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ABSTRACT

The behavior of a pumped collection of identical three level
atoms in which both the upper pair of levels and the lower pair of levels
are coupled to resonant cavity-modes is analyzed. The cases of both
incoherent pumping and coherent pumping are considered, and turn out to
be qualitatively different. For the case of incoherent pumping, field
oscillation can be sustained in only one of the modes, the behavior of
the system being that of the familar three-level laser, with oscillation
occurring between either the upper pair or lower pair of levels, depending
on the relaxation constants. For the case of coherent pumping, however,
oscillation can be obtained in both modes. Furthermore, this oscilla-
tion is different from that found in a parametric oscillator in the
sense that, under certain conditions of operation, the phases of oscilla-

tion in the two cavities are independent. The potential application of such

behavior is pointed out.
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I. Introduction

The purpose of the present discussion is the analysis of the effect bf
cooperative behavior in those processes of a laser in which atomic coope-~
ration is usually absent, namely, in pumping and in relaxation. Although
lasers have been pumped with laser beams - in particular, in the operation
of certain dye lasers - coherent relaxation does not appear to have been %
considered (in fact, '"coherent relaxation" may even sound like a contra-
diction in terms). In order to concentrate only on the new aspects of
the ideas involved, we will investigate a simple and idealized model.

Consider a collection of identical three-level atoms coupled
identically to the field and to the pump. The "field", in this case
consists of two resonant modes, the frequencies of which are, respectively,

those corresponding to the upper pair of levels and lower pair of levels,

as indicated in Fig. 1.

T 1 ! T
hw23 cavity mode
: * iy o EVED
hwlz cavity mode
1 JL ALA, — *Ahi
Fig. 1.

The fundamental difference between this system and an ordinary three-
level laser is the fact that the transition which would be an incoherent
relaxation transition in the ordinary laser can now be a cooperative
radiative transition (similar to the "lasing' transition) if such

behavior is possible.
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We will use the formalism developed previously for cooperative
atomic behavior, this formalism being suitable for both quantum mechanical
and classical 1nterpretation1. The Hamiltonian for the collection of

atoms is given by

where the aI's and ai's are, for quantum mechanical interpretation,

(boson) creation and annihilation operators for atoms in the i'th level,
and for classical interpretation, complex harmonic oscillator amplitudes.

As previouslyl, we use, for convenience, the "reduced" variables

.'.

Ai’ Ai » defiped by

-iw, t iw, t

a () = A (D)e oot . A;(t)e di> (1.2)

b b

Similarly, the creation and annihilation - or radiation-oscillator -

1.
variables for the cavity fields will be denoted by bij(t) and bij(t) ’

where the pair of subscripts indicates the pair of levels to which the

cavity mode couples (the order of the subscripts having no significance);
here too, it is convenient to use the reduced variables Bjk 5 B;k 4

defined by

-iw,. t im t
- jk < gl o Jk

5 k| . The part of the Hamiltonian describing the

interaction of the atoms with the two cavity modes is given (within the

where Wy = |w, -w

rotating wave approximation) by

: T
Hyy = hYy3(AAB,5 + By, 3"‘2) ’ (1.4)

23




Dl
H, + o
12 = hle(AlAzB12 + B12A2Al) . (1.5)
The fields of the (lossy) cavity modes may be expressed by2
t =Bniqglt=£")
. o(12) ey . 12
Byy S BECT ~ibpy, { dt'A (£")A,(t")e , (1.6a)
and
(23) oot o "Ea3(t-t?)
B,y = B -in{ dt'A, (')A (t")a (1.6b)
where Bgij) is the cavity field in absence of the molecules, Eij is the

ij-mode loss constant, and the coupling between field and atoms is assumed
to begin at t = 0 . The pumping may be described by a term in the

Hamiltonian

313 -ih(@AlA; - (B*A3A1l') : (1.7)
where (8 is a prescribed function of time. If the pumping is produced
by an electromagnetic field, then the field, in appropriate units, is
given by
W, .t iw, .t

~ -i
B =B we P, Bw - @rwe 3 ; (1.8)

in other words, (3 is also a "reduced" quantity. If the pumping is

13

may be regarded as a phenomenological term that represents, approximately,

accomplished by some other method (collisions, for example) then H

the effect of the pumping.




II. Equations of Motion

Noting that the commutation relations for the atomic variables are

1.
[A,,A,] = 6,., with all other commutators of the atomic variables
1% ij

1

vanishing, we obtain, using as the interaction Hamiltonian le + 853 + Hi3 -
AL s By - inzBlrzAz '
‘;*z = - 172313;31;3 - 1Y,AB), (2.1)
A3 = - B4, - 1Y,48,8,, .

As will be seen later, it is useful to introduce another set of variables,

+ +

my = AR R e (2.2)
The equations of motion for these variables follow from those for the Ai’s
and are given by

n, = (B*S,. - 1Y.,B..S.. +H.C

U B7S13 - 171,By,5;, * H.C.

I T U TR VR e

n, Y23B23%23 13%13%3 F Bebey

. 1- .1.

By = @s13 - 17,48,48,5 + H.C. ,

. 1' 1- (2'3)

S1g = @S5 + 1Y;,(mymn )By,y = 1Y,4B,55,4

. 1- 1.

Sy3 = = @Sy + 1¥,3(ngn,)B,y 5 + 1Y ,B) 58,4

Sp3 = Bagn)) + 1 ,B,,5)5 - 17,55,,8,5 .

The n, and Sij variables have more direct physical meaning than the Ai's "
since they refer to level populations and dipole moments. For the case of
maximum atomic cooperation, the equations for the two sets of variables are
essentially equivalent (and valid both classically and quantum mechanically).
Equations (2.3) are, however, more suitable for applying fhe formalism

to the case of incoherent pumping, for modification of the formalism to the
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case of less than maximum cooperation, and for the introduction of

phenomenological relaxation constants (which may, in turn, affect
cooperation). ‘
Since our interest lies in macroscopic phenomena, our first step

in proceeding from Eqs. (2.3), is the consideration of the dynamical va-

rigbles to be classical variables. In this format, we consider the
case of incoherent purping. The function Qg(t) is taken to be a
gaussian random process. For simplicity, we consider maximum incoherence

("white noise'"), defined by
LBy =0, LB*EPBty)y = 208(t;-t,) , (2.4)
{BEPB () = @B e))> = 0, (2.5)

with the angular bracket indicating an average over members of an
ensemble associated with the statistical description of the random process.
Let us calculate the average of all terms in Eqs. (2.3) that contains the

factorf} . One obtains, by means of Egqs. (2.1) ,

B 523 7 = <Barp>

t
<B ) {a30) - gd:I[@ e )aTte)

*
+ iY23A;(t1)B23(tl)]}A2(t)
t
-{dt1<@ (OB *(t) AT (A, (D),

- p812 s (2.6)

where terms of higher order than the second in either the coupling

constant P oras (in which a coupling constant is already included),

Yij
or both have been dropped for purposes of substitution back into the

equations of motion. Similarly, one obtains




' (ny=n)) = - 2pS ;. (2.8)

Using the above approximation and a random phase approximation, one

obtains, also,

<B Sl3> = P(ns'nl) . (2.9)

We approximate the equations of motion (2.3) by replacing all
terms in these equations that contain the factor GE; by their averages.

The result is

np = 2p(agmmg) - AYpHBYLS ) + i LB oST,

By == dY, 838, b 9,48, 85, — 2y, B, 81, + 47, BY.8) X

By = Zpfngg) - d B, B, & gy BULS, o
§12 = = BSyy *+ 1Y, (n)n)B), - 1Y, By, o ;

Sp3 = = PSy3 + 1¥,3(nymn))B, 5 + 1y ,BY S 5 J

S13.= = 2815 + 171815803 = 1¥,3B)sS , -

One notes that incoherent pumping, within the approximation framework

used, has the effect of several rate processes, transferring atoms

from level 1 to 3 and vice versa at the same rate per atom, and attenuating
the dipole moments at certain rates. The result appears physically
reasonable, exhibiting the damping effect of an incoherent perturbation

on a macroscopic oscillation (on the average).
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In the case of coherent pumping exactly on the w13 resonance, @
is constant. We have, therefore, two sets of classical equations: Egs.
(2.3) with iz constant for coherent pumping, and Eqs. (2.10) for
incoherent pumping.

We turn next to the case of less than maxir um cooperation. The
formalism may be generalized to this case by considering the Sij's and

i's to be independent variables, subject only to the relationship

n

2
<
| Sogng (2.11)

18y
with the equality sign corresponding to maximum cooperation. [It is
interesting to note that the approximations used to obtain Eqs. (2.10)
for incoherent pumping have accomplished this already, in a special

manner.] One may now introduce phenomenological relaxation constants

for both the energy and the dipole moment. Egqs. (2.3) then become

” * g *
n, d? 813 IY12312512 + c.c. + B3ln3 + 821n2
Sl 1kl 9 * T * . i
Ny = - 1¥y3B538,5 = 17958158y * cece # Baong - Byymy
S e 2 * L * ol _
ny == @S]y - 1Y,4B,38y5 + cc. = Byyng - Byng

' ; . (2.12)
S1p = B533 1Yy (my=n))By, = 1Yp3B) 38,5 = 4),5,,

e i * i * =
Sy3 = ~B Sy, + 17,3(n3mn,)B) 5 + 1¥;,B],515 = 0y35,,

e
[}

13 = B (ngmay) + 17,B,55,5 = 19p381,By5 = 014514

These equations may be regarded as a generalization of the Bloch
equations (which are suitable for a collection of two-level atoms) to
a collection of three-level atoms, the R's being "longitudinal®
relaxation constants and the o's 'transverse' relaxation constants. The
same method can be used, of course, to obtain equations for a collection

of atoms with more than three levels.
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For the case of incoherent pumping, Eqs. (2.10) already include
transverse relaxation constants. Although these have special values
determined cnly by the pumping strength, we will, for the sake of
simplicity, neglect other transverse relaxation processes (assuming
them to be small compared to the effect of the pumping) and insert only
longitudinal relaxation constants. Here, too, however, we will ignore
631 compared to p , so that the equations of motion for incoherent

pumping become

o A * *
5y °  Blagd) = TR BBty Bt |
= e * R * ;
n, == 1¥538;38,5 + 1¥54B,3873 — 1¥15B1551,

+ 1Y)7B1581y = Byymy * Bypng
s R _ R * * - ‘
ny == 2p(ngm)) - 1Y,4B,,S) 5 + 1Y,38545,9 = Bypny s
. ; (2.13)
S1p = = PSyp + 1Y, (nymn By, - 1Y, 4By 48,5
e =h o o *
Sy3 = = PSy3 + 1¥y5(nymn))B, 4 + 1Y15B155,4 5
S13 = = 2pS;53 + 17,,81,5,3 = 1¥53B535;5 -
In addition to the equations of motion (2.12) or (2.13) we have the
equation that is consistent with either set, namely, the statement of

the conservation of the number of atoms,

ny + n, + n, = N, (2.14)

t N being the total number of atoms under consideration. (Note the
l

Zﬁi =0 in all of the above equations.)
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ITI. Steady-State Equations

In the present analysis, our interest will be confined to the steady-
state situation only. In this situation all the (reduced) variables
become constants. The expressions for the field, Eqs. (1.6), may be inte-

grated immediately to yield

& o R
o

ik - i(ij/E,’jk)Sjk . (3.1)

If we are interested in the case where the cavity fields are due to the

atomic dipole moments only, in other words, if fields due to external

(k) _

sources are absent, then Bo

0 . Setting the time derivatives in the

equations of motion equal to zero, substituting for B from Eq. (3.1),

ik

and using the notation
by iy B (3.2)
I = Ryt
the equations of motion become, for coherent pumping
* * : 12 <
B7S13 + BSyy * 221515),|" + By, = 0

2 2 5
223185317 = 22)81,[" + Bypny - Bym, = 0,

By, + @'s); + 22505,50" + Byny = 0, .
(B + 2538,3)8;5 + 2),(n)n )8, = 0,8, = 0,

- (B + 21551987, +23(0570))5,3 - 0,38,3 = 0,

Bnyny) + (215 = 2)3)81,5,3 = 958,53 =0,

and, for incoherent pumping
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2
2p(agn)) + 22.,[8,,[" + Byny = 0,

2 2 b
22,4]8,51% = 221,18, + Byyny - Bypn, = 0,
2
2p(n,-n,) + 2z..|S..|“+B,n, =0,
370 23!523 32"3 w
* —
PSyy = 23y (M) 0y)81, = 2555,35.3= 0,
* —
PSy3 = 253(ngmm,)8, 4 + 2,,5,,5,3 =0,

2pS13 = (275 = 2)3)5.,5,3 = 0 .

Before seeking solutions of these equations, it is worthwhile to make
another simplification, which is not qualitatively significant and fits our
original intention of treating the transition between the upper pair of
levels and that between the lower pair of levels more or less similarly.

Since the quantity =z may be regarded as a measure of the effect of

ij
the cavity on the atoms - and vice versa - with respect to the 1ij

transition, we set
zZ (3.5)
For notational simplicity and physical insight, we introduce the quantity

P =

2
1j 221j|S1j |

2 =22 I8 (3.6)

ij

The rate at which field energy decays in the (free) cavity per unit

ij

energy is 251 s so that P is the rate at which photons are absorbed

] ij
from the atoms by the cavity. (The analysis is classical, and the

photon is to be considered here merely as a unit of energy.) We can
simplify Eqs. (3.3) and (3.4) further by noting that only two of the first

three equations in each set are independent, so that one of the first three

equations, say, the second, may be dropped. On the other hand, each set of
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equations must be supplemented by Eq. (2.14). Taking note of all the
above comments and simplifications, we obtain the following sets of
equations:

For incoherent pumping, we have

2p(n3—n1) + P12 + 821n2 =0,

2p(n3-n1) + P23 + 832n3 =0,

n, +n, +n, = N,
oAl e (3.7)
812[p - z(nz-nl)] =0,
Sy3lp - 2(n3-n2)] =0 ;
for coherent pumping, we have
* * X
B 814+ @313 + Py, + Byyn, = 0
* * =
@Sla+le3+Pz3+B32n3'° ,
n, +n, +n, =0
R (3.8)

. % =
(@ + le3)523 + [z(nz-nl) = 0,18, =0

* =
(E3 + 2813)812 - [z(n3-n2) - 0L23]SZ3 =0
e |
Note that for incoherent pumping the assumption of Eq. (3.5) accounts for

the vanishing of 813 .

Our main interest, of course, lies in the cavity fields BJk - which

are determined by the dipocle moments Sjk through Eq. (3.1) - or,
alternatively, in the cavity powers ij - which are determined by the
dipole moments Sjk through Eq. (3.6). The level populations n, may

be regarded as auxiliary variables which are useful for determining




- 14

the fields. Both sets of equations are nonlinear, and there are more
unknowns than equations, since the Sij's are complex. One cannot
therefore expect unique solutions. We investigate solutions of the two
sets of equations separately, looking at the simpler set, that for

incoherent pumping, first.

IV. Steady-State Solutions. Incoherent Pumping

A trivial solution of Eqs. (3.7) exists for S12 = 823 =0. In

this case P12 = P23 = 0 , and we have three linear inhomogeneous equations

for n, Ny, Ny with the solution

n = NBZI(ZP + 832)/D 4
n, = 2NpB32/D . (4.1)
n, = 2Np821/D -
where
D = 2p(2By) * Byp) + By164y -

This is the steady state population one would obtain in the absence of cavity-
coupling for all values of p. In the present case, one can show that this
solution becomes unstable for certain value of the parameters. However,

we will not discuss the stability of solutions in the present analysis.

We look next for a solution in which either S or S does not

12 == 23

vanish. For 823 =0, Egqs. (3.7) become four linear equations for four

with the solution

unknowns nl, n2, n3, P

12°
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~ A8 =

T (N-p/z) (2p + 832)/0 ’

n, = n) +p/z= [NQ2p +By,) + (p/2)(4p + B4,)1/D ,

(4.2)
n, = 2p(N - p/2)/D ,
el - 2. o0 : 1
P, D {N[Zp(B32 - 821) - 621832] - (2p7/2) (2B, + 632)
= (Piz)E21832} 4

where

o
il

2(3p + 632) v

Since all of these four quantities must be pozitive, it is clear that a
solution exists only for certain ranges of the parameters, Thus, we

must have N > p/z and 832 > 621 , and these inequalities must be of

e s0 * Z : > L >>
sufficient magnitude so that P12 0. For N p/z and p 832 621 K
one obtains, apprcximately,
L i S (4.3)
12 3p+p;2 4 ‘

Since for p = 0 , the formal expressicn for P12 is negative, there
exists a threshcld value for the pumping (given by the lower root of P12
as a quadratic in p) and alec an upper limit (the upper root) above
which a steady ztate sclutiocn dcess not exist,

A solution for wnich P rather than P12 does not vanish,

23

obtained by setting S =0, 1t givea by

12

n. = [N(2p + 521) + (p/z)(2p - BZL)J/D ’

n, = [2pN - (2p/2){(2p + b21)]iD ’

(4.4)

n AN

3 , + p/z = [2pN + (p/2)(2p - bzz)]/D ’

2
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where
D = 6p + 821 -

In order for a nonvanishing field to exist (in the w,. cavity), we must

23
have 821 > 632 » N> p/z , and these inequalities must be of sufficient
magnitude so that P23 >0 . For N> p/z and p "V 621 >> 632 , one

obtains approximately

2pNR
2 202

The above two cases of oscillation in only one of the cavities,
whether that coupled to the upper pair of levels or that coupled to the
lower pair of levels,are essentially the cases of the usual three-level
laser. The longitudinal (incoherent) relaxation in the non-oscillating
transition is essential for operation, of course.

We ask now: does a solution exist in which the field oscillates in
both cavities? It is easy to see from Eqs. (3.7) that such a solution does

not exist. If S, #0and 5,5 #0 , we must have

p = z(a, -n;) = 2z2(n;-n,), (4.6)
which, since p > 0 , requires
(4.7)

However, from the first or second of equations (3.7) we must have

n, < n; o, since the second and third terms in these equations are positive.
Thus, the simultaneous existence of an oscillating field in both cavities,
for the case of incoherent pumping, is impossible. The coupling of a
resonant cavity to the "nonlasing' transition produces no effect in an

incoherently pumped three~level laser.
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Before we leave the case of incoherent pumping, it might be worthwhile
to point out that the first two of equations (3,7) have a very simple
physical interpretation. They are equations for the rates at which atoms
leave and arrive at levels 1 and 3. Consider the first equation for example.
The rate at which the incoherent pumping changes the population of level 1 by
transferring atoms to level 3 1is -2pn1 and the rate of the reverse process

is 2pn The rate at which atoms arrive from level 2 to level 1 by relaxa-

3
tion is 821n2 » and P12 — being the number of photons absorbed by the
cavity — is the rate at which atoms arrive from level 2 to level 1 by coherent

radiation. (Note that 631 was neglected compared to p .)

V. Steady-State Solutions. Coherent Pumping

We consider now the case of coherent pumping., Equations (3.8) for
coherent pumping are more compliicated than Eqs. (3.7) for incoherent
pumping, since the complex variabies S1J ,» and not merely their absolute
values [as in the case of Eqs. (3.7)], enter in an essential way in the
solutions. In other words, the phase of all the oscillating quantities
(dipole moments and fields) becomes significant here. This is hardly
surprising since the coherent pumping, described bylg » contains phase
information itself. Since ‘3 is the only prescribed complex quantity,
or parameter, we can, without lcss of generality, take it to the real
and positive. In the present analysis we will consider Eqs. (3.8) not in
their full generality, but rather in a simplified form which, nevertheless,

illuminates the ideas under investigation. This simplification consists in

the neglect of all (incoherent) relaxation processes. Although, in the
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case of incoherent pumping, the existence of one of the relaxation
processes 1is an essential requirement for the operation of a three-
level laser, it will be seen that, in the present instance, interesting
and nontrivial results are obtained in the absence of such processes,

If we drop the relaxation constant and take “3 to be real and

positive, Eqs. (3,8) become
*
Bsy3 + 51 + 7y =0,

Poa ™ P

23 12 °

n1 + n2 + n3 =N,

(5.1)
(‘3 + le3)S;3 + z(n2 - nl)S12 =0,
f}; + leB)SI2 - z(n, - n,)8,, =0,
n) =m0, .
Introducing the notation
n = n = n,
S,, = |S le-iejk .
jk jk (5.2)
g o ek = Jagles
9 S T e
we can reduce Eqs. (5.1) to
28 = -@ Re{813} (5.3a)
s((3 + 28;4) + z(N - el « 0. (5.3b)
Equations (5.3) are the only requirements on the variables S, n, 813

and 0 , except for the restrictions [from Eqs. (2.11)]

B
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2

" <n(N - 2n) , 2

1313|2 < g . (5.4)

It is clear that the solution for these variables is not unique, and a
number of steady-state conditions are possible for a givenﬂ?, z, and N ,
some of which we proceed to examine.

A trivial solution of Eqs. (5.3) is given by
s = 0, Re{slj} =0 . (5.5)

From Eqs. (2.3), one sees that the power absorbed by the atoms from the

pumping field is given by
* *
-8 5]y + sy pmy + B (575 + S5m0,

= - (SI3 + 5;3)hw, ., = - zé?hm13 Re{sl3} . (5.6)

Thus, for Re{Sl3} = 0 , no power is absorbed from the pump, and
naturally, the cavity fields are zerc. In this cése, 813 is a pure
imaginary quantity: in other words, although 813 need not vanish,
it oscillates %TT radians out of phasé with the pumping field and no
power is absorbed (when averaged over a cycle, the averaging being
implicit in the rotating wave approximation).

Equation (5.3a) has a very simple physical meaning. Since
P12 = P13 = 2zS2 , this equation states that the number of photons (at
the respective frequencies) absorbed by each of the cavities is equal to
the number of photons absorbed by the atoms from the pump (at the pumping
frequency); in other words, it is the statement of the conservation of
energy.

A mathematically simple — but physically significant — solution of

Eqs. (5.3) 1is given by
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n=%N, S13 =-B/z, S =B iz (5.7)

What is most interesting about this solution is the fact that 6 is
arbitrary. Here we have a situation in which both cavities oscillate with
arbitrary phases, that is, the phases of the cavity oscillations are
independent of the pump phase. This behavior is qualitatively different
from that of a parametric oscillator (or Raman laser), in which the
relationship between the signal and idler phase is determined by the phase
of the pumping oscillator. One may look at this difference in behavier

as an illustration of the difference between a virtual level and a real

level, since in a parametric amplifier, as illustrated in Fig. 2,

virtual level

e e e -
signal

2 pump
idler

1 i 2
Fig. 2

the pump is often regarded as creating a (third) virtual level. The pqwer
dissipated in the cavities depends of course on the strength of the pump 13 i
but one should note that inequalities (5.4) lead to

-~
fa <

W

Nz (5.8)

the equality sign indicating maximum cooperation, For &E; greater than 1
that permitted by (5.8), a solution of the form given by Eqs. (5.7) cannot
exist. The maximum steady-state power that can be dissipated in each

cavity for n = % N is
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2 2
Pmax 9 zN” (5.9)

In general, Eq. (5.3b) stands for the two real equations

lSl3|sin613 + (N - 3n)sin® = 0 (5.10a)
|Sl3|cose13 + (N - 3n)cos6 --—aS/z . (5.10b)

with |513I <n and n < % N . For n # %-N , there does exist a rela-
tionship between 6 and 613 , Wwhich becomes more critical as IN - 3n|
increases from zero. It is of interest to look at the solution that
corresponds to the maximum power that may be absorbed by the atoms under
steady-state conditions. This will obviously be the solution corresponding
to maximum cooperation and maximum S . From Eq. (5.4) , we see that such

maximization corresponds to n = %-N , for which

o B

Pmax - zN~ , (5.11)
Since |Sl3| =n, Eq. (5.10a) yields 6 = - 613 ,» so that Eq. (5,10b)
results in

%Ncose = -B/z v (5.12)

On the other hand, Eq. (5.3a) requires

zN = - 2‘2cose ‘ (5.13)
These two equations can be satisfied only for 43 = %-zN » and the solution
is

cosO =-1, or 6 = T (5.14)

In this case, the phase relationship between the oscillations at the
various frequencies is similar to that for a parametric oscillator, and
the value of 913 is that for the greatest absorption of power from the

pump (for a given |Sl3| )
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VI. Conclusions

The coupling of resonant cavity modes to both transitions of a
coherently pumped collection of three~level systems leads to behavior
that is different under certain conditions from both that of a laser and
a parametric oscillator. In particular, there can exist oscillations in
both modes that are independent in phase. Such behavior would open
the possibility of obtaining oscillation in an extended medium at both tramsition
transition frequencies without the need of phase matching, a need that
exists in the case of parametric oscillation (or a Raman laser). The
model studied in the present discussion was simplified by dropping certain
terms in the equations of motion. Further study of a more realistic model,
that is, a study of the solution of the full equations of motion, including

the stability of the steady-state solutions, and perhaps, time dependent

behavior, is necessary for a clearer picture of the potentialities

of coherent pumping and relaxation.
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