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Abstract

__________________ This paper studies the propagation of weakly nonlinear

waves. The analysis is applicable to plasma waves, surface

water waves, the interaction of laser beams with matter, particle

accelerators, etc. The specific motivation for this work is,

however , the study of internal waves in the ocean. Hamilton’s

principle is used to write the fluid equations in Hamiltonian

form in terms of linear eigerunode amplitudes. Numerical studies

aremadeof  the effect of Fo~xrier grid size and resonance widths.

Statistical information is generated from an ensemble of initial

states of the random wave field.
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1. Introduction

In this paper we consider- some techniques used to study statistical

properties of weak turbulence associated with nonlinear wave-wave

interactions. Specifically-, we apply the analysis to buoyancy dominated

turbulence of internal waves in the ocean. Stable stratification, a

characteristic of the oceans , implies an equili brium depth about which

each fluid element oscillates. The resulting “almost two—dimensional”

system avoids some of the complexity of fully three—dimensional weak

turbulence.

Formally , our wave system corresponds to a set of harmonic oscillators

with weakly nonlinear couplings. Similar dyn amical systems are encountered

in the study of surface water waves (1), plasma waves (2), the interaction

of li ght with matter, particle accelerators, etc. Interest in the pro-

perties of oscillators with weakly non—linear couplings has been stimu—

lated by the KAM theorem (3), the discovery of solitons (ii ) and other

studies (5).

Relaxation phenomena associated with linearly coupled oscillators

have been studied by Mazur and Montroll (6) and by Ford, Kac and Mazur (7 ) .

Computations with a linear chain of fifty oscillators by Cukier, Shuler,

and Weeks (8) have shown agreement with the predictions of a Langevin model

for the system.

Weakly nonlinear oscillator systems have been studied by several

statistical models. Use of random phase and two—time scale approximations

allows termination of a sequence of coupled moment equations to give a

Boltzmann-type transport equation. This approach has been used by Hasselman
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I
(9) for geophysical phenomena, Snider (10) for gas kinetic theory and

Davidson (2) for plasmas. The technique of Prigogine and collaborators

(11) of simplifying the Liouville equation by the neglect of higher order

correlations also leads to the Boltzmann transport equation. In a future

publication we will show how the fluctuation—dissipation theorem (12)

and the Krylov-Bogoliubov-Mitropolsky two-time perturbation method (l3,l1~)

can be used to obtain Langevin and Fokker—Planck descriptions of internal

wave turbulence.

These models can be compared with numerical solutions of the equations

of motion, providing evidence for the validity of the approximations used.

The ocean internal wave system lends itself particularly well to numeri-

cal computation because of the “almost two—dimensional ” nature of the

equations. Recently , the Hasselman transport theory has been applied

to this system by McComas and Bretherton (15) and Olbers (i6). These

studies utilize the remarkable synthesis of experimental observations,

made by Garrett and Munk (17,18) , who proposed an explicit equilibrium

spectrum .

In this paper an explicit Hamiltonian is given which describes

the nonlinear transfer of energy among the linear eigeninodes of the

internal wave field. A “test wave” model is developed which can be used

to compare numerical results with statistical models. This model describes

the propagation of a single, labeled wave through an ambient medium.

Computational methods for integration of Hamilton’s equations are also

discussed.
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2. Dynamical Formulation of the Wave Interactions

We consider as a model a “plane” ocean of uniform depth and having

rectangular area )~~~. Periodic boundary conditions are used at the sides ,

and the top and bottom surfaces are assumed rigid. The quiescent upper

surface coincides with the plane z = 0 of a rectangular coordinate system.

The bottom is at z —H. The equilibrium fluid density is p (z), a

monotonically Increasing function of depth. The quantity

N (z )  = [— ~~~]l/2 [2.1]

is the VäIs~lK, or buoyancy frequency (g is the acceleration due to

gravity). The fluid is incompressible and inviscid.

We introduce a Lagrangian and use Hamilton ’s principle to obtain

the equations of fluid motion. The Lagrange coordinate of a fluid particle

at time t is Y(r ,t ) ,  where r Y(r ,O) is its position at t = 0. The

appropriate Lagrangian per unit area is (20)

L j~~~ 
(

~~~ P I ~~l
2 + P~ .Y 

~~~~~~ 
+ P(r) [~ (:~

) ~j )
[2.2)

The first three terms in the integrand represent , respectively , kinetic

energy, negative of gravitational potential energy, and rotational energy

due to Corolls coupling. The quantity “f ” is twice the angular frequency

of the earth ’s rotation. The final term expresses the constraint due to

L ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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incompressibility : P is a Lagrange multiplier and J is the Jacobian

of the transformation r + Y.

Hamilton ’s principle states that the functional

t2
1=  f t L dt [2.3]

1

is stationary with respect to arbitrary independent variations in Y and

P, which vanish at t1 
and t2 and at the boundaries of the fluid. In

part icular , variation of P yields the incompressibility condition

j
J ~ — J = 1, [2.4 )

\
~~r I

and variation of Y yields the equations of motion

p~i _ p g + p f x ~~~ +~~~~ P 0 .  [2.5]

The Lagrange multiplier P can therefore be identified with the fluid

pressure. It may be considered a function of Y and t in the Lagrangian

since this adds terms with zero variation.

Rather than use (2.43 and [2.5) directly , we develop a perturbation—

variation approach with the aim of obtaining a Hamiltonian which describes

the lowest order nonlinear internal wave motions. Following Bretherton

and Garrett (19), we define the displacement

~(r,t) Y(r,t) — r , [2.6]

4 .

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~- .V - .~ - - —V .- - -  
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and consider I~~J to be a small quantity. The Lagrange multiplier ~‘

may then be expanded as

P(Y ,t)  = P(r ,t) + (~~.V)P (r ,t)  + 4. ~~~~~~~~~~~~~ + . . .  [2 .7 ]

Substitution into [2.2] yields

3
L =f ~~~-~ [+p Ic I 2 + p

~~~_+p!. (
~~

x
~~

)

— (~ .V)P(r ,t) — 4. ~~~~~~~~~~~~~~ + . ..  I , ( 2 . 8 )

where we have used the relation

fa3r P(Y ,t)J(~ Y/ ar )  = fd 3Y P(Y ,t ) = Jd3r P(r ,t)

and omitted terms independent of F.

Next, we define the pressure fluctuation

ir(r ,t )  P(r ,t )  — P(r) (2.9]

and assume it is a small quantity of the same order as E~~. On intro—

ducing [2.9] into [2.8] and collecting terms, we obtain

_ A
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L L
1
+ L

2
+ L

3
+ ...

d3r [p g.~ - 

~~~~~~~

L2 
= 
~ 
d3r 

~~~ ~~~~
2 

— 
~~~ 

~ ~
) — (~ .v)~ — -4- (E

~
F
~j
V
~
Vj
)P(r)]

L
3 

= 5 - (~ 1~~v1v~ )i~ - * 
(
~ l~j~kvivj vk )

~~~)l . [ 2 .10)

The equations of motion in each order are obtained by variation of

t2
= f t L4 dt

with respect to ~ and i~ . Variation of I~ with respect to ~ gives

pg = VP(r) . [2.11]

Thus P is a function only of z and is identified as the hydrostatic

pressure.

We may use [2.11] in the Lagrangian to eliminate P and ignore I~

from now on. Then

L = L 2
+ L

3
+ ...

L2 
= j  d~r [

~~~IiI 2 - 4.~~ç .(~ x 
~

) - (~ .v ) ~ - 4 p  N~~~]

L
3 

= j  ~~~~ [ — 
÷ ~~~~~~~~~~ — 4. p N2~~V~~3] , [2.121 
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where N2 is defined by [2.1].

Linear equations of motion are obtained from variation of 1
2:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

= 0 . [2.13]

*We now neglect the horizontal components of f V
~. This enables us

to separate the horizontal and vertical parts of [2.13] and expand

F~3(x ,z ,t)  In the rectangular area ~~ ast

ikx
F
3
(x ,z,t) = 

~ 
A~~(t) W

k
(z )  e

a l k

A k = A~ [2.14)

(the first sum extends over all positive integers a). Our task will be to

obtain an expression for the Lagrangian [2.12) in terms of the field ampli-

tudes

Using the definition [2.14] and some straightforward algebra,

equations (2.13] yield

V 0See, for example, Ref. (i), p. 239.
tHenceforth *1.1 vectors with the exception of f will be two—dimensional
in the horizontal plane. 

V - . . - ~~~~~~~~~~~~~~~~
-V - -
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2
(k) \

V
3
PV 3

Wka + pk2 

~ w~(k).f ) 

W
k 

= 0

a

w (— H ) = w (0)  = 0 . [2 .15]ka kcz

This is a Sturm—Liouville equation for the modefunctions Wk (z) and

eigenvalues wa(k)• The orthogonality relations

-
~

— I p[N
2(z)_ f2]Wk W dz = 6 [2.16]

—H 8 a

are readily deduced from [2.151. The quantity p0 may , for example, be

chosen as p(O). The Fourier amplitudes A
~K 

satisfy the equation

A. + ~
2(k) A.A 

= 0 . [2.17]

The horizontal displacement 
~h 

is expressed in the form

ik•x
= ~ [ikA~ + ( ikxr )Bk 1 -4.WJ~ 

e [2.18]
a l k  - k

where ~ = A. and W’ dW/dz. The pressure fluctuation is thenka ~a

= — 

a 1  
~~~ + f2k1ç ) 

~~ 
W~ e . [2.19]

Expansions (2.14), [2.181 and [2.19 1 may be introduced into the

I —V . .  - -V~~~ , . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --V -~~ -~~~~~ - - -V . - -- -~~~~~
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expression [2.10] for L
2 to give

= 
2 

~ 
[
~
2()_f2 ~ ka~

’-ka 
- w

2(k)A
k
A
k )J 

. [2.20]

To obtain the nonlinear equations , we first write

...

[2.21)

where 
~~ 

ir~ are the fields given in the linear approximation by equations

[2.14) through [2.19], and c is a small parameter. Now, because 12 is

stationary for small variations about the solutions E]~ it
1
, we have

12 
= I L~ (~~,it)dt = ~

2 
~ 

L~ (~1,it1)dt + 0(c
4 ) .

1
3 

= f L3 
(~~,it)dt = c3 

f 1â
3 
(~1

,n
1
)dt + 0(c 4 ) .  [2.22]

Thus, since we do not wish to obtain equations valid beyond the order of

c3 we may use the linear expressions [2.14)—[2.l9] in deriving L
2 and Lj,.

In particular, we may use [2.17] to eliminate time derivative terms

from L3. It is important to realize that the nonlinear fields will con-

tinue to be expressed in the form [2.14)—[2.19] except that [2.17] will

be modified.

We wish to express our equations in Haniltonian form. As described

_ _ _  V V 
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*in some detail by Meiss and Watson this can be conveniently done by

replacing the Fourier amplitudes A~ by canonical action angle variables

J , Oka ka

—iO _____ iO
A. = 

1 
~~~~~~~ ~~~~~~~~~ e -ka

______- ka -ka

a

B
k 

~~~~~~ 

e~~

0

~~ + 
~~~~~ 

e
i0_

~~~

]

p0e . [2.23]
ka 2 2

(A) -fa

The resulting Hamiltonian is obtained after straightforward but tedious

effort :

H

H2 ~ 
w ( k ) Jka ,k

H3 
= ~ (JkJ~Jm )1AI2 

~
6k t m  r1(k ; c ,m) exp[ i (O k

_ O
L

_O
m ) ]

+ 6k+L+rn r2(k ,c ,m) exp[i (Ok+O t+Om )I} 
V

+ c.c.  [2 .25]

*See ref.  ( 5 ) ,  pp. 296—323

. . - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~-
, --- . . 

~~~~~
. -_



_ .

—12—

(The coefficients r1 and are given in the Appendix.)

To simplify notation in H
3 
we have written k for the index pair (k,cx),

etc.

The equations governing the evolution of the internal wave field are

Hamilton’s equations:

j. _ aH 
~ ~i__ [2 26]ka J -

For linear waves, corresponding to neglect of H3, we have

‘ka = 0 Ôka = Wa
(1
~ 

[2.27 )

The term H
3 
in H descr ibes the effect of all interacting triads

of waves which satisfy the wávenumber conservation restrictions k—&—m = 0

or k+L+m = 0, and allows for transfer of energy between members of the

triad. Since H
3 
is assumed small compared with H2, equation [2.27]

indicates that the terms involving r2 are rapidly oscillat ing on the

time scale of energy transfer among the modes. We shall henceforth

neglect these terms, setting r2 = 0 in the numerical experiments to be

described later in this paper. A similar argument applied to the

terms suggests that only those wave triads for which

w (k) — ø8
(t) — w

1
(m)~~ 0 [2.28]

will have dynamical significance in our studies.

. .  .
~~~~~—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ _~~--
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We shall refer to (2.28] as a “resonance condition.” Those terms

in H
3 
for which the resonance condition is not met can be transformed

away by a sequence of canonical transformations. The resulting Hamiltonian

has the form

H2 + H

where H2 is a function of the transformed action variables and 113 contains

only wave—wave interactions for which the resonance condition [2.28] obtains.

For our present purposes we shall assume that those triads not satis—

tying the resonance condition may be neglected. How large the resonance

mismatch ~ must be for a triad to be neglected is, of course , a question

that must be answered quantitatively . We shall return to this point in

Section 4.

Another set of convenient variables are the dimensionless action—

amplitude variablest

I N  \l/2 
~ 

2
~ka 

~~~~ 
—iD

= (kB ) (,~...2..
) I I e . [2.29)a 

Leka(~~0
)3
i

They are related to the original Fourier coefficients A
x 

by

Ak ~ 2k — a
k
] . [2.30]

t
N and B are constant quantities having dimensions of frequency and
length respectively . They may be considered as scale parameters of
the V~isä1~ profile 11(z). 



In the linear approximation , 
~ka represents the amplitude of a

traveling plane wave having wave number k and mode number a. It is

n~rma1ized to describe the wave slope amplitude .

The equations of motion in terms of the ~~~ are

= kcz’~~

=~~~~2i (~~~~
_)(

~~~~~~
3) ~~ka 

[2.31]

Here (a,H) represents the Poisson bracket of a with H. The explicit

form of equation [2.31) as obtained from [ 2 . 2 5]  is

k + IW S
k 

= 
,~ 

~~~~~~~~~ G a
~
am

+ 6~~~ G~ a
t
a ]  . [2.32]

The coefficients 0 are expressed in the Appendix as functions of 1’~ .

In this equation there are two types of interaction terms . These are

denoted sum and difference interactions according to the wavenumber con-

servation relations k m±L respectively. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ V - . , - V~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .~~~~
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3. Test Wave Model

To provide a simple model for preliminary study we introduce

the test wave system. Here a single (k,a) mode , identified as the test

wave, is permitted to interact with an ambient field consisting of the

remaining modes. However the ambient modes are not allowed to interact

among themselves. Test wave models are often employed for calculating

rel&xation rates in transport theory, where standard approximation

schemes in statistical mechanics may be applied. Numerical integration

V of equations such as [2.26] can be used to evaluate the validity of these

approximation methods. Later papers in this series will study this problem

in detail.

We can also use the test wave model to test whether a particular

background wave amplitude spectrum is an equilibrium spectrum with respect

to the dynamics. If it is, the mean action of the test wave (averaged

over ambient initial conditions) must decay to its equilibrium value.

Our system consists of 2M+l waves formed in M triads. We let k

designate the test wave mode (k,a) and L ,m designate ambient wave pairs

(~~,B), (xn,y) respectively. The appropriate equations of motion are then

TEST WAVE: + lW f t
k 

= 
~ 

[tS
k~~ 

G~~a~a + 6k+~~~
G a a  3

BACKGROUND: + iw a
~ 

= ~~~~ 2G
~~)
a
k
a + 6~~~~~ G~mft~jça*

+ 6
k

G
~~
a
~
a . [3.2]

L _
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*It is easily verified that [3.2] admits M+l conservation laws .

In our computations, initial conditions for the ambient modes
are ~hosea tros a Gaussian distribution for the action—amplitudes.

exp [_J&
~,J

2
/2Oka J . [3.31

Thus, the initial, wave phases are ~~~~~~~ ~~~~~~~~~ ~ ‘-tr~r~ution uniform

in —w,w. Averages over ambient initial CofldAtiOnb wi th d~~tribution

[3.3) vU]. be denoted <> . The mean square action amplitude a~~ is

related to the power density spectrum for the vertical displacement

~ fd
2k *(k,a); (3.43

a1

akU = 2k2 

(

~~2) *(k,cz) . [3.5]

Equivalently, the mean wave action (see equation [2.29)) is given by

O N 2Bw (k) /~~2\<~ > = 00 a 
— 

t~~~~L.J q,(k,a) . (3.6)
V’O Ia

The specific *(k,cz) used for this study was the Garrett—Munk “75+”
spectrum (17), an experimentally derived spectrum for internal waves
which appears to be an equilibrium spectrum for the ocean.

See J. D. Meiss and K. M. Watson, ref. (5), pp. 296—323.

-- V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Numerical Methods and Results

Our emphasis in this section will be on computational techniques

and qualitative features-of solutions. Detailed application to the ocean

will be published separately. V

We represent the continuous wave system with a finite number (214+1)

of waves. Each wave must correspond to a wavelength which “fits” into

the (assumed) square area 
~~~
. This implies a base grid in wavenumber

space with grid spacing

E,k ~k 
2~ [4.1]x y ~~~~~~

Since the test wave wavenumber k is fixed (given), the wavenumber

conservation equations

k = m±9. [4.2]

imply that a single grid can act as coordinate system. For example,

chossing the x—axis along k, each point (m
~
,m )  defines a triad as shown

in Figure 1. As discussed in Section 2, the most important triads for

energy transfer are expected to be those for which the resonance condition

- w ~~O holds. For a given set of modenumbers a,8,y

and a given resonance mismatch t~, each resonance condition defines a

curve in the m ,m plane. Examples of curves for various ~ are shown

in Figure 1. Our procedure will be to include those triads which lie

on grid points for which 
~ 4 ~ 

~~~~~~~~~~~ 

For a given computation the parameters

-- — ~~~--- --“- .-—--- --- ~~—-~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~k and ~ must be obtained empirically. Before discussing this further

we present a sample computation of the full system of equation to illustrate

the general character of the solution.

Figure 2 disp].ays a.typical example of the mean test wave action for

the ocean internal wave system. The frequency and modenumber of the test

wave are w =7f and u 4 , respectively. We include the first nine WKB

vertical modes of the ambient spectrum. This corresponds to including

fifteen resonance curves in the calculation. The magnitude of the initial

test wave action—amplitude is chosen to be 0.1 and the corresponding

initial, phase is fixed arbitrarily. The ambient initial conditions are

picked with a random number generator according to the distribution [3.4).

To integrate the equation of motion [3.2], we use a variable step size ,

variable order Adams integration scheme (20). The test wave action is

averaged over 1=100 ambient realizations, integrating to t 1000/N0 for

each. The entire computation required approximately 7 minutes C.P. time

on a CDC 7600 computer. The salient features of Figure 2 are a rapid rise

of the test wave action by a factor of 100 in the first 20 time units ,

followed by small oscillations about a value slightly larger than its

expected (Garrett—Munk ) equilibrium value (indicated by the dotted hori-

zontal line). We have found that these fluctuations decrease with increasing

I, and. that the mean value is constant upon variation of the initial test

wave amplitude providing this amplitude is small (
~ 025 

).

The effect of choosing different values of Ak and. ~~~ is best illustrated

by a simple model calculation. For the remainder of this section we keep only

the sum interactions in [3.2] and arbitrarily set the coupling coefficients

L ~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to = 0~m = G~~ = ÷ (—1+1), ignoring the complicated wavenumber
and frequency dependence of the real ocean.

To investigate the effect of off—resonant triads we consider 25

triads, 13 with A 0  and 12 with A
~~max

• Figures 3 and 4 present plots

of the short time behavior of the mean action for various A . In Figure 3
max

the phases of the ambient modes at t 0  are chosen so that the initial

growth rate of the test wave action is maximal. That is, the sum of the

phases of the background waves in [3.2] plus the phase of G is zero. It

is known that this set of initial conditions results in “square wave ”

phase oscillations and maximum coupling of the interacting waves (21).

These coherent solutions in Figure 3 sho~ that the effect of off—resonant

triads is to produce oscillations about the growth rates of the resonant

triads. For t<<l/&
~ax the growth rate is essentially given by the

A =0 curve.max

For later times the action oscillates about the ~ 
— — curve (wheremax

in effect only 13 resonant triads are kept, all with ~~O). The frequency

of these oscillations depends linearly on ~max

In Figure 4 the initial phases are chosen randomly. From [3.2) we

see that the intial growth rate of the mean action is zero . For later

times, the growth rate (calculated as an average over 100 ambient initial

conditions) is about one half of the maximal rate. As A is increased ,
max

the growth rate decreases as in Figure 3, but now the oscillations are

washed out by the phase averages. The ambient phases do not remain com-

pletely random for t>O: If we make the random phase approximation using

the Krylov-Bogoliubov—Mitropolsky (14) ( KBM ) perturbation theory to obtain

_
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an estimate for the growth rate, we get a rate that is less than that of the

dynamical calculation. The KBM and maximal rates represent extremes,

the first implying complete incoherence while the latter implies complete

coherence. We plan to quantify the significance of phase coherence in a

later paper.

As a final model, more closely related to the full ocean calcula-

tion, we include only triads with modenumbers a 14, B 6  and y 2  corres-

ponding to the resonance curves of Figure 1. Again we choose the G’s

to be equal. With this model we can discuss the effect of both Ak and

A on the growth rate. For this purpose we tentatively assume that the

test wave relaxes exponentially to equilibrium. This type of relaxation

would be predicted by a Langevin model for the system. To provide a rough

estimate for the growth rate, v, we calculate the time, t
½ 
, required for

the test wave to grow to half of its equilibrium value. Then

v = —log2/t.,~ . The exponential relaxation assumption is clearly not

valid for very short times when <$a~j
2 > grows as t2 (since the ambient

phases are initially random). For longer times the oscillations caused

by non—resonant trials must also provide an error in the fit. However

for the purpose of investigating the effects of changing Ak and

our measure is sufficient.

In Figure 5 we plot v as a function of Amax for various values of

Ak. These curves approach v ~ .02N0 for Amax ~ .1N0 independently of

Mi. Since varying Ak changes the number of triads within a given reso-

nance width, we see that keeping a small number of triads is sufficient

to obtain a good estimate of v. For example, the value of v for 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~ -.. , ., --- . ---  -~~~~~~~
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and Ak=.27 (14 triads) differs by only 15% from that with Ak .lO

(93 triads). Va’rying the initial action between lO 4
ak 

and .OScJk

does not significantly change the growth rate or the final action.

Further increase of the initial action changes the growth rates drasti-

cally indicating that the exponential assumption breaks down.

Figure 5 indicates that quantitative results may be obtained for

A ~ 5’~
,. Since A and v define the only available time scales,max max

these quantities can be expected to scale together and produce reliable

results if A is chosen , self consistently to be “a few times v. ”max
Finally , in Figure 6 we see that the time required for the test

wave action to reach equilibrium does not depend strongly on

Although initially the two curves grow at quite different rates

[v(A max
=.03N0) 1.5 v(~~~~~ .2N0)], for later times the curves grow

at similar rates and reach their equilibrium values at comparable times.

I i  

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ .~~~~~~~~
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Appendix

The coupling coefficients which appear in equations [2.25] and

[2.32] of the main text are defined explicitly by the following set

of equations :

= pO( 32waw~W
Y

e
ka

etBe
mY

)_ ½
EG(k ;t ,m) + G(~~;m,k) +

[A . l ]
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2) ~~~ 

~~ (4- 
k
2
L
2rn2

m

+ j ( w 2—f 2 ) (
~~

+ -!~. (g.m)
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Figure Captions

Figure 1. Resonance curves for sum interaction using the deep

ocean dispersion relation: w2(k) = f 2 
+ [kBN

0
/ir (a—¼)]2.

For these curves a = 4, 8 = 6, y = 2 , 
~~~~ 

=

Arrowed is a typical wavenumber triad.

Figure 2. Mean test wave action as a function of time with 91 triads

on 15 resonance curves and coupling coefficients for the

deep ocean. a = 4, w = 7f and the mean is taken over

I = 100 initIal conditions.

Figure 3. Mean test wave action for the two—row model. The ambient

initial phases are fixed to give maximum initial growth

rates. I = 100.

Figure 4.  Mean test wave action for the two—row model. Ambient

initial phases are chosen randomly for the dashed curves.

Curves labeled “maximal” are from Figure 3. The KBM

curve assumes the random phase approximation.

Figure 5. Growth rate, v, as a function of and Ak for the

single resonance curve model.

Figure 6. Mean test wave action for the single resonance model. For

t ~ 100/N0 the Amax solution grows faster than the Amax = .03

solution. For longer times (right scale) evolution is at a

similar rate.
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