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ABSTRACT

The rate of carbon dissolution f rom adsorbed layers through the (110)

face of a nickel crystal has been measured for a wide range of initial

surface carbon concentrations over the temperature range from 600 to 913K.

Auger electron spectrometry was used to measure the decrease in surface car-

bon concentration with time at temperature. For graphitic monolayers at

T>873K, dis~iolution is controlled by the transport of carbon from adsorbed

layer to bulk. For dilute adlayers at T~723K, dissolution is controlled by

the bulk diffusion rate of carbon. At intermediate values of initial carbon

concentration and temperature, quantitative treatment of the dissolution

rate was not possible. 
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INTRODUCTION

There have been several recent studies of the thermodynamic and kinetic

behavior of carbon adlayers on the various, faces of nickel. The works of

Blakely et al)’2’3 are typical of t~ie thermodynamic studies. The kinetics

have been studied qualitatively by ~ickafus
4 and more recently by Schouten

et al.5 The thermodynamic studies generally ind icate the presence of multiple

adlayer phases. High concentration surface layers , in some cases having a

carbon—carbon spacing typical of C—face graphite , are stable at low temperatures

and high bulk carbon concentrations. At higher temperatures and/or low bulk

carbon concentrations , a dilute adlayer phase is in equilibrium with the bulk.

In the work of Sickafus, the disappearance of surface carbon from a

Ni(llO) surface was studied by Auger spectroscopy. The author concluded tha t

the removal mechanism involved reaction of surface carbon with residual oxygen—

continuing gases in the system and thus his results do not bear on the question

of dissolution kinetics directly . In the work of Schouten et al. dissolution of

carbon from a Ni(llO)—(2x3)—C structure was observed , also by Auger spectroscopy,

in the temperature range between 618-658K. In this case, the authors conclude

that the rate—controlling step in the dissolution process was the bulk diffusion

of carbon Into the interior of the crystal , with local equilibrium being main-

tained between the surface and the near—surface bulk.

We have measured the dissolution kinetics of carbon from both carbidic

and graphitic monolayer adsorbed phases Into the Ni(llO) surface , in the

temperature range between 600 and 920K. We find , in the case of graphitic

layers that the dissolution rate Is controlled by surface processes tha t are

slow compared to bulk diffusion .

_______________
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EXPER INENTAL

The measurements to be described were carried out in an all—metal , ion—

pumped ultrahigh vacuum surface research s5rstem described in detail elsewhere.6

Components of the system pertinent to the present study include a universal

sample positioner, which provides for specimen mounting and temperature con-

trol, a cylindrical mirror analyzer (CMA ) for measurement of sample surface

composition by Auger electron spectroscopy (AES), an auxilliary vacuum chamber

which permitted dosing of the sample surface with a molecular beam of ethylene,

and an ion gun which was used to clean the surface by argon ion bombardment

and anneal between experimental runs.

The sample was the same (110) oriented nickel single crystal used in pre-

vious studies in this system. It was a ribbon crystal , 2.5cm by 0.67 by 0.025

cm thick, with a (110) orientation on the flat surface, and was heated resist-

ively with a.c. Temperature measurement was accomplished by a W—5%Re vs.

W—26%Re thermocouple spotwelded to the sample, and calibrated by comparison

with a calibrated optical pyrometer in the temperature range from 1000—1300K .

The surface carbon layer was prepared by first cleaning the sample surface

by ion bombardment and anneal until AES showed no peaks other than those

characteristic of nickel. The sample was then exposed, at a temperature be-

tween 575 and 775°K to an ethylene molecular beam until the desired level of

the carbon AES signal was observed . Previous results6 Indicate that saturation

exposure at 775°K leads to formation of a carbon layer having the carbon—carbon

spacing typical of the C—face of graphite , namely a surface carbon concentration

of 3.35x1015 
carbon atom/cm

2
. Saturation exposure at 575°K leads to a layer

having l.lxlO’5 carbon atom/cm
2
. This layer undoubtedly represents a surface

carbide structure observed previously by others.’’8
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After t~ e carbon layer had been formed , the sample temperature was

raised to the desired annealing point. The peak—to—peak height ot the

carbon Auger peak at 273 volts was then monitored as a function of time to

determine the rate of dissolution of the layer. For the case of the

graphitic layer, measurements were made at 10°C increments between 753 and

813K. The dissolution process was too slow at lower temperatures to permit

measurements to be made in a reasonable amount of time . Measurements were

also made at lower temperatures on the carbidic layers.

RESULTS AND ANALYSIS

1. Craphitic Layers

The resulting data on surface carbon concentration , taken as being

proportional to the peak—to—peak height of the carbon Auger feature , are

plotted as a function of annealing time for the various temperatures measured

In Figures 1 and 2. The times required for dissolution are in all cases on

the order of hundreds of seconds. This immediately rules out bulk diffusion

as the rate controlling process. If one accepts the values of Diamond and

Wert 9 
for bulk diffusion of carbon In nickel , and the solubility relation

found by Natesan and Kassner)° and makes the assumption that the dissolution

reaction at the surface is not rate controlling, then one determines tha t

the rate of the dissolution process should follow the realtion

= O~~[(2xlO
21) e~~

3 
~l/2I

in which 9 and 0 are the  i n i t i a l  and ins tan taneous  value of su r f ace  carbonI
coverage (atom/cm 2 ) and t is t ime . B e h a ~’i or  f o l l o w i n g  t h i s

relation would result in a decrease in carbon coverage to below d e t e c t a b i l i t y

by AES in less than one second at the lowest temperature used ~erc.
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The dissolution process must thus be controlled by an interfacial reaction

step. At high temperatures (above 883K) the dissolution curves are fit very

well by a first—order decomposition reaction equation , i.e.

= O~ exp(—kt),

The values of k obtained from this analysis are summarized In Table 1. An

Arrhenius plot of those values leads to an activation energy for the dis—

solution process of 89 Kcal/mol. This figure appears reasonable, in that it

is greater than the heat of solution of carbon in nickel (endothermic by

10 Kcal/mol 10), but is considerably smaller than the heat of vaporization

11
of graphite (170 Kcal/mol ).

The dissolution behavior at lower temperatures is markedly different

than that at high temperatures. it can be seen from Figures 1 and 2 that

the dissolution curves taken below 883K are qualitatively different from those

at higher temperatures , being concave downward at short dissolution times.

Such a shape is not consistent with a first—order reaction mechanism. The

temperature at which the change in kinetic behavior is observed coincides

with the temperature at which the graphitic layer becomes stable on the sur-

face, as shown in Figure 4. This is a plot of the steady—state surface

carbon coverage as a function of temperature , taken during exposure of the

nickel surface to the ethylene molecular beam. This implies equilibrium

between the graphitic layer and the near—surface bulk at “873K. The much

slower removal of carbon at this temperature and below must be associated

with another reaction , either slow reaction with oxygen--containing residual

gases, as was apparently the case in the work of Sicakfus , or a gradua l desta-

bilization of the graphitic layer due to reduction in the near—surface carbon

concentration by long—range bulk diffusion of carbon. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- ~~~ . . .
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2. Carbidic Layers

We have made limited measurements of the rate of dissolution of

carbidic adlayers having initial coverages ~ 1 l.lxl0
15
atom/cm2. These

measurements were made primarily to provide a comparison with the previous

work of Schouten et al.5 The dissolution curves shown in Figure 5 are

typical of those obtained for carbide layers. The upper curve, taken for

= l.lxl0 15atom/cm
2
, shows a very low initial rate, followed by a more

rapid decrease and a leveling off at a level of 8xl0
14atom/cm2. We feel

that this represents competition between dissolution into the bulk , and

formation of the surface graphitic layer, which , as can be seen from Figure

4, is the stable surface phase at the temperature of measurement . The low

dissolution rate for this layer relative to that of the lower concentration

layer discussed below is most probably due to carbon—carbon interactions in

the layer. The curve for 01 
= 5.5xl014, a value closer to those used by

Schouten et al., follows the t~~
’2 dependence found by these authors , but at

a much slower rate. Their data may be brought into correspondence with ours

by assuming an error in temperature measurement on the part of one set of

experimenters. That is, our results at 723K coincide with their results at

“658K. No estimate is riven of the possible temperature error in the previous

work of Schouten et al)2 In the present work , as mentioned earlier , the

thermocouple was calibrated using an optical pyrometer focussed on the region

of the crystal that was exposed to the ethylene molecular beam. We estimate

that this procedure yields temperatures accurate within 20°C.

Another possible source of discrepancy is the reaction of surface carbon

with dissolved oxygen. In one set of measurements, oxygen was adsorbed on

the nickel surface, then dissolved into the bulk by heating at 900K. The dis-

solution rate of carbon adlayers having 0~ = l.lxl015atom/cm2 was measured at

425°C on this surface and on surfaces not previously exposed to oxygen . The 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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6.

dissolution rate was unmeasurably small in the latter case , but rapid (half

the carbon removed in 400 sec.) on the oxygen—treated surface.

SUMMARY

The rate of carbon dissolution into the Ni(ll0) surface is a complicated

function of temperature , initial surface carbon coverage and initial near—surface

bulk carbon and oxygen coverages. In carbon layers having an initial concen-

tration of 1.lxlO
15
atom/cm or higher, carbon—carbon interactions limit the

rate of the dissolution. In the extreme case of graphitic layers at temp-

eratures above 880K, the dissolution rate can be explained quantitatively in

terms of the energy required to remove a carbon atom from the graphitic layer.

At the lowest temperatures and carbon concentrations studied , as was the

case in the work of Schouten et al.5, bulk diffusion of carbon appears to be

rate controlling.

In the intermediate range of temperature and initial carbon concentration

the interplay of factors such as carbon—carbon interactions within the adlayer ,

the stability of various adlayer phases relative ~o bulk phases and to each

other and the effects of significant bulk concentrations of carbon or oxygen

do not permit quantitative treatment of the dissolution process.
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FIGURE CAPTIONS

1. Carbon dissolution rate curves — graphitic layers at high temperatures:

2. Carbon dissolution rate curves — graphitic layers at low temperatures :

3. Arrhenius plot of first order reaction rate constant for carbon dissolution
from graphitic monolayer.

4. Steady state surface carbon concentration vs. temperature for Ni(llO) sur-
face exposed to ethylene molecular beam. Beam i~1ux io14 molec/ cm2sec .

5. Carbon dissolution rate curves — carbidic layers.
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TABLE 1

Temperature — °K Dissolution Rate Constant — Sec 1

883 3.21 x ~~~

893 5.10 x l0~~

903 9.20 x

913 17.2 x l0~~ 
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