemma 6.6. Moreover (5.35), by which Z(y) is defined, takes the

following simpler form:

Z,(y) = 2{— %) »
(13.13) 2o ) = e 100(y) + (Z,(¥)}

and we set Z(y) = Zn where ny is the least integer such that
0




(rl0 +1jle>1. Noting'that the right-hand side of (13.13) does

contain any derivative of Zn(y) , we can replace (5.2) by

(13.14) my = 2 (if Qo(y) is spherically symmetric).

not
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