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ABSTRACT

The influence of sound-speed fluctuations on propagation of

a CW signal in an ocean with a uniformly-sloping bottom and

S e — -

a horizontal surface is analyzed using ray theory. The mean
sound-speed structure is modeled as bilinear, with bottomed source
and receiver above and below the SOFAR axis, respectively. The
horizontally-independent fluctuations oscillate with a 12-h

period in the upper ocean. An examination is made of possible
types of rays for down-slope propagation that might exist,

depending on bottom-slope angle and source-receiver separation.

The total acoustic field is investigated for its dependence on
these parameters and time. For certain conditions when up to
three rays comprise the mean total field, three patterns of time
evolution are described, each of which may have significant

amplitude variations. Numerically-computed examples of each type

.
|
f
|
|
|
are presented. The linear relationships between phase variations f
\
of individual rays and the sound-speed fluctuations are derived. f
Then, formulas are developed to explain the most frequent behavior ,
of the relative amplitude and phase of the multipath total field. ‘

Predictions from the formulas show very good agreement with the

numerical calculations.
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INTRODUCTION

This paper continues an investigation, begun in Ref. 1, into
effects of certain combinations of ocean-environmental features on
CW acoustic propagation. Reference 1 was concerned with the
influence of a combination of spatially-uniform currents and upper-
ocean, tidal sound-speed fluctuations on deep-ocean transmissions
over a horizontal bottom. Under the model assumptions, it was
found that total-field phase is affected by both current and
sound-speed fluctuations, and that the latter more significantly
contribute to amplitude variations. The small number of other
acoustic studies in which combinations of oceanic variations have
been considered are discussed in Ref. 1.

The primary purpose of this paper is to examine effects of
sound-speed fluctuations on down-slope acoustic propagation over
a nonhorizontal bottom. One model of interest is a uniformly-
sloping bottom, which may be regarded as grossly approximating
portions of the topography, at some locations, from continental
or island shelves to the abyssal ocean. For simplicity we focus
on this model, rather than possibly more generally-applicable
ones consisting of several piecewise-linear segments. We note
that our procedures permit extensions to such cases. Another
reason for considering the uniform slope is that bottom
variation has been excluded from most previous published
propagation studies. Exceptions concern analyses of properties
of refracted/bottom-reflected raysz and surface-reflected/bottom-

3 over a uniform slope. Another investigation4

reflected rays
showed how to analyze refracted/bottom-reflected rays propagating

in an arbitrary direction over a uniform slope, by relating such




problems to ones in an ocean with a uniform horizontal sound-
speed gradient. Environmental fluctuations were not

considered in these studies. Moreover, their principal
objective was relatively near-shore propagation, for which a
linear or constant mean sound speed is appropriate. In the
present case, for transmissions to depths below the SOFAR

axis (at about 1000 m), a bilinear mean sound-speed profile is
physically more reasonable, as well as analytically tractable
(see, for example, Refs. 5, 6, and 7). 1In particular, we
assume that both source and receiver are bottomed, above and
below the SOFAR axis, respectively. In this paper we study
acoustic propagation along a range normal to the constant~depth
lines. This situation is a good approximation of some
experimental conditions, is illustrative of sloping~bottom effects,
and is relatively easy to analyze. Other propagation directions
could be studied by applying and extending the procedures in
Ref. 4. It is also assumed that for given bottom-~slope angle a,
the source-receiver distance R is short enough so the receiver
depth does not exceed the abyssal ocean depth (about 4700 m).

In order to understand the characteristics of the chosen model,
we investigate intervals of values for a (between 7 and 15 degrees)
and R (5 and 20 km), which include those typical of relatively
short-range transmissions from off-shore sources.

In Sec. I the sound-speed fluctuations are modeled by
pivoting sinusoidally, with semidiurnal period, the upper-ocean
sound-speed gradient about the surface sound speed. The range R
is assumed short enough to ignore horizontal variations.

Motivation for this model in terms of the semidiurnal tide is




discussed in Ref. 1 and references therein. We remark that the
model usefulness is not necessarily restricted to this
particular form of fluctuations. 1In Sec. II the wide variety of
possible types of RBR and SRBR rays that may occur are
considered. It is found that the possibilities in the sloping-
bottom geometry change dramatically, depending on values of
parameters including a and R. Conditions are discussed so that
the received total field consists of no more than three
particular rays, and such cases are treated subsequently.
Expressions are given for the amplitude and phase of these three
rays at the receiver.

Numerical calculations for the relative phase and amplitude
of the total field, as functions of time, are discussed in
Sec. III. Three distinct patterns are found for the multipath
cases, each of which may have significant amplitude variations.
All show the interaction of the fluctuations and the sloping
bottom, and for one type in particular, a consequence is the
disappearance and later reappearance of a ray. In Sec. IV
relations between the phase perturbations of individual rays and
the sound-speed fluctuations are obtained. Then, formulas are
derived for total-field variations in terms of ray-phase
perturbations, for the most commonly-occurring type of behavior
of the multipath total field. Comparisons between predictions
from the formulas and computations in Sec. III show quite close
agreement, in cases where conditions hold for validity of the

formulas. Main results of the paper are summarized in Sec. V.




I. MODEL FORMULATION

We model a variable-depth, off-shore oceanic region by
assuming that the ocean surface is flat and that the ocean bottom
is a sloping plane intersecting the surface at an angle a.

The line of intersection is regarded as the coast line of our
model. We use a Cartesian coordinate system, with origin at

some point on the coast. Increasing values of x and z

indicate distance normal to the coast toward the deep ocean and
oceanic depth, respectively, and the ocean surface is the plane

z = 0. The y-direction is parallel to the coast so as to produce
a right-handed coordinate system. The ocean bottom in this system
is the plane 2z = x tan a. As discussed in the Introduction, we
restrict attention in this paper to propagation normal to the
coast, thereby eliminating dependence of both the range and the
sound speed on the coordinate y. The sound source is placed on
the ocean bottom, at depth do' and the receiver is also on the
ocean bottom, at depth dR' The horizontal distance between source

and receiver is the range R and may be expressed as

R = (d - do)cot & . (1)

Figure 1 illustrates the geometry of the propagation range and
the parameters introduced above, along with some others to be
discussed later. We note that our solution procedures could be
adapted to analyze other hydrophone locations as well as
propagation-range orientations. One additional constraint on
our particular model is that the sloping bottom should not

extend to a depth dB of the abyssal ocean beyond the land-mass




rise, i.e. dR < dB' Otherwise, a piecewise-linear bottom
model, in which the slope at depth dB becomes parallel to the M
ocean surface, may be more appropriate.

We choose for our model of sound speed c the expression
c(x,z,t) = cgll+f(z)] + clx,z,t), (2)

where Cg is the fixed sound speed at the ocean surface above
the source, i.e. at x = do cot a, and t is time. The function
f(z) describes the depth variation of sound speed in the absence
of &, which incorporates changes due, for example, to tidal
effects. The dimensionless quantities f and ¢& c;l satisfy

-1

¢ cg” << £f << 1.

We specify the form of the mean variation f£(z) as a
bilinear model, of a type used previously (for a recent example,
see Ref. 1), to reasonably approximate measured deep-ocean
profiles while simplifying the acoustical analysis. We thus

select

f(z) = —zglc;1 i 0<z<d (3a)

and
-1
£(z) = [cy - cg + g,(2z=d))]cg™ , 4, < 2 < x tan a . (3b)

In Egs. (3), ¢, is the value of the mean sound speed which

A
occurs at the SOFAR axis depth dA' The quantities g, and g, are
the magnitudes of the sound-speed gradients above and below the
SOFAR axis, respectively. We may now express the mean sound

speed at the sound source c, and at the receiver Cp as




c, = cA + gz(dR-dA) - (4b)

R
where we have chosen to consider the case do < dA < dR
exclusively in this paper.

Typical parameter values appropriate for studying sound

propagation initiated near Bahaman shores of the Sargasso Sea8

are cg = 1541 m sec-l, Cp = 1487 m sec—l, and dA = 1000 m,

leading to the value 0.0540 for gl, and 92 = 0.0146. For

definiteness, we will use these fixed numerical values in
computations throughout this paper. Nonetheless, we seek to
construct a model with more generality and wider possible
application than just to this oceanic region or to any specific
acoustic-propagation range. Thus, we will present results for
source-receiver distances R between 5 and 20 km, and for bottom-
slope angles o in the range between 7 and 15 degrees. These
values include those typical of relatively short-range
transmissions from off-shore sources. In this paper we will only
discuss investigations for a fixed source depth do = 300 m,
Results for this case were regarded as typical of source depths
not near either the surface or SOFAR axis. For this fixed value
of do and given a and R values, it follows that dR is deter-
mined by Eq. (1). For a value of dB = 4700 m, requiring the

receiver remain on the slope and below the SOFAR axis imposes

700 m < R tan a < 4400 m . (5)




We note that other fixed parameter values and intervals of R and
a values can be examined by further application of our solution
procedures.

We consider next the effect of tidal variations on sound
speed via ¢. An earlier studyl considered the tidal effects on
sound speed in the deep ocean, using observations of temperature
fluctuations (as in Ref. 9), an analysis of state equations to
relate sound-speed fluctuations to those of temperature, and
the assumption of sufficiently short propagation ranges. The
deep-ocean model in Ref. 1 includes an oscillation with period
12 h of both the depth &A(t) of minimum sound speed and the

gradient above dA(t). with the surface sound speed remaining

fixed. The semidiurnal component is a strong feature of temperature

fluctuations nearer to shore as well, and frequency spectra of
currents there indicate even more concentration of energy in

: 1 - :
this component.o Since we are aware of no evidence to

invalidate the deep-ocean model for ¢ in the continental-slope
regions, we shall employ it here. We note that in any application
of our model, more general time variation could be incorporated

if observations warranted. Moreover, certain other forms of
vertical structures, either singly or in combination, could be

treated by the method in Sec. IV.

Therefore, we set

wzsin (vt/6) , 0 < z < dA(t)
E(z't) = -~
0 ' z > dA(t)

where p is the magnitude of the perturbation gradient, measured
1

in sec”

, and t is measured in hours so that for convenience the




tidal perturbation at t = 0 is absent. The time-dependent SOFAR

axis depth is closely approximated byl

2 -1
dh(t) = dA[1+"(gl+92) sin (mt/6)] . (7a)
la] ~
It follows that the time-dependent sound speed cA(t) at dh(t) is

;A(t) " c(aA(t),t) -G AniniRE/E) . (7b)

A
where the non-negative parameter

A = udyg, (g *a,) " (7¢)

is the amplitude of the sound-speed fluctuation of dA(t)' Values

of A up to 0.30 m sec-1

will be examined here, as in Ref. 1,
Equations (6) and (7) imply that the maximum variation of sound
speed with time occurs at the mean SOFAR depth dA and is equal to
Ag;l(gl+g2). Figure 2 illustrates the model by showing

representative sound-speed structures corresponding to maximum,

zero, and minimum perturbations.

II. RAY ANALYSIS

We assume that acoustic propagation occurs under conditions
for which ray theory is valid. 1In this section, we discuss the
ray geometry and amplitude and phase of any ray in the variable-
depth channel of Sec. I with no sound-speed perturbations. Thus,
the sound speed is given by Eq. (2) with ¢ = 0 and Eq. (3), and
parameter values are as in Sec. I. It follows that ray: consist
of piecewise circular arcs. Moreover, because the vertical plane

containing the source-receiver direction is perpendicular to the

B T Ry T N SR T PR R Fe T,




o —
o

coast line of our model, rays remain entirely in this plane;
otherwise, rays making bottom reflections would be deflected
out of this plane.4 If 8 is the inclination angle of a ray
measured positive clockwise from the horizontal, then the

usual form of Snell's law,

c—1 cos O = constant, (8)

is valid, although the constant changes after each bottom
reflection.

We now consider determination of the rays. In order to
obtain analytical ray descriptions which are also numerically
accurate, we begin by hypothesizing a possible ray path. For
our model, rays can be characterized by specifying a pair of

integers [K,L], where K and L are the number of surface and

bottom reflections, respectively. We note that under our
particular model assumptions, it can be shown by geomctrical
considerations and numerical calculations that there exists at
most one ray for each pair of integers [K,L]. Next, the equations
governing the ray are determined, which in general form a
nonlinear system for the ray angle at the source, eo, and other
parameters. Numerical root-finding procedures are then used to
determine values for the variables. The validity of each solution
is established by testing that the ray does not pass outside
the ocean on its way to the receiver.

The simplest conceivable ray has K = L = 0. Its governing

equations are Egs. (1), (4), (8), and

R

-1 =1
9, (cAtan BA cotan eo) + 9, (cAtan OA than eR), (9a)
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where eA ané eR are (positive) ray angles at the SOFAR axis and
receiver, respectively. Equation (9a) is derived in, for example,
Ref. 4. The [0,0]) ray is illustrated in Fig. 1. The angles

69, QA, and eR are shown and are all positive. The requirement

that this ray never reaches the surface may be expressed as

1

eo > - cos (9b)

Additional inequalities which are imposed for given a and R

are Eq. (5) and

bp 22 (10)

which precludes acoustic energy from reaching the receiver through

the ocean bottom.

Numerical results for the existence of the [0,0] ray are
shown in Fig. 3. Values for 90 may be found by iterating for
tan 6 using Newton's method for most (a,R) pairs in the Figure.
Equation (10) is satisfied only above and to the left of the
curve labeled 3 in Fig. 3. Moreover, Eq.A(9b) is violated below
curve 8. Since the first inequality of Eq. (5) is not satisfied
in the shaded area above curve 1, it follows that the [0,0] ray
exists only in the region of Fig. 3 bounded by curves 1, 3, and 8,
We remark here that the second inequality of Eq. (5) fails in the
other shaded area, below curve 7.

Another ray of interest has K =1 and L = 0, and is also

5

illustrated in Fig. 1. The equations™ determining the geometry

of the [1,0] ray are Egqs. (1), (4), (8), (10),

I o -
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11
-1
R=g,” (c,tan 6, - c, tan 6 _ - 2cg tan 6.)
+ g;1 (chtan eA - tan BR) p (lla)
and
-1 -1
eo < - cos (cocs N (11b)

where es is the (positive) ray angle at the surface. As illustrated
in Fig. 3, the [1,0] ray is found by numerical calculations to
exist in the region of the {a,R) plane bounded by the curves
labeled 2, 4, and 8. Below curve 4, the [1,0) ray fails to
exist because Eq. (19) is violated, while below curve 8, the
{1,0] ray disappears because Eq. (llb) is violated.
The third type of ray of principal interest in this paper
is that with K = 2 and L = 1. As illustrated in Fig. 1, its
bottom reflection is at depth dBl’ where the bottom incident ray

angle is 931 and the sound speed c is, from Egqs. (2) and (3a),

Bl

Cgy = cs - gldBI . (12a)

Additional conditions needed to specify the (2,1]) ray are Egs. (1),
(4), (8), (10),

_ .-l : %
R =g, {cAtan 0, 2cs(tan g, + tan 6g,) c tan 6

S e -1 -
+ cBlltan 031 tan(2a eBl)]} +g9, (c_ tan GA c_tan GR), (12b)

A R

-1
(dBl do)cota =4, (caltan631-2cstanesl—cotaneo) v (12¢c)
and
2 -~ 0., < - co8 Y c‘l) (124)
Bl B1°S R

it o




12

The angles es and es are the (positive) ray angles at the first f

1 2
and second surface reflections, as shown in Fig. 1. Note that
Snell's law provides two independent equations, since the bottom
reflection changes the constant in Eq. (8).

The numerical calculations for the [2,1] ray were performed
by first estimating tan eBl and Cp1* Then, Snell's law was

used to determine eo and le, after which Newton's method was
applied to Egs. (l2a) and (l12c) to converge to the correct value

for c for the estimated value of tan 681. Values were obtained

Bl
for 6 ,eA, and eR from Snells law, and tan eBl was re-estimated

S2

from Eq. (12b). This process was continued until convergence
was obtained. Efficient calculations for this ray, as well as
for others, relied on accurate initial estimates. It was found
that the [2,1] ray exists over most of the (a,R) plane in Fig. 3,
although not below curve 5 because Eq. (10) is violated. 1In i
addition, we assumed that the source hydrophone is directional,
transmitting significant sound energy only for launch angles eo

satisfying |6 less than some value 8op" This can be accomplished,

ol
for example, by using an omnidirectional "point" source with a
reflector, as described for example in Ref. 11, or an array of
omnidirectional sources. With the value 6°D = 400, the [2,i]
ray is restricted to the left of curve 6 in Fig. 3.

For certain parameter values considered here, rays of type 3
[0,L] exist, with L > 1 bottom reflections which must lie above
the SOFAR axis. As indicated in Fig. 3, we ha e shown that
various members of this family of rays occur for the shallow 4

receiver positions above curve 2. When these rays exist, they

could in principle be significant contributors to the total received

—— " . . ; “__n——J‘
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field, since they suffer relatively small spreading and bottom

loss because of their short path length and near-grazing bottom
incident angles. On the other hand, for the latter reason,

such rays are particularly sensitive to actual nonlinear bottom
topography in any specific experiment. For our investigations
of total field in later sections, we choose parameter values for
which rays of this type do not occur.

We remark that the combination of bilinear sound speed and
sloping bottom in our model permits a remarkably rich variety of
rays. Figure 3 suggests the patterns that can arise, but depend-
ing on assumptions and parameter values, the situation can become
more complicated. For instance, if eoD is larger than 40°, not
only does the [2,1] ray exist over more of the (a,R) plane shown,
but also new rays may occur. The ([3,2] ray may be present,
since its initial angle ranges from eo = - 40.5° for (a,R) =
(7°,17 xm) to 6, = - 85.0° for (a,R) = (15°,5 km), for the (a,R)
values in Fig. 3. Indeed, other rays with more than two surface
reflections could also occur. The importance of these steep rays
to the total field would depend critically on such factors as
bottom loss and scattering. As another example, a piecewise-linear
bottom dramatically changes the ray possibilities; more than one
ray sometimes occur for given numbers [K,L] of surface and bottom
reflections.

In view of the foregoing considerations, for subsequent
analysis of the total received field, we shall restrict (a,R)
values to the regions in Fig. 3 where some or all of the [0,0],

[{1,0], and [2,1]) rays, but no others, exist. We henceforth denote

R 4
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these as the n = 1, 2, and 3 rays, respectively. Note that for

the rays considered in this paper, we can identify n with K + 1.
The travel times T for rays n = 1 and n = 2 can be adapted

from Ref. 5, while that for ray n = 3 can be calculated using

procedures of Ref. 5. The results are

=K 1

: -1 : -
T) =9, 1“[co(l+81nea)ca (1+sxne°) ] +

-] -1 : =1
9, ln[cR(l+sinBA)cA (1+51n9R) ) (13a)

R | ; -1 . -1
T, = 9; ln[co(l-sxnes)(1+sin6A)cA (1+sinéj)

-1 -1 . -1 : -1
x (1+sines) ] + 9, ln[cR(1+sln6A)cA (1+51n6R) ]  (13b)

and

_ -1 o it
T, =9, ln{co(l s;nesl)(1+sin981)(l 81nesz)(1+sineh)

-1 s -1 . -1 ; -1 . -1
x cp (l+sln6°) (1+sxnesl) (1+sxnesz) [1+31n(20-931)] } :
+ g-1 In[c_(1+sine_ )c_t(1+sine )~} (13c)

2 R A" A R by

These expressions can be evaluated, using Egs. (1), (4), (8), (l2a),
and (12c) where appropriate, once the source angles eo of the }
three rays have been determined numerically.

The formulas for the geometrical spreading loss can be

developed from results and methods in Ref. 2:

&iaid 3 -1, -1 _iged
Ay = Rc_ singp sec 8, ltane [g," (c, "cote, c, cot )
-1, -1 -1
+ g, (c,cotb, - cp coteR)ll ’ (14a)

......



= 3 -1, -1 P |
= Rco sinOR sec eo taneolg1 (cA cotf 2c cotf

A A s

2 S

-1 -1, -1 -1
-0, coteo) + 9, (c R

A coteA -cC

cotel)l . (14b)

and

-1,.2 .2 -1 -1
3 R sinf_ secO (gl {cnlsec eBltanﬂo(cBIcoteal c, cotd

>
]

- 20-1 cotes) + [cot(2a-8

S ) - coteB

Bl ] (deg,/de )}

1

+

c sec2(2a-631)[(l+tan(20-651)cote ) (chl/deo)

Bl Bl

-1, -1
cBItaneo tan(2a eBl)COteBll gl [cA coteA

-1 -1 -1
2cg” cotbg, - cBlcot(Za eBl)] t g, (c

-1
A

coteA

- c;I cotOR)])[RBIR-l + (1-R31R-1) cosealsec(eal-Za)J. (14c)

In Eq. (l4c) the derivative term is

i i = . -1
chl/deo e taneo seceo(csceBl csceo 2cscesl)(cot6Bl cota) -,

(14d)

and the horizontal distance between source and bottom reflection is

_1 .
Ry, 9, (co'CBI)COt“ % (l4e)

We assume the sound source emits a harmonic signal with
circular frequency w and with maximum amplitude unity, i.e.
1ldyn cm_2 at distance 1 m. It follows that ray n arrives at the
receiver in the form A, sin (ot - on). The amplitude A, is
affected by source directivity and by the physical processes of
spreading loss, boundary loss, attenuation, and scattering, but

the latter two effects are excluded here. At any surface

L TR N W 5 b b e
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reflection, the model of Mackenzie12 leads to no amplitude loss
and a phase shift of n. The loss B, and phase shift ¢, at the
bottom reflection of ray 3 may also be computed from formulas
in Ref. 12. Two parameters characterizing bottom properties
appear in the formulas for B, and ¢3. The first (called a/f in
Ref. 12) is the ratio of complex to real parts of the bottom
attenuation factor. Although this quantity in general depends
on acoustic frequency and bottom composition, a frequency-
independent value may be derived}2 and we choose a value of
0.0158 for a bottom which has been used for the Sargasso Sea

area.13 The second parameter, o, is the impedance ratio of the

bottom,

0 = (p,C,) (0519510 " (15a)

where the corresponding bottom density Py and sound speed c, are
o, - 2.00 gm cm"3 and o, = 1757 m sec-l. An approximate formula

for water density pg,(in gm em™3) at depth dy, (in m), which can

be derived from Eq. (20) of Ref. 14, is

= 1.0243 + (8.2716 x 10 %a_. . (15b) i

P Bl

Bl

Thus, the amplitude of ray n can be written as

_ a-1/2
A =A"/“B D(6) , (16a)

if we define Bl = 82 = 1. The directivity factor D is normalized
to a maximum value of 1. We note that our definition of 9°D
requires D(6_) to be significantly less than 1 for |e°| > 8,p°
Similarly if ¢y = ¢2 = 0, the phases on satisfy




o = W - (n-w - ¢_ . (16b)

Using Egs. (13) and (14), the values for the functions in Eq. (16)

are found after the numerically-determined quantities such as

60 are known.

III. TOTAL-FIELD RESULTS

Under the conditions described in Sec. II for which Fig, 3

is applicable, the total field at the receiver is given by

3
A sin (wt - ¢) = E An sin(wt - tbn) ' (17a)
n=1

in which the amplitude A and phase ¢ are determined from

3 3
8§ = Z A, sin Qn ¢ C = E An cos On F (17b)
n=1 n=1
and
A = (52 + C2)1/2 , sin ¢ = S/A , cos ¢ = C/A . (17¢)

Expressions for AL and ¢n are given in Egs. (16). The amplitude
An is set to zero if ray n is absent.

The preceding section focused on ray analysis in the absence q
of the sound-speed perturbation ¢. Here, we present results of
the numerical investigation of Eqs. (17) for our model including é&.
Under the assumptions in Sec. I, the time variation of the sound
speed is sufficiently slow that it can be ignored during the time
required for an acoustic signal to propagate from source to
receiver. From Eq. (6) it follows that rays in the perturbed

medium are of the same form as those when ¢ = 0. Moreover, the

el e A T, .
NSRS — - | ‘




launch angle eo and other variables for a ray of type n =1, 2,
or 3 can be calculated from the appropriate governing equations
in Sec. II, but with perturbed values of gy dA' and Cpr Given
values of a and R, the diagram for existence of rays in the
perturbed medium differs only slightly from Fig. 3, specifically
in the location of certain boundary curves. A number of different
combinations of values for parameters a and R were selected, but
all the calculations we shall discuss here used A = 0.3 m sec—l,
w = 206 Hz, and D(6_) = 1 for |0 | < 40° and 0 for larger |6|.
Results for this A are presumably typical of those for other
(small) values of A. The directivity pattern used here may be
regarded as an idealization of more realistic patterns (for
examples constructed from endfire linear arrays of isotropic
point sources, see Ref. 13). Time was varied over 12 h since
that interval is the period of ¢.

From the many cases examined, several characteristic types of
behavior in the total field were observed, which we now discuss.
The simplest type is obviously when a and R are such that only a
single ray appears, which from Fig. 3 would be either the n = 2
or 3 ray. Typically, amplitude A varies only slightly with time;
the maximum variation of relative amplitude over 12 h was féund
to be less than 1 dB in all single-path cases examined. Phase ¢
is sinusoidal in time, with period 12 h. The peak-to-peak phase
variation was 0.42 cycles for the n = 2 ray when (a,R) = (15°, 7 km).
It would be anticipated that single-path cases possess a simple

relationship between environmental and acoustical variations.

This is, of course, an important consideration in certain acoustical
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experiments which monitor ocean processes. In our model, it is
significant that single-path cases occur at relatively longer
ranges than multipath, as is clear from Fig. 3.

As shown in Fig. 3, other values of a and R permit two rays,
specifically the pairs (n=0, n=1) and (n=1, n=2). Total-field
amplitude and phase are illustrated, for an example of the former
case, with (a,R) = (110, 7 km), in the solid curves of Fig. 4.

The amplitude, which is relative to that of the unit-amplitude
source, is a smooth, roughly sinusoidal function of time, with
peak-to-peak variation of 9.8 dB. We note that individual ray
amplitudes have very small amplitude variation with time,
analogous to the single-path case. Hence, the conclusion follows
that the solid amplitude curve in Fig. 4 reflects multipath effects.
The phase, shown relative to 1.0 cycles for clarity, is also
smooth, is virtually sinusoidal, and has peak-to-peak variation
of 0.68 cycles. This pattern was the most common one among our
double-path results, and we shall refer to it as type I behavior
of the multipath total field. A theoretical description of this
case will be discussed in Section 1IV.

Another variety of double-path behavior is shown by the solid
curves for (a,R) = (12°, 8 km) in Pig. 4, which we denote by type II.
The mean state possesses n = 0 and 1 rays, but the n = 0 ray is
nearly tangential to the bottom at the receiver. The sound-speed
perturbation can cause the ray to violate Eq. (10), thereby
removing the ray from the total field. This occurs in Fig. 4
from about t = 1.2 h to 4.8 h, during which period the phase and

amplitude display the characteristics of single~path propagation
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discussed earlier. Outside this time interval, the double-path
behavior is typical of type I. The jump in amplitude at the
transition points is about 9.5 dB. In combination with the
approximately 7.5 dB variation in amplitude from t = 4.8 h to
t =9 h, it is clear that substantial amplitude variation will
occur in this example. The phase, shown relative to 0.75, is
discontinuous at the exit and entrance points of the n = 0 ray.
We note that the actual phase jumps at those points are the differences
shown on Fig. 4 (about + 0.4 cycles) modulo one cycle. Type II
behavior points out another effect of the interaction of sound-
speed fluctuations and the sloping bottom.

An example of a third class of double-path behavior found
among our computational results is illustrated in Fig. 5. This
is an n = 2 and 3 case for (a,R) = (11°, 15 km), with peak-to-peak
amplitude and phase variations of 7.1 dB and 0.31 cycles,
respectively. However, neither relative amplitude nor relative
phase of this type III case is close to the sinusoidal curves
typical in type I. For example, amplitude fades occur near
t = 6 h and 12 h, over time scaler mich shorter than the scale

of environmental variation. This pattern has been observed in

many multipath studies (see for example Refs. 1 and 16), although
typically in situations with more rays than are present here.

In the mean state, the phases of the n = 2 and 3 rays are nearly w
radians apart, and the total-field amplitude is only about 20%

of the individual amplitudes. Thus, with the perturbation applied,
both amplitude and phase are sensitive to small differences in

the rates of perturbation of the phases of the individual arrivals.

e ———————— ...
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This sensitivity precludes application of the theoretical analysis

to be discussed in Sec. IV.

From Fig. 3 it is seen that for certain (a,R) combinations,
all three rays can contribute to the total field. Exactly as for
the double-path calculations, type I behavior was most frequently
found for triple-path calculations. Relative phase and amplitude
for a typical case, (a,R) = (8°, 8 km) shown as solid curves in
Fig. 6, are very similar to the analogous curves in Fig. 4.

The amplitude curve shows a total variation of 7.8 dB and is
somewhat less symmetric about t = 6 h than the corresponding
curve in Fig. 4. Peak-to-peak phase variation is 0.77 cycles.

Type II behavior alsc occurs for triple-path cases.

Figure 3 shows that either the n = 1 or n = 3 rays can be lost
near boundary curves 3 and 6, respectively. We shall not discuss
cases near boundary 8, where two rays can disappear. Phase and

(10°, 10.5 xm), for

amplitude are shown in Fig. 6 for (a,R)

0.5 h and t = 5.5 h.

which the n = 1 ray is absent between t
In that interval, the double-path behavior is characteristic of
type I. In fact, over each continuous portion of the curves,
typical type I behavior occurs. We remark that although type III
double-path behavior is conceivable when one ray is lost from a
triple-path case, we never observed this situation. From Fig. 6,
the total-field amplitude variation is about 12.2 dB, while the
changes over each continuous portion in this example are about

2 dB. The phase, shown in Fig. 6 relative to 1.1 cycles for
clarity, is approximately sinusoidal over its continuous portions.

As in Fig. 4, the actual phase jumps could be larger than
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suggested by Fig. 6, in which phase modulo one cycle is shown.
We note finally that type III triple~path behavior could
conceivably occur for three rays if, for example, the phase of
the vector sum of the n = 2 and 3 rays happened to differ by
nearly m radians from the phase of the (strongest) n = 1 ray.
However, this was not observed among the triple-path cases we

examined.

IV. APPROXIMATE TOTAL-FIELD MODEL

The computational results of Sec. III suggest that analytical
approximation of the total field phase and amplitude should be

possible for behavior of type I (and for continuous portions of

type II cases). The first step is to approximately determine
perturbations to phases of individual ray arrivals produced by
the sound-speed perturbation. Then, we shall show how these
results are useful in approximating the total field.

From Egs. (7), the time-dependent. SOFAR-axis depth 3A(t)
can be expressed in terms of ;A(t), and similarly for the time-
dependent upper-layer gradient. Thus, the time dependence of ‘
the phase on of any ray (n =1, 2, or 3) can be considered a
consequence of the time dependence of the single environmental
quantity ;A(t)‘ Define 4¢ as the phase fluctuation of ray n
due to the sound-speed perturbation. From the first two terms of

a Taylor series expansion and Eq. (7b), it follows that

(aon/acA) = A(t) , (18a)
cp=c

on(cA) - Qn(cA)

(
AOn.t)

A
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where

Alt) = cA(t) -~ . A sin (wt/6) . (18b)

Partial differentiation is used in Eq. (18a) to indicate that

Aon depends on other variables; just one term appears in Eq. (18a)

because ca is regarded as the only time~dependent environmental

parameter. Next, we use Eg. (16b) to write

i

B ' (18c)

(a¢n/acA)|c = @ (a'rn/acA) L

ca

1 and 2 but ignores the contribution

which is exact for n

- (a¢3/acA)| for n 3. This term can be estimated, with
c

A
difficulty, from Egs. (15) and the equations for the n = 3 ray.
Alternatively, its effects can be shown to be negligible by

actual numerical calculations for the perturbed n = 3 ray (for

illustration, a typical value of |(3¢3/3cA)| A l is .001 cycles
“a
for our parameter values and (a,R) = (10°, 15 km)). Once an

expression for the travel time derivative is obtained, A¢n is

approximated through Egs. (18).

Direct calculation of aTn/acA from Egs. (13) is feasible but

very unwieldy, because of the implicit relationships among Ca and

the variables describing the ray geometry. By differentiating
Egs. (13) and using Egs. (2),(3),(7¢c),(8),(9a),(11la),(12b),(12c),
and (12d), it can be shown after considerable manipulation that

Egs. (18) yield:
A0, (t) = wpg 2 sin(rt/6) {1ln [c,(l+sing )c L (1+sine ) 1)
1 1 o A" A o

-l i
- cs(cA sineA - c8151n6°)} ’ (19a)




Aéz(t) = wugIz sin (wt/6) {1ln [co(l-sines)(1+sinea)c;1

X

-1 -1 il -1
(1+sin6°) (1+sines) ] - cs(cA s:mﬂA 2cs sines

cglsineo)} . (19b)

wugiz sin (wt/6) (ln{co(l-sinesl)(l-l-sineB )

>
©
w
-
(o
~
]

1

x (I—SinSSZ)(1+Sinek)c;1(1+Sineo)-1(l+SinGSl)—1

x (l+sinesz)_1[l+sin(2a—6 )]-l} - c [c;]'sineA

Bl S

-1 . L R -1 -1
2cs 81nesl 2c sznesz + c Bl

s p18inég; - ¢

sln(2u—631)

c;1 sing_]). (19¢)

Equations (19) can be evaluated from previously-computed geometric
quantities of the unperturbed rays.

We note that the phase perturbations are independent of g,
and OR' parameters characterizing the ray geometry below the
SOFAR axis. That is, the sound-speed fluctuation produces changes
in ray geometry below the SOFAR axis, but these changes do not
affect the phase perturbations in Egs. (19). To the order of
terms retained in Egs. (19), phase perturbations depend only on

those portions of the rays above the SOFAR axis.

One way to present the results of Egs. (19) is to regard
Aon(t) as a function of a and R and show.the level curves of this

function. 1In view of Egs. (18), it is sufficient to consider

level curves of Bn' Given values of a and R, the quantity Bn




could be obtained by interpolation from the level curves., It is

particularly convenient to plot the level curves for n=1 and 2

with respect to R and Rtana = dR-do(by Eq. (1)). To see this, we
note that for any ray, Bn depends only on the mean ray geometry

above the SOFAR axis. Consequently, Bn will be the same for all
members of each family of rays with identical ray lobes for

z < dA' Since the n = 1 and 2 rays in particular are unaffected by
the ocean bottom for z < dA' members of any such family correspond

to rays reaching a receiver at depth dR related to R and a by Eq. (1).
Because the locus of receiver depths is a circular arc, the level
curves themselves are circular arcs in the (dR-do,R) plane. Using
values for quantities previously determined numerically, we plot
level curves for Bl and 62 in this plane as solid curves in Fig. 7(a)
and 7(b), respectively. Also indicated by dashes are curves 1 and 2,
of minimum (a = 7°) and maximum (@ = 15°) bottom angles, respectively,
In addition, the curves 3 and 4, demarcating the existence of the

n=1 and 2 rays as described in connection with Fig. 3, are shown in
Figs. 7(a) and 7(b). We note that Bl and 82 are negative for the
parameter values we considered, because a net increase in sound

speed produces a decrease in travel time and phase.

The calculation of B3 is not as simple, because the n = 3 ray
reflects above the SOFAR axis and the ray-family characterization 1
useful for n = 1 and 2 does not apply. Level curves of By were
approximated from values of 83 computed directly from Eqs. (18) and
(19c). The computations were performed for values at the intersection
points of a rectangular grid in the (a,R) plane. Each computation i

requires determination of the mean ray geometry, but the method is
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straightforward. The results are shown in Fig. 7(c), along with
the limiting curve 5 and directionality curve 6 from Fig. 3. The
level curves have the same general shape as those in Figs. 7(a) and
7(b). As an example, to compute the value of 83 for (a,R) = (10°,
10 km), we note dR-do = 1.76. The appropriate position is shown
as a cross on Fig. 7(c). By linear interpolation, we find

83

-1.07.

We now develop a theoretical explanation for the behavior of
total-field phase and amplitude for type I multipath behavior (and
type II multipath between the entrance and exit times of a ray).

We suppose ¢ and A are the total-field phase and amplitude (relative
to the unit~amplitude source) in the absence of sound-speed
perturbations. We define A® and AA/A as the total-field phase and

relative amplitude deviations due to perturbations, i.e.
A% = 0(c,) - ®(c,) = o(t) - - (20a)
and

AA(t) /A (A(cA) - A(cA))/A(cA) = (A(t) - A)/A . (20b)

We note that AA/A is the ratio of the amplitude deviation produced
by the perturbations and the unperturbed amplitude. It follows

from Eq. (20b) that the logarithmic amplitude anomaly is
AL(t) = 20 loglo(l+(AA(t)/h)] = 20 loglok(t)—ZO logloh . (20c)

Thus, knowledge of AA/A determines, via Eq. (20c), the difference
in decibels between the amplitudes with and without the perturbations.

1f AA/A is sufficiently small, then AL is approximately equal to
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(8.68) (AA/A) .

We assume that variations in individual ray amplitudes from
the perturbations have negligible effect on the total field. This
assumption is confirmed numerically by results in Sec. III, and
could be demonstrated analytically by the same methods used to
confirm it in other problems (see, for example, Ref. 17). Thus,
we regard each A, as independent of time, and we need only consider
the influence on AA/A and A¢ of phase perturbations A@n(t). We

define, for m ¥ n,

"

e__(t)

-~ AOm(t) - Aon(t), l1<m nc<3, (21a)

where R is the phase-perturbation difference, expressed in cycles,
between rays m and n. We further assume that the maxima over t of
any 2ncmﬁ(t),the perturbation differences expressed in radians, are
sufficiently small compared to one. However, even values of 2me o
larger than 0.5 give acceptably-accurate approximations. Moreover,
even though our formulas become particularly simple when the

2me = are small, this assumption is not essential to our procedure,

We also define aon as the difference (in cycles) between the mean

value of the phase of ray n and the mean total-field phase,

80, = ¢ (c,) - 0(c,) , len<y, (21b)

Note that neither the Aon nor the con are required to be small,
The last assumption needed for our total-field approximation

is that AA/A be sufficiently small to expand the total-field
equations in this quantity. Again, as with the parameter Z”Emn'
even relatively large values of AA/A near 0.5 give useful

approximations.
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Consider first the double-path cases. From Egs. (17), (20),
and (21), we find

= 2 2 2
(A + AA)° = Am + An + ZAHAn cos [2n(60m - GOn + emn)] . (22a)

where m and n are the indices of the two rays involved. We
expand Eq. (22a), neglecting terms involving (AA/K)2 and those
with (Zﬂemn) to powers higher than the first. Using Egs. (17)

to simplify the result, we obtain
AA(t) /A = 2me  (t) (A /A)sin (2mée,), (m # n) . (22b)

An approximation for AL/(t) then follows from the first equality in
Eq. (20c). Rewriting Egs. (17) using Egqs. (20) and (21) leads to
the formula

5 1 2mi(A® _+Ad ) /2 i2w (8¢ _+e__/2)
(& + AA)e2"1A° = m n [Ame m mn

i2w (69 -¢_ /2)
+ e T (23a)
Expanding Eq. (23a) and simplifying with Eq. (22b) implies the

approximation
Ad(t) = Ao (t) - emn(t)(An/A)cos (2nse ), (m # n). (23b)

Thus, amplitude and phase changes of the total field are predicted
to possess the same time behavior as A(t), since each Aom, and hence

each e . is proportional to A(t).

We found very good agreement between predictions from Egs. (22b)

and (23b) and numerically-computed type I double-path results,

described in Sec. III. The (a,R) = (11°, 7 km) case, with m = 1 and

T R R e e e
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n = 2, is typical, and numerical calculations for A(t) and ¢(t)

were discussed in connection with the solid curves on Fig. 4.

The mean values are Al = 1.72 x 10_4, Az = 1.31 x 10—4, 6&1 = 0.14

cycles, 602 = 0.75 cycles, and A = 1.09 x 10-4. As an example, at
the minimum of z(at t = 9 h), the values of 89, and A%, predicted
from Egqs. (19a) and (19b) are ~0.32 and -0.25, respectively, and
are virtually identical to the numerically-calculated values.

With these numbers in Eq. (23b), we obtain A¢(9) = -0.32 cycles,

compared to the numerically-computed value of -0.31 cycles.

Similarly, using Egs. (22b) and (20c), we find that AL(9) 3.8 4B,
while the difference between the numerically-computed values of
20 logloA(9) and 20 log10 A is almost identical. Theoretical

predictions for phase and amplitude are shown as dashed curves

on Fig. 4; specifically, the amplitude curve is 20 logloi + AL(t)
using Egs. (20c) and (22b), while the phase curve is A®(t) from
Eg. (23b) plus 1.0 cycles, to correspond to the way the solid
curve was plotted. Wherever the theoretical curve is not shown,
it is indistinguishable from the numerical results. As can be
seen from Fig. 4, the maximum difference between the theoretical
and numerical values occurs at the maximum of X(i.e.t = 3 h), since
the numerical results are slightly non-symmetric about t = 6 h,
Nonetheless, the relative error in the theoretical predictions
for amplitude, as an example, is less than 12% for all time, and
typically the error is less than this. A similar comparison is
shown for portions of the (a,R) = (120, 8 km) curves in Fig. 4.
Even closer agreement is observed here.

For type I triple-path cases, formulas similar to Egs. (22)

and (23) may be developed. The analog to Eq. (22a) has six terms
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on the right side, and with the same assumptions on (AA/K)Z

and the (Zﬂemn)z, it can be shown that

AR = 2me,3(t) Ay sin (2m80,) + 2me, (t)A) sin (2n80,). (24a)

3

The analog to Eq. (23a) is expanded, assuming sufficiently small

CAa/RY % and (21r)2(emn + emk)z/s, to obtain after simplification:

AD Aoz(t) - 521(t)(A1/A) cos (2ﬂ601)

523(t)(A3/§) cos (2n603) 4 (24b)

We note that in the manner they are written, Egs. (24) represent
direct extensions of Egs. (22b) and (23b).

The approximations Egs. (24) produce quite accurate
predictions to the numerical results in every triple-path case we
examined. Typical comparisons are shown in Fig. 6, with the

same conventions as Fig. 4. In particular, for (a,R) = (8°, 8 km),
4 4 5

the mean values A are 1.49 x 1077, 1.01 x 10

for n =1,2,3; A = 1.66 x 10-4; and 6¢n are 0.11, -0.02, and 0.67

, and 9.64 x 10

cycles for n = 1,2,3. The theoretical values from Egs. (19) for
Aon(3) are 0.42, 0.30, and 0.31 cycles for n = 1,2,3, compared to
calculated values of 0.42, 0.30, and 0.32 cycles, respectively.

The predictions from Egs. (24) and (20c) for A®(3) and 20 logIOK+AL(3)
are 0.38 cycles and -80.1 dB, while the numerical values are 0.39
cycles and -81.0 dB. As before, agreement at other times is even

closer. Also shown in Fig. 6 are comparisons for the type II case l 1

of (a,R) = (10°, 10.5 Km).
A particularly striking feature of these approximations is

their success when the 21remn are not particularly small with respect

- —
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to one. For the example just discussed, the maximum values of

2me and 2mwe are 0.76 and 0.67 radians. 1In fact, the derivation

12 13

of our results suggests that they could be expected to produce good
approximations so long as the 21temn are merely less than one, rather
than significantly smaller than one, with the important provision
that AA/A remain small. This condition is, of course, violated in
type III multipath behavior and in type II cases at points when rays
are lost or gained. We also remark that this type of approximation
to the multipath field takes advantage of environmental variations
producing small relative changes in the phases of individual ray
arrivals, not on the specific assumptions of the environmental or
acoustic model in this paper. Only the mean phase and amplitude

of each ray, the mean total field, and expressions for the
individual ray phase perturbations are required. The forms of

Egs. (24) suggest possible generalizations to problems in which

the total field consists of more rays. Such approximations may

prove useful in other problems where conditions for their validity

are satisfied.

V. SUMMARY

In this paper we investigate the combined effects of sound-
speed fluctuations and variable bottom depth on oceanic sound
transmission. Off-shore propagation ranges are modeled by
assuming a horizontal ocean surface, a uniformly-sloping bottom,
a mean bilinear sound-speed structure, and bottomed source and

receiver (above and below the SOFAR axis, respectively). In this
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paper we consider propagation in the down-slope direction.
Intervals of allowable values for the bottom-slope angle o and
source-receiver distance R are considered. Sound-speed fluctuations

are assumed to be due to the dominant upper-ocean temperature

variations, as in a previous paper.l The model assumptions guarantee

that rays consist of planar piecewise-circular arcs. For our
particular assumptions, it is found that for each pair of integers
[K,L], there is at most one ray having K surface and L bottom
reflections. However, the set of SRBR and RBR rays that does
occur changes dramatically depending on parameter values. An
example of some types of changes is given by Fig. 3, which shows
regimes of existence of mean-state rays in the (a,R) plane, using
fixed values of other parameters and a source-directionality
condition. Based on this figure, subsequent investigations are
restricted to parameter values for which the received total
field has at most three contributing rays. It is emphasized that
other model assumptions can easily enrich the possibilities for
occurrence of rays, and the effects of factors such as different
mean-state parameter values, different source and receiver
positions, and piecewise-~linear bottom models are discussed
briefly.

With expressions for travel time, spreading loss, and boundary
loss and phase shifts for the three rays, and including sound-
speed fluctuations, the total field is computed numerically as
a function of time. All single~path cases have amplitude

virtually constant in time and show a simple proportionality
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between received phase and sound-speed fluctuations. In contrast,
three distinct patterns for the multipath cases are categorized,
each of which may have significant amplitude variations. We
denote by type I the majority of time evolutions observed, with
roughly sinusoidal phase and amplitude curves, the latter showing
peak~to-peak variations of up to about 10 dB. 1In type II
behavior, the sound-speed fluctuations and sloping bottom conspire
to produce the disappearance and later reappearance of a ray over
a portion of the twelve-hour fluctuation period, leading to a
jump in the amplitude and phase curves. This can occur for
parameter values close to or on the curves in Fig. 3. A third
type of amplitude and phase characteristics is possible, in

which the time behavior differs sharply from that of the
fluctuations. Type III behavior arises for special phase and
amplitude relationships in the mean rays.

A theoretical explanation is developed for multipath behavior
of type I and of the continuous portions of type II. Time
variations of individual ray amplitudes can be shown to have
negligible effect on total-field time dependence. Thus, the
first step is to relate the phase variations of individual rays
to the environmental fluctuations and the variables describing
the mean ray geometry. Level curves of maximum phase
perturbations are then constructed and discussed. The second
step in the theory is to relate total-field variations to the
ray~phase perturbations. Formulas for the deviations to the
total-field phase and amplitude are derived. Then, predictions

from the formulas are compared with numerical calculations. As




illustrated by Figs. 4 and 6, the comparisons show quite close

agreement. The good accuracy of the theoretical formulas is

discussed, in view of the conditions assumed for their 1
derivation.

In future work the authors plan to extend the analysis to
include other combinations of environmental effects and
acoustic configurations, including depth-dependent currents and
different source-receiver locations and ocean boundary models.
For any such problems, characterizations similar to the two in

this paper, of ray occurrence in terms of parameters and of

types of total-field behavior, would be needed. Moreover, it

is expected that the theoretical tool developed for

approximating total-field variations would be useful.
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FIGURE LEGENDS

FIG.

FIG.
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FIG.
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l.

Geometry of the propagation range and of three rays of

principal interest.

Mean bilinear sound-speed profile and pivoting produced by

fluctuations.

Existence regimes of various rays as functions of range R (km)
and bottom-slope angle a (degrees). See text for explanation

of numbered curves.

Relative total-field amplitude (dB) and phase (cycles)
versus time (h) for mean double-path cases: (a,R) = (llo, 7 km)
and (a,R) = (120, 8 km). Solid curves computed numerically,

dashed curves from theory in Sec. IV.

Relative total-field amplitude (dB) and phase (cycles) versus

time (h) for (a,R) = (11°, 15 km).

Relative total-field amplitude (dB) and phase (cycles) versus
time (h) for mean triple-path cases: (a,R) = (8°, 8 km) and
(a¢,R) = (10°, 10.5 km). Solid curves computed numerically,

dashed curves from theory in Sec. IV.

Level curves of phase-perturbation coefficient of sound-speed
deviation B_ (cycles m ! sec) in (d-d_, R) plane, for ray
(a) n=1, (b) n=2, and (c) n=3. See text for explanation

of numbered curves.
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