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ABSTRACT

1 The influence of sound-speed fluctuations on propagation of

a CW signal in an ocean with a uniformly-sloping bottom and

a horizontal surface is analyzed using ray theory. The mean

sound-speed structure is modeled as bilinear , with bottomed source

- and receiver above and below the SOFAR axis , respectively. The

horizontally—independent fluctuations oscillate with a 12-h

period in the upper ocean. An examination is made of possible

• types of rays for down-slope propagation that might exist,

depending on bottom—slope angle and source-receiver separation.

The total acoustic field is investigated for its dependence on

these parameters and time. For certain conditions when up to

three rays comprise the mean total field , three patterns of time

evolution are described, each of which may have signif icant

• amplitude variations. Numerically-computed examples of each type

are presented. The linear relationships between phase var iations

of individual rays and the sound-speed fluctuations are derived .

Then , formulas are developed to explain the most frequent behavior

of the relative amplitude and phase of the multipath total field .

Predictions from the formulas show very good agreement with the

numerical calculations.
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I
INTRODUCTION

This paper continues an investigation , begun in Ref. 1, into

effects of certain combinations of ocean—environmental features on

CW acoustic propagation. Reference 1 was concerned with the

influence of a combination of spatially-uniform currents and upper-

ocean , tidal sound—speed fluctuations on deep—ocean transmissions

over a horizontal bottom. Under the model assumptions, it was

found that total-field phase is affected by both current and

sound-speed fluctuations, and that the latter more significantly

contribute to amplitude variations. The small number of other

acoustic studies in which combinations of oceanic variations have

been considered are discussed in Ref. 1,

The primary purpose of this paper is to examine effects of

sound-speed fluctuations on down-slope acoustic propagation over

a nonhorizontal bottom. One model of interest is a uniformly—

sloping bottom, which may be regarded as grossly approximating

portions of the topography, at some locations, from continental

or island shelves to the abyssal ocean. For simplicity we focus

on this model , rather than possibly more generally-applicable

ones consisting of several piecewise-linear segments. We note

• that our procedures permit extensions to such cases. Another

reason for considering the uniform slope is that bottom

variation has been excluded from most previous published

propagation studies. Exceptions concern analyses of properties

of refracted/bottom-reflected rays2 and surface-ref lected/bottom-

reflected rays3 over a uniform slope. Another investigation4

showed how to analyze refracted/bottom-reflected rays propagating

in an arbitrary direction over a uniform slope, by relating such
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problems to ones in an ocean with a uniform horizontal sound-

speed gradient. Environmental fluctuations were not

considered in these studies. Moreover, their principal

objective was relatively near—shore propagation, for which a

linear or constant mean sound speed is appropriate. In the

present case, for transmissions to depths below the SOFAR

axis (at about 1000 m), a bilinear mean sound—speed profile is

• physically more reasonable, as well as analytically tractable

(see, for example, Refs. 5, 6, and 7). In particular, we

assume that both source and receiver are bottomed, above and

below the SOFAR axis, respectively . In this paper we study

acoustic propagation along a range normal to the constant-depth

lines. This situation is a good approximation of some

experimental conditions, is illustrative of sloping—bottom effects,

and is relatively easy to analyze. Other propagation directions

could be studied by applying and extending the procedures in

Ref. 4. It is also assumed that for given bottom—slope angle a,

the source-receiver distance R is short enough so the receiver

depth does not exceed the abyssal ocean depth (about 4700 m).

In order to understand the characteristics of the chosen model, I
we investigate intervals of values for a (between 7 and 15 degrees)

and R (5 and 20 Jan), which include those typical of relatively I
short—range transmissions from off—shore sources.

In Sec. I the sound-speed fluctuations are modeled by I
pivoting sinusoidally, with semidiurnal period, the upper-ocean Isound-speed gradient about the surface sound speed. The range R

is assumed short enough to ignore horizontal variations. I
Motivation for this modal in terms of the semidiurnal tide is

I
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discussed In Ref. 1 and references therein. We remark that the

model usefulness is not necessarily restricted to this

particular form of fluctuations. In Sec. II the wide variety of

possible types of RBR and SRBR rays that may occur are

considered. It is found that the possibilities in the sloping-

bottom geometry change dramatically, depending on values of

parameters including a and R. Conditions are discussed so that

the received total field consists of no more than three

particular rays, and such cases are treated subsequently.

Expressions are given for the amplitude and phase of these three

rays at the receiver.

Numerical calculations for the relative phase and amplitude

of the total field , as functions of time, are discussed in

Sec. III. Three distinct patterns are found for the multipath

cases, each of which may have significant amplitude variations.

All show the interaction of the fluctuations and the sloping

bottom, and for one type in particular, a consequence is the

disappearance and later reappearance of a ray. In Sec. Iv

relations between the phase perturbations of individual rays and

the sound—speed fluctuations are obtained. Then, formulas are

derived for total-field variations in terms of ray-phase

perturbations, for the most commonly-occurring type of behavior

of the multipath total field. Comparisons between predictions

from the formulas and computations in Sec. III show quite close

agreement, in cases where conditions hold for validity of the

formulas. Main results of the paper are summarized in Sec. V.

1
I
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I. MODEL FORMULATION

We model a variable-depth, off-shore oceanic region by

assuming that the ocean surface is f lat  and that the ocean bottom

is a sloping plane intersecting the surface at an angle a.

The line of intersection is regarded as the coast line of our

model. We use a Cartesian coordinate system, with origin at

some point on the coast. Increasing values of x and z

indicate distance normal to the coast toward the deep ocean and

oceanic depth , respectively, and the ocean surface is the plane

z 0. The y-direction is parallel to the coast so as to produce

a right-handed coordinate system. The ocean bottom in this system

is the plane z = x tan a. As discussed in the Introduction, we

restrict attention in this paper to propagation normal to the

coast , thereby eliminating dependence of both the range and the

sound speed on the coordinate y. The sound source is placed on

the ocean bottom, at depth d0, and the receiver is also on the

ocean bottom, at depth dR. The horizontal distance between source f
and receiver is the range R and may be expressed as

R = (dR 
- d )cot a . (1)

Figure 1 illustrates the geometry of the propagation range and

the parameters introduced above, along with some others to be

discussed later. We note that our solution procedures could be

adapted to analyze other hydrophone locations as well as

propagation-range orientations. One additional constraint on

our particular model is that the sloping bottom should not

extend to a depth dB of the abyseal ocean beyond the land-mass

‘ lid
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1
rise, i.e. dR < dB. Otherwise, a piecewise-linear bottom

I model , in which the slope at depth dB becomes parallel to the

ocean surface, may be more appropriate.

I We choose for our model of sound speed c the expression

• I 
c(x,z,t) = c5[l+f(z)J + ~ (x ,z,t), (2)

where CS ~~~S the fixed sound speed at the ocean surface above
* 

the source, i.e. at x = d0 cot a , and t is time. The function

f (z) describes the depth variation of sound speed in the absence

of ~~~, which incorporates changes due , for example, to tidal

1 effects. The dimensionless quantities f and ~ c~~ satisfy

I ~~c~~~ << f <<

We specify the form of the mean var iation f (z) as a

bilinear model , of a type used previously (for a recent example,

see Ref. 1), to reasonably approximate measured deep-ocean

I profiles while simplifying the acoustical analysis. We thus

select

f(z) = —zg1c~~ , 0 < z < d
A 

(3a)

and

f(z) = [C
A 

- CS + g2
(z_d~)]c~~ , dA < z < x  tan a .(3b)

In Eqs. (3), CA is the value of the mean sound speed which

I occurs at the SOFAR axis depth dA. The quantities g1 and g2 are

1 the magnitudes of the sound-speed gradients above and below the

I • 
SOFAR axis, respectively. We may now express the mean sound

speed at the sound source c0 and at the receiver cR as

I i 
_ _ _ _ _  _ _
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c0 
— g

1d (4a)

and

cR C
A 

+ g2(d~
_d
~) , (4b)

where we have chosen to consider the case d0 < dA < dR

exclusively in this paper.

Typical parameter values appropriate for studying sound

propagation initiated near Bahaman shores of the Sargasso Sea8

are c~ = 1541 m sec ’, CA 
= 1487 m sec~~ , and dA 

= 1000 m ,

lead ing to the value 0.0540 for g
1
, and g2 = 0.0146. For

definiteness, we will use these fixed numerical values in

computations throughout this paper. Nonetheless, we seek to

construct a model with more generality and wider possible

application than just to this oceanic region or to any specific

acoustic—propagation range. Thus, we will present results for

source—receiver distances R between 5 and 20 Jan, and for bottom—

slope angles a in the range between 7 and 15 degrees. These

values include those typical of relatively short-range

transmissions from off-shore sources. In this paper we will only

discuss investigations for a fixed source depth d0 = 300 m .

Results f or this case were regarded as typical of source depths

not near either the surface or SOFAR axis. For this fixed value

of d0 and given a and R values , it follows that d
R 
is deter-

mined by Eq. (1). For a value of dB 
= 4700 in, requiring the

receiver remain on the slope and below the SOFAR axis imposes

700 m < R tan a < 4400 m . (5)

I
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• We note that other fixed parameter values and intervals of R and

a values can be examined by further application of our solution

procedures.

We consider next the effect of tidal variations on sound

speed via ~~~~. An earlier study1 considered the tidal effects on

sound speed in the deep ocean, using observations of temperature

f luctuations (as in Ref . 9), an analysis of state equations to

relate sound-speed fluctuations to those of temperature, and

the assumption of sufficiently short propagation ranges. The

deep-ocean model in Ref. 1 includes an oscillation with period

12 h of both the depth dA (t) of minimum sound speed and the

grad ient above dA (t) , with the surface sound speed remaining

fixed. The semidiurnal component is a strong feature of temperature

fluctua tions nearer to shore as well , and frequency spectra of

currents there indicate even more concentration of energy in

this componen t~° Since we are aware of no evidence to

invalidate the deep-ocean model for ~ in the continental-slope

regions, we shall employ it here. We note that in any application

of our model, more general time variation could be incorporated

if observations warranted . Moreover, certain other forms of

vertical structures, either singly or in combination , could be

treated by the method in Sec. IV.

Therefore, we set

Ipzsin (nt/6) 0 < z < ~~~ (t)

~(z,t) = 
A 

, (6)
0 , z > d

A
(t)

where p is the magnitude of the perturbation gradient, measured

in sec~~ , and t is measured in hours so that for convenience the
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tidal perturbation at t 0 is absent. The time-dependent SOFAR

axis depth is closely approximated by1

dA Ct) — d~ [1+u (g1+92)
1sin (wt/6) J . (7a)

It follows that the time-dependent sound speed c
A (t) at dA (t) is

cA (t) c(dA (t),t) = C
A 
+ Asin(vrt/6) , (7b)

where the non—negative parameter

A = Pd~g2(g1+92)’ (7c)

is the amplitude of the sound—speed fluctuation of d
A
(t). Values

of A up to 0.30 m sec 1 will be examined here, as in Ref. 1.

Equations (6) and (7) imply that the maximum variation of sound

speed with time occurs at the mean SOFAR depth d
A and is equal to

Figure 2 illustrates the model by showing

representative sound-speed structures corresponding to maximum,

zero, and minimum perturbations.

II. RAY ANALYSIS

We assume that acoustic propagation occurs under conditions

for which ray theory is valid. In this section, we discuss the

ray geometry and amplitude and phase of any ray in the variable-

depth channel of Sec. I with no sound-speed perturbations. Thus,

the sound speed is given by Eq. (2) with ~ = 0 and Eq. (3), and

parameter values are as in Sec. I. It follows that ray consist

of piecewise circular arcs. Moreover, because the vertical plane

containing the source—receiver direction is perpendicular to the

I
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coast line of our model, rays remain entirely in this plane ;

otherwise, rays making bottom reflections would be deflected

out of this plane.4 If 0 is the inclination angle of a ray

measured positive clockwise from the horizontal, then the

usual form of Snell’s law,

c 1 cos 0 = constant, (8)

is valid , although the constant changes af ter each bottom

reflection.

We now consider determination of the rays. In order to

obtain analytical ray descriptions which are also numerical ly

accurate, we begin by hypothesizing a possible ray path. For

our model, rays can be characterized by specif ying a pair of

integers [K ,L], where K and L are the number of surface and

bottom reflections, respectively. We note that under our

particular model assumptions, it can be shown by gec~u~trical
• considerations and numerical calculations that there exists at

most one ray for each pair of integers EK ,L]. Next, the equations

governing the ray are determined, which in general form a

nonlinear system for the ray angle at the source, 0
~~
, and other

parameters. Numerical root—finding procedures are then used to

determine values for the variables. The validity of each solution

is established by testing that the ray does not pass outside

the ocean on its way to the receiver.

The simplest conceivable ray has K L = 0. Its governing

equations are Eqs. (1), (4), (8), and

R = g~
’(c~tan 0A 

- c0tan 0~ ) + g
’(c~ tan 0A - cRtan °R~ ’

I4  
_ _  

_ _ _ _
- •
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where 0A and 0R are (positive) ray angles at the SOFAB axis and

receiver, respectively. Equation (9a) is derived in, for example,

Ref. 4. The [0,0] ray is illustrated in Fig. 1. The angles

0
D
’ 
9
A’ 

and are shown and are all positive. The requirement

that this ray never reaches the surface may be expressed as

0
0 

> — cos~~ (c ci) . (9b)

Additional inequalities which are imposed for given a and R

are Eq. (5) and

(10)

which precludes acoustic energy from reaching the receiver through

the ocean bottom.

Numerical results for the existence of the [0,01 ray are 
4;

shown in Fig. 3. Values for 00 may be found by iterating for

tan 0 using Newton ’s method for most (a,R) pairs in the Figure.

Equation (10) is satisfied only above and to the left of the

curve labeled 3 in Fig. 3. Moreover , Eq. (9b) is violated below

curve 8. Since the first inequality of Eq. (5) is not satisfied

in the shaded area above curve 1, it follows that the [0,0] ray

exists only in the region of Fig. 3 bounded by curves 1, 3, and 8,

We remark here that the second inequality of Eq. (5) fails in the

other shaded area, below curve 7.

Another ray of interest has K = 1 and L = 0, and is also

illustrated in Fig. 1. The equations5 determining the geometry

of the [1,0) ray are Eqs. (1), (4), (8), (10),

I

_

~
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R — g~
1 (c

A
tan 0

A 
- c0 tan 00 

- 2c~ tan O~ )

- 1. + g~~ 
(cAtan ~I¼ 

- CR 
tan °R~ 

~ (Ha)

and

00 < — cos ’(c0c~~) , (lib)

where OS is the (positive) ray angle at the surface. As illustrated

in Fig. 3, the [1,0] ray is found by numerical calculations to

exist in the region of the 4a,R) plane bounded by the curves

labeled 2, 4, and 8. Below curve 4, the [1,01 ray fails to

exist because Eq. (10) ii violated , while below curve 8, the

[1,0] ray disappears because Eq. (llb) is violated .

The third type of ray of principal interest in this paper

is that with K — 2 and L — 1. As illustrated in Fig. 1, its

bottom reflection is at depth d
Bl

, where the bottom incident ray

angle is 0Bl and the sound speed CB1 is , from Eqs. (2) and (3a),

cB] — C
S 

— g1
d~1 . (12a)

Additional conditions needed to specify the [2,1] ray are Eqs. (1),

(4), (8), (10),

R — gj’(c~ tan OA-2c5(tan ~~~ + tan 052) - c0tan 00

+ cBl [tan 081 — tan(2u—031H} + g~~~(c~tan OA c
R
tan 0R~ ’ 

(l2b)

(d81-d0
) cotcz — g~~ (c81tanO81—2c5tanO 51—c0tanO0) , (l2c)

and

2a — 0B1 < — cos~
1
(c81c

1) • (12d )

~

1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The angles 0~~ and 052 
are the (positive) ray angles at the first

and second surface reflections, as shown in Fig. 1. Note that

Snell’s law provides two independent equations, since the bottom

reflection changes the constant in Eq. (8).

The numerical calculations for the [2,1] ray were performed

by first e&..imating tan 081 and Then , Snell’s law was

used to determine 0~ and 0sl~ 
af ter which Newton ’s method was

applied to Eqs. (l2a) and (12c) to converge to the correct value

for CB1 for the estimated value of tan 081 Values were obtained

for 0s2’0A ’ and from SnelTh law, and tan 081 was re—estimated

from Eq. (l2b). This process was continued until convergence

was obtained. Efficient calculations for this ray, as well as

for others , relied on accurate initial estimates. It was found

that the [2,1] ray exists over most of the (a,R) plane in Fig. 3,

although not below curve 5 because Eq. (10) is violated. In

addition, we assumed that the source hydrophone is directional ,

transmitting significant sound energy only for launch angles 00
satisfying IO~ l less than some value 0oD This can be accomplished ,

for example, by using an omnidirectional “point” source with a

reflector , as described for example in Ref. 11, or an array of

omnidirectional sources. With the value 0oD = 400, the [2,1]

ray is restricted to the left of curve 6 in Fig. 3.

For certain parameter values considered here , rays of type

[0,L] exist, with L 1 bottom reflections which must lie above

the SOFAR axis. As indicated in Fig. 3, we ha. e shown that

various members of this family of rays occur for the shallow

receiver positions above curve 2. When these rays exist, they

could in principle be significant contributors to the total received

I 
~~~~~— - - - ~~~~ —~~~~~~~ -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- -~~~~~ - -.
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field, since they suffer relatively small spreading and bottom

loss because of their short path length and near—grazing bottom

incident angles. On the other hand, for the latter reason,

such rays are particularly sensitive to actual nonlinear bottom

topography in any specific experiment. For our investigations

of total f ield in later sections , we choose parameter values for

which rays of this type do not occur.

We remark that the combination of bilinear sound speed and

sloping bottom in our model permits a remarkably rich variety of

rays. Figure 3 suggests the patterns that can arise, but depend-

ing on assumptions and parameter values, the situation can become

more complicated. For instance, if °oD is larger than 40°, not

only does the (2,1] ray exist over more of the (a, R) plane shown ,

but also new rays may occur. The [3,2] ray may be present,

since its initial angle ranges from 00 = 40.5° for (a,R) =

(7°,17 kin) to = — 85.0~ for (a ,R) = (15°,5 Jan), for the (a ,R)

values in Fig. 3. Indeed, other rays with more than two surface

reflections could also occur. The importance of these steep rays

to the total field would depend critically on such factors as

bottom loss and scattering . As another example, a piecewise-linear

bottom dramatically changes the ray possibilities; more than one

ray sometimes occur for given numbers [K,L] of surface and bottom

reflections.

In view of the foregoing considerations , for subsequent

analysis of the total received field, we shall restrict (a ,R)

values to the regions in Fig. 3 where some or all of the [0,0],

[1,0], and ( 2,1) rays, but no others , exist. We henceforth denote

.-

~~~~~~~~

-

- 

_ _“- - -



• ~~~~~~~~~~ —, fl_ __

~~~~~~~~~~~~~~~~ _ _ _ _ _  

“ -
~~~

14

these as the n = 1, 2, and 3 rays, respectively . Note that for

the rays considered in this paper, we can identify n with K + 1.

The travel times T~ for rays n = 1 and n = 2 can be adapted

from Ref. 5, while that for ray n = 3 can be calculated using

procedures of Ref. 5. The results are

= g ln (cO(l+sinOA
)c ’(l+sinOO

) ’] +

g;
1ln[c (1+sinO )c (l+sinO )~~

1] , (13a)

= g~~ lnEc0(1—sinO 5
) (l+sin 0A

)c
~~~

(l+sinOQ)~~
’

x (l+sinO5)~~~] + g2
’ 1flIcR

(l+8iflO
A
)C
A~
il+sifl0

R
)’] , (13b)

and *

T3 
= g

1~ 
ln(c

0(l—sinO 51) (l+sinO 81
) (l—sinO 52) (l+sineA)

x c 1(l+sin00)
1(l+sinO51) ( l+sinO52)~~~[1+sin(2a~981)]~~~}

+ g~~ lntcR
(l+sinOA

)cA (l+sine R
) I . (13c)

These expressions can be evaluated , using Eqs. (1), (4), (8), (12a) ,

and (12c) where appropriate, once the source angles 00 of the

three rays have been determined numerically.

The formulas for the geometrical spreading loss can be

developed from results and methods in Ref. 2:

= RC~ SiflOR sec o0~tane0 Eg 1 (c
A cotOA 

- c
0
1cotO0)

+ g ’(c~~cote~ - c
~~

cotOR
)]
~ 

, (14a)

I  
~~-

—
~~~~~~~ 
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A 2 
= Rc~ ~~~~~ 

sec3O0 tanO0(g~
’(c ’cotO~ 

- 2c~~ cotO5

- c~~ cotO ) + g2
’(c~
’ cOtOA 

- c~~ cot0~ )) , (l4b)

and

A 3 = R SiflOR seco0 (
g {c~1sec2O81tanO0(c~~cotO81—c~~ cotO0

— 2cs
1 cotO 5) + [cot(2a—O B1) — cotO31J (dc81/dO

)i

+ c81sec (...a 081
) [(l+tan (2ci—081)cotO81

) (dc
81/d~~)

- c31
tanO tan(2a_0

81
)cot0

81]f gj’[c~~cot0~

— 1 — l — l —l
- 2c~ cot0

~ 2 
- c81cot(2a 081)] + g

2 
(C
A 
COtO

A

— C
R 

coto R ) J ) L R B1R + (l—R81
R 1) cosOBl sec (OB1.-2a)). (l4c)

In Eq. (14c) the derivative term is

dcBl/dO = c0 tan 00 secO0(cscO81—csc00-2csc051) (cotO31—cota)~~~,

(14d)

and the horizontal distance between source and bottom reflection is

RB1 — g~~~(c0-c81
)cota . (14e)

We assume the sound source emits a harmonic signal with

circular frequency w and with maximum amplitude unity, i.e.

- - l dyn cm 2 
at distance 1 in. It follows that ray n arrives at the

receiver in the form A~ sin (wt 
- $~~) .  The amplitude A~ is

affected by source directivity and by the physical processes of

spreading loss , boundary loss, attenuation , and scattering , but

the latter two effects are excluded here. At any surface

I
I ~
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12reflection, the model of Mackenzie leads to no amplitude loss

and a phase shif t of ii. The loss B3 and phase shift at the

bottom reflection of ray 3 may also be computed from formulas

in Ref. 12. Two parameters characterizing bottom properties

appear in the formulas for B3 and •3• The first (called a/B in

Ref. 12) is the ratio of complex to real parts of the bottom

attenuation factor. Although this quantity in general depends

on acoustic frequency and bottom composition, a frequency—

independent value may be derived~
2 

and we choose a value of

0.0158 for a bottom which has been used for the Sargasso Sea

area)3 The second parameter, a, is the impedance ratio of the

bottom ,

a = 
~~~~~~~~~~~ 

(p 81 81)~~ , (l5a )

where the corresponding bottom density 
~~ 

and sound speed c~ are

= 2.00 gin cm 3 and ~~ = 1757 m sec~~ . An approximate formula

for water density p81 in gm c1n 3) at depth dBl (in m), which can

be derived from Eq. (20) of Ref. 14, is

p
81 = 1.0243 + (8.2716 x l0 6)d81 . (l5b)

Thus , the amplitude of ray n can be written as

A = A
112 8~ D(80) , (l6a)

if we define B1 = B
2 = 1. The directivity factor D is normalized

to a maximum value of 1. We note that our definition of 0

requires D (00) to be significantly less than 1 for )o ~~ >

Similarly if = 
2 

= 0, the phases •~ satisfy

I
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= uT~ — ( n — l ) w  — n (16b)

Using Eqs. (13) and (14), the values for the functions in Eq. (16)

are found after the numerically—determined quantities such as

0 are known.
0

III .  TOTAL-FIELD RESULTS

Under the conditions described in Sec. II for which Fig. 3

is appl icable, the total field at the receiver is given by

A sin (wt — 0) = 

xv=l 

A~ sin(wt  — •~) , (l la)

in which the amplitude A and phase 4’ are determined from

S = A~ sin $ , C = A~ cos , (17b)

and

A = (S 2 
+ C2 ) 1”2 

, sin 4’ S/A , cos • = C/A . (17c)

Expressions for A~ and 4’ are given in Eqs . ( 16) . The amplitude

is set to zero if ray n is absent .

The preceding section focused on ray analysis in the absenc e

of the sound—speed perturbation ~~. Here , we present results of

the numerical investigation of Eqs. (17) for our model including a.

Under the assumptions in Sec. I, the time variation of the sound

speed is suff icient ly slow that it can be ignored during the time

required for an acoustic signal to propagate from source to

receiver. From Eq. (6) it follows that rays in the perturbed

medium are of the same form as those when ~ = 0. Moreover, the

-—~
-
-~ 
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launch angle 00 and other var iables for a ray of type n = 1, 2 ,

or 3 can be calculated from the appropriate governing equations

in Sec. II, but with perturbed values of g1, d
A~ 

and cA. Given

values of ci and R, the diagram for existence of rays in the

perturbed medium d i f f e r s  only slightly f rom Fig . 3 , specifically

in the location of certain boundary curves. A number of d i f fe rent

combinations of values for parameters a and R were selected , but

all  the calculations we shall discuss here used ~ = 0.3 m sec~~ ,

= 206 Hz , and D ( 0 0) = 1 for I 0 ~ I < 40° and 0 for larger I 0~ I .
Results for this ~ are presumably typical of those for other

( small) values of t~. The directivity pattern used here may be

regarded as an idealization of more real istic patterns (for

examples constructed from endf ire linear arrays of isotropic

point sources , see Ref . 15) . Time was varied over 12 h since

that interval is the period of ~~~~.

From the many cases examined, several characteristic types of

behavior in the total field were observed , which we now discuss.

The simplest type is obviously when a and R are such that only a

single ray appears , which from Fig . 3 would be either the n = 2

or 3 ray. Typically, amplitude A varies only slightly with time;

the maximum variation of relative amplitude over 12 h was found

to be less than 1 dB in all single—path cases examined. Phase 4’

is sinusoidal in time, with period 12 h. The peak-to-peak phase

variation was 0.42 cycles for the n = 2 ray when (a,R) = (15°, 7 kin).

It would be anticipated that single-path cases possess a simple

relationship between environmental and acoustical variations.

This is , of course, an important consideration in certain acoustical

I
L
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I
experiments which monitor ocean processes. In our model, it is

significant that single—path cases occur at relatively longer

ranges than multipath, as is clear from Fig. 3.

As shown in Fig . 3, other values of a and R permit two rays ,

specifically the pairs ( n 0 , n 1)  and (n= 1, n =2 ) .  Total—field

amplitude and phase are illustrated, for an example of the former
0case , with (a ,R) (11 , 7 lan) , in the solid curves of Fig. 4.

The amplitude , which is relative to that of the unit-amplitude

source , is a smooth , roughly sinusoidal function of time, with

peak-to-peak variation of 9.8 dB. We note that individual ray

amplitudes have very small amplitude variation with time,

analogous to the single—path case. Hence , the conclusion follows

that the solid amplitude curve in Fig. 4 reflects multipath effects.

The phase , shown relative to 1.0 cycles for clarity, is also

smooth , is virtually sinusoidal, and has peak-to—peak variation

of 0.68 cycles . This pattern was the most common one among our

double-path results, and we shall refer to it as type I behavior

of the multipath total field . A theoretical description of this

case will be discussed in Section IV.

Another variety of double-path behavior is shown by the solid

curves for (u ,R) (12°, 8 km) in Fig. 4, which we denote by type II.

The mean state possesses n = 0 and 1 rays, but the n = 0 ray is

nearly tangential to the bottom at the receiver. The sound-speed

perturbation can cause the ray to violate Eq. (10), thereby

removing the ray from the total field. This occurs in Fig. 4

from about t = 1.2 h to 4.8 h, during which period the phase and

amplitude display the characteristics of single-path propagation

I 
-

-

-
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discussed earlier. Outside this time interval, the double-path

behavior is typical of type I. The jump in amplitude at the

transition points is about 9.5 dB. In combination with the

approx imately 7 .5  dB variation in amplitude from t = 4.8 h to

t = 9 h it is clear that substantial amplitude variation will

occur in this example. The phase , shown relative to 0.75 , is

discontinuous at the exit and entrance points of the n = 0 ray .

We note that the actual phase jumps at those points are the differences

shown on Fig. 4 (about ± 0.4 cycles) inodulo one cycle. Type II

behavior points out another effect of the interaction of sound—

speed fluctuations and the sloping bottom .

An example of a third class of double-path behavior found

among our computational results is illustrated in Fig . 5. This

is an n = 2 and 3 case for (a , R) = (11°, 15 kin) , with peak—to-peak

amplitude and phase variations of 7.1 dB and 0.31 cycles,

respectively. However , neither relative amplitude nor relative

phase of this type III case is close to the sinusoidal curves

typical in type I. For example, amplitude fades occur near

t = 6 h and 12 h , over time scaler much shorter than the scale

of environmental variation. This pattern has been observed ~n

many multipath studies (see for example Ref s. 1 and 16), although

typically in situations with more rays than are present here.

In the mean state, the phases of the n = 2 and 3 rays are nearly ii

radians apart , and the total-field amplitude is only about 20%

of the individual amplitudes. Thus, with the perturbation applied ,

both amplitude and phase are sensitive to small differences in

the rates of perturbation of the phases of the individual arrivals. I
1 
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This sensitivity precludes application of the theoretical analysis

to be discussed in Sec. IV.

From Fig. 3 it is seen that for certain (cz,R) combinations,

all three rays can contribute to the total field. Exactly as for

the double-path calculations , type I behavior was most frequently

found for triple—path calculations. Relative phase and amplitude

for a typical case , (a ,R) = (80, 8 kin) shown as solid curves in

Fig. 6, are very similar to the analogous curves in Fig. 4.

The amplitude curve shows a total variation -f 7.8 dB and is

somewhat less symmetric about t = 6 h than the corresponding

curve in Fig. 4. Peak-to-peak phase variation is 0.77 cycles.

Type II behavior also occurs for triple-path cases.

Figure 3 shows that either the n = 1 or n = 3 rays can be lost

near boundary curves 3 and 6, respectively. We shall not discuss

cases near boundary 8, where two rays can disappear. Phase and

amplitude are shown in Fig. 6 for (a,R) = (100, 10.5 1cm) , for

which the n = 1 ray is absent between t 0.5 h and t = 5.5 h.

In that interval, the double-path behavior is characteristic of

type I. In fact, over each continuous portion of the curves,

typical type I behavior occurs. We remark that although tyPe- III

double-path behavior is conceivable when one ray is lost from a

triple-path case, we never observed this situation. From Fig. 6,

the total-field amplitude variation is about 12.2 dB, while the

changes over each continuous portion in this example are about

2 dB. The phase, shown in Fig. 6 relative to 1.1 cycles for

clarity, is approximately sinusoidal over its continuous portions.

As in Fig. 4, the actual phase jumps could be larger than

I
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suggested by Fig. 6, in which phase modulo one cycle is shown.

We note finally that type 111 triple-path behavior could

conceivably occur for three rays if, for example, the phase of

the vector sum of the n = 2 and 3 rays happened to differ by

nearly w radians from the phase of the (strongest) n = 1 ray.

However , this was not observed among the triple—path cases we

examined.

IV. APP ROXIMATE TOTAL-FIELD MODEL

The computational results of Sec. III suggest that analytical

approximation of the total field phase and amplitude should be

possible for behavior of type I (and for continuous portions of

type II cases). The first step is to approximately determine

perturbations to phases of individual ray arrivals produced by

the sound-speed perturbation. Then, we shall show how these

results are useful in approximating the total field.

From Eqs. (7), the time-dependent SOFAR-axis depth d
A (t)

can be expressed in terms of cA (t)r and similarly for the time-

dependent upper-layer gradient. Thus, the time dependence of

the phase •~ of any ray (n = 1, 2, or 3) can be considered a

consequence of the time dependence of the single environmental

quantity cA (t). Define as the phase fluctuation of ray n

due to the sound-speed perturbation. From the first two terms of

a Taylor series expansion and Eq. (7b), it follows that

E 
n~~A~ 

— 

n~~A~ n”~~A~ j~
. ~ (t) (18a)

CA CA



T~
-
~~~~~~~~~..~~

__
__ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

. -
~~

23

wher e

~(t) E cA
(t )  — cA 

= ti sin (wt/6) . (l8b)

Partial differentiation is used in Eq. (l8a) to indicate that

~~ 
depends on other variables; just one term appears in Eq. (l8a)

because cA is regarded as the only time-dependent environmental

parameter. Next, we use Eq. (l6b) to write

(
~
4’/

~
cA
) I = w (3T /3CA

) B , (l8c)
CA cA

which is exact for n = 1 and 2 but ignores the contribution

- (
~~ 3

/
~~A

) for n = 3. This term can be estimated, with
C
A

difficulty, from Eqs. (15) and the equations for the n = 3 ray .

Alternatively, its effects can be shown to be negligible by

actual numerical ca lculations for the perturbed n = 3 ray (for

illustration , a typical value of (
~ 43/acA) I ~ is .001 cycles

CA

f or our parameter values and (cz , R) = (100, 15 l a n) ) .  Once an

expression for the travel time derivative is obtained , ~~~ is

approximated through Eqs. (18).

Direct calculation of 
~
T

fl
/3cA from Eqs. (13) is feasible but

very unwieldy, because of the implicit relationships among C
A 
and

the variables describing the ray geometry. By differentiating

Eqs. (13) and using Eqs. (2) ,(3) , (7c) , (8), (9a),(lla) , (12b) ,(12c),

and (12d) , it can be shown af ter considerable manipulation that

Eqs . (18) yield :

= wpg 2 sin(,rt/6) {ln [co(1+sinO
A
)c~~ (l+gjnO O

)
_1
)

— cS(cA
1 

SiflOA — c lsin0 0) )  , (l9a)

I 
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~~2
(t) = wpg~

2 sin (~rt/6) {ln [co(l_sin8~
) (l+sinOA

)c
~~

x ( l+sinO0)~~~(1+sinO5)~~~] — cS(c
~~

BinOA
2c
~~

sin8S

— c;
1sine0

) }  , (l9b) 
-

and

= wjig~
2 sin (fft/6) (ln{c O

(l_sinO Sl ) (l+sinOBl)

X (l—sin852
) ( 1+sinOA

)c
~~~
(l+sinOO)~~~

( l+sinOSl)~~

x (l+sjn9s2
)~~~[1+sjn (2u_OBl) ] _1} — cS[c

A sinOA

— 2c~~sjnO51 
— 2c~~ sinO 52 + C;iSiflOBl — c

~~
sin(2a_0Bl)

— c~~ sin9~,]). (l9c)

Equations (19) can be evaluated from previously-computed geometric

quantities of the unperturbed rays.

We note that the phase perturbations are independent of

and °R’ parameters characterizing the ray geometry below the *

SOFAR axis. That is, the sound-speed fluctuation produces changes .1
in ray geometry below the SOFAR axis, but these changes do nct r
affect the phase perturbations in Eqs. (19). To the order of

terms retained in Eqs. (19), phase perturbations depend only on

those portions of the rays above the SOFAR axis.

One way to present the results of Eqs. (19) is to regard

M (t) as a function of a and R and show. the level curves of this

function. In view of Eqs. (18), it is sufficient to consider

level curves of 
~~~
. Given values of a and R, the quantity B~~ 1

I
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could be obtained by interpolation from the level curves. It is

particularly convenient to plot the level curves for n=l and 2

with respect to R and Rtana = dR do(by Eq. (1)). To see this, we

note that for any ray, ~~~ depends only on the mean ray geometry

above the SOFAR axis. Consequently , B will be the same for all

members of each family of rays with identical ray lobes for

z < d
A
. Since the n = 1 and 2 rays in particular are unaffected by

the ocean bottom for z < dA~ 
members of any such family correspond

to rays reaching a receiver at depth d
R 
related to R and a by Eq. (1).

Because the locus of receiver depths is a circular arc , the level

curves themselves are circular arcs in the (d
R~
d
o
,R) plane. Using

values for quantities previously determined numerically, we plot

level curves for 8i and 82 in this plane as solid curves in Fig. 7(a)

and 7(b), respectively. Also indicated by dashes are curves 1 and 2,

of minimum (a = 7
0
) and maximum (a = 150) bottom angles, respectively ,

In addition, the curves 3 and 4, demarcating the existence of the

n=l and 2 rays as described in connection with Fig. 3, are shown in

Figs. 7(a) and 7(b). We note that 81 and 82 are negative for the

parameter values we considered, because a net increase in sound

speed produces a decrease in travel time and phase.

The calculation of 83 is not as simple , because the n = 3 ray

reflects above the SOFAR axiB and the ray-family characterization

useful for n = 1 ~nd 2 does not apply . Level curves of 83 were

approximated from values of 83 computed directly from Eqs. (18) and
(19c). The computations were performed for values at the intersection

points of a rectangular grid in the (a,R) plane. Each computation

requires determination of the mean ray geometry , but the method is
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straightforward. The results are shown in Fig. 7(c), along with

the limiting curve 5 and directionality curve 6 from Fig. 3. The

level curves have the same general shape as those in Figs. 7(e~) and

7(b). As an example, to compute the value of 83 for (a,R) = (10°,

10 kin), we note dR~do 
1.76. The appropriate position is shown

as a cross on Fig. 7(c). By linear interpolation , we find

83 —1.07.

We now develop a theoretical explanation for the behavior of

total—field phase and amplitude for type I multipath behavior (and

type II multipath between the entrance and exit times of a ray).

We suppose ~ and A are the total-field phase and amplitude (relative

to the unit-amplitude source) in the absence of sound—speed

perturbations. We define t~ and t~A/A as the total—field phase and

relative amplitude deviations due to perturbations, i.e.

— •(cA
) = •(t) ~ , (20a)

and

AA(t)/A (A(c~) 
— A(c A) ) / A (cA ) = (A(t) - A) /A . (20b )

We note that AA/~ is the ratio of the amplitude deviation produced

by the perturbations and the unperturbed amplitude. It follows

from Eq. (20b) that the logarithmic amplitude anomaly is

~L(t) 20 log10Il+ (AA (t)/~)) = 20 log10A (t)—20 log10A . (20c)

Thus, knowledge of t~A/A determines, via Eq. (20c), the difference

in decibels between the amplitudes with and without the perturbations.

If ~A/X is sufficiently small, then t~L is approximately equal to

I
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(8.68) (âA/A) .

We assume that variations in individual ray amplitudes from

the perturbations have negligible effect on the total field . This

assumption is confirmed numerically by results in Sec. III, and

cou ld be demonstra ted anal ytically by the same methods used to

confirm it in other problems (see, for example , Ref. 17). Thus,

we regard each An as independent of time, and we need only consider

the influence on ~A/A and A~ of phase perturbations A~~ (t). We

define , for in ,~

~
0n
(t)

~ 
1 < in , n < 3 , (2 1a)

where c is the phase-perturbation difference, expressed in cycles,

between rays m and n. We further assume that the maxima over t of

any 2uc
~~~

(t)
~ 
the perturbation differences expressed in radians , are

sufficiently small compared to one. However, even values of 2Tr C

larger than 0.5 give acceptably—accurate approximations. Moreover ,

even though our formulas become par ticularly simple when the

2’
~ mn are small, this assumption is not essential to our procedure.

We also define ô~ as the difference (in cycles) between the mean

value of the phase of ray n and the mean total-field phase,

E •fl
(c
A
) — $(c

A
) 1 < n < 3 . (2 1b)

Note that neither the t~$ nor the 6$ are required to be small,

The last assumption needed for our total-field approximation

is that 1~A/A be sufficiently small to expand the total-field

equations in this quantity. Again , as with the parameter 2nc ,

even relativel y large values of 6A/~ near 0.5 give useful

~~~~~ approximations.

I 
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Consider first the double-path cases. From Eqs. (17), (20),

and (21), we find

(A + ~A)
2 

= + A2 + 2AA cos [2w(6$ — 6$ + c ) ]  , (22a)

where in and n are the indices of the two rays involved. We

expand Eq. (22a), neglecting terms involving (AA/A)2 and those

with (21r c
~~
) to powers higher than the first. Using Eqs. (17)

to simplify the result, we obtain

~A(t)/A = 21Tc (t)(A /A)sin (2w6$n)~ 
(m ~ n) . (22b)

An approximation for ~L/(t) then follows from the first equality in

Eq. (20c). Rewriting Eqs. (17) using Eqs . (20)  and (21) leads to

the formula

2 2wi(A$ +A$ )/2 i2w(6$ +c /2)
(A + AA) e iriA 

= e 15 [Ame 
ID fltfl

i2n (6$~—c /2)
+ A~e mn 

~ (23a)

Expanding Eq. (23a) and simplifying with Eq. (22b) implies the

appr oximation

A$ (t) 
~ 

A$
~~
(t) — cmn (t) (An/A)cos (2ir6$), (mp ’ n). (23b)

Thu s, amplitude and phase changes of the total field are predicted

to poss~~sthe same time behavior as ~(t), since each A$~ , and hence

each £mn~ is proportional to A(t).

We found very good agreement between predictions from Eqs. (22b)

and (23b) and numerically-computed type I double—path results,

described in Sec. III. The (ct,R) (110, 7 kin) case, with m 1 and

I
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a
n = 2, is typical, and numerical calculations for A (t) and 0(t)

were discussed in connection with the solid curves on Fig. 4.

The mean values are A1 = 1.72 x ~~~~ A2 = 1.31 x ~~~~~~~~~ 60i = 0.14

cycles, 602 = 0.75 cycles, and A ~ 1.09 x l0~~~. As an example , at

the minimum of A (a t  t = 9 h), the values of AS1 and AS2 predicted

from Eqs. (19a) and (l9b) are —0.32 and -0.25, respectively, and

are virtually identical to the numerically-calculated values.

With these numbers in Eq. (23b), we obtain A0 (9) ~ -0.32 cycles,

compared to the numerically-computed value of —0.31 cycles.

Similarly, using Eqs. (22b) and (20c), we find that AL(9) = 3.8 dB ,

while the difference between the numerically-computed values of

20 log10A(9) and 20 log10 A is almost identical. Theoretical

predictions for phase and amplitude are shown as dashed curves

on Fig. 4; specifically, the amplitude curve is 20 log10A ÷ tiL(t)

using Eqs. (20c) and (22b), while the phase curve is A0(t) from

Eq. (23b) plus 1.0 cycles, to correspond to the way the solid

curve was plotted. Wherever the theoretical curve is not shown,

it is indistinguishable from the numerical results. As can be

seen from Fig. 4, the maximum difference between the theoretical

and numerical values occurs at the maximum of A(i.e.t = 3 h ) ,  since

the numerical results are slightly non-symmetric about t = 6 h.

Nonetheless, the relative error in the theoretical predictions

for amplitude , as an example, is less than 12% for all time, and

typically the error is less than this. A similar comparison is

shown for portions of the (a,R) (12°, 8 kin) curves in Fig. 4.

Even closer agreement is observed here.

• For type I triple-path cases, formulas similar to Eqs. (22)

and (23) may be developed. The analog to Eq. (22a) has six terms

I
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on the right side, and with the same assumptions on (AA/A)2

and the (2 wE ~~~) 2 , it can be shown that

AA ~ 2ir c 23 (t )  A3 sin (2tr6$ 3) + 2wc 21(t )A1 sin (2n6 5
1). (24a)

The analog to Eq. (23a) is expanded, assuming sufficiently small

(AA/A)2 and (2n)
2(E + £ k) / 9 , to obtain after simplification:

AS ~~ A5 2 (t) — c 21 (t ) (A1/A) cos (2 ir6S
~~

)

— ~23(t) (A3/A) cos (21165 3
) . (24b)

We note that in the manner they are written, Eqs. (24) represent

direct extensions of Eqs. (22b) and (23b).

The approximations Eqs. (24) produce quite accurate

predictions to the numerical results in every triple—path case we

examined. Typical comparisons are shown in Fig. 6, with the

same conventions as Fig. 4. In particular, for (a ,R) = (80, 8 kin),

the mean values An are 1.49 x l0~~ , 1.01 x l0~~ , and 9.64 x

for n = 1,2,3; A = 1.66 x l0~~ ; and ~~~ are 0.11, —0.02, and 0.67

cycles for n = 1,2,3. The theoretical values from Eqs. (19) for

AS~~(3) are 0.42, 0.30, and 0.31 cycles for n = 1,2 ,3 , compared to

calculated values of 0.42, 0.30, and 0.32 cycles, respectively .

• The predictions from Eqs. (24) and (20c) for AS (3) and 20 log10A+AL(3)

are 0.38 cycles and —80.1 dB, while the numerical values are 0.39

• cycles and —81.0 dB. As before, agreement at other times is even

closer. Also shown in Fig. 6 are comparisons for the type II case

of (cx ,R) = (100, 10.5 kin).

A particularly striking feature of these approximations is

their success when the 2irc~~ are not particularly small with respect

I
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to one. For the example just discussed , the maximum values of

2irc12 and 2irc13 are 0.76 and 0.67 radians. In fact, the derivation

of our results suggests that they could be expected to produce good

approximations so long as the 2wc~~ are merely less than one , rather

than significantly smaller than one, with the important provision

that AA/A remain small. This condition is, of course, violated in

type III multipath behavior and in type II cases at points when rays

are lost or gained. We also remark that this type of approximation

to the xnultipath field takes advantage of environmental variations

producing small relative changes in the phases of ind ividual ray

arrivals, not on the specific assumptions of the environmental or

acoustic model in this paper. Only the mean phase and amplitude

of each ray , the mean total field , and expressions for the

individual ray phase perturbations are required. The forms of

Eqs. (24) suggest possible generalizations to problems in which

the total field consists of more rays. Such approximations may

prove useful in other problems where conditions for their validity

are satisfied.

V. SUMNARY

In this paper we investigate the combined effects of sound-

speed fluctuations and variable bottom depth on oceanic sound

transmission. Off-shore propagation ranges are modeled by

assuming a horizontal ocean surface, a unif~rm1y-sloping bottom,

a mean bilinear sound-speed structure, and bottomed source and

receiver (above and below the SOFAR axis, respectively). In this
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paper we consider propagation in the down-slope direction .

Intervals of allowable values for the bottom-slope angle a and

source-receiver distance R are considered . Sound-speed fluctuations

are assumed to be due to the dominant upper—ocean temperature

variations, as in a previous paper .1 The model assumptions guarantee

that rays consist of planar piecewise—circular arcs. For our

particular assumptions, it is found that for each pair of integers

[X ,L J ,  there is at most one ray having K surface and L bottom

reflections. However , the set of SRBR and RBR rays that does

occur changes dramatically depending on parameter values. An

example of some types of changes is given by Fig. 3, which shows

regimes of existence of mean—state rays in the (cz ,R) plane , using

fixed values of other parameters and a source—directionality

condition. Based on this figure, subsequent investigations are

restricted to parameter values for which the received total

field has at most three contributing rays. It is emphasized that

other model assumptions can easily enrich the possibilities for

occurrence of rays, and the effects of factors such as different

mean—state parameter values, different source and receiver

positions, and piecewise—linear bottom models are discussed

briefly.

With expressions for travel time , spreading loss , and boundary

loss and phase shifts for the three rays , and including sound-

speed fluctuations, the total field is computed numerically as

a function of time. All single-path cases have amplitude

virtually constant in time and show a simple proportionality

I
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between received phase and sound—speed fluctuations. In contrast,

I three distinct patterns for the inultipath cases are categorized,

I each of which may have significant amplitude variations. We

denote by type I the majority of time evolutions observed, with

I roughly sinusoidal phase and amplitude curves, the latter showing

peak-to-peak variations of up to about 10 dB. In type II

I behavior , the sound-speed fluctuations and sloping bottom conspire

to produce the disappearance and later reappearance of a ray over

a portion of the twelve-hour fluctuation period, leading to a

jump in the amplitude and phase curves. This can occur for

parameter values close to or on the curves in Fig. 3. A third

type of amplitude and phase characteristics is possible, in

which the time behavior differs sharply from that of the

• f luctuations. Type III behavior arises for special phase and

amplitude relationships in the mean rays .

A theoretical explanation is developed for multipath behavior

of type I and of the continuous portions of type II.  Time

variations of individual ray amplitudes can be shown to have

- -  negligible effect on total—field time dependence. Thus, the

• first step is to relate the phase variations of individual rays

to the environmental fluctuations and the variables describing

the mean ray geometry. Level curves of maximum phase

perturbations are then constructed and discussed . The second

-e step in the theory is to relate total-field variations to the

I ray-phase perturbations. Formulas for the deviations to the

total-field phase and amplitude are derived. Then , predictions

I from the formulas are compared with numerical calculations. As

I
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illustrated by Figs. 4 and 6 , the comparisons show quite close

agreement . The good accuracy of the theoretical formulas is

discussed , in view of the conditions assumed for their

derivation .

In future work the authors plan to extend the analysis to

include other combinations of environmental effects and

acoustic configurations, including depth-dependent currents and

different source—receiver locations and ocean boundary models.

For any such problems, characterizations similar to the two in

this paper , of ray occurrence in terms of parameters and of 
-

types of total-field behavior, would be needed. Moreover, it

is expected that the theoretical tool developed for

approximating total—field variations would be useful.
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FIGURE LEGENDS

FIG. 1. Geometry of the propagation range and of three rays of

principa l interest.

FIG. 2. Mean bilinear sound-speed profile and pivoting produced by

fluctuat ions.

FIG. 3. Existence regimes of various rays as functions of range R(kin)

and bottom—slope angle a (degrees). See text for explanation

of numbered curves.

FIG . 4. Relative total-field amplitude (dB) and phase (cycles)

versus time (h) for mean double-path cases: (cz,R) = (110, 7 km )

and (a ,R) = (12
0, 8 kin) . Solid curves computed numerical ly,

dashed curves from theory in Sec . IV.

FIG . 5. Relative total—field amplitude (dB ) and phase (cycles) versus

time (h) for (a ,R) = (110, 15 kin) .

• FIG . 6. Relative total—field amplitude (dB) and phase ( cycles) versus

• time (h) for mean triple—path cases: (ct ,R) = (80, 8 kin) and

( a , R )  = (100, 10.5 kin) . Solid curves computed numerically,

dashed curves from theory in Sec . IV.

FIG . 7. Level curves of phase-perturbation coefficient of sound-speed

deviation 8
~ 
(cycles m 1 sec) in (dR~do~ R) plane , for ray

(a) n=l , (b) n=2 , and (c) n=3. See text for explanation

of numbered curves.
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