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ABSTRACT

Spectral representations of Schrbdinger operators

T = - ~~+ Q(y)

are constructed, where ~ Is the N-dimensional Laplacian and Q(y) Is

a real-valued long-range potential ; i.e.,

Q(y) O(~y~~~) l~I , 0 <c ~ 1

A limiting absorption principle for these operators Is developed in

Chapter I. The asymptotic behavior of radiative functions is derived in

Chapter II. The spectral representatiors are derived in Chapter III.
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1 • ’
INTRODUCTION

In this series of lectures we shall be concerned with the spectral

representations for Schrødlnger operators

(0.1) 1

on the N-dimensional Eucl idean space RN 
. Here

y 2 (
~
‘1 ,,y2, ... y~) E RN

(0.2) N 2
= Z ~~ 

(Laplacian)
j l  ~Yj

and Q(y) , which is usually called a “potential” , is a real-valued function

on RN .

Let us explain the notion of spectral representation by recalling the

usual Fourier transforms. The Fourier transforms Fo± are defi ned by

(F0~f)(~ ) = (2~)~~ l.l.m. I e~~~~f(y)dy
(0.3) R-.~ Iyl< R

in L2(R~)

where f E L2(R~) ~ 
~ l’~2’ ~~ 

E R~ , l.i.m. means the limit

in the mean and yF~ is the Inner product in RN j e

N
• (0.4) y~ Z Yj~j

Then It is well-known that F0~ are uni tary operators from L2(R~) onto

L2cR~) and that the inverse operators ~~ are given by

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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N
(F~~F)(y) (271) 2 l.i.m. f e~

1
~~F(~ )d~4

(0.5)

in L2(R~)

for F € L2 (R~) . Here It should be remarked that ~~~~ are solutions of

the equation

N
(0.6) (-~-RI

2)u * 0 (,~ j 2 = 
~j=l

that is, et~~ are the elgenfunctions (In a generalized sense) wi th the
eigenvalue ,~ I

2 associated with -
~~~ . Further , when f(y) is sufficiently

smooth and rapidly decreasing, we have

F0 (-~f ) (~) = I~ I2(F f) (~)(0.7) ± 0±

(-~f)(y ) = F~~( I ~~P F0~f)(y)

which means that the partial di fferential operator -
~~~ is transformed Into

the multiplication operator I~I 2x by the Fourier transforms F0~

Now we can find deeper and clearer relations between~the operator -
~~~

and the Fourier transforms if we consider the seif— adjoint realization of

the Laplaclan In L2 (RN) . Let us define a synmietric operator h0 in

L2(RN) by

V(h0) * c;c~
N)

(0.8)
h0
f 2 _At

where 0(h0) is the domain of h0 . Then , as is well-known, h0 is essentially

self—adjoint and its closure H0 
2 h0 is a unique self—adjoint extension of

h0 . H0 is known to satisfy

_ _ _ _ _ _ _ _ _ _ _ _  
__________________________ —~~~~~~~~ -~~~~~~~~ •~~~~~---- -~~~~--
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0(H0) 
2 { f EL 2 RN)/ I~~I

2(F0 f)(~ )E L 2 (R~)} (~ H2(R~))

H0f 
2 ..

~f (fEv(H0))

(0.9)
F04(H

0f)(~) 
2 I~ I

2(F0~f ) (
~) (f€V(H 0)) , 

—

E0(B) 
2 

~~ x/T F0~

where H2cR
N) Is the Sobolev space of the order 2,8 Is an interval in

(O,~) x11- is the characteristic function of /1 {~ER~/Rl
2EB}

-
‘ 

and E0(’) denotes the spectral measure associated with H
0 
. The differen—

-

‘ 
tial operator -A Is acting on functions of H2(R

Iho) in the distribution

sense. Thus it can be seen that the Fourier transforms F0± give unitary

equivalence between H0 and the multipl ication operator (~~
2x

Let us next consider the SchrOdinger operator 1 . Throughout this

lecture Q(y) is assumed to be a real-valued , continuous function on

RN and satisfy

(0.10) ~(y) ~~0 (Itt -
~~~

)

Then a syninetric operator h defined by

0(h) 2 C
a (Rl~)

(0.11) 0

hf 2 1?

can be easily seen to be essentially seif-adjoint with a unique extension

H in L2~R
N ) . We have

0(H) 2 0(H 0)
(0.12)

Hf *T f  (f E V (H) ) .
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Here the differential operator I in (0.12) should be taken in the distri bution

sense as in (0.9). These facts will be shown in §12 (Theorem 12.1). Our final

aim is to construct the “general ized” Fourier transforms F÷ wh i ch are unitar y

operators from L2(R~) onto L2(R~) and satisfy

0(H) = ~~~~~~~~~~~~~~~~~~~~~~~~~

(0.13) 
- F~O1f) ( ~ ) = (~ (

2(F~f ) (~) ( fEV(H)) ,

E (B) = F X,T F÷

where B and x
~
ij— are as in (0.9) and E(.) is the spectral measure

associated with H . It will be also shown that the generalized Fourier

transfo rms F~ are constructed by the use of solutions of the equation

Tu= I~ I
2u.

Now let us state the exact conditions on the potential Q(y) in this

lecture. Let us assume that ~(y) satisfies

(0.14) QA~) 
= ~(~y~

_C
) (

~~I ~~~
)

wi th a constant c > 0 . When c > 1 the potential Q(y) is called a

short-range potential and when 0 < c ~ 1 Q(y) is called a long—range

potential . The more rapidly diminishes Q(y) at infinity , the nearer

becomes the Schrödinger operator I to -A and I can be treated the

easier. In this lecture a spectral representation theorem will be shown

for the Schrödinger operator I with a long-range potential Q.(y) with

additional conditions

(~iq) (y ) =

(0.15)

(III + 

~ 
, j ~~ 0,1,2, ... ,in0)

~~~~~~~~~~~~~~~~~~
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where D~ is an arbi trary derivative of j-th order and m0 is a constant

determi ned by Q(,y) . Without these additiona l conditions the spectral

structure of the self-adjoint realization H of I may be too different from

the one of the seif-adjoint realization H0 of -
~~~ . The SchrtSdinger operator

with a potential of the form

(0.16) Q~y) -
~

j - sin I~ I

for example, Is beyond the scope of this lecture.

The core of the method In this lecture is to transfo rm the Schr~Sdinger

operator T Into an ordinary differential operator with operator-valued co-

efficients. Let I (0,~) and X L2(SFl
~~) , s~~

1 being the (N—1)-sphere ,

with its Inner product ( , and norm . Let us introduce a Hilbert

space L2(I ,X) which is all X—valued functions u(r) on I = (O ,~ )

satisfying

(0.17) IuI~ = f !u(r) 1
2 dr<~~

Its inner product ( , )~ is defined by

(0.18) (u ,v) 0 = (u (r ) , v ( r ) )
~ 

dr .

Then a multiplication operator u = r 2 x defined by
N—i

L2 (RN) ~ f(y) + r 2 f( rw ) E L2(I,X)
(0.19)

(r ly f , ci~= 
1
.L

1~~ sN~ )

can be easily seen to be a unitary operator from L2(R
N ) onto L2(I ,X)
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Let L be an ordinary differential operator defined by

2
(0.20) L = - 

2 + B(r) + C(r) (r € I )
dr

where, for each r > 0

(C(r)x)(~) Q(rw)x(w) (xEX)

(0.21) (B(r)x)(w) * -4 (-(A~x)(w) + ~~ 
(N 3) x(w))

(x V(tt~) )

and A
~ 

is a non—positive self-adjoint operator called the Laplace-Beltrami

operator on ~t 4 1  
. If polar coordinates (r,e1192, ... ,e~_~) are intro-

duced by

rsine 1 sine2 ... sinO~..1 cosO~

(j = l,2,...,N-l) ,

(0.22) - = rsinO1 sine2 ... sineN... 2 SinO N_ l

( r I O  , 0~~ el~
e2~

...eN 2 ~~ 
271 , O~~ 0N—l < 2iT ) ,

then ANX can be written as

(AN x~(el,e2,. ,ON_l )

(0.23)
= Z ~~~~~~~~~~~~~~~~~~~~~~~~~ ~

_
{(sine~)~

_3_1 
~x }

for x€ c2(sP 1 l ) (see , e.g., Erdélyi and al. [1], p. 235). The operator

(0.23) wi th the domain C2(St
~

l ) is essentially self—adjoint and its closure

- 
‘~~~~~~— — --— ‘---- —
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Is A~. The operators I and L are combined by the use of the unitary

operator U In the following way

(0.24) T~ U 1LUD

for an arbitrary smooth function ~ on IRS. Thus, for the time being, we

shall be concerned with L Instead of I, and after that the results ob-

tained for L will be translated into the results for I.

Our operator I corresponds to the two-particle problem on the quantum

mechanics and there are many works on the spectral representation theorem

for T with various degrees of the smallness assumption on the potential

Q(y). Let Q(y) satisfy

(0.25) Q(y) = O (IyI
_E
) (1’I -

~~ ~ , c >0).

In 1960, Ikebe [1) developed an eigenfunction expansion theory for I in

the case of spatial dimension N 3 and c > 2. He defined a generalized

eigenfunction ~(y,~) (y,~ € 1R 3) as the solution of the Lippman-Schwinger

equation

1 1
(0.26) ~‘(y,~) = e - r J e

m 3 y—z~
and by the use of ~~~~~ he constructed the generalized Fourier transforms

associated with T. The results of Ikebe [1] were extended by Thoe (ii and

Kuroda [1] to the case where N is arbitrary and e > ½ (N + 1). On the

other hand, J~ger [l]-[4] investigated the properties of an ordinary differ-

ential operator with operator-valued coefficients and obtained a spectral

representation theorem for it. His results can be applied to the case of

N ~ 3 and c > ~~~. Saito (l],[2] extended the results of Jäger to include

the case of N ~ 3 and c > 1, i.e., the general short-range case. At

almost the same time S. Agmon obtained an elgenfunction expansion theorem for

_ _

1L ~~~~~. .~~~2 •~~ -•-- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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general ellipt ic operators in with short-range coefficients. His

results can be seen in Agmon [ii. Thus, the short-range case has been

settled . As for the long-range case, afte~ the work of Dollard [1] which

deals with Coulomb potential Q.(y) = -ç~p Saita [3]-[5] treated the case

of c > ½ along the line of SaitG [l]-[2]. Ikebe [2],[3] treated the

Schrddinger operator with ~ > ~ 
directly using essentially the same ideas

as Sait~ [3]-[5]. After these works, Saita [6],[7] showed a spectral

representation theorem for the Schrödinger operator wi th a general long-

range potential Q(y) 
- 
with c >0. S. Agmon also obtains an eigenfunction

expansion theorem for general elliptic operators with long-range coeffi-

cients.

Let us outline the contents of this lecture. Throughout thi s lecture,

the spatial dimension N is assume to be N ?.3. Then we have 8(r) ~.0

for each r > 0. As for the case of N = 2, see Saita [6], §5.

In Chapter I we shall show the limiting absorption principle for L

which enables us to solve the equation

(L = k2)v = f,

(0.27)

- ik)v .+ 0 (r ~

for not only k non-real, but also k real.

In Chapter II, the asymptotic behavior of v ( r ) ,  the solution of the

equation (0.27) with real k, wi ll be investigated . When Q~(y) is short-

range, there exists an element x~ € X such that the asymptotic relation

i rk(0.28) v(r) e x
~ 

(v -
~

holds. But, in the case of the long-range potential , (0.28) should be

modified in the following
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(0.29) v( r) —

with i.~ € X. Here the function A(y,k), which will be constructed in

Chapter II, is called a stationary modifier.

This asymptotic formula (0.29) will play an important role in spectral

representation theory for L which will be developed in Chapter III.

The contents of this lecture are essentially given in the papers of

Sait~ f3]-(7], though they will be developed into a more unified and self-

contained form in this lecture. But we have to assume in advance the

elements of functional analysis and theory of partial differential equations:

to be more precise, the elemental properties of the Hu bert space and the

Banach space, spectral decomposition theorem of seif-adjoint operators,

elemental knowledge of distribution ,’ etc. 

— _____
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CHAPTER I
LIMITING ABSORPTION PRINCIPLE

§1. Prelimi naries.

Let us begin wi th Introducing some notations which will be employed

without further reference.

R: real numbers

C: complex numbers

= {k = k1 + ik 2 € C/k1 ~ 0, k2 ~~ 
0) .

Rek: the real part of k.

Imk: the imaginary part of k.

I = (0, oo) = ~r€ R / 0 <  r <

T [0, ~) = Cr E R/ 0 ~ r < 00)

X = L2(S~~
1 ) with its norm and inner product ( , ),~

S ER , is the Hu bert space of all X—valued functions f(r)

on an in terval J such that (l+r)5If(r) I~ 
is square integrable

on J. The inner product ( , )~ ~ 
and norm II are

defined by 
5,

= I (l +r)2
~(f(r), g(r))~dr

and

Ifi — ~~~~ f~— 
~ ‘ ‘s,J~ 

‘

respectively. When s = 0 or J = I the subscript 0 or I

may be omitted as in L2(J ,X), II etc.

C ( J ,X) = U C (~~)~ where J i s an open i nterval in I,

= ~y ER
N/lyl E J} and U = r~~ x is given by (0,18).

S ER, is the Hu bert space obtained by the completion of

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a pre-Hilbert space c (J X) wi th its norm

[f
(l+r)2s{ks(r)I~ + tB ½(r),(r)I~ +

and inner product

~~~~~~~ ~~~~~~~~~~ + (B½(r),(r), B¼( r ) ~j~(r))~

+

where B½(r) • (B(r)) ½ with B(r) given by (0.21 ) and

• When J • I or s • 0 we shall omi t the subscript

I or s as in I 1B’ H~,’
8(l,X) etc .

F8(J ,X),  B > 0, Is the set of all anti-linear continuous functional

e on H~~
B(J,X) ,  I.e.,

e: H~’8(J,X) 3 V • <t ,v> E £

such that

III ~tI I~~ • sup{I<t ,(1+r) 8
~~I/~ E C(J ,x) ‘ 1 1

B,J ~ 
>

F
8(J,x) is a Banach space wi th its norm 

~ ~~~ When B • 0 or

J I the subscript 0 or I will be omitted as in F(J,X),

III III~, ~ III~ etc .

Cac(~J,X )
~ J being an (open or closed) Interval , Is the set of all

X-valued functions f(r) on J such that f(r) Is strongly

absolutely continuous on every compact interval ii J and there

exi sts the weak derivative f ’(r)  for almost all r E J with

f~( r )  E L2(J’ ,X ) for any compact interval j ’ c j.

— — 
— 

_
-4__ 

-~~ ______- — A4
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C~(J,X) is the set of all X-valued functions on J having j strong

continuous derivatives . Here j  is a non-negative integer and

J is an (open or closed) interval .

L2 ( I
~
X)1oc (H

~’
8(I,X) i0~

) is the set of all X-valued functions f(r)

such that pf € L2(I,X) (pf E H~
’8(I,X)) for any real-valued

C~ function p (r) on T having a compact support in T.

B(Y,Z) is the Banach space of all bounded linear operators from V

into Z wi th its operator norm I 
~~~~ 

where V and Z are

Banach spaces. We set B(Y,Y) = B(V ) and the norm of B(X) Is

denoted simply by I I .

0(W) means the domain of W.

A = AN -
~~~~~ 

+ ¼(N-l)(N-3), where AN is the Laplace-Beltrani operator

(as a self-adjoInt operator in X).

0 = 0 ( A ).

=

C(c~,8, ...) denotes a positive constant depending only on ~ , 8,

But very often symbols indicating obvious dependence will be

omitted.

H~(RN) is the Sobolev space of the order j ,  i.e., the set of all

L2 functions with L2 distribution derivatives up to the j-th

order, inclusive .

c~(R
N), L2(c~), L2 (~ , (~+~y~)2S dy ) etc., will be employed as usual ,

where ~2 Is a measuab le set in RN.

— Let L be the differential operator defined by (0.20) and (0.21).

The remainder of this section will be devoted to showing some basic

properties of a (weak) solution of the equation (L - k2)v = f. To this 

- — -  _ _ _ _ _
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end , we shall first list some properties of H~~~(I, X) .

PROPOSITION 1.1. (1) Let J be an open interval in I and let

~ pN~~y~ E J}. Then

H~’
8(J ,X) = UH1 (c2~)

(1.2) (ui , U~)8 ~ 
= 

~~~~ ~ 
(
~ , ~ E

where U is given by (0.18) and ( , ).
~ ~ is the inner product of
, J

H1 (c2~), i.e.,

(1.3) ~~~~ ~ = J {(v~~~y~ • (V~p)(y ) + p(y)1j,(y)} dy.
‘J

( i i )  Let v E H~J
IB(I ,X) (or v € H

~
’8(I

~
X) ioc )~ Then

V E C ac(T,X) r~ L2(I,x) (or v € Cac (T~X ) L2(I~X) ioc ) with the weak

derivati ve v ’ € L2(I,X) (or v ’ E L2(I~X) 1oc )~ Moreover v(r) E D½

for almost all r E I w i th B½v € L2(I ,X ) (or B½v E L2(I,X )
1 ). The

inner product ( 
~B 

and norm I I~ of H~’
8(I ,X) have the following

form:

• (u ,v) B 1~ 
{(u’(r)

~
v ’ (r)) x + (B½(r)u(r) ,8½ ( r)v ( r)) x

(1.4) + (u(r)
~

v(r)) x}dr

PUI B = [(u,u)B]½

(iii) Let v E H~~
B(I~X)loc . Then we have the relations

(1.5) v(0) = 0

— -----—• -
-

-•-- -
.

--
-

~

,
- ---- --• -- - - -  _~~

— 
- - — •-- -



- ~~~— - - - 

~~~~~~~~~~~ ~~~~~~~~~~~~ 
Xr~~ 

- 
- ,

14

(1.6) Iv(r) - V(S)Ix ~ I r_s 1
½ IV I

B(O R) 
(r,s E [0 ,R])

wi th

(1.7) Iv I B ,(Q g) = [f { Iv ’(rn~ + IB½( r)v ( r) I~ + Iv (r) 1 2} dr]

(1.8) (v(r)I
~ ~ v’~ IV I B (0,R+1) (r E [O ,RI) .

PR.Q~F. (I) follows from two facts that H1 (c2~) is the Hilbert space

obtained by completi on of C(~2~) by the norm (1.3) and that the relation

IU
~
I
B J  

= ~~~~~~ holds for ~ E C~(’~~). The second fact can be easily

2
obtained from the relation (-A)~ 

= U~~L0Up , where we set L0 ~~~~~~~~ + B(r).
dr

Let us show (ii) only for v € H~~
B(I ,X), because the statement

about v E H
~
’8(I,X) 10~ can be shown in quite a similar way. By the

definition of H~
’8(I,X ) v E H~J

)B(I,X ) if and only if there ex ists a

sequence C~~} C C~(I,X) such that the sequences Cb n}~ 
{4~}~ CB½q~} are

Cauchy sequences in L2(I,X) and &~ 
converges to v in L2(I ,X ) .  We

set lim = v1 and u r n  B~~ = v2. From the estimate
fl4.00

(1.9) l~~(r) 
- 

~m
(r)I~ 

<~~~~)~~(t) - 

~
(t)i xdt

it follows that the sequence {~~(r) } Is convergent in X uniformly for

r E [O,R) with an arbi trary positive R. Therefore v(r) = s-Urn 
~n (r)

is an X-valued , continuous function on T. Letting n ~ in the rela tion

(1.10) 
~~~~~~~~~~~~ 

= ~~ (~‘(t) X) dt ( X E  X , 0 ~ S < r < 0 0)

we arrive at 

~~~~~~~~~~

-__
~~~~~~ T~~~

_
~~

_ __ __
~~

_ _  
--.- - -“- - -- - - - ~~~~~~ - - -.-~~~~~~~~~~
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(1.11) (v(r) - v (s ) ,  X) .L (v i(t) ,x)
~
dt

~

whence follows that V € Cac (T
~

X) and the weak derivative v ’ V
1 

in

L2(I,X). Since B
~~n~ 

converges to v2 in L2(I ,X), there ex i sts a null

set e of I such that B½ (r)~n(r) converges to v2(r) in X for

r E I - e. Therefore v(r)  E D½ wi th B½ (r)v(r) = v2(r) for r E I - e

because of the closedness of the operator B½(r). Thus we obtain

(1.12) IVI B 
= u r n  1

~n1 B 
= [J {Iv ’ rn~ 

+ IB½( r)v ( r) I~ + Iv ( r) I~} dr] .
I

In a similar way we can show the first relation of (1.4) which is related

the inner product (u,v) B.
Finally, let us show (iii). Take a real—valued C

00 
function p(r)

on T such that p(r) = I (r ~ R + 1) , = 0 (r ~ R + 2). Then , since

pv € H~’
8(I,X), there exists f~~} c C ( I ,X ) such that Ipv - 

~n
1 B 0

as n -.- 00, whence follows that

(1.13) I v - 

~n
1 B,(O ,R+l) 0 (n co)

Then, as is seen in the proof of (ii), ~~(r) converges v(r) in X for

r € [0, R + 1]. (1.5) follows from the fact that $n(0) = 0 for all

n = 1,2 ,... (1.6) and (1.8) are obtained by letting n -~~ 00 in the

relations

(1.14) I,~
(r)-

~~(sfl~ 
= I L l  ~ Ir~sI ½ 1

~n 18,(O,R)

(0~~~r, s~~~R)

and

I - - .~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
j’ - --- - - .  —- —---- ----- - - - - --~~------- - -i-- - - - --
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(1. 15) I~~(r)I~ ~ 
2(I~n(r)-$n(t) l~ 

+

~ 2((r-tj Ir 
I~n(~

)I
~ 

ds + 
~r+l 

I~~(s)I~ ds)

~ 2I4~n
I
~~(0,R+l ) (0 ~ r ~ R)

respectively, where t € [r , r+1] has been taken to satisfy

I~ 
(t) I ,~ = mm I~ ~~~~r~s~r+l 

n Q.E.D.

The interior estimate for the operator L is shown in the following:

PROPOSITION 1.2. Let L be as above and let Q(y) be a continuous

function on RN . Let v E H~~
B(I,X) l0~ satisfies the equation

(1.1 6) (v, (L—R 2)~)0 
= <e, ~

> (~ 
€ c( I ,x))

with k E C and e E F(I,X ) . Let R be a pos iti ve number. Then there

ex i sts C = C( k,R) suc h that

(1.17) 
~~ B,(0,R) ~ C{fl v 10 (o,R+l ) + III~ lIIo,(0,R+1)}

The constant C( k,R) Is bounded when the pair (k,R) moves in a bounded

set of C x 
~~~.

PROOF. Since v € H~,~
B(I ,X) 10~, we have by (ii) of Proposition 1.1

~~ (v(r) , 
~
‘(r)) X = (v ’(r), 

~
‘(r)) X + (v(r), 

~
“( r)) X

(1.18)

(v(r), B(r)q( r))~ (B½(r)v(r), B½ (r)q (r))~

for almost all r E I. Therefore from (1.16) it follows by partial

~~~~TTTIT _ _
_

1__ 
_______
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integration that

R+l ½ ½(1.19) 
~ {(v ’(r)I~~(r))X + (B (r)v(r), B

+ (v(r), (C(r)-V
~
)
~
(r))

~}dr 
= <L, ~>

for any • E C ( I ,X). Set ~ = in (1.19), where E C~ ((O,R+2), X)

such that Iv - • (0 R+l) • 0 as n 00 and ~i(r) is a real-valued

C
00 

function on [0, R+2] such that 0 ~ ~ 1 , ~(r) = 1 (0 ~ r ~ R),

0 (R+1 ~ r ~ R+2). Then , letting n • ~ , we have

(1.20) ~
R+l
~~2{Iv i I ~ + !B½v~~ + Iv I~}dr + 2 ~

R
~~~I(v

I ,v)
X
dr

~R+1 2 2 2
= ~, (v ,(k + 1 - C)v)xdr÷ (e , ~ v>

(1.17) is obtained from (1.20) by the use of the Schwarz Inequality .

Q.E.D.

PROPOSITION 1.3 (regularity theorem). Let L be as in Proposition

1.2. Let v E L2(I,X) u0~ be a “weak” solu tion of the equation (L-k 2)v f

with k E ~2 and fE L2(I~X ) 1oc~ i.e., let v satisfy

(1.21) (v, (L-~
2)q ) 0 = (f,q)0

for all • E C~(I,X). Then v satisfies following (1) (4):

(1) v € H
~
’8(I,X ) u0~ 

r~ C
1 (I,X). v(r) E D½ for each r ~ 0. v (r) € D

for almost all r € I with By E L2((a,b),X ) for any 0 < a < b < 00~

(2) V ’ € Cac(I,X) with the weak derivative v ” and v ’ (r) E

for almost all r € I. B½v 1 E L2((a,b),X) for any 0 < a < b < 00•
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(3) B½V E Cac (I,X) w ith the weak deriva ti ve (B½v)~.

(1.22) (B½(r)v(r))I = - 
1 B½(r)v(r) + B½ (r)v I(r)

hold s for almos t all r E ~~ .

(4) We have

(1.23) -v”(r) + B(r)v(r) + C(r)v(r) - k2v(r) = f(r)

for almost all r E I.

PROOF. Set V = U~~v and f’ = U~~f. Then ~, f belong to

L2(RN)l0~ and from (1.21) the relation

- 

(1.24 ) (
~ , (I - k2)

~
)L 

= 
~“ ~~L ~ 

E C~(RN ))
2 2

follows , where ~ )~ denotes the inner product of L2(IRN ). As i s
2

well-known , (1.24) implies that ~ E H2(R 
~loc 

(see, e.g., Ikebe-Kato

[11). Therefore there exists a sequence 
~~~ 

C c~(R1’
~) such that

V in H2(RN)1 as ~ 
00~ Set = ~~~ Then 

~n 
• v in

H~’
8(I ,x)1 as n -‘ ~ and {q~}, CB~~)~ {B~~~} are all Cauchy sequences

In L2((a ,bU) (0 < a < b < 0 0) .  From these relations we can easily

obtain (1) — (4).

Q .E.D.

Now that Proposition 1.3 has been established , let us introduce

one more function space. Let J be an open interval in I. D(J) denotes

the set of all functions v on J which satisfy the following (a) and

(b) : 

~~_i
_

_~~~~~~~~~~~~~~~~~_ _ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~-- - - -~~~~~ - - — - -~~~~~~~~ -~~~~~~~~
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(a) v E C1 (J,X). v(r) E o½ for each r E J. For almost all

r E J v(r) E 0 and v ’(r) E 0½. By and B½V s belong to

L2(J’ ,X) for any compact interval J’ in J.

(b) V ’ , B½V E Cac (J,X) with

(8%)’ = - ~—B % + By ’

for almost all r E J.

It follows from Proposition 1.3 that the solution v € L2(I~X) ioc
of the equation (1.21) belongs to H~

)B(I,X) lo~ (~ D(I)~
The unique continuation theorem for the operator L takes the

following form.

PROPOSITION 1.4. Let L be as In Proposition 1.2 and let v € 0(J)

satisfy the equation (L-k 2 )v = 0 on J with k E C, where J i s an

open interval in I. Suppose that v(r) = 0 in a neighborhood of some

point r0 
€ J. Then v(r) = 0 on J.

PROOF. Set ~ = U 1v as in the prci ~ of Proposition 1.3. Then ~~ - 

- _

is a solution of the equation (T-k2)~ = 0 and ~(y) = 0 for

y E {yE ~~N/~~y~ - r0
j < n~ with some r~ >0. Thus we can apply the unique

continuation theorem for elliptic operators (see, e.g., Aronszajn [1])

to show that v E 0 on {y E RN/~y f E J}, which completes the proof.

Q.E.D.

Finally we shall show a proposition which is a version of the Relich

theorem.

___________  - - --~~~~~~~~~~~~~~ -- - . 



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .  ~~~~~~~~~~~~~~~~~~ 
,~~~~~~~

-
~~~~~~ --~~~~~: 

- - -

~~~~~~~~~~~

-

~~~~~~ - ~~~~~ ~
—-

~~
:-‘

20

PROPOSITION 1.5. Let L be as in Proposition 1.2 and let J be a

bounded open interval in I. Let {v~} be a bounded sequence in H~’
8(J ,X).

Then {vn} is a relatively compact sequence in L2(J ,X), i.e., there

exists a subsequence rum) of {v~} such that {UmJ is a Cauchy

sequence of L2(J,X ) .

PROOF. Set = ~~~~ Then, by (I) of Proposition 1.1 , 1v~} is

a bounded sequence in H1 (c~ ) wi th = {y E pN1~yj E J}. It fol lows

from the Rellich theorem that there exists a subsequence (Urn) of f~~}

such that (U rn) Is a Cauchy sequence in L2(c2~). Set Urn = U
~•im~ 

Then
(Urn) is a subsequence of {v~} and is a Cauchy sequence in 12(J ,X ) .

Q.E.D.

——-----

~ 

- - - -_~_LJ
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§2. Main Theorem.

We shall now state and prove the limiting absorption princi ple for

the opera tor
2

(2.1) L = - -~~
-

~~~~~ + B(r) + C(r)

which is given by (0.20) and (0.21). The potential Q.(y) is assumed to

satisfy the following

ASSUMPTIOK 2.1.

(2) Q(y) can be decomposed as Q(y) =Q 0(y) + Q1 (y) such that Q~
, and

are real—value d functions on IRN with N ~ 3.

~~~ ~ E C1(RN) and

(2.2) ~D~~(y)~ ~ c0(1 + I~ i )~~~ ~ ~~ N j  = o, 1)

w ith cons tants c0 > 0 and 0 < ~ ~ 1, where D~ denotes an

arbitrary deri vative of j-th order.

(~l~ ~l 
€ C0(PN) and

(2.3 ) I~1(yfl ~ c~(l + fy~
) 1 (~~€~~N)

with a constant > 1 and the same constant c0 as in (Q~
) .

• We set

= C1 (r) + C2 (r) ,

(2.4)
C~(r) = Q

1(r~)x (j = 0, 1)

Then , by (%) and (
~~

), we have

-

~

‘

.“--- —
--- —~~~~- —-~~ ‘-~~~~~ 

— - .-
- - -- - - _ — -‘--— —— ---- -- ---- - -
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1C 0(r)I ~ c0(l+r)~~
(2.5) 1C6(r)I ~ c0(l+r)~~~

-1-c
IC 1(r)I ~ c0(l+r)

where I I denotes the operator norm of B(X) and C~(r) is the strong

derivative of C0(r) in E(X) .

Let us define a class of solutions for the equation (L-k 2)v = ~ wi th

k € C~ and ~ E F(I ,X) .

DEFINITION 2.2. ( radiative function). Let ~ be a fixed constant

such that ~~
- < cS ~ min(~ (2÷c), 

~~~ 
Let ~e e F(I ,x) and , be

given . Then an X — v al ued function v(r) on I is called the radiative

function for CL , k , L}, if  the following three conditi ons hold :

1’ E H1’8’I x’/ V 
o ~ 

‘ ‘loc

2) v ’- - ikv E L2 ,5_ 1 (I,X).

3) For all ~ € C ( I ,X) we have

(v, (L-~
2 )~ )0 = <

~, ~>.

For the notation used above see the list of notation given at the

beginning of §1 . The condition 2) means -
~~~~~ 

— ikv is small at infinity ,
• and hence 2) can be regarded as a sort of radi ation conditi on. Thi s is why

v is called the radiative function .

• THEOREM 2.3. (limiting absorption princi ple). Let Assumpti on 2.1 be

fulfilled.
• + . . •(i )  Let (k, e) € C x F(I ,X) be given . Then the radiative function

for CL , k, ~} is unique. 

- - -  - - - - -— -~~~~~~~~~~~ -- -~~~~~~ ._______



- --

~~~~~~~

-— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,— -- - 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~

--. :
_

- 
•

23

(ii) For given (k, 
~

) E C~ x F~(I,X) there exists a unique

radiative function v = v(’, k, ~) for CL, k, £.) which belongs to

H~f~~( I ,x).

(iii) Let K be a compact set in C~. Let v = v(.~ k, 1) be

the radiative function for CL , k, t} with k E K and £. E F6(I,X). Then

~~~~z re ex-i-sts a— Itlv-e -c-ens-t t- - -C~~ C(K) d~pendina only o n K ( a n d  L) 
- —

~~~~~~~~~

such that

(2.6) � C J~l~~j IJ~5~

(2. 7) lIyI~~ + Iv ’ _ ikvl d l  + IB½vI5 1  ~

and

(2.8) IVI
~ ,_~,(r,00) ~ C

2r (2
~

UIfteIIt~ (r~ 1)

• (iv) The mapping : £~ x F~(I,X ) (k , £) -# v(., k, ~t) E H~’~~(I,X)

is continuous on C~ x F6(I,X ). Therefore it is also continuous as a

mapping from C~ F6(I,X) into H~~
B(I,X) lOC .

Before we prove Theorem 2.3, which Is our main theorem in this chapter ,

we prepare several leninas, some of which will be shown in the succeeding

two sections.

LEF44A 2.4. Let k E C~ and let v be the radiative function for

CL , k, O}. Then v is identically zero.

The proof of this lenina will be given in §3.

For f € L2,B(I,X) with B � 0 we define ~[f] € F
8
(I,X ) by

<t[f], $> = (f , ~~ ~or ~ E C(I ,X). It can be seen easily that

(2.9) IH-~[f1 111 8 ~ 
IfI8

— --~~~~~~~~~~~~~~ ~•: •:=:i::~_:_ _ ~~~~~~~~~.
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LE*IA 2. 7. Let k0 E £~ w i th Imk0 > 0 and let e E F
8
(I ,X)

wi th B ~ 0. Then the equation

(2.15) (v , (L-~~) p ) 0 
a ~~ 4> (

~ 
€ C~(I,X) )

has a unique solution v0 in H~’
8(I,X) and v0 satisfies

(2.16) IV OIL CII! tII1~ 
(C C( k0, 8)) . - - -

Therefore v0 is the radiative function for L. k0, (} .

Leutnas 2.5, 2.6 and 2.7 will be proved ‘n 4.

LEI4IA 2.8. Let v0 E H~’
8(I .X )  ~ L2~~(I. be a unique solution

of the equation (2.15) with t~ € F6(1 ,X) an~ E ~ 0. Let

k E (
~ . Then the following (a) and (b) are equiva1ent:

(a) v is the radiative function for L. k , ~ } .$ (b) v is represented as v v0 
+ w, where w is the radiative

function for CL , k, t[( k2-k~)v0J} -

PROOF. LenTna 2.8 directly follows from the relation for v E L2(I,X) i0~

(2.17) (v - 

~~~~~~ 

(L-~~)4) 0

a (y~ (L-~~)4) - <t, 4> + ((k 2-kg)v0, •)~
e C ( I ,x))

and Lenina 2. 7.
- 

Q.E.D.

I.
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LEMMA 2.5. Let k € K and let v be the radiative function for

CL, k , t[f] } with f E L2 6 ( I ,X) and let v € L2 6(I,X), where K is

a compact set in C~ and 6 is as in Definition 2.2. Then

B% E L2 6.1(I,X) and there exists a constant C = C(K) such that

(2.10) Iv ’ - ikv U 6 1  + 1B½V 1 6 1  
< C{IvI 6 + 1f16}

- and

(2.11) IVI
~~Ô(r OD) ~ ~~~~~~ {IvI~6 + A fI ,~} 

(r ~ 1)

LEMMA 2.6. Let vn (n = 1,2,...) be the radiative function for {L, ~~ cn}~
where k~ € C~ and 

~n ~ 
F6(I,X). Assume that

kn + k E C +
(2.12 )

• in F6(I,X )

as n -
~~ ~, and that there exists a constant C0 such that

~
Pv

fl
U 6+ Iv~ - lk~v~U 6 1  ~ C0 ,

(2.13)

L 
IV nI~6 (r 00) ~ C~r

26
~~ (r ~ 1)

for all n = 1 ,2,... Then Cv~} has a strong limit v in L2,6 (I,X)

which is the radiative function for CL, k, £}. Further we have

(2.14) Vn • v in H
~
’8(I

~
X) ioc

as ~~~~~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~•• •~ L—
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By the use of these lemmas Theorem 2.3 can be proved in a standard

way used in the proof of the limiting absorption principle for the various

operators .

PROOF of THEOREM 2.3. The proof is divided into several steps.

(I) The uniqueness of the radiative function for given

(k, fl € C x F(I ,X) follows from Lemma 2.4.

(II) Let us show the estimate (2.6), (2.7) and (2.8) wi th

replaced by IfI 5 for the radiativê fiiiicflOft v for (L,—k, Z[fi4—with----~
_
~~ - - -

k € K, v E L2, 6(I,X) and f E L2,6(I,X). In view of Lemma 2.5 it

suff ices to show

(2.18) 1v1 6 < C1f1 6

because (2.6) and (2.8) with III~ I Il ~ replaced by PfN 6 easily follow

from (2.18) and Lemma 2.5. Let us assume that (2.18) is false. Then for

each positive integer n we can find k~ € K and the radiative function

for CL , kn e[f~J) with f~ € L2 ,6 (I ,X) such that

(2.19) IV n
I

6 
= ~ ~ n16 ~ ~~

- (n = 1 ,2,...)

We may assume without loss of generality that kn ÷ k € K as n ~~- 00~ Thus

it can be seen that (2.12) and (2.13) in Lemma 2.6 hold good with = L[f~]~ - -

= 0 and C0 = 2C , where C is the same constant as in Lemma 2.5 and

we shoul d note that It[f~}I 6 ~ 
• 0 as n • 00~~ Therefore , by Lemma

2.6 , {v~} converges In L2 6 (I,X) to the radiative function for

CL , k, O} which satisfies 1v1 6 = 1. But it follows from Lemma 1.4 that

v is identically zero, which contradicts the fact that IvI _6 = 1. Thus

we have shown (2.6), (2.7) (2.8) with III~ III 6 replaced by I f I 6 for the

~.=-- --- - -~~~~ -
- -• •.

~~~~~
=•--

~~~~~~~ -• --- ------•- - -~--- —-~--- - - - - --- -- -- — - - - — - - - - - - -——-~
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radiative function v E L2,6 (I ,X) for CL , k, t(f]} with k e K and

f E L2,6(I,X ) .
(III) The existence of the radiative function for (k, ~

) with

k E ~~ Imk > 0 and e E F6(I,X) has been shown by Lemma 2.7 with B = 6.

Let us next consider the case that k ER - (0). Set k~ = k + i/n E C’

and denote by v,,, the radiati ve function for CL, ~~ t}. Let k0 € C ’

with Imk0 
> 0 and let v0 be the radiative function for CL , k0, t).

The existence of v~ and v0 are assured by Lemma 2.7. Then, using

(2. 16) with 8 6, we have 
- -

~~~~~~~~~~~~~ 

-

(2.20) IV OIB 6  ~ CIII till 6

with C = C(k0), whence eas ily follows that

(2.2 1) Iv QI~ã ( r 00) ~ C2r_ (26 ) IlIti iI (r ~ 1)

On the other hand, by making use of Lemma 2.8, w~ = v~ - v0 is the radiative

function for CL , ~~ £t(k~-.kg)v0]}. Since v 1~ and v0 belong to

L2,6(I,X) , (k~—k~)v0 and Wn = 

~n 
- v0 belong to L2,6(I,X), and hence ,

as has been shown in (II), we have

IW nI 6 + Iw~ — iknWnl6_ l ~ C Ik~-k~ llv0I6 ,
(2.22)

IW
fl
I
~ 6 ( r o,) ~ C2r~~~~~~ lk~—kg i

2 Iv0I~ (r ~ 1)

where C = C(K 0) and K0 = {k~} U{k}. It follows (2.20), (2.21) and

(2.22) that Ck~} and Cv~} satisfy (2.12) and (2.13) wi th tn = £ in

Lemma 2.6. Hence, by Lemma 2.6 , there exists a strong limi t v in

L2,_6(I,X) which is the radiative function for CL , k, LI. Thus the

‘— I
~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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existence for the radiative function for CL , k, t}  has been established .

(IV) Finally let us show (2.6), (2.7) and (2.8) completely. Let K

be a compact set In C ’. Let k0 and v0 be as in (III). Then the

radiative function v for {L, k, tI (k e K, ~ € F6 ( I ,X))  is represented

as v = v 0 + w, w being the radiative function for CL , k,

by Lemma 2.8. It follows from (II) that the estimates

Iw1
6
+ Iw ’— ikwl 6 1 + 1B ½wI 6 1  ~ C f k2— k~ j 1v 0

1
6 
,

(2.23)

..2 - — (26—1), 2 ~2 2  ••. ~2 ,, •1~
U•Wl

~-ô ( r 0 0 )  ~ 
• 1 k ~~~~~ tj i p~~~~~v’ ~~ ‘i

hold with C a C(K). (2.23) is combined wi th (2.20) and (2.21) to give

the estimates (2.7) and

(2.24) I v!.~~(r ,,,) ~

(2.6) and (2.8) directly follow from (2.7) and (2.24). The continuity of

the mapping: (k, e) v(’, k, L) in H~’
8
6(I,x) is ~asi1y obtained

from (III) and Lemma 2.6.

Q. E . D.
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§3. Uniqueness of the Radiative Function.

This section is devoted to showing Lemma 2.4. It will be proved along

the line of J~ger [11 and 12 1 . But some modification is necessary, since

we are concerned wi th a long-range potential .

We shall now give a proposition related to the asymptotic behavior

of the solution v E D(J) , J a (R ,°°) wi th R ~~ ‘ 0, of the equation

(L - k2 )v — 0 wi th k € R — (0). Here the defini tion of D(J) is given

after the proof of Proposition 1.3 in §1.

PROPOSITION 3.1. Let Assumption 2 -i- be--satisfled. Let v E D(J) 
— - —

(J a (R ,ao) , (R~O) satisfy the following (1) and (2):

(1) The es timate

(3.1) l (L-k
2)v(r)I

~ ~ 
c(1+rY26Jv(r)J

~ 
(r E J)

holds wi th k E IR - {0} and some c > 0, where 6 is given as in Definition

2.2.

(2) The support of v Is unbounded , I.e., the set Cr E J/ lv(r) !x>0}

is an unbounded set.

Then

(3.2) ii!(Iv’(r)I~ + k2Iv(r)I~
} > 0.

The proof will be given after proving Lemmas 3.2 and 3.3. Set for

vED(J)

(3.3) (Kv)( r) = fv ’(r)~ + k2lv(r)~~ 
- (B(r)v(r), v( r))

~

- (C0(r)v(r), v(r)) (rEJ).

_ _ _ _ _ _ _  _ _  -j
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Ky(r) is absolutely continuous on every compact interval in J.

LEI44A 3.2. Let v ED(J) and let (3.1) be satisfied. Then there exist

> 0  and R 1 >R such that

(3.4) ~~-(Kv)(r) ~ - c1 (l+rY
26(Kv) (r) (a.e. r ~ R1),

where a.e. means “almost everywhere” .

PROOF. Setting (L-k 2)v = f and using (3.1) and 
~~~ 

of Assumption

2.1-, we obtain

~

Tk

~

[ at

~

ett v”,v 1)

~ 

+ k2(v ,v~)x 
(Bv ,v’)

~
— -

- (Cüv,v ’)x} -~~~(CB(r) + C0(r) }x,x)
~ I~ = v

(3.5) = 2Re(C 1v—f , v ’)
~ 

+ 
~

(Bv,v)
~ 

- (C~ v v )
~

~ 
_2c

2(1+rY
26

hlI~ Iv ’ I
~ 

+
~
1Bv ,v)

~ 
- (C

~
v,v) x

wi th C
2 

= C + c0, C
0 being the same constant as in (Q~

) of Assumption

2.1. From the estimate

(3.6) 2Iv I~ Iv ’ I
~ 

= ‘2 (t~1~ vl~
)l:’ l~~ -~~(Iv ’ I~ + ~~lv I~)

and (3.5) it follows that we have with c1 
=

~ -Kv ~ —c1 (1+rY
26(fv ’ f ~ + ~k2 lv f ~ ) + 

~
•(BV

~
V) x

- (C
~
v,v)

~

(3.7) = -c1 (1+r)
26(Kv ) + (~ 

- c
1 (l+rY

26) (Bv ,v)
~

+ E .
~k2 c1(1+rY 26 Iv I~ 

- ({c1 (l+r)
26C

0 + C
~

}v ,v)
~

]

-c1(l+r~~
26 (Kv) + J1 (r) 

+ J 2 (r ).

- -~ •~~~~~~~~~~~~
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J1
(r) ~ 0 for sufficiently large r, because 2r~ - c1 (1+rY

26 
~ 0

for sufficiently large r . By (Q0) of Assumption 2.1 
Ic1(l + r) 26C0(r) +

C~ (r)fl O(r26) (r-sco) holds , and so J2(r) ~ 0 for suff iciently large r

too. Therefore there exists R1> R such that (3.4) is valid for r ~ R1.

~~. E . D.

Let us next set

(3.8) Nv — r{K(edv) + (m2—~eog r) r
_2

~ Je dv I~~

where m is a positive integer , < p < , d — d(r) a m(l-p)~~r1
~~

LE1IVIA 3.3. Let v ED(J )  satisfy (1) and (2) of Proposition 3.1. Then
- - 

for fixed Th ~ (1/3, 1 /tY ther
~~
e 
~~~~~~~~~~~~~ 

� R ~~~ c~~that
1~

(3.9) (Nv)(r) ~ 0 (r ~ R2 , m ~ m1)

PROOF. Set w a edv. Then (d/dr)(Nv)(r) is calculated as follows:

~~ (Nv) a (Kw) + r~ j (Kw) + (l_2u)r 21i (m2_Log r) lwl~
- r~~

’Iwl~ + 2(m2 — Log r)r~~
2
~Re(w ’, w)

~

(3.10) - 1w ’ f~ 
+ {k2 + (1-2p )r 2

~(m2-Log r) - r 2
~I wl~

— (BW 1W)x 
— (C0w,w)

~ 
+ r~~~(Kw)

+ 2r~~
2
~
’(m2 _ Logr)Re (w’,w )

~

Now we make use of the rela tions

WI e
d
v i + mr~~w

(3.11) w” - edv ui + mr~~edv 1 + mr~~w’ - pmr~ ’~~w

= edv~ + 2mr~~w ’ - (ptnr~~~ + m2r 2
~)w 

-—••-.•—— 1-- -~-~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
— - —

• -~~~~~
-- --~~

--
~~~

- 
~~~~~~~~~~~~~~~~~~~~~~
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to obtain

~~ (Kw ) = 2Re(w ” +k 2w - C0w - B w w ’)
~ 

-
~~~~~~~ 

((B + Cø}x ,x) x f x,~
a 2edRe(C 1v - f ,w ’) + 44nr~~lw ’I 2

(3.12) 
- 2(~nir~~~ + m2r~~~)Re(w ,w’ )

+ Co)X ,X) X I

It follows from (3.1O)— (3.12) that

~j (Nv ) — (4mr~~ + 1) Iw ’l~ + (k2 + (l—2p)r 2
~(m2 - Logr) -r 2

~}Iwj~
- — - —  

~~~~
- ((C0 + i~~~ w,w) + 2(re~ e(C 1v - f ,w ’)  

-

(3.13) i+ r ~~~~ r)Re(w ,w’)
~

+ (Bw w) .

By the use of (3.1) and As sumption 2.1 we arrive at

~~ (Nv) ~ 1k 2 
+ m2(l-2p)r 2

~ - C (l-2~) Log r + l}r 2
~

(3.14) — 2c0(l+r)~~1 Iw I~ + (4mr 1
~~ + 1) 1w ’ I~

- 2((c + c0) (l+r) 
25-1) 

+ ~unr~~ + r~~
2
~Log r} Iw I x fw ’ j x .

Thus we can find R3 > R, independent 0f m , such that

a~
(Nv) > (~~2 + m2 (1_2p)r 2U} 1w 1 2

- 2 t2r~~
2
~Log r + pnir~ )IwI (w ’ I~

(3.15) + (4mr1~~ + 1)

EP (r,nl) Iw I~ 
- 2Q~r,m) wI~Iw ’ I~ 

+ S(r ,m)Iw ’I~
(r~R3 m~l)

j

~

_

~ 
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This is a quadratic form of lw I~ 
and I W ’I x . The coefficient P(r,m)

of Iw I~ satisfies

(3.16) P > k2/2 (r>0 , m>0)

Further we have

Ps - ~~ 4~ .l i-1p -

a 2mk~r~~ + 4(l_2p)m 3r~~
311 

- (p2m2r’2U

+ 4~imr~
3
~’Log r + 4r24”(tog r)2}

(3.17) a m2{4(1—2ii)m - p2r ) r ~~
3
~
’

+ m(k2 - 4pr 2
~Log r)r

1
~~

+ (ink2 - 4r~~~~(Log r)2}r1
~~

~ k’/ 2 (r~R4,n’,~l )  _ 
--

with sufficient ly large R4 >R 3 , R~ can be taken independent of m~~l .

Thus we obtain

(3.18) i~
(Nv)(r) ~ 0 (a.e. r ~ R4, m ~ 1)

On the other hand Nv(r) is a polynomial of order 2 wi th respect to m

that is , Nv can be rewri tten as

(3.19) (Nv) (r) = re2d{lmr~~v+v~ l~ 
+ k2lv I~ 

- (Bv,v)
~ 

- (C0v ,v)
~

+ r 2U(m2 — tog r) l v l~}

— re2d{2r 2
~ lv l~m

2 
+ 
~~~~~~~~~~~~~~~~~~~~~~~ 

r)}

By (2) in Proposition 3.1 the support of v is unbounded, and hence there

exists R2 ~ R4 such that

(3.20) lv(R2) l~ 
> 0

______ - =:——•- - —-
~~

- ~~~~~~~
-
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Then, since the coefficient of in2 in (Nv)(r) is positive when r = R2

there exist s in1 � 1 such that

(3.21 ) (Nv)(R2) > 0 (m ~ in1
)

(3.9) is obtained from (3.18) and (3.21).

~~~. E . D.
PROOF of PROPOSITION 3.1. First we consider the case that there exists

a sequence {t~}CJ t~t-~(n-.-°°) such that (Kv)(t~) > 0 for n = 1 , 2,

Then there ex i sts r0 ~ R1 such that (Kv)(r 0) >0, R~ being as In Lemma

3.2. Let us show that (Kv)(r) >0 for all r ~ 
r0 . In fact , mul tiplying

(3.4) by exp{C, I (l+t) dt}, we have

rr
d c1 f (1+t) 2

~dt _- - -

- (3.22) ~~ {e 
jr0 .(Kv)(r)} ~ 0 (a.e. r ~ r0), 

-

whence directly follows
- rr

-c I (Hr~~
26dt

(3.23) (Kv)(r) ~ e ~ ‘O (Kv)(r 0) > 0 (r ~ r0) .

it follows from (3.23) that

+ k2fv (r)I~ 
= (Kv)(r) + (B(r)v(r), v(r))

~

+ (C0(r)v(r) , v (r))
~

(3.24) 
~c1J 

(Ht~~
25dt

� e r0 (Kv)(r0)

- c
0(l+r)~~k

2(fv ’(r)l~ + k2Iv (r)l~
) (r ~ 

~~~ --  
•
~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~ •“ _ • -
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which implies that

- 
(3.25) -~z~ - (lv ’(r)I~ + k2lv(r) 1

2)

~ e 
-.R (l+ tY26dt (Kv)(r 0) >0

Next consider the case that (Ky) (r) ~ 0 for all r ? R5 with some

R5 > R2, R2 being as in Lemma 3.3. Then it follows from (3.19) and (3.9)

that

(3.26) 2r 2
~Iv(r)I 2 in2 

+ 2r~~Re(v(r),v ’ (r)) m - r 2P~v( r) j~~og r ~ 0

(r ? R5, m ? m 1 )

which , together with the relation

(3.27) ~~Iv(r) l~ 2Re(v (r), v ’ (r))
~ 

--

implies that

(3.28) ~~Iv(r) I~ ~ r~~Cj~j . Log r - 2m1) lv ( r ) l~ ~ 0 (r ~ R6 ) 
-

wi th sufficiently large R6 ~ R5 . Because of the unboundedness of the

support of v(r) we have Iv(R 7 ) f ~ 
> 0 with some R7 ? R6 , and hence it

- 

can be seen from (3.28) that

(3.29) Iv(r)I
~ ~ 

Iv(R7)I~ 
> 0 (r ~ R7)

whence follows that

(3.30) 
~~~~ {)v ir) l~ + k21v(r) 1~

} 
~ k

2Jv(R 7)l~~> 0 .

Q. E .0.

-—-- •---—

~ 

~~~~~~~~ ~~~— -—- _



- 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ .~~~~~~~~~~~~
-

•

- - --
~~~~

36

In order to show Lemma 2.4 we need one more proposition which is a

corollary of Proposition 1.3 (regulari ty theorem).

PROPOSITION 3.4. Let Q(,y) be a real-valued continuous function on

RN and let v EL 2(I,X) b c  be a solution of the equation

(3.31) (v, (L-k2)4)0 (f ,~)0 (~ EC (I,X ) )

wi th k E C’ and f E L2(I,X)i0~ . Then

(3.32) (v ’(r) - ik v(r)I~ 
= (v ’(r) + k2v(r)I~ + k~ Iv(r)I~

+ 4k~k2lIvH~ (O ,r) + 2kl Im(f~
V)O ( O )

holds for all r € I, where k1 = Rek and k2 = Imk

PROOF. As has been shown in the proof of Proposition 1.3,

vEUH 2(R
N) b c  and there exi sts a sequence •{‘p,1) C C C RN) such that

• V = (f
1 v in H2~R

N) b c ’
(1-k 

~ n • = U~ f ifl L~ (R 
~1oc

as n • , where I = -~~ + Q~(y). Set = U~p~

Then, proceeding as in the proof of Proposition 1.3 and using the relation

(L-k2)U = U(T-k2), we have

• v in L2 (I ,X) 10~

~ 
(r) • v(r) in X (rE!),

• (3.34) n

q~ (r) -
~

- v ’ (r) in X ( re l ) ,

(L_ k 2 )4~ 4- f in L2 (I ,X) i0~ 

_ - - - — •~~~~~~~~~~~ -~~~~~-— -—~~~~~~~~~~~~~ --_ - —-— -
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as n . Set f~ = (L_k 2)4n , integrate ((L—k 2) 4n’ n~x 
= 
~~ ~n~x

from 0 tc r and make use of partial integration. Then we arrive at

(~~fl n~0,(O,r) 
+ k

~~~n,4n
)O,(O, r) -

(3.35)
(P~ ~n~O,(O,r)

By letting n ~~ - in (3.35) after taking the imaginary part of it (3.35)

yeilds

(3.36) 1m~~~~~~~
(t’
~~x 

_2klk.2JI VII O,(O,r) 
— Im (f~

V)0 (O,r)

(3.32) directly follows from (3.36) and

(3.37) Jv ’(r) - ikv(r)(~ = fv ’(r) + k2v(r)I~ + k~Iv(rfl~

_2k
i Im (v ’(r),

~
v(r))x

Q.. E.D.

PROOF of LEMMA 2.4. Let v be the radiative function for {L,k,O}

wi th kEC~. It suffices to show that v = 0. Let us note that we obtain

from (3.32), by setting f=O,

(3.38) Iv ’(r) — ikv (r)l~ 
= v’(r) + ik2v(r)f~ + k~!v(r) l~ + 4k

~
k2llVll~~(O,r) . 

—

Let us also note the relation

(3.39) bum lv ’(r) - ikv(r)l~ 
= 0

which is implied by the fact that v ’ - ikvEL 2 6 1 (I,X) . If k2 >0,

then it follows from (3.38) and (3.39) that
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(3.40) 
~~ 

Vv II~~~~~~ ~ ~~ fv ’(r) - ikv(r)I
~ 

0

which means I vI~~(0~~~) = 0, that is , v — 0 . Next consider the case

that k2 = 0, i.e., k = k1€ R - (0) . Then from (3.38) and (3.39) we

obtain

(3.41) 
~~~~ (Iv ’(r)I~ + k2Iv(r)(~) = 

~~~~~~~~ lv ’(r) - ikv(rfl
~ 

= C

Therefore Proposition 3.1 can be applied to show that the support of

v(r) is bounded in I , and hence v = 0 by Proposition 1.4 (the unique

continuation theorem).

Q.E.D

-- --
~~~~~~~~~~~~~~~~

-
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§4. Proof of the lemmas

Now we shall show the lemmas in §2 which remain unproved. After that,

some more precise properties of the mapping (k,t) + v = v(.,k,2.) in

Theorem 2.3 will be shown.

PROOF of LEMMA 2.6. Appl ying Proposition 1.2 (the interior estimate)

w i th v = v~, k = k~ and 2. = ~~ we ha ve

(4.1) IIv nlI B(O ,R) ~ COI vnIIQ (O p+l) + ~ ~‘n
’11 O,(O,R÷l )~

(R E I, n = 1,2,...)

with C = C(R), because {k~} is a bounded sequence. Since Cv ,,) and
are bounded sequences in L2,_6(I,X) and F6(I,X), respectively,

it can be easily seen that IIV nU O ( O ,R+l) and H12.,~H o,(o,R+l) are uni-

formly bounded for n = 1 ,2,... with a fixed positive number R. There-

fore, for fixed R E I, the right-hand side of (4.1) is uniformly bounded

for n = 1,2 Thus , Proposition 1.5 can be applied to show that there

exist a subsequence Cv } of Cv I and v E L2(I,X) 1 such that V,,
m

converges to v in L2(I,X)10~. Moreover , the norm f l y,, II _ 6 (r ,co) tends
m

to zero uni formly for m = 1,2,... as r • ~ by the second relation of

(2.13), and hence we arrive at

(4.2) v v in L2 _6(I,X)

as m ~~ - 
~~~. By letting m in the relation

(4.3) (V n~~
(L - = <2.n

~
’ > ~ € C ( I ,X)) ,

v is seen to be a solution of the equation

I
(4.4) (v,(L— R2 )~) a <2,~> (

~ € C ( I ,X)) .  
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Since u = v
n 

- vn satisfies the equation
in p

(4.5) (u,(L—E~ )~‘) 
= <2.[(k~ —k~ )Vn 

] + 2.n 2.n ~~~ 
(
~ 
E C ( I ,X)) ,

m in p p  in p

Proposition 1.2 can be applied again to show that

(4.6) Uv nm
_v

np
IIB,(0,R) ~ C{II v,~ 

vn hI o ,(o ,R+1) + k
~m

_k
~p

lII vnp
IIO,(O,R+1)

+ “2.nm
2.np” O, (0,RH ) } + 0

as m ,p ~~ - 

~, whence follows that

(4.7) Vn 
9 v in H~~

B(I,X) lo~

as in + ~~~. Thus , -letting m in the estimate

(4.8) t1m 
— ikn vn ll ô_ l ,(0,R) ~

which is obtained from the first relation of (2.13), we see that

(4.9) liv ’ — ikvll 6_l ,(Q,R) ~ C0,

and hence, because of the arbitrariness of R > 0, v ’-ikv € L26~1 (I,X) .

Therefore v is the radiative function for {L,k,9.}.

As is easily seen from the discussion above, any subsequence of {Vn}

contains a subsequence which converges in L2_ 6 (I ,X) ri H~~
B(I~X) boc to

the radiative function v for CL ,k,t}. Therefore, it follows that

{v~] itself converges to v in 12 6(I,X) ~ I~~
B(I,x)1 . Q~.E.O.

Let us turn to the proof of Lemma 2.7. To this end, we have to in-

vestigate some properties of the function space H~~
B
8
(I ,X). It Is a

Hu bert space obtained by the completion of C(I ,X) by the norm

(4.10) = fi (l+r Y28 I~~h I ~ + IB~~I~ + f~~ }dr.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - - - • -- -• ---------- - - -  -~~~~~~
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Obviously H~~
B

8(I ,X) C H
~
’8(Ii X)i0~ 

and the inner product and norm are

represented as

(u,v)8_ 8 = fi(l+r Y
28((u’,v ’)

~ 
+ (B ½u_B½v)~ + (u,v)

~
)dr ,

(4.11)

IUI B,_B 
= [(u ,u) 9 _ 8 1½.

Let t be a Positive number. Then the norm ~ B,-B,t defined by

(4.12) IU I~~,..8,t 
a f1(t~~)

2
~~lu ’J~ + IB½u1~ + Iu l~}&

is equivalent to the norm 
~ 

1 B B (a I 
-8 ~~ 

The set of all anti -

l inear continuous functional on
’ 
H~’~~(I,X) is F8(I,X), because we can

- 

easily show that the norm II 9JI 
B 

of 2. € F8(I ,X) Is equivalent to the

norm

(4.13) LZ11
8 

= sup (l<&,~>j/~ 
€ C ( I ,x), 1 1

B,-B 
=

It can be easily seen, too, that the norm 12.11 
8 is equivalent to the

norm defined by —

(4.14) urn 8,t a sup{J<t ,(t+r)~~>l/~ € C ( I ,x), I~ I9 = 1)

for al l t > 0 .

PROOF of LEMMA 2.7. Consider a bilinear continuous functional At
on H~~B8(z,x) x H~ B

8(I ,x) defined by

(4.15) Atfu ,vJ (u,v)B _ B t—28fI(t+rY
28
~~
(u,v ’)dr

+ 11(t+rY
28({C - k~ - l}u,v)~

dr,

where t > 0 and E with In k0 > 0. Let us show that At is

positive definite for some t > 0, i.e., there exists t0 > 0 and

——--- - —--------- --_-. •—----•--_------- - - •—-  -_
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= C(t0,k0) 
> 0 such that

(4.16) IA [u,u]J ~~C Il ull~ - 
~ 

(u E
0 , ‘0

It suffices to show (4.16) for u = ~ E C ( I ,X). Set k~ = X+ ip

(p ~ 0) and C(r) = C(r) - 1 - A. Then we have

(4.17) IA t[~
,
~]I 2 = (II 4iI

~ ,_B,t 
+ fi (t+r)

28(
~~

,
~
)
~
dr

- 2Bfi (t+r)
2 1 Re(

~
,
~
’)
~
dr)2

+ (pf 1(t+r )
28

f~ (2dr

- 28fI(t+r)
2BIm(~ ,~~)xdr)

2.

By the use of a simple inequality (a ± b)2 ~~~ (1 - cz)a2 + (1

(a > 0, a,b E ~
) we have from (4.17)

(4.18) At [~,~1I 2 ~~*{(1~ I
~ ,.B,t 

+ f1(t+rY
2B (C

~
,
~
)
~

dr)2

+ ii2(f1(t+r)
28

I~ I~dr)2}

— 4B2C(fj(t+rY
28 Re(

~
,D’)

~
dr)2

+ (f i(t+rY 28
~

1Im(
~
,4 ’)

~
dr) 2 }

2 I1(t) — 48212(t).

11 (t) can be estimated as follows :

(4.19) 11 (t) ~~~
- (1 - cx)l~

I
~ ,_ 8 t + Cu2 

- (
~
. - 1) IEI} (f 1( t+r Y 26 lo I~dr) 2

(0 < a < 1).

Set a = 21C1(21 C1 + ~2) .l in (4.19). Then we arrive at

LI - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —-• -  —- — - —- - - ——- — —_ - - -~~~~~~~~--
- --—~- -•—----• 
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2
(4.20) I1 (t) ~ — 2 t~2liC Il+u ~

On the other ha nd, we ha ve

(4.21) I2(t)/lI~il
~ ,_8,~~~ 2(f1

(t+rY 28I$I~ I4 ’I~
dr)2/t 2Il Dii

~,_61t 
-.- o

(t -.-

It follows from (4.20) and (4.21 ) that A is positive definite with someto
to.

Let 2. E F
8(I,X). By the Riesz Theorem, there exists a unique

f E H~~
B

8(I ,x) such that

= (f,~) - 
,B, B,t0

(4.22)

Ifi b -
~~~ C ILl

B

where C = c(e,-t0) does not depend on f or 2.. Now the Lax-Mllgram

Theorem (see, e.g., Yosida [1], p. 92) can be applied to show that there

exists w e 1-10,_8(I ,X) such that

At [w ,~] = 

~~~~ - ~~~~
‘ E C~(I ,X))o p 8 , 0

(4.23)

1w1 9 - ~~~ 
CIft~ - 

~ 
(C =

• ,8,~,

By partial integration, we obtain, from (4.22) and (4.23),

(4.24) (Ct0 + r)~
28w, (L - <~.,s> 

(
~ E c(I ,X)).

(4.22) and (4.23) can be used again to see that v = (t0 + r ) 28w satis-

fies the estimate (2.16). Thus, v — (t0 +r )
28w is the radiative func-

tion for {L,k0,L}. The uniqueness of the radiative function has been

already proved by Lemma 2.4. ~.E.V.

- ---
~~~~~~~~~~:. 
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In order to show Lemma 2.5, we have to prepare two lemmas.

LEMMA 41. Let K be a compact set in C~ . Then there exists

a positive constant C = C(K) such that

(4.25) k2IvI -1- 5 ~ C{IvI~~ + Iv ’ — ikv I~ _1 + I fI 5}

holds for any radiative function v for {L,k,L[~ 1} with k =  k1 + 1k 2 E K,

k2 > 0 and f E L2,~ (I,X) .

Proof. Let k E K with In k = k2 > 0 and let fE  12,6(I,X).
Then, by Lemma 2.7, there exists a unique radiative function v a v(.,k,2.Tfl)

such that v,v ’ E L2~~(I,X). Moreover, v E D(I) r~ H~’
8(IiX)i0~ by

Proposition 1.3 and v satisfies the equation (1 - k2)v = f for almost

all r~~ I. Multiply the both sides of ((L_k 2)v(r)
~

v(r))
~ 

= (f(r) ,v(rfl
~

• by (1÷r)226 , integrate from R to 1 (0 < R < T < CD) and take the

imaginary part. Then

I
‘(2—26)tm f (1+r)’2

~
(v ’,v)

~
dr — (1+T)2 2

~
Im(v ’(T),v(T))

~R

(4.26) + (1+R)22ô Im(v~(R) ,v (R)) x - 2k 1k2 f (l+r)2 2
~lv j~dr

= Im f (l+r)226 (f ,v)
~
dr.

R

Since v,v’ E L2 6(I,X), 11m(l +r)2~
26(v ’(r),v(r)) = 0 holds , and

r-~ 
x

lIm Im(v ’(r),v(r)) = 0 follows from (3.36). Therefore, letting 1
r~Oalong a suitable sequence (I~} and R + 0, we have

k2Ilvii~_~ 
~ 2 

1 {(2-2d)J1(1+r)~~
2
~~v ’ I~ lv I~

d1’ + f1 (1+r)226 IfI~ Iv I~
dr}

(4.27) 
1 1 1

~ {(2— 2 ~ )J + J }.
2jk 1 J 

1 2

Let us estimate and J2.

T __ _ _ . - 
~~~~~~~~~~~~~~~~~~~~ ~~- --- ----•
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~-‘-~ ~~i I v ’H ~HvH 1 ~~~ 
fi1 v ’—lkvII _~ + afl vIl _~}Uvff 1~~ (a ~ max iki),

(4.28)

J2 ~ ll f1I 1_~5IIvIl 1~~,

where we used the Schwarz Inequality . Set b = mm k1 1 . Then it follows
kEK

from (4.27) and (4.28) that

k2ll vfl 1_ 6 ~ ~~~~~
. (il v~—ikv1I~~ + aJi vJI 6 + 11 f11 1_6)

(4.29)

~~~~~~~~~~
. (Il v 1 —ikvff~~1 + aj l vff 6 + 11 fU 6),

where it should be noted that —d < d-l and 1-6 < 6. (4.25) follows

directly from (4.29). Q.E.V.

LEMMA 4.2. Let v E 0(K) and k €C~ . Let ~(r) be a real-valued

C2 function on I. such that 0~~ ~ ~ 1, and

0 (r~~~R)

(4.30) ~(r) 
a

- 
1 (r~~~R+l)

with R > 0 .  
-

-

• 

- 

~~ f~(1+r) a_h Iv~_1kv (~dr + (1 - 

~
.) ~~(1+r )~~

l IB½v (~dr

~ Re ft(l+r)
a(f,v J _ikv)

xdr 
- Re ft(1+r)a(C1v,v

’_ikv) dr
R R x

+ ~~ ~~(1+r )a(C6v ,v) xdr + ~~ ~~
(1+r)

~~~
(C0v,v)

~
dr

(4.31 ) 1
- k2 f~(14r)

a(C0v,v) dr

+ l+r)a(lB~~I~~÷ (C0v,v)
~
}dr

+ ~~ . (1+T)a{)V .(T)_ ikV (T)I~ - (Cø(T)v (T ) ,v (T ) )
~
},
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where f (L-k2)v , a E JR and I ~~ R+l.

PROOF. The relation (L-k2)v = f can be rewritten as

(4.32) -(v’-ikv)’ - ik(v ’—lkv) + (B(r ) + C0(r) + C1 (r))v f

whence follows that

(4.33) -((v ’—ikv),v _ ikv)
~ 

— ikIv ’— ikv I~ + ((B + C0 + Ci )v
~
v ’_ikv)

~
= (f,v ’_ ikv)

~
.

Take the real part of (4.33) and note that k2 ~ 0. Then we obtain

- 

~- -~~C Iv
’-ikv j~} + ~~~~~~~~~~ {IB½v I~} - ~~.. ({dB

~r)}V V)

(4.34) + k2(C0v,v)x - 
~~~~~~~~~~ 

{(C0v ,v) ,~} - -

~~
- (C~v,v) ,~

+ Re(C 1v,v ’_lkv)x ~ 
Re(f ,v ’_ikv )

~
.

Mul tiplying both sides of (4.34) by ~(1+ r)a, Integrating from R to T

and making use of partial integration, we arrive at (4.31). Q.E.V.

PROOF of (2.10) of LEMMA 2.5. Let v E L2 6 (I,X) be the radiative

function for {L,k,9.[f]} with k E K and f E L2,6(I,X). Then

v E 0(I) (~ H~j
’8(I

~
X) 1oc by Proposition 1.3 and we have (L_k 2)v(r) = f(r)

for almost all r € 
~~~• Let a = 26-I and R = I in Lemma 4.2. Then, it

follows from (4.31) that

(6 — 

~)il~~(v ’—i kv)iI~~1 ,(1,1) + (
~ 

— 6)li~~8½vII~~ 1(1 1)

-
~~~ 

{~
(l+r)26

~~If~~Iv ’_lkv I
~
dr + CO {~~

l+rY26Iv I~ Jv ’_ikv I~
dr

c0 T 26 2 261 T 26 2(4.35) + -
~~

— 

~~(l +r) vI~
dr + -

~~~ C0 {~
(l+r) Iv I~

dr

+ c0k2 {~
(l+r)’26 J v I~dr + ~ I~ uI (l4r)26~~CIB

½vI~ + c0Iv I~ }dr

_________ ____________________ ~~~~~~~~~~~•—-~~~~~~~ — - — — — - —~~~-—  
— —
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+ ~
.l(l+T)26

~~Iv ’(T)—ikv(T)I2 +co(1+T)~~
26Iv(T)I~ },

where C0 is the constant given in Assumption 2.1 and the following estimates

have been used :

26—l— ~ 1 1
(l +r)26~~IlC 1 ( r)O ~ c0(1+r) ~ ~ c0(1+rY =c 0 (l+ r) 6

~’~~ ‘,

(1+r)26~~iiC~(r)O ~ c0(1+r)
26 2 C  

~ c~(l+rY
26,

(4.36)
(1+r)26211c0(r)lI .~~~ c0(l+r)

262
~~ ~ c0(1+rY~

2
~,

(1+ r~
26

~~llC 0(r )II ~ C~~l+r)
26
~~~ ~

By Lemma 4.1 and the Schwarz inequality, we have

the right-hand side of (4.36)

-‘ lt fII61Ie~(v ’—1kv)ll~~1 +c0
rIv II~~~~ (v ’~ikv)iI 6 1

+ 6C0ii vil 26 
+ C

0cfl vii vU 6 + lIv ’-ikvtl 6_1 + li fVl 6
}

(4.37)
+ ~(l+cO)C~32~~h lIvlI~~(1 2)

+ -~j(1+T)C(1+T)
262

Iv ’(T)-ikv(T)I
2 + co(1+TY~

26Iv(T)t~}

wi th C~ = maxlC (r)I. Since v ’-ikv E L2 _1 (I,X) and v € L2 _6(I,X),
- r ‘ ‘

the last term of (4.37) vanishes as I ~~- along a suitable sequence

• {T~}~ and hence we obtain from (4.35) and (4.37)

llv ’-ikvU 5 l ,(2 CD) + IiB~~i 6 1 ,(2,~)
(4.38)

~ C{li vIl _6 + 11 fl15 + IIv ’—ikvtI 0,(1,2) + II VII B ,(l ,2)}.

(2.10) follows from (4.38) and Proposition 1.2 (the interior estimate).

Q.E.V. 

- •_ - _ •--~~~~~~~ - --•--••- —

-- 
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PROOF of (2.11) of LEMMA 2.5. From (3.32) in ProposItion 3.4, we have

(4.39) v(t)I~~ k~
2Iv ’(t)—ikv(t)I~ + 2Ik 1[~ fl fH 6U vll 6.

Multipl y (4.39) by (1 + ty26 and integrate from r to ~~~. Then, it fob- 
• 

-

lows that

I VIL6,(y,CD) ~~~~ (l+t )
26

Iv ’-ikv~~dt

+ 2 —~(1+r Y~
26
~~ llflI6Il vt l 6

1k 1 1(26—l) 
—

(4.40) 1 2(26 1) 2
~~~ 

-
~~~~~ (1+rY 

— l lv ’ —ikv ll d_ l ,(r ,CD)
1

+ 2 (l+r) 26
~~ ll fiI 6lI v1l 6~k1 1(26—1) 

—

(2.11) is obtained from (4.40) and (2.10). Q.E.V.

Now that all the lemmas in §2 and Theorem 2.3 have been proved completely,

we can show more precise properties of the mapping

(4.41) x [~ , (I ,x) ~ (k ,L) —.- v(’,k,2.[f]) E L2 6 (I,X)

by reexamining the proof of the lemmas in §2.

LEMMA 4.3. Let {f~} be a sequence in L2,6(I,X) such that

converges weakly to f € L26 (I,X) as n —‘- CD~ Let {kn} be a sequence

in C~ such that k~ • k E with k E C~ as n + ~~~ . Let v,,, be the

radiative function for (L
~
kn~

2
~
[fn]}• Then, there exists a subsequence

Cv ,,, I of {v~} such that

(4.42) v~ + v in L2 6 (I,x) ~ H~~ (I iX) ioc

as m ~ ~, where v denotes the radiative function for CL ,k,2.[f]}.

-- • ---

~

—--—-•• =—- —- —--- - -  - -
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PROOF. Since Cfn} is weakly convergent, {f~} is a bounded sequence

in 126 (I,X). Therefore, it follows from (2.7) in Theorem 2.3 that Cv~}

is a bounded sequence in L2(I,X) 10~, that Is , ~~~~ 
= U~~v~) is a

bounded sequence in L2 (JR N) l0~. Noting that satisfies the equation

(4.43) •t
~
V n + 

~~n 
- ~~~ = 

~~ 
(
~

we can see that {v~
} is really a bounded sequence in H2(R N)boc~ Then,

by the repeated use of the Rellich Theorem, it can be shown that there exists

a subsequence {~~~} of {~~} which is a Cauchy sequence in Hl (IRN)l0~.

Therefore, Cv I is a Cauchy seuqence in H0’ (I ,X) 10~ with the limi t

l B  
mn

v E H0’ (I,X) 10~. Moreover, it follows from (2.8) In Theorem 2.3 that

{vn I converges to v in L2 •6(I,X), too. In quite a similar way to
in

the one used in the proof of Lemma 2.6, we can easily show that v is the

radiative function for {L,k,2.[f]}. Q.E.V.

From the above lemma, we obtain

ThEOREM4.4. Let Assumption 2.1 be satisfied.

(I) Then the mapping

(4.44) C ’ 
~ k + v(’,k,L[.]) € L2,_6(I,X)

is a ~~(L2,6(I,X),L2,~~(I,X))-valued continuous function on C ’, that is ,

if we set

(4.45) v(’,k,R.tf]) = (1 - k2)~~f (f e L26 (I,X) ) ,

then (L - k2 ) 1 E IB(L26 (I,X) ,L2 6 (I,X)) and (L - k2)~ Is continuous

in k E in the sense of the operator norm of E (L2,6(I,X),L2,~6(I,X)).
(-I i) For each k € C ’, (L - k2)~~, defined above, Is a compact operator

from 12 6(I,X) into L2 ~
(I,X ) .

i1t - - 

. ~~~~~ _.;_~~~.____=__ •-  — ---•---- - —•  -
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PROOF. Suppose that the assertion (I) is false at a point k E

Then, there exist a positive number B > 0 and sequences {f~} C L26 (I,X)
Ck~} c C ’ such that

1f I 6 = b  ( n = l , 2 ,...),

(4.46) k~ k (n

Iv(.,k~L [f~J) — V(•ikn~
2.[fn flI ~- 8 (n = 1 ,2,...).

With no loss of generality, we may assume that 
~n 

converges weakly in

L2 6 (I ,X) to f with f E L2,6(I,X). Then, Lerrina 4.3 can be appl ied to

show that there exists a subsequence {nm} of positive integers such that

v(.,k~ ~L[f~ j) +m m
(4.47)

v(.,k,2.[f 1) -+ v(.,k,L[f])
m

in L2,_6 (I ,X) as m -‘- ~~~. Therefore, we obtain

(4.48) Iv( .~k,L[f~ ]) — v(.,k,,, ~L[f~ ])1 6 
+ 0

m in in

as in ~~ - 

~, which contradicts the third relation of (4.46). Thus , the proof

of (i) is complete. (ii) follows directly from Lemma 4.3. q.E.V.

Finally, we shall prove a theorem which shows continuous dependence

of the radiative function on the operator C(r). This will be useful in §6.

ThEOREM 4.5. Let ~~ n = 1,2,..., be the operators of the form

d2(4.49) Ln = - —.

~
:
~

- ÷ B(r) + C~(r), Cn(r) = Con(r) + C01 (r)

(r € I)

with Cjn(r) = Q~~(rw )x for j  = 0,1. Here Q0,,,(y) and 
~~~~ 

are

~~~~~~~~~~~~~~~ ~i: - -~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~
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assumed to be real-valued functions on IRN which satisfy (Q~) and (Q~1 )

of Assumption 2.1 with and 
~l 

replaced by 
~~ 

and 
~ln’ 

respec-

tively. The constants £,6~ and c0 in (Q,~) and (Q~
) are assumed to be

independent of n — 1 ,2 Further assume that

(4.50) u n  Q~,,(y) = Q~(y) (j = 0,1, y E

wi th Q0(y) and Q1(y) which satisfy Assumption 2.1. Let ~~ n = 1,2,...,

be the radiative function for {Ln ikn~
R
~n

} such that kn E t~, 2.n ~ F6(I ,X)

and

k~~+k in

(4.51 )

-+ 9. in F
6
(I,X)

as n + with k E and 2. E F
6
(I,X) . Then we have

(4.52) v~ -‘ v in HQ
1 ’~ (I,X),

where v Is the radiative function for {L,k,2.} . And there exists a con-

stant C such that

~ C 1 2.11

(4 ,53) Iv ,_ iknvnl6_ 1 + IB’~v~l6 1  ~ C 1 9.11 6’
IV

fl
I2B Y .6, (r,CD) ~ C

2r~
2
~~~ 11 2.11 6 (r 11)

for all n 1,2,.... C = C(k) is bounded when k moves in a compact set

in C~.
PROOF. Let g,,, be the radiative function for CL~~k0~L~} and let

Wn be the radiat ive function for ~~~~~~~~~~~~~~~~ where k0 E C~,

In k0 > 0. We have v~ = 9n + w,,~ by Lemma 2.8. Reexamining the proof of

Lemmas 2.5 and 2.7 , we can f ind a constant C, which is independent of

I
I
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n 1,2,..., such that

1tg~,II6 + UB ½g~lI6 + IIg~U 6 ~ C 1
~ nt11 6’

(4.54) Ii w, - lknWnII 6—1 + II B½w,,II 6— 1 ~ C (ii ~~ ~ 
+ II w,~,Ii -

II w nII ..6 ,(r ,00) ~ C2r
~~

26
~~~

( U g nII~ 
+ Itw nlI

~ 6
) (r ~.l)

for all n = 1,2 Thus, we obtain, for all n

ii v,’, — i k,1~i~li 6— I + II B½v,,~II 6—1 ~ C( fli LIII 6 + II w,,ll 6~’
(4.55)

I I v
flILd,(r ,øo) -~~~ C

2r~~
26
~~

’
~( ~l LIll + IIw~I I~~) r ~ 1)

with a constant C > 0. The estimate

(4.56) Iiw~Il 6 ~ CII g,~ll 6 (n = 1,2,...)

can be shown In quf tea similar way to the one used in the proof of Theorem

2.3 and Lemma 2.6. In fact, -If we assume to the contrary, then there is a

subsequence {hm} of (Wn/II Wnhl _6} which converges to the radiative function

for {L,k,O}, where we have used the interior estimate (Proposition 1.3),

(4.54) and (4.50). We have 11 hH 6 = 1. On the other hand, h = 0 by the

uniqueness of the radiative function (Lemma 2.4), which Is a contradiction .

(4.53) follows from (4.54) and (4.56). Proceeding as in the proof of Lemma

2.6 , we can show the convergence of Cv ,,,) to v in L2, 6(!,X) ~ H~
’8(I,X) i0~, 

-

whIch , together wi th (4.53), implies that {v~} converges to v in

~l ,B IT
lb 

_45~~L g  . • .

I ~~
_ ‘L  ,j,

~~ — — --— ‘~~~~~~~~~~~~ ~~~~~~~~~~ — ~~~~
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Chapter II. Asymptotic Behavior of the Radiative Function

§5. Construction of a Stationary Modifier

Throughout this chapter , the potential Q.(y) is assumed to satisfy

the following conditions, which are stronger than in the previous chapter.

ASSUMPTION 5.1.

(9) Q(y) can be decomposed as Q(y) a Q0(y) + Q~1(y) such that

and are real-valued function on IRN, N being an integer

with N > 3 .

(
~~

) There exist constants c0 > 0, 0 < c < 1 such that Q0(y) is a

C function and

(5.1) ~DiQ0(y)~ < C0(l + Iy~
)3

~~ 
(yE JRN, j = O,1 ,2,...m0)

where D~ denotes arbi trary derivatives of ~th order and in
0 

is

- 
the least integer satisfying

(5.2) m0 > - 1 and in0 > 3.

Let m1 be the least integer such that m1c > 1. When m0 >

we assume that (in
1 

- l)c < 1. Further 90(y) is assumed to satisfy

(5.3) Q0(y) 0 (III ~ 1).

~~~ ~1(Y) is a continuous function on IR N and there exists a constant

> max (2 - c,3/2) such that

(5.4) I~1(y)I < C
0(l + Iyl ) 1 (y€ JR N)

with the same constant C
0 as in (~~).

REMARK 5.2. (1) Here and In the sequel, the constant 6 In Defini-

tion 2.1 is assumed to satisfy the add itional conditions
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6 ~ min(c,c1-l) when ½ < c ~ 1,

(5.5)
c -1+c

6 ~ mm ~.(m0+l) 2 when 0 < c < ½.

From the conditions (5.2) and (5.4), it is easy to see that (5.5) does not

contradict the condition 6 > ½.
(2) If c > ½~ then in

0 
= 3 and in

1 
= 2 . 

-

(3) The condition (m1-l)c < 1 is trivial . In fact, when is

an integer, we can exchange c for a little smaller and i rrational c’.

The condition (5.3) is also trivial , because Q~
(y) and Q1(y) can be

replaced by 4(y)Q0(y) and (1-4(y))Q0(y) + Q1 (y), where ~ is a real-

valued C~ function on JR N such that q,(y) = 0 (lyl < 1), = 1 (IyI > 2).

(4) A general short-range potential

-1-c
(5.6) Q.1(y) = 0(~yI 

0) (c O > 0, I~ I

does not satisfy (5.4) in Assumption 5.1. In §12 , we shall discuss the

Schrödinger operator with a general short-range potential.

The following is the main result of this chapter.

THEOREM 5.3. (asymptotic behavior of the radiative function). Let

Assumption 5.1 be satisfied. Then, there exists a real-valued function

Z(y) = Z(y,k) ~~~~ JRN x (JR - CU)) such that Z € C3(R N) as a function

of y and there exists the limi t

(5.7) F(k,2) = s - lim e~~
’
~”’~~v (ry in X

for any radiati ve function v for CL ,k,L) with k E JR - {O} and

2. E F1÷8(I,X), where ~i(y,k) is defined by
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= rk - A(y,k)

(5.8) 
r

A (y,k) Z(tw,k)dt

with r = l y l , w = y/IyI and

6-c if 0 < c < ½

(5.9) ~~~= 

-

0 if -~~< c < 1 .

This theorem will be proved in § 7 by making use of the next.

THEOREM 5.4. Let Assumption 5.1 be satisfied . Let v be the radi-

ative function for {L,k,2.} with k E JR - {O} and 9. € F1~8
(I,X) , B

being as in (5.9). Then we have u ’ - Iku, B½u E L2 8 (I,X), where

u = e~’v and X is given by (5.8). Further, let K be a compact set In

JR - f 0). Then, there exists c = C(K) such that

(5.10) Iu ’
~

ikul
B + 1B½u1

8 < C I~I&II j 1+8 Cu = eiA v)

and

(5.11) v(rflx ~ C111 L 111 1÷8 (r €

-

. 

for any radiative function v for {L,k,&} with k E K and 2. E F1~8
(I,X),

where 8 is as in (5.9).

As was proved In J~ger (3], we may take Z(y) 0 when 90(y ) 0.

Sait~ [3] (and Ikebe [2]) showed that we may take

(5.12) Z(y) =~~ .Q0(y)

in the case that ½ < c ~ 1. It will be shown that (5.12) is the “first

approximation” of Z(y) in the general case. The function X(y,k) is
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called a stationary modifier.

In the remainder of this section, we shall construct the kernel Z(y,k)

of the stationary modifier A(y, k ). To this end, let us consider the fol-

lowing problem: Find a real-valued function A(y,k) on IR N x (JR - CO})

such that

(5.13) ((L-k 2 ) (e 1”x ) (
~ 

= O(r~~) 
(
~ > 1 , r 

~
.-

for any x € fl, where ~ is given by (5.8). If Q~(y) 0, then

X(y) 0 is a solution of this problem. In order to solve this problem,

we have to investi gate some properties of the Laplace-Bel trami operator

AN on 5N—l Let us introduce polar coordinates

as in (0.22), i.e.,

y1 = rcose1,

(5.14) y
~ 

= rsmno 1sine2. ..sine~.1coso~ (j = 2,3,...,N-1 ),

= r$in&lsinO2...sinON 2 sinON .l ,

where r > 0, 0 
~ 

Ol~
O2,...,eN_2 < ir, 0 < < 2-rr. We set

= 1 ,

(5.15) = b1(e) 
= sine1sinO2...smnO~_1 (j = 2,3,...,N-1),

= M
1
(e) =b

1(e)~ ~~~~~
— (j = l ,2,...,N—b) .

Then we obtain from (0.23)

(5.16) AN x = ~~b1(8) 2(sin91YN
~~~ ~~~~~~~ - {(smno )N i 1  

~;}‘
and hence, setting A — + ¼ (N-l)(N-3), we have
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(5.17) IA¼XI~ a 
~~IM ,j

)ix + IC N XI (
~ 

a

where X(~~~) is a sufficiently smooth function on ~~~~ It follows from

(5.17) that the operator M
1 

can be naturally extended to the operator

on D½, i.e., for X E  D½, we define M
1
X by M

1
X = s-u rn M

i
X
n~ 

where

f X,,} is a sequence such that X
1, 
E C1 (S~~

1 ), X
,~ 
+ X in X as n -

~~

and A¼X~ , A~X in X as n -‘- 
~~~. In the sequel M~ will be considered

• as the extended operator on D½. Let A (y) be a C2 function on IRN

and let us set

N-i
= IP(y) = 4P(y;A) = r 2 

~ (M A )2,
1=1 ~

(5.18) P = P(y) = P(y;A) = r 2(ANA)

N-l
M a 

~~ (M 4 x )M. .
“

LEMMA 5.5. Let XE 0 and set x(y) = ~Z(tw)dt (r I~ I~ ~ 
y/IyI )

wi th z(y) E c (JR ). Then we have

(e~~ ’B(r ) — B(r)e~~~) X =  e~~~(_ ~’±  2ir 2M ± IP~x
(5.19)

(
~ 

± 21r 2M ±

and

(L_ k 2(e htx) a e~~~(B(r) + 21r 2M)X + (iP + -tz’ + c1 )x
(5.20) 

.

= (2kZ - C0 - -p )x} ,

where P, P, M are given in (5.18), z~ ~~~ and p(y) — rk — A (y)

with kE JR - (0).

PROOF . (5.l9) and (5.20) can be shown by easy calculation if we note

‘4
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(5. 21) AN(e
~

1
~
’X) = e±U(A Nx ± 2iMx ± i(A NA)x ) .

Q~. E. P.
In order to estimate the term P(y) , we need

LEMMA 5 6 .  Let h(y) E c2(JRN). Then

(5.22) (M1
h) (y) = 

N-i 

b1(Or1Y~ 1 
~~~~~~~~

‘ 

2
(5. 23) (A Nh ) (y) = ~ b .(O~~

2y 9 .

j= 1 p,q j  ~ 
p, q,j y

~ Yq

N
- - Y~~

-
~•;;-- ’Pal r

where = ~~~ Let X(y), Z(y) be as in Lemma 5.5 and let P(y) be

as in (5.18) . Then

r N  r -1

(M.X)(y) = 5 ~ b1(OY
’ l~ ,~ 

dt,
O pal L~

’ ~
‘P rt~

(5.24)

P(y) = •
~2• 

~ ~~~~~~ 

b
1
(ey~

2 
[yp jyq j  

~Y~~~q]y=t~

- (N - 1) i [~ ~ 
}dt.

where r = Iyt~ “~ = y/IyI .

PROOF. Let us start wi th
N 3h

(5.25) 
~Je~— = ~ ~‘p,j 5~~’j  p=j

where it should be noted that 0 for p < j. (5.22 ) directly follows

from (5.25). It follows from (5.25) that

2 N N 2
(5.26) ~~h = - 

~~~ ~~ 
+ 

1
Yp,jYq,j ~Y a~q 

—•---
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Here we have used the relation

(5.27) i
~~~~~~~~~~~~a y  (J~~ p~~ N, l < j < N - l ) .

Thus we obtain

N-i 2 cos e
(iL~h)(y) = ~ b1(e)

2 i4.~. (N - j - 1 ) sin e~ ~~

(5.28) = 

j~ l 
b;

2yp j yq j  aYp~Yq 
- 

~~~~~~

N— i N cos e
+ 

~~ 

~~b~~(N — i — 1) sin e~ )‘p,~j a~~’

and , hence, we have only to show

N— i N cos 8.

i~1 
~ b~(O)

_2
~~N - - 1) sin e~ 

y
~,3 

-

(5.29)
, ,~— — ~~N — ’ ~ L Y 11~~pal r

The order of summation in the left-hand side of (5.29) can be changed as

N-i N N-i p N
(5.30) = +

1=1 pal pal i—i 1=1

-

. 
Therefore, it is sufficient to show

cos O

1
~
1
bj(er2{(N~i~i) sin Yp,j - = - (N~1)Y~

(p = l ,2,...,N—l )
(5.31)

N-i cos 8.
a 

1
~1

bj(0) {9N~ l) sin ~ Yp,i - = - (N
~
l)yN.

To this end, let us note that

~~~~ ~~~
_ _  -‘-

~~~•~
..-- _~~.

-- ~~~~•~ —-~~:~-. ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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- l y  ( j < p < N),
sln2 O p

cos e.
(5.32) sin e~ 

=

(j = p < N - l ),

whei-~ce follows that

= b
i

(0) -2{ (N i l )[ ~~~~~ 

~ 
- 1) - l}Yp -

(5.33) = ~{b1+l or2 N~i~n - b~(0r
2 (N~i)} - bP (e) -2 (N~P)]Yp

= - ( N - l ) y ~ (l z p < N - l ) .

The relation = -(N - can be proved in a quite similar way, which

completes the proof of (5.23). (5.24) follows from (5.22) and (5.23). Q.E.V.

Let A(y) be as in Lemma 5.5 and let Z(y) satisfy the estimate

03Z(y) = O ( ~y l 3 ~~) (III ~~~~ j = 0,1 ,2),

(5.34)

2kZ(y) - Q~(y) - Z(y)2 -~~(y) =o (~y~~
E) (1 < <

I~I ÷ o ~).

Then the estimates (M
I
A)(y),(ANA)(y) = 0 (1y1

l_E
) ( J > ’~ -‘- ~o) are obtained

from (5.24), where we should note that Ib1(eY 1
~~,~I ~ I~I for i ~~. ~~~

.

Therefore, it can be seen from (5.20) In Lemma 5.5, that I(L-k2)(e 1
~x)I~ 

=

O (r
_C
) holds good under the condition (5.34). In order to obtain A (y),

which satisfies (5.34), let us consider three sequences {
~n

(y
~
k)}, (‘I’~(~)~k)}~ 

-

(X~(y,k)} (yE IR N, w E  5F 4 I , k E JR - C0}) defined by

~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

•

~

• ~~~~~~~~~~~~~~~~~~~
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a 
~v

‘V 1 (y) = 0

A 1 (y) = ~ .fQ0(tw)dt (r = Jy l , = y/ Jy I) ,

= ~ C90(y) + (
~~

(
~)) 2 

+ p (y ;A~(y))} (n = 1 ,2,...,

(n - l ,2,...,m0-1),

(5.35) 0 (in = 2,3,...,m1-1),

W~ (w) =

-I (tw) — ~ 1 (tw)}dt 
+ 
~Pn_i

(W) (n =

O n n_

r
A ~ 

= 5 ~~~~~~ +0
(r = w = y/~y~, n = 2,3,...,m0 ).

where ~( ) is a real-valued C~-function on r such that
0 (r<l),

(5.36) 0 < ~(r) < 1 , ~‘(r) > 0, and ~(r ) =

- 
1 (r>2),

and m0,m1 are as in Assumption 5.1. If m0 < m 1, then we set ‘Fn(w) = 0

for all n l,2,...,m0-l. In the following lemma, it can be seen that

these sequences are well defined by (5.35).

- 
LEMMA 5.7. (1) t!~(y,—k) = —$~(y,k). ‘im n(wg

_ k) = —v~(w~k) for any

pair (y,k) E JR N x (J R  - (0)) and any n = l ,2,...,m0. Further,

‘~ (y,k) = 0 for ~~ < 1 and n =
m,~ 1-n m +1-n

(ii) 
~~~ 

E C (IR N) and ‘v~(w) E C ~ (S~~
1 ) for

n — l ,2,...,m0.

(-iii) There exists a constant C > 0 such that

(5.37) ID1~ (~)I ~~C( l +
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and

(5.38 ) ID3
~~n

(y) - ~~ 1(y)}~ ~~C(l +

hold for any yE JRN n a l,2 ,...,m0 and i = O,1,2,...,m0+l -n, where

D~ denotes an arbi trary derivative of the order.
1-n

(iv) As functions of k, ‘
~n 

and ‘1~ are C (IRN)_value~
continuous functions on JR - { 0 } .  The constant C In the right-hand

side of (5.37) and (5.38 ) is bounded when k moves in a compact set in

JR - (01.

PROOF . (I), (ii) and (5.37), (5,38) can be shown by induction . Here

it should be noted that 90(y) = 0 for 
~~ 

< 1 and

(5.39) (M~h)(Y) = 0(~y~~ t) if Dh(y) = 0(~y~~
t)

(-r > 0, I~ I +

which fol lows from (5.22). If m0 < m 1, then ‘~~(w) 0 for a l l

n = l ,2,...,m0-l and we may simply set x~(y) = J~~~(tw)dt. In the case

that in1 
< in0, any logarithmi c term does not appear in the estimation

because (m 1 -l)c < 1. (iv) is clear from the definitions of and

Q..E.V.

DEFINITION 5.8. We set

Z(y) = Z(y,k) = m0-2 
+ (r)’v~~~2(w),

(5.40) A (y) = A (y,k) = A (y) = fZ(tw)dt,m0-2

Y(y)  = Y(y,k) = 2k2(y) = Q0(y) 
= Z(y) 2 

- ~(y;A)

I
wi th r = y~, w = y/IyI .

REMARK 5.9. (1) From Lenina 5.7, It can be easily seen that

Z(y) E C3(IR N
), Z(y,-k) = -Z(y,k), Z(y) = 0 for ~~ < 1 and

~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-•_8• A
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I(D1Z)(y)J ~ C(l + IyI) 1
~ (y E JR N, ~ 

= 0,1,2 ,3),
(5.41)

-j-Gn -1)c
t (D3Y ) (y )~ ~~C(l = III ) 0 (yE JR N , 

~ 
= 0,1).

Further, taking account of (5.5), we have

(5.42) (D3Y)(y)I < C(l ÷ y~)J2B 26 (yE JR N ~ 
= 0,1),

where B is given by (5.9).

(2) As a func tion of k, Z is a C3(IRN)_va l ued continuous function

on JR = {0}. The constant C in (5.41) and (5.42) is bounded when k moves

in a compact set in JR - (0).

(3) Let us consider the case that ½ < c < 1. Then, in
0 

= 3 and

(5.43) Z(y,k) = Z1 (y,k) = 
~~~~~~~

This case was treated in Sait5 [3] and Ikebe [2] (cf. (12) of Concluding

Remarks).

I ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -~~~
--
~

-; : - ~~~~~~~~~~~~ ~-
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§6. An estimate for the radiative function

Let Z(y) and A (y) be as in §5. Now we are in a position to

prove the first half of Theorem 5.4. -

Let us set for a function G(y) on

(6.1) pa(1~ 
= sup (1 + Iy I)

aIG(y)I.
yEIRN

The following proposition is an important step to the proof of (5.10) in

Theorem 5.4.

PROPOSITION 6.1. Let Assumption 5.1 be satisfied . Further assume

that 90(y) has compact support in IRN . Let K be a compact set in

JR - (0). Let ~ be as in (5.9) Then there exists C = C(K,Q~) such

that

(6.2) lIu ’_ ikuø B + ~B
½uI

B < C{~
fII 1÷8 + 1v1

6}

holds for any radiative function v for {L,k,2,[f]} with k E K and

f E L2 1÷8(I,X) , where u = e1A v and A (y ) is given in (5.40). The

constant C = C(K ,Q) is bounded when PE (Q l )~Pj÷
(D3Q

~
)
~ 

j = 0,1 ,2 , .  ..,m0,

are bounded . Here m0 is given by (5.1), D3 means an arbitrary deriva-

tive of ~th order and c,c1 are given in Assumpti on 5.1.

In order to show this proposition, we need several lemmas.

LEMMA 6.2. Let v E D(I) n H~~B(I,X) be a solution of the equation

(L-k2)v = f wi th k E JR — {0} and f E L
2
(I,X)

10~~
. Set u = e1)

~v with

X(y) defined by (5.40).

(I) Then we have

(6.3) -(u ’-iku)’ - ik(u ’-lku) + Bu

= e~ f — 2iZ(u ’— lku) + (Y-.C
1
-1Z’-iP)u - 2ir 2Mu,

~ 

- - ~~~~-‘t-s~, - - - -44
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where V is as in (5.40) and P,M are given by (5 .18 ) .
P 1 N(i f )  Let V(y) = ~ g.G 4 with C functions g. on JR - (01

and operators in X such that G~u 
€ Cac (I

~
X) w ith (G

1
u)’ = G~u ’

in L2(I,X) i0~. Then

f(Vu,u ’-iku)
~

dr = 
~~~~~~~~ 

{[(Vu ,u’-iku)
~
1
~ 

- f(V{u
~
-lku),u ’_ iku )

~
dr

T T
— f(V’u,u ’_iku)

~
dr + 2i f(ZVu,u ’-.iku)

~
dr

R R

T
(6.4) + f(Vu,{Y—C 1— iZ’-iP}u + e f)

~
dr

R

I T
- f(Vu,Bu)

~
dr + 2i f(Vu ,r 2Mu)

~
dr}

R R

(O < R < T)

with V ’ = Z -~~-G .. 
-

j=l
PROOF. (i) is obtained by an easy computation if we take note of

Lemma 5.5 and the relation (L-k2)v = f. Take the complex conjugate of

both sides of (6.3), mul tiply it by Vu and integrate on x (R,T).

Then, by the use of partial integration, we arrive at (6.4). Q~.E.V.

LEMMA 6.3. Let X, X’ E 0 and let S(y) be a C1 
-function on IR 1

~.
- 

Then

(6.5) (SMx ,x ’)
~ 

+ (Sx ,Mx ’)~ 
= -r2(SPx ,x ’) — ( (MS)x ,x ’)

~
.

PROOF . By partial integration , we have

(Sx ,(MjA)Mjx ’)
~ 

= 

~~~~~~~~~~~~~~~~~~~~~ 
~.2L. dw

(dw = (sin O
~
) 

— . . .(sin e~) ~~ . . .sin oN~2)

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~• _ • _~~~~~~~~~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
-

_~~~~~~~~~ 
_ _
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= - 5 ~~—fS(rw)x(w)(M.A)(rw)(sin O.)
N_ 3 1 }b .(e)

_ h iI(~).

5N 1  j

(s in  ~~~~

= - 

~~~~~~~~~ 
+ Sxh~(eY~

2(s in ~~~~~

• 
~~

-
~~--- ((sin 0~~

N i l  
~ —)~~}dw

whence we obtain

(S ,Mx ’)
~ 

= -(M(Sx) + Sx (A N A ) , x ’) x
(6. 7) 

= - (SMx ,x’)
~ 

- ((MS)x ,x ’)
~ 

= r2(SPx,x ’)
~
.

This is what we wanted to show . Q~.E.V. 
-

LEMMA 6.4. Let Q0(y) be as in Proposition 6.1. Let v be the

radiative function for {L,k,Z[f]} with k E JR - (O} and f E L2 1÷8 (I,X),

where 8 is as in (5.9), i.e., B = 6 - s (0 < c < ½), = 0 (~ 
< c 1).

Then we have v I ..ikv ,B½v E L2 8 (I,X)

PROOF. Let kn 
= k + 

~~
- (n = 1,2,3,...) and let v~ be the radiative - 

-

function for {L,k,2.(f]}. From Lemma 2.7, it follows that

v~
_ ikv~,B

½v~ E L~,~÷8(I~X). Mul tiply both sides of

_ ((v,_ikvn)’,v,
_ik

nvn)x 
- ikn~

v
~
_ik

nvn I~ 
+ (Bv n ,v,’,_ iknvn)x

(6.8)
+ (Cv n,v,_ik nvn)x = (f ,v,!1-ikv~)~

by ~(r)(l + r)28
~~, ~(r) being given by (5.36), take the real part and

integrate from 0 to T. Then, proceeding as in the proof of Lemma 2.5

and using (5.5), we arrive at

_ _ _ _ _ _ _ _ _  _ 1 i ~~~~~~
_
~~ -~~-•-- --~~-—~~~~ -—- - - -  AaA
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(8 + ~) ftr v,_ ik nvn lxdr + (~ 
- 8) ftr IB’

~
v
~i~

dr

~ ~-(i+T)~~
’
~ v, (T)-ik~v~(T) 

t~~~

(6.9) + ~ f~’( i +  r) 2
~~~( IB½y 1

2 
- Iv~-ik~v~ I~ }dr

+ C

+ J~(l+r )2
~~ ~~~~~~~~~~~

whence, by the use of Proposition 1.2 ( the interior estimate) and Theorem

2.3 (the limiting absorption principle), f t follows that

(6.10) Iv
~~

ik nvnI 8 + IB~~~I 8 < C1 f1 1÷8 (n = 1 ,2,...)

with a constant C which is independent of n = 1 ,2 Let n ‘- in

the estimate

(6.11) ~v~_lkv fl
a
8,(0,~) + I8½vn~8 (O R) ~ Cl fl

1~ 8.

Then it follows from Theorem 2.3 that

(6.12) llv ’— ikvI 8(0~~) + lB½v~8,(0,~) ~~C~ fi 148

holds for any arbitrary R >0 ,  which implies that v t _ ikv ,B½v E L2,8(I,X).

Q..E.V. 
-

LEMMA 6.5. Let Q(y) be as in Proposition 6.1 and let K be a corn—

pact set in JR - (0). Let v be the radiative function for (L ,k,9[f]}

with kE K and fE L2 1~8(I,X), 8 being as in (5.9). Let ct (r) = 
~R

(r) =

~( r-R+l), where ~(r) is given by (5.36). Then we have for

T~~~R+l > R ~~~l

I
I

_ _ _  
_ 1~~~~•~~~_. - - -
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for (Iu ’-iku l +1 B½u1 )dr ~ ri(T) + C
R I (Iu I x+1u

1 _ ik ul x+IB
½uI x)dr

(6.13) Cl~~~r
28C (Iu ’~ lku I~~: lB½uI~ )dr + ~~~~~ + iv 1 2

6}

+ c2 n 
~ k

_n_ l Re ~ar
2B_ I (Z nMu,Bu) xdr

where u = e1A v, n(T) is a function of T satisfying lim ri(T) = 0,

is as in Assumption 5.1 , CR is a constant depending only on R and

K, and C~ = C~(K~Q)~ p a 1 ,2, are bounded when

j = O,l ,2,...,m0, are bounded .

PROOF. Multiply both sides of (6.3) by ar28
~~(u ’-iku), integrate

over the region sN~ x (R ,T) and take the real part. Then we have

— T
K = Re fc*r28

~
1{_ ((u’_iku )’,u ’_iku )

~ 
+ (Bu,u ’—l ku)

~
}dr

(6.14)

= Re fctr28
~
1((e

~~
f,u ’_ iku)

~ 
+ ((Y — Ci)u ,u’-iku)

~
}dr

R

+ Im ~ar28+1((Z1 + P)u ,u’-jku) dr

T 
-

- - 
+ 21m jar28

~~
(Mu,u ’_ iku)

~
dr = K1 + K2 + K3.

R

The left-hand side K of (6.14) is estimated from below as fol l ows:

K > (s + 
~
.) }cLr

28 Iu~_iku i~dr + (
~

- - 8) ~cLr28 lB½uI~dr

(6.15) R+l
+ ~ r2B (ju~_iku J~ _ J B ½uI~ )dr -~~-T

28’1 Ju ’(T)—iku (T)J~ .

K1 can be estimated as

(6.16) K1 ~~C[IfI 1~8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
R
~~u I u l~dr+ 1y 1 2

6

I-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~- - - ~~~~-~~~ .~~~~~L ~~~~~~~~



69

+ 11-26Iu (T)I~},

where we integra ted by parts and used (5.42 ) in estimating the
- I 28+1term Re I csr (Yu,u ’_ iku)

~
dr. Here and In the sequel , the constant

depending only on K and Q(y) will be denoted the same symbol C.

It follows from (6.14) - (6.16) that 

-

c1 ~czr 8(Iu ’_iku I~ 
+ IB½thI~)th~

- 

(6.17) < C{T~~~~Iu
’-iku I~ + T1 2 6 !u(T)I~ + (1 + R) 28

~ 
R
~
l
cLI l B ½ut~dr

R+1
+ 1v12

6 + f ct ’ I u I~dr + UfI~~8} + K2 + K3 (c 1 = ½ (½-8)).

Iii order to estimate and K3 in (-6.17) , we hav e to make use of Lemma

6.3 (ii). Set V = ar2~’~ (Z’ +P) in (6.4). Then

- 

<2 < - 

~~ 
Re(T

~~
’
~
((Z’(T)+P(T))u(T),u ’(T)_iku(T))

~
} + F(T) + G(R)

(6.18) + ~~
. Im ~cIr

28+1(Z(ZI fp)u,u 1 _iku)xdr

+ ~~
. Im ~c1r28_ 1 ((Z 1 +p)u,Mu) xdr ,

where F(T) and G(R) are the terms of the form

F(T) a c{~f(~ 8 + ~c&r28_c (Iu~_ 1kuI~ + I B½uI~ )dr +

(6.19) 
+

G(R) CR ~ (Iu I
~ 

+ Iu ’ iku I~ 
+ IB½uI x)dr},

CR being a constant depending only on R and K. Here , (5.17) Is neces-

sary to estimate the term ( ( V + P)u,Bu)
~
. Let us next set v cir28

~~M

in (6.4). Then it follows that
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(
3 

< - -
~~

. Re{T
~~~

’(Mu(T) ,u ’(T)—iku(T))
~
} + F(T) + G(R)

1 2 1
+ -

~~
. urn far 8- (ZMu,u’_iku)

~
dr

(6.20)
+ urn ~cxr~~~

’(Mu,(Z1+P)u)
xdr

+ ~~
- Re far ~ 

(Mu,Bu)
~

dr
R

Here we used the relation Re(M(u ’ -iku),u ’ -iku)
~ 

= — (r2/2)(P(u’_iku) ,u ’_iku)
~

which follows from (6.5) with X = X ’ u ’-iku and S(y) = 1. Lemma 6.3

was also used in order to estimate the term Re(Mu,Yu)
~
. Thus , we obtain

from (6.17), (6.18) and (6.20)

~ar28( Iu 1
~ Ik u ~~ + IB½u l~ )dr <p 1 (T) + F(T) + G(R)

+ C(~ Tm ~ar
28
~

I (Z(Z1 +P)u ,u 1 _ iku)xdr
(6.21)

+ Im ~czr ~~ 
(ZMu,u ’_iku )

~
dr + Re ~ar 

6 (Mu,Bu)
~
dr}

= 
~1 (T) + F(T) + G(R) + C(J

2 
+ 1)

3 
+ J

4}~

where we have used the fact that Im (((Z’4P)u,Mu)
~ 

+ (Mu,(Z14P)u)
~
) = 0, and

(6.22) p
1

(T) = C(T28
~~(u ’(T)-iku(T)t~ + I ~~ u(Tfl~ + T2

~~~f B ½u(T) (~ }.

Since v 1 _ iku ,B½v E L2 8 (I,X) by Lemma 6.4 and the support of Z(y) is com-

pact -In IRN by the compactness of Q~(y), it can be easily seen that

u 1 _ iku ,B½u € L2 8 (I,X), which impl ies that Urn ~(T) = 0. 
~2 

and in

(6.21) can be estimated in quite the same way as in the estimation of K2

and K3 respectively. By repeating these estimations , we arrive at

(6.23) ~ctr
28(Ju ’— iku J~ + JB ½uJ~ )dr

-

~

- .



- 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ri(T) + F(T) + G(R)

in -l

+ C ~ k
f
~~Re}ar

2 8 1(f~Mu,Bu) dr
n=0 X

+ k 1 Im ~ar284i (Z
in1 (Z1 +P)u,u 1 _lku )xdr

+ 2k 1 urn ~ar
2 
~~(Z lMuu I iku) d~.}

where T-1(T) is the term satisfying u r n  r~(I) = 0. By noting that Z(y) =

O (Iyr ), (6.13) is obtained from (6.23). Q.E.V.
We have only to estimate the terms Re(ZnMu,Bu) x in order to show Propo-

sItion 6.1 completely.

~EMMA 6.6. Let S(y) be a real-val ued C1 funct ion such that

IS(y)I~.c (y~~ JRN),

(6.24)

IDS(y)l ~~cr~ ~~ 
> 1)

wit h a constant c > 0, where D = —a—- 
~ 

= l ,2,...,N). Then the estimateayj

(6.25) IRe(5MX ,Ax)
~ I ~~. 

Cr C(fA ~xI
2 
~Ix

2) (r>l , k e  K, X E 0)

holds with c = C(c,K,Q~3) which is bounded when c and

j = 0,l ,2,...,rn0, are bounded . K is a compact set in JR - (0) and

A + ¼(N - l)(N - 3).

PROOF . We shall divide the proof into several steps .

(I) By the use of (5.17) J = Re(SMx,AX)
~ 

can be rewritten as

(N—i 1
1) = Re(SMX ,Ax )

~ 
= Re~ ~ (Mn(SMX )

~
Mnx) x~J

(6.26)
+ C ~~ Re(SMX ,x)

~ 
= +

~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ — _ -
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Throughout this proof we shall call a term K an O.K. term when K is

dominated by Cr1 (IA ½xI~ + jx f~) for r > 1 wi th C C(c,K,Q). Since

< Cr1~~IA ½x~~, we can easily show that J2 is an O.K. term. Thus,

we have only to consider the term J1.
(II) Let us calculate J1.

N-i 1
Re 

~~~~~~~~~~~~~
N-i N-i 1

(6.27) + Re ~ (S ~ 
(MnMj

A )(M jX)~MX)nal j=1

N-i N-i
+ Re{n~1

(S
j~1

(MjA)(MnMjx)~Mnx)x} ~11 
+ 
~l2 +

By noting that M~S(y) is bounded on 
~y e JR

N/J~ 1 > 1], J11 is seen to be

an O.K. term. Before calculating 
~13~ 

we inentjon

cose.
sin M~ (n >

(6.28) M~M~ - MjM~ 0 (n = j ) ,

cos O
-b~ sin ~ 

M~ (n <

which is obtained directly from the definition of M~ (see (5.15)). Using
(6.28), we have

rN- l r n— i cos 0
13 ~~~[,~~~~

11 

5
j=i~ 

~A 
~ sin a M~x ) 1M~x 

~
N— l cos e

(6.29) - (S~~~~(M~A)b~ sin e cMsx),M~
x)
~}

+ Re{~~ (SM(M~x)~M~c)} = +

Here, J1,, is an O.K. term, because, making use of (6.5) with x = x ’

MnX
~ we have

--~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~--_- -_- - - - - - —_ - __
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(6.30) J132 = - ~~~~~ {r2 (SP (Mnx) , (MnX ) ) x + ((MS)MnX
~

MnX) x }
~

Therefore , let us consider + 
~l3l

•

( I I I ) Set

r
Z (rw) = 

~ 
tdt (p = l ,2,...,N),

p O~~~~j y=t~

(6.31)

Zjn(rw) = (bjbn)~
1 

p~j ~ 
[a~payq ~~~~ ~~dt

qan
(j,n = l ,2,...,N—1 ),

where ~~~ = ~~~ . Then, setting cos 0N ~ and starting with (5.24), we

obtain

N cos O
(6.32) M~A = b 1 {_b

~+1Z~ + ~~~~~ sin o~ 
COS

and

(j >

(6.33) M~M~A = Znn - b 2 
~~Z~b~cos 0~ (j =

cos O
Zjn + b;

1 
sin e~ 

(MBA ) (j < n).

Then 
~l2 is rewritten as

N—i n—i cos 8

~l2 
a Re 

{n~l~~ 
~~b

1 
sin e~ 

(MnX ) (M:X)
~
MnX)x

(6.34 ) - ~~(:b~
2 

~~~~ cos 
~~~~~~~~~~~

+ Re 
{~ 1

(s 
j~1

Zin(Mix~~
Mnx )

x} 
= ~i2l + 

~l22~

__________________________________



Here, 
~l22 is an O.K. term because Z

~n(y) = 0 ( J y J~~
C) by the first

estimate of (5. 34) . Hence , in  place of + it is suff icient to
consider

= 

~l2l + ~l3u
(6.35)

= Re {~
1 

(SFn (MnX)~
MrtX ) } + Re {~ (SGn iMnx )  +

with

n—i 1 cos e . N
En = 

~~(M~A ) b 
~~ 

- 

~~Z~b~b~
2 cos = Eni 

- F~2

(6.36)

n—i cos 8. N-l -

~ 

cOs 8L G~ = sin o~ 
(M~x)(M~x) - sin ~ 

(M~~) ( M ~x) .

- (IV ) Now let us calculate J ’ . Using (6.32) and interchanging the

order of summation, we arrive at

(6.37) F~1 = _
~~~Z~b~ cos + 

~ 
b~
2b~Z~cos e~,

and hence

(6.38) Fn 
= — ~~Z~b~cos 8~,

which impl ies that J~ is an O.K. term. As for J~, we can interchange

the order of summation to obtain

—l N—l cos 8.
= Re 

~L ~~~~~~~ sin O~ 
(MnA )( MjX),MnX)x

(6.39)
cos 0.

- (Sb~ ~~ 0~ 
(MnA)(MnX)~

MjX) }j

= 0.



(5.37) ‘ n~~~I ~~C( 1 +

______ —-~~~~ ~~~~~~~~~~~~~~~ -- 

-
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Thus, we have shown that each term of J = Re(SMX ,Ax)
~ 

is an O.K. term,

which completes the proof. Q.E.V.

Proof of Proposition 6.1. By Lema 6.6 , the last term of the right-

hand side of (6.13) is dominated by the term of the form F(T), where

F(T) Is given in (6.19). Therefore, by letting I + along a suitable
sequence (I~

} in (6.13), we obtain

~
2B( I I i kuI 2 + IB ½ul~ )dr

(6.40 )

< G (R) + 
C{~~r

2B_ u ’ -iku I~ + B½uI~ )dr + l f l ~~~~
8
+~v I 2

~~
}1

where C = C( K ,Q) is independent of R > 0. Take R = R0 sufficiently

large in (6.40). Then it fol l ows that

(6.41) 

RJl 
(I l

~ 
+ IB½uI~)dr ~ C(IfI~~8+IvI~~} + G(R 0) (C = C(K,Q)).

Since G(R0) is domi nated by the term of the form C(~fIi~~8+IvI 2
6 } by

using ProposItion 1.2 , (6.2) easIly follows from (6.41). Re-examining

the proof of Lemmas 6.2 — 6.6, we can easily see that C = C(K ,Q)
remains bounded when p€ (Qi)iP

~+~
( D’1Qij)~ 

j = O,1 ,2,...,m0
are bounded. Q~.E . V.

Now that Proposition 6.1 has been shown , we can prove (5.10) in

Theorem 5.4.

PROOF of (5.10 ) In THEOREM 5.4. Let v be the radiative function

for (L ,k ,L } with k E K, the compact set of J~ - (0) , and z E F1~8
,

where 5 - 1 < B < 1 - 5. Let k0 E t~ such that In k0 > 0. Then v

can be decomposed as v = v0 +w , where V 0 Is the radiative function for

{L,k0,~} and W Is the radiative function for {L,k,t [ f ]} ,  f a (k2-k~)v0. 
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It follows from Lemma 2.7 that

(6.42) Iv~l 1~8 + + ~v0~1÷8 < C0JI~~ffl 1.,.8 (C0 = C0(k 0,8)).

Set u0 = e~~v0. Noting that

(6.43) U6 
- lku0 

= e~
X (v~ - 1kv0) + iZe 1

~v0,

and

0 < (B(r)u0~
u0)~ 

= (B(r)v 0,v0)
~ 

- ((iP + 2ir 2M_
~
}v0,v0)~

,

(6.44)

< IB~VO~~ 
+ C{jv0j~ + 18

½v01
2}

with C = C(K), which follows from (5.19) in Lemma 5.5 , we obtain from

(6.42)

(6.45) Iu~—ik u0~8 
+ ~B~u0I8 < C~If~ JIj 8÷1 ( C = C(k 0,K,8)).

Therefore , it suffices to show the estimate (5.10) with u = e~~w. To
this end , we shall approx imate Q0(y) by a sequence 

~~~~~~ 
where we

set

(6.46) Q~~(y) = 
~[~~ }~~

(Y ) (n 1 ,2,...),

and p(r) Is a real—valued, smooth function on I such that p(r) = 1

(r < 1), = 0 (r > 2). Then it can be easily seen that 
~j + (D3

~~n
) is

bounded un i forml y for n = 1,2,... with j = 0,1 ,2,...,m. Let us set

(6.47) Ln = - 
~~~~+ B(r) + C0~(r)  + C1 (r) ( C0~(r)  =

and let us denote by W n the radiative function for (L~1 k~z[f]~ with

f = (k2 - kg)v0 (n = 1 ,2,...). For each ~~ the function Z~’~ (y)

____



can be constructed according to Definition 5.8 wIth Q~(y) replaced by

an d we set

~~~ 
,
. .~ r ~(6.48) un = e wn (A’~’(rw) = fZ ”~’(t~)dt) .

Now, Proposition 6.1 can be applied to show

(6.49 ) Iu~-iku~I~ + C (If~1÷8+Jw
I~~} (n = 1 ,2,...,),

with C = C(K). Since 
~~~~~~ 

conver ges to D~Q~(y) as n + ~~ un i-

formly on 1~M for each j = 0,l ,...,m0, it follows that x~~~(y) + x(y)

as n -+ uniformly on every compact set in IRN . Therefore, by the use

of Theorem 4.5, we obtain u~ + u in H~’~ (I ,X ) as n + ~~~. Let

~~ + ~ in the relation

(6.50) IU
~~

kUnI B,(O,R) + ~B
½Un l B (O R) ~ C (Ifl 1~8 

+ Iwn~
_
~
}

with R > 0, which is a direct consequence of (6.49) . Then we have

(6.51) Iu — iku l B (O,R) + ~B
½u~B (0,R) ~ C (lfI 1~8 

+ ~vI~~}.

Since R > 0 is arbitrary, we have obta ined

(6.52) Iu ’-ikul 8 
+ IB½U~~ < CftfI 1~6 

+ IvI~~}.

-

. 

(5.10) follows from (6.42), (6.45), (6.52) and (2.7). Q.E.D.

J -
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§7. Proof of the main theorem

This section is devoted to showing (5.11) in Theorem 5.4 and Theorem

5.3 by the use of (5.10) in Theorem 5.4 which has been proved in the

preceding section.

PROOF of (5.11) in THEOREM 5.4. Let us first conside ’ the case that

v is the radiative function for {L,k,2.[f]} wi th kEK and fEL2,1~8(I ,X).

Using (1) of Lemma 6.2, we have for u=e1Xv

~.F e
2iT

~
k(u t (r)—iku(r) ,u(r) )x

}=e2
~~
’9~

’),

(7.1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—((Y—C 1 —iZ ’ _ip)u,u)
~
+2ir 2(Mu,u)

~
.

It follows from (5.10) that g(r) is integrable over I with the estimate

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(7.2) ~~~~~~~~~~~~~~~~~~~~~~~~

<C IfI 1+8
Where C=C(K),C’=C(K) and we have made use of (2.7), too. Integrate the

first relation of (7.1) from r to R (O<r<R<OD), multiply the result by

e~
2”’1

~ and take the imaginary part. Then we have

kJv(r)~~~kJu(r) J~

(7.3) aT (u1(r),u(r)) —I {e21k1~~
t’1(u 1(R)_iku(R),u(R)) }

-

.

By letting R-~ along a sequence {R~} such that (u’(Rn
)_ iku(R,.i),u(Rn))~ i.O

(n-.a~) (7.3) gives

(7.4) Iv(r)~~ ~.l3~
.{IIm (u ’(r) ,u(r)) x I +iIg(tndt }.

Let us estimate Im (u ’(r),u(r)) x. Since

~~~~~

•

( . ) 
=Tm (e

2i
~~~~ {e 2 k (u 1(r)~ iku(r) ,u(r)) x}} = Img(r) ,

~I1_
. 

~~~~~ 
u - — T - - _ _ • •~~ _ —
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and 
-

(7.6) Im (u’(r),u(r))
x=(Z(rs)v(r),

v(r))
x+Im

(v ’(r),v (r))
x+O

(r-~O)

by (3.36), it follows that

(7.7) II~
(u ’(r),u(r))

~ I~, 
J

19(t)I dt.

Thus we obtain from (7.4), (7.7) and (7.2)

(7.8) Iv(r)I~~CIfI 1÷8 (rel)

with C=C (K) . Let us next consider the general case. v is now assumed

to be the radiative function for {L,k,2j with kEK and £EF1~8(I ,X) .

Then, according to Lemma 2.8, we decompose v as v=v0+w, where v0 is

the radiative function for {L,k0,L} with k0EC
’, ImkO>O and w is the

radiati ve function for {L,k,~4 (k 2-k~)v 0J } .  It follows from Lemma 2.7

and (1.8) in Proposition 1.1 that

(7 9) 
fv 0(r)f<i~Iv01~~C11~ft1~8 (reT) ,
1v 01 1~8~,

CII2jI1~8
with C=C(k0). On the other hand we obtain from (7.8)

(7.10) Iw(r)l ,~.CIv oI 1+8 (rET)

with C=C(K,k0). (5.11) directly follows from (7.9) and (7.10).

Q.E.D.

The proof of Theorem 5.3 will be divided into the following four

steps . Lemmas 7.1, 7.2, 7.4 and Corollary 7.3 will be concerned with

the asymptotic behavior of the radiative function v for {L,k,2.( -Fl } with

k E f f~— {O} and fEL2,1~8(I,X).
LEMMA 7.1. Let v be the radiative function for (L ,k,~~fl} with

kE lR—{O} and fEL2,1~8(I,X). Then Iv(r)I
~ 

tends to a limit as r-’~ .

PROOF • Let R0>O be fixed. (7.3) are combined with (7.5) to give

-- - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~-- 

j
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(7.11) Iv(r) I~=~
rm (u ’ (RO)~U(RO ))x+Imf

9(t)dt

+
~~
e21

~~
t
~~
)g(t)dtJ-,

whence follows that

(7.12) 1imIv(r) f
~

_

~
(Im (u

~
(RO)~

u(RO))
x+Imi 

g(t)dt},

which completes the proof. 0

Q.E.D.

LEMMA 7.2. Let v be as in Lemma 7.1. Then there exists the weak limi t

(7.13) F(k,f)w..lim e
_1M(r1

~
k)v(r)

in X, where it (y,k) =rk-X(y) and X(y) is given by (5.40).

PROOF. Let us set

I ~~~~~~~~~~~~~~~~~~~~~~~~~
(7.14) -~ =~~ c1rk (u I(r)+iku(r)_iZ(r.)v(r))

~k
(r)=e (u (r)—iku(r))

=e k+l
~~~ ~(~ ‘ (r)—ikv(r)+iZ(r. )v(r))

wi th u e ~~v. Let XED. Then, by (I) of Lemma 6.2,

~~<ak
(r),x)

X=_2TT~
e (_ (u _iku ) _ik(u _iku )+iZ u+iZ (u _iku ),x)

_
~~~e~

lr {(u,8x)
~

_ (e 1 f ,x)
~

+i(Z(u ’ _ iku)
~

x)
~

+( (C 1
_iP_Y)u ,9~_2ir

2(u,Mx~ }—
2 c~~~ g(r,x),

where we have used the relation (6.5) in Lemma 63 with x=u, x1=x and

S (y)E1. Similarly we have

(7.16) ~~~ k
(r)
~~)=e {(u,8x)X

_ (e f,)~~2i(Z(u
_1ku)~~)X

— ( (Y_C l
_ iZ1 +iP)u,x)x_2ir

_2 (u,Mx)
x}=e~

t
~
kh(r ,x)

Therefore, by (5.10 ) in Theorem 5.4 and the fact that IMxI ,~.Cr~~~IA
½x1 x,

g(r ,x) and h(r ,x) are integrable over (1,co) , which implies that there

exist l i mits

~~ - - 
- --  -—-— -- ~~~~-— -  - -~~~~ - - ~~~~~~ ~~~~~~- -- - -~~~~~~~ —-~~~~~~~~~--~~

—- - - - -  
~~~~~~~~~~

--
~~
--- --

~~
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lim(c*k(r),x) 
ac&(k,x),

r9c~
(7.17)

1im(ak (r),x) X~~
(K

~
x) .

Here ~(k ,x) O. In fact, since u ’-lkuEL2 8 (I,X), there exists a sequence
{rn} such that )

~ k (mnflx tends to zero as n-’~. Therefore, by taking

account of the fact that (Z(r .)v(r),X)
~

+O as r~co , which is obtained

from the boundedness of Iv(r ) l
~ 

(r ~ I), it follows from the second relation

of (7.17) that

l i m  e~~~~~
’’’~~~(v ’ (r)-ikv(r) ,x )

~

(7. 18)

= 1 im {e 2ttk (~ k ( r )  , x) ~ie
_iP (rs ,k) (Z(r’ )v(r) 

~
x )
~
}=O

r÷~Thus we obtain from (7.18) and the first relation of (7.17)

- Urn ( (e ’~~ v~ ( r ), x) + ik (e 1 ’ v ( r ) , x)
~~

} 2ik
~~

( k , x ) sx
(7.19)

Urn ((e~~~~” 
,k)~~. (r) ,x) X~ ik(e~~~~~

’ ~
k)v ( r )  ,x )

~
) O

Whence fo l lows the existence of the limits .

c& (k ,X ) = lini (e ’~~
” ’~~

v ( r ) ,x )
~

(7.20)

= ~i lim (e ”
~
’
~~

/’(r),x )
~1k r-~~for XE D. Be cause of the denseness of 0 in X and the boundedness

of IV(r) I
~ 

on I , which completes the proof.

- Q . E . D .

COROLLARY 7.3. Let {R~} be a sequence such that R~+~ and

Iv ’(R~ )—ikv (R~ )I+O as n+co. Then there exis ts the weak limit

(7.21) F(k ,f) w_ li m ctk (R
fl) in X.

PROOF. Si nce { Iv ’ ( R
~ ) I~~

) is a bounded sequence as we l l  as

It follows from (7.20) that the weak lim it 

-:~~~~~ -~~~~~~~
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w-~ j .~ e P(Rn
h
~~

k )
v I (R ) ex is ts  in X and is equal to ikF (k ,f ) .

Th e r e f o r e , (7.21) is easily obtained from the definition of

~k
(r).

Q.E.D.

LEMMA 7.4.  Let V be as above. There ex i s t s  a sequence

Cm ) such that rn+~ 
(n+~ ) and

(7.22) 
~4~~

v(r
~ )t~ 

= I F ( k , fH
~~

.

PROOF. Let us take a sequence Cr ,,) whi ch satisfies

( 1+m n )
B
~~ IB ½ (r n )u( r n )J x ~ C0

(7.23) ~~~~~~~~ 
( 1+r n )

B
~~ fB ½ (m n )u(r n )I x 

= 0

< C0,

~~~~~~~~~~~~~~~~~~~ 
0 ,

for all n=l ,2,..., where C0>O is a constant , u=e 1
~ v , and B is as

above. Such a Cr~} surely exists by Theorem 5.4 and Theorem

2.3.  Let us set

(7.24) 
~_ k (r)  = —

Then we have

(7.25) v ( r )  e~~~~~~
k
~~ k (r) + e

~~~~~~~~~~~k
( r ) ,

the defin ition of ctk(r) being given in (7.13), whence f o l l o w s
t h a t

Iv(r )1 2 = (c~ (r ), e 
rn •)k) v (r ))

7 6  f l X  fl fl X

+ (a_k (r
fl), e

+~~ rn
s
~~

k ) v ( r ))  = an + b~

Here b~+O as n-~~ because o f t he t hird and four th re lat ions of

(7.23). Therefore , it suffices to show that a~~ JF(k~ f)I~ as
n-’-~ . Setting

(7.27) F~ (k 1 f ) = e ’~~
’n ’~~ v (r~ ),

we obta in from (7.15)



— — - 
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__
83

R
a~ = k~~~ ’~ n ’~~~ x — 

Jr ~~~~
k(t),Fn~~ ,fl)x

dt

(7.28)

- 2+~ j : e t
~~

n ) g ( t ,u ( r n ))dt,

where

(7.29)  g(r ,x) (Bu .x )
~ 

+ ( ( C l
_ i P_ Y )u_ e i X f,x) x 4

+ i (Z ( u ’— i k u ) ,x )  + {— 2 1r 2 (u,Mx) } a 
~ g ( r ,x).x x ,~=1

j

N ow l e t  u s estimate g(r ,u ( r ~ )). It follows from (5.5), (5.42)

and the third relat ion of (7 .23)  that

(7.30) 92(r ,u ( m n ))I < C0((f(r)I~ 
+ C( 1+r) _ 2& Iv ( r ) I x ) = g 02 (r).

As for g3 ( r~ u(r~ )) we have s imi lar ly

(7.31) Ig 3 (r ,u ( r ~ ) )  I ~ C0C(1+r)~~~~~J (1+r) 8 (u ’ — i k u) I x
- ~C0C(1+r)~~~f (1 +r)

8(u ’-iku) ( =

bec a use

, — c < - 5  ( B=O),
(7.32) — c — B  a

I, — c—( 5— c) = — 5  (8=S—c).

g4(r ,u(r~)) can be estimated for r ~ r~ (~ 1) as

Ig 4(r ,u ( r ~ ))I ~~C(1+rY
2 ( 1+r ) l_ d

I u t ~~IA
½u ( r n )f x

(7.33) = C (1+r)
T_ E

(1+r n )~~
B l u I x I (m n )~~~~~

(
~
’n )~

1(m n )I x

~~~, CC 0(1+r) 
_ $_½

I v I~ ~~ C ’(1+r)~~~
’
~ =

w here ctafS (O< c~,½), 
= c (½<c<1). Here we have used (5.11) in

Theorem 5.4 , ( 7 .32)  and the f i rs t  relat ion of (7 .23 ) .  Let us

enter Into the est imation of g(r, u(r~ ) ) .  We have from the

i n e q u a li ty a B 
~~, ½(a 2+82 ) 

2
Ig 1 (r~u ( r~)H ~~. ½ fB ¼ u f x+¼r

2 IA ¼u ( r n )t~
(7.34) < ½I (1+r)BB½u I~ +¼r

_ 2
IA ½u ( r ~ )I~

Set g0 (r)  = 
~ 

g04(r). Then g0 is -Integrable and it follows
iRl

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - - - - ---- I
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from (7.28) that

(7.35) Ia n
_ (
~ k ( R)

~
Fn (k .f))x I < 

2f~ 1 J g 0(r)dr +4f~~1
IA ½u ( r

fl )I~~f 
~~

~ 2jk1~J~ 
g0(r)dr +4J~~1

rn J B (rn )u(m n ) I~ 
(r~>l).

Let R-~° in (7.35) along a sequence such that IV ’ ( R n )_ lkV(R
n )I x+O

as ~~~ Then , using Corollary 7.3, we arrive at

(7.36) la n
_ (F(k,f ) , Fn (k,f ) ) x I ~ 2 1k j~ g0(r)dr+ 41~~1

r
fl IB (rn )U(rn ) I~

.

By the second relation of (7.23) and Lemma 7.2 the r ight-hand

side of ( 7 .36)  tends to zero and (F(k ,f),F
~

(k ,f))
~ 

coverages to

- IF(k ,f)I~ as ~~~ w hich completes the proof.

Q..E.D.

PROOF of T H E O R E M  5.3.  Let v be the radiative function for

{L,k ,L} with kE LR-{O} and LEF
B

( I ,X). According to Lemma 2.8

v is rewritten as vav 0+w , where  v0 Is the radiat ive function

for {L,k
0
,2.} with k0EC~ , Im ko>O and w is the radiative function

for {L,k,9.[f]} w ith f= (k2_ k~ )v 0. Since v0EH~~
B ( I ,X ) ,  I t  can be

eas i ly  seen that

(7.37) s-~ -tj v0 ( r )  = 0

In fac t , l e t t i n g  R+~ in the re lat ion

(7.38) Iv~
(r)I

~ 
= v0(R)l~ 

- 2J Re(v~ ( t )~ v0(t))dt

a l o n g  a seq uence  C R n } which sa t i s f i es  1V 0 (R n ) IX +O (n-..co), we h a v e

(7.39) Iv 0(r)I~~~2f Iv~ (t)i x Iv 0(t)I xdr ~~~ 
P V O

I
~~~(r co )

whence (7.37) follows . As for w we can apply Lemmas 7.1 , 7.2

and 7.4 to show

1w—nm e~~~~
m
~~~ w(r) = F ( k ,f )  I n  X ,

(7.40H r~~

~.~~
Iw(r) I

~ 
=

~~~~~~~~~~ .- - - -~- -~- - -~~ -

_ _ _ _ _ _ _  
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which impl ies the strong convergence of e~~~
1( n 1 . k )

w ( r ) .

Therefore the existence of the strong limit

F(k ,.L) = s — ~,j ~~ e~~~~~~
” ’~~~ (v

0
( r ) + w ( r ) )

a F(k ,f )  (f • (k  —k 0 )v 0 )

has been proved completely.

~Z.E.D .

- =~~~~~~~~~~ — - - - - - 

I ~
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§8. Some properties of u r n  e~~~v ( r )

In this section we shall investigate some properties of F(k ,L) =

s - Urn e~~~ ”~~v(r), whose existence has been proved for the radiative

function v for CL, k, 9.) with k e  R - ~O} , t e  F
l+B

(I
~~

X
~
. The

results obtained in this sect ion will be useful when we devel op a

spectral representation theory in Chapter III.

LEMMA 8.1. Let Assumption 5.1 be satisfied and let F(k ,9.) be as in

Theorem 5.3, i.e.,

(8.1) F(k,2.) = s — u r n  e ’
~ ’~~v (r )  in X,

where v is the radiative function for CL , k, 9.) with kE F1~8
(I ,X),

where B is given by (5.9). Then there exists a constant C = C(k) such

that

(8.2) IF(k,L)I
~ ~ 

C~fl 9.~~

C(k)  is bounded when k moves in a com pact se t  in R - {O}

PROOF. As in the proof of Theorem 5.3 given at the end of §7 , v

is decomposed as v = v0+w. Then, as can be easi ly seen from the proof

of Theorem 5.3,

(8.3) IF(k,L)I = limlw(r) I .
x r- -

~

Set g0 = (k 2 - k~
) v0, k0 being as in the proof of Theorem 5.3. It

follows from (3.32) with yaw , fag0, k1 k, k2=O that

_ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _  -- —~~~~~~-~~~~~~~~ ~~--



-. 
~

--  

~~~~~~~~~~

- -

~~~~~~~~

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

87

Jw(r)J~ ~~
J
~{Jw 1(r) - ikw(r)I~ 

- 2k Irn

(8.4) ~ 
Iw ’(r) - ikw(r) I~ + .1f1.. cu g0u~

Iw ’(r) - ikw(r) I~ + .1f1.. C, III L III ~

with C = C(k) and C’ = C’(k). Here (2.7) in Theorem 2.3 and Lemma 2.8

have been used. Let r-’-~ along a sequence C r~} such that rn+~ 
and

Iv ’(r ~) — ikv( r
~

)I
~ 

- 0 as ~~~ . Then we obtain (8.2).

Q.. E. 0.

Since the radiative function v(.,k,2.) for {L,k,2.} is linear wi th

respect to 2. , which follows from the uniqueness of the radiati ve

funct ion , a linear operator F(k) from F1~8
(I ,X) into X is well-defined

by

(8.5) F(k)L = F(k ,L) (9.E Fl+B
(I
~

X ) , B~~ —c(O<c~~.), = O(~<c~l))

In the following lemma the denseness of F1~8
(I ,X ) in F~(I ,X) will be

shown, which, together wi th Lemma 8.1, enables us to extend F(k) uniquely

to a bounded linear operator from F~(I ,X) into X.

LE1~t’~A 8.2. Let 0 ~ B . Then F
B

(I ,X ) is dense In F ( I ,X)

PROOF. As has been shown before the proof of Lemma 2. 7 in §4 ,

2. E F,~(I,X) can be regarded as a bounded anti-linear functional on

H~’~~(I,x) which is defi ned as the complet ion of C ( I ,X) by the norm

(8.6) Iq I~ J O+r)
_2
~{I~1 (r)I~ + IB½ (r)~(r)I~ + I~(r)I~}dr

• By the Riesz theorem there exists w = w9. 
E H~ IB (I ,x) such that 

_ _  
-— ~~~~~~_i~~~~~ ___

_ _ _ , _ _  ~~—----
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(8.7) (t,v) (w,v)8~~ (v E H~’~~(I ,X) )

where ~ ~ ~B ~ is the inner product of H~
,B (I ,X) . The norm

IJ1&IH~ is equivalent to IwI
8~~, . Let ~(t) be a real-valued , smooth

function on R such tha t ~i~(t)=1 (t~O), =0 (t>1 ) , and set

(8.8) 
~
tn’ 

v) = (w~ ~~~~ (nal ,2,__ )

wi th w (r) = ~(r-n)w(r) . Obv ious ly tn 
E F8(I ,X) and we have

IW_W
fl
l~~,..q, 

+ 0 as n-~ , which implies that

(8.9) til L - ~~~~ ÷ 0 ( fl9-oo )

Thus the denseness of F
8

(I ,X) in F ( I ,X ) (O~ o~~8) has been proved.

Q.E.D.

From Lemmas 81 and 8.2 we see that the operator F(k), k ER  - {O}

can be extended uniquely to a bounded linear operator from Fd (I
~

X ) into

X. Thus we give

DEFINITION 8.3. We denote again by F(k) the above bounded linear

extension of F(k) . When L=24f] wi th f E L2 6 (I,X), we shall simply wri te

(8.10) F(k)24f 1 = F(k)f

Now we shall show tha t F(k) t can be represented by Z and the

radiative function v = v(.,k,Z) for [L,k,L} . As we have seen above,

2. E F~(I ,X) can be regarded as a bounded anti-linear functional on

On the other hand any radiative function v for CL ,k,2.)

(k E C~,L E F~ (I ,X ))  belongs to H~’~~(I,x). Therefore (9.,v) is

well-defined, and we have

(8.11) ( 2.,v ) = lirn ( L~v~ 
)



‘
~T~ ~~~~~~~~~~~~~~~~~~~~~ 

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where V n E H~’
8(I,X) satisfies v~ -‘ v in H~’~~(I ,X).

THEOREM 8.4. Let Asstinption 5.1 be satisfied. Let v3 (j l ,2) be

the radiative function for {L~k~2.~} wi th k E R — {O} , E F~ (I ,X )
(j l,2) . Then

(8.12) (F(k) 2.1, F(k)2.2) 
= 

~~~~~~~~ 
{ (2.~, V 1

) —

where the right-hand side is wel l-defined as stated above and the bar

means the complex conjugate. In particular

(8.13) IF(k)Ll~ 
= — -

~~
- Tm (2.,v )

for the radiative function v for {L ,k ,2.} wi th k E R — CU ) and

9, E F
6

(I ,X ) . When = £tf
J l with f~ E L26 (I ,X),il ,2, (8.12)

takes the form

(8.14) (F(k)f1, F(k) f 2 )x = 

~TR t (v 11 f2)0 
— (f 1 v2)0

}

Further we have

(8.15) JF(k)fJ~ ~~
- Im (v ,f) 0

for the radiative function v for CL,k,R. [f] } wi th k E R - {O} and
-

. f E L2 6 (I ,X ) .

• PROOF. Let us first consider a special case that 2.~E Fl+B (I ,X ), jal ,2 ,

where B is given by (5.9). Starti ng wi th the relation (v 1, (L-k2 )~ )0 =

~~ 
E C ( I ,X )) , we obtain

(8.16) 
J
{(vi,$ ’) x + (B½v1,B½q )~ + ((C_k 2)v 1,q)

~
}dr 

~~i’~
’ ) .

I ~~~~ —- -—- —- --—-~~~~ - ~— --- — r ~~~ ~~~~~~ - - ~~~~~.- - 
— - — - -~ — —~~- - -~~ - - - - - -- - --
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Let p(r) be a real-valued C 1 
function on I such that

0~p (r)~l , p (r)=1 (r~l )  , 0(r?2) and let us set

(8.17) Pn(r) = p (~) (n=1 ,2,...)

Then i t can be eas i ly seen that

p’(r) = 0 if r-< n or r>2n
(8.18) n

(rE I,~-c=maxJp ’ (r )~ ) .
rEX

Substitute p = P~V
2 in (8.16). Then we have

(8.19) 
J1
[P~~vj~

v2~~ 
+ ~~~~~~~~~ + (B½v1,B½v2) + ((C-k2)v 1 V2)x}]dr

= (L
l~ PnV2

Quite similarly, by starting wi th ((L-k2)q, v2) = (L2,c
~ > , it  follow s

that

(8.20) 
J[~~

v1~vpx 
+Pn~

vj,v
~
)x + (B½vl,B½v2)~ + ((C-k 2)v 1 v2)x}]dr

= (2.2~~~v1 
)

(8.19) and (8.20) are combined to give

(8.21 ) 
J~~~~ (v l~v~~ - (vj ,v~

)
~

}dr = 2~PnVl 
) ( 9 .l~ PnV 2 ~

Since

(v l(r)~
v
~

(r)) - (vj(r), v2 (r)) X

(8.22) = (v 1(r), v~(r) — ikv2( r ) )
~ 

- (vj(r) - ikv1 (r) , v2( r ) )
~

— 2i k(v 1 (r ) ,v2( r ) )

_ _ _ _ _
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and

(8.23) (v 1
(r) ,v2( r ) )

~ 
= (e ’

~
’v1 (r) , e ’

~
’v2

( r ) )
~ 

= (F(k)2.1, F(k)Z2)~ 
+ h(r )

with h(r)-’O as r~~ by Theorem 5.3, we obta in, noting that (8.18) and

~2fl r ,2n
(8.24) J p~(r)dr = Ip n(r)j = -l

n L n

(8.25) J ~~~~iv2)~ 
- (v i,v~)~}dr 

- 2ik(F(k)Zi, F(k)9.2)~~

~ 
th(r)I + (r~~Iv 1 I )(r

6
~~Iv~ - ikv 2 I~

) + (r~~
1
tv~ 

- ikv i l~
)

X (r_6 1v 21)} dr

c 
{~~

rnax Ih(r)l + ~~~~~~~~~~~~ 
—

+ lvj —

÷0 (n÷~)

On the other hand, P~Vi 
tends to v

3 
in H~’~~ (I ,X) as n-~~, and

hence

- 

(8.26) <2.2’~n~
’l 
) - 

~
2.1’~n~2 

(L 2,v1 
) - (L 11 v2

)

as n-’~°. (8.12) follows from (8.25) and (8.26). Let us next consider the

general case that L~EF6(I IX) . Then there exist sequences C2.1~} and

~~2n such that

E F
1~~

(I,X) (n=l ,2,..., j= l,2)
(8.27) 2.Jn 

L,~ in F
8

( I ,X) (jal ,2)

— - - 
- 

~~~~~- — __________________
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Let ~~ (jl ,2, nal 2,...) be the radiative function for CL~k~L~~}.

Then we have from Theorem 2.3

(8.28) vjn+vj in

as n-~ for j=l ,2. (8.12) in the general case is easily obtained by

letting n-~ in the relation 
-

(8-29) (F(k)L 1~~ F (k) L 2~)~ 
= 2n~V ln ) -

which has been proved already . (8.13) (8.15) directly follows from

(8.12).

~~~. E. 0.

Now it will be shown that the range CF(k)f/f E L
2~~~

(I ,X) }  contains

0, and hence it is dense in X . Let ~(r) be a smooth function on

defined by (5.36), i.e., O~~(r )~ l and ~(r)=O (r~l), = 1(r~2) . Set

w0(r) =

(8.30) f0(r) 
= (L—k 2)w0

for xED and ke R - CO}. Then , as can be eas i ly seen from the

definition of ~i(y,k) and (5.20) in Lemma 5.5, f0
EL 2 6 (I ,X ) and

w0 is the radiative function for

PROPOSITION 8.5. Let xED and let f0 be as above. Then

(8.31) F( k)f 0 X

PROOF. Let ~~
(r)  be the charac ter istic func ti on of the interval

(O,n), n*l ,2,..., and let W
n 

and 
~n 

be the radiati ve functions

for {L
~
k
~91xn

f0) } and CL,k,-%E (l-x~ )f 0I } , respectively. Note that

-~~~~~~~~~~~~~~~~~~~
_ -
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y~ f
0

E L2 l+B(I,X)~ 
because the support of X~f0 is compact. Then, by

the relation w0 w~ + fl~ and Theorem 5.3, we have

(8.32) F(k)(X~f) s— Urn {e ii.i(r~~k)w (r) — e ”’
~~

nn(r)}

In X . Since e 1
~’w0(r) 

= x for r~2, there exists the limi t

(8.33) x,,~ = s — u r n  e ”’~~n~(r) in X

and hence the relation

(8.34) F(k)(x~f)

is valid for each nal ,2 On the other hand, proceeding as in the

derivation of (8.4), we obtain from (3.32),

(8.35) jr i~(r) j~ ~~~~~~~ ln~(r) — ikT~ ( r ) ~~ + 
~~~~~~~~ 

P (1~x,.~)f0I~

(n= l ,2,...)

with C2C(k), whence follows by letting ~~ along a suitable sequence

{r
m} in (8.32) that

(8.36) fx~I~ ~ T~1~ 
I (l_

~~)f0I~ (n— l ,2,...)

Thus we arrive at

(8.37) IF(k)(x~f0) -x ,~ CI (l—x~)f0U~

(C = C(k), n=l ,2,...) .

When n tends to infinity , x~f0~ f0 , i.e., (l-x~)f0+O in L2 6 (I,X),

and (8.31) is obtained from (8.37). H
Q.E.D.



_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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In the remainder of this section we shall consider the restriction

of F(k) to L2,~(I ,X ) , which is denoted by F(k) again. Let us

consider the mapping

(8.38) -
~~ F(k)e B(L2~~(I,x),x)

By the use of Lema 4.3 F(k) can be seen a B(L2 6 (I ,X),X) - valued

continuous function on R-{O} . Further we can see that F(k) is a

compact operator from L2,~(I ,X) into X

THEOREM 8.6. Let Assumption 5.1 be satisfied.

( I )  Then F ( k )  is a B(L 216 (I,X), X) -valued contini~ous function

on R-~O}

( I I )  For each k E R-{O} F(k) Is a compact operator from

L2 ,6 (I,X) into X .

PROOF. Let us assume that (1) is not true at a point k E R-{O} .

Then there exist a positive number c > 0 and sequences Cf~} C L2,6(I,X),

{k~} C R—{O} such that

If~I5 = 1 (n 1 ,2,...)
(8.39) k~~~k (n-.~)

IF(kn)fn — F(k)f n l x ~ c (n.l ,2,...)

With no loss of generality {f~} may be assumed to converge weakly in

L2~~(I,x) to some fEL
2~~

(I,X ) . We shall show that there exists

subsequence 
~~~ 

of positive integers such that {F(k)f~ } and
m

{F(k )f } converge strongly to the same limi t F(k)f as ffl4.co

~ ~m
which will contradicts the third relation of (8.39). We shall consider
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the sequence {F(k~)f~} only, because the sequence {F(k)f~) can

be treated in quite a similar way. It follows from (8.13) wi th

kskn , f*f~ , v.v~ that

(8.40) IF(k~
)f
~I~ ~—Im (v~.f~)0 (n—l ,2...)

where ~ is the radiative function fob’ {Liknp L(fn l} . By Lema 4.3

a subsequence {v I of {v } can be chosen to satisfy {v }
rim tim

converges in L2,_6(I ,X) to the radiative function v for {L,k,24f]},

whence we obtain

(8.41 ) limIF(k~ ~~ ~ 
= ~Im(v ,f) F(k)fI~m m

Let x E D and set

w,~ (r)
(8.42 ) m

g
~ 
(r) = (L-k~ )Wn (r)

m m m

where ~(r) is defined by (5.36). Then it follows from Proposition 8.5

that

(8.43) F(kn 
)g
~ x

m rn

By taking note of Remark 5.9, (2) it can be easily seen that

w •w0 in L2 ~(I ,X)
~rn

(8.44)
~ f0 In L2 6 (I

,X)

~~~~~~~~~~~~~~ ~~~~~ _ _ _ _
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as in’~ with w0 and f0 defined by (8.30). Therefore we have,

using (8.13) in Theorem 8.4,

l im (F(k~ )f~ ,x)
~ 

= lim (F(k~ )f~ , (k,~ ~~

~~j2ik~ ~~~~~~~~ - 

nm~
wnm
)
O}~ 

m

(8.45) m

= 
~j 

{(v1f0)0 
- (f ,w0)0}

= (F(k)f , F(k)fo)~ 
= (F(k)f, x)

~ 
,

wh ich, together wi th (8.38) and the denseness of 0 in X , implies

that fF(k
~ ~~ ~ 

converges te F(k)f strongly in X . Thus we have
m m

shown (i). In order to prove (ii) it is sufficient to show that

{F(k)f~} Is relatively compact when {f~} is a bounded sequence

in L~~~(I~X) . This can be shown in quite a simila - way used in the

proof of (1).

~~. E. D.

THEOREM 8.7. Let Assumption 5.1 be satisfied. Let fEL 2 6 (I,X ) and

let kER- {O}. Then

(8.46) F(k)f s - u r n  e ’
~
’n’ ’~~

v( r n) ifl X~

where v Is the radiati ve function for {L,k,24f1} and (r~} Is an

sequence such that r~+~ and v ’(r~) - i kv(r~)-..0 in X as n-~~.

Before showing this theorem we need the followi ng the Green

formula.
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LEMMA 8.8. Let vj€L2(I *X)i0~ 
satisfy the equation

(8.47) (v~ (L - ~
) q )

0 
. (f~~~4i)

0 
($ E C ( I ,X), j—l ,2)

with fjEL2(I~
X ) i0~ and 

kER-fO}. Then we have

Jo ~~ l’~2~x 
- (f i,v2)~

} dr

(8.48)
= (v~(r) — ikv1 (r) , v2(r))

~ 
— (v 1 (r ) , v~( r )  — ikv2(r))

~

+ 21k (v1(r), v2(r))
~

for rE!.

PROOF. The idea of the proof resembles the one of the proof

of Proposition 3.4. As has be shown in the proof of Proposition 1.3,

;jlItJ
_ l
vjEH2(R

N)loc (.jal,2). Therefore we can proceed as in the

proof of Proposit ion 3.4 to show that there exist sequences ~~ I and

such that 
~ln,~2nE (I,X) and

~Jn 
v~ in L2(I,X ) i0~

q
~ 
(r)+y 4(r) in X (reT)

(8.49)
in X (rEl)

(L~k
2)$~~ - f~~+f~ In L2(I,X ) i0~

as n- co (j 1,2) . Integrate the relations

((L-k2)si~,~2~
)
~ ~

‘ln’2n~x
(8.50) 

~~~~~~~~~~~~ 
— 

~ 1n’~2n~~

______________________ 

j
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from 0 to r and make use of partial integration. Then it follows

that

- (
~j~

(r), •2~
(r)) X + (

~1n(r) ,
~

’2n(r)) x = 1n’2n~O,(O ,r)
(8.51 ) , f ~~ ln’ 2n’~O,(O,r)

where we should note that (
~jfl(O)

~~2n(O)) x = 
i~
(0),

~~~
(0fl — 0

(8.48) Is easily obtained by letting n-’~ in (8.51).

cZ.E.D.

PROOF of THEOREM 8.7. Set in (3.32) k1 k, k2=O and r r~
Then we have

(8.52) Iv(r~)I~ ~ 2 Iv (mn) - iv(rn)l~ 
- 

~
Im(f

~
v) O ( O r )

which implies that Cfv(r
~)i~

} is a bounded sequence. Next set In

(8.48) v1 v2 v , f1 
= f2 — f and r = r~ . Then it follows

that

le
rn v r n l x = 

~ 
Im(v.f)O,(O,r )

(8.53)
+ ~~

. Im(v(r
~
), v’(r~) - ikv(r n))x

The second term of the right-hand side of (8.53) tends to zero as

n-~ because (v ’(r~) — Ikv(r
~)I~

.+O as n-~° ~nd Iv(rn )I x is

bounded, and hence we have

(8.54) u r n  e rn~
k) v(r) I 2 = 

~~ Im(v ,f) 0 = lF(k)ft~n~~
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where (8.15) has been used. Let xED and let w0 and f0 as in

(8.30). Then, setting in (8.48) v1 v, v2=w0, f 1zf , f2=f0 and r=r~

we obtain

(e~l
~

(rn’~k) v(r~), e ’n’’
~~

w0(r~
))
~

(8.55) = .
~.fr 

{(v(r
~
),w

~
(r
~
) — ikw0(r~))~ 

— (v ’(r~)_ ikv (r~)~ wo(rn))x

+ (V
~
fO)O ( O r )  

- (f
~
wO)Q,(O,r ) }

Since e ’n’’~~w0(r~
) x (r~ ~ 2) and w~(r~) — ikw0(r

~
)

in X (r~4~) , it follows from (8.55) that

lim(e~~~ ”n ’~~v(r ), x) = 
~~ 

{(v,f0) - (f ,w0)0}(8.56) fl~~° 
x

(F(k)f , F(k)f
0) 

= (F(k)f ,x)x x ,

where (8.14) and Proposition 8.5 have been used. From (8.54), (8.56)

and the denseness of 0 (8.46) is seen to be valid.

~.E.D.

I

.

1
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CHAPTER III

SPECTRAL REPRESENTATION

§9. The Green kernel

In this chapter the results obtained in the previous chapters will

be combined to deve1op a spectral representation theory for the operator

(9.1) L = — 

~~~ 
B ( r) + C(r)

dr

given by (0.20) and (0.21 ) . Throughout this section the potential

Q(y) Is assumed to satisfy Assumption 2.1.

Now we shall define the Green kernel G(r ,s,k)

(r,s E T = (O,co) , k E t~) and investigate its properties. Let

s e T , x E X and let t[s,x] be an anti-linear function on H I
ó
B(I,X )

defined by

(9.2) <L(s,x],q> (x ,q ( s) )
~ 

(
~ 

E H1
~~(I ,X))

Then it follows from the es timate

(9.3) k ( S ) I~~. 77 °$~8 (~~E H~~~(I,X ) )

which is shown in Proposition 1.1 , that L(s,x] E F8(I ,X) for any 8 > 0

and the estimate

(9.4) Iii £.(s ,x] 
~ 8

< 1T (1 + s) 8 Ix I x

is val id. Denote by v = v(~,k,s,x) the radiative function for

{L,k,L[s,x]} . Then, by the use of (1.8) in Proposition 1.3 and (2.7) in

Theorem 2.3, we can easily show that

Iv (r) I~~~
C(l + s) 6 1x 1

(9.5) —

(C C(R,k), r E (0,R], s e T , x e X)

~~~~~
—~~~ ----- --. ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - -—— - ---~ ---- —-~~~~--- -—— — -~~ —— — ----- - - - ________
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I!
for any R E I . Therefo re a bounded operator G(r,s,k) on X is well-

defined by

(9.6) G(r,s,k)x = v(r,k,s,x)

DEFINITION 9.1. (the Green kernel). The bounded operator

G(r,s,k)(r,s E T , k C C~) will be called the Green kernel for L

The lineari ty of the operator G(r,s,k) di rectly follows from the

l ineari ty of e[s,x] wi th respect to x . Roughly speak ing, G(r,s,k)

sati sfi es

(9.7) (L — k2) G(r ,s,k) = 6(r — s)

the right—hand side denoting 6-function. The following properties of

the Green kernel G(r,s,k) will be made use of further on.

PROPOSITION 9.2. Let Assumption 2.1 be satisfied.

(i) Then G(.,s,k)x is an L2_ 6 (I,X)-valued continuous function

on T x x x . Further, G(r ,s,k)x is an X-valued function on
+Tx Tx  ( x X , too.

(ii) G(O,r,k) = G(r 0,k) = 0 for any pair (r,k ) e  I )c

(iii) Let (s,k,x) C T x  (~ x X and let J be an arbitrary open

interval such that the closure of J contained in I — {s} . Then we

have G ( , s,k)x C 0(J) , where the definition of 0(J) is given after

the proof of Proposition 1.3.

(iv) Let R > 0 and let K be a compact set of . Then there

exists C C(R ,K) such that

(9.8) IIG(r,s,k)ll < C (0< r, s < R, k C K)

where U H means the operator norm.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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(v) We have for any triple (r,s,k) E T x T x

(9.9) G(r,s,k)* = G(s ,r,—~)

G(r ,s,k)* denoting the adjoint of G(r,s,k)

PROOF. Let us first show the continuity of e[s,x] in
F8

(I,X) , 8 > 0 , with respect to s C T and x C X . In fact we obtain

from Proposition 1.1.

J’Ze(s,x] — L(s’,x’], (l+r)8q > I  = I(x, (1+s )8c
~
(s)
~ 

— (x ’, (l+s ’)8~(s’))

< I ( x  - x ’ , (1+s )8
~
(s))x I + (x’, (1+s )8(~ (s) -

(9.10)
• + I(xs , ((1+s)8 — (l+s ’)8)4

~
(s’))x l

< {121x_x ’i x (1 +s) 8 + I x I ~
(l+s) I s _ s I + / T Ix I~ I(l +s) _ ( l+s ) PII~

H 8

whence follows the continuity. By recalling that the radiative function

v for {L,k,t} is continuous both in L2,_6(I,X) and in

wi th respect to R C and e C F6(I,X) , (I) follows ininediately.

Since G( ,s,k)x C H1
~~

(I,X) i0~ we have G(0,s,k)x = 0 for all

(s ,k,x) T x x x , which means that G(O,s,k) = 0 . On the other

hand, <1[O,x],4> — (x,
~

(O)) x = 0 for all ~ C H~~
B(I ,X) , and hence

G(. ,0,k)x is the radiati ve function for {L,k,0} . Therefore

G(r,0,k)x  ~ 0 by the uniqueness of the radiati ve function. Thus ( i i)

is completely proved. Let us show (iii). Take a real-valued , smooth

function p (r) on I such that ~j,(r) = 1 on J and ~p(r) = 0 in a

sufficiently small neighborhood of r = s . Then it is easy to see that

c(r) = ~(r)G(r ,s,k)x  is the radiative function for (L,k,~ (g]} with

g(r) * —ip”(r)G(r,s,k)x — 2~p ’( r)~~~G(r ,s,k)x . Proposition 1.3 can be

made use of to show that V C D(I) , which means that G( ,s,k)x C 0(J)

_ _ _ _ _ _ _ _ _ _ _ _
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( iv) Is obvious from (9.5). Let us enter into the proof of (v). Set

v( t) G(t ,s,k)x and w(t) G(t,r,-V)x with x,x ’ C X  . Then, setting

$ = P~w and p~ v in the relations

(v’,p ’)0 
+ (8½v, B½$)~ + (v ,(C - 

~) 4) IQ = (x ,$(s ))
~(9.11)

+ (B½4,,8½w)0 + ((C — k2)$, w)0 (~ (r) , x’)x ~

respectively, and combining them, we arrive at

(9.12) (x ,w(s) )  - (v(r), x ’) = ~ (t){(v’(t),w(t)) - (v(t),w ’(t)) }dtX

(n = 1,2 ,...)

where ~~(t) = ~(n(t-t0)) , p (t) is a real-valued , smooth function on

R such that ~(t) = 1 (t ‘~~ 0), = 0 (t ~ 1) , and to is taken to
satisfy t0 > max (r,s) . Let n ~ in (9.12) and take note of the

fact that 
~
‘
~
(t) + -6(t-t0) as n + . Then we have

(x,G(s ,r,_
~
)x ’) X — (G (r ,s,k)x ,x ’)

~
(9.13)

= (v(t0), w’(t0) + iE~v(tø))
~ 

— (v’(t0) — i kv(t0), w(t0))~

(to > max(r—s)) .

By making to + along a suitable sequence Ct~} , the right-hand side

of (9.13) tends to zero, whence follows that

(9.14) (x,{G(s,r,—~) — G(r,s,k)*}x
I)

X 
= 0

for any x,x’ E X . Thus we have proved (V) .
Q.E.D.

_____________________________________



~
_

104

§10. The elgenoperators

The purpose of this section is to construct the eigenoperator

ri(r,k) (rGT ,kER—{0}) by the use of the Green kernel G r ,s,k) which

was defined in §9. In this and the following sections ~(y ) w ill

be assumed to satisfy Assumption 5.1 which enables us to apply the

results of Chapter II.

We shall first show some more properties of the Green kernel in

addition to Proposition 9.2.

PROPOSITION 10.1. Let Assumption 5.1 be satisfied . Then the followi ng

estimate for the Green kernel

C1 (k) (kG t~,Imk >O , r,sEfl
(10.1) IG(r,s,k)I 

~ C2(k)min{(1+r)
1
~ 

8 ,(1+5)1+ 8

(keR — ~0},r,sET)

holds , where 8 = 6 - t (0<c~~), = 0 (c<~
.
~1) and the constants C1 (k)

and C2(k) are bounded when k moves in a compact set in fkEC~/Imk>O}

and R - {0}, respectively. Further

(10.2) v(r,k,L (fi ) = 

J
G(r~s~k)f(s)ds (rET)

holds for any radiative function v(’,k,R [fi ) for {L,k,24f] I with

kE~~ and fEL 26 (I,X )

PROOF. (i) Assume that k€C ~ with Imk >O . Then it fol l ows from

Lenina 2.7 that v = G( ,s,k)x (s T, x X) belongs to H~~
B(I,X) . The

first estimate of (10.1) Is obtained from (9.3), (2.16) in Lemma 2.7

and (9.4) with 8=0 . Next assume that kER - (O} Applying (5.11)
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in Theorem (5.4) and using (9.4), we have IG (r,s,k)xI
~ ~ 

C(k)( l +S)~~
8

Ix I
which Implies that

(10.3) IG(r,s,k)I < C(l+S) 1
~~ (r ,sET)

The second estimate of (10.1) follows from (10.3) and the relation

G(r ,s,k)* = G(s ,r,-k) (Cv) of Proposition 9.2). (ii) Let f€ L 2(I,X)

wi th compact support in T and let kEC ’ , Iink>O . Then

u = G(’ ,r,—i)x and the radiative function v for {L,k,2.[ f 1} belong

to H~
’8(I,X) and satisfy

+ (B½u,B½$), + ((C—E~)u,$)0 = (x ,4 (r ) )
~

($‘,v’)0 + (B •,8½v) o + ((c~~ )~,v)0 = ($,f)0

for $€ H~’
8(I ,X) . Set ~ = v in the first relation of (10.4)

Then, using the relation G(s ,r,_k )*= G(r ,s,k), we have

(x ,v(r))
~ 

= (u ’,v ’) 0 + (B½u,B½v) 0 + ((C -

(10.5)
= (G(.,r,—k)x,f)0 

= (x ,J1G(r ,s,k ) f ( s ) d s ) x

whence (10.2) follows . Let f be as above and k C R - (0). Then we

can approximate k by• {k + ~ } (n*1,2,... ) to obtain (10.2),

where we have made use of the continuity 0f the radiative function

v(.,k,&~fj ) wi th respect to k and (9.8) in Proposition 9.2. Thus

(10.2) has been established for k C and f C L2(I,X) wi th compact

support in T. In the case that f C L2,5 (I,X ) we can approximate f

by (f~} , where f~CL2 (I ,X) wi th compact support in T . Then,

taking note of the conti nuity of the radiati ve function v(’ ,k,2If 1)

wi th respect to f and the estimate (10.1), we arrive at (10.2).

Q. E. D.
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Let k E P - (0) , s C T , x E x and set v ( r )  = G(r ,s ,k)x

v is the radia t ive  funct ion for (L,k,2.4s,x J  I and 2~s,x l C F1~ 8(I ,X)

with ff~z(s,xJ 
~~~~ ~ ~

T2 (l+s) 1”
~fx l~ 

, where B is given by (5.9).

Therefore Theorem 5.3 can be applied to show the existence of the limi t

(10.6) F(k)24s,xl s — lim e v(r’.k)v(r) in X

It follows from Lemma 8.1 that

(10.7) IF(k)2As,xJ I < C~ 94S,xI ~ 6 ~T! C(l+S)
6

Ix I~

with C C(k) , and hence for each pair (r,k)ET x (P — (0)) a

bounded l inear  operator ri(r,k) on X is well-defined by

(10.8) s — u r n  e t
~~

k)G(t,r,k)x — n(r,k)x (x E X)

DEFINITION 10.2. The bounded l inear operator n(r,k) defined by

(10.8) will be called the eigenoperator associated wi th L.

The appropriateness of this naming will be Justified in the

remainder of this section (especially in Theorem 10.4).

PROPOSITION 10.3. Let AssumptIon 5.1 be satisfi ed. Then we have

i”ts’ k~ *
• (10.9) s - u r n  G(r,s,-k)e ‘

~~
‘ ‘ ‘x — n (r,k)x

s-~
for any triple (r,kx) E T x (P - (O} )xX, where ~.i(y,k) is defined by

(5.8) and n*(r,k) is the adjoint of ~(r,k)

PROOF. Suppose that there exist r > 0 , k0 E R - (0) , x0 C X

Bo >O and a sequence t
~n

1 such that ~~~ and

Iv~(r0) 
- ri*(rO,kO )x O I x ~ 

8
~ 

holds for all n—1 ,2,..., where we set

v~(r) — G(r,s,—k0)e1”~~n ’’~~x0 . By the use of the interior estimate
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(Proposition 1.2) and (10.1) it can be seen that the sequence

(II Vn II B (0 R 1 Is bounded for each R >0 . By Theorem 1.5 (the

Rell ich theorem) there exists a subsequence (w~} of Cv~} such that

• {w~} is a Cauchy sequence of L2(I PX)IOC . Make use of the Interior

estimate again. Then {w~} is seen to be a Caucy sequence in

H
~
’8(I,X ) u0~ . Therefore it follows from (1.8) that {w~(r0)} is a

Cauchy sequence in X . Since G(r0,s,-k0)e 
(S sk)x0 converges

to n*(r0,k0)x0 weakly in X by (10.8), w~(r0) converges

to ri*(r0,k0)x0 strongly in X , which is a contradiction.

Q.E.D.

Let us summarize these results in the following

THEOREM 10.4. Let Assumption 5.1 be satisfied .

(I) Then

(10.10) n(r,k)x * s — J im e 1
~~~~’~~G(s ,r,k)x in X

and

(10.11) ~*(r,k)x s — lim G(r,s,—k)e~~~~’~~x in x
s-~

-

• 
for any triple (r,k,x) C T x (P - (O})xX . We have

(10.12) fl ii(r,k)JI — J )n*(r,k)Jl ~ C(1+r)
6

where fl II means the operator norm and C * C(k) is bounded when

• k moves in a compact set in R - (0)

(ii) The relation

(10.13) 2ik(n(s,k)x, — ((G(r,s,k) — G(r,s,_k))x,x’)~
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holds for any x,x C X  , kEP - (O} and r,sET.

(iii) n*(.,k)xeH~’
B(I,X)1 rlD (I) and satifies the equation

(10.14) (L - k2)v(r) 0

where rET , kER - (0) , xCX

PROOF. Ci ) follows from (10.8), Proposition 11.3 and (10.7). Set

in (8.12) R
~
= £(s,xJ R(r,x’J , v1*G(.,s,k)x and v2 G(’,r,k)x

Then, noting that F(k)R.js,xI = n(s,k)x and F(k)t(r,xl = ri(r,k)x’,

• we obtain,

(~ (s ,k)x , fl(r,k)x)
~ 

= 
~~~~~~~~~~~ G(•,s,k)x)

(10.15) - (9~fs,xJ , G(s,r,k)x ’) }
= 

~~~~~~~~ 

{ (G(r,s,k)x ,x’ 
~ 

— (x,G(s,r,k)x’ 
~ 

}
which, together wi th the relation G(s,r,k)* = G(r ,s,-k), completes the

= proof of (ii). Let us show (iii). Set v5(r) = ~~~~~~~~~~~~~~~

v5(r) satisfies

(10.16) (v5, (L — k2)~)0 = (e 1
~~~

’’
~~

x,4 (s) )
~ 

(~ 
E C (I,X))

Let (s~} , s~EI , be an arbitrary sequence such that 5n+~ 
as n-~

Then, as we have seen in the proof of Proposition 10.3, there exis ts

a subsequence U I of {s~} such that {v I Is a Cauchy sequence inp tp
L2(I,X) . This means {v5} itself converges to ~*(.,k)x in

L2(I,X) 1OC . Letting s-~ in (10.16), we arrive at

(10.17) (~*(.,k)x , CL — k2)~)0 
— 0 ($eC~(I,X ))

Proposition 1.3 can be applied to show that ~*(.k)x C H~~
B(I ,X)l0~ 

(~ D(I)

Q.E.D.

_____________ A
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The followi ng two theorems will show some relations between the

elgenoperator and the operator F(k)

THEOREM 10.5. Let Assumption 5.1 be satisfied. Let F(k) , kE R - {O}

be as In §8. Then we have

(10.18) F(k)f s—l im J ~(r,k)f(r)dr in X
R-~ 0

for any fEL2,6(I,X) . In particular -

(10.1 9) F (k)f n(r,k)f(r)dr

holds for fEL 2 8 (I,X) with 8> ~- +  6, where the integral is absolutely

convergent.

PROOF. Let f E L2,6(I,X) and define fR(r) by

~f(r) (0~~~r~~ R),
(10.20) fR (r) *

0 (r > R).

Then it follows from Theorem 5.3 and (10.2) that

F(k)f R s - 
~~~~~~~ 

e ”
~

v(r,k,2
~
fRJ )

s — Urn e~~~~
”’~~J1 G(r ,s,k)f R (s)ds

(10.21) R
* J s - urn {e ”~~G(r.s.k)f(s)} ds

* r n(s,k)f(s)ds ,

where we should note that we obtain from (10.3)

(10.22) G(r,s,k)f(s)!
~ ~ C(k) (1+s )~~

8lf(s)I
~

and hence the dominated convergence theorem can be applied. Since

converges to f In L26 (I.X) as R-~ and F(k) is a bounded linear

- .-- ~~~~~~~~~ --~~-- - _ - .~~ -- - 
- • -
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opera tor from L2 6 (I,X ) into X , (10.18) Is obtained by letting

n-’~ in (10.21) . If fEL2,8(I ,X) wIth 8 > + 6 , then It follows

from (10.12) that In(s,k)f(s)I
~ 

i s integrable over I . Therefore we

obtaIn (10.19) from (10.18)

Q~.E.D.

THEOREM 10.6. Let Assumption 5.1 be satisfied.

(I) Let kER — (01 . Then fl*(.,k)x C L2 6
(I,X) for any

x C X wi th the es timate

(10.23) I~*(.,k)xI 6 ~ 
C (x (,~ (x C X )

where C = C(k) is bounded when k moves in a compact set in P - (0)

(Ii ) We have

• (10.24) (~*(.,k)x ,f)0 = (x ,F(k)f)
~

for any triple (k,x,f) C (P - (0) )x X x  L2(I,X)

PROOF. (I) Let 9 C L2(I,X) wi th compact support in T . Then we obtain

-: from Theorem 10.5

(10.25) (F(k)g, x)
~ 

= (j n(r~k)g(r)dr~ x)~

a 

J
(g(r). n*(r,k)x) dr .

Set in (10.25) g(r) XR(r)(l+r) ~*(r,k)x , XR(r) being the characteristic

function of (0,R) . Then, noting that F(k) is a bounded operator from

L2,6(I,X) into X , we arrive at

- • --- • • •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ LA
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j (1+r )26Ifl*(r ,k)xI~dr - (F(k )(XR(l+r)
26

fl*(. ,k)xhx)~

(10.26) < C(k) P X R(l+r) ~* (s ,k)x I
6 J x J ~

= C(k) In*(.,k)x 1
6 (O R) Ix I X

which Implies that

(10.27) I
~
*(s ,k)xI

6(O R) ~ C (k )  I X I x

Since R> 0 Is arbitrary, (10.23) di rectly follows from (10.26).

(ii) Let fEL 2,6( I ,X) . Set in (10.25) g(r) = XR(r)f(r) and let

R-’~ . Then , since (f(r), ,i*(r ,k)x)~ is integrable over I by

(10.23), we obtain (10.24), whIch completes the proof.

Q..E.D.

In order to show the continui ty of n(r,k) and fl*(r ,k) with

respect to k we shall show

PROPOSITION 10.7. Let x C 0 . Then we have

(10.28) n*(r ,k)x = 

~fr ~
(r) e~~~~’~~x - h (r ,k,x)

( r E T , k E R -  {0}),

where ~(r) Is a real-valued smooth function on I such that ~(r)  = 0

(r ~ 1) , — 1 (r ~ 2) , ~i(y,k) is as in (5.8) and h(.,k,x) is the

radiative function for {L, —k, 2.~ fi I wi th

(10.29) f(r) = ~fr(L -k
2)(~e~~~~’~~x )
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PROOF. Let w0
(r) - ~(r)e 1

~~T ’ 1k ) x an d f0— (L — k 2 )w0 as in (8.30).

Then f0CL26 (I ,X) and w0 Is the radiati ve function for

(L,k,2.(f0J } . Let g C C~’(I,X) . Then, setting In (8.11) fl—f0 , f~—g

and making use of the fact that F(k)f0 x by Proposition 8.5, we have =

(10.30) (x,F(k)g)
~ 

= 

~~ 
((w0,g)0 - (f0,v) 0}

wi th the rad iative func tion for (L,k,94g1 I
By (ii) of Theorem 10.6 the left-hand side of (10.30) can be rewritten

as

• (10.31) (x,F(k) g )~ = (rl*(.,k )x , 
~~

As for the second term of the right-hand side we have, by exchangi ng

the order of integration,

(f0,v) 0 f°(f o(r)~ f°G(r ,s~k)g (s)ds )~dr

(10.32) ~~~ ~~~
= ( I  G(s ,r,—k)f~(r)dr , g(s)) dsJO ~O

= (2ikh(.),g)0 ,

where we have used (10.2) repeatedly. (10.30) (10.32) are combined

to give

(10.33) (n*( ,k)x,g)0 ( ~ -~ w0 
- h, g)0 .

(10.29) follows from (10.33) because of the arbitrari ness of g C C( I ,X )

Q. E.

—• -~ _ _ _ _ _ _ _ _ _ _ _
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THEOREM 10.8. Let Assumption 5. 1 be staisfied. Then n(r ,k ) x  and

are strongly continuous X-valued functions on Tx (P — (0) ) xx.

PROOF. Let us first show the continuity of ri*(r,k)x  . To th is end
it is sufficient to show that fl*(rn,kn )x n tends to n*(r ,k)x strongly

in  X ,where rn +r in T , k~~~k In R _ (O}
~~

xn +x in X as n-~co

Let c > 0 given . Then, by the denseness of D and the estimate

(10.12), there exists x0 C 0 and a positive Integer n0 such that

In*(r,k)x — n*(r,k)x o l < c
(10.34)

In*(r ,k ) x  - fl*(r ,k ) x 0 1 < c

for n ~~ no . Therefore we have only to show that

(10.35 ) s - u r n  n*(r ~
kn)X = fl*(r,k ) x  in X

fl4c0

for x C D . In fact It follows from Proposition 10.7 that

-

(10.36) 
- ~~~~~~~ 

{~( r)e~~~’~ ’~~ - 

~
(r n) e n

~~~n) }x

+ (h(r~~k~x) - h (r,k,x)}

+ {h(r ,k ,x)  — h ( r n,k,x)}

Since ii(y,k) Is continuous in (y,k) by (1) of Remark 5.9 and the

def in i t ion  of ~i(y,k) (see (5.8)), the fi rst term of the right-hand

side of (10.36) tends to zero as ~-~oo The second term of the right-hand

side of (10.36) tends to zero because of the continuity of the radiative

fu nction h( r ,k ,x) . It follows from (1) of Remark 5.9 that (L-k~)

~~~~~~~~~~~ converges to (L-k2) (~ e~~
(t ’ 1

~~ x) in L2 6 (I ,X) , 

- 
=
— — —_

- 

~~~~~~~~~~~ —~ ~~~—~~~~~ - -  - -~~~~~ -- — --- —— ——  -—-— ------- —
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which Implies that h(.,k~,x) converges to h(.,k,x) in

L2,_6 (I ,X) r~ H~,~
B(I ,x)l0~ . Since the convergence in

means the uniform convergence in X on every finite interval

(O ,R 1 on T , we have

(10.37) s — lim {h(rn,knx) — h(r  ,k,x)} = 0 in X
n-,co n

Thus (10.35 ) has be proved. The proof of the continui ty of ri(r,k )x

Is much easier. In fact, the continu ity fol l ows from the facts tha t

(10.38) n(r,k)x = F(k)94r,x) (rET, kER - (O}, x EX )  ,

an d that as has been seen in the proof of Proposition 9.2 , L[r,x J is

an F6-valued, cont inuous function on T x X and that F(k) is a

B(F 6 (I ,X),X )-valued , continuous function on R - (0).

cz. E. 0.

_____ - - - -
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~• • • .



—

115

§11 . Expansion Theorem

Now we are in a posit ion to show a spectra l representation theorem

or an expansion theorem for the Schradinger operator wi th a long-range

potential. To this end the sel f-ad.joint realization of I — -
~~~ 
+ Q(y )

should be defined and some of its spectral properties should be mentioned.

Here let us note that these properties were never used in the previous

sections (~l - §10).

Let ç
~(y) be a real-valued, bounded and continuous function on

Then two symmetric operators h0 
and h in L2(1R~ ) are defined by

D(h 0) — D(h) = C(R 1
~)

(11.1) h0f T0f =

hf - If = .q~f +

As is well— known, h0 is essentially sel f-ad,joint in L2(R t
~) with a

unique self-adjoint extension H0 defined b-~

0(H0
) — H2(P N)

(11.2)
H0f — T0f -~f

where the differential operator T0 should be considered In the distribu-

tion sense. Further, it is also well-known that we have

(11.3) a(H0) “ac~~O~ 
= O,co)

I ~~~~~~~~~~~~~~ - - 
__

~~~~~~~ i~~ •i_ ____
~

- ••_____ ~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_—•- •-- •-_——-- •••— •——--—-_-•--- ---• •_ -•-- -_--- ••--—
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Here ci(H0) is the spectrum of H0 and aac (H
~

) is the absolu tely

continuous spectrum.

THEOREM 11.1. Let Q(y) be a real-valued, continuous fun c tion on

wi th Q(y)  + 0 as 
~yI 

+ . Let h be as in (11.1). Then h Is

essentially self—adj oint in L2 (R ~ ) wi th its unique self-adjoint

extensi on H . We have

0(H) = 0(H0) = H2 (IR N)
(11.4)

Hf = If = -~~~ + Q(y)f (In the distribution sense).

• H is bounded below wi th the lower bound k0 < 0 and ae(H) , the essen-

tial spectrum of H , is equal to (O,~) . Therefore on [k0,O) the

continuous spectrum of H is absent, and the negative eigenvalues , if

F they exist, are of finite mul tiplicity and are discrete in the sense

that they form an isolated set having no limi t point other than the

origin 0 . There exists no positi ve eigenval ue of H

PROOF. Let V = Q(y)x be a multipl i cation operator Q(y) . Then

V is a bounded operator on L2(R N) and h is rewri tten as

(11.5) h = h0 
+ V

Since h0 is essentially self—ad.jo int, h is also essentially sel f-

adjoint with a unique sel f-adjoint extenstion H = H0 
+ V and the

domain D (H ) is equal to D(H 0) (see, e.g., Kato (1], p. 288, Theorem

4.4). V can be seen to be H0-compact , i.e., i f  (f~} C D (H0) and

{H0fn} are bounded sequence in L2(R~) , then the sequence {Vf~} is

relatively compact in L2(IR N) . In fact this can be easily shown by

the interior estimate and the Rellich theorem. Therefore the essential



_

~~~~~~
_
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spectrum ae(H) of H - H0 + V is equal to the essential spectrum

of H0 (see Kato Ill, p. 244, Theorem 5.35). Finally we

shall show the non—existence of the positive elgenvalues of H

Suppose that A > 0 is an eigenvalue of H and let ~ C H2 (R~ ) be

• the eigenfunction associated wi th A . Then v = U~ is the radia tive

function for {L,/~~,0) and hence v — 0 by the uniqueness of the

radiative function. This is a contradiction. Thus the non—existence

of positi ve elgenvalues of H has been proved.

Q.E.D.

Set

M0 
= UH0U*

(11.6)

M = UHU*

where U is defined by (0.19). M0 and M are self—adjoint operators

in L2(I ,X) with the same domain UH 2 (]R N) and are unitarily equiv-

alent to H0 and H , respecti vely. Let E(~ ;M) be the spectral

measure associated with M . We shal l be mainly interested in the

st ructure of the spectrum of M on (0,øo) , because the spectrum on

(-~,0) is discrete.

• PROPOSITION 11.2. Let Assumption 5.1 be satisfied. Let J be a
• compact interval in (0,co) and let f ,g C L2,6(I ,X) . Then

_ _ _ _ _ _ _  ___  ________ _______ —~~~ _ _ _ _
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(11.7) 
(E(J;M)f ,g)0 ~~ 

(F(k)f, F(k)g)xdk

= J -3— (F(-k)f, F(_k)g)~dk ,
where /T = (k > 0/k2 C JI and F(k) is given by Definition 8.2.

PROOF. We denote the resolvent of M by R(z;M) , i.e.,

R(z;M) = (M — . Let us note that R(z;M)f = v(.,11,L[f ]) for

z C £ — IR and f C L2, (I,X) . Here /1 is the square root of z

with Im
/i••>0 and v(~,/?,e(f]) is the radiative function for

{L,vT,L[f]) . In fact this follows from the uniqueness of the radiative

function and the fact that R(z;M)f E UH2(lR t4 ) . Moreover le t us note

that

lim R(k2 ± ib; M)f = v(, ± ki,  t [ f)) in L2,_6(I ,X )
(11.8) b

(k E JR — (0), f C L2,6(I ,X) )  ,

which follows from the continuity of the radiative function with respect

to k C £
+ 
. Then from the well-known formula

(E(J;M)f,g)0

(11.9) 1 u r n  J ((RCA + ib;M)f,g) — (f ,R(a- + ib;M)g) Ida
~
1 b+O J 0 0

2 1 l irn J {(f,R(a — ib;M)g) — (R(a — ib;M)f,g) Ida

It fol l ows tha t

(E (J ;M) f,g)0

(11.10) ~~.J {(v(.~/T~t(f]),g)0 
— (f,v(~,vT,e[g]))0)da

— ~~~~~~~~~~~~~~~~~~~ — (v(.,-/i~~(f]),g)0}da
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By the use of (8.14) in Theorem 8.4 (11.7) follows from (11.10).

• ~~ • - ~~~~~~~~~~~~~~~~ - =

Let us set
2

(11.11) F~ (k) 
= ±f~ 

ikF(+k) (k > 0)

COROLLARY 11.3. (I) E((0,OQ);M)M is an absol utely continuous

operator, i.e.,

Gac (M) D (Q,co)

(ii) F~ 
(.)fE L2(0,

co),X,dk) for f E  L2 6.(I,X) with the estimate

2 2 2
(11.13) J f F~(k ) f dk H E((0,°°);M)fIl < H fl

0 x 0— 0

PROOF. Obvious from (11.7) and the denseness of L2,6(I,X ) in

L2,(I ,X) .

• Q.E.D.

DEFINITION 11.4. The generalized Fourier znsforme F~ from

L2
(I ,X) = L2(I ,X,dr) into L2((0,

xi),X,dk) by

(11.14) (F
~

f ) ( k )  = l.i.m. F±(k)fR in L2((O,~),X,dk)R+ao

for f C L2(I ,X) , where fR(r) =-X R(r)f(r) and XR(r) is the character-

istic function of the Interval (0,R)

It follows from Corollary 11.3 that are bounded linear oper-

ators from L2(I,X) into L2((0,
oo),X,dk) . F denote the adjoint

operators from L2((0,~),X,dk) into L2(I ,X) . By the use of the rela—

tion between F(k) and r~(r,k) . Let us set

*r
~

(r ,k) = +/~~ ikn*(r ,+k)
(11.15) 

*
n~(r , k) = +Y’ ikn*(r,+k)

• ~~~~~~~~
-
~~~~~ 

____________
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for rE T ,  k > 0 .

PROPOSITION 11.5. Let Assumption 5.1, (5.4) and (5.5) be satisfied.

Let F ± be as above.

(1) Then F± and F ± are represented as follows:

(11.16) (F~f)(k) = 1.i.m. I n~(r,k)f(r)dr in L.,((0,°°),X,dk)
~~~ ‘O

* 
çR 

*(11.17) (F~F )( k ) = l.i.m. J — l n~(r ,k)F(k)dk in L2(I ,X )
R-~~ R

where f E L2(I ,X) and F E L2(( O ,oo),X,dk)

(ii) Let f C L2,6(I ,X) . Then for each k > 0

(11.18) (F~ f)( k) s - u r n  I ~~(r ,k)f(r)dr in X
R+c~ ‘O

In par ticular , If f E L2,8(I ,X) with 8 > ~~
- + 6 , the integral of the

right-hand side of (11.18) is absolutely convergent.

PROOF. Let fR(r ) = x R(r)f(r) with the characteristic function

xR (r) of (0,R ) . Then It follows from (10.19) in Theorem 10.5 that

r
F (k)fR 4/ iT IkF (±Ik)f = +/~~ik J n(r,+k)fR(r )dr

(11.19) R
= J ri~(r,k)f(r)dr ,0

which , together with the definition of F~f ((11.14)), proves (11.16)

In order to prove (11.17) it suffi ces to show

(11.20) (FF)(r) = 
10 T) (r,k)F(k)dk

±

for FE L2((0,~),X,dk) with compact support in (0,o°) , because F:

are bounded linear operators from L2((O ,~),X,dk) into L2(I ,X )

• Denoting the inner product of L2( (O ,co), X,dk) by ( , 
~ 

again , we
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have for any f C C (I,X)

(F~F,f) 0 (F , +f)0

~~~~~~(k) , in+(r ,k)f(r)dr)
~~

- ~~l(fn (r~k)F(k)dk , f ( r )  
~
dr

[f~ 
n ( ,k)F(k)dk , f)~

which implies (11.17). Here it should be noted that the Integrals

J ~~(r,k)F(k)dk and J~ 
ri~(r,k)f(r)dr are continuous in r and in k

respectively, because of Theorem 10.8. (ii) di rectly follows from

Theorem 10.5 and Definition 11.4.

Q.E.D.

Thus we arrive at

THEOREM 11.6 (Spectral Representation Theorem). Let Assumption

• 5.1 be satisfied. Let B be an arbi trary Borel set in (0,~) . Then

(11.21 ) E(B;M) F X
1~

... F~

where x is the characteristic function of IT = {k > 0/k2 C B)
IT

In particular we have

(11.22) E(0,~);M) = F:F+

• PROOF. lt suffices to show (11.21 ) when B is a compact interval

J in (O,co) . From (11.7) it follows that

-
• (E( J ;M )f ,g)0 J ((F÷f)(k) , (F4g)(k))~dk

(11.23) a (x~,~
_(F+f) ( ) , (F4g)(~ )) 0

— (F~ ~,~..F+f,g)0

for f,g € L2,6(I , X) , which impl ies that

I .____~~. 
=—-- -, - 

- 

- 
• 
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(11.24) E(J;M)f — F* X,.~... F~f (f E L2,6(I ,X )

Since E(J;M) and F~ ~ 
F
’

are bounded linear operators on

L2(I,X ) and L2 6 (I,X) is dense in L2(I ,X) , (11.21 ) follows from

(11 .24).

Q.E.D.

In order to discuss the orthogonality of the generalized Fourier

transfo rms F ± , some properties of F± will be shown.

PROPOSITION 11.7. Let F~ be the general i zed Fourier transforms

associated wi th M

( I )  Then

(11.25) F~E(B ;M) X

(11.26) F~E((0,~ );M ) = F~

(11.27) E(B;M)F~** F~*x

(11.28) E( (0,co);M)F~* F~*,

where B and x are as in Theorem 11.6.
IT

( i i ) F~L2(I,X ) are closed linear subspace in L2(( O ,cx~),X ,dk)

Clii) The fo llowing three condition (a), (b), Cc) about F, ( F )

are equivalent:

(a) F~
( F )  maps E((O,co);M)L2(I,X) on to L2((O,~°),X,dk)

(b) F~ F,~’ 1 (F_F a  1) , where 1 means the Identity operator.

(c) The null space of F÷ (F) consists only of 0

PROOF. (I) Let us show (11.25). Let f C L2(I ,X ) . Then

2
K - fl F E(B;M)f - x F fli± ± 0

I .~~~~~~ . .  
- 

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---
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2 2
(11.29) a IlF~E(B;M ) fU + F4fU — 2Re (F~E (B; M )f , X

,,,.~
. F~f)

— — —•-- 

- Ji + - 2ReJ3 . 
-

From (11.21 ) and the relations

(11.30) E(B;M)2 — E(C0,oo);M)E(B;M) E(B;M)

we can easily see that J1 J2 — J3 , and hence K — 0 , which completes

the proof of (11.25). (11.26)— (u1.28) immediately follows from (11.25).

(ii) Assume that the sequence {F~f~} , f ~~~E L2( I ,X) , be a Cauchy

sequence in L2((0,
co),X,dk) . By taking account of (11.26) f~ may be

assumed to belong to E((0,oo);M)L2
(I ,X) . Then {F F ~f~} is a Cauchy

sequence, since F+ is a bounded operator. Thus , by noting that

F:F+fn = E((0,oo);M)f~ = f~ , the sequence {f~} itself is a Cauchy sequence

in L2(I ,x) with the limi t fE 12(l ,X) . Therefore the sequence

{F~f~} has the limi t F f  , which means the closedness of F~L2(I ,X)

in L2((0,
oo),X,dk) . The closedness of F_L2(I,X ) can be proved quite

in the same way. (iii) By the use of (I) and (il) the equivalence of

(a), (b), (c) can be shown in an elementary and usual way, and hence the

proof will be left to the readers.

Q.E.D.

When the generalized Fourier transform F+ or F_ satisfi es one

of the condi tions (a), (b), (c) In Proposition 11.7, i t  is call ed

• oi ’thogonai. The notion of the orthogonality is important in scattering

theory.

ThEOREM 11.8 (orthogonality of F~ ). Let As sumptIons 5.1, (5.4),

and (5.5) be satisfied. Then the generalized Fourier transforms are

orthogonal.
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PROOF. We shall show that F~ satisfy (c) in Proposition 11.7.

Suppose that F:F = 0 wi th some F E L2((0,~),X,dk) . We have only

to show that F - 0 . Let B a (a2,b2) wi th 0 < a < b < . Then ,

using (11.27), we obtain from E(B;M)F:F = 0

(11.31) F*x F — 0
IT

which , together with (11.17), gives

*
(11.32) J ri÷(r ,k)F(k)dk = 0

a

Since a and b can be taken arb itrar i ly, i t follows tha t there

exists a null set e in (0,o~) such that

(11.33) ri (r,k)F(k) 0 or ri*(r ,k)F(k) = 0 (r ~ T, k C e)

where we have made use of the continuity of ri (r,k)F(k) in r C I

(Theorem 10.8). Let x E 0 and take f0(r) as in (8.30). Then,

noting tha t F(k)f 0 = x by Proposition 8.5 and using (ii) of Theorem

10.6, we have -

(F(k),x) x (F(k), F(k)fo)x
(11 .34)

= (fl*(. k)F(k) f0)0 = 0 (k ~ e, x C D)

whence fol lows that F(k) — 0 for almost all k C (O,o) i.e., F = 0

In L2((0,co),X,dk) . The orthogonality of F_ can be proved qui te in

the same way.

Q.E.D.

Finally we shall translate the expansion theorem, Theorem 11. 6

for the operato r M into the case of the Schrödinger opera tor H . Let

us define the generalized Fourier transforms associated with H by

j_ . 
- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.- - • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(11.35) ~~~~~ 
— U~~ F,.U

N-i
where Uk k~~~x Is a unitary operator from L2(IR N , d~) onto

L2
( ( O ,o’),X,dk . are bounded linear operators from L2(IR IhI ,dy) into

L2(R 11 ,d~) . If the bounded operators ?j,(r ,k) and

r C I, k > 0 , on X are defined by

— r )
~~~~

1
~~~

’2rI~(r ,k) ,
(11.36) —

r~~~~~~
2k~~~~~

/2r~ (r ,k)

then we have

a 1.i.m.J~ (~~(r k)~(r ))( ’)dr in L2(lR
N,d~)

(11.37) ~~~ 0

*(F~~)(y) l.i.m. (n÷(r ,k)’V(k.))(w)dk in L2(R 1
~,dy)

— R-. 
~~~ 

—

where are the adjoint of F~ and y r w, ~ = kw ’ . Let E( ;H)

be the spectral measure associated wi th H . Then we have from Theorems

11.6 and 11.8.

ThEOREM 11.9. Let Assumption 5.1, (5.4) and (5.5) be satisfied. Let

B be an arbitrary Borel set in (0,oc~) . Then the generalized Fourier.

transfo rms ~~ defined as above, map E ( ( 0 ,co);H)L2(IR N ,dy) onto
• 

L2(R N,d~) and

(11.38) E(B;H) - ~~~~~

where x is the characteristic function of the set {~ EIT
C ~ N

1 ~~2 C 81 .
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§12. The General Short-Range Case- —

In this section we shall consider the case that the short-range

potential Q~ is a general short-range potential , i .e.,

Throughout this section we shall assume

ASSUMPTION 12.1. The potential Q(y) = Q~(y ) + Q 1 (y) satisfies

(~
) (Q

~
) in Assumption 2.1. Further, Q~

(y) is assumed to satisfy

~n Theorem 5.1.

Then all the results of Chapter I and §9 of Chapter Ill are valid

in the present case. Therefore the limiting absorption principle holds

good and the Green kernel G(r,s,k) Is well—defi ned. In order to make

use of the results of Chapter II and §10 - §11 ef Chapter III, we shall

approximate Q1 (y) by a sequence (Q1~(y)} which satisfies

• IQ
~
(
~

)I — a (y 1 9 )  (n—l ,2,...) wi th a constant~ > max (2 -

To this end let us define ~~~y) by

(12.1) = 

~(IyI 
— n)Q

1 (y) (n=1 ,2,...) ,

where ~(t) is a real—valued continuous function on JR such that

~(t) - 1  (t < O) , = 0 (t>1) , and let us set

2 -~~~ + Q0
(y ) + Q1 (y) ,

(12.2) 2
L~ 

2 — + 8(r) + C0Cr) + C1~ (r) (C1~ (r) — Q~1~ (n~)x )

Since the support of Q1~(y) is compact, all the result in the preceding

sections can be appl ied to L~ . According to Definition 8.3, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fn (k)  , R E JR — (01 , Is wel l—defined as a bounded linear operator

from F
6
(I,X) into X . The eigenoperator r~(r ,k) ( r  E T , k C JR — (0))

is also well—defined. Here we should note that the stationary modifier

X(y,k) and Its kernéf Z6~,k) are con

because the long-range potential ~0(y) is independent of n .

We shall first show that an operator F(k) associated with L is

well—defi ned as the strong limi t of F~(k) and that F(k) satisfies

all the properties obtained in §8.

PROPOSITION 12.2. Let Assumption 12.1 be satisfied. Let

F~(k)(k E IR— {O), n—1 ,2,...) be the bounded linear operator from

F
6

(I ,X) into X defined as above.

(i) Then the operator norm HF~(k)II is uniformly bounded when

n—l ,2,... and k moves in a compact set in JR— {O} . For each

k C IR-{0} , there exists a bounded linear operator F (k ) from

F6(I ,X) into X such that

(12.3) F(k)t = s — u r n  F~(k)~ (.
~~ 

C F6(I,X) )
n+~

in X . II F(k)II Is bounded when k moves in a compact set in IR-{O}

(ii) FCk) satisfies (8.12) for any ~~~~ C F6(I ,X ) , i.e., we

• have

(12.4) (F(k)ti ,F(k)e~2
)x 

= .
~bc<e2,

vi > - <t 1,v2>) ,

v~(i — 1 ,2) being the radiative function for {L~k~v~} . (8.13)— (8.15)

are also satisfied by F(k) .

(iii) Let x E D and let f0(r) be as in (8.30), i.e.,

f0(r) = (L — k2)(~e~~~~’~~x) wi th ~(r) defined by (5.36) and ~(y,k)

defined by (5.8) . Then 

~~~~~~~~~~~~ _ _ _  _ _
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(12.5) F(k)f0 
— x

where we set F(k)t[f0] 
- F(k)f 0

- • — ( I v )~As an~operator from..j,~~~(I ,X)_~nto I F(kLisa .~~~ . •

E ( L 2,6(I ,X),X)—valued continuous function on R- (01 . Further, for

each k € II- (01 F(k) is a compact operator from L26 (I ,X) i nto X

(v) Let f C L2,6(I ,X) and let k E JR - (0) . Then

(12.6) F(k)f s - lirn e n ~’~~v(r~) in X

where v is the radiative function for {L,k,~[f]} and {r~} i s a

sequence such that rn
too and v ’(r~) - ikv(r~) + 0 tn X as n -.

PROOF. Proceeding as in the proof of Theorem 8.4 we obtain

(Fn(k )L
~ 

F
~
(k)L)

~
(12.7)

~fg. (< t ~v~> —< .~~v~> + ((C
m 

— c1~ }v~.v~)0}

for L E  F6(I,X) and n ,p=l ,2,..., where vn (v p) is the radiati ve

function for {Ln~
kiL} ((L~~k~L} Set p = n in (12.7) and make use

of Theorem 4.5. Then we have

(12.8) IFn (k)
~ I ~~~ 11R111 611 Vn Il B,-6 ~ C IlI~ IIl 6

with C — C(k) which is bounded when k moves in a compact set in

R— (01 ~ where 11 1 B,_6 is the norm of H~~~ (I ,X) . On the other

hand we obtain from (12.7)
2 2 2

IF~(k)L 
- F (k)LI IFn(k)eI + IF (k)LI - 2Re(F~(k).e~F (k)e)p x x x

(12.9)
- 

~~~ 
Im

({Cin - C1~}v~~v~)0 
-
~~ 0

as n ,p -
~~ , because by Theorem 4.5 both v11 and v~ converge to the

_ _  •• • . • -.--
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radiati ve function v for {L,k,L} in L2 5(I,X) and C1~ (r) — C1~(r)
satisfies

Il C 1n (r ) - C1~(r)(~ — (~~(r—n) — ,(r—p)l l1C1 (r)Il < c~(l + r)~~l (r C 1)

H C 1~ (r ) - C1~ (r)H + 0 (np - .-~~) . 
——---

~~ 
-.• •

Therefore the strong limi t F(k)t — s — u rn F~(k) exists in X and we
n

have the estimate 1I F(k)II < C , where C is as in (12.8), whence (i)

follows. (12.4) immediately follows by letting n in the relation

(12.11) 
~~~~~~~~~~~~~~ 

= 

~fr 
{<L2, vnl > —<L 1, v~2

> }

being the radiative function for ~~~~~~~ and Theorem 4.5

being made use of. Thus (ii) has been proved. Let us show (iii). Set

(12.12) 
~~~~ 

=(Ln 
— k2)(~e~~ ’~ ’~~x) (nl ,2,...)

Then it follows from Proposition 8.5 that

(12.13) Fn (k )f 0n (r ) = x

Further , it is easy to see from (5.20) in Lemma 5.5 that

• (12.14) f~ f0 (n -~~ °°) in L2 6(I,x)

(12.5) Is obtained by letting n • In (12.13) and using (1) and

(12.14) Re—examining the procf of Theorems 8.6 and 8.7, we can see that

(iv) and (v) are obtained by proceeding as in the proof of Theorems 8.6

and 8.7, respectively. This completes the proof.

Q. E. 0.

Let us now define the eigenoperator n(r,k) associated with I by

(12.15) n(r,k)x F( k)~(r,x] (r E T , k € JR - (0) , x E X) , 
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where .t(r,x] is as in (9.2), i.e., <e(r,x],~ > — (x ,~ ( r ) )~ for

• E H~f(I~X) . At the same time, as will be shown in the following

proposition, n(r,k) can be defined as the strong limi t of the elgen—

operator r~ (r~k) associated with L,,~

PROPOSITION 12.3. Let Assumption 12.1 be satisfiid~~ Let f~(r ,k) -- — -

be the eigenoperator associated wi th L .

(i) Then for each (r,k) C Tx (P — (01) r~(r,k) is a bounded

(12.1 6) IIn (r,k)II < C(l + r)6 (r € fl

with C = C(k) which is bounded when k moves In a compact set in

JR — (0) . i(r,k)x is an X—va lued , continuous func tion on

Tx (JR - (0}) x X

(Ii) We have

(12.17) 2ik(fl(s,k)x ,fl(r,k)x ’)
~ 

= ({G(r ,s,k) — G(r ,s,—k)}x,x )
~

for any x,x ’ C X, k C JR - (01, and r,s,E T

(iii) The operator norm II ri~(r ,k)U is estimated as

(12.18) lIn~(r~k ) H < C(l + r) 6 Cr C T,nal ,2,...)

with C = C(k) which Is bounded when R moves In a compact set in

JR - (0) . Further , we have

(12.19) n(r,k)x s — lim ri~(r~k)x in X

for any triple (r,k,x) C T x (JR - (0)) x X

(iv) Let f C L2,6(I ,X) and let k E JR - {O} . Then

____________ • • ..• - —.•- ~~~~~~~~~~~~~~~~~~~~~~~~~~ —
~~
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tR
(12. 20) F (k)f — s — u r n  n(r,k)f(r)dr in X

R.oc~)0

PROOF. (1) and (Ii) can be easily obtained by proceeding as In the

proof of Theorems 10.4 and 10.8. SInce we have

(12.21) n~fr,k)x ’ ~~~~~~~~ 
- - • 

--

the uniform boundedness of IInn (r ,k)ft and the strong convergence of

ri~(r~k)x to n(r,k)x follows from Proposition 12.2. Let us show (iv).

It is sufficient to show

(12.22) F(k)f 
11 

n(r ,k)f(r)dr

for f C L2(I ,X) wi th compact support in T . Applying Theorem 10.5 to

L1, we obtain

(12.23) F~(k) J~ ~~~~~~~~~~

whence (12.22) follows by letting n •

Q.E.D.

Let n*(r ,k) be the adjoint of ~(r,k) . Almost all the results

wi th respect to n*(r ,k) obtained in §10 are also valid for our

• ~*(r ,k)

PROPOSITION 12.4. Let Assumption 12.1 be satisfied. Let

n*(r ,k) be as above and let ri~(r,k) be the ad.joint of the eigen-

operator ri~(r~k) associated wi th Ln
(I) Let RE R—{O} . Then n*(. ,k)x € L2~~~(I ,X) for any x E X

with the estimate

(12.24) Ufl* ( , k)xU .~ < C fx I~ (x C X ) ,

— • •  -~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ 
.

-
~~~~~~~~~~ — - ~~~~~~~~~~~~ . ~~~~~~
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where C — C(k) is bounded when k moves in a compact set in IR-{O}

We have

(~*(. ,k)x,f)0 = (x ,F (k) f ) x
(12.25)

(k C JR—{Oi, x € X, f C L2 6 (I,X))

(ii) Let x C D . Then 
•

(12.26) n*(r,k )x = ~~~ ~(r)e 1 r ,k)X — h(r,k,x)

where ~(r) is as in Proposition 10.7 and h(,k,x) is the radiative

func tion for {L,-k,L[f0]} wi th

(12.27) f0(r) = 
~~~~~~~~ CL — k2)(~e1 t ’

~~~ x )

(Iii) There exists C = C(k) , whi ch i s bounded when k moves in

a compact set In P-(OJ , such that

(12.28) IIn
~
(
~
,k)x I I

~~~
< Cl x I x ( X E  X)

{r~(,k)x} converges to ~*(,k)x in L2~~~(i ,X ) n H I
5
B( I ,X) l0~ for

• each x E X .

(iv) 1*(.,k )x H ’
~~

( I ,X) m0~ 
r~ D(I) and satisfies the equation

(12.29) (L - k2)v(r) = 0 Cr C T,k C IR-{O} ,x C X)

~*(r ,k)x is an x-valued , continuous function on T x (IR—{0}) x X

PROOF. Ci) and (ii) can be obtained by proceeding as in the proof

of Theorem 10.6 and Proposition 10.7, respectIvely. Let us turn into

the proof of (iii). The uniform boundedness of iIr ~ (~~k)xii ..~ follows

from the relation

____________—-—-

~~~~~

-.

~~

—•

~~ 
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(12.30) (~*(. k)x f) = (x,F
~
(k)f)

~

Cf C L 2 ~(I ,X), n = 1,2,...)

and the uniform boundedness of IIF~(k)ii . Now that (10.28) has been

establ i shed , in order to show the convergence of {ri~
(.,k)x} to

~*(.,k)x in L2,~~(I ,X) it is sufficient to show for x C D

(12.31) n~(.,k)x ~~~~~~~~~ (k C R-{O})

in L2 . ~ (I ,X) . Applying Proposition 10.7 to Ln , we have

(12.32) ri~(r,k)x = 
~~~~ ~~~~~~~~~~~ 

— hn (r ,k,x)

for xE 0 , (r,k) ETx ]R-{O} , where h~(•,k,x) is the radiative

function for {Ln~
_k
~L•

[•fn]} and 
~~~ 

= (L~ — k2) (~e1M~~~
t
~ x) . Since

• ~~~~ 
can be easily seen to converge to f0 

= CL - k2) (~e1 r.
~
k)X) ~

L2~~(I ,X ) , Theorem 4.5 is appl ied to show that {h(,k,x)} converges

to h ( , k,x) in L2,~~(I ,X) , which impl ies (10.31). Noting that

n (r,k)x satisfies the equation (L~ - k
2)v = 0 , we make use of the

interior estimate and the convergence of {r~ (•,k)x) in L2,_~(I ,X ) to

show the convergence of {~~(,k)x} in H1
~~

(I
~

X ) 1oc wh ich completes
• the proof of (iii). We have

(fl*(.k)x (L - k2)~)0 
= 0

(12.33)
(k C R—{O}, x E X , • E C~(I ,x))

by letting n in the relation

(r~ ( ,k)x , (L~ — k2)~)0 
= 0

(12.34)
(n ’l ,2,...,k E R—{0},x E X ,p C ( I ,X ))  

.. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The first half of (iv) follows from (10.31 ) and Proposition 1.3. The

continuity of fl*(r ,k)x can be shown in quite the same way as in the

proof of Theorem 10.8, which completes the proof.

• Q.E.D.

Now the Propositions 12.2, 12.3, 12.4 have been established , we
• can show the expansion theorem (Theorem 11.6) wi th the orthogonality

of the generalized Fourier transforms F~ (Theorem 11.8) in quite the

L 

same way as in the proof of Theorems 11.6 and 11.8. Therefore we shall

omit the proof of the following

THEOREM 12.5. Let Assumption 12.1 be satisfied . Then the gener-

al ized Fourier transforms F~ is well-defined by Definition 11.4.

and the adjoint F~ can be represented as (11.16) and (11.17), respec-

tively. F~ are orthogonal and (11.21 ) holds good.
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Concluding Remarks

1° For the proof of the unique continuation theorem (Proposition

1.4) we referred to the unique continuation theorem for partial

di fferential equation. On the other hand J~ger (31 gives the unique

continuation theorem for an abstract ordinary differential operator

with operator-val ued coefficients which can be referred to i n our

case.

2° Our proof of the limiting absorption principle was along

the line of Saitö [31. In Ikebe—Saitö [1) and Lavine [11 the

SchrödInger operator was directly treated and the limi ting absorption

principle for the Schrödinger operator with a long-range potential

was proved.

3° In §5 we introduced the kernel Z(y,k) of the stationary

modifier A (y,k) as a solution of the equation

(13.1) D~ {2kZ(y) - %(y) - Z(y)
2 

- ~(y)) - O(~y~~~
C) (j-O,l , ~>l)

r Noting that Z(y)2 + ~(y) — (grad A)2 , we can rewrite (13.1) as

(13.2) D~ (2k 
~~~ 

-Q 0(y) - (grad A) 2) - O({y~~i~~) (j-0,l, ~>l)

40 Our proof of Theorems 5.3 and 5.4 is a unification of the ones
in Saita (31 and (61. The method of th~ proof has its origin in

Jäger [31 in which he treated an di fferential operator wi th operator-

valued, short-range coefficients.
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50 In §5 we defined the stationary modifier by a sort of

successive approximation method. The condition (Q0) was assumed

so that the successive approximation process may be effective.

As a result our long—range potential %(y) Is assumed to satisfy

the estimates for the derivatives ~~~~ j—O,1,2,...,m and m is

a rather large number. Here it shou ld be mentioned that our proof of

Theorems 5.3 and 5.4 Is effective as far as we can construct a

stationary modifier which satisfies (1) 0f Remark 5.9. Hörmander

(11 constructed the time—dependent modifier W(y t) for a type of ellipti c

operators wi th more general long—range coefficients than ours . Ki tada

(21 showed that a stationary modifier satisfying (1) of Remark 5.9 can

be constructed by starting with Hörmander’s time-dependent modifier.

If we use Kitada’s stationary modifier we can replace (Q~) by

• (
~~

) . There exist constants C0 and 0 < c ~ 1 such that

Q0Cy) Is a C4 function and

l
D’1

2
0

( y )I  ~ c0(l+ IyIr d(1) (~E~N,j_0,1,2,314)

where Di denote an arbitrary derivative of j-th order and d(j)

• (jal,2,3) , d(4) > 0 , d(1) + d(4) > 5

But in this lecture I adopted the primitive method of successive

approximation, because we need further preparations with respect to the
theory of partial differential equation In order to introduce the more

minute method which starts with Hörmander [11.
1 6° Theorem 8.7 was first stated and proved explicitly by

Kt tada (21 .

7° Ikebe (4J gave the proof of the orthogonality of the generalized

Fourier transforms by treating the Schrödlnger operator directly and

making use of the Llppmann—Schwinger equation. Our proof of the
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orthogonality of F~ is different in using Proposition 8.5 instead

of the Lippmann-Schwinger equation.

8° The modified wave operators. The time-dependent modified

wave opera tors W0,+ for the Schrödinger operator wi th a long-range

potential we defined by Alsholm-Kato [11, Alsholm [1J and Buslaev-

Matveev (11 as

(13.3) W0 + 
= s—lim eitHe~~

tho~ x~,
- t~co

where X,~ is a function of H0 . On the other hand fràm the viewpoint

of the stationary method the stationary wave operator WD+ should

be defined by

(13.4) ~~~ = F~~•~•

being the generalized Fourier transforms associated with H0

From the orthogonality of the generalized Fourier transforms the

completeness of WD,+ follows immediately. Recently the relation

— W0,~ is shown by Ki tada (11, (21, [31 and Ikebe—Isozaki

(11, whence follows the completeness of the time-independent modified

wave operator

9° In §12 we treated the case that Q1(y) Is a general short-

range potential . Then we approximated Q.1(y) by a sequence 
~~~~~~

where Q.1,, (y) has compact support in . But there Is another

method which starts with the relations

(13.5) (L-k2Y~ a (L
1-k

2
1

1 (l-C 1 (L-k
2
~~

1)

2
where I1 - -~ -~~ + 8(r ) + C0(r ) , 1 is the identity operator and

dr ~~~

--•.
•
. . __________
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v (L-k 2Y~f means the radiative function for (L,k,~4f  I } . Then

F( k )  can be defined by

(13.6) F(k) — F1(k) (l—C 1 (L— k2Y ’)

This method was adopted in Ikebe 131 .

10° In Theorem 11.9 we Introduced the generalized Fourier

transforms F~ associated wi th H. Let F0~ be the generalized

Fourier transforms associated wi th H0 , the seif-adjoint realization

of -a . In this case the Green kernel G0(r ,s k )  can be represented

by the use of the Hankel function and the exact form of F
0~~ is

know n as

(13.7) (F0~~$)(~ ) = C1 (N) ( 2~)~~ 1.i.rn. I~I<R e~~~~(y)dy

in L2(R t
~,d~) where

(13.8) C1 (N ) — _e~~~~~
t

For proof see Saitö 121 ~ §7. This means that are essentially

the usual Fourier transforms and the F+ are the generalization of

the usual Fourier transforms in this sense.

11° As was stated In the Introduction , an oscillating long-

range potential %(y) such as %(y) — 

~~ 
sin~y~ does not satisfy

any assumption. As for the Schrödlnger operator with an oscillating

long-range potential we can refer to Mochizuki-Uchiyama [11, 121 .

12° Finally let us give two remarks on the condition (5.2)

In Assumption 5.1 on a long-range potential Q
•0 

. In order to give
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a unified treatment for 0 < c ~ 1 we assumed the condition (5.2). But

in the case of < e ~ 1 we can adopt a weaker condition m0 = 2.

In fact in this case we have

(13.9) Z(y) = 

~~ J Q.~(t~)dt (y = rw),

and the first condition of (5.41 ) can be weakened as

(13.10) ~
(D1Z)(y)I ~ c(1+)yJ~~

i~~ (j 0,1,2),

because the condition

(13.11) !D
3Z(y)I ~ C(1+IyIY

3
~~

is used to estimate the term C(Z’ + P) u ,Bu)
~ 

In the proof of

Lemma 6.5 only and we can directly estimate this term without making

use of (13.11) in the case of < ~ ~~ I . Thus (5.2) can be replaced

by

(13.12) m0 > - 1 (0 < c ~ ~) and m0 = 2 (~ 
< c ~ 1)

Next let us consider the case the Q~
(y) is spherically symmetric,

I.e. Q~(y) = Q~(IyI) . In this case the stationary modifier Z(y)

is also spherically symmetric and the operator M , the functions

p (y;X) , P(y;A) are all identically zero. Therefore the proof of

Theorem 5.4 becomes much simpler. For example, we do not need

Lemma 6.6. Moreover (5.35), by which Z(y) is defined, takes the

following simpler form:

Z1(y) 2~
— ~~~ ‘

(13.13) Z~~1(y) — ~~{Q0(y) + (Zn(y))
2}

and we set Z(y ) Z where n0 is the least Integer such that

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ ~~~~~~~~~~~
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( + 1)c > 1 . Noting that the right—hand side of (13.13) does not

contain any derivative of Z~(y) , we can replace (5.2) by

(13.14) m0 
= 2 (if Q0(y) is spherically symmetric).
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