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I. INTRODUCTION

The present investigation has been motivated by recent flight test

analyses (Ref. 1) and parametric studies (Ref. 2) which indicate that the

impact dispersion of ballistic reentry vehicles (RV’s) may measurably be

influenced by asymmetric boundary layer transition (BLT). Whereas the

aerodynamic effects induced by asymmetric BLT may be represented in terms

of lift and moment coefficient increments (8 
~l.tr’ 

A Cmtr)~ the history of

such coefficients over the altitude range where ELT advances from the fru-

strum to the nose of the vehicle is dominated by the dynamics of the under-

lying process, viz, by the rates of axial progression and circumferential

rotation of the asymmetric BLT front as a function of vehicle design and

trajectory parameters. Thus, the classical problems of transition prediction

and/or control are posed again, now in the aggravated context of three-

dimensional flows.

At the present time an unsatisfactory fundamental undersj:anding of the

transition process, especially with regard to its late stages of finite

amplitude three-dimensional disturbances and subsequent birth of turbulent

spots, plagues the researcher as well as the designer concerned with either

low-speed or high-speed flows (Refs. 3,4). As a consequence, engineering

design practice has relied on empirical correlations of data, generally

obtaired from small sets of experiments where systematic and controlled

variation is achieved only for a few of the numerous dimensionless parameters

associs red with the equations and the boundary conditions governing the

three—dimensional time dependent flows of interest (Ref. 5), while little

definition and/or control is provided for the remaining parameters. By
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this process a large number of effec ts have been exhibi ted, e.g. Mach number ,

surface tempera ture ratio, bluntness , angle of attack, sweep, surface roughness ,

suction and blowing, the mysterious “unit Reynolds number” etc.; however, no

reliable criteria have been evolved for identifyit.g the dominant effect in

any one situa tion and, thus, no means have been achieved for predicting tran-

sition Reynolds numbers in even moderately systematic fashion. Based on this

long-term experience one may fairly state that only a close coupling between

controlled experiments and detailed theoretical modeling of the salient

features of the parametric boundary layer response to fully described dis-

turbance environments will produce substantive advances in transition pre-

diction capability. The investigation reported here has largely been keyed

to this view point.

To da te the theoretical modeling of transition processes has played a

distinctly secondary role vis-a-vis the experimental studies and empirical

correlations mentioned above. Direct numerical solutions of the three-

dimensional time-dependent Navier-Stokes equations for compressible flow

cou ld, in princip le, describe the desired boundary layer response and s

parametric sensitivities ; however, their routine execution still lies in

the future, particularly for the high Reynolds numbers of interest in

practical app lications (Refs. 6, 7, 8). Even if these difficulties were

surmounted, the physical interpretation of such numer ical resu lts in terms

of salient linear and non-linear flow instability processes and their

parametric sensitivities, as well as the synthesis of attendant transition

prediction criteria,vould not be straightforward. Thus, the search for

asymptotic models , which isolate and describe the dominant processes at

various stages of the flow development , appears to provide the most promising

2

~~~~~~ • ~~~~~~~~ - -- -~~---
-- — • -~~ - .



line of fundamental inquiry at the present time. The investigation reported .

here has been keyed to this view point.

Two approaches broadly falling within the asymptotic model category

reside in the use of either turbulence model equations (e.g. Ref. 9), or

linear stability and forced response theories (Refa. 10, 11), to approxi-

mately describe the flow behavior throughout the stages of linear instability,

finite amplitude disturbances and ultimate breakdown into turbulence. The

view points basic to these approaches are distinct to such an extent that

the potential of the attendant models as fundamental tools for I) the sys-

tematic interpretation of transitional flow processes/sensitivities/effects

within the available data base and 2) the theoretically justified extrapola-

tion of those processes /effects to conditions outside the data base, may be

gleaned a priori upon a brief comparative discussion.

The turbulence model equations espouse the traditional long-time average

view of the unsteady transitional and turbulent flows. This view is embodied

in a number of closure coefficients, which essentially represent correlations

associated with the disturbance spectrum of the considered flow. Whereas

the va lues of many of the coefficients are chosen by numerical experimenta-

tion, i.e. by forcing agreement between numerical pred ictions and selected

experimental data , the approach is at best interpolative and conceptua lly

subject to the same limitations which have plagued the large body of

empirical-correlations extracted from experiments in the past . In fact ,

recen t experience has provided severa l examples of un reliable extrapolation ,

e.g. the failure to predict compressibility effect in two-dimensional tur-

• lulent  mixing layers (Ref. 12) and to extend results from axisynmietric to

two-dimensional incompressible jets (Ref. 13). Thi, experience complements

3
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the mounting body of experimental evidence to the effect that transports in - 

- 
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turbulent shear flows are controlled by large coherent flow structures, i.e.

typical and recognizable concentrations of transverse mean vorticity at the

largest flow scale, whose characteristics differ from one type of flow to

another and , for a given flow type, vary as a function of the associated

parameters , e.g. Mach number (Ref. 14). These structures presumably re-

present specific families of deterministic non-linear solutions to the flow

equations , viz , wave-like solutions which retain phase information at the

largest scale (of the structures), and introduce Reynolds averaging at the

lower structural level of fluctuations measured with respect to ensemble

averages of structure realizations. Whereas the solutions in ques tion nEst

evolve from , and in the linear limit reduce to , the solutions provided by

the forced response and stability theories of Refs. 10 and 11, the latter

appear to possess a dintinct conceptual edge over the turbulence model

equations as a fundamental tool for systematic transition studien. This is

not to say that turbulence model equations cannot be adapted in the future

to provide useful working tools on a flow by flow basis. However, this up-

grading seems contingent upon the systematic parametric determination of

- closure coefficients consistent with experiments and large scale structure

solutions provided by the linear forced response/stability theories and

their extensions to the non-linear regime.

Based - on the above premises the investigation reported here has been

keyed to the forced response/stability view point of Refs . 10 and 11 with

specific attention to the capability of the attendant maximum allowable

itnear dis turbance amplitude criteria to provide, systematic trans ition

predictions. In that connection selected recent transition experiments

— — —~~~ —~
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have been reviewed and , by that process, evidence has been found of distinct

non-linear effects in the growth of internal boundary layer disturbances

having small but finite amplitudes ~e.g. (u’/U1
) lO

_2
) which, heretofore,

had been assumed to fall within the realm of linear theory (Section II).

The flow processes responsible for this behavior have then been sought, the

formulation of an attendant non-linear model differing from classical weakly

non-linear stability theory has been instituted, and preliminary predictions

of the model have been obtained,apparen tly explaining the complex multi-

region stability diagram which has been observed in the experiments of Refe. 15

and 16, but has not been predic ted by available results of linear theory

(Section III): On this basis, preliminary conclusions have been evolved as

to the role , nature and modeling of processes required for the fundamental

understanding of transition and for the developmen t of a ttendant systematic

prediction •~
i-

~~~~ - Ia (Section IV).

L -
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II . DISCUSSION OF SELECTE D TRANSITION EXPERIMEN TS

VIS -A-VIS LINEAR AND WEAKLY NON-LINEAR ThEORIES 
A

Recent boundary layer transition experiments at supersonic velocities

can be divided into two groups, namely: 1) those where only the transition

location is determined on the basis Df some experiment specific observable

criterion (e.g. inspection of either boundary layer shadowgraphs as in

Refs . 18, 19, 20, or wall heat flux measurements as in Raf. 21), and 2)

those where the mean flow and surface data are supplemented by hot wire

anemometer measurements of the disturbances within the boundary layer as

they evolve upstream of,and through, transition (e.g. Refs. 15, 16, 17).

Al though the experiments in the first group have yielded a number of

useful practical results , e.g. the f irst cut descr iption of transition

zone circumferential asymmetry on pointed slender cones as a function of

dimensionless angle of attack (ale ) suggested in Ref. 19, the interplay

between nose bluntness and angle of attack in controlling the wind-fixed

transition zone asymmetry on spherically capped cones disp layed in -

Ref. 21, the possible synergetic effect of asymmetric body-fixed small—

scale roughness and angle of attack in promoting transition on the lee

(wind) side of sharp (blunt) nosed vehicles observed in Ref. 21 etc,

they have failed to provide mechanistic explanations for the observed

effects with attendant rules for a realistic extrapolation of the results

from laboratory to flight conditions and disturbance environments. In

fact , among the many transition dependancies exhibited in the ground ex-

periments, that associated with the unit Reynolds number predominates and

remains most obscure. Whereas the correlation of transition Reynolds

.4
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number with unit Reynolds number in supersonic and hypersonic wind tunnels-

may largely be associated with noise pressure fluctuations radia ted onto

the model from tu rbulent tunnel nozzle boundary layers (Ref. 22), the

reason for its existence in ballistic ranges remains to be explained,

especially since, according to Ref. 19, only a secondary role may be

attached to those fea tures of free flight experimentation suspected to

influence the results (viz, oscillatory motion and angle of attack, surface

roughness, model vibration, non-uniform model surface temperature). In

view of 1) the limited understanding of the competing roles played by

the many parameters entering the problem, and 2) the impossibility of

complete simulation in ground facilities, the resolu tion of the open

questions noted above and the development of reliable transition pre-

diction criteria then require reconsideration of the data in the context

of a unified physico-mathematical model of the underlying flow processes.

Clearly the predictions of the model must be validated against the avail-

able base of full y characterized and controlled experiments. The

discussions below indicate that the results of group 2 provide the most

fruitful testing grounds for that purpose.

As stated in the introduction, the linear forced response/stability

theories of Mack (Refs, 10, 11) provide a promising theoretical framework

for systematic da ta analysis. Their use, however, must be conditioned by

a judicious appreciation/assessment of their less developed aspects,

specifically: a) the current lack of a theory capable of predicting in

all practical instances the initial amplitude of each Fourier component

of the interna l disturbances forced by the prevailing external distu r-

bancee , and b) the general adequacy of transition criteria based on a

.4
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threshold level for the amplitude of the most amp lified single frequency

linear internal disturbance. These aspects can hardly be elucidated by

applications of the theory to situations where the transition Reynolds

number changes mainly becaus~ either the mean boundary layer or the

spectrum of externa l disturbances or one of the boundary conditions (e .g.

the wall t emperature ratio) change. Applicability of the theory to such

situations has already been exhibited by Mack (Refs . 10, 11), Accordingly,

the first step in the research repor ted here was to select within the

chosen base (Refs. 15 through 21) those data which promised potentially

new tests,

Cursory analysis indicates that the experiments in group 1 do not

readily provide the desired new tests. Specifically, the few available

“exaèt ” results for the supersonic laminar boundary layer over a pointed

cone at incidence (Ref. 23) suggest that the circumferential asymmetry of

the transition zon e on pointed slender cones at angle of attack is

dominated by the attendant asymmetry in laminar_ boundary layer thickness ,

at least over the range (a/es) < .2 where the layer maintains self-
preserving stru cture. For (a/en) > .2 the boundary layer prof iles and

- 
thickness depart from self-preserving behavior in a region of increasing

circumferential extent abou t the leeward generator ; reduced distu rbance

amplification ra tes appear to be associa ted with those prof iles leading

to reduced rates in the forward shift of the asymmetric transition front

at increasing angles of attack, as indicated by the correlation of Ref. 19.

For blunted cones at incidence the additional effect of entropy swallow-

ing must be considered , with the realization that the inviscid cross—flow

yields an effective increase (decrease) in the rate of swallowing on the

8
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windward (leeward) side and , thus, induces a destabilizing* (stabilizing)

effect opposite to that due to the simultaneous thinning (thickening) of

the boundary le er. Whereas entropy swallowing was far from complete in

those experiments of Ref. 21 where transition was observed first on the

windward meridian, the reversal in transition front . asymmetry with in-

creasing bluntness may then be attributed to a predominant effect of

differential entropy swallowing on the wind and lee sides . Unfortunately,

codes currently available do not permit a s traight forwatd calculation of

the swallowing process in three-dimensional flows . Thus , the observed

interplay of bluntness and angle of attack in controlling the asymmetry

of the transition front on bodies at incidence does not provide at present

a direct unequivocal test for a theoretical model. Lack of information

abou t the external disturbances and their coupling to the boundary ~~~~~~~~

causes the same negative conclusion to be reached with regard to the unit

Reynolds number and wall temperature ratio effects exhibited in Refs . 19

and 20. Similarly, the~ tentative state of aff airs in modeling roughness

effects by way of phenomenological mean profile perturbations and attendant

changes in the stability/amplification of internal disturbances (e.g.

Ref . 24) contaminates a possible test of the theory against the relevant

observations in Ref. 21. The quest for direct model assessment should

then be shifted to the exper iments of group 2, albeit with a commitment

to tentatively reconsider the strong unit Reynolds number effect

* For bodies at zero incidence under f ixed fl igh t/ambient conditions, it
is known that transition moves rearward if the nosetip radius is in-
creased ,and the degree of rea rward movement may be correlated with the
ent ropy swallowing distance
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manifested by firing range experiments in the light of possible model ex-

tensions suggested by tha t assessment. A

- r The most prominent aspects of Demetriades ’ observations (Refs . 15, 16)

perhaps reside in 1) the apparent non-linear nature of the oscillation

associated with the “laminar waves” which become prominent about half way

to the station where mean flow and surface response sensing methods in-

dicate onset of transition, and 2) the peaking of the laminar waves prior

to transition onset under conditions representative of approach/crossing

of the upper neutral branch. These aspects run counter some premises of

the linear forced response/s tability approa ch, namely: 1) non-linearity

occurs only in a small region immediately preceding transition, 2) criteria

based on a threshold amplitude for linear disturbances reasonably predict

transition onset because the process occurs in regions of rapid growth for

those disturbances , The apparent divergence clearly warrants more detailed

scru t iny.

The aforenoted aspects of Demetriades ’ results are readily apparent

upon a three-dimensional view of the evolution of spectra of the hot wire

signals such as those disp layed in Fig. 1 for the TBLC measurements (Ref. 15)

in the boundary layer over a sharp-tipped 5-degree half-angle cone at zero

incidence with free stream Mach number N = 8, edge Mach number Me = 6.79 ,

tunnel supp ly tempera ture T
0 

= 755°K , supp ly pressure p0 = 150 and 350 psia ,

unit Reynolds number based on edge conditions Re~ = 5.5 x l0~ and

8.5 x 1O~ cm
4
, surface-to-stagnation temperature ratio (T

~
/T0) = 0.75.

For ear. Reynolds number Reex ~~~~~~~ on edge conditions) Fig. 1 displays

the spectra recorded at (y/~) intervals of 0.08; those measured nearest

the wal l , i.e. (y/ 6) 0. 12, are plotted on the far side of the diagram ,

10
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Fig. 1 Three-dimensional view of the spectra of hot wire signals recorded
in the transitional boundary layer over a pointed slender cone at
Mach number 7. From Reference 15.
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while those outside the boundary layer are presented neares t the reader,,*

As Demetriades points out: “a (dominant) fundamental oscillation (laminar

wave) appears in the spectra around Reex = 1.5 ~ io6 and becomes clearly

and strongly formed by 2.5 x io6. At Reex = 2.7 x io6 the second harmonic

** 6appears , and both peaks continue growing until about Reex 4 x 10 • At

that point spectral dispersion begins , with a decrease of the oscillat ion

intensity and the appearance of turbulence. The first harmonic is barely

visible at Reex = 5.2 x 106, and f inally the spectrum appears fully random

at 5.5 x io6 u , if the peak amplitudes A(f )  of the laminar waves seen in

Fig. 1. are ratioed to the free stream disturbance input (i.e. the spectral

density to the first power) A (f) at the same frequency f, the response of

the boundary layer, at frequency f , is obtained as a function of Reex.

Such response for the TBLC experiment (spectra of Fig. 1) is exhibited in

Fig. 2 together with the response extracted from the BLTB experiment

(Ref. 16), where spectra of the hot wire signal were determined in the same

wind tunnel (AEDCIB ) under closely similar conditions , i.e. boundary layer

over a sharp-tipped 4-degree half-angle cone at zero incidence, free stream

Mach number N = 8, edge Mach number H = 7 , supply temperature T = 728°K,

supply pressure p0 = 106 and 160 psia, unit Reynolds number Re~ = 1.66 x IO~

and 2.5 x ~~~ cm 4, surface-to-stagnation temperature ratio (T
~/T) 0.41.

and 0.80. Since the free stream disturbance spectra remained quite .similar

* The spectra at RCex � 2 .7 x 106 pertain to the experiments at p = 150
psia , while those at larger Reex pertain to p0 350 psia .

** Deinetriates indicates Reex — 3.5 X 106 for thL event; however, the
data of Fig. 1 as well as those in Pig. 9 of Ref .  15 suggest the
presence of a distinct second harmonic already at Reex 2 .7 X i06.
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in the experiments (see Ref. 16, Fig. 26), and the dimensionless frequency

of the laminar waves varied smoothly with respect to Reex, p0 and the

upper neutral branch (Fig. 3), there is little chance that the three sets

of data in Fig. 2 may be rationalized in terms of a linear forced response/

stability viewpoint. Instead, the substantive difference between the

responses near the critical Reynolds number, (Reex)
¾ 1100, for p

0 
= 106

and 150 psi, as well as the similarity between the response trends at

p
0 

= 106 psi; 1100 � (Reex)~ � 1500,and at p = 350 psia, 1600 � (Reex)~ �

2000, are strongly suggestive of non-linear processes. The non-linear

view point is supported by the manifestation of the second harmonic for-

p0 
= 350 psia and 1600 � (Re )~ � 2000 (see above) . However , consideration

of this event adds a new puzzling facet to the problem in that the measured

amplification rates of harmonics associated with the laminar waves as well

as with other amplifying frequencies are smaller than those of the funda-

mentals (Fig. 4) and, thus, directly contradict the predictions of

classical weakly n.~ ..~ .tlear stability theory (e.g. Ref. 25).

Whereas the ma,~.Luium amplitudes of laminar waves displayed in Fig. 2

were extracted from measurements at (y/6) 0.73 and (y/6) 0.65 in the

BLTB and TBLC experiments, respectively, the similar trends of the

boundary layer responses observed for 100 � (Re
~~
)
~ 

� 1500 in the former

case and 1600 � (Re )~ � 2000 in the latter case seem more significant

than the absolute levels of those responses. In that vein one may

tentatively reconcile the different Re associated with similar responseex
trends in the two experiments by pos tulating tha t distinct non-linear

effects are largely confined to a limited region whose lateral extent

about the critical layer (y/8) ~ .85 increases with Reex so as to
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encompass (y/6) .73 at Ret > 1100 and (y/6) .65 at Ret > 1600.

Al though broadly consistent with the spectra shown in Fig. 1 for

2 .12 x 106 � Reex � 3.81 x 106, this conjectured behavior departs so

markedly from classica l weakly non-linear theory as to warrant further

scrutiny in the light of 1) the available experiments and 2) the formu-

lation of an attendant theoretical model which also accounts for the

apparently anomalous growth rates of harmonics noted above. Since the

da ta repor ted by Demetriades per tain to a single position (y/
~

) across

the boundary layer , this scrutiny, pursued in the remainder of this

section and through the following section of the present report, must,

however, fall back on the low speed transition data of Klebanoff et al. 
S

(Ref. 26).

The low-speed experiments of Ref. 26 forcibly demonstrate that

Tollmien-Schlichting waves evolve into turbu lence through a definite and

reproducible sequence of events , which comprise several stages, viz .: a

primary state governed by the two-dimensional linear stability theory , a

second stage of finite amp litude disturbances where strong three—

dimensiona l effects are observed , and , finally, a third stage involving

the birth of turbulent spots. Of specific interest here are the quali-

tative features of the non-linear three-dimensional wave motion, which

controls the flow behavior in the second stage and , in the process ,

develops the conditions prerequisite to the instability for the third

stage breakd own into turbulence. Theae features have generally been

examined in the context of , and deemed consistent with , Benney’s model

(Ref. 25) for the weakly non-linear superposition of a two-dimensional

Tollmien-Schlichting wave and a phase-locked three-dimensional wave
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having a periodic spanwise variation in wave amplitude. In view of the

unresolved questions posed by Demetriades ’ measurements a close corn-

para tive reexamina tion of the low-speed theory and experiments is in

order to ascertain whether any discrepancies exist which may be resolved

by a modified theoretica l view point accomodating the available evidence

about non-linear flow processes at high as well as low Mach numbers.

In Benney’s model a purely two-dimensional temporally growing

oscillation ~ [U1(y) , V1 (y) ] exp ria(x-ct)) is compounded with a

temporally growing standing wave in the spanwise direction,

X~u1(y) cos Bz, 
v
1 (y) cos Bz, 

w
1
(y) sin Bz] exp [ia(x—ct)], to yield a

mean and an oscilla tory secondary flows. For cases involving either a

fluid in the presence of a solid boundary or a fluid extending to in-

finity, the mean secondary flow is characterized by velocity components

‘2’ 2 A  ~
. —l

v~ 
/ (y, z ,t) = [X va (y) cos 25z + ),~~ v~ (y) cos 3z ] [exp (2ac~ t)-1] C2

~
c
i]

• (1-a)

(y, z ,t) = ~~ We (y) sin 28z + 
~~~ ~~ 

(y) sin $z ) Cexp (2
~cit) _l] [2ac~)

4

(1-b)

and the oscillatory flow by velocity fluctuations

V~~
2

~ (x,y,z,t) = Cx2 
V

e 
(y) cos 23z + ~ ~ ;f (y) cos B z +

~2 ;
g 

(
~) + ~2 

~h 
(iv)) exp t2i~ (x-ct)) (2—a)

-.5

k . 
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w~
2

~ ~x,y, z , t) = [)~
2 
We (y) sin 2$z + ). ~t W~ (y) sin 3z + - 

A

‘.
2 
‘g 

(y) + W~ (y)] exp [2i~ (x-ct)) (2—b)

-which are bound with the fundamental , having the same phase velocity but

half the wave length.

The coherence of fundamental and “secondary” oscillations is well re-

produced in the experimental studies of controlled amplifying three-

dimensional disturbances with spanwise amplitude modulation (Fig. 5,

Ref. 26). Al though the behavior charac teristic of the finite amplitude

region , i. e. a very rapid growth of rms fluctuations at a peak and an

initially slow growth at a valley com pared to linear theory, arises

suddenly and at surprisingly low disturbance levels (e.g. (u ’/U 1)~~ io
2

in Fig. 6), the wave phase angle in the downstream direction shows no

significant departure of wave velocity from the linear value and

measured distributions of phase across the boundary layer (rela t ive to

that observed at the outer edge) show no substantial change, until just

before breakdown occurs at a peak. However, several discrepancies

between model and observations become apparent when the evolution of the

non-linear flow is examined in detail. Specifically, measured distribu-

tions of r .m.s. u’-fluctuations (associated with the fundamental as well

as the secondary oscillations) and spanwise V -component of mean velocity

(associated only with the mean secondary flow) indicate different apparent

growth rateg at different locations (y/6) across the boundary layer

(Figs. 7,8). Also the evolving non-linear effects appear to influence a

region of increasing dimensionless transversal extent (y16) (Fig. 7).
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The width of this region exhibits a rapid initial increase between stations

A and B, where it encompases (y/ô) < . 7;  later it remains largely unchanged,

while the position within it for maximum percent spanwise variation of

u’-fluctuation intensity moves out from (y/8) ~ .2 at station B to (y/6) ~ .4

at station D (Fig. 7). The percent spanwise variation in fluctuation in-

tensity at fixed (y/6) appears to follow the same behavior, i.e. it increases

rapidly between stations A and B, but then settles to a reasonably constant

level (Fig. 5), even though the fluctuation intensities continue to in-

crease (Fig. 7). By contrast, the (y/6) position for maximum percent

spanvise variation of fluctuation intensity changes only downstream of

station B, in rough synchronism with the shift of the critical layer due to

“secondary” distortions in mean streamwise velocity profiles (Fig. 9) and

attendant increments in the phase velocity and wavelength of the basic

disturbance. The pronounced magnitude of these “secondary” shifts casts

doubt on the convergence of the series expansion underlying Benney ’s model

and , in fact, measured spanwise distributions of mean and fluctuating

components of velocity (Fig. 10) show that quantities considered of second

order in the model (e.g. the mean spanwise velocity V midway between a

peak and a valley and the spanwise modulation of mean streamnwise velocity

U) ach ieve magnitude comparable to tha t of quantities considered of first

order (e.g. the rms w ’ and u ’-fluctuations midway between a peak and a

valley). Thus, the theoretical model appears inadequate on several Counts.

To these one must add the criticisms that: a) the assumption of equal phase

velo~~ty for the fundamental two-dimensional and three-dimensional waves

cannot be satisfied by the well established linear stability eigensolutions

for Blasius and Falkner-Skan profiles ; b) if that assumption is relaxed,
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I
the theoretical predictions exhibits a periodic reversal in the sense of

rotation of the streamwise vortices, which represent the main fea ture of

the secondary motion (Ref. 27) , while the measurements show no signi-

ficant phase shif t.

The strongest clue as to a model formulation compatible with the ex-

perimental evidence resides in the observed (y/6) extent of the region

characterized by large non-linear three-dimensional motions and effects.

As noted above, this region appears to grow about the critical layer, in

rough synchronism with the growth in the spanwise variation of u’-fluctua-

tion intensity; meanwhile the (y/6) position for maximum percent spanwise

variation in fluctuation intensity within the region approximately tracks

the shifting position of the critical layer. Thus , the non-linear wave

behavior appears to be controlled by non-linear critical layer effects,

analogous to those studied by Benney and Bergeron and Haberman in

connection with neutral waves (Refs. 28, 29). Arguments providing con-

ceptual support for this view may readily be evolved as in the following.

The weakly non-linear stability approach underlying the model of

Ref. 25 is predicated on the tacit assumption tha t the class of attendant

asymptotic solutions to the Navier-Stokes equations (i.e. Toilmien-

Schlichting waves and waves resulting from their interactions ) provide a

uniformly valid description of the fluid motions over the entire range of

wave amplitudes encountered in transitional flows (say m s  u ’-fluctuations

� 15 to 207. of the reference free stream velocity). The assumption implies

I that , for high Reynolds numbers such as those of interes t here, the

singular na ture of the linearized inviscid perturbation equation (Ray leigh

equation) in the nei ghborhood of the critical layer is removed at all wave

- 24
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amplitudes by the sole effect of vorticity diffus ion as embodied in the

linearized viscous perturbation equation (Orr-Soninerfe ld equation). This

predominant effect of viscosity independent of wave amplitude, however,

runs counter the substantive experience accumulated with singular pertur-

bation problems. As pointed out by Benney and coworkers (Refs. 28, 29),

one expects tha t, depending upon wave amp~litude, the singularity of the

linearized inviscid perturbation equation is removed by either the effect

of the small linear viscous operator or the effect of the small non-linear

operators descriptive of non-linear vorticity convection in two-dimensional

wave motions and vorticity convection as well as stretching in three-

dimensional wave motions. Whereas the viscous effect is confined to a

(boundary) region about the critica l layer having thickness independent of

wave amplitude and proportional to 2(a Re
6
u~ ) _ h I’3 (where Re6 

denotes the

Reynolds number of the mean flow, a the dimens ionless wave number of the

disturbance , and u ’ the dimensionless mean velocity gradient at the

critical layer), while the non-linear effects influence the flow in a

region about the critical layer having thickness proportional to

(where A denotes the disturbance amplitude),there is always a wave

amp litude A
c 
wherefor the boundary layer scale associated with non-linear

effectsbecomnes larger than the scale associated with the viscous effect.

For A > A the Orr-Soumierfeld description of the wave motion near the
— C

critical layer ceases to be valid , and a new class of asymptotic solutions

to the Nav-ier Stokes equations, recognizing the non-linear vorticity con—

vection and stretchihg, are required to describe the subsequent growth

and/or decay of the wave. Interestingly enough for the controlled transi-

tion experiments of Ref. 26 one has : unit Reynolds number (U
1
/V)a l04cu$

4
,

-I

- 25 
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boundary layer thickness 6 .5 cm, dimensionless wave number of the A -
fundamental disturbance a .9 , dimensionless mean (Blasius) velocity

gradient at the critical layer u~ 1.6, and, thus A 4(u~)
1
~
3
(aRe

6
)
_2h’3

.017, in reasonable agreement with the rins u ’-fluctuation

measured at the station where the onset of non—linearity is manifested

(Fig. 6). Thus, the entire second and thr id stages of transition fall

within the domain of wave growth controlled by non-linear critical layer

effects.

Fur ther progress in the analysis of the non-linear flow processes

discussed above can only be achieved upon development and validation of

a model descriptive of non-linear critical layer effects in amplifying

and equilibrating waves . The mo t ivation for such development and

validation, undertaken in Section 111 of the report, is manifold and

transcends the scientific objective of realistically modeling the ob-

served non-linear stages of transition.

Admittedly the experiments of Refs . 15, 16 and 26 tend to over-

emphasize the role of the non-linear stage within the overall transition

process because of the high external disturbance levels imposed on the

boundary layer. In many practical situations , depending on mean flow

conditions as well as on the nature/level/spectrum of external distur-

bances, a considerable length of linear disturbance growth may precede

and dominate the length occup ied by the non-linear stages of transition.

This is typically the case in low speed , low-free-stream-turbulence

experiments, where disturbances undergo very large amplification prior

to transition (Ref. 3). The linear view point of Mack would seem

adequate for these cases , although the conclusion may be tempered by the
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mixed success achieved by the linear theories in predicting transition on

low drag hydrodynamic configurations. As the flow Macb number increases, 
- A

the “equivalent” linear disturbance amplification to transition decreases

markedly (Ref. 10), and the length of the non-linear region becomes a

measurable fraction of the transition distance. More important, the ex-

pedient of letting the linear disturbance grow to some arbitrary level

acquires a distinctly ad hoc flavor. As Mack points out in the Appendix

to Ref. 10, the magnitudes of the transition Reynolds numbers observed on

flat pla tes and cones exposed to supersonic flow s cannot be reconciled in

terms of linear stability theory together with the known exact transforma-

tion between the laminar boundary layer equations /solutions in the two

cases and the approximate transformation of the attendant linearized

stability equations. Whereas the observed end—of-transition Reynolds

numbers on cones Re
~~ 

a lways exceed those on flat plates and hollow

cylinders Reef, even for experiments performed in the same wind-tunnel, the

attendant dimensional amplification rates at equal boundary layer thickness

should be in the ratio (c4c/a~f ) << 1. However, theory (i.e. the afore-

noted approximate transformation of the stability equations) as well as

experiments (Fig. 11) indicate that (a
~C/a

~f
) 1. One is then led to

conjecture that the observed RCtc > Reef result from a substantively longer

non-linear stage of transition on cones as compared to flat plates. This

view, qualitatively suppor ted by the measurements discussed above (Figs. 1

through 3), implies that the systematic correlation/extrapolation of

transition results/predictions among different vehicle configurations

depend on a case-by-case sequential analysis of the linear and non-linear

stages of the process. In accord with the evidence of Refs. 15, 16 and 26,
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transition is associated with an ins tability of the dominant equilibrated

non-linear “laminar waves”, i.e. a process whose nature and ra te can only

be ascertained upon a systematic description of the presently unknown flow

structure attendant thereto. Such instability of finite amplitude wave-

trains appears not only relevant to “natural” transition,but also to the

practically interesting problem (perhaps prevalent on RV heat shields) of

transition induced by three-dimensional roughness elements; in fact,

strikingly similar instantaneous velocity distributions at wave breakdown,

followed by hairpin loop generation,are observed in the two cases ,according

to Ref. 26. Thus , the study of non-linear critical layer effects and

attendant non-linear wave structurespromises to shed light on severa l aspects

of practical transition prediction and design problems.

a
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III. OUTLINE OF A NON-LINEA R STABILITI’ MODEL
A

The model out lined here laregly exploits the results of a systematic

investigat ion of non—linear, critical-layer-controlled, waves being carried

out under a separate AFOSR -sponsored effort .  The premise of that effort

resides in the recent experimental evidence about the presence in all tur-

bulent flows of quasi-ordered, large scale events/structures, which occur

randomly, but with statistically definable mean periods (Ref. 14). Accord-

ing to that evidence the nature, growth , equilibration and subsequent

agg lomeration and/or modu lation of the structures vary from family to family

of flows; however, for a given family (say incompressible fla t plate boundary

layers), they show little dependance on Reynolds number throughout the non-

linear transitional and fully developed turbulent regimes. In both regimes

the evolving structures appear to domina te the macroscopic aspects of the

flow, including the rate of growth/entrainment and the Reynolds stresses, as

well as the process of intermittent turbulence production by three-d tmensional

energy cascade connected with high wave-number instabilities evolved within,

and amplified by,the structures themselves. The structures also exhibit

throughout a remarkable degree of coherence such as pertains to non-linear

wave-trains possessing non-dispersive characteristics, i.e. trains whose

spectral components propagate as bound waves not obeying the linear disper-

sion relation. Such behavior can hardly represent the result of non-linear

interactions among the resonant components of a fluctuations spectrum made

up of many linear random dispersive free waves with Gaussian or near-

Gaussian statistics ; however, it is in principle consistent with the evolu-

tion of non-linear ,critical-layer-controlled ,wave-trains whose spectra are
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made up of bound-wave components.

Among the many experimentally observed structures those associated

with two-dimensional homogeneous incompressible free mixing layers are

perhaps the best documented ones in both the non-linear transitional (Ref. 30)

and the turbulent regimes (Refs . 31, 32). As those structures are also

largely two-dimensional, they constituted an obvious first target for the

theoretical investigations under the aforementioned AFOSR sponsored effort.

By fortunate coincidence the “laminar waves” observed in Refs. 15 and 16

are also two-dimensional; hence, some of the theoretical resul ts could

readily be extrapola ted to their analysis as presented below.

The motion of an incompressible free shear layer is inviscidly un-

stable, and governed by the vorticity conservation equation. For the strictly

two-dimensional problem considered here, i.e. a basic parallel flow with

velocity (U, 0, 0), vorticity (0, 0. Cl) and Reynolds number Re (based on

average mean flow velocity U and flow width L), plus a superposed pertur—

bation of small amplitude A involving velocities (u, v, 0) and vorticity

(0, 0, w), the equation is

(ii - c) ~~~+ v ~~~- - A (u~~~~+v ~~~)+ -j~~ 
V(O+Aw) (3)

in a frame of coordinates moving with the phase velocity c of the dis turbance.

Whereas the solutions of classical linear inviscid stability theory are ob-

tam ed by setting to zero the right hand side of equation (3), the approxi-

mation must fail to higher order whenever one of the neglected terms becomes

comparable to the terms retained. This occurs for (if - c ) -. 0 near the

critical point (y Y
~~
• In that neighborhood the correct vorticity balance

‘4
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must take into account the dominant terms on the right hand side of equation

(3). A uniformly valid solution to the equation must accordingly be evolved

in the context of classical matched asymptotic expansion techniques, with

the expansion parameter selected in accordance with the predominant term on

the right hand side.

In classica l stability theory the viscous term at the right hand side

of equation (3) is assumed dominant, independent of wave amplitude and, to

the lead ing order , the outer linear inviscid solution is matched with an

inner viscous solution valid in a region of extent [(a Re u~)
1”3L] about

the critical layer. However, as noted in Section II, the assumption of a

dominant viscous term is only correct for modest disturbance amplitudes A,

typically A < lO
_2 

for Re 1O3 and a~ as well as u~ about unity. For

larger amplitudes the non-linear vorticity transport Av(~w/~y) dominates

the right hand side of (3). The matched asymptotic expansion technique

then shows that, for a spatially growing wave of amplitude A , wave number

ar, 
growth rate (-a.~) and frequency ~~ , the noted non-linear term contri-

butes measurably to the vorticity balance within an (inner) region of

¾ ¾lateral extent ((A/u~) L] [(A0/u~ ) exp (—~ x)L) abou t the critical

layer. Under those conditions the flow obtained by the superposition of

a small but finite-amp litude two-dimensional wave upon a basic parallel

flow, is characterized by a stream function 
$ 
in wave fixed coordinates

having matched inner and outer expansions, respectively, of the form

~(i) (x ,y, t) = E A l+(m/2), 
~~~~~ 

exp(.. .~~~~ 

~
), c] (4a)

- m = 0 ,, l,.. S

(x ,y, t) = 51

y 
(U-c) dy + Z A (n/ 2) 

~ [y,g] (4b)
Yc n=0,l.,
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‘I  where

= (a~ x - 3t) (5a)

2u (y-y )

[t 2 
C 

+ cos

and

c = Ic~ 
-2 

~ 
(Au’)~~~ (5c)

is a growth parameter manifested in the inner equations. Typically,for A > io
2,

c < 1 so that the inner solution may be sought by asymptotic expansion in

powers of ~ 1c
. Upon use of Lighthill’s method of stretched coordinated this

expansion takes the form

1~ 
= ç + E c~ ~~ (~,C) (6a)

p—i ,2,..

~~~~ [~~n ex~(~ ~ ~
), ~~ - 

rO,l,.. ~~ ‘m~[~ ’C exp(~ -

~~~~ 

(6b)

and the functions •mp can be determined consistent with the inner equations

as veil as with the requirement tha t the attendant solution be periodic in

~~. Detailed matching in the overlap domain (y-y ) -.0 , C -.~~,then yields

~n ~~~~~~~~~ 
— 

~~~~~~~~~ ~ 
fy] cos (q f)  (6c)

* Rob inson (Ref. 33) has pursued a similar approach for marginally uns table
temporally growing waves . However , he has ob ta ined erroneous results for
the amplification rates due to improper eva luation of the vorticity in the
inner region. Also he could not find solutions for the practically in—

- j teresting case of spatially amp lifying waves due to improper choice of the
independent variables in the inner region.

‘4
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By this process the effect of non—linearity (viz, transversal transport of

perturbation vorticity near the critical layer) in forcing mean flow pertur-

bations, harmonics and subharn,.onics in the outer region becomes manifest .

Specifically one finds that:

INNER SOLUTIONS MATCH/FORCE OUTER SOLUTIONS

m p n q

0 0 2 2

1 0 j .l 0

1,2 ,4,..

etc. Thus for an amplifying two-dimensional finite amplitude wave in in-

compressible flow, non-linear critical layer effects result in the genera-

tion of bound-wave harmonics and subharmonics having growth rates 1.5 times

as large as tha t of the fundamental . These results , which nicely reproduce

the observations of Ref. 30 for the non-linear stages of transition in a

mixing layer, represent a direct extension of those set for th in Refs. 28,
a

29 for neutral non-linear waves. In fact the methods of analysis are

essentially the same , except for the use of the parameter c in lieu of the

parameter x [(a- Re
6 

u ’) (A/u ’)~~’12]~~ << e in the asymptotic expans ion of

the inner solutions. Thus , the findings of Refe . 28, 29 for neutral waves ,

as well as their extension to slowly varying non-linear waves (Ref. 34), may

read ily be transposed to the amplifying and equilibrating finite amplitude

disturbances encountered in the transi tiona l flows discussed in this repor t.

In that connection we specifically address below the finding by Demetriades

of “ ,.~~ a comp lex stability diagram with at least three unstable regions.

The lower of these regions appears to be genera ted by the first and second

.4
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mode instabilities, but no theoretical guidance exists to help identify the

contributing modes for the other regions” (see Refs. 16, 17 and Fig. 4). A

We begin by noting the results of Ref. 28 for a single oblique neutral

finite-amplitude wave propagating at an angle 0 to an incompressible parallel

flow U(y). Working in wave-oriented coordinates Benney and Bergeron show

that the strictly two-dimensional solution still describes the flow in planes

parallel to the wave vector, but the cross flow perturbation velocity

v = (U’ sin 0) (U cos 0-c)~~ cn22(y) (7a)

becomes singular at the critical layer; specifically, for y -. y

P (y-y ) U” 
-

w ~ tan 8 [ 
~ ‘~~‘c 

+ ~~ 
P1 ~~~~~~~~~~~ 

log 
~~~~~ 

+ C P1 
(
~
-
~~

)] (7b)

where

~~~~ ~~~~~~~~~~~ 

= 1 + E a
im ~~_)~c)m (i = 1,2)

and C is ~ Tnultiplying constant. This singularity is removed by introducing

an inner expansion

W — (U cos 8 - c) tan e + A w = A¾ w~0) 
+ ... (8)

which leads to a solution w~0) having harmonics as well as subharmonics in

the non-linear critical layer.

We then pass to consider the solutions of linear inviscid stability theory

for a parallel compressible flow characterized by mean velocity and tempera-

ture profiles U(y), T(y). As is well known (Ref. 35) , the v perturbation

velocity near the critical layer is described by generalized Tollinien 
-
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solutions formally identical to those encountered in incompressible flow,

but the temperature perturbation 9 acquires the singular behavior

e — (
1
) 
+ 

~~~

. 

~~~~~~~ 

~c 

log 
~
‘
~
‘c~ 

~~~~~~ (9)

formally identical to that found for the cross flow perturbation velocity w in

equation (7b). This singularity is also removed by introducing an inner ex-

pansion

= T + A9 = A¾ 7
(o) 

~ (10)

again to obtain a solution ,r1~°~ characterized by the generation of harmonics

as well as a subharmonic in the non—linear critical layer. Thus, we find tha t,

upon attaining finite amplitude and becoming controlled by critical layer

effects, an amplifying two-dimensional wave in compressible flow must exhibit

a bound-wave spectrum of temperature fluctuations composed of the fundamental

frequency as well as its harmonics, the latter growing at one half the rate of

the fundamental. This is exactly the situation displayed in Fig. 4, where:

1) the modes populating the puzzling middle unstable region can be associated

with second harmonics of those lower region disturbances which , at the

measurement station, have finite amplification rate (F < 1.4 x l0~~) and,

presumably, amplitude above the threshold for non-linear critical effects

(F > 1.1 x l0~~ ) ;  2) the amplification rates of the middle region modes are

approx imately one half those of the associated fundamental (lower region)

modes ; 3) the upper unstable region may reasonably be connected with the

third harmonics of the same lower region disturbances. The interpretation

of Detnetriades ’ results in terms of non-linear critical layer effects,

already suggested in Section II , is then forcefully suppor ted , and the role

• 36
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of such effects in transition data analysis and pred ictions is conf irmed.

The initial understanding and modeling of non-linear flow processes

presented above suggests that distinct progress toward rational and

systematic transition prediction criteria may be achieved by further co-

herent theoretical and experimental investigations of those processes. On

modeling grounds only a first step has been achieved as a consistent, funda-

mentally based , quantitative description of the mechanisms controlling the

sequential equilibration, breakdown and/or modulation of finite-amplitude,

critical-layer-controlled wave-structures remains to be accomplished. In

that connection only speculative lines of approach and interpretation can be

offered at present; some are submitted in the following section.

1-
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IV. CONCLUDING R EMARKS

On the premise that the forced response/stability viewpoint constitutes

the most satisfying and promising conceptual approach to tr3nsition analysis

and prediction , we have used it as the framework for a critical review of

data from selected low - as well as high-speed laboratory experiments where

the evolving disturbance spectrum within transitional boundary layers has

been measured by hot wire anemometry. Upon this review we have determined

that the growth of unstable disturbances becomes influenced by non-linear

effects at unsuspectedly low amplitudes , typically A lo ’2; thus, the non-

linear stages of transition, e.g. the “laminar waves”, occupy a considerable

fraction of the transition distance, especially for wind-tunnel experiments

at supersonic velocities where relatively modest disturbance amplifications (by

less than a factor 100) are measured between critical and transition Reynolds

numbers. Under these conditions linear theory becomes inadequate for accurate data

analyses and judicious extrapo ations,and realistic non-linear models must be

employed. By critical review of data vis-a-vis existing models, as well as

by order of magnitude considera tions app lied to the full flow equations, we

have argued that the observed non-linearities largely manifest non-linear

critical layer effects as opposed to weakly non-linear interactions among

random dispersive linear waves. We have stated a model descr iptive of such

critical layer effec ts in strictly two-dimensional flows and we have shown

that it qualitatively predicts the frequency/amplification characteristics

of the modes populating the upper uns table regions in the complex stability

diagram determined experimentally by Detnetriades.

‘S
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On the basis of the arguments/findings set forth above and the avail-

able experimental evidence we suggest that further coordinated analytical - -

- and experimenta l investigations of the two and three-dimensional flow

structures associated with non-linear critical layer effects may yield a

I 
quantitative understanding of their tendency to equilibrate and/or evolve

intrinsic instabilities which, in turn, may cause the birth of turbulent

spots as well as the subsequent modulated recurrence of coherent structures

in the turbulent regime. Subject to favorable quantitative stage-by-stage

comparisons between theoretical developments and controlled experimental

observa tions, such inquires should not only provide a systematic attack on

many current transition dilenuna,but also a rational basis for evolving/

extending/qualifying transition data correlations and attendant design

criteria.

a
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