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I, INTRODUCTION

The present investigation has been motivated by recent flight test
analyses (Ref, 1) and parametric studies (Ref. 2) which indicate that the
impact dispersion of ballistic reentry vehicles (RV's) may measurably be

influenced by asymmetric boundary layer transition (BLT). Whereas the

aerodynamic effects induced by asymmetric BLT may be represented in terms
of lift and moment coefficient increments (4 thr’ A cmtr)i the history of
such coefficients over the altitude range where BLT advances from the fru-
strum to the nose of the vehicle is dominated by the dynamics of the under- 3
lying process, viz, by the rates of axial progression and circumferential
rotation of the asymmetric BLT front as a function of vehicle design and
trajectory parameters, Thus, the classical problems of transition prediction
and/or control are posed again, now in the aggravated context of three-
dimensional flows,

At the present time an unsatisfactory fundamental understanding of the

transition process, especially with regard to its late stages of finite
amplitude three-dimensional disturbances and subsequent birth of turbulent
spots, plagues the researcher as well as the designer concerned with either 3
low-speed or high-speed flows (Refs, 3,4). As a consequence, engineering |
design practice has relied on empirical correlations of data, generally
obtained from small sets of experiments where systematic and controlled
variation is achieved only for a few of the numerous dimensionless parameters
associated with the equations and the boundary conditions governing the
three-dimensional time dependent flows of interest (Ref. 5), while little !

definition and/or control is provided for the remaining parameters, By
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this process a large number of effects have been exhibited, e,g. Mach number,
surface temperature ratio, bluntness, angle of attack, sweep, surface roughness,
suction and blowing, the mysterious "unit Reynolds number'" etc.; however, no
reliable criteria have been evolved for identifyirg the dominant effect in

any one situation and, thus, no means have been achieved for predicting tran-
sition Reynolds numbers in even moderately systematic fashion, Based on this
long-term experience one may fairly state that only a close coupling between
controlled experiments and detailed theoretical modeling of the salient

features of the parametric boundary layer response to fully described dis-
turbance environments will produce substantive advances in transition pre-
diction capability, The investigation reported here has largely been keyed

to this view point,

T; date the theoretical modeling of transition processes has played a
distinctly secondary role vis-a-vis the experimental studies and empirical
correlations mentioned above. Direct numerical solutions of the three-
dimensional time-dependent Navier-Stokes equations for compressible flow
could, in principle, describe the desired boundary layer response and : s
parametric sensitivities; however, their routine execution still lies in
the future, particularly for the high Reynolds numbers of interest in
practical applications (Refs, 6, 7, 8). Even if these difficulties were
surmounted, the physical interpretation of such numerical results in terms
of salient linear and non-linear flow instability processes and their
parametric sensitivities, as well as the synthesis of attendant transition
prediction criteria,would not be straightforward, Thus, the search for

aiymptotic models, which isolate and describe the dominant processes at

various stages of the flow development, appears to provide the most promising




o

line of fundamental inquiry at the present time, The investigation reported.
here has been keyed to this view point,

Two approaches broadly falling within the asymptotic model category
reside in the use of either turbulence model equations (e.g. Ref. 9), or
linear stability and forced response theories (Refs, 10, 11), to approxi-
mately describe the flow behavior throughout the stages of linear instability,
finite amplitude disturbances and ultimate breakdown into turbulence. The
view points basic to these approaphes are distinct to such an extent that
the potential of the attendant models as fundamental tools for 1) the sys-
tematic interpretation of transitional flow processes/sensitivities/effects
within the available data base and 2) the theoretically justified extrapola-
tion of those processes/effects to conditions outside the data base, may be
gleanéd a priori upon a brief comparative discussion,

The turbulence model equations espouse the traditional long-time average
view of the unsteady transitional and turbulent flows, This view is embodied
in a number of closure coefficients, which essentially represent correlations
associated with the disturbance spectrum of the considered flow, Whereas
the values of many of the coefficients are chosen by numerical experimenta-
tion, i,e, by forcing agreement between numerical predictions and selected
experimental data, the approach is at best interpolative and conceptually
subject to the same limitations which have plagued the large body of
empirical.correlations extracted from experiments in the past, In fact,
recent experience has provided several examples of unreliable extrapolation,
e.g., the failure to predict compressibility effect in two-dimensional tur-
bulent mixing layers (Ref, 12) and to extend results from axisymmetric to

two-dimensional incompressible jets (Ref. 13), This experience complements




the mounting body of experimental evidence to the effect that transports in
turbulent shear flows are controlled by large coherent flow structures, i.e.
typical and recognizable concentrations of transverse mean vorticity at the
largest flow scale, whose characteristics differ from one type of flow to
another and, for a given flow type, vary as a function of the associated
parameters, e,g. Mach number (Ref, 14), These structures presumably re-
present specific families of deterministic non-linear solutions to the flow
equations, viz. wave-like solutions which retain phase information at the
largest scale (of the structures), and introduce Reynolds averaging at the
lower structural level of fluctuations measured with respect to ensemble
averages of structure realizations, Whereas the solutions in question must
evolve from, and in the linear limit reduce to, the solutions provided by
the forced response and stability theories of Refs, 10 and 11, the latter
appear to possess a dintinct conceptual edge over the turbulence model
equations as a fundamental tool for systematic transition studies, This is
not to say that turbulence model equations cannot be adapted in the future
to provide useful working tools on a flow by flow basis, However, this up-
grading seems contingent upon the systematic parametric determination of
closure coefficients consistent with experiments and large scale structure
solutions provided by the linear forced response/stability theories and
their extensions to the non-linear regime,

Based-on the above premises the investigation reported here has been
keyed to the forced response/stability view point of Refs, 10 and 11 with
specific attention to the capability of the attendant maximum allowable
linear disturbance amplitude criteria to provide systematic transition

predictions. In that connection selected recent transition experiments




have been reviewed and, by that process, evidence has been found of distinct |
non-linear effects in the growth of internal boundary layer disturbances
having small but finite amplitudes [e.g. (u'/Ul) °'10-2] which, heretofore,

had been assumed to fall within the realm of linear theory (Section II),

The flow processes responsible for this behavior have then been sought, the
formulation of an attendant non-linear model differing from classical weakly
non-linear stability theory has been instituted, and preliminary predictions
of the model have been obtained,apparently explaining the ;omplex multi-
region stability diagram which has been observed in the experiments of Refs, 15
and 16, but has not been predicted by available results of linear theory
(Section III)} On this basis, preliminary conclusions have been evolved as

to the role, nature and modeling of processes required for the fundamental
understanding of transition and for the development of attendant systematic

prediction ~vi.. ia (Section IV),




II, DISCUSSION OF SELECTED TRANSITION EXPERIMENTS
VIS-A-VIS LINEAR AND WEAKLY NON-LINEAR THEORIES

Recent boundary layer transition experiments at supersonic velocities
can be divided into two groups, namely: 1) those where only the transition
location is determined on the basis of some experiment specific observable
criterion (e,g. inspection of either boundary layer shadowgraphs as in
Refs, 18, 19, 20, or wall heat flux measurements as in Ref, 21), and 2)
those where the mean flow and surface data are supplemented by hot wire
anemometer measurements of the disturbances within the boundary layer as
they evolve upstream of,and through, transition (e.g. Refs. 15, 16, 17).

Although the experiments in the first group have yielded a number of
useful practical results, e.g, the first cut description of transition
zone circumferential asymmetry on pointed slender cones as a function of
dimensionless angle of attack (a/Bc) suggested in Ref, 19, the interplay
between nose bluntness and angle of attack in controlling the wind-fixfd
transition zone asymmetry on spherically capped cones displayed in
Ref, 21, the possible synergetic effect of asymmetric body-fixed small-
scale roughness and angle of attack in promoting transition on the lee
{wind) side of sharp (blunt) nosed vehicles observed in Ref. 21 etc,
they have failed to provide mechanistic explanations for the observed
effects with attendant rules for a realistic extrapolation of the results
from laboratory to flight conditions and disturbance environments, In
fact, among the many transition dependancies exhibited in the ground ex-
periments, that associated with the unit Reynolds number predominates and

remains most obscure, Whereas the correlation of transition Reynolds

B




number with unit Reynolds number in supersonic and hypersonic wind tunnels.
may largely be associated with noise pressure fluctuations radiated onto
the model from turbulent tunnel nozzle boundary layers (Ref, 22), the
reason for its existence in ballistic ranges remains to be explained,
especially since, according to Ref, 19, only a secondary role may be
attached to those features of free flight experimentation suspected to
influence the results (viz. oscillatory motion and angle of attack, surface
roughness, model vibration, non-uniform model surface éemperature). In
view of 1) the limited understanding of the competing roles played by

the many parameters entering the problem, and 2) the impossibility of
complete simulation in ground facilities, the resolution of the open
qugstions noted above and the development of reliable transition pre-
diction criteria then require reconsideration of the data in the context
of a unified physico-mathematical model of the underlying flow processes,
Clearly the predictions of the model must be validated against the avail-
able base of fully characterized and controlled experiments, The
discussions below indicate that the results of group 2 provide the most
fruitful testing grounds for that purpose,

As stated in the introduction, the linear forced response/stability
theories of Mack (Refs, ld, 11) provide a promising theoretical framework
for systematic data analysis, Their use, however, must be conditioned by
a judiéious appreciation/assessment of their less developed aspects,
specifically: a) the current lack of a theory capable of predicting in
all practical instances the initial amplitude of each Fourier component
of the internal disturbances forced by the prevailing external distur-

bances, and b) the general adequacy of transition criteria based on a




threshold level for the amplitude of the most amplified single frequency
linear internal disturbance., These aspects can hardly be elucidated by
applications of the theory to situations where the transition Reynolds
number changes mainly becaus~ either the mean boundary layer or the
spectrum of external disturbances or one of the boundary conditions (e.g.

the wall temperature ratio) change, Applicability of the theory to such

situations has already been exhibited by Mack (Refs. 10, 11), Accordingly,

the first step in the research reported here was to select within the
chosen base (Refs, 15 through 21) those data which promised potentially
new tests,

Cursory analysis indicates that the experiments in group 1 do not
readily provide the desired new tests, Specifically, the few available
"exact" results for the supersonic laminar boundary layer over a pointed
cone at incidence (Ref, 23) suggest that the circumferential asymmetry of
the transition zone on pointed slender cones at angle of attack is
dominated by the attendant asymmetry in laminar, boundary layer thickness,
at least over the range (a/ec) < .2 where the layer maintains self-
preserving structure, For (a/ec) > .2 the boundary layer profiles and
thickness depart from self-preserving behavior in a region of increasing
circumferential extent about the leeward generator; reduced disturbance
amplification rates appear to be associated with those profiles leading

to reduced rates in the forward shift of the asymmetric transition fromt

at increasing angles of attack, as indicated by the correlation of Ref, 19.

For blunted cones at incidence the additional effect of entropy swallow-
ing must be considered, with the realization that the inviscid cross-~flow

yields an effective increase (decrease) in the rate of swallowing on the




windward (leeward) side and, thus, induces a destabilizing* (stabilizing)
effect opposite to that due to the simultaneous thinning (thickening) of
the boundary le—er, Whereas entropy swallowing was far from complete in
those experiments of Ref, 21 where transition was observed first on the
windward meridian, the reversal in transition fron! asymmetry with in-
creasing bluntness may then be attributed to a pr;dominant effect of
differential entropy swallowing on the wind and lee sides. Unfortunately,
codes currently available do not permit a straightforward calculation of
the swallowing process in three-dimensional flows, Thus, the observed
interplay of bluntness and angle of attack in controlling the asymmetry
of the transition front on bodies at incidence does not provide at present
a direct unequivocal test for a theoretical model, Lack of information
abo#t the external disturbances and their coupling to the boundary layex
causes the same negative conclusion to be reached with regard to the unit
Reynolds number and wall temperature ratio effects exhibited in Refs. 19
and 20, Similarly, the -tentative state of affairs in modeling roughness
effects by way of phenomenological mean profile perturbations and attendant
changes in the stability/amplification of internal disturbances (e.g.

Ref, 24) contaminates a possible test of the theory against the relevant
observations in Ref. 21, The quest for direct model assessment should
then be shifted to the experiments of group 2, albeit with a commitment

to tentatively reconsider the strong unit Reynolds number effect

* For bodies at zero incidence under fixed flight/ambient conditions, it
is “nown that transition moves rearward if the nosetip radius is in-
creased,and the degree of rearward movement may be correlated with the
entropy swallowing distance

-




manifested by firing range experiments in the light of possible model ex-
tensions suggested by that assessment,

The most prominent aspects of Demetriades' observations (Refs, 15, 16)
perhaps reside in 1) the apparent non-linear nature of the oscillation
associated with the '"laminar waves' which become prominent about half way
to the station where mean flow and surface response sensing methods in-
dicate onset of transition, and 2) the peaking of the laminar waves prior
to transition onset under conditions representative of aﬁproach/crossing
of the upper neutral branch, These aspects run counter some premises of
the linear forced response/stability approach, namely: 1) non-linearity
occurs only in a small region immediately preceding tfansition, 2) criteria
based on a threshold amplitude for linear disturbances reasonably predict
tranéition onset because the process occurs in regions of rapid growth for
those disturbances, The apparent divergence clearly warrants more detailed
scrutiny,

The aforenoted aspects of Demetriades' results are readily apparent
upon a three-dimensional view of the evolution of spectra of the hot wire
signals such as those displayed in Fig, 1 for the TBLC measurements (Ref., 15)
in the boundary layer over a sharp-tipped 5-degree half-angle cone at zero
incidence with free stream Mach number W 8, edge Mach number M, = 6.79,
tunnel supply temperature i 755°K, supply pressure e 150 and 350 psia,
unit Reynolds number based on edge conditions Re; =55 % 104 and
8.5 % 104 cm‘l, surface-to-stagnation temperature ratio (tw/To) = 0,75,
For eac: Reynolds number Reex (based on edge conditions) Fig. 1 displays

the spectra recorded at (y/8) intervals of 0,08; those measured nearest

the wall, i,e. (y/8) = 0,12, are plotted on the far side of the diagram,

10
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*
while those outside the boundary layer are presented nearest the reader,
As Demetriades points out: "a (dominant) fundamental oscillation (laminar
wave) appears in the spectra around Reex = 1.5 x 106 and becomes clearly

and strongly formed by 2,5 x 106. At Reex =2,7x 106 the second harmonic

appears**, and both peaks continue growing until about Reex =4 x 106. At
that point spectral dispersion begins, with a decrease of the oscillation
intensity and the appearance of turbulence, The first harmonic is barely
visible at Reex =5,2 x 106, and finally the spectrum abpears fully random
at 5.5 x 106." If the peak amplitudes A(f) of the laminar waves seen in
Fig, 1 are ratioed to the free stream disturbance input (i,e. the spectral
density to the first power) Ao(f) at the same frequency f, the response of
the boundary layer, at frequency f, is obtained as a function of Reex.
Such response for the TBLC experiment (spectra of Fig. 1) is exhibited in
Fig. 2 together with the response extracted from the BLIB experiment

(Ref, 16), where spectra of the hot wire signal were determined in the same
wind tunnel (AEDC/B) under closely similar conditions, i.e, boundary layer
over a sharp-tipped 4-degree half-angle cone at zero incidence, free stream
Mach number Mn = 8, edge Mach number PL = 7, supply temperature Tb = 728°K,

supply pressure p_ = 106 and 160 psia, unit Reynolds number Re' = 1,66 x 104
o P e

and 2,5 x 104 cm'l, surface~to-stagnation temperature ratio (Iw/To) = 0.41

and 0,80, Since the free stream disturbance spectra remained quite.similar

* The spectra at Rey, < 2,7 x 106 pertain to the experiments at b, - 150
psia, while those at larger Rey, pertain to p, = 350 psia,

** Demetriates indicates Regy = 3,5 x 10% for thi. event; however, the

data of Fig, 1 as well as those in Fig, 9 of Ref, 15 suggest the
presence of a distinct second harmonic already at Regy == 2.7 x 106,

12
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Fig, 2 BLTB and TBLC experiments,

Measured maximum amplitude of laminar waves
scaled to spectral density of freestream disturbances, From Reference 16,
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in the experiments (see Ref, 16, Fig, 26), and the dimensionless frequency
of the laminar waves varied smoothly with respect to Reex' A and the

upper neutral branch (Fig. 3), there is little chance that the three sets
of data in Fig. 2 may be raticnalized in terms of a linear forced response/
stability viewpoint, Instead, the substantive difference between the
responses near the critical Reynolds number, (Reex)k == 1100, for P, " 106
and 150 psi, as well as the similarity between the response trends at

B, 106 psia, 1100 < (Reex)% < 1500,and at B, - 350 psia, 1600 < (Reex)% <
2000, are strongly suggestive of non-linear processes, The non-linear
view point is supported by the manifestation of the second harmonic for-

- i 350 psia and 1600 < (Reex)!5 < 2000 (see above). However, consideration
of this event adds a new puzzling facet to the problem in that the measured
ampiification rates of harmonics associated with the laminar waves as well
as with other amplifying frequencies are smaller than those of the funda-
mentals (Fig. 4) and, thus, directly contradict the predictions of
classical weakly nui. .7 lanear stability theory (e.g. Ref, 25),

Whereas the maxiwum amplitudes of laminar waves displayed in Fig., 2
were extracted from measurements at (y/8) == 0,73 and (y/8) = 0.65 in the
BLTB and TBLC experiments, respectively, the similar trends of the
boundary layer responses observed for 100 < (Reex)% < 1500 in the former
case and 1600 < (Reex)}5 < 2000 in the latter case seem more significant
than the absolute levels of those responses, In that vein one may
tentatively reconcile the different Reex associated with similar response
trends in the two experiments by postulating that distinct non-linear
effects are largely confined to a limited region whose lateral extent

about the critical layer (y/8) = .85 increases with Re so as to

14
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encompass (y/8) = .73 at Re::x > 1100 and (y/8) = .65 at Re::x > 1600,

Although broadly consistent with the spectra shown in Fig, 1 for

2.12 x 10% < Re < 3.81 x 10°
ex

, this conjectured behavior departs so
markedly from classical weakly non-linear theory as to warrant further
scrutiny in the light of 1) the available experiments and 2) the formu-
lation of an attendant theoretical model which also accounts for the
apparently anomalous growth rates of harmonics noted above, Since the
data reported by Demetriades pertain to a single position.(yla) across
the boundary layer, this scrutiny, pursued in the remainder of this
section and through the following section of the present report, must,
however, fall back on the low speed transition data of Klebanoff et al,
(Ref, 26),

The low-speed experiments of Ref. 26 forcibly demonstrate that
Tollmien-Schlichting waves evolve into turbulence through a definite and
reproducible sequence of events, which comprise several stages, viz,: a
primary state governed by the two-dimensional linear stability theory, a
second stage of finite amplitude disturbances where strong three-
dimensional effects are observed, and, finally, a third stage involving
the birth of turbulent spots, Of specific interest here are the quali-
tative features of the non-linear three-dimensional wave motion, which
controls the flow behavior in the second stage and, in the process,
develops the conditions prerequisite to the instability for the third
stage breakdown into turbulence, These features have generally been
eramined in the context of, and deemed consistent with, Benney's model
(Ref, 25) for the weakly non-linear superposition of a two-dimensional

Tollmien-Schlichting wave and a phase-locked three-dimensional wave

17




having a periodic spanwise variation in wave amplitude, In view of the
unresolved questions posed by Demetriades' measurements a close com-
parative reexamination of the low-speed theory and experiments is in
order to ascertain whether any discrepancies exist which may be resolved
by a modified theoretical view point acceomodating the available evidence
about non-linear flow processes at high as well as low Mach numbers.

In Benney's model a purely two-dimensional temporally growing
oscillation u[al(y), ;1 ()] exp [ia(x-ct)] is compounded with a
temporally growing standing wave in the spanwise direction,

X[GI(Y) cos Bz, ;1 (y) cos Bz, ;l(y) sin Bz] exp [ia(x-ct)], to yield a
mean and an oscillatory secondary flows, For cases involving either a
fluid in the presence of a solid boundary or a fluid extending to in=-

finity, the mean secondary flow is characterized by velocity components

PN - -1
véz) (y,z,t) [)? va(y) cos 28z + \ M vb(y) cos Bz] [exp(2acit)-1] [2&91]

- (1-a)

wéz) (y,2,t) [)? ;a (y) sin 28z + \ u ;b (y) sin Bz ] [exp(ZGcit)-l] [Zaci]'l

(1-b)
and the oscillatory flow by velocity fluctuations
(2) 2 A ~
V2 (x,¥,2,t) = Y Ve (y) cos 28z + \ u Vf (y) cos Bz +
2 i o
N )t vy )] exp [2ia (x-ct)] (2-a)

18




i T —

wgz) (x,¥,2,t) = [12 :re (y) sin 28z + \ u ;f (y) sin Bz +

¥ 0+l w0 exp (210 (xet)] 2-b)

which are bound with the fundamental, having the same phase velocity but
half the wave length,

The coherence of fundamental and "secondary" oscillations is well re-
produced in the experimental studies of controlled amplifying three-
dimensional disturbances with spanwise amplitude modulation (Fig. 5,

Ref, 26)., Although the behavior characteristic of the finite amplitude
region, i.e. a very rapid growth of rms fluctuations at a peak and an
initially slow growth at a valley compared to linear theory, arises

suddenly and at surprisingly low disturbance levels [e.g. (u'/U1)=-10-2

in Fig. 6], the wave phase angle in the downstream direction shows no

significant departure of wave velocity from the linear value and
measured distributions of phase across the boundary layer (relative to
that observed at the outer edge) show no substantial change, until just
before breakdown occurs at a peak, However, several discrepancies

between model and observations become apparent when the evolution of the

non-linear flow is examined in detail, Specifically, measured distribu-
tions of r.m.s. u'-fluctuations (associated with the fundamental as well
as the secondary oscillations) and spanwise W-component of mean velocity
(associated only with the mean secondary flow) indicate different apparent
growth rates at different locations (y/8) across the boundary layer

(Figs. 7,8), Also the evolving non-linear effects appear to influence a

region of increasing dimensionless transversal extent (y/8) (Fig. 7).
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Fig. 5 Experiments of Reference 26. Spanwise distributions of rms u'-fluctuations i
 at different distances downstream from vibrating ribbon: 145 c/s wave,
y = 0.042 in, Uj/v = 3,1 x 105ft, -1, o'(x-xo) =1 in.; A, (x=x5) =4 in,;
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Fig, 6 Experiments of Reference 26, Rms u'-fluctuations at peak and valley for
: y = 0,042 in, and input disturbance amplitudes (ug/Uy) = .007 and ,005

at peak and valley, respectively, o,z = = 0.2 in, (peak); x,z = = 0.75 in,
(valley). : . . y
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Fig., 7 Experiments of Reference 26, Distribulion of rms u'-fluctuations across
boundary layer: 145 c/s wave, Uj/v = 3,1 x 105 ft.~1, (a) Station A:
0,z = - 0,2 in,, x,z = - 0,75 in, (b) Station B: o0,z = = 0,2 in,;
A,z = - 0,35 in; x,z = - 0,45 in,; v,z =-- 0,55 in.; @,z = = 0,65 in,;
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Fig, 8 Experiments of Reference 26, Distributions of spanwise component of i
mean velocity across boundary layer: 145 c/s wave, Uj/v = 3.1 x 103 fe.
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The width of this region exhibits a rapid initial increase between stations
A and B, where it encompases (y/§) 5’.7; later it remains largely unchanged,
while the position within it for maximum percent spanwise variation of
u-fluctuation intensity moves out from (y/8) ~ .2 at station B to (y/8) ~ .4
at station D (Fig. 7). The percent spanwise variation in fluctuation in-
tensity at fixed (y/§) appears to follow the same behavior, i.e, it increases
rapidly between stations A and B, but then settles to a reasonably constant
level (Fig. 5), even though the fluctuation intensities continue to in-
crease (Fig. 7). By contrast, the (y/8) position for maximum percent
spanwise variation of fluctuation intensity changes only downstream of
station B, in rough synchronism with the shift of the critical layer due to
"secondary'" distortions in mean streamwise velocity profiles (Fig. 9) and
attendant increments in the phase velocity and wavelength of the basic
disturbance. The pronounced magnitude of these "secondary" shifts casts
doubt on the convergence of the series expansion underlying Benney's model
and, in fact, measured spanwise distributions of mean and fluctuating *
components of velocity (Fig. 10) show that quantities considered of second
order in the model (e.g. the mean spanwise velocity W midway between a

peak and a valley and the spanwise modulation of mean streamwise velocity
U) achieve magnitude comparable to that of quantities considered of first
order (e.g. the rms w' and u'~fluctuations midway between a peak and a
valley), Thus, the theoretical model appears inadequate on several counts,
To these one must add the criticisms that: a) the assumption of equal phase
veloaity for the fundamental two-dimensional and three-dimensional waves
cannot be satisfied by the well established linear stability eigensolutions

for Blasius and Falkner-Skan profiles; b) if that assumption is relaxed,

-
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the theoretical predictions exhibits a periodic reversal in the sense of
rotation of the streamwise voréices, which represent the main feature of
the secondary motion (Ref. 27), while the measurements show no signi-
ficant phase shift,

The strongest clue as to a model formulation compatible with the ex-
perimental evidence resides in the observed (y/§) extent of the region
characterized by large non-linear three-dimensional motions and effects,
As noted above, this region appears to grow about the criLical layer, in
rough synchronism with the growth in the spanwise variation of u'-fluctua-
tion intensity; meanwhile the (y/§) position for maximum percent spanwise
variation in fluctuation intensity within the region approximately tracks
the spifting position of the critical layer, Thus, the non-linear wave
behavior appears to be controlled by non-linear critical layer effects,
analogous to those studied by Benney and Bergeron and Haberman in
connection with neutral waves (Refs.’28, 29), Argunments providing con-
ceptual support for this view may readily be evolved as in the following,

The weakly non-linear stability approach underlying the model of
Ref, 25 is predicated on the tacit assumption that the class of attendant
asymptotic solutions to the Navier-Stokes equations (i.e, Tollmien=-
Schlichting waves and waves resulting from their interactions) provide a
uniformly valid description of the fluid motions over the entire range of
wave amplitudes encountered in transitional flows (say rms u'=-fluctuations
< 15 to 20% of the reference free stream velocity), The assumption implies
that, for high Reynolds numbers such as those of interest here, the
singular nature of the linearized inviscid perturbation equation (Rayleigh

equation) in the neighborhood of the critical layer is removed at all wave
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amplitudes by the sole effect of vorticity diffusion as embodied in the
linearized viscous perturbation equation (Orr-Sommerfeld equation), This
predominant effect of viscosity independent of wave amplitude, however,
runs counter the substantive experience accumulated with singular pertur-
bation problems, As pointed out by Benney and coworkers (Refs. 28, 29),

one expects that, depending upon wave amplitude, the singularity of the

linearized inviscid perturbation equation is removed by either the effect
of the small linear viscous operator or the effect of thé small non~linear
operators descriptive of non-linear vorticity convection in two-dimensional
wave motions and vorticity convection as well as stretching in three-
dimensional wave motions, Whereas the viscous effect is confined to a

(boundary) region about the critical layer having thickness independent of
: /

3 (where Re6 denotes the

Reynolds number of the mean flow, a the dimensionless wave number of the

wave amplitude and proportional to 2(a Reaué)'l

disturbance , and “é the dimensionless mean velocity gradient at the
critical layer), while the non-linear effects” influence the flow in a
region about the critical layer having thickness proportional to (A/ué)%
(where A denotes the disturbance amplitude),there is always a wave
amplitude Ac wherefor the boundary layer scale associated with non-linear
effectsbecomes larger than the scale associated with the viscous effect,
For A Z:Ac the Orr-Sommerfeld description of the wave motion near the
critical layer ceases to be valid, and a new class of asymptotic solutions
to the Navier Stokes equations, recognizing the non~linear vorticity con=
vection and stretchihg, are required to describe the subsequent growth
and/or decay of the wave, Interestingly enough for the controlled transi-

gion experiments of Ref, 26 one has: unit Reynolds number (Ullv)= 104cm'1,

-
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boundary layer thickness 8 = .5 cm, dimensionless wave number of the

fundamental disturbance & = .9, dimensionless mean (Blasius) velocity

/ /3

gradient at the critical layer ué >~ 1,6, and, thus A ="4(u::)1 3(une6)'2
>~ ,017, in reasonable agreement with the rms u'-fluctuation

measured at the station where the onset of non-linearity is manifested

(Fig. 6). Thus, the entire second and thrid stages of transition fall

within the domain of wave growth controlled by non-linear critical layer

effects,

Further progress in the analysis of the non-linear flow processes
discussed above can only be achieved upon development and validation of
a model descriptive of non-linear critical layer effects in amplifying
and_equilibrating waves, The motivation for such development and
validation, undertaken in Section III of the report, is manifold and
transcends the scientific objective of realistically modeling the ob-

served non-linear stages of transition,

Admittedly the experiments of Refs. 15, 16 and 26 tend to over;
emphasize the role of the non-linear stage within the overall transition
process because of the high external disturbance levels imposed on the
boundary layer, In many practical situations, depending on mean flow z
conditions as well as on the nature/level/spectrum of external distur-
bances, a considerable length of linear disturbance growth may precede
and dominate the length occupied by the non-linear stages of transition,
This is typically the case in low speed, low-free-stream-turbulence
experiments, where disturbances undergo very large amplification prior
to transition (Ref, 3), The linear view point of Mack would seem

‘adequate for these cases, although the conclusion may be tempered by the




mixed success achieved by the linear theories in predicting transition on
low drag hydrodynamic configurations., As the flow Mach number increases, : o
the "equivalent" linear disturbance amplification to transition decreases
markedly (Ref. 10), and the length of the non-linear region becomes a
measurable fraction of the transition distance. Mcre important, the ex-
pedient of letting the linear disturbance grow to some arbitrary level
acquires a distinctly ad hoc flavor, As Mack points out in the Appendix
to Ref, 10, the magnitudes of the transition Reynolds numbers observed on
flat plates and cones exposed to supersonic flows cannot be reconciled in
terms of linear stability theory together with the known exact transforma-
tion between the laminar boundary layer equations/solutions in the two
cases and the approximate transformation of the attendant linearized
stability equations, Whereas the observed end-of-transition Reynolds
numbers on cones Retc always exceed those on flat plates and hollow

cylinders Retf’ even for experiments performed in the same wind-tunnel, the

attendant dimensional amplification rates at equal boundary layer thickness
* , *

should be in the ratio (Gicluif) << 1, However, theory (i.e. the afore-

noted approximate transformation of the stability equations) as well as

*
experiments (Fig. 11) indicate that (af /a,.) > 1, One is then led to
ic’ "if

conjecture that the observed Re . > Ret result from a substantively longer

f

non-linear stage of transition on cones as compared to flat plates, This

view, qualitatively supported by the measurements discussed above (Figs. 1
through 3), implies that the systematic correlation/extrapolation of
transition results/predictions among different vehicle cénfigurations
depend on a case-by-case sequential analysis of the linear and non-linear

stages of the process., In accord with the evidence of Refs., 15, 16 and 26,
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transition is associated with an instability of the dominant equilibrated
non-linear "laminar waves", i.e, a process whose nature and rate can only
be ascertained upon a systematic description of the presently unknown flow
structure attendant thereto, Such instability of finite amplitude wave-
trains appears not only relevant to '"matural" transition,but also to the
practicallyinteresting problem (perhaps prevalent on RV heat shields) of
transition induced by three-dimensional roughness elements; in fact,
strikingly similar instantaneous velocity distributions at wave breakdown,
followed by hairpin loop generation are observed in the two cases,according
to Ref, 26, Thus, the study of non-linear critical layer effects and
attendant non-linear wave structurespromises to shed light on several aspects

of practical transition prediction and design problems,
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III, OUTLINE OF A NON-LINEAR STABILITY MODEL

The model outlined here laregly exploits the results of a systematic
investigation of non-linear, critical-layer-controlled, waves being carried
out under a separate AFOSR-sponsored effort, The premise of that effort
resides in the recent experimental evidence about the presence in all tur=-
bulent flows of quasi-ordered, large scale events/structures, which occur
randomly, but with statistically definable mean periods (Ref, 14), Accord-
ing to that evidence the nature, growth, equilibration and subsequent
agglomeration and/or modulation of the structures vary from family to family
of flows; however, for a given family (say incompressible flat plate boundary
layers), they show little dependance on Reynolds number throughout the non-
linear.transitional and fully developed turbulent regimes., In both regimes
the evolving structures appear to dominate the macroscopic aspects of the
flow, including the rate of growth/entrainment and the Reynolds stresses, as
well as the process of intermittent turbulence production by three-d{mensional
energy cascade connected with high wave-number instabilities evolved within,
and amplified by,the structures themselves, The structures also exhibit
throughout a remarkable degree of coherence such as pertains to non-linear
wave-trains possessing non-dispersive characteristics, i.e. trains whose
spectral components propagate as bound waves not obeying the linear disper-
sion relation, Such behavior can hardly represent the result of non-linear
interactions among the resonant components of a fluctuations spectrum made
up of many linear random dispersive free waves with Gaussian or near-
GCaussian statistics; however, it is in principle consistent with the evolu-

tion of non-linear,critical-layer-controlled,wave-trains whose spectra are

-
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made up of bound-wave components,

Among the many experimentally observed structures those associated
with two-dimensional homogeneous incompressible free mixing lgyers are
perhaps the best documented ones in both the non-linear transitional (Ref. 30)
and the turbulent regimes (Refs, 31, 32), As those structures are also
largely two-dimensional, they constituted an obvious first target for the
theoretical investigations under the aforementioned AFOSR sponsored effort.
By fortunate coincidence the "laminar waves" observed in Refs, 15 and 16
are also two-dimensional; hence, some of the theoretical results could
readily be extrapolated to their analysis as presented below,

The motion of an incompressible free shear layer is inviscidly un-
stable and governed by the vorticity conservation equation, For the strictly
two-dimensional problem considered here, i.e, a basic parallel flow with
velocity (ﬁ, 0, 0), vorticity (0, 0. Q) and Reynolds number Re (based on
average mean flow velocity U and flow width L), plus a superposed pertur-
bation of small amp{itude A involving velocities (u, v, 0) and vorticity
(0, 0, w), the equation is

g%+(6-c)§f+vg%=-A(u§§+vg%’)+Tlﬁv(mAm) 3)

in a frame of coordinates moving with the phase velocity c of the disturbance,
Whereas the solutions of classical linear inviscid stability theory are ob=-
tained by setting to zero the right hand side of equation (3), the approxi-
mation must fail to higher order whenever one of the neglected terms becomes
comparable to the terms retained, This occurs for (ﬁ - ¢ ) = 0 near the

critical point (y = yc). In that neighborhood the correct vorticity balance




must take into account the dominant terms on the right hand side of equation
(3). A uniformly valid solution to the equation must accordingly be evolved
in the context of classical matched asymptotic expansion techniques, with
the expansion parameter selected in accordance with the predominant term on
the right hand side.

In classical stability theory the viscous term at the right hand side
of equation (3) is assumed dominant, independent of wave amplitude and, to
the leading order, the outer linear inviscid solution is m;tched with an

-1/3L] about

inner viscous solution valid in a region of extent [(a Re ué)
the critical layer, However, as noted in Section II, the assumption of a
dominant viscous term is only correct for modest disturbance amplitudes A,
typically A < 10°2 for Re = 10° and o as well as u! about unity, For
larger amplitudes the non-linear vorticity transport Av(Qw/3y) dominates
the right hand side of (3), The matched asymptotic expansion technique
then shows that, for a spatially growing wave of amplitude A, wave number
%» growth rate (-ai) and frequency B, the noted non-linear term contri-
butes measurably to the vorticity balance within an (inner) region of

Qa
E% x)L] about the critical

lateral extent [(A/ué)%L] = [(Ac,/u":)!5 exp (-
layer, Under those conditions the flow obtained by the superposition of
a small but finite - amplitude two-dimensional wave upon a basic parallel

flow, is characterized by a stream function { in wave fixed coordinates

having matched inner and outer expansions, respectively, of the form

(1) * 1+(m/2) "

e e L exp(- 3 €)s ] (42)
y

¥ =] o e+ AV [y (4b)

Ye n=0,1,,




Wi

where
£=(a x - 8t) (52)
2
u'  (y-y)
n= [—AE o s €. + cos g] 7 (5b)
and

¢ =lo, a8 aud7| (50)

is a growth parameter manifested in the inner equations, Typically,for A > 10-2

€ < 1 so that the inner solution may be sought by asymptotic expansion in
*
powers of ¢ ., Upon use of Lighthill's method of stretched coordinated this

expansion takes the form

y Tiadl §=1,2,..'P ¢ (5,0 (62)
8, £ exol- % g), ¢] - £ L .8 exal- % )] (6b)

and the functions Qm P can be determined consistent with the inner equations
as well as with the requirement that the attendant solution be periodic in

8. Detailed matching in the overla? domain (y-yc) - 0, C - =, then yields

@, [y,8] = §=0'1’" (pnq [y] cos (q -25) (6¢)

* Robinson (Ref, 33) has pursued a similar approach for marginally unstable
temporally growing waves, However, he has obtained erroneous results for
the amplification rates due to improper evaluation of the vorticity in the
inner region. Also he could not find solutions for the practically in-
teresting case of spatially amplifying waves due to improper choice of the
independent variables in the inner region,
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By this process the effect of non-linearity (viz, transversal transport of
perturbation vorticity near the critical layer) in forcing mean flow pertur-
bations, harmonics and subharmonics in the outer region becomes manifest,

Specifically one finds that:

INNER SOLUTIONS MA TCH/FORCE OUTER SOLUTIONS
m P n q
0 0 g 2
1 0 1 0
{3 1,2,4,..

etc, Thus for an amplifying two-dimensional finite amplitude wave in in-
compressible flow, non-linear critical layer effects result in the genera-
tion of bound-wave harmonics and subharmonics having growth rates 1,5 times
as large as that of the fundamental, These results, which nicely reproduce
the observations of Ref. 30 for the non-linear stages of transition in a
mixing layer, represent a direct extension of those set forth in Refs, 28,
29 for neutral non-linear waves, In fact the methods of analysis are
essentially the same, except for the use of the parameter ¢ in lieu of the

3/2]-1

the inner solutions. Thus, the findings of Refs, 28, 29 for neutral waves,

parameter \ = [(a Rey ul) (A/ul) << ¢ in the asymptotic expansion of
as well as their extension to slowly varying non-linear waves (Ref, 34), may
readily be transposed to the amplifying and equilibrating finite amplitude
disturbances encountered in the transitional flows discussed in this report,
In that connection we specifically address below the finding by Demetriades
of "... a complex stability diagram with at least three unstable regions,

The lower of these regions appears to be generated by the first and second
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mode instabilities, but no theoretical guidance exists to help identify the
contributing modes for the other regions" (see Refs, 16, 17 and Fig. 4).

We begin by noting the results of Ref, 28 for a single oblique neutral

finite-amplitude wave propagating at an angle @ to an incompressible parallel
flow U(y). Working in wave-oriented coordinates Benney and Bergeron show
that the strictly two-dimensional solution still describes the flow in planes

parallel to the wave vector, but the cross flow perturbation velocity
: -1
w = (U' sin g) (U cos 6-~c) mzz(y) (7a)

becomes singular at the critical layer; specifically, for y — : 4

P,(y-y,) Ul '
w = tan 0 [——(;;c—)- + ﬁ: Py (y-yc) log (y-yc) + C Py (Y'Yc)] (7b)
where
= 5 - m =
Py (y=y) =1+ rzn_l in T i=1,2)
- —lgee

and C is a mltiplying constant, This singularity is removed by introducing

an inner expansion

w=(Ucose-c)cane+Aw=A’5w§°)+... (8)

which leads to a solution w§°) having harmonics as well as subharmonics in
the non-linear critical layer,

We then pass to consider the solutions of linear inviscid stability theory
for a parallel compressible flow characterized by mean velocity and tempera-

ture profiles U(y), T(y). As is well known (Ref, 35), the v perturbation

: | velocity near the critical layer is described by generalized Tollmien

-




solutions formally identical to those encountered in incompressible flow,
but the temperature perturbation @ acquires the singular behavior
T
5 5t s ()]
~ — ot — | == 1 - S
Ve
formally identical to that found for the cross flow perturbation velocity w in
equation (7b). This singularity is also removed by introducing an inner ex-

pansion

7= T+ae =AY 7O 4, (10)

again to obtain a solution Jfo) characterized by the generation of harmonics
as well as a subharmonic in the non-linear critical layer, Thus, we find that,
upon attaining finite amplitude and becoming controlled by critical layer
effects, an amplifying two~-dimensional wave in compressible flow must exhibit
a bound-wave spectrum of temperature fluctuations composed of the fundamental
frequency as well as its harmonics, the latter growing at one half the rate of
the fundamental, This is exactly the situation displayed in Fig. 4, where:

1) the modes populating the puzzling middle unstable region can be associated
with second harmonics of those lower region disturbances which, at the

measurement station, have finite amplification rate (F < 1.4 x 10-4) and,

presumably, amplitude above the threshold for non-linear critical effects

(F’E: 1.1 x 10-4); 2) the amplification rates of the middle region modes are

approximatély one half those of the associated fundamental (lower region)
modes; 3) the upper unstable region may reasonably be connected with the
third harmonics of the same lower region disturbances, The interpretation
of Demetriades' results in terms of non-linear critical layer effects,

al;eady suggested in Section II, is then forcefully supported, and the roie
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of such effects in transition data analysis and predictions is confirmed,
The initial understanding and modeling of non-linear flow processes
presented above suggests that distinct progress toward rational and
systematic transition prediction criteria may be achieved by further co-
herent theoretical and experimental investigations of those processes, On
modeling grounds only a first step has been achieved as a consistent, funda-
mentally based, quantitative description of the mechanisms controlling the
sequential equilibration, breakdown and/or modulation of éinite-amplitude,
critical-layer-controlled wave-structures remains to be accomplished, In
that connection only speculative lines of approach and interpretation can be

offered at present; some are submitted in the following section,

37

arae e gl daman L o e o o el



IV, CONCLUDING REMARKS

On the premise that the forced response/stability viewpoint constitutes
the most satisfying and promising conceptual approach to transition analysis
and prediction, we have used it as the framework for a critical review of
data from selected low ~ as well as high-speed laboratory experiments where
the evolving disturbance spectrum within transitional boundary layers has
been measured by hot wire anemometry, Upon this review wé have determined
that the growth of unstable disturbances becomes influenced by non-linear
effects at unsuspectedly low amplitudes, typically A =--10-2; thus, the non-
linear stages of transition, e.g. the "laminar waves", occupy a considerable

fraction of the transition distance, especially for wind-tunnel experiments

at supersonic velocities where relatively modest disturbance amplifications (by

less than a factor 100) are measured between critical and transition Reynolds

numbers. Under these conditions linear theory becomes inadequate for accurate data

analyses and judicious'extrapo*ations,and realistic non-linear models must be
employed, By critical review of data vis-a-vis existing models, as well as
by order of magnitude considerations applied to the full flow equations, we
have argued that the observed non-linearities largely manifest non-linear
critical layer effects as opposed to weakly non-linear interactions among
random dispersive linear waves, We have stated a model descriptive of such
critical layer effects in strictly two-dimensional flows and we have shown
that it qualitatively predicts the frequency/amplification characteristics

of the modes populating the upper unstable regions in the complex stability

diagram determined experimentally by Demetriades,

38




On the basis of the arguments/findings set forth above and the avail-

able experimental evidence we suggest that further coordinated analytical

and experimental investigations of the two and three-dimensional flow
structures associated with non-linear critical layer effects may yield a
quantitative understanding of their tendency to equilibrate and/or evolve
intrinsic instabilities which, in turn, may cause the birth of turbulent
spots as well as the subsequent modulated recurrence of coherent structures
in the turbulent regime, Subject to favorable quantitative stage-by-stage
comparisons between theoretical developments and controlled experimental
observations, such inquires should not only provide a systematic attack on
many current transition dilemma,but also a rational basis for evolving/
extending /qualifying transition data correlations and attendant design

criteria,
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