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Prface

In January 1978 I knew nothing about antenna arrays or

sproad spectrum signals other than the fact that I had hea!rd

the terms before. Capt. Stanley R. Robinson steered me onto

a thesis topic suggested by Maj. Jirgen 0. Gobien. The

bavic study involved the study of adaptive antenna arrays in
• order to determine if their adaptive natuxre would have any

adverse effects on the performance of spread spectrum com-

munications systems. By February, I made the commitment to

take on this research effort as my Master's level thesis

work.

Capt. Robinson and I spent many hours together in the

months that followed studying this problem. He provided

most of the guidance by suggesting many possible avenues of

research effort. I provided the legwork required to travel

down each of these paths. After having performed many cal-

culations, made many mistakes, and many false starts, we
eventually organized the many efforts into the document that

follows.

There were many times that I thought the research was

going to be fruitless. Once we did make our major break-

through it became a question of my ability to urite faster

than the clock could move. The clock eventually won the

race and the effort for this document had to be stopped. As

with most research efforts, the material included here is

mostly incomplete and just hints at other areas for
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continuing re~earch. Also, like so many other research

p;cojects, tho\questiors answered are not exactly the ques-

tions we started out to answer.

I wish to thank Cap';., Robinsonj my advisor, for the

many hours he 'evoted ý'.o my edu-ation during this period.

I also want to !thank my sponsor, Maj. Gobien, for the time

he devoted to get me started on this study. Thanks go,

also, to Maj. Carl and Maj. Carpinella for taking the time

to read my draft and advise me on the format and contents.

To these people I give my thanks and my friendship.

A special thanks goes to my wife, Elsie, and my three

daughters, Lois, Karen, and Christine, who stayed with me

through the trying times and long nights I spent working

on the details and the writing. To these four ladies I

give my thanks and my love.

Edward Raska, Jr.
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Abstr•acl

This paper develops a complex, baseband model for an

adaptive array. The array is assumed to have N isotrcpi.c

elements. Only two aspects of arrays are modeledt spatial

propagation delays and the weighting coefficients. TheIl array model is used to determine the effects of arrays on

wideband signals. The most important finding is that the

output of the array consists of the input signal and its

time derivatives. Each of these signal components is mul-

tiplied by a complex number that is a function of the array

and signal parameters. Properties of these complex numbers

are investigated. A four element linear array is used as a

specific example to illustrate these properties. Two

models of the weighting coefficients are analyzed to de-

velope information about wadaptive" effects. These models

are used to show how the array output is degraded by chang-

ing coefficients.
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EFFECTS OF ANTENNA ARRAYS ON BROADBAN~D SIGNALS

I Introduction

Spread spectrum is an information transmission tedt-

nique whereby a signal is modulated in such a way that the

transmitted signal has a spectrum that can be orders of mag-

nitude wider than the information spectrum. At the receiver,

incoming signals are again modulated by the same spreading

signal. This results in two effectst (1) all noise source

signals are modulated by the spreading signal and their

bandwidths are spread oiO- by the same ratio that the signal

was spread at the modulator, (2) the modulation of the infor-

( mation signal a second time results in compressing the infor-

mation back down to its original bandwidth. Thus, when the

received signals are passed through the appropriate filter,I
only the desired signal is passed without loss. Dixon [
(Ref 4+) is a very good introduction into all aspects of

current spread spectrum technology.

Antenna arrays arn simply a group of~ antennas that are

tied together electrically to yield a resultant antenna that

has certain desired reception properties. One of the most

important uses of arrays is to form a highly directional

antenna beam that will receive signals from basically one

direction. Arrays can be pointed in a given direction via

two methods: mechanical positioning or electronic steering.

The mechanical positioning technique has been used quite



extensively in radar applications. There are several draw-

backs to this techniques (I) the antenna radiation pattern

is fixed in shape and can only be pointedl (2) the physical

positioning of the antenna places limitations on its size;

(3) the rate at which the antenna can change directions is

limited by the mechanical system; (4) it is very difficult

to place a moving antenna on the exterior surfaces of an

aircraft.

Electronically steered antenna arrays can reduce or

eliminate all of the above limitations. However, they still

have drawbacks of their own. The electronics required to

shape and point the array pattern are very complex and ex-

pensive. These drawbacks have limited their use to appli-

cations where the advantages heavily outweigh the cost,

such as in satellite systems (Ref 17).

Today efforts are underway to design and build equip-

ment that combines these two techniques into a single com-

munications system. Most of the analysis performed on an-

tenna arrays has assu,.ed that incoiming signals are monochro-

matic or quasi-monochromatic. Little analytic work has been

done to determine the effects of an adaptive array on a

wideband signal. It is the purpose of thi3 thesis to study

these effects. Since the purpose is to study the effect of

arrays on signals, moot of the analysis is done without

interference or noise being considered as a parameter.

Chapter II begins the analysis by introducing the var-

ious models and assumptions that are the basip for the

2~ ~ -- -~- ----
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ensuing work. Certain spread spectrum concepts are discussed

and a complex model for a spread spectrum signal is devel-

oped. Next, the basic properties of an adaptive array are

introduced. From this, a general input/output equation for

an N element adaptive array is developed. Finally, two re-

ceiver models are developed for use in later analysis. They

are a coherent receiver and an envelope or phase incoherent

raceiver.

Chapter III is devoted to the analysis of static arrays.

Thus, the first thing it does is modify the models so that

'the array is fixed. Two characteristics of the spread spec-

trum signal are picked out and studied separately a its wide-

band nature and its autocorrelation function. In the initial

( analysis the signal is simply assumed to be a nonzero band-

width signal. Certain properties of the output of the array

are then developed and discussed. Next, the properties o±f the

output correlation function are discussed and demonstrated.

Through this development, the effect of the pulse (or code)

rate becomes evident. This chapter looks at three specific

examples: a linear, equal.ly spaced array of four elements

and two four element sparse arrays.

Chapter IV then moves on to a study of adaptive effects.

Two models of adaptive arrays are studied. There are a vari-

ety of algorithms which control the weighting coefficients

(Ref 16). It was not the purpose of this thesis to study

these algorithmns or even study a particular algorithm. H~ow-

ever, it was desirable to determine if time varying weighting



coefficients have any additional effect on the incoming sig-

nal. An a result, the adaptive nature in viewed as a per-

turbation of a desired static condition. The first model of

the perturbations assumes they are sinusoldal. The effects

of both the amplitude and the frequency are then investigated.

The second model asoutnes that the perturbations are Gaussian

processes with known statistics and a statistical analysis

of the effects is presented.

Chapter V is devoted to summarizing the conclusions

drawn throughout the thesis. It then proceeds to make sev-

eral recommendations for further study based on these con-

clusions.

(
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II system Models

This chapter introduces a complex baseband model for

the spread spectrum signal. It then develops a model ior

the adaptive array. Using the spread spectrum signal as

the input, an equation for the output of the array is then

developed. This equation will be used in the later chapters

as the basis for all the analysis. Next, the models for the

two receivers used are presented. Finally, the chapter ends

with a discussion of the performance criteria to be used in

the analysis.
A. Signal and Arr Euaion

It is the purpose of this section to introduce those

ideas from the theories of antenna arrays anL spread spec-

trum techniques that are used as a basis for the main thrust

of this thesis. It is assumed that the reader has a back-

ground in antenna theory and is familiar with spread spec-

trum techniques. Thust this section will prove to be a

short review and will also introduce the various simplifying

assumptions used to keep the array analysis tractable.

Figure I illustrates the basic coordinate system that

is used. It is a spherical coordinate axis with parameters

(0,o , r ) to designate position. The location of the i'th

element of an antenna array is designated by (A ,

The source of the signal is located in the far field or

Fraunhofer region at angles (60,f ). This region is usually

defined to begin at a distance of 2L 2/A from the antenna

.5i
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•.p(t) Tw -/j
PM F n FlqF I-r

'1 - Tc

= chip period chip frequency
TTw = word period c

Figure 2. Pseudo-noise waveform.

where L is the largest antenna dimension and A is the wave-

length of the carrier frequency (Refs 8t6 and 19,32-60).

( The spread spectrum signal used in this thesis is com-

posed of two parts: the information signal and the pseudo-

"noise signal (PN code). The information signal is consid-

ered to be a voice signal or a digitally sampled voice

signal, v(t) . Thus, the information signal can be con-

sidered a low frequency signal with a bandwidth in the range

of 10 KHz or less.

The pseudo-noise signal can be thought of as a train of

± I's that switches states randomly at a relatively high rate,

such as 5 MHz. This pulse train, p(t), becomes periodic after

some fixed number of pulses has passed. Each bit of the code

is usually referred to as a chip; the entire periodic se-

quence is called a code word (Figure 2). Pulse trains can

easily be implemented by properly connecting a recirculating

7
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N bit shift register

q 1r

bit
code

"- - -i

N q v"

9 31
10. 1023 1 3 i..

calle 1,d 2047 :1 d1l: a
•.,,-iFigure 3. .••a'ximal length .code generator. ,

•,register of N bits in length to create a 2N - it pulse

i:train (Ref 4,80) (Figure 3.This type of code sequence is ,

called a maximal length code. One of the desirable proper-

ties of the code word is that it has low autocorrelation if

the time shift is a full chip width or greater. It has been

shown (Ref 9s148) that the codes generated by the recircu-

lating register of Figure 3 have this property.

As Dixon (ReI' 4:14-23) has illustrated the power spec-

trum of a PN code always has a (sin x/x)2 character where

the first null of the spectrum is at the clock rate of the

codet i.e., the first null of a 5 MHz code is located at

f = 5 MHz . He also shows that about 90% of the code power

is located within the first null. Thus, the code bandwidth

can usually be considered to be the bandwidth of the main

lobe of the power spectrum. Modulation of the information

signal by the pseudo-noise signal creates the spread spectrum

signal. Since the purpose of the code is to spread the

8



signal spectrum, its spectrum is usually much wider than

the signal's spectrum. Thus, the bandwidth of the spread

spectrum signal is very nearly the bandwidth of the code.

This modulation can be modeled in one of two ways. The

pulse train can be thought of as a direct amplitude modula-

tica of the signal or it can be looked -at as a phase modu-

lati on,.- of the carrier frequecy where

The spread specLtrum signal is then translated to the

carrier frequency, f P for transmission. During any numer-

ical calculations performed later, f will be considered in
the UIIF range; about 350 MHz. Bringing these elements to-

"gether using the phase shift model for p(t), the spread

( spectrum signal becomes

S(t) - -W,,*,[2.÷, (1)

This can be written as

R e s (2)

where stands for the real part of the complex ex-

pression. The complex envelope of s(t) is

V(0) , (3)
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Thus,

s0t) Re1(4

S(t) is considered the complex baseband representation of

the spread spectrum signal.

The array is also modeled us..ng a complex baseband

representation. Siiice our primary interest is to model the

prnpagation and weighting effects of the adaptive array, a

variety of simplify'Ing assumpti.ns are made. First, all

antenna elements are assumed to be isotropic in nature.

Second, since we are concerned primarily with small arrays

(few elements), mutual coupling effects are ignored.

With these assumptions, there are only two effects to

models the spatial effects and the adaptive effects. The

spatial effects modeled are simply the relative propagation

time differences between the elements of the array and the

origin. Typically, one element of the array is chosen as

the origin and the propagation delays (or advances) are

measured with respect to this element. The propagation

delay, i , is the time that elapses from the moment the

signal wavefront reaches the origin. Figure 4 shows a typ-

ical relationship between the signal and two elements, one

of which is considered the origin. The propagation delay

from the i'th element to the origin is precisely (X - Y)/c

where o is the velocity of light. However, it is well known

that if the angle, a, is small then Y is approximately the

10



ti(t)

ricoslyý
C a

x Y

Element i

Element 1

Figure 4. Propagation delay, ti.

same as its projection onto X. Thus, the distance X - Y

can be closely approximated by the distance r. eos • A

This is basically the same assumption used to identify the

far field region, i.e., X and Y are approximately parallel.

This approximation is correct to within 1% error if the angle

a is less than 8 . The worst case for this approximation is

when X = Y ,because r. then subtends the largest angle a.

In this case, the ratio V/, must be greater than 7.2 to

keep angle a less than 8'.

Using the above approximation for the propagation delay,

we obtain

11



where the angle q can be calculated as follows (see Fig. 1),

Cos Cos goo + SonG.esin , cos(v - 0(6)

The propagation delay, k4, has the effect of delaying (or

advancing) the signal by the amount, i . Thus, the signal

at the i'th element can be represented by

L4
Re j ((A

Thus, the complex envelope of the delayed signal becomes

+= (8)

As stated earlier, the array is to be modeled using a complex

baseband representation. Therefore, the adaptive effects

can be modeled simply by a complex weighting term, (

used as a multiplier on the signal at the i'th antenna

element. Multiplying the signal by the weighting coeffi-

cient results in the complex output of the i'th element.

4 e -I) . )+A21, A,)
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Now, since mutual coupling effects are being ignored in this

analysis, the output of the array is simply the summed out-

puts of the individual elements. Thus, the resultant output

of the array is represented by

A''ý

S=

This, then, is the complex baseband model of the array for

a spread spectrum signal. Aj (1)) . and -K(.) are all

parameters of the array. They each have an effect on the

output signal of the array. Chapters III and IV of this

S( thesis analyze the effect of these parameters on the ability

of the array to pass the information undistorted.

B. Receivers

Eq (10) is the output of the array. This becomes the

input to the receiver. One of the objectives of this thesis

is to determine what effects Eq (10) will have on receivers.

The operation of two receivers is analyzed in Chapters III

and IV. This section presents the models for those two

receivers.

One receiver used is the correlation detector shown in

Figure 5. With this receiver we assume a priori knowledge

of both the transmission frequency and the pseudo-noise

code. However, it is assumed that there is a start time

uncertainty, T , in the code generator resulting in mismatch

e-1
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!I -' ! ~p(t )

OMt ./ Threshold
Detector

Cos 0T

a. Pulse String Model

Detector .

[ ~cos(.7f(. +A#,(t't))
b. PSK Model

OM__ Threshold
_O~~tR Nit]L'd:F -' Detec tor

(t~l ctV•r + bý

c. Complex Baseband Model

Pigure 5. Correlation Detector.

between the transmitter and the receiver. Both are used to

modulate the output of the adaptive array and the result is

passed through an integrator. This system would be used if

the information, v(t), is also transmitted digitally. The

integrator period, T, is the period of the information code.

Recalling that the array was modeled using a complex, base-

band representation, it is desirable to use the same type

model for the receivers. By employing the PSK form for the

PN code, the model for the correlation receiver becomes a

14



multiplicaation by the complex exponentiale

followed by the detection circuitry (Fig.5c). The phase

shift, b, is used to shift the signal phase so that any

desired component of the complex signal can be observed at

the output of the detector.

The other receiver examined in this thesis is the

envelope detector illustrated in Figure 6. It is used in

an analysis to judge the effect of not knowing or even

estimating the phase of the carrier on the output. The

baseband model of this system (Fig. 6c) is simply a corre-

lation oppration followed by an absolute value operation.

Both models have used the offset t to represent

tining mismatch between the transmitter and receiver codes.

If Z is kept as a parameter, then the receiver output is

a function of V. As t is allowel to vary the output be-

ccnes the correlation function of the array output and the

code. The properties of the correlation function are em-

phasized in the examples of Chapter III.

C. Performance

The designers of adaptive arrays consider performance

in tc3ris of parameters like the antenna directivity, the

main lobe beamwidth, the number of degrees of freedom, etc.

(Ref 10). They also investigate how fast the array adapts

from one steady state to another, how well the array nulls

point sources of interference, how many noise sources can be

nulled or how many degrees of freedom are used up to null a

15



a. Pulse String Model

b. PSK Model

I
OW C(t)

ptA ft)

c. Complex Baseband Model * Low Pass Filter

-( Figure 6. Envelope Detector.
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specific noise source or group of noise sources (Refs 1.1 and

12). All of these performance characteristics are important

and need to be known for any given system. But these are

incomplete for total description of the coummunication eye-

ter of which the array is one part.

There is another series of performance criteria that

should be studied. The effect of the array on a signal can

be analyzed from the viewpoint of the 'rray as a filter. As

such, the array's performance can be discussed in terms of

signal distortion. The array affects incoming signals in

several ways, each of which causes distortion. First, the

arrays have frequency dependent radiation patterns (as do all

antennas). These patterns cause attenuations and phase

shifts of the various frequency components of incoming

signals. Since the effect is different at different fre-

quencies, this will result in a distortion of wideband sig-

nals such as spread spectrum signals. If the distortion is

great enough, the characteristics of the pseudo-noise code

will be lost and the receiver's internally generated code

will not be able to synchronize with the signal's code.

Without code lock, the system cannot recompress the spread

spectrum signal back down to its original bandwidth and the

information will be lost. The receivers perform a correla-

tion of the received signal with the code. Therefore, in-

stead of looking at the signal directly, we will investigate

the effects of the array on the properties of the correlation

function of the code.

'75
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Second, the weighting coefficients are time varying in

an adaptive system. They are used as multipliers to the

Incoming signal and thus they become a direct modulation of

the incoming signal. In Chapter IV, two models for the

weighting coefficients are investigated to determine con-

ditions under which the time varying properties of the

weighting coefficients cause additional signal distortion.

I!
-It

I

II".
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kIl et na= of I Arrays

This chapter analyzes the performance of arrays when

the weighting coefficients are fixed. A variety of static

cases are studied. The cases analyzed are not in them-

selves supposed to represent actual syatems. ThM effects

17 on the output of the system geometry and the locat 'on of

the signal in the antenna pattern are studie'ý.

A. Fixed Array Eauation

The analysis begins by modifying the array equation

for static conditions. Thus, assume

where A4 and "N' are real constants. Then Eq (10) becomes

" 0(,9 A-) :~A- v(1t ' (12)

or as written in the frequency domain

~ e ~ r L f ai r (1P)

where represents the Fourier transform.

At this point, it becomes interesting to study the

array properties separately. As such, the specific signal

form is uninteresting. Thus, for simplicity, let m(t)

"19
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represent v(i)eiPC4)and M(f) represent Jqvooe E- (13)

becomes

5(e MLf,)= (14)

This is a function of the variable f. a(9, 9,f) is the sys-

tem output and M(f) is the system input. From linear system

theory, the ratio of the output to the input is considered

the system transfer function, H(f). In this case, the sum-

mation term becomes the transfer function

N
412

However, the transfer function in this case is no sim-

ply a function of frequency. It is also a function of the

weighting coefficients (-c and A ), the signal's location

(e and 4)), and the array's geometry (. )r All these

other parameters, except the signal location parameters,

become fixed for the case of the static array. Thus, the

array's transfer function can be considered as a function of

9 , (, and P . The dependence of the transfer function on

Sand f is in the dependence of the Z! on 9 and 0 (see

Eq (5) for details).

At this point it becomes necessary to introduce the

concept of the phase center (Ref 19M72). In essence, the

phase center is the geometric center of the array. If the

origin is located at the phase center, then the sum of the

20
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time delays becomes zero.

N
0 (6

In an arbitrarily located coordinate system, the phase center

will be located at a time delay point 4 , It then becomes

true that

0 (17)

Thus,

N

Therefore,

N
" j (19)

With this concept in mind return to Eq (15) and factor out

the phase center term. The result is

Aj e (20)

21
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Now the summation term can be expanded into a Taylor series.

The result is

J'•, #i* -0A 1 . r.W i.-

rj.r (04- t

Is" O3 2: A

0 ' I A

A 4 ~ ~(21),

( where

..- ...e.. .. .. .. )

and

N [.

It should be noted that A and B are functions of all the

physical array parameters, the carrier frequency, and

(through the • ) the angular relation between the signal

location and the array orientation. Because of the func-

tional dependence on a wide variety of system parameters, $

the author has decided to make the functional dependence

22



implicit in the terms themselves. Later, however, functional

relationship with the signal's location will be made explicit

by referring to these terms as A(e ) and B( o ), where

will represent the signal's location. However, the reader

should recall that the dependence on all the other system

parameters still exists.

Combining the results of' Eqs (20) and (21) into Eq (14)

we obtain the system output

The first exponential is recognized as a phase shift that is

functionally dependent on the relationship between the loca-

tion of the signal, the location of the phase center, and

the location of the origin of our coordinate system. The

second exponential is a linear phase term that is also a

function of the same points. Eq (24) can easily be trans-

formed into the time domain by recalling that a linear phase

shift transforms into a time delay and that (P2w9)" trans-

forms into the n'th derivative. Thus Eq (24) becomes

•Ce,#, 4,•) e~';Z {•( ),, A. r,.•, .

S)i+"' (25)

23
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It should be explained at this point that Eq (25) is a

baseband representation of the system. Thus, signals used

in this equation must be written in their comple" baseband

form. For example, a monochromatic signal, cos .2 , at

the array's center frequency, f0e has a baseband representa-

tion of m(t) = 1.0 (i.e., a d.c. component) i, this equa-

tion. Thus, the monochromatic signal has no derivative terms

and the output of the array is just the first term of the

series.

At this point one might ask why the phase center terms

were factored out of Eq (15) before performing the Taylor

series expansion. The purpose is to separate the array

geometry effects from effects due to selection of the origin.

( The terms factored out of the array's transfer function were

dependent on the selection of the origin. The remaining

terms are simply a function of the array and signal geometry.

As Eq (25) shows, the origin dependent terms result in a

phase shift and a time delay.

Now Eq (25) provides several very important insights

into the operation of antenna arrays. Foremost is that, in

general, the output of an array is the sum of the signal and

all of its time derivatives. The signal and its derivatives

are each weighted by complex numbers before they are added.

These complex weightings are derived from the signal and

array geometry. They account for most of the typically ob-

served properties of arrays. Eq (25) was obtained through

a power series expansion. A similar operation can be per-

formed on any system transfer function providing the

24



expansion is carried out using inverse powers of f, also.

As will be seen later, the utility of this expansion is in

the fact that the first two terms are sufficient to repre-

sent the system output of arrays.
The first term, ^(.tA,)e-Jji- ' has usually

been considered the sole output of the array. The summa-

tion term is commonly called the array factor and is used

to determine the properties of arrays (Ref 10tChapter 1).

Such things as the radiation pattern of the array, the main

lobe location and beamwidth, null loc&tions, and sidelobe

properties are derived from this term. In fact, all the

usual properties of arrays have been studied using only this

first term of the series expansion. From the viewpoint of

this Taylor series expansion the first term is the sole out-

put of the array if and only if f = 0 ; i.e., the input is

monochromatic at the array's center frequency, f Nearly

all antenna work makes this assumption or assumes the signal

is close enough to a monochromatic signal in nature that the

assumption yields valid results.

The derivation of Eq (25) shows that the time deriva-

tives are present at the output of the array. The question

should arise, then, why haven't the higher order terms of

Eq (25) been observed? There are a variety of reasons of

which the two most basic ones will be describeds (1) the

complex weighting factors and (2) typical operating

techniques.

Under most circumstances the higher order terms are

25

-. 7 7.77---M



extremely small compared to the first term and are not ob-

servable as a result. The basic reason for this has to do

with the ( .i- )" factors found in the other terms of the

series. The and . of most systems are on the order of
10-6 seconds or less. By attenuating the output of the

first derivative term by this amount it is virtually un-

detectable in comparison to the first term of the series

expansion undea most operating conditions. However, in the

neighborhood of nulls the first term of the series expan-

sion becomes almost zero. Thus, in the neighborhood of

nulls, the derivative term should be of comparable magnitude

with the signal term and its existence and effects should be

observable.

--.. The-second.-reason-for- --not -seein-g te higher order terms

is related strongly to the first reason. No present day

system operates with the signal located at a null of the

system. In fact, most systems attempt to steer the array

at the signal. Recall that A W 0 906

the k; are identically zero and there are no propagation

delays (the same holds true for 4). This location is the

natural main beam axis of the array. Replacing the it and

It in Eq (25) by zero results in the loss of all terms of

the series except the first term, the term containing the

signal m(t). This means that none of the signal's deriva-

tives are passed through the array. The output is simply

an amplified and phase shifted version of the input signal.

Thus, there is no distortion. This is why the main beam is

26
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an ideal location for the signal as has been known from all

previous work in this field. Thus, most operating systems

L have not observed derivative terms at the output.[ There is another observation that can be made about

Eq (25) at this time. In general, the signal and all its

derivatives will each be multiplied by different complex

numbers. Each of these complex numbers will change the gain

and phase of the signal and its derivatives. Thus, all the

terms will have different phase angles. This means that if

a phase tracking system could lock onto the phase of the
signal then only the projection of the time derivatives ontoI this phase axis would be observed at the output. In fact,
if the signal and its derivatives are shifted with respect

( ~to each other by a full 90' there would be no time deriva-I
tives observed at the output. This property will be illus-

trated in the example in the next section.

There is one final concept about Eq (25) to be studied

here. It was shown above that the derivative term is multi-

plied by a complex number that is usually many orders of

magnitude smaller than the complex number that is combined

with the signal. Thus, at most locations the signal term is

dominant. However, this implies that the signal and its

derivative are comparable in magnitude. The true determina-

tion of-the output is the product of the signal and its gain

and the product of the derivative and its gain. If the

derivative term is many orders of magnitude larger than the

signal term, this could offset the effect of the complex
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constants to the extent that both the signal term and its

derivative term would be observable in areas other than at

the nulls of the array. In fact, if the derivative is

large enough it could, in itself, become the dominant out-

put everywhere except at the main beam axis.

Papoulis (Ref 15t178-182) develops a bound on signal

derivatives based on the signal's energy and bandwidth. The

energy of the bandlimited signal, x(t), is defined as

E f. Ixct)l O f 1X(f)l (26)

where X(f) is'the Fourier transform of the signal x(t) and

f is the frequency limit cn the transforms i.e., X(f) = 0

for If) Z- fc Using this, linear system theory, and

the Schwarz inequality, Papoulis shows that

...... L r (27)

The equality holds at time t to only if X(f)=

where k is a constant.

This bound is very useful in that it shows two methods

by which the derivative term can be kept below certain

desired levels. The first is to keep the signal energy low

and the second is to keep the bandwidth of the signal low.

However, both of these conditions counteract other desirable

features such as the desire to have E large for high signal

to noise ratios and to have wideband (fo large) signal
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transmission (spread spectrum, for instance) for anti-

jamming purposes.

Eq (27) is not an equalityl it is simply a bound on

the derivative. It leaves the impression that the deriva-

tive increases with increases in the energy or the band-

width, but it doesn't prove this. What Eq (25) has shown

is that the derivative term is passed by the array. Pa-

poulis has defined two parameters that can be controlled to

keep the derivative bounded and thus keep the derivative's

effects under some arbitrary level. However, research in

this area could determine signal sets that have much smaller

derivatives than it,-,n bound indicates. This research will

become necessary if the trend toward using both antenna

S( arrays and wideband signals continues.

The analysis to this point has shown the effect the

array has on the incoming signal. As Eq (25) shows, the

output of the array is, in general. somewhat different than

the signal that entered. The question arises, then, what

effect does this output have on the system's receiver.

Eq (25) is too general to give specific results, but certain

characteristics can be discussed.

First, we look at the coherent receiver of Figure 5.

To operate properly, this receiver must measure the phase

of the incoming signal and set the local oscillator phase

to match this phase. Then the receiver will be "locked"

onto the signal. Eq (25) reveals a potential problem with

this scheme. There are a variety of signals coming through;

29
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the signal and all its derivatives. They are all at differ-

ent phases. The overall effective phase is a weighted sum

of all these phases. A phase tracking system will probably

lock onto the overall phase and thus will not be precisely

aligned with the desired signal. When the derivative terms

are small compared to the signal term, the composite phase

will be almost identical to the signal phase and the coher-

ent receiver should function normally. However, near the

null points, the signal term is highly attenuated and the

phase will become more controlled by the derivative term.

If the phase shifts away from the signal, the loss of coher-

ence will obviously degrade the performance of the coherent

receivers. The example of Section III. C. will explore

2 ~the output phase in detail and show, for a specific array,

and signal, just how drastically the phase can change near

the nulls.

Although it is difficult to determine how Eq (25) will

affect the operation of coherent receivers, it is very easy

to see how it will affect the envelope detector of Figure 6.

The envelope detector will just be the magnitude of the

overall signal. Thus, if any of the terms is significantly

larger than the other terms, the output of the envelope de-

tector will basically be that term. Thus, qualitatively we

realize that in most areaul the output will be the de~sired

signal. Close to the nulls the first derivative term will

become dominant and the output will appear to be the first

I 2 derivative. At some angular distance from the null, the
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Figure 7.Linear, Equally Spaced Array.

signal term and the first derivative term will be approx-

imately the same and the output will become their vector

sum. The example of Section III. C. will also examine this

situation in more detail.

Although Eq (25) contains the necessary information

needed to draw all the above conclusions it is still useful

to examine several specific cases that make the results

more quantitative. The specific examples will illustrate

more clearly just how far off the nulls that the derivative

term is still significant. The examples will also discuss

more quantitatively the effect of the relationship between

the signal and its first derivative.

B. Linear, Eguall'y Sp'aced Elements

Consider the case of a linear array with N elements all
spaced equally as shown in Figure 7. Also, assume there areL
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no element weightus i.e.i A. - , * 0 . w ti~ the

spacing and geohmery shown the time delays d. become

' (.A "1)• a, CG . It should be noted that this geometry

has removed dependenc4 on the spatial parameters f . Thus,

f will be dropped from the equations hereafter. After

substitution Eq (14) becomes

tv .W (r. -)•o

M ,E Co's (28)

Following the example of the general case, we would

expand Eq (28) in a Taylor series at this point. This would

result in an infinite series of summations of N elements

each. However, the summation in Eq (28) can be performed

directly resulting in

: ]

I N~e now observe that M(f) is multiplied by two exponen- l

tials and a trigonometric ratio. The exponentials are the l

phase-center terms obtained in Eq (20) where

Gini

C3 .

M(;)Cxp32

Yý XP 11_,r _-C 09 si[V(+Jdr.9 (9



The first exponential is independent of f and is simply a

complex constant when the array parameters are defined. As

such it just creates a constant phase shift of the array

output that can be measured and compensated for by a phase

tracking system. The second exponential is a linear func-

tion of the frequency f. As such it causes a simple time

delay of the signal output.

Now the trigonometric term in Eq (29) can be analyzed

using a Taylor series expansion. The result is

f.~4) dcos 0 C

S (, ÷3)

where

-w ,- , e s ( 3 . )

where the expansion has only been carried out for the first

two terms. Thus,

A - N3" (34)
Sin

and

,-( t4S(- Sin(r CS()
3 (3)
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Obviously, both A and B are functions dependent on the array

parameters and the signal location, 0. However, i .ey are

shown as simple constants in this frequency domain analysis.

A is the familiar radiation pattern for linear, equally

spaced arrays and is used to obtain all the monochromatic

and "quasi-monochromatic" results that have been published.

Inserting these expressions into Eq (29) and inverse trans-

forming yields

F
*6 (e, ;t) = mnZ +~ x~~i.*

* dlm(* )+ (36)

The value of this expression is in the following obser-
vations. First,; m(t + t c) and its first derivative are

multiplied by the same complex constant. Thus, this term

shifts both terms by the same phase. Second, the factor A

is purely real, while the factor B, although complicated, is

purely imaginary. Thus, these two terms will force the

signal m(t + t ), and its first derivative to be separated
C

in phase by 90-.
This is a very interesting result because it reveals a

possible technique for improving the array operation. If a

phase tracking loop can lock onto the phase of the signal

term, then the phase can be shifted so that only the signal

will be along the imaginary axis and will not be observed at
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the output of the correlator.

The linear array results obtained from Eq (36) are

useful, but quantitative results still haven't been inves-

tigated to determine the extent of these effects. Thus, the

next section derives results for a specific case of Eq (29).

C. Four Element, Linear Array

The specific example to be studied here will have the

following parameters.

N 4

d=

s 350 M He

Substituting the first two parameters into Eq (29) yields

0(6' aM~ M X[ata 9 e xp[jco] C i~wI i)os G IA )" (37)

This equation can be analyzed in exactly the same way the

linear array equation was analýzed in the last section.

First, it is easy to recognize the first exponential as a

constant phase shift that is a function of the signal's

location, 0 • Second, the other exponential is the time

delay term that is also a function of 0 . It should be

noted that both these terms reduce to 1 for 0= 90*. This

is the location of the main beam axis for this array. Thus,

for signals located on the main beam axis there is no phase

shift or time delay caused by the arrayr, Finally, it should

be realized that these terms do not distort the signal; they

only shift it in time and phase. However, the system
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designer must compensate for these terms in his design (this

may not be trivial for multiple signals and rwultiple loca-

tions). Thus, for this example, only the ratio of the sine

functions is left to cause any signal distortion.

In the last section, this term was expanded around

f 0 and only two terms in the expansion were analyzed.

No analysis was made to indicate when the third and higher

order terms can be ignored. The usual criteria for ignoring

the higher order terma is that the function that has been

expanded is almost linear in the region of interest around

the expansion point. In this case, the region of interest

is the bandwidth of the signal.

The (sin Nx/sin x) term of this example can be expanded

exactly like the similar term of the last section. This

will, in fact, be done shortly. First, however, a slightly

different approach will yield more in3ight into when the

higher order termu can be ignored.

Figure 8 is a plot of the sinusoidal ratio for several

values of O • This figure shows the effect on frequency

components as far as 100% away from the carrier frequency,

fo' For moderately wideband signals in the UHF range, the

ba-dwidth-to-carrier ratio would be less than 10% and in

most cases more like 1% or 2%. Thum•, the region of interest

is confined close to the vertical axis in Figure 8. When

f/f is small, Figure 8 shows that the curve is very nearly k
linear.

Assume for a moment that in the bandwidth of interest
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the curve is precisely linear. Then the last term in

Eq (37) could be replaced by a term of the form A+ •ar8

where A and B are real constants that are evaluated for each

value of e. Letting , , Eq (37) then becomes

Ae MIWt ,;T MW (35)

Now the above can be transformed back int-') the time domain.

et 'Am(l *X) +*~CoG .&& 4)

The first term is simply the signal shifted in time and

moved in quadrature by the exponential term. The second

term is the time derivative of the time shifted signal. It

is also shifted in phase by a constant amount. Note that

this phase shift is 906 less than the other phase shift.

If a receiver could track one of these components, it

would not see the other component. If a coherent receiver

looks onto the phase of the first term, the output will be

the desired signal. If it locks onto the phase of the sec-

ond term, the output will be the derivative term. If it

locks onto the composite phase of the outpat, then the out-

put will be determined by the relative magnitude of the var-

ious terms. As will be shown shortly, the signal term is
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dominant in most regions. Thus, the phase will be close to

the signal phase. Near nulls, however, the dominant term is

the derivative and the phase will shift toward the deriva-

tive's phase axis.

An envelope detector (as shown in Fig. 6) would pass

the magnitude to the receiver. Thus, the output of the en-

[! velope detector would be

C.(* =[(Am(k+A.))~ ~~dw~~) (40)

after the quadrature detection. The first term is the de-

sired signal. The other term can be considered a noise term.

As long as this term is small compared to the signal, the

receiver will be able to operate. This can occur in several

ways: B can be very small compared to A or the derivative

can be small compared to the signal.

The results of Eqs (39) and (40) were obtained based on

the assumption that the trigonometric term in Eq (37) can

validly be modeled as a linear function of frequency. As

stated earlier, the curves of Figure 8 indicate that this

model is valid for f/fo " .1 .

We can now evaluate the constants of the linear model

through the use of the Taylor series expansion. Substitu-

ting the array parameter into Eq (32) yields

e% Cos& )
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Thus,

.s'n(G1rcoo) (42)
sin( ~cose)

anid

k ~ ~ ~ ~ ~ ~ i c .~, •o )• .T .. oa ,,. 0) (43)•Jn(2r )

The term A is the usual array factor term used for

antenna analysis. By plotting IAI in a polar plot, we

obtain the antenna radiation pattern (Fig. 9). The main

lobe, side lobes, and nulls are defined according to this

term. As can be seen, this array has nulls at 00 and 600.

( By plotting IBI in a similar way we have what can be

called the "time derivative radiation pattern" (Fig. 10).

By observing these two plots, a very interesting phe-

nomenon is observed. The location of the main lobe and I
sidelobe peaks in the antenna radiation pattern is the loca-

tion of the nulls in the time derivative radiation pattern. I

Furthermore, it is seen that the opposite occurs. The peaks

in the time derivative radiation pattern are the same as the

nulls for the antenna radiation pattern. Later examples I'

(Section III. D.) seems to indicate that the reciprocal

relationship between these two parameters holds in general,

No effort has been expended to determine under which condi-

tions this phenomenon exists or whether it has any practical

uses. It is just pointed out that the phenomenon exists in
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the examples used in this thesis and the author suggests

that it be given a closer examination.

It is easy to show that JIA and JB are symmetrical

about both 6 = 0 and 0 a90'0 .Thus# data about

these numbers in the first quadrant are sufficient to de-

scribe their values everywhere. Table I tabulates these two

numbers in the first quadrant. As can be observed, B isU very small compared to A except in the neighborhood of the

two null points at 0* and 600. Tables II and III tabulate

these numbers in more detail around the null points. These

latter tables show that A decreases and becomes comparable

to B near the two nulls.

The values in the tables were calculated using a comn-

puter to evaluate Eqs (412) and (43). Thus, roundoff errors

are a concern when the numbers become small. This effect is

evident at the two null points 00 and 600. By simple sub-

stitution into Eq (42)l it is readily seen that A is zero at

these locations. Also, B should be zero at go* 9

The tables do not show zero results at these points. The

calculations were run a second time using double precision

numbers. The results at these three points became closer to

the correct values indicating that the errors are due to

roundoff errors that accumulate during the calculations.

What is important, howevor, is that none of the other entries

changed when the double precision calculations were carried

out. This indicates that there is no roundoff error (to

seven significant figures) in any of the other entries.
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These tables illustrate, for this example, the state-

ment in Section Ill. A. that the multiplier' of the deriva-

tive term is usually orders of magnitude smaller than the

multiplier of the signal term. This table also indicates

another valid reason why the derivative term is not normally

observed. As can be seen from the tables, B is on the order

of 10 Thuas the derivative term is attenuated by a volt-

age ratio of 80 d.B or more at~ all eignal locations. This

amount of attenuation will normally push the derivative term

down into the system's noise region.

At this point, then, it appears ludicrous to study such

an insignificant signal further. However, there are two

things that will counter this a'ctenuation effect. The first

reason is the concept of spread spectrum itself. By using a

PN coded signal, spread spectrum techniques typically give

the system an extra 20 - 30 dB of SNR capabilities -with a

practical upper limit of about 70 dB (Ref 417 and 24).I

Thus, spread spectru~m systems have the capability to detect

low level signals if they know what they're looking for.

The analysis of this thesis indicates what the form of that

low level signal happens to be.

The second reason comes from the increasing demand for

higher data transmission rates. For certain signal setes

the higher the data rate the higher the time derivatives for

constant amplitude signals. Thus, for high data or code

rates the derivative could itself be orders of magnitud..

higher than the signal. This would offset the 80 dB loss
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considerably. Theme two reasons can combine to make the

derivative term a signal that can be observed and can have

an effect on the system output.

The fact that signals and their derivatives can be

orders of magnitude different leads to the problem of de-

termining at which locations around the array that the

derivative term has a noticeable effect on the array output.

Tables It II* and III are not really in a format that

quickly show this.

* Typically a designer would indicate that the effect

* of the derivative term is ignorable if the signal output-

to-derivative output ratio is greater than some value,z 7-

A rn A) >(44)

Rearranging and taking logarithms yields

t ___n 42U? (45)

Now, the designer oan use this as a criterion to determine

those regions where the array will operate satisfactorily.

The ratio, log A/B, for the array example of this section

has been plotted in Figure 11.

To see how to use this figure, a signal and its deriva-

tive are required. One of the purposes of this thesis-was

to determine the effects of arrays on spread spectrum sig-

nals. This can be partially accomplished by determining
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the array effects on just the PN code. We recall that the

incoming signal is correlated with the code in order to

despread the signal. Thuss if the code is the sole input,

we are ultimately interested in the array effects on the

code's correlation function. It is true that the correla-

tion of a PN code word with itself is a triangular waveform

of height NT and width 2T, where T is the chip period and

N is the code length (Ref 4,64-67). Therefore, for the re-

mainder of this example the signal will be considered to be

the triangular waveform of Figure 12.

Using ths specific values in Figure 12, the ratio

has the value 5 x 10Q near ; = 0 . Also, assume that an

acceptable value for 77 is 10. Eq (45) becomes

J o.- 5 ×QO5 '-'-p
A¶3

>- 5.7 x 1.0
- 4,

7 (46)

Figure 11 shows that A/B exceeds this threshold everywhere

except very close to the two null points. If either 77 or

the ratio is increased, the area of acceptable operation

will decrease. This example illustrates the procedure that

can be followed by the engineer in evaluating his system's

operation.

In the course of studyinS the properties of this oxray, Ij

a computer program was written to iroplemcnt Eq (14). The
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Figure 12. Sample Signal.
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appendix discusses the details of this program. The only

important details needed here are that the parameters of

this example were included in the program, plots for various

signal locations were requested, and the signal used was the

triangular signal of Figure 12.

As is easily shown, the first derivative of a trian-

p,> gular signal is a square wave. The basic form of the sig-

nal and its derivative were illustrated in Figure 12. This

signal was originally selected because it represents the

correlation function of a PN code. Notice that the time

derivative has an amplitude that is 5 x 105 times larger

than the signal. This will cause the time derivative term

to have more effect on the overall output than predicted by

the constants A and B alone. This should lead the reader

to the realization that signals with triangular correlation

functions are not good signals to use with arrays if the

effect of derivatives is undesirable.

As will be shown momentarily, the plots from this com-

puter program illustrate quite nicely the results discussed

to this point. By substituting the parameters of this ex-

ample into the program we are in essence progr~mning the J.

time doma.in verolon of Eq (37) which is basically Eq (39). ,

The computer program was run for seven different signal

locationst not to, t*0, ±06, 60*, 70.53", and 90', These

locations Include -he two null positions, 0* and 60*, and

the main beam axis, 90*. The output waveform Is complex.

It can be manipulated in several different ways to obtain
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the equivalent output of real systems.

The first operation performed is to plot the real part

of the complex waveform. This is equivalent to looking at

a coherent detector that is locked onto zero relative plase.

As can be seen from the phase shift terms of Eq (39), the

phase of the signal varies from 2700 to 00 (passing through

180*) as the signal location moves from 0 to 900 while the

phase of the derivative term moves from 180° to -90* in the

same interval. Thus, at O0 and at cos'(1/3) (approximately

70.53*) it is seen that the time derivative's phase places

it on the real axis and the signal's phase places it on tna

imaginary axis. Thus, this coherent receiver will not see

the signal at these locations. At other signal locations,

S( the zeceiver will see components of both signals on the real

axis. The size of the signal will be large compared to the

derivative in most casc and the derivative won't be ob-

servable. Near 60", though, the signal's magnitude dr-ops

and the derivative component becomes observable. Figures

13 through 19 illustrate what the real part of the output

looks like. As can be seen, the output is rmo3tly the

derivative near the two nulls, 0 and .60', and it is mostly

the derivative at 70.530. At JO* w3 observe the effect of

both signals on the output. If we had selected a signal

closer to the null at 00, the derivative term would be more

evident in the output.

The reader should note that the gigurea that contain

/ • the square wave signal have low amplitude oscillations near
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caused by the Gibbs phenomenon (Ref 21105-107). In essence,

these oscillations are created any time a signal with dis-

continuities is represented by a finite length Fourier

series.

The next operation performed by the program is to plot

the magnitude of the complex waveform. This is equivalent

to looking at the output of an envelope detector. The re-

sults are shown in Figures 20 through 26. Comparing these

plots with Figures 13 through 19 shows that the envelope
S~detector yields the desired signal as an output more often

than the coherent rsceiver usedl e.g., compare Figure 18

with Figure 25. Figure 21 is the most interesting of this

group. It illustrates the appearance of 'the output when
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the signal term and the derivative term are both about the "

same magnitude. [

The third operation performed by the program is to sep-

arate the signal and its derivative into separate quadratures.

This is possible because the signal and the derivative are

separated by 900 of phase shift. Recall that this is not

necessarily true for all arrays. It holds for all linear,

I ~ set, but it does not hold for all array geometries. Thus,,

we can separate the signal and its derivative here, but they

ctunnot be separated into separate quadratures in any7 system.

output by the complex conjugate of the phase of the signal
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term in Eq (39). This multiplier is C - The

result of this operation is to leave the signal as the real

part of the complex waveform and the derivative term as the

imaginary part. The program then plots these two waveforms

separately. The results are shown in Figures 27 through 40.

Figure. 27 and 35 show that the signal term vanishes at

the two nulls and Figure 40 shows that the derivative term

vanishes at 9e0, the main beam axis. These figures quite

nicely illustrate the effect of the constants A and B from

Table I on the magnitude of the output terms. For example,

the signal triangle peaks at 2 x 10-6 (Fig. 12a). The para-

meter A has the value of -9.5 x 10-4 at 10 (Table 1). Thus,

the output of the signal quadrature should be

2 x10'6 x-9.5 X10-4  -i.9 x10-9  (4'?)

As can be seen, this is the peak value of the triangular

waveform in Figure 29. This result can be confirmed in all

the other figures shown here.

The inverted waveform of Figure 29 brings up an inter-

eatinig point about threshold detector systems. If this

array was used with a system that transmitted positive going

pulses to represent a +1. and negative going pulses to repre-

sent 0, then the detector would have interpreted the pulse

at I incorrectly. Figure 37 shows that the same pulse

would have been interpreted correctly if the signal were at

( 70. With a little thought the reader should realize that
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this effect would occur with any antipodal signal set.

Thus, a threshold detector of this type cannot operate

properly with an array unless it has some additional me-

chanism to determine the expected sign of the signal.

The last operation performed by the program is to

calculate the phase of the waveform and plot the results.

Before looking at the plots it is helpful to obtain a feel

for the type of result to expect. An example will bring

out all the relevant ideas.

To simplify the discussion, assume that the term A

and B from Table I are such that the output signal (the

triangular waveform) and the output derivative (the square

wave) have the same peak gain. Since these two outputs are

( in quadrature the output can be represented in a three di-

mensional representation of the form of Figure 41. The

triangular waveform is in the 0* - t plane. The square

wave is in the 900 - t plane. The system output is then

the vector sum of these two signals.

From this drawing it can be seen that the system out-

put phase will start at 90* at t = -T * As t goes from

t = -T toward t = 0 ,the phase will vary from 900 to

45. As t passes through t = 0 , the phase will instan-

taneously switch from 45* to -450. Then as t proceeds

toward t = T , the phase will transition from -45@ to

-90.

Although a real system cannot instantaneously change

phase, this figure indicates that the phaae makes a
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significant and very rapid phase change over the duration of

the signal when the signal and its derivative are both

equally present. A phase tracking system would be hard

pressed to track this degree of phase shifting.

Now the effect of changing the relative sizes of the

signals in Figure 41 becomes more apparent. As the signal

term is increased, the overall phase moves closer to the

signal phase. Figures 42 through 48 show the results from

the computer program.

The figures need some clarification before they become

understandable. Figure 42 is the plot for 00. At this

point, the signal is zero and the phase plot shoucld just

be the phase of the derivative term which is either 900 or

g-900 depending on its sign. However, the calculations made

by the computer do not yield exactly zero results for the

signal quadrature. The calculations yield a signal term

that oscillates above and below zero. The computer, using

an algorithm for tan-1 (x) that ranges between 90* and -90%,

calculates the phase to be -89.9* when in reality it would

have been 90.1*. Thus, when the system phase oscillates

about 90" or -90*, the computer calculates the phase os-

cillations to be wildly fluctuating between 900 and -900.

With additional programming, this effect could be elimi-

nated. However, it only occurs when the phase is calcu-

lated at a null. Thus, it is left to the reader to under-

stand the source of these graphic fluctuations at the two

null points.
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Figure 4.3 shows that the phase changes dramatically
in the vicinity of nulls. Figures 44, 45, 47, and 48 show
that the phase remains close to zero when the signal term
is dominant. Thus, in mopt regions a phase tracking sys-
tem can operate without d.,.-.ficulty. However, near the nulls
typical phase tracking systems will probably lose track due

to the fast changes in the cutput phase.

The computer program illustrated the effects of the
array on incoming signals by using a triangular signal.

This signal also yields insights into the signal/time deriv-

ative relationship.

As was mentioned earlier this waveform was initially
selected because of a desire to study the array effects on

the correlation properties of PN code pulses. What resulted
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is summarized in Figure 49. Si-ly stated, the figure

illustrates that the derivative a pulse has more effect

on the output of the correlator than the pulse whenever the

pulse width is less than one second. For a 5 MHz pulse

rate, the effect of the derivative term is 5 x 106 times

greater. This gain term will offset a lot of the insig-

nificance of B in Table I.

The basic results obtained from studying this four

element array can be summarized as follows, (1) the array

equation doe.. result in the output of both the signal and

its time derivative; (2) for this example, the signal and

its derivative are phase shifted by 9001 (5) in most areas

the signal output is dominant; (4) in the neighborhood of

nulls the phase of the output signal varies dramaticailly.
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D. Stparse A&rays

In the previous section a computer program was used to

illustrate the effects of a linear, equally spaced array on

the incoming signal. The program just illustrated the re-

svlts that had already been developed analytically. In this

section we use the computer program to obtain results for

two arrays that cannot be analyzed in closed form.

* The first array to be analyzed is a four element, linear

array. However, the spacing is unequal. The first three

elements are spaced one half wavelength apart and the fourth

element is located five wavelengths from the third element.

This type of element arrangement is called a sparse or

thinned array. The study of sparse arrays is useful for

( several reasons. First, they are still fairly easy to ana-

lyze because of the rotational symmetry of the antenna pat-

terns, that is, the output waveform is still independent of

49 (see Fig. 1). Second, in applications where the antenna

elements are mounted or an aircraft surface, the aircraft

configuration may force a sparse arrangement on the designer.

Third, and probably the most important, is the fact that the

elements are not really isotropic (due to their ý,Yn design,

due to the aircraft structure). This may force the designer

to •rrange the elements for a larger field of view. Finally,

although it is not proven here, a properly designed sparce

array -an have some of the properties of larger arrays with-

out tht. expense of the additional elements (Ref 7,121-126).

C' For the purpose of this analysis, the weighting
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coefficients will be assumed to be real and of .value one

(i.e., A- , - 0 ). This has the effect of steering

the main beam to broadside (9 = 90#). The analysis focuses

on the first two terms of Eq (25). This part of the equa-

tion can be written as

9 (6G,.f) 2 A-(0),t(ik)(PUM( (48)

where

A(9) GI (49)

and

)(50)

where d(,-d d I d, - -Id, d, - ,d, ,afnd -de . qf

The analysis begins by evaluating A(e) and B(e) in

terms of e. Because of the symmetries involved,

AMe) = A(-9) and B(e) = B(-e) . Furthermore,

A(90 - e) = A(90 + 0) with similar results holding for

B(e). Thus, all values of A(6) and B(e) can be easily ob-

tained from values of A(M) and B(e) in the first quadrant.

Table IV lists values for these two parameters in both rec-

tangular and 1polar format for the first quadrant. The last

column of the table also shows the eatio of IAI/IJBI for this

array.
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We recall from earlier analyses that A(M) is the usual

array factor. It is graphed in Figure 50 in a polar plot.

This would normally be called the antenna pattern for this

array. Figure 51 is a polar plot of B(e). We called this

the time derivative radiation pattern in the last section.

The first interesting thing to note about Figure 50 is that

it i vastly differerLt from the four element pattern of

Figure 9; it has a quickly changing antenna pattern with a

lot of sidelobes and dips in the gain. The second thing to

note is that there are no deep nulls for this array.

Having no deep nulls results in two consequences.

First, the signal term is never completely attenuated. This

is confirmed by the A(e) term in Table IV. Second, since

(. A(e) is never nulled, it and B(G) are never comparable in

magnitude. The ratio of their magnitudes is never less than

108 . Thus, the derivative term will have to be 108 times

larger than the signal term in order i'or the derivative term
of the output to be equal to the signal term. If we use the

signal of Section III. C. on this array and an envelope de-

tector, the signal will always be the dominant pa.t of the

output.

Comparing Figures 50 and 51 illustrates that A(e) and

B(e) are still reciprocally related as was noted with the

equally spaced array of the last section. As was stated

earlier, though, this relationship is simply stated as an

observation here and no attempt has been made to analyze

this apparent inverse relationship.
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Figure 50. Four Element Sparse Array, Plot ofrA(e)(

90e
Element Locations in

Max. Value 1.4 x 10-7 Wavelengths
0, 0.5, 1.0, 6.0
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Osi

270

Figure 51. Four Element Sparse Array, Plot of L(e)I.
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In the last section, the signal and its first deriva-

tive were always 900 out of phase. By looking at the phase

terms in Table IVo we see that A(e) and B(G) are not sepa-

rated by 900. In fact, they are not even separated by a

constant phase. There is only one way to isolate only one

signal term with this array. To see the derivative term,

the system would have to track the phase of A(e) and then

coherently detect the output at a phase that is 90* removed

from the phase of A(e). The output would then contain only

that portion of the derivative term that projects onto this

phase.

If one is interested in being able to detect the signal

regardless of its location, this sparse array is a goodj

( array in that it never nulls the signal term. However, the

usual purpose for using an array is to be able to place

nulls on interference sources. Since this array has no

nulls, the interference source cannot be nulled.

At this point we drop discussion of this particular

sparse array and focus attention on the second sparse array.

This array is identical to the first array except th-at the

fourth element is located 4.5 wavelengths from the third

element instead of 5. Table V shows values for AMe and

B(O) for this array. Figure 52 is the polar plot of A(8)

for this array and Figure 53 is the plot of B(O). They are

somewhat different from the plots obtained for the first

sparse array$ A(e) still has a large number of sidelobes

and dips, but in this; case there are nulls associated with
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Figure 52. Four Element Sparse Array, Plot of IA(9)1,
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1800

___________2700

Figure 53. Four Element Sparse Array, Plot of IBBe)l.
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it. Thus, in the neighborhood of the nulls at 0* and 60"

the derivative term should become the dominant output of the

array. The computer program was set up for this array and

the output at 0* is shown in Figure 54. As is evident, the

derivative term comes through.

In the last section we usod the ratio IA(e)/B(e)I to

obtain a measure of the relative importance of the signal to

the derivative. The plot of this term was used in conjunc-

tion with the ratio m,(in(i) to determine when the output

would have a significant time derivative component. Plots

of the ratio IA(e)/B(e)I for these two sparse arrays are

included ae Figures 55 and 56. Figure 55 shows that r'(/)/(('

would have to be about 108 in order for the derivative to be

significant. Figure 56 shows that this array has two null

regions that would make the derivative significant. The

ratio m,(j)/m(i) would determine how far from these two nulls

that the derivative remains significant.

By comparing the three plots of B(e) (Figures 10, 51,

and 53) we can observe that B(e) is actually a fairly con-

stant function. Except for the region near the main beam

(8 = 90") its values do not fluctuate that much. A(e), on

the other hand, is observed to change amplitude quite a bit

depending on the value oi 0. It is a possibility that this

constancy of B(e) can be of value in the design of systems

that rely on the derivative term. For example, a jammer

that is designed to jam using the signal derivative can be

assured of passage at a constant level except along the
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Figure 56.- Sparse Array, Plot of IA(e)/B(9).
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main beam axis.

By observing the nulls in Figures 9 and 52 and then.

comparing the values in Tables I and V, it becomes obvious

that the nulls in the sparse array are narrower than in the

equally spaced array. This has the advantage of cutting

down on the region where the derivative is an effective

output signal.

These two examples plus the linear array of the last

section indicate how much the basic array pattern can be

changed by element spacing. There is another aspect of

arrays that these examples can illustrate. Phase steering

of arrays (as discussed in the next section) can have the

same effect as moving the elements. By electronically

( delaying the signal on one of the elements, it can effec-

tively be moved away from the other elements. However, the

more practical use for phase steered arrays will be dis-

cussed in the next section.

The basic results to be obtained from this section are

summarized as follows: sparse arrays have nulls and the

output in the neighborhood of the nulls will be dominated by

the derivative term. The signal and derivative terms are at

different phases. Unlike the linear arrays studied earlier,

this phase difference varies depending on the signal loca-

tion.

E. Phase-Steered Array

There is one last example to be investigated before

leaving this chapter on static arrays. The main beam of
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arrays can be moved electronically through a technique

callsd phase steering. This ia done by effectively de-

laying the signal coming out of each element of the array

by a specific predetermined amount. The array model of

Chapter II does not explicitly illustrate this particular

technique. However, phase steering can be viewed as a

linear phase shift in the frequency domain. This means

that a phase steered antenna can be modeled by replacing

o' in Eq (14) by the expression ( where

L. and Y. is the desired location of the

main beam axis. This expression allows for both a linear

phase shift and a constant phase shift. With this change,

Eq (14) becomes

(

By factoring out the phase center ter,'s and then expanding

the summation using the Taylor series we obtain

9o i.I

MM AI

90

...i ~ .... .. .....



Inverse transforming yields

e A

AA -... (53)

As can be seen this is precisely Eq (25) with ,4'

replaced by X - i. , Thus, all the results obtained

from Eq (2.5) are still valid in this case. The signal and

its derivatives are still present. The derivatives will

i( still tend to be insignificant compared to the signal due

to te oresence of the factors ( -A.- - )"• in the stun-

mations. The summations are still just complex numbers

that tend to phase shift the signal and its lerivatives by

different amounts. However, this phase shift has become a

function of A.4 and csa now introduce a phase-shift tlat

varies with the steering term.

In the linear array the signal and its derivative were

separated by 90O. To observe the effects of the phase

steering term on linear arrays substitute the simple four

element array parameters of Section III. C. into Eq (51).

It becomes

~(610~ M(F)t aw~.( 4  ~h (54)
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where

C- osa

e" demrod S~eerrn 0 on~l

Upon performing the summation

M(~)'-'PLE~'(osG-ose)Jep[ 1 (coz%

)(Cos -eCos 6

5tn'. :,. . (e.£56)

where the two exponentials are the phase-center terms.

By following the example of Eq (41) the trigonometric

term is expanded as

iisi[ '(( I)I (tCas 9- CO$os)

Ii

S""•(56)
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where

Thus,

A(o, e.) (58) i

II

and

B(6,6.)(59)

At this point it should be obvious that phase steering

is not going to cause any new effects. The signal and its

derivative will still be 90" out of phase. The signal is

still dominant except in the neighborhood of the nulls.

The steering will just change the location of the main beam,

the nulls, and the sidelobes. In fact it will change all

the quantitative results somewhat but not any of the qual-

itative results. Thus, it appears that phase steering will

not cause any new effects to the incoming signal.

The one area of quantitative interest in this example

would be to investigate how much the width of the nulls are

affected by phase steering. In the previous sections we I
showed how the derivative term is dominant for some small I
angular distance around the null points. It would be of

interest to determine if this angular distance varies much
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due to the steering. The author fools that the effect is

small but did not hee the opportunity to investigate this

oaint thoroughly.

P. SM ar of Stli Ar Results

This chapter has focused attention on the effects of

antenna arrays on incoming signals. Although we focused

our examples on the effects to the autocorrelation function

of a spread spect-um signal, the main analysis is valid for

any signal.

The truly unique result obtained from the foregoing

analysis was the fact that the output of antenna arrays is,

in fact, a combination of the incoming signal and all its

time derivatives. The development that led to this result

also indicated that the signal will be the only significant

output except in the rneighborhood of nulls. In the neigh-

borhood of the nulls the first derivative will also become

significant due to the attenuation of the signal. The

analysis also showed that the system output phase changes

rapidly near nulls. Finally, it was shown that the use of

pulses as signals and correlators as detectors will accen-

tuate the effects of the derivative and expand the neigh-

borhood around the nulls where the effects are observable.

9*4
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IV DyngimL ELfasci

The majority of the effort in this thesis has concerned

itself with the effects of fixed arrays on signals. How-

ever, most large arrays in use today are adaptive in nature.

Thus, we felt that it was necessary to look at aspects of

adaptive arrays and analyze their effect on the incoming

signal.

Adaptive arrays use a variety of algorithms to control

the weighting coefficients of the antenna elements. These

algorithms process the incoming signals, noise, and inter-

ference to determine the values of the coefficients. If

these external conditions are unknown, then the adaptive

effects can be viewed as a form of noise. This approach j

will be taken in this chapter.

The array model of Eq (10) incorporated the adaptive

nature of the arrays by making the weighting coefficients

functions of time. However, Chapter III assumed that these

coefficients were constants. The resulting fixed array cal-

culations yielded very important properties about arrays and

their effect on wideband signals. In this chapter, we will

assume that the adaptive array 1s trying to seek a desired

static (steady-state) condition and the environment is

causing perturbations around this desired state.

Eq (10) is used to develop some results that illustrate

the effect that time varying, weighting coefficients have on

the signal. Two models for the weight...ng coefficients are
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introduced and the analysis performed. It is hoped that

these simple models will yield insight into more complex

situations.

To start the analysis, Eq (10) is repeated here.

OA) ,t A) v( (e. 10)
4.1

Recall that this is the complex baseband model of the array

and its output becomes the input to the receiver processor.

Next, recall that in Section III. E., kin equation for phase

steering was developed. By combining those results with

Eq (10) we obtain a generalized adaptive array equation that

includes phase steering.

~IV

A. Sinusoidal Perturbat1flq

Assume,

4A (AA ). 1 (61)

where , is a perturbation of the steady state

phase steering coefficients. This model can be used for

several purposes. (1) ,in2-,A can be considered a

noise jitter and the effect of this noise on the signal can 4
be calculated for a variety of noise levels, 4 , and noise

jitter rates, • . (2) Another approach would be to assume
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that the o1n ;Wt are a modulation resulting from a

Jaming attempt. In either case we are interested in the

effect this sinusoidal perturbation has on the incoming

signal. By substituting these assumptions into Eq (60),

the output becomes

+, A -A. t

A C (62)

The SAJn•m terms can be expanded in a Fourier

series (Ref 21o116) yietiAng

' (63)

where the J(p,) are Bessel functions of the first kind and

order 1. Substituting these results into Eq (62) yields

t 0 )eZ 5() +e

,It as

x AjJj(4e1(i (614)

Notice that the I-C term is the static phase steered
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array or Section I1. E., except for the •{6) amplitude

weight. The ,, term is

£w I

As can be seen this is the phase steered equation modified

b~y the terms and then modulated by a carrier fre-

quency of Hz

Thus, the noise jitter has caused two effects. The

have changed the phase steered equation by multiplying each

output by J. . If the are quite different, this

could affect the basic array pattern immensely. This effect

cannot be determined without more information about the

and the array structure. If the / are all about the same,

then they act basically as an attenuation of the array out-

put. The f term causes an infinite series of modulated

versions of the signal to appear at the output. Depending

on the modulation frequency, 1 , and the signal bandwidth

these terms can causi signal aliasing effects.

The extent that these modulation terms interfere de-

pends on both , and on J (,B P determines how many of

the Bessel series terms are located in the bandwidth region

of the signal. The determine if the terms that are

in the aliasing region are significant enough in amplitude
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(compared to the - 0 term) to cause distortion. A

study ef the Bessel function will yie.. some information

on this point.

The Bessel functions can be written as power series

(Ref 5s143).

2~,) -~ () • (66)

From this it is easy to see that

3(0) 1

(0) 0, f.,. 1 0 (67) j
Thus, for 3. 0 , Eq (64) reduces precisely to the

static phase-steered array of Section III. E. For small

p (less than .2), j(6).., and i(j -i . The

higher order Bessel terms are also small. Thus, for small I'
A the output is mostly the phase-steered output with a

small amount of the modulated terms being passed. This

indicates that the aliasing effects should be small and not

cause much signal interference. However, if the become

larger than '2, the J increase rapidly. At this

point, the effect of the first modulation term will become

significant and the value of • will become important.
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Xq (64) in the time domain output of the array. If we

perform a Fourier transform of this equation, the result is

*,,•), •P),3 A. (68)

where

M( . v(O e (69)

In this form the discussion above is easily confirmed.

First, it is simple to see that the inner sum is the static

phase-steered array of Chapter III except for the and

terms. It is obvious from this form that the

effects are equivalent to changing the weighting coeffi-

cients, A. and the V,, are equivalent to changing the •A •

Thus, if the 4(p,) and I take on a wide range of values,

the array pattern will .hange considerably.

Next, the effect of the perturbation frequency, f,

is to shift the inner sum up and down in the frequency spec-

trum. Figure 57 portrays this frequency viewpoint graph-

ically. It shows that the spectrum at each harmonic is

different than the actual signal spectrum due to the J5 (I)

and modifications to the static array equation.

The above analysis has crudely shown the effect of a

sinusoidal oscillation of the array's weighting coefficients

on a desired signal. Roughly, it illustrated that the array
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a. Signal Spectrum

M(f) modified by Jo(ij)
and array

M(f) modified by e!"J 1 (Pi),and array

b. Array Output with Aliasing Assumed

Figure 57. Frequency Domain Output of Array.
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function output is first modified by the 4(A) and i• and

then modulated b'- the harmonics of the sinusoidal frequency,

It appears that these effect are minor for small per-

turbation levels. It was not shown what effects the Bessel

functions 4() and have on the overall array pattern. If

the A are quite different, then the array pattern can be

changed extensively. This could cause the same kind of

effects as phase steering (e.g., change the pattern so that

the signal is in a null).

B. Gaussian Noise

In this section we assume a different model for the

coefficients. Assume

A e(70)
A

where n'(i) are gaussian random processes, with means r(/)

and covariances C•(*,,*A) and cross covariances C

Eq (60) becors

00(1. ,_i___i)________ in (71)

where Y(e,,P *) is defined as shown. Now we determine the

statistics of the output.

•e use the accepted notation for expected values, Ltx]

to stand for

EL•] iinfxPx)dx (72)
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where P(A) is the probability density function of x

(Ref 3e229). First, the expected value of the output of

Eq (71) becomes

The characteristic function of a random variable is

defined as (Ref 31419)

0.(v) = E[e!J (74,)

Furthermore, the c~haracteristic function of a gaussian

random variable iE, (Ref 3,420)

=exp[ Vmn- V~ (7.5)

where m is the mean of x and a' is the variance of x. If

v = 1 , then Eq (74) reduces to

•x(I) E (76)

This is precisely the form of the expectation in Eq (73)
except for the time dependence. Therefore, it can be

evaluated by determining its characteristic function and

then letting v = . This can be accomplished in the

following fashion. Let 4-. in Eq (73). Then /(Ak)

becomes a gaussian random variable. As such, the
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expectation can be evaluated using the rosults of Eqs (74)

and (75). Finally, by letting v 1. , Eq (73) becomes

E[L%(e,iPA) f 4 Gq, 1, Aeptv(A)- 0(r ) (77)
IiI

where T'(A = 4) . This operation, is valid for

arty value of 4 Therefore, the result can be generalized

to

x(O'-ol E 4(78)

This shows that the effect of gaussian noise on the

expected output iD to introduce a phase shift and an atten-

( uation of the output of each element. This will charge the

antenna pattern. The new pattern will then determine the

effect on the signal. If the m. are all approximately

equal, the phase shift introduced will have no new effects

on the signal. Notice that the expected output decreases

in amplitude as the variance,cr- , increases. In essence,

this says that as the noise variance increases, the output

looks less like the signal and more like zero mean noise. ]
This should agree with intuitive notions about system

opirations (i.e., the noisier the system, the poorer the

performance).

A final point needs to be made about Eq (78). If the

noise is zero mean and has small variance, the expected

output of the array is expected to be the phase-steered
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output. This is also intuitive in that it simply says that
kif there is little noise, then the system is basically fixed

and the fixed array analysis is valid.

The expected value of the output ic important but we

also need to have a feel for how close to the expected out-

put the actual output sample functions will be. This leads

to a determination of the variance of the output. The var-

iance car be calculated from

a- (,~ )-Ese ' *~~~ ~J- ~ £L(,~,j'79)

where *denotes the complex conjugate. The first term on

the right side of the equality is evaluated as follows

(

A'I

A~ , i (80)

If tha n.(Aepnpt) are considered to be jointly normal pro-,

cesses, then the random variables obtained by ,ampling them

at A-i are jointly normal. The characteristic function
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of these random variables becomes (Ref 3,503)

-- IVin (Ak) ~ vA V'.)~~ J~>,'j(1

By observing that this result holds for any k, and by

setting v. i and v.-i , the value of the expectation

in Eq (80) can be determined. By doing this, Eq (80) be-

fr;; conmes

X10(Q4P -4) ý*(e' qq,-) e.APfN(M. ) - M

Next, we realize that the last term of Eq (79) is just the

magnitude of Eq (Z8). Thus,

k) ;f p [) (,i m) (A))
AVI

M-r(* + r'2(A
- J'' a-j(83)
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Combining Eqs (82) and (83). we finally obtain the variance

Cq A) -E-0 9,))6 (01 0.)+ exp[))

xe[Ce))-i (84)

The variance is a complicated function of the signal, array,

and noise parameters.

There are several things that can be noted. First, if

there is no noise, then the 0--. O and Eq (84)

reduces to zero as expected. Second, the means, ) of

the noise cause a relative phase shift between the cross

component signals; i.e., the mean is a steering term that

changes the variance. Third, the individual variances cause

an attenuation of the cross'erm products. Th~.s seems to say

that the system variance decreases as the individual vari-

ances increase. In fact, it appears that the system vari-

ance decreases to zero as the individual term variances

approach infinity. However, look at the .i terms. They

are of the form

(8, qq,(85)
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In this form it is obvious that these terms become larger

as the 0 a(d) become larger. Thus, due to these terms the

system variance does not go to zero as it first appeared.

As a final look at the variance, assume the noise pro-

cesses have equal means and are uncorrelated. Thus,

(Ai) '0 for i / • . Under these conditions

Eq (84) becomes

4S1

"-L • �( A) I (86)

Thus, under these conditions we have a bound on the system

( variancei a bound that is independent of the noise levels.

This tells us that the system variance level can be com-

pletely controlled by the designer. However, it is con-

trolled by the same parameters that determine the signal

level. Thus, as the variance is decreased so is the signal.

A measure of performance in this case would be to look

at a version of the signal-to-noise (SNR) ratio. Thus, for

this example of equal mean, independent gaussian processes

the SNR ratio becomes

5NR~

NH-

0(88)

++" I1,8
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If, in addition, we assume equal variance terms, then

M N

S(88)

The double sum cat, be rewritten as the product of the sums

SNR~

(• e, (89)

In this form we notice that the SNR is a product of a

noise controlled gain and an array controlled gain. The

noise factor shows that the SNR becomes very large as the

noise variance approaches zero.

Eq (89) has shown that the noise variance affects the

signal-to-noise ratio. Eq (86) showed that the noise var-

iance is bounded. These two equations allow the system

designer to pick the parameters to minimize the effects of

a Jammer that somehow has managed to inject a noise signal

into the weighting coefficient control loops. From the

hammer'u viewpoint, he can ushe equations to determine

how much jammie n effect he can havu tee eucan inject noise

into the coefficient loops.
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The analysis using sinusoidal weighting coeffiuient

noise and gaussian noise has revealed a method for degrading

the output of the array. This method involves developing

some technique for affecting the control loops of the array

so that they are not allowed to stabilize. This imp'ies

some very sophisticated knowledge of the array operation.

The more traditional approach to Jamming is to simply

overload the system with a high power interference source.

The standard measure of effectiveness of this method Is to

determine the signal-to-jammer power ratio. Recall that

, (6, 0, A) is the incoming signal. However, it can be

viewed as the sum of the desired signal a.'d the Jamming

signal. Thus,

where & (0, 9,) is the signal component and is

the jammer component. With these definitions we can form

the usual signal-to-jammer (SJR) ratio.

a

s��R�l•_,(91)

This ratio affects the overall system SNR. It shows very

clearly that one effective Jamming technique is to increase

the Jamming output of the array. It is not, however, as

simple as increasing the Jammer power (though increased
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jamming power works). Arrays are demignod to counter the

effect of the jammer by making this part of the output

small. The array accomplishes this by placing a null at

the location (4990). In. Chapter III we showed that one

technique for transmitting through a null is to transmit

i r a signal with high derivative content. Thus, rather than

increase the jammer power, pick a jammer signal with most

of the power in the derivative.

The next point to make about this SJR is that with the

use of spread spectrum, the jamnmer will also havre to counter

those anti-jamming techiniques in addition to getting through

the array.

In this chapter we derived %he effects of two noise

models on the output of the array. Tne basic result was

that noise in the array weighting coefficients results in

degraded signal output. It *tas also stated that a possible

jamming technique is to induce noi&;- in the array control

loops. No method was illustraited to show how a jamnmer might

manage to get control of the array's control loops.



V Conclusio~ns Ltd Recommundations

This thesis has investigated the effects of antenna

arrays on wideband signals. The effort began by developing

a complex baseband model for the array's output that in-

cludes the antenna's frequency effects (Eq (10)).~ Chapter

III converted this to the equation for a static array

(Eq (12) and Eq (14)). At this point the array was viewed

as a filter and its transfer function was obtained from

Rq (14).

The transfer function was expanded in a Taylor series.~

This exparnsion was then .,.e to determine the properties of
the resulting output waveform. The basic conclusions drawn

from thie investigation follow.

(I'# The output of an array consists of an infinite sum of

components. The components consist of the signal and all

the n'th order time derivatives of the signal.

(2) Each of the components is weighted by a complex number

that adjusts its phase and amplitude before the components

are added together.

(3) In general# the coefficient of the signal term is many

orders of magnitude larger than the first derivative term

coefficient, the first derivative coefficient is many orders

of magnitude larger than the second derivative coefficient,

etc. Because of this, the signal term is usually dominant.

The only exception is in the neighborhood of nulls, where

the signal coefficient vanishe*s. Then the first derivative



term becomes the main output of the array.

(A4) For wideband signals the derivative term tendu to

be orders of magnitude larger than the signal term. This

tends to offset the small coefficient of the derivative

term. This means that the derivative term becomes observ-

able farther from the null points than would otherwise be

expected.

(5) The signal and the derivative terms have different

phases. In the case of linear arrays the signal and its

first derivative are separated in phase by 90@. This can

be used by coherent receivers to isolate either the signalq

or the derivative. For other arrays, the phase difference

is not fixed and in general is not 90*.

(6) The cases studied indicated that an envelope detec-

tor tends to yield the signal as the system output more

often thin coheL~nt receivers. However, we did not inves-

tigate the effect an envelope detector would have on the

PSK version of a spread spectrum code.

Chapter IV looked at two representations of the array

where the weighting coefficients were modeled as static :

components plus an added noise signal. The first repre-

sentation modeled the noise term as a precise sinusoidal.

The conclusions drawn from this model follow.
(7) The array output is carrier modulated by all of the

sinusoid harmonics. Thus, the frequency spectrum of the

array output is moved up and down the frequency axis by

integer amounts of the sinusoidal frequency. If this
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frequency in not high enough aliasing will occur.

(8) Each of the modulated array outputs is modified by

Bessel function coefficients. These coefficients alter the

array output. Thus, the signal at one harmionic is not the

same as the signal at other harmonics..

The second approach to the study of noise effects

assumed that the noise terms were gauskiian random processes.

This analysis resulted i.n the following conclusions. i
(9) The noise tends to drive the expected output of ther array away from the static array output toward zero output.

(10) The variance of the system output increases as the

noise level increases.

A crude look at using noise to jam adaptive arrays was

investigaited. One conclusion was drawn.

(11) The jammer has two ways available to change the ex- t
pected output of the array. First, the jammer can simply

increase the power of its jamming aignal. This will increase

the variance of the noise output of the array. Second, the

Jammer can transmit a signal that controls the variance of

the steering coefficients.

The analysis performed in this thesis brought to light

a variety of information about arrays. This information in-

dicates areas wherp further research might be able to take

advantage of the results obtained in this thesis. We

recommend the following.

(1) The first derivative term exists at the output of the

array. Research should be performed to see if receivers can
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be designed to take advantage of tne presence of this signal.

(2) Some systems may want to mi.nimize the effects of the

derivative terms. Research should be directed toward find-

ing signal sets that have small derivatives. More speci-

fically, research should be directed toward findinC signal

sets whose correlation functions have small derivati~ves.

(3) For the purposes of jamming, signals wi'.h high power

in the derivative terms would be difficult to null. Studies

in this area could result in valuable information about jam-

ming of arrays.

(4) One of the original purpŽoses of this thesis was to in-

vestigate the effects of the array on spread spectrum sig-N

nals. The details of this analysis were never carried out

for the specific spread spectrum model. This analysis

should be completed.

(5) The effects of specific models of adaptive arrays need

to be investigated. Specifically, transient effects should

be investigated when the array adapts from one steady state

to another.

(6) It was observed that there appears to be an inverse

relationship between A, the multiplier of the signal, and

B, the multiplier of the derivative. This might imply that

the deeper the null, the higher the derivative. This rela-

tionship should be studied in detail. It might reveal in-

sights into more optimum nulling techniques.
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V

SAiDendix, Analysisof .omputer Pronram

Introduction

The purpose of this Appendix is to present the details

of the computer program used in this thesis. It is divided

into four partst theoretical analysis, computer program

description, discussion of data, and summary.

Theoretical Analysis

Eq (14) is the starting point with A.- I and 0O

Next, the array is assumed to be linear. The I become

LAc0s & S With these substitutions Eq (14) becomes

,N T.

4M

____ ____ A~I(92)

The signal is assumed to be a pulse of unit height and dura-

tion, T.

This waveform is passed through the array and the result-

ant signal is correlated with another pulse of the same dur-

ation. The resultant operation is

f~ fo(1 rroy f'undi*oJm) ,rn + ) di; (93)

which in the frequency domain is

IV 1 f(4 fCOSe N
M e IA(f
A--

=I MY11 St (94

- -. ~ ... ~ ,',o
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i'•M) I is simply the transform of the autocorrelation

function of the pulse. Thus,

SI -- T -snC,."( FT) a (95)

When inverse transformed this function is a triangle of

height T and width 2T (Fig. A-i). This then is considered

the ideal undistorted signal waveform to be passed through

the array for detection. Eqs (94) ind (95) were used as the

basis for the computer program that was written to investi-

gate and demonstrate the properties of the array.

Computer P Analysis

The program was written to be quite versatile in its

applications for this study. A series of specialized sub-

routines were written to perform-most of the work. T1ho main

program, THESIS, was basically a series of calls to these

subroutines to obtain a variety of results for visual anal-

ysis. The major subroutines used were SIGNALS, ARRAY, and

FFT. The supporting subroutines were FREQ, GRAPH, ROTATE,

DFT, and IDFT. The Fast Fourier Transform (FFT) algorithm

used relies on the data list being some positive integer

power of two, 2 M. Thus, all the subroutines were written to

conform to this specification for vector sizes.

Subroutine SIGNALS fills a vector, Sigspec, with equally

s-paced frequency samples of the right side of Eq (95).

Since the frequency spectrum of Eq (95) is infinitely wide,

the frequency spacing must be chosen so that an adequate

119

* ~ t A 1.A



E-4

a,v

,....

g -1. input signal.

120



r

amount of the spectrum content is sampled to yield accept-

able signal waveshapes in the time domain after inverse
2transforming. This particular waveshape (sinc x) has been

studied extensively and it is well known that sampling al-

gorithms that include samples from one or two of the side-

lobes yield adequate results for most operations. For this

program, the frequency spectrum is sampled so that samples

from at least the seventh sidelobe on either side of the

main lobe are included in Sigspec.

Subroutine ARRAY implements the complex summation in

Eq (94). However, the form of the summation was altered

slightly before implementation. An fo was factored from

(f + f ) leaving f (1 + f/fo) . Next ( was redefined

as r. - d; where X. is the wavelength of f Thus,

d.. is the distance r measured in units of A° . Substi-
tuting these cna •u . aq (Q yelds 1

V d

(9-6)

because c . Finally, fo was chosen arbitrarily to

be 350 MHz, a UHF frequency. Subroutine ARRAY then fills a

vector, ANTENNA, with equally spaced frequency samples of

Eq (96). These are the same frequency samples used in sub-

routine SIGNALS.

The third major subroutine is FFT. It is a Discrete
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Fourier Transform (D7T) that uses the decimation-in-time

principle (Ref 13t290-302) for computing the DFT of vectors

that are a power of two in element length. The routine was

written so that either a discrete transform or a discrete

inverse transform could be obtained by calling FFT.

These three subroutines then became the workhorses for

the computer analysis. SIGNALS was called to create the

signal spectrum. ARRAY was called to create the antenna

spectrum, and a simple teirm by term product of the two re-

sulted in the array output vector (Fig. A-2). This output

vector was then passed to the FFT for inverse transforming.

The resultant signal was then graphed so that it could be

visually compared with the ideal output signal of Figure A-1.

The five supporting subroutines were written to support

the details of graphing the output of the three main subrou-

tines. FREQ has the simple function of placing the appro-

.0 values in the horizontal axis vectors. It creates

the appropriate time and frequency vectors tha ma

sampling values used by SIGNALS and ARRAY. GRAPY has the

function of graphing the output in an acceptable format by

using basic CALCOMP plotting routinis. This routine is only

useful with the facilities available at FIT's computer

center.

ROTATE is a subroutine that was used in the analysis of

the linear, equally spaced array. Section III. C. proved

that the signal and its first time derivative were 900 out

of phase. ROTATE determines the phase of the signal and then
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( SrquNcDoAin)S ARRAYL(Frequency Domain) (Frequency Domain)

Sigspec (xi x2 , ... , xN) Antenna = (Y11 Y2' soot YN)

Output (zip z, .,

S(,ly 1, x2 y2 , . N

FFT

Time Waveform, (mP, m2 , ... , mN)

Figure A-2. Implementation of Equation (94).
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shifts the phase of the output so that the signal can be

found on the real axis. The first time derivative is then

located on the imaginary axis. In this format theme two

quadrature signals can easily be graphed separately.

DFT and IDFT were written to support FF'f. DFiT and IDFT

set the parameters of FFT to cause FFT to calculate either

the discrete transform or the discrete inverse transform,

respectively.

All the above subroutines were designed so that they

need no changes for any run. Obviouasly, subroutine SIGNALS

would have to be rewritten if a different input signal is

desired.

The main program, THESIS, is written with all the para-

meters for various situations included. The program was

written for batch processing and little consideration was
given to optimizing this routine. The various parameter

cards were simply replaced with new cards that contained the

new parameters. A listing of the most often used program is

included as Figure A-3.

Discussion of Data

Any time a digital computer is used to simulate a con-

tinuous system errors are introduced. These errors must be

identified and accounted for. This computer program intro-

duces errors into the output from three major sources. All

three are discussed here.

The first effect is roundoff error. The computer per-

forms calculations to a certain degree of accuracy. Rarely
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CALL OIuCI2,wLT
'ALL PL314109-60031
%ALL PL01,IS11*.O41-31

" "LO
" el toI PO~IW~C4SNB EUAE tPSYSPI 1Wl

N.', TrTer40vicuuc s

c f6 5 ssI. o mrsrw.

CIALLI
U.',

CALT TrII*5LUIST,"AUWMS.

a IF WSTCIIr 1 t ?"I' TRPIMEUNA WILL of PLOTTED4

:ALL Gblsiril.ItS

00 ?$- 1411W 15 I t'O* TIEWSIGNAL ILLSN P.TTO

Is g:tWTI~ur~w~~C 0

CALL I)tS~ILW
C gff2Tw'E 40-11Y'OUTPUT SNATO

CAL
29CAfSPA 04T1N 11

C IF W6AL 13 t TSSI OIAV PRP0UTEOUPTT POT4

:ALL IV~4?4IN

C It ""~AS It to T~f THEAL ISR POPT oruisPTTED.
14 IFIN4rAL.N!.11 40 TO So

35 S1Izb.~ILA'S4r'614AtI)$
CALL RSt.1',U4R

C 114 PHAS 1 41. 6Tr NTLPFO.LTTO
Be IFINSAG.V*E11 to To lot

CAS IPWIG1t.V1I 60 10 16 TW IU441
%418M S(ZaC 3SAlslI I)

CALL o.ra.t,,,IS USR]

20 It? I1,10Ui1!lt
S tI11a& 14GIA4?,C1114 S~)

tS? o'TIWLI!

goA ItAs 0190,14,?'N8 r
iIlebATt4l A1NAG1 ANTEN44 IlI 11MEL AITENNA iI I)

:ALL 611t.1?,UR
lot CINTII1DT

GALL PL3I!141
NI.

Figure A-3. Fortran Program. Page 1 of~ 4
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ram w'ItL U k*1S.D TO DDO

Iug$ SU11430ju tiliiif INC S914OLCD XIINAL SPECTRUM.

1 1 I t V I E 1 4 ! P % O. I 4 6 ? I R , F " 0 11 0 T O O I 41i ' r W MI C 14 F t Q J 4 t & 1 I P E

C el G RT'r1U'46~ w.-IstlW 35-.I -1 Ssj~rI A 14144'JLAO SIGNSAL-
t veli% vur Savr~vMIV41'' T0447 IS S&'4bLtf%1 IS"41 $1)JA4 Or 1441 SING 9C rJ61Z100o% SNOIFIP'1

C odfI~r Iis I"? 6.4AWT &weU' IOis Tlli 3URAROW or tug 1424MCLO~

C Toof DARAWItF94 1044f "UST Of FDTO T041601 ROUTINC ARF 14f 81101' OWmaT10'e. To
t t64f POP1*'ir' Reltr- To of SaNPLIO.Fe, r~ieAwN 1INC MU'lork GOP PjutCNIIST 10*

C "4 f#S'WIU 4S SANOLFO 0111016 FROH -F'Alfff TO *FHAVII.

I Awt!446AI Wh) %W- NAL1GISUA 90414W4 LOW 926,34 14110

0 IV
112 sis ittse&S

00 It ltnIV19S?.WjW

t 1so 13 it)rall19T 01NP11w

Twlul SU11PItJIIN' CR1115 THE( S44PLED A41174iA ARRAV SOP-tRJM.

C SINLWS5SI

C m %KT INmrN FlU&TYIN4 IS 114r SU"HIeIatl N POH I TO N Of fHI PAtIlIET1toRe .

C tilt"6 IMS tT!D"~ 14 ' 511446*10N OE14G
C TwID63924proI IsrI#F SI SSSOIGoIIso I It I stNtAtt a *

C
. Tbic 0aA*3wtRI TWwo, t "US ofro To 1415 ROUTINE INaC To PREOUFwGY RANGE
C TO Of SAF2'.T§, r'Av,% 11t NUPBFQ Or. ELF14ITS IN TH 41£461& GA £t3ATg, 1640 1
C LO:ATTON of 14r SIGNAL FRO14 TNT MIRN Ali$ IN OtOR~fSv 11NC. AN. THE j
C NU1J"!01 Or aOI'4TS TO gr SAPIPLE0, wJu.
C AS MXIT% JJjR0'JT4v SIGALS THE fREQUINIC RANGE SANPLiI It

SI'"O .1531141'I

It FLOV'411/14U4-1.I -I

Do 160 121,W4

ATVU441111121146?WN4£ It) *COS tOIP)I Of.$.Sd9I 02IOIM9111.91

ILCSTvNJ4'',"I
20 1?0 IvlILC¶?19

20 135 tor.Y'ZRTs4UH

30 10IS W),NJ9t

Iths 4NTCtV1AIAIR)AIT(II)1
f1)4

Figure A-3. Fortran Program. Page 2 of J
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=IS PAM 19 3M! QUALM' PlACI1CA5M
in= 09n MUMisin ZO DOC~

I TwIS 2"020~114T &UP' Toqwt Wf i igo c@~l~rto 10ALCUItI re~g oflCqPT

I Wt tfLLS IM FET TO C*LCIL ATF IWE tIN.ISFRW.
C top? ttLS IMF PT? TO CALCUýAltTI 1140C I TRSUlANSPO~.
C "Im rat %% 5'? jq, wUilt 1wo pAmaNETITu1

* . Itw vrl:T~*r ;tfff . VowUsTr TOur It TrkrauTWO"D
It*. 1"T 90004914, 4, of 1009thjmsca of VaLUCS to lot talstollwi, 1000

a IT owi0vilte THR 104,411 OF DATA POINTSto 10t AN a. rimit~ 03"ta of Two IN
t 043tv 10 W'WItt wg4MOVVy.
t 1 It 1 CAL.!!) AU13wmRCALLY IT Off &NO IOP?.

.n ................... . ...... .. n .------ e~.

:owLL P111641%)
:aL fltels W

0 o"PLIN 0191,41
B CALL fFritle4so

RCLRN1M
EWI

Jet
so 7 2019"41
1P4Z.S1.I) 30 To I

"111V)?

30 29ii #

IS V IIZI.4I'

31 %3TIISE' bI

t T41%S UX2ITI'I! TNMUlt'S THT 4*1 INCtitl ika reaIutqCY has WILL It SCALCO 0
C PRIPFRLV d414 PLOTv 0 A lE !'UCS11O. It FILLS T1lt VE!nT3%o TIle 'aN THlE IlNE a
9 U41OLPS 447 147 Vf'!T0A Po, WI14 till Ft.Ef1INC SAsPLE #A.ucs.

C if P'3quzp~gTit IW et * Sof INPORANIoIIN
C 1. tIMF 'AE2!iENY RANCE to BE S*N"'LED, FNAX
c V. To!E 4UiN'N or S*NPLV PCUNTS, NUNSIA R
C -- - ------------------ -------.--.-.. -- --------- e-----

*1q4iN3j3 rqIRt'i~rRRIZIWuNSER)

30 1 I181,W4414"

Figure A-3. Fortran Program. Page 3 of
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351 PAUS 1S UST QUALMT ~CCM

5 1"111 S' 4)Jllwt IS I)AYT Ut~kM 1*tW 1.4 LtIW1£o IUVAL.V SPAMt aAvI.A
C It m&%Totw r)H*:Tb0or *, W`VFlw0i felt P021 OF 1011 000019 SO TwAl 1.41 REAL
C AMs c"1114 TO$" Omoom. #No t* IN411ARIW All$35 54AI.4 lot uSIGAL

V 4t V*,-11?'* w':tSaa FOR 14t$ S18301UT~w TO vUNCva311 *6OPMVL &51k THE
* 'g:t2s Of C-0801 VALUES, #Vtrwwa, 701 ANGiLE V PHAS1 S41F1, Mwe AwO THE
C NJW9'v IF 1LV% 11 Of S"19'1101 KU4.

30 It 12.t4j"

CI

c THIS S0113 J1 4 1 .4A% Tot stv~ FUNMION 3F GRAPwZIkG THE Data IN %.4
C ACCegetagL raqNA, IT PW~OR"S SIWESAL FUNetlOws.
*G . IT %All~ IN I CARSs 1"a1 coidaxi 114C LaMINGs II#3AATI301 FOR THE

t . it 14'tti I.'A OUTPUT so t4441 Tot 84:2I*09 SIGNAL is I* 141 CENT':q or

c I. IT !LI4Z'4ITtv tUE FIRST I11% Do Int POINTS AND FtI .1S1' all or lost
t--.................................................

R12,1.4140)41. 0cla

q4116, 911 4W114I1osG

C Fg*,mBl* tTOT IS *rCVSSARkT BECAUSE Of lot1 FACT THAT1 t4E NtGATvIV

C *OtIZIV! Tint 1174"e. TMUS, A STRAIGHT PLOT OP THE 0A1% dOULD RESULT10 A. I1'CV*l 'AW IETN 3 I~OT H Z4 ?V!'i
e Soulpt GOA04.

1ILAS?a. 'E'1%' Iý

00 S Kot,"iI

C T'4ET $I FOS 'LN0IPtE Veit L0.4(t 4043 UP(3q OUARTfR Of T4C POINT! FROMl THE
C :Rkr4. 14t! WS3 '04E IFC&USF T14F DATA USED lIN THIS T4!13 WAS 4MIIA
C ALGAIPS V1 At TWI~t EXTR~EMES AND WAS OF NO VALUE IN 141 G*APqICS.

10 ph 1810I'J4
TM10% tSCI.Rr!ST)
IFINAXZS.13.?.) VIattle'1 *IPZRSTI

Figure A-3. Fortran Program. Page 4 of 4
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is this precisely the right number. Under most circumstan-

ces this causes no real problems. However, if the correct

answer is in itself a very small number, then the error can

be large compared to the actual answer. This effect was ob-I
served in the Tables of Chapter III where A and B were tab-

ulated. The computer never calculated their values to be

precisely zero at locations where it was shown that they are

zero.

Roundoff errors caused other problems; problems that

affected the output of the graphics routine. To illustrate

the biggest effects of roundoff we will use Figure 28 arid

Figure 43. Figure 28 shows that the output is zero. The

program did not calculate all the output samples to be pre-

cisely zero. They had values that ranged from 10-28 to

-1o28 When the graphics routine went to graph these pc~ints

itscaled the axes so that the details of the "noise" were

visual. We had three possible ways to deal with this siu-

tion. (1) Let the system graph the "noise". After a few

runs we decided this method was visually unacceptable. [
(2) Artificially set the range of the scaling so that the

"unoise"9 is graphed as zero. This was a possible route.

(3) Pick a value that is considered the noise threshold.

Any values below this will be replaced by zero. We took

this option because it was so simple to implement. However,

it must be emphasized that we only performed this replace-

ment at the time of graphing. The calculated values were

used as is for all operations. Figure 43 shows the other
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effect that the roundoff errors caused. The roundoff noise

"I •'Auses the phase to be calculated as slightly less than 900

or slightly greater than 900. This combined with the sec-

ond source of computer error to produce the results of Fig-

ure 43. The arctangent function interprets results only in

the range from 90* to -900. Thus, a value slightly greater

than 90* is viewed as a value slightly less than -90.

Thus, the noise around 90' or -900 of phase shift causes

wild fluctuations in the graph of Figure 43. There were

several -methods thought up to artificially eliminate this

graphics problem, but they were not implemented.

The third error deals with the discrete nature of the

FFT. The FFT is a truncated Fourier Series representation

( of the data. In ordek to include enough frequency harmon-

ics to make the square wave look exactly square would re-

quire a large value of FMAX and the number of frequency

samples 2 n. This is due to Gibbs phenomenon which states

that signals with discontinuities cannot be represented by

finite length Fourier Series. The result of a finite Fourier

Series representation is the oscillation near the discon-

tinuity that appear in Figures A-4, A-5, and A-6 (Ref 2s105-

107). Figures A-4, A-5, and A-6 illustrate how the oscil-

lations on the square wave decrease as the frequency range

and the number of samples is increased. Figure A-4 used a

256 point FFT and only sampled frequency components up to
2 MHz. Figure A-5 used a 512 point FFT and sampled to 4 MHz.i

Finally, a 1024 point FFT and a maximum frequency of 8 HzM
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were used to obtain Figure A-6. These figures clearly illus-

tO trate that the higher harmonics aid in making the square wave

more square. The plots in the main text all used the 102 4

point FFT.

Summary

This appendix has presented the details of the computer

program that was used to obtain most of the plots presented

in the text of this thesis. It has described the equations

that were programmed and the actual Fortran program has been

included. As a final step a discussion was given of the

effects that the digital program had on the form of the

output. This included the observed effects of roundoff

errors, the limitations of the arctangent routine used, and

the observable effects of using a finite length Fourier

Series representation of waveforms.

S132

L U•



AW VITA

Edward Raska, Jr. was born on 30 December 1948 in

Sinton, Texas. He graduated from East High School in

Pueblo, Colorado in June 1967. He entered the Massachu-

setts Institute of Technology in September of that year

and graduated in June 1971 with a Bachelor of Science

degree in Aeronautics and Astronautics. He married the

former Elsie T. Atencio in August 1969 and now has three

children; Lois, 8; Karen, 6; and Christine, 3. In July

1971 he enlisted in thr Tnited States Air Force and be-

came a missile systems analyst for the Strategic Air

Command. In August 1973 he attended Officer Training

School and was commissioned in November. From then until

August 1977 he worked in the 4950th Test Wing at Wright-

Patterson Air Force Base, Ohio as a flight test engineer.

He then entered the School of Engineering, Air Force

Institute of Technology, in August 1977.

Permanent Address, 1915 E. 12th Street

Pueblo, Colorado 81001

133

133



UNCLASSIFIED
StCURITY CLASSIFICATION OIP THIS PAGE (IP*~n Date Xnri.*d) __________________

REPORT DOCUMENTATION PAGE BEFORE COMPETINGFORM

.. REPORT NUMBER - "' GOVT ACCESSION NO3. .RCIPIENT'S CATALOG NUMBER

AFIT/GE/EE/78-14 OOV ACCESSION_____NO.

4. TITLE (and Subtitle) .. TYPE Of REPORT & PERIOD COVERED
EFFECTS OF ANTENNA ARRAYS ON

BROADBAND SIGNALS
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(I) 6. COONTRACT OR GRANT NUMSERfa)

Edward Raska, Jr.

,. PERIORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEIT. PROjECT, TASK
AREA A WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

11. CONTROLIONO OFFICE NAME AND ADDRESS 12. REPORT DATE
Communications & Control Div. (RADC/DCID) Sept. 1978
Rome Air Development Center 3. NUMBER OF PAGS.s
Griffiss AFBP New York 13441 133

14. MONITORING AOENCY NAME & AODRES3(I11 dfferent from Contro¢h,. Off.•- e IS. SECURITY CLASS. (of hia.

Unclassified

114 ,CC ASSIFICATIO-/ DOWNtGRA'DIG
SCHEDOULE

1d. DISTRIBUTION S1 ATEMENT (of this Rep'rt)

Approved for public release; distribution unlimited

:7, DISTRPIBUTION STATEMENT (of the absltact entered 2. f/ock 20. If dIfferent from Report)

IS. SUPPLEMENTARY NOTES

Approv for public release: 1AW AFR 190-17

JOSEPH +SI"4~J A
Directo f Informat~~ /?37,

is. KEY WORD Conting. on re side Ii neceesary and identify by bioek numbertAntenna Arrays

Wideband Signals
Broadband Signals
Spread Spectrum
Adaptive Arrays

20, ABSTRACT ICo...nue an ,v,...ers. ad. it ne•.•ar end Id.ntIfy by block number)
1his paper develops a complex, baseband model for an adap-

tive array. The array is assumed to have N isetropic elements.
Only two aspects of arrays are modeleds spatial propagation de-
lays and the weighting coefficients. The array model is used to
determine the effects of arrays on wideband signals. The most

I (important finding is that the output of the array consists of
the input signal and its time derivatives. Each of these signal
components is multiplied by a complex number that is a function 'I

DD , AR ,, 1473 EDITONTo OFIAO 46v, 15 o.,O•KTR UNCLASSIFIED
"SECURITY CLASSIFICATION OF THIS PAGE (*%o.n Dat. Ented)

1 DO OC



UNCLASSIFIED -
SECURITY CL.ASSgIFCATION4 OF TIMIS PAGS(RYIUI DOI& 40#6IOed)

of the array and signal parameters. Properties of these complex
numbers are investigated. A four element linear array is used as
a specific example to illustrate -these properties. Two models of
the weighting coefficients are analyzed to develop information I
about "adaptive" effects. These models are used to show how the
array output is degraded by changing coefficients.

I

UNC LASSTFIFED-
SECURITY CLASSIFICATION Olt THIS PAOI(*?ten DoMf Miteredj - .

. ...


