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ABSTR~ICT

The behavior of a pumped collection of identical three level

atoms in which both the upper pair of levels and the lower pair of levels

are coup led to resonant cavity~modes is analyzed. The cases of both

incoherent pumping and coherent pump ing are considered, and turn out to

be qualitatively different . For the case of incoherent pumping, field

oscillation can be sustained in only one of the modes , the behavior of

the system being that of the familar three—level laser , with oscillation

occurring between either the upper pair or lower pair of levels, depending

on the relaxation constants. For the case of coherent pumping, however,

oscillation can be obtained in both nodes. Furthermore, this oscilla-

tion is different from that found in a parametric oscillator in the

sense that , under certain conditions of operation , the phases of oscilla-

tion in the two cavities are independent . The potential application of such

behavior is pointed out.

t 
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I. Introduction

The purpose of the present discussion is the analysis of the effect uf

cooperative behavior in those processes of a laser in which atomic coope-

ration is usually absent, namely, in pumping and In relaxation. Although

lasers have been pumped with laser beams — in particular , in the operation

of certain dye lasers — coherent relaxation does not appear to have been

considered (in fact, “coherent relaxation” may even sound like a contra-

diction in terms). In order to concentrate only on the new aspects of

the ideas involved, we will investigate a simple and idealized model.

Consider a collection of identical three—level atoms coupled

identically to the field and to the pump. The “field”, in this case

consists of two resonant modes, the frequencies of which are, respectively,

those corresponding to the upper pair of levels and lower pair of levels,

as indicated in Fig. 1.

3 
-

~~23 cavity mode

2 Y hw Pump

~~l2 cavity~
’ 

mode 
13

l~~~~~~~ 
Jf
Fig. 1.

The fundamental difference between this system and an ordinary three—

level laser is the fact that the transition which would be an incoherent

relaxation transition in the ordinary laser can now be a cooperative

radiative transition (similar to the “lasing” transition) if such

behavior is possible. 

- . —-—~~~~.--- ~~~~~~~~~~~~ 



We will use the formalism developed previously for cooperative

atomic behavior , this formalism being suitable for both quantum mechanical

and classical interpretation1. The flamiltonlan for the collection of

atoms is given by

H = hwi4aj , (1.1)

where the 4’s and a1
1s are, for quantum mechanical interpretation,

(boson) creation and annihilation operators for atoms in the i’th level,

and for classical interpretation, complex harmonic oscillator amplitudes.

As previously1
, we use, for convenience, the “reduced” variables

A1, 4 defined by

—iw t 1~a
1
(t) A

1
(t)e ~ a~

(t) = A~(t)e ~ . (1.2)

Similarly, the creation and annihilation — or radiation—oscillator -
variables for the cavity fields viii be denoted by b~1

(t) and b1~(t)

where the pair of subscripts indicates the pair of levels to which the

cavity mode couples (the order of the subscripts having no significance);

here too, it is convenient to use the reduced variables B
ik ‘

def ined by

—iw t 
~
. 

~
. 1w t

bjk (t) = B
lk
(t)e jk 

, b
jk

(t) B
ik
e jk 

, (1.3)

where 03
1 

— . The part of the Hamiltonian describing the

interaction of the atoms with the two cavity modes is given (within the

rotating wave approximation) by

~23 — hY23(A24B23 + B~3A34) , (1.4)
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~i2 = h112 (A14B12 + 42A24) . (1.5)

The fields of the (lossy) cavity modes may be expressed by2

(12) •1- —~~12 (t — t ’)
B12 B — iy 12 [dt ’A1(t ’)A 2 (t ’)e , (l.6a)

and

2 .
~
. —

~~ ( t— t ’)
B23 B~ “ —iy23 f  dt ’A2 (t ’)A 3(t ’)a 23 

‘ (l.6b)

where ~~~~ is the cavity field in absence of the molecules, is the

1j—mode loss constant, and the coupling between field and atoms is assumed

to begin at t = 0 . The pumping may be described by a term in the

Hamiltonian

= _ih(iBA14 
— c13*A34) , (1.7)

where ~3 is a prescribed function of time. If the pumping is produced

by an electromagnetic field, then the field, in appropriate units, is

given by

-1w t iw t
~~ (t )  03 (t)e 13 

, 13(t) = ~j~*(t)e 
13 (1.8)

in other words , 43 is also a “reduced” quantity. If the pumping is

accomplished by some other method (collisions, for example) then

may be regarded as a phenomenological term that represents, approximately,

the effect of the pumping.

~ 

- . - ——-.- — --~~~~,~~~~~~~~. - —---.-.,-,--—-----~~ 
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II. Equations of Motion

Noting that tIie commutation relations for the atomic variables are

[AiaA~
] — 

~~~~~~
, with all other coimnutators of the atomic variables

vanishing, we obtain, using as the interaction Hamiltonian H~2 + H
3 

+ H~3

A
1 

= ~~*A — 1Y
1242

A
2 ,

= — 1123
B23A3 — 1~’12A1B12 , (2.1)

A3 
= — ~~A1 

— 1Y23A2B23

As will be seen later, it is useful to introduce another set of variables,

= 4A1 , ~~ = 4~1 for I 
~ 

. (2.2)

The equations of motion for these variables foll ow from those for the A
t
’s

and are given by

n
l 

— 

~~

*Sl3
~

_ 
ii1242s

12 
+ H.C.

n
2 

— 1~23B23S23 
— 1Y12S12B12 + H.C.,

fl
3 

— — — 1Y2343B~3 + H.C.
(2.3)

S
12 

= ~~S23 + iY12(n
2—n1

)B12 
— iY23B23S13

— 
~~S12 + Pr23(n3—n2)B23 + iY1242S13

S13 ~~(~3
n1
) + 1~’12B12523 

— iy
23S12B23

The n1 and S~~ variables have more direct physical meaning than the

since they refer to level populations and dipole moments. For the case of

maximum atomic cooperation, the equations for the two sets of variables are

essentially equivalent (and valid both classically and quantum mechanically).

EquatIons (2.3) are, however, more suitable for applying the formalism

to the case of incoherent pumping, for modification of the formalism to the

I

.

~

. -
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case of less than maximum cooperation , and for the introduction of

phenomenological relaxation constants (which may, in turn, affect

cooperation).

Since our interest lies in macroscopic phenomena, our first step

in proceeding from Eqs. (2.3), is the consideration of the dynamical va-

riables to be classical variables. In this format, we consider the

case of incoherent purpi.ng. The function ~3(t) is taken to be a

gaussian random process. For simplicity, we consider maximum incoherence

(“white noise”), defined by

= 0 , (~~
*(t)~~ (t )> = 2p~S(t1—t2

) , (2.4)

= ~~1*(tl)~~
*(t2)> 

= 0 , (2.5)

with the angular bracket indicating an average over members of an

ensemble associated with the statistical description of the random process.

Let us calculate the average of all terms In Eqs. (2.3) that contains the

factor l3 . One obtains, by means of Eqs. (2.1)

<‘03 43> 
= <•(13 A*

3
A
2>

= <~~
(t){A

~
(O) —

+ iy23A~(t1
)B~3(t1)] }A

2(t)

= — <Ü3 (t)~~*(ti)> A~(t1)A
2(t) ,

= — pS 12 , (2.6)

where terms of higher order than the second in either the coupling

constant , orti3 (in which a coupling constant is already included),

or both have been dropped for purposes of substitution back into the

equations of motion. Similarly, one obtains 

---- ---- - - - - - - - -  - - .  ~~~~~~~--~~~~--— ,- -
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pS~3 , (2.7)

<‘ta (n3—n~))~ — 2pS13 • (2 .8)

Using the above approximation and a random phase approximation, one

obtains, also,

<‘ta s13> p(n
3—n1
) . (2.9)

We approximate the equations of motion (2.3) by replacing all

terms in these equations that contain the factor ~3 by their averages .

The result is

= 2p(n
3-n1) 

- iy12B~2S12 + iy12B12S~2

t1
2 

= — Iy23B~3S23 + iy23B~~ S~~ — iy12B~2S~2 + IY12B~2S12

U
3 

= - 2p(n
3
-n
1
) - i123B23S~ 3 + iy23B~3S23 

(2.10)

- - pS 12 + iy12 (n2—n1
)B

12 
- i123B~3S13

= — pS23 + 1y23(n3—n2
)B
23 + iy12B~2S13

~l3 
= — 2pS13 + iy12B 12S23 

- iy23B23S12

One notes that incoherent pumping, within the approximation framework

used, has the effect of several rate processes, transferring atoms

from level 1 to 3 and vice versa at the same rate per atom, and attenuating

the dipole moments at certain rates. The result appears physically

reasonable, exhibiting the damping effect of an incoherent perturbation

on a macroscopic oscillation (on the average) .

I 
--. - -- - -

-
~~~~~~

- -~~~~~~~—-
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In the case of coherent pumping exactly on the w13 resonance,

is constant. We have , therefore, two sets of classical equations : Eqs .

(2.3) with constant for coherent pumping, and Eqs. (2.10) for

incoherent pumping.

We turn next to the case of less than maxir im cooperation. The

formalism may be generalized to this case by considering the S~~ ’s and

n1
’s to be independent variables, subject only to the relationship

< n~n~ , (2.11)

with the equality sign corresponding to maximum cooperation. ~It is

Interesting to note that the approximations used to obtain Eqs. (2.10)

for incoherent pumping have accomplished this already, in a special

manner.] One may now introduce phenomenological relaxation constants

f or both the energy and the dipole moment. Eqs. (2.3) then become

~~~~l3 
- 

l Z 2~ l2 + c. + 831n3 +

= - iy23B~ 3S23 
- iy

12
B12S~ 2 # c.c. * -

- — QS~ 3 
- iy 23B23S~ 3 + C~~C~ - ~32n

3 
- 831n3

(2.12)
S12 

= 4~S~3 
+ 1y12(n

2
-n
1

)B 12 
- iy23B~3S13 

—

~23 = + 1y23 (n
3
-n
2

)B 23 + iy 12B~2S13 - a23 S 23

~13 
= ~~ (n 3-n~ ) + 1112B12S23 

- iy23S12B23 
- ct13S13

These equations may be regarded as a generalization of the Bloch

equations (which are suitable for a collection of two—level atoms) to

a collection of thre~-leve1 atoms, the ~‘s being “longitudinal”

relaxation constants and the ci’s “transverse” relaxation constants. The

same method can be used, of course, to obtain equations for a collection

of atoms with more than three levels.
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For the case of incoherent pumping, Eqs. (2.10) already include

transverse relaxation constants. Although these have special values

determined only by the pumping strength, we will, for the sake of

simplicity, neglect other transverse relaxation processes (assuming

them to be small compared to the effect of the pumping) and insert only

longitudinal relaxation constants. Here, too, however, we will ignore

831 compared to p , so that the equations of motion for incoherent

pumping become

U
1 

= 2p(n
3—n1
) — iy

12
B~2

S
12 

-I- iy12B12
S~ 2 

+

= — iy23B~3S23 + iy23B23S~3 
— iy12B12S~2

+ iY12B~2S12 
— 821n2 + 832n3

U
3 

= — 2p(n
3—n1
) — iy

23
B
23
S~3 

+ iy23B~3S23 
— 832n3

(2.13)
S12 

= — pS12 + iy12(n2-n1)B12 
- iy

23
B~3

S
13

~23 = - pS23 
+ iy

23
(n
3-n2

)B23 ÷ iy12B~2S13

S 13 
= — 2pS13 + Iy12

B
12

S23 
- iy

23
B
23
S12

In addition to the equations of motion (2.12) or (2.13) we have the

equation that is consistent with either set, namely, the statement of

the conservation of the number of atoms,

+ a2 + a3 N , (2.14)

N being the total number of atoms under consideration. (Note the

En~ = 0 in all of the above equations.) 

~~~., - -  - —- -.
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III. Steady—State Equations

In the present analysis, our interest will be confined to the steady—

state situation only. In this situation all the (reduced) variables

become constants. The expressions for the field, Eqs. (1.6), may be inte-

grated immediately to yield

B
ik 

= B~
1’
~ — i(Y)k/~jk

)Sjk . (3.1)

If we are interested In the case where the cavity fields are due to the

atomic dipole moments only, in other words, If fields due to external

sources are absent, then B(u1~ = 0 . Setting the time derivatives In the

equations of motion equal to zero, substituting for B
ik 

from Eq. (3.1),

and using the notation

‘ I y ”~~i j  
(3.2)

the equations of motion become, for coherent pumping

+ ~~ S~ 3 + 2z 1~~~S1~~~
2 

+ 
~2l

’
~2 

= 0

2z23~S23I
2 

- 2z12 IS 12J
2 

+ ~ 32n
3 

- = 0

~~~~~ + ~~~S13 + 2z23 jS 23~
2 

+ 832n3 
= 0 , 

(3.3)

(~~ + z23S13)S~3 + z12(n2-n1)S12 - ct12S12 
= 0

— (13 + z12S13)S~2 + z23 (n3—n 2
)S 23 

— Ct23S23 
= 0 ,

~~ (n3—n1) + (z 12 
— z23

)S12S23 
— ~13S13 = 0 ,

and, for incoherent pumping 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~- 
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2p(n
3—n1

) + 2z 12 IS 12 I
2 + 821n2 

= 0

2 22z 23 S23 — 2z 12 S12 + 832n3 
— 621n2 = 0

2p (n3—n1) + 2z 23 IS 23 I
2 + 832n3 

= 0 
‘ 

(3.4)

pS12 
- z 12 (n 2—n 1)S 12 

- z23S~3S13 
= 0

pS23 
— z23(n3—n2)S23 + z12S~ 2 S13 

= 0

2pS13 
— (z 12 

— z23)S 12S23 = 0

Before seeking solutions of these equations, it is worthwhile to make

another simplification, which is not qualitatively significant and fits our

original intention of treating the transition between the upper pair of

levels and that between the lower pair of levels more or less similarly.

Since the quantity Z
11 

may be regarded as a measure of the effect  of

the cavity on the atoms — and vice versa — with respect to the ij

transition, we set

z12 = z23 
E z . (3.5)

For notatioual simplicity and physical insight, we introduce the quantity

Pj~ = 2z~1
IS
11 I

2 
= 2~11 IB 11 I

2 
(3.6)

The rate at which field energy decays in the (free) cavity per unit

energy is ~~~ , so that P1~ is the rate at which photons are absorbed

from the atoms by the cavity. (The analysis is classical, and the

photon is to be considered here merely as a unit of energy.) We can

simplify Eqs. (3.3) and (3.4) further by noting that only two of the first

three equations in each set are independent , so that one of the first three

equations, say, the second, may be dropped. On the other hand, each set of 
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equations must be supplemented by Eq. (2.14) . Taking note of all the

above comments and simplifications, we obtain the following sets of

equations:

For incoherent pumping, we have

2p(n
3
—n1

) + P12 + 821n2 = 0

2p(n
3—n1

) + + 332n3 = 0

n1
+n

2
+n

3 
= N ,

(3.7)

S12 (p — z(n
2—n1

)] = 0

S23 [p — z(n 3—n 2 ) ]  = 0

for coherent pumping, we have

03*5 + ~~S~3 
+ P12 + 821n2 = 0

+ 63 SJ•3 
+ “23 + 832n3 

= 0

n + n  + n  = 01 2 3 (3 8)
(03 + zS13)S~3 + [z(n

2
—n1
) — ct121S12 

= 0

+ zS13)S~2 
— (z(n

3
—n2
) — 

~23~~23 
= 0

(n3—n1) 
— c*13S13 = 0

Note that for incoherent pumpthg the assumption of Eq. (3.5) accounts for

the vanishing of S13
Our main interest , of course , lies in the cavity fields Bik 

— which

are determined by the dipole moments S
ik 

through Eq. (3.1) — or,

alternatively, in the cavity powers — which are determined by the

dipole moments S
ik 

through Eq. (3.6). The level populations n1 may

be regarded as auxiliary variables which are useful for determining 

~~~ --,~~~~~~~~~~ ,
--- .~~~~~ .-- .--.
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the fields. B4~th sets of equations are nonlinear, and there are more

unknowns than equations, since the S~~~’s are complex. One cannot

therefore expect unique solutions. We investigate solutions of the two

sets of equations separately, looking at the simpler set, that for

incoherent pumping, first.

IV. Steady—State Solutions. Incoherent Pumping

A trivial solution of Eqs. (3.7) exIsts for S
12 

= S23 = 0 . In

this case P12 P23 = 0 , and we have three linear inhomogeneous equations

f or n1, n2, n3 with the solution

n~ N821(2p + 832 )/ D

a2 
2Np832 /D , (4.1)

= 2NpI~21
/D

wlie re

D 2p(2~21 ~ 
+ 

~21~ 32

This is the steady state population one would obtain In the absence of cavity—

coupling for all values of p. In the present case, one can show that this

solution becomes unstable for certain va1~ e of the parameters. However ,

we will not discuss the stability of solutions in the present analysis .

We look next for a solution in which either 
~12 or S23 does not

vanish. For S23 
= 0 , Eqs . (3.7) become four linear equations for four

unknowns n1, n2 , n3, P12, wIth the solution

- -
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n1 
= (N—p/z)(2p i-

n2 
= n1 + p/z 

= [N(2p + 832) ÷ (p/z)(4p + 832 )]/ D
(4.2)

n3 
= 2p (N — p/z ) / D

P12 D 1{N[2p(832 
— 821) 

— 8218321 (2p
2
/z)(282. 4 832

)

— (p/z)821832
}

where

D 2(3p

Since all of these four q~antitiea must be positive, it is clear that a

solution exists only for certain ranges of the parameters. Thus, we

must have N > p/z and 832 821 , 
and these Inequalities must be of

sufficient magnitude so that P12 
‘ 0 For N p/z and p ‘

~~ 
832 

>

one obtains, approximately ,

p 
~~

- -

12 3p-~~~2 
- 

4 
-

Since for p 0 , the fo -tna l e-xp:essicn for P12 
is negative, there

exists a threshold value f~ c ~na p~~p~ng (given by the lower root of P12

as a quadratic in p1 ~cd als. an uçper limit (the upper root) above

which a steady E:ate solutict, dcas r,~t exIst,,

A solution for witch P23 
xatn~ .r than P12 does not vanish,

obtained by setting S12 0 , i~ g :ec~ by

n1 
[N(2p + 821., 4- (p/z,(2p — 8

2 )J/D

= [2pN — (2p/z)(2p i ~-~ )1/DhL (4 4)

n3 
= n

2 
+ p lz = [2pN ( p/ z ) ( 2 p  —

P23 (2pN(8~~ 
— 832

) — (2p2/z)(2821 + 832) — (plz) 821832 ]/D
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where

D E 6 p + 8 21

In order for a nonvanishing field to exist (in the 
~23 

cavity), we must

have 821 
> 832 , N > p/z , and these inequalities must be of sufficient

magnitude so that P23 > 0 . For N >> p/z and p “ 821 >> 
~32 ‘ one

obtains approximately

2pN821 2
6p+B~j  ~ 

N . (4.5)

The above two cases of oscillation in only one of the cavities,

whether that coupled to the upper pair of levels or that coupled to the

lower pair of levels,are essentially the cases of the usual three—level

laser. The longitudinal (Incoherent) relaxation in the non—oscillating

transition is essential for operation, of course.

We ask now: does a solution exist in which the field oscillates in

both cavities? It is easy to see from Eqs. (3.7) that such a solution does

not exist. If S12 ~ 0 and S23 ~ 0 , we must have

p = z(n
2 

— n1
) z(n

3 
— n2) (4.6)

which , since p > 0 , requires

a
3 

> a
2 

> n
1 
. (4.7)

However, from the first or second of equations (3.7) we must have

n
3 

< n1 , since the second and third terms in these equations are positive.

Thus, the simultaneous existence of an oscillating field In both cavities,

for the case of incoherent pumping, is impossible. The coupling of a

resonant cavity to the “nonlasing” transition produces no effec t in an

incoherently pumped three—level laser.

_ _ _ _ _ _  ~~~.
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Before we leave the case of incoherent pumping, it might be worthwhile

to point out that the first two of equations (3.7) have a very simple

physical interpretation. They are equations for the rates at which atoms

leave and arrive at levels 1 and 3. Consider the first equation for example.

The rate at which the Incoherent pumping changes the population of level 1 by

transferring atoms to level 3 is —2pn
1 and the rate of the reverse process

is 2pn 3 . The rate at which atoms arrive from level 2 to level 1 by relaxa-

tion is 821n2 , and P 12 
— being the number of photons absorbed by the

cavity — is the rate at which atoms arrive from level 2 to level 1 by coherent

radiation. (Note that 831 was neglected compared to p .)

V. Steady—State Solutions. Coherent Pumping

We consider now the case of coherent pumping. Equations (3.8) for

coherent pumping are more complicated rha~ Eqs. (3.7) for incoherent

pumping, since the complex variabi~s S
1~ , and not merely their absolute

values [as in the case of Eqs. (3. 7fl, enter in an essential way in the

solutions, In other words, the phase of all the oscillating quantities

(dipole moments and fields) becomes significant here. This is hardly

surprising since the coherent pumping, described by j3 , contains phase

information itself. Since (3 is the only prescribed complex quantity,

or parameter, we can, without loss of generality, take it to the real

and positive. In the present analysis we will consider Eqs . (3.8) not in

their full generality , but rather in a simplified form which , nevertheless ,

illuminates the ideas under investigation. This simplification consists in

the neglect of all (incoherent) relaxation processes. Although , in the

_ _ _ __ _ _ _  _
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case of incoherent pumping, the existence of one of the relaxation

processes is an essential requirement for the operation of a three—

level laser , it will be seen that , in the present instance, interesting

and nontrivial results are obtained in the absence of such processes.

If we drop the relaxation constant and take V.3 to be real and

positive, Eqs. (3.8) become

+ S~3) + 
~
‘12 = ~

= “12

+ n2 + n3 = N
(5.1)

(t3 + zS13)S~3 + z(n2 — n
1
)512 = 0

(43 + zS13)S~2 
— z(n

3 
— n2

)S23 = 0

= fl.3 ~

Introducing the notation

n = n
1 

=

—j e
S4k = IS 4kIe j k

-‘ (5.2)
S = 1s 23 1

0 = 0 12 + 0 2 3 ,

we can reduce Eqs. (5.1) to

—f ~ Re{ S
13
} (5.3~)

s((43 + zS13) + z(N — 3n) e 10] — 0 . (5.3b)

Equations (5.3) are the only requirements on the variables S, n , S13

and 0 , except for the restrictions (from Eqs . (2.11) ]
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s2 
< n(N — 2n) , s13 

2 
< n2 . (5.4)

It is clear that the solution for these variables is not unique, and a

number of steady—state conditions are possible for a givenQ~~, z, and N ,

some of which we proceed to examine.

A trivial solution of Eqs. (5.3) is given by

S = 0 , Re{S13} = 0 . (5.5)

From Eqs. (2.3), one sees that the power absorbed by the atoms from the

pumping field is given by

—~3 (S~3 + S13)hw3 +~3 (Sf3 + S13)hw1,
= —13 (S~3 + S13)hw13 = — 2j~ hw13 Re{S13} . (5.6)

Thus , for Re{S13
} = 0 , no power is absorbed from the pump, and 

-

naturally, the cavity fields are zero. In this case, 
~13 is a pure

imaginary quantity: in other words, although 
~l3 need not vanish,

it oscillates radians out of phase with the pumping field and no

power is absorbed (when averaged over a cycle, the averaging being

implicit in the rotating wave approximation) .

Equation (5.3a) has a very simple physical meaning Since

~i2 = P13 2zS2 , this equation states that the number of photons (at

the respective frequencies) absorbed by each of the cavities is equal to

the number of photons absorbed by the atoms from the pump (at the pumping

frequency); in other words, it is the statement of the conservation of

energy .

A mathematically simple — but physically significant — solution of

Eqs. (5.3) is given by
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a = N , S13 
= —f ~ /z , S “43 Is . (5.7)

What is most interesting about this solution is the fact that 0 is

arbitrary. Here we have a situation in which both cavities oscillate with

arbitrary phases, that is, the phases of the cavity oscillations are

Independent of the pump phase. This behavior is qualitatively different

from that of a parametric oscillator (or Raman laser) , in which the

relationship between the signal and idler phase is determined by the phase

of the pumping oscillator. One may look at this difference in behavior

as an illustration of the difference between a virtual level and a real

level , since in a parametric amplifier, as illustrated in Fig. 2,

virtual level — —
,~~ 

— — — — — —
signal

2 pump

idler

I
Fig. 2

the pump is often regarded as creating a (third) virtual level. The power

dissipated in the cavities depends of course on the strength of the pump

but one should note that inequalities (5.4) lead to

4 Nz (5.8)

the equality sign indicating maximum cooperation. For 93 greater than

that permitted by (5.8), a solution of the form given by Eqs. (5.7) cannot

exist. The maximum steady—state power that can be dissipated in each

cavity for n = 4N  18 

~~~~~-~~~~~~~~~~~~~~~~~~~--~~~~~ . -  ~~~~--~~~~~~~~~~~~~~ - - - ~~~
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P ~-zN
2 
. (5.9)max 9

In general, Eq. (5.3b) stands for the two real equations

1s131 sin013 + (N 
— 3n)ainO = 0 (5.lOa)

1S131 cos013 + (N — 3n) cosO = —~3Iz , (5.lOb )

with 1s131 < n and n 4 N • For n 
~ 4 N , there does exist a rela-

tionship between 0 and 0
13 , 

which becomes more critical as IN — 3n1

increases from zero. It is of interest to look at the solution that

corresponds to the maximum power that may be absorbed by the atoms under

steady—state conditions. This will obviously be the solution corresponding

to maximum cooperation and maximum S . From Eq. (5.4) , we see that such

maximization corresponds to a = N , for which

1 2P = — z N  . (5.11)max 4

Since 1s13 1 = n , Eq. (5.lOa) yields 0 = — 

~l3 so that Eq. (5.lob)

results in

4Ncoso = —1121z . (5. 12)

On the other hand, Eq. (5.3a) requires

zN = — 2~~cos0 . (5.13)

These two equations can be satisfied only for = 4 zN , and the solution

is

cosO = — 1 , or 0 = ii (5.14)

In this case, the phase relationship between the oscillations at the

various frequencies is similar to that for a parametric oscillator, and
I

the value of 
~l3 is that for the greatest absorption of power from the

pump (for a given 1s 13 1 ) 

-- j , ---~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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VI. Conclusions

The coupling of resonant cavity modes to both transitions of a

coherently pumped collection of three—level systems leads to behavior

that is different under certain conditions from both that of a laser and

a parametric oscillator . In particular, there can exist oscillations in

both modes that are independent in phase. Such behavior would open

the possibility of obtaining oscillation in an extended medium at both transition

transition frequencies without the need of phase matching , a need that

exists in the case of parametric oscillation (or a Raman laser) . The

model studied in the present discussion was simplified by dropping certain

terms in the equations of motion. Further study of a more realistic model,

that is, a study of the solution of the full equations of motion, including

the stability of the steady—state solutions, and perhaps, time dependent

behavior , is necessary for a clearer picture of the potentialities

of coherent pumping and relaxation .
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