AD=AO64 590 DEFENSE COMMUNICATIONS ENGINEERING CENTER RESTON VA F/76 1772
1 SENET SIMULATOR USER'S GUIDE.(U) '

SEP 78 D CASTELLO
UNCLASSIFIED DCEC~-TN=-24~=78 SBIE=-AD=-E100 164

END

DATE
FILMED

4—-79

DDC

R R T A T A T P SRS

AD-E Joo 164 " LEV
Ao/ f

/

J TN 24-78

J DEFENSE COMMUNICATIONS ENGINEERING CENTER

&
(@p)
1O TECHNICAL NOTE NO. 24-78
<
(&)
& , |
e SENET SIMULATOR USER’S GUIDE b
¢ |
= 4
12 ‘
S
4 = |
ko
e SEPTEMBER 1978
| (e :1‘
|=: '
Ir—
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
. - NA R o e i S — ' ‘

B T B T O T R Y E T ey

(/%] bcEc-TN-24-78)

. -~ NCLASSIEILD RIAQ September 1978
SECURITY CLASSIFICATION OF THIS PAGE (Wh Duo‘ loud)_

et i 47 R B gt F v SN e S il e B

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

N e

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

P

7 e
2| sEET stmuLaTor user's Guto. (7 | Technical Mote, /
b — Rt : -/“MFD‘TL«NG?G_: fzeoa‘r NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
0 D. éastel]o /
l—-“*‘: S
> Be¥ense Lommunications Engineering Center ~— | AREA & WORK UNIT NUMBERS -
Advanced Systems Concepts Branch R740
1860 Wiehle, Ave., Reston, VA 22090 N/A
11. CONTROLLING OFFICE NAME AND ADDRESS —— ‘|2 REFORT DATE
(/1) __Septmmber 178 /
(Same as 9) i
T4. MONITORING AGENCY NAME & ADORESS(if ditferent from Controlling Office) 1S. SECURITY CLASS. (of this report)
NA(1D) Y U
m ()7, AACLASSIFIED)
¥ i 5 N;Rntom.s

16. DISTRIBUTION STATEMENT (of this Report)

A. Approved for pub]ig\felease; distribution uniimited.

V= =
('4,/,\,'/&_

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

& (PHv-£209\79[© b D C

Integrated Communication Networks
Simulation Oriented Language

- , IRREIRER
18. SUPPLEMENTARY NOTES -
/"‘/ FEB 14 19719
Review relevance 5 years from submission date.
L
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) B
Slotted Envelope Network SOL -
SENET Speech Activity
Simulation Computer Program

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

4> This TN classifies the frame allocation techniques which may be used with

the circuit-switched and packet-switch integration technique called the Slotted
Envelope Network (SENET) concept. It describes a program written in a dialect

of the Simulation Oriented Language, SOL-370 Rel 1-79, which simulates a class

of the SENET allocation techniques Example runs of the simulation,statistic,

and plot programs are included. §1mp1e three state speech activity model is

/

derived in the appendix. AN W la
DD ,on's 1473 eoition oF nov"i\!: IS OBSOLETE UNCLASSIFIED S/

\../

';/¢ // e / / SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TECHNICAL NOTE NO. 24-78
SENET SIMULATOR USER'S GUIDE

SEPTEMBER 1978

Prepared by:
e D. Castello

Approved for Publication:

\ 7/
/Q/) ;zf é;’ilffie;‘taffzi_——”
W. L. CHADWELL
Chief, Systems Engineering Division

FOREWORD

The Defense Communications Engineering Center (DCEC) Technical
Notes (TN's) are published to inform interested members of the defense
community regarding technical activities of the Center, completed and in
progress. They are intended to stimulate thinking and encourage infor-
mation exchange; but they do not represent an approved position or policy
of DCEC, and should not be used as authoritative guidance for related
planning and/or further action.

Comments or technical inquiries concerning this document are welcome,
and should be directed to:

Director
Defense Communications Engineering Center
1860 Wiehle Avenue

Reston, Virginia 22090 T
one & O
0

un

e —

S i ~e oAy

LT R e v ——

UL R

BY
e
A

TEDRRY SR i PP

ACKNOWLEDGEMENTS

The author wishes to express his graditude to
Drs.Vena and Coviello for the original idea and to
Mrs. Misch for her tolerance and excellent work
during the preparation of the manuscript. Also,

I wish to thank all the reviewers for their
constructive comme ts.

EXECUIIVE SUMMARY

One of the architectures being investigated for the future Defense
Communications System ‘s an integrated (voice/data), common user,
communication system. There are several technical approaches to im-
plementing such a system. These approaches involve different mixes on
such network level issues as : éna]og or digital transmission; and circuit,
packet, or hybrid switching technology. The network level issues cannot
be satisfactorily addressed until accurate performance models are avail-
able for the individual switching subsystems of the network.

Accurate performance models for hybrid switching technology subsystems
turn out to be exceptionally difficult (perhaps impossible) to construct
on theoretical grounds alone. Therefore, simulation models are required.
This report addresses the construction and use of a simulation model for

a particular type of hybrid switch known as the SENET switch.

iii

II.

ITL.

IV.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY iiid -
INTRODUCTION 1
SENET SUBTYPES 3
SIMULATION MODEL 9
1. SENET Simulation 9
2. The SOL-370 Language 11
3. Simulator Files 16
4. Global Declarations LF
5. Process SOF 23
6. Process Voice 28
7. Process Frame 38
RUNNING THE SIMULATOR 41
REFERENCES 53

APPENDIX 54

LIST OF ILLUSTRATIONS

Figure Title
o)] 8 GLOBAL DECLARATION

2. PROCESS SOF

3. PROCESS VOICE : PREAMBLE

4. SPEECH MODEL

5. PROCESS VOICE : SIMULATOR

6. PROCESS VOICE : CONCLUSION

74 PROCESS FRAME

8. JCL FOR SIMULATOR RUN USING DISK

9. QUTPUT LISTING INITIAL RUN

10. JCL FOR SIMULATOR RUN DISK IN TAPE OUT
1. OUTPUT LISTING CONTINUATION RUN

12. JCL FOR STATISTICS PROGRAM

13. STATISTICS PROGRAM INPUT

14. STATISTICS PROGRAM QUTPUT

15. JCL FOR PLOT PROGRAM

16. PLOTTED RESULTS

| 77 JCL TRANSLATE, COMPILE, AND LINK

A-1 BRADY MODEL

A-2 SHERMAN MODEL
A-3 PRELIMINARY SPEECH MODEL
A-4 SPEECH MODEL

. o

e

A-11
A-I11
A-IV
A-V
A-VI
A-VII
A-VIII
A-IX

i -+ h gy ¥

LIST OF TABLES

Title
SUBTYPES OF SENET
SIMULATOR FILES
MEASUREMENTS OF SPEECH ACTIVITY
BRADY MODEL EXIT PARAMETERS
MARKOV TRANSITION MATRIX FOR BRADY MODEL
SHERMAN MODEL EXIT PARAMETERS
STEADY STATE PROBABILITIES FOR SHERMAN MODEL
MARKOV TRANSITION MATRIX FOR SHERMAN MODEL
STEADY STATE PROBABILITIES FOR SPEECH MODEL
MARKOV TRANSITION MATRIX FOR CONTINUOUS MODEL
SPEECH MODEL EXIT PARAMETERS

vi

I. INTRODUCTION

This note discusses possible types of the Slotted Envelope NETwork
(SENET) transmission concept and describes a simulator for a subclass
of these types. By using this simulator the performance of SENET
systems may be determined for various traffic loadings.

The Defense Communications Engineering Center (DCEC) is exploring
various architectures for the future Defense Communications System
(DCS). Among the architectures being investigated is the Slotted
Envelope NETwork (SENET) proposed by Drs. Coviello and Vena [1]. The
SENET transmission concept integrates both circuit-switched and
packet-switched traffic into a single integrated network. In the
SENET concept transmission time is first broken into equal time
intervals called frames. Within these frames circuit-switched traffic
is assigned to the first region of the frame and packet-switched
traffic to the second. The next section of this note discusses the
various ways traffic may be allocated to these regions; each of the
allocation techniques determines a SENET subtype.

The note then describes a simulator which simulates a class of
these subtypes. The class of SENET subtypes includes those which have
either a free or upper constrained region for the circuit-switched

traffic; which allocate circuit-switched traffic to a fixed slot size;
and which, when inactivity is detected within a circuit-switched
channel, compress the region. The circuit-switched traffic is

assumed to be all voice conversations. Silences in conversational

speech are detected as inactivity. A three state model simulates

conversational speech consisting of periods of talking followed by
either short or long periods of silence.

The report is divided into four main sections and an appendix.
Section II discusses the subtypes of SENET. The actual simulator
code is described in the next section, and the final section describes
the Job Control Language (JCL) cards required to run the simulator,
statistics, and plotting programs. An example is also given of the
JCL needed to translate, compile, link, and load another model.
Finally, the appendix describes the development of the speech activity
model used in the simulator.

The work reported in this Technical Mote is part of the author's

dissertation for the degree of PhD from the Air Force Institute of

Technology.

P S — Y T —

II. SENET SUBTYPES

The Slotted Envelope Network (SENET) [1] is a technique which
integrates real-time data (digitized voice, facsimile, etc) and
packet-switched data into a single digital communications network.
Basically, the system is a dynamically allocated, syndhronous, time
division multiplex. Transmission time on links is first partitioned
into equal size periods called frames.

Each frame is further divided into a start of frame and two
regions. The start of frame is a series of bits used to maintain frame
integrity. The remaining two regions contain the network traffic. The
first region contains the real-time traffic and the second region
contains packet-switched traffic. The method of allocating data
within each region varies.

Region I is subdivided into “slots" and each real-time channel
is assigned a slot. The SENET concept does not specify that these
slots be a fixed or a variable size. Nor does the SENET concept
specify that a real-time channel will occupy a single slot or many.
The assignment within region II also allows some room for interpreta-
tion.

The second region is used for packet-switched data. If there is
no data in this category, "idle" characters will be sent on the
transmission link until the next start of frame. A data packet
usually contains a length count as part of its header; therefore slots

are not needed in this region. A problem arises,however, when the

e

TABLE I. SUBTYPES OF SENET
I. BOUNDARY MOVEMENT
A. Fixed
B. Movement
1. Free
2. Constrained
a. Time

(1) Fixed
(2) Varying

b. Limits
(1) Upper
(2) Lower
(3) Both
II. REGION I ALLOCATION
A. Slot Size
1. Fixed
2. Variable
3. Incremental
B. User Activity Detection
1. None
2. Fill slots with region II data
3. Compress region I

4. Use for other region I data

e e ey

space remaining in the region is too small to contain a full packet.
Two choices are available:
e Hold packet until start of region II in next frame.
e Transmit part of the packet this frame and the remainder at the
start of the region [I in the next frame.
The second method is preferred.

In addition to the allocation strategies within the regions the
allocation of the two regions within the frame'may vary. If we assume
a "boundary” between the two regions then the method of partitioning
the frame into the two regions dictates how this boundary moves. In
general the boundary may be fixed, freely movable, or constrained.

In the fixed boundary case, a fixed portion of the frame is
allocated to region I and a fixed portion to region II. In this case
unused bits within the region I must be flagged as idle. The portion
of the frame containing these idie bits is effectively lost.

In the free boundary case, channels of the region I type are
allocated slots, as needed, up to the entire frame. When no real-time
channe]s are present, there is no region I. Therefore, an unused
portion of region I is not lost as in the fixed boundary case.

The constrained boundary falls between the fixed and free cases.
There are various types of constrained boundaries:

e Upper limit,

e Lower l{mit,

e Range limits.

- V . ok gy » S " —— A M Pl GBS B

&2 |

L B s I 2 A s e ISR o oY o T

THIS PAGE IS BEST QUALLTY PRACIAUARK:
FROM COEY FUBNLSHRD 10 DOC e —

As their names imply, the constraints may be an upper and/or lower
bound on the portion of the frame allocated to one of the regions. In
addition, these constraints may be fixed in value or allowed to vary
with time (as, for example, dependent on overall network loading).

To summarize, SENET is a time division multiplex for real time and

k packet-switched data. It handles each type of traffic in one of two
regions within its frame. Traffic within region I is assigned space
on a slot basis and within region II on a serial basis. The boundary
between the regions may be fixed or movable. If it is movable then it
1 may be either free or constrained. For the constrained boundary the
1imits may be fixed or time varying.

Another dimension of classification is the allocation within
region I. Users are allocated channels within region I for as long as
the channel is needed. When the user leaves the system, its alloca-

: tion is placed in a free status. Channels are allocated physical

space in region I on a fixed, variable, or incremental basis. In fixed
space allocation, slots within the region I are of a predetermined
size. Not ali slots need be exactly the same size. When a user
requests a channel, the region I free slots are scanned until a slot

of the required size is found. The variable slot size is the opposite
extreme. Slot sizes are not predetermined; rather, they are dynamic-
ally determined based on the user requirements. This method becomes

unwieldy in practice, especially for users requesting channels with

bbb o ANk 133 s bl 2L 44 T 2l G B = i

S TR e

rates having fractional bits per frame. The incremental slot size is
a compromise between the extremes. Slots may be of any multiple of a
given minimum size.

Another factor in the allocation techniques for region I is
activity detection. Some users need a guaranteed time slot, but may
not need it all the time. This is the case for voice'circuits with
silence detection and for certain command and control circuits which
transmit a short "Are you alive?" query once every few seconds.
Assuming that lack of activity is detected, the slot may be assigned
for other purposes during periods of "silence". The first alternative
is to "stuff" the slot with bits which normally would be transmitted
during the following region II. (This has been loosely called Time
Assignment Digital Interpolation, TADI, when referring to digital
voice). Another alternative is to compress the region I portion of the
frame when there is silence, and correspondingly expand region II. A
third alternative is to overbook the region [, as Time Assignment
Speech Interpolation (TASI) is used on submarine cables.

The allocation methods for region I traffic also determine sub-
classes of the SENET concept. Therefore, the method of assigning
slots to channels in the region I portion of the SENET frame may be
based on a fixed, varying, or incremental slot size, and the activity
on the channels may or may not be detected. If activity detection is
used, the detected unused capacity may be used for data, compressed

from the region, or used by other region I channels.

S Developing one simulation model for all these types of SENET is
beyond the scope of this effort. The basic simulation model 1is

described in the next section.

111. SIMULATION MODEL

The SENET simulation program is detailed in this section. In

order to help the readef understand the model, a brief functional

description of the simulator is given. The Simulation Oriented

Language (SOL-370) used to code the model is then described. The next -

part of

the discussion describes the values input to the simulator and

the files used. Following this, the actual simulation code is described.

1. SENET SIMULATION

The SENET concept integrates circuit-switched and packet-switched

traffic

onto a single transmission 1ink. The simulator models a

single 1ink. The traffic which Toads the 1ink has the following

characteristics:

A1l circuit-switched traffic is digitized voice.

Voice activity may be detected.

Voice calls have a Poisson arrival with an interarrival
mean time of VIN ms (milliseconds).

Voice calls have an exponential hold time of VHOLD seconds.
Packet-switched messages have a Poisson arrival with an
interarrival mean time of DIN ms.

Packet-switched messages- have an exponential length with

mean DLEN bits.

The simulator attempts to be a good representation of the SENET

1ink allocation, but many overhead control functions that would exist

-

e T SRR R

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COEY FUBNLSHED 20 DDC

in an actual switch are ignored. No overhead bits for the start
of frame, call slot reservation, or packet headers are included in
the simulated SENET frame. Calls entering the system have no setup or
teardown times. The number of bits in each message is added to the
queue, but no attempt is made to identify individual messages or
packets. All bits transmitted in the packet-switched data region of
the frame are removed from the data queue during the next frame.

The simulator does try to emulate realistically data arrival
and frame allocation. Voice calls and messages arrive randomly. If
there is room for its allocation, the voice call is immediately added
to the number of calls in progress, NVOICE; its ending time, TEND, i
determined; and its voice activity is sensed. As soon as a message
arrives its length in bits is determined and added to the data queue,
QUEUE.

The simulator assumes the frame has a time period of TFRAME ms

and a size of MSFRAME bits. The ¢circuit-switched region has an upper
constraint of MVFRAME bits which must be large enough to allocate up
to MNVOICE calls with a fixed slot size of YSLOT bits each. If a call
arrives that would cause the number of "in-progress" calls, NOVICE, to
pe more than MNVOICE calls, the arriving call is lost and the lost

calls counter, LVOICE, is incremented.

The frame is allocated by the simulator in the same time sequence

O I it s B e RS

as in the SENET concept. The time of the next start of frame,
NEXT_SOF, starts the frame allocation. The speech activity during the

previous frame of each in-progress call is determined. The allocation

10

i
]
%
F
oo

| !
E"—

|

for the call in the circuit-switched region, VFRAME, of the SENET

frame is changed if needed Any calls that ended during the previous
frame are removed from the number of calls in progress, NVOICE, and
any present allocation in the circuit-switched region, VFRAME, is
removed.

Data bits transmitted during the previous frame, NDATA, are
removed from the data queue, QUEUE. Then the number of bits which may
be transmitted this frame is calculated and added to the region I
allocation, VFRAME, to form the total SEMET frame allocation, SFRAME.

The above process repeats until the simulation time, TIME,
exceeds the simulation time, SIMT, specified by the user.

2. THE SOL-370 LANGUAGE

The SENET simulation model is written in SOL-370 (release 1-79).
This simulation language was chosen because of its simplicity and
and availability. This language is an extension of the language
described by Guffee and Ulfers [2]. -

SOL was originally developed by D. E. Knuth and J. L.McNeley [3]
and initially implemented on a Burroughs B-5500. Because the original
implementation of SOL was written in ALGOL, which is not supported on
the IBM 370, DCA implemented a dialect written in PL/I. To provide
the additional capabilities needed for this model, I expanded the
language.

Within SOL the basic entity which "flows" in the simulation is the
transaction. For example, each voice call is represented in the

simulation by a separate transaction. The way a transaction flows in

11

L e K e P S et £ i S0 St SV

!HISPIE!ISBBBTQUILITYPR&CTHﬂUﬂQ
IROICOPYFURBEHﬂI)TODDC LI

the model is controlled by a “process." In the SENET model three
processes are defined: a control process, a voice call or region I
process: and the frame process, which includes the region II model.
With this brief introduction let's look at the actual elements of the
SOL-370 language used in the simulation.

Communication between transactions in the SOL-370 language occurs
through globals. The types of SOL globals used by the simulation are
INTEGER, REAL, and TABLE. INTEGER globals are used to store variables
which assume only whole numeric values and which must be restored for
the simulation run to continue after a break in execution. REAL
variables are analogous to INTEGER globals in the restart capability,
except REAL globals may contain a fractional part of a numerical
value. These types of globals are used completely at the user's
discretion.

Variables may also be declared within a process. These are common
to a transaction but may not be referenced by any other transaction.
wWhen the simulation is restarted, these variables are restored just as
are global variables.

In addition to SOL global and local variables, the simulation uses
TABLE's. SOL tables are used to write integer values on the log file.
They do not store a value. This historical file may then be analyzed
and the maximum value of the table, the time average, and the variance
may be calculated by a statistics program. Also, two plotting pro-

grams are available which use the information in the table declaration

12

statement and the log file to produce graphs of time versus table
value. The value tabulated in a table is recorded by the SOL TABULATE
statement.

The SOL language also has control statements that are used by the
simulation and include: WAIT, CANCEL, NEW TRANSACT ION TO, STOP, AND
BREAKOUT. Each of these will be discussed briefly. '

At the beginning of the simulation, one transaction starts at the
first statement of each process. Additional transactions are stated
when a NEW TRANSACTION TO <label> is encountered. The symbol, <label>,
is a statement label somewhere within the process. The new trans-
action will start at the statement label while the present transaction
continues with the next statement. All existing values of local
variables in the original transaction are copied to the new trans-
action., These provide initial values for the local variables attached
to the new transaction. A transaction continues until a transaction
control statement is executed.

Transactions continue to execute each statement sequentially
until the transaction encounters a CANCEL statement, the end of the
process, or a WAIT statement. If a transaction encounters a CANCEL

statement or the end of the process, the transaction dies and all
storage used by its local variables is returned to the system. In
many cases a transaction must be initiated by some event, for example,

the start of frame or the next data message arrival. For this purpose

13

T R EE————————————

e e

UALITY PRACTICABLE

THIS PAGE IS BESTQ
FROM COPY

)TODDC
the WAIT statement is used. The WAIT statement contains an expression
which indicates the number of time units the transaction should
"sleep" before being "reawakened”.

The final two control statements, STOP and BREAKOUT, affect the
total simulation. The BREAKOUT saves all variables needed to restart
the entire simulation, and the STOP statement terminates the entire
simulation. A more general form of the BREAKOUT statement is used in
the SENET simulation and is one of the extentions to the language.
This is the BREAKQUT TO <label> statement. When the statement is
encountered by a transaction, all simulation variables are output; in
addition, the label is output as the point where the present trans-
action will continue execution when the simulation is restarted.

After the BREAKOUT statement is executed, the present transaction
continues sequentially. The breakout label only applies to the
restarted simulation and not to the present execution.

In addition to special statements, SOL has system variables and
functions. The predefined system variables used in the simulation are
TIME and PRIORITY. The TIME variable is the value of the simulated
clock. It is an integer, and for the SENET simulation it indicates the
number of simulated milliseconds which have elapsed since the start of
the simulation. Zero time always refers to the start of the initial
simulation. After a restart, TIME has the same value as when the
BREAKOUT statement was executed. Because the simulation is in fact a
sequential process and transactions are not truly run in parallel, it

is sometime necessary to ensure that, if two or more transactions are

14

7Y PRACTICABLE
ZROM COFY FURNISHED T0DDC ——

THIS PAGE IS BEST QUALT

scheduled to wake up the same time, one will always he giver prece-
dence over the others. For example, the regfon I size must be calcu-
lated before region II. 7o ensure that certai. transactions are
executed first, they may bDe assigned precedence by giving the system
variable PRIORITY a value between 0 and 31. When new transactions
are generated, they inherit the priority of the source transaction.
When a transaction is being executed, it may change its priority at
any time. A transaction with smaller priority value will he zaxecuted
before one with a higher value. In addition tc system variables, SOL
also has random sampie generating functions.

The functions used by the simulator are the EXPONENTIAL(-)
and PR(+) function. The EXPONENTIAL function returns a real valued
sample from an exponential distribution whose mean is given by the
argument. The PR function returns a logical true value if a sample
from a uniform density on the unit interval is less than or equal to
its argument.

Because SOL-370 is translated into PL/I, any valid PL/I statement
is a valid SOL statment. PL/I statements may be intermixed with
SOL-370 statements. Blocks of PL/I statements may be contained
between special SOL-370 statements: PLIBEGIN and PLIEND. These
statements have no effect on the simulation except to allow the con-
tained statements to be skipped by the translator. This is sometimes

an advantage for comment statements which SOL-370 would otherwise

THIS PAGE IS BEST QUALITY PRACTICABLE
FBOM COPY FURMLSHED TODDC ___—

reformat, for large blocks of PL/I statements which take CPU time

for the translator scan, and for very complex PL/I statements which
exceed the complexity of the parser in the SOL-370 translator. One
word of caution: only complete blocks or DO-groups should be placed
between the PLIBEGIN and PLIEND statements or the translater will not
properly match blocks and groups in the overall model.

Variables may be also declared using PL/I declare statements;
such variables are global to the entire simulation. If a variable is
declared by a PL/I statement within a process, it is global to all
transactions executing within the process. SOL declared variables are
saved when a breakout is executed and restored, and the simulation is
restarted; PL/I declared variables are not so saved. SOL local
variables are local to each transaction; PL/I local variables are
local to the process. Therefore, PL/I variables declared within the
process are common to all transactions in the process, not just
one.

3. SIMULATOR FILES

Nine files are used to run the simulator (see Table II). These
files provide for input and output of a user's variables, restart
files, and statistics files. Not all of these files are needed for
any particular run. Normally, file CARD points to cards in the JCL
deck. Files PRINTER and PLIDUMP are set to dummy because no useful

information is written on them. Al]l data written to the break and log

16

e —

files 1s copied to new files at restart, permitting magnetic tape to
be used. After a successful restart and new breakout, the old log and
break files may be destroyed.

The JCL needed to run the simulator s discussed in a later
section of this report. In the next subsection the simulator program
{s described in detail. '

4. GLOBAL DECLARATIONS

This section discusses the global declaration portion of the
simulator (see Figure 1). The simulator uses two types of SOL globals:
tables and global variables. In addition, PL/I globals are also
used.

The first statement is a comment card which contains within the
comment text keywords used by the SOL-370 translater. The keyword
$NUMOC instructs the translater to number the translated card deck.
The SLIST and $SOURCE keywords cause the translator to produce a
printed output containing the translated output and the unmodified
source input. These listings are for the user and in no way affect the
translater's operation.

The second statement is a PL/I declare statement. Because they
are located in the global section of the program, the variables
defined within the statement pertain to entire progkam. In this case,
the two varfables are defined to be PL/I intrinsic functions. If this

statement were removed, there would be no functional change to the

17

i

4

TS e

o A RS T 1 B 14 b s A o A 6 L

i ain ot e i i e T ey

e . -

TABLE [I, SIMULATOR FILES

NAME REQ DESCRIPTION

CARD A User input values

SYSPRINT A Listings

PRINTER A SOL trace table

PL IDUMP A PL/I error dumps

$LOGF A Time history of
tabulated values

$BRKOUT A A list of all
variables required
to restart simulation
(produced by breakout X
statement)

$BRKFIL R A list of the values
needed to restart and
continue the simulation.
(copied to $BRKOUT
during restart)

SOLCLOG R The log produced by
the previous run
(copied to SLOGF
during restart)

NAMEFIL [The list of table
names for use by
statistics and
plot programs

NOTES:
A = File is always required.

o)
n

File needed for restart.

—
)

File needed for initial run.

1 /* TALKSPURT MODEL WITH SENET FRAME 8/78 $NUMOC SLIST SSOURCE*/
2 DCL (MIN, CEIL) BUILTIN;

3 INTEGER SIMT, TBREAK, TFRAME, NEXT_SOF, VSLOT, DLEN,
a LVOICE, NDATA;]

5 REAL VIN, VHOLD, DIN, TDATA;

6 TABLE (0 BY 1 TO 1000000) TQUEUE,

7 (0 BY 1 TO 1000000) TVFRAME,

8 (0 BY 1 TO 10U0U0D) TSFRAME,

9 (0 BY 1 TO 1000000) TNVOICE;

0 INTEGER MQUEUE, MSFRAME, MNVOICE, MVFRAME ;

1 INTEGER QUEUE, SFRAME, NVOICE, VFRAME ;

'vé

Figure 1. Global Declaration

3 19

; ._"'._l"*'. mbre i e S e R St s i i T e ey e os . » i R AR e TR il o i i el A Bl s

program except for a PL/I compiler informative error message. Follow-
ing this statement, the real “meat” of the global declaration portion
of the simulator begins.

The next statement on the following two lines is the first SOL
global declaration. The eight variables are defined as full word
integers. Because these variables are declared in an INTEGER state-
ment, their values will be saved whenever a breakpoint is encountered
during execution of the simulator. When the simulation is restarted,
their values will be restored before transaction execution is restarted.
Actually, some of these variables are reset by the user immediately
after restart. The variables are described in more detail below:

e SIMT is a value input from file CARD each simulation start or
restart. It is the time in seconds of the simulator clock when
the next breakpoint should be taken and the present simulation
halted.

e TBREAK is a value input from file CARD each simulation start or
restart. It is the number of seconds between snapshot print-
outs.

o TFRAME is a value input from file CARD only the first simula-
tion start. It is the time in milliseconds of the simulated
SENET frame.

o NEXT_SOF is an internally generated value indicating the time

of the next SENET start of frame marker.

20

VSLOT is a value input only during the initial run of the

simulator. It represents the number of bits in a region I
slot.

DLEN is a value input each simulator start or restart. It is
the mean number of bits in a data message.

LVOICE is an internally generated counter of the number of
voice calls blocked since time equal zero.

NDATA is also an internal variable. It indicates the number of
bits allocated for data packets in the previous SENET frame,

which will be removed from the data queue this frame.

The REAL statement defines its list of variables to be floating

single precision. In this case, all the variables are read-in each

time the simulation is initialized or restarted except the last one.

The variables are used for the following:

VIN is number of voice calls which arrive each second.

VHOLD is the mean hold time in seconds for a voice call.

DIN is the average number pf data messages per second.

TDATA is an internally generated variable indicating the time

of the next data message arrival.

The next statement /'ines six through nine) declares the tables

used by the simulator. Tables are global names in which a value may

be recorded. The first three tables represent bits in the system, and

the last table, the number of voice customers. The three integers in

the parenthesis are the minimum, increment, and maximum values of the

table.

The values specified do not affect the function of the table,

21

and arbitrary values are used. The only required value is for the

increment which must be nonzero. The following simulated SENET quanti-

ties are placed in tables:

e VFRAME - the number of bits in present SENET frame occupied by
active voice calls

e SFRAME - the number of bits in the SENET frame used by both
voice and data

o QUEUE - the number of data message bits queued

e NVOICE - the number of voice calls “off-hook" or “in-progress.”

Tables are used so that time histories of the values placed into ‘
the tables are generated. After the simulation is completed, an
independent program generates the statistics for these variables.
Because tables are not limited to a maximum value, additional variables
must be defined.

The next statement in the global declaration portion of the
simulator defines variables which are used as the maximum value for
the tables. These maximum values are read in during the initial run of
the simulater.

The last line in this section of code defines the integers used
to store the values which will be tabulated in the tables described
above. This completes the global declaration portion of the simulator.

The three processes are described in the following paragraphs.

e e

22

—— - 1 b ‘ w ‘fi"' B ‘t el J

it A

5. PROCESS SOF

This process controls the simulation. It sets the start of
frame time, produces snapshot listings of the table values, causes
restart variables to be saved, and performs all input to the simula-
tion. The process is placed first in the program so that the first
transaction generated by the SOL operating system will Start in this
process. This transaction will also be the first activated when the
simulation is restarted. In either case the first activities of the
process are to input the appropriate variables and to list them. The
transaction then enters a 1oop. In this loop the transaction calcu-
lates the time of the next start of frame, checks snapshot require-
ments, checks for termination time, and after termination goes to
sleep for one SENET frame period. When reactivated, the transaction
returns to the start of the loop. Because this process is always
activated first and because it checks for the end of simulation, it is
referred to as the control process.

The first statement (see Figure 2) names the process, SOF, and
specifies that only a single transaction will use the process and that
no resources are used.

Lines 15 and 16 are PL/I statements which declare that variables
N and A are local to the process. PL/I statements are used because
these variables need not be saved and restored between simulation

runs. The next statement sets the priority of the process. The

23

o

.

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COFY FUBRLSHED 10 DDC o

PROCESS SOF,T= 1,R=0;
/* CONTROL PROCESS INPUTS DATA, STOPS SIMULATION,

PRINTS INTERMEDIATE RESULTS, SETS SOF TIME */
OCL N FIXED BINARY(15) STATIC INIT(0);
OCL A FLOAT(21) BINARY STATIC INIT(0.);
PRIORITY = 1;/* DO THIS PROCESS FIRST */

READIN:
PLIBEGIN;

DCL FLOAT BUILTIN;
GET FILE (CARD) LIST(A) ;
SIMT = CEIL(1000.*A); /* CHANGE TO MS */
GET FILE (CARD) LIST(A) ;
TBREAK = CEIL(1000.* A); /* CHANGE TO MS */
GET FILE (CARD) LIST(A) SKIP;
VIN = 1000. / A; /* CHANGE TQ MS */
GET FILE (CARU} LIST(A) ;
VHOLD = 1000. * A; /* CHANGE TO MS */
GET FILE (CARD) LIST(A) SKIP;
DIN = 1000. / A; /* CHANGE TO MS */
GET FILE (CARD) LIST(DLEN) ;

Figure 2. Process SOF

24

IF TIME = O THEN
GET FILE(CARD) SKIP(1)
L IST(MQUEUE ,MS FRAME ,MVFRAME ,MNVO ICE,VSLOT ,TFRAME) ;
PUT FILE(SYSPRINT)

EDIT('SIMULATION TIME ',.001*FLOAT(SIMT), ' SEC',
'"PRINT INTERVAL ',.001*FLOAT(TBREAK),' SEC',
'VOICE ARRIVAL RATE ',1000./VIN s . PER SEC’
'DATA ARRIVAL RATE ',1000./DIN » ' PER SEC'
'VOICE HOLDING TIME ',.001*VHOLD o N BEEY,
'DATA MESSAGE LENGTH ',DLEN, ' BIIS’,
'VOICE SLOT SIZE ',VSLOT, ‘8ns’,
'FRAME TIME ',.001*FLOAT(TFRAME),' SEC',
‘MAX QUEUE SIZE ' ,MQUEUE s BITSY,
'MAX VOICE FRAME ' ,MVFRAME s BIHS',
'MAX TOTAL FRAME ' ,MSFRAME s BITS',
'MAX NUMBER OF VOICE ',MNVOICE ,' CALLS')

(SK1P,(2)(A(22),F(12,3),A(14)));
PUT FILE(SYSPRINT) SKIP EDIT(' LVOICE',' QUE',
' NVOICE',' SFRAME',' VFRAME',' TIME')
(X{13),(6)A(10));

NEXT_SOF = TIME + TFRAME;
IF N >= TBREAK THEN
DO;
PUT FILE(SYSPRINT) SKIP
EDIT(LVOICE,QUEUE ,NVOICE,SFRAME,VFRAME ,T IME-TFRAME)
(X(10),(6)F(10));
N =0;
END;
N = N + TFRAME; -
IF TIME > SIMT THEN /* END THIS RUN */

D0;
BREAKOUT TO READIN;
STOP;

END;

WAIT TFRAME;
GO TO START;

Figure 2 (contd). Process SOF

[P T —

25

e

priorities of the other two processes have higher values. Therefore,

if transaction reactivations are scheduled for identical times, the
transaction in this process will be reactivated first.

The label on the next line is used to indicate the restart point
for this transaction when the simulation is restarted. This is
explained in more detail later.

The next line is an instruction to the translator that all text
between PLIBEGIN at line 19 and PLIEND at line 52 may be skipped by
the translator and immediately copied to the translated output. This
action speeds up translation and stops the translator from reformat-
ting the text. All the statements contained between lines 19 and 52
are complete, valid PL/I statements. No SOL statements are mixed
in.

These statements between lines 19 and 52 perform all user inputs
and outputs of the simulator. Line 20 is a declaration of a PL/I
built-in function. Statements on lines 21 through 31 input the
variables, read each simulation start or restart, and convert the
values to internal units. Lines 32 through 34 input values which are
read only once at the beginning of the simulation. These are the
maximum values of the SENET frame structure. Lines 35 through 51 list
all input variables and write the heading for the snapshots.

The first set of variables are input in units of seconds or
arrivals/ second. Variables input in seconds are converted to milli-

seconds, and arrivals/second are converted to milliseconds between

26

R

P———

arrivals. The SKIP option on the GET statements causes a skip to the
next card; that is, two values are input per card. Text or card
numbers may follow the two inputs. The last input card is an exception.
The fourth input card is only input at simulator time zero. Six
integer values are input: the first four establish table maximums,
and the last two set the voice slot size in bits and the SENET frame
duration in milliseconds. No error checking is done for these vari-
ables, and the user must be careful in assigning values.

A11 values input on the fourth card must be positive integers.

. MVFRAME represents the number of bits of the SENET frame which may be

allocated for region I data. MSFRAME represents the total number of
bits in a frame. Therefore, MVFRAME may not be greater than MSFRAME
(i.e., the simulator cannot handle TASI transmission). Thus, MNVOICE,
the maximum number of voice channels, may not exceed the regioﬁ I
capacity. Therefore,
MNVOICE*VSLOT<=MVFRAME,

must be satisfied. '

After the variables are input, the transaction enters the loop in
lines 53 to 70. This loop will be executed until the logical test
at line 64 becomes true. When the logical test become true, the
breakout statement causes all variables and the transaction status to
be saved in the break file. In addition, label READIN is established
as the restart point. When the simulation is restarted, the break

file is read and simulation continues with this transaction at the

27

.
S

e

statement pointed to by label READIN. The breakout statement does not
halt the present simulation. The transaction continues execution to
line 67 where the STOP statement terminates the simulation.

The other statements are standard PL/I. The first line sets the
next start of frame time global which is used to synchronize all the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>