
A0 A06’* ‘*89 uNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES
-

F/S 9/2
METHODOLOGIES AND TOOLS FOR DEVELOPING ROBUST FTSC SOFTWARE. (Ii)
AUG 78 K H KIM FO’47O1—77—C—OI2O

UNCLASSIFIED SAMSO—TR—78—l’42 NL

_ r n - Il_____
U,

— ~~~~ ~~~ rsrui ~
•-
~i ~~~~

SAMSO—TR—78—142” LEVEL~1~T ’
METHODOLOGIES AND TOOLS
FOR DEVELOPING ROBUST
FTSC SOFTWARE

UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90007

c-Th

• r1~ :.~~~~~~

31 AUGUST 1978

FINAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREPARED FOR

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
BOX 92960, WPC
LOS ANGELES, CALIFORNIA 90009

7° ~~ 08 064
L ~~~~~~~~~~~~~

r

~ final report was submi tted by the University of Sr’uH

~. .l fornia , Los Angel es , Cal ifornia, under contract FO~~’ (‘‘
C-012() with the Space and Missile Systems Organization .. nc /\ r~~~k~

rorce Station, Los Angeles , California. Second L~’ ~~~~~
‘~ . .!1as D. Orville (YCD) was the Project Offi cer.

(
~port has been reviewed by the Information Office ((31) ~nd

is releasable to the National Technical Information Service (Ni T~) .
i ’~ NTIS , it will be available to the general public , including

r’iqn nations.

.s echnical report has been reviewed and is approved f n r publi
: i r i~~~’ . Publication of this report does not constitute A ir Force

‘~l of the report ’s findings or concl usions . It
rr the exchange and stimulation of ideas .

642 &.et ~~~
~ D. ORVILLE , 2LT, USAF RONALD G. SPRAY , Lt Col . ~~

‘
A1

c Offi cer Deputy Di rector for ~ .~h~vstein ’~

“OMMANDER
•1 ~~~~~

‘ .
~~~

,

. 

~~~~~~ ~~~

E. BALTZELL , Col , USAF
/ . .;t ‘.~puty for Advanced

~ce Programs

~~. ~~~~~
- . • ~~~~~~~~

-. —
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

— —I- —-——- 
- ~.



UNCI..ASS IFTFfl
SECURITY CLASSI FICATION OF THIS PAGE (When Data Entered) 

___________________________________

~~E~~
1’

~~~ ~~~~~~~~~~~~~~~~~~~~ ~ A ( E  READ INSTR UCT ION S
,~ rvi~ I uu~ vm ri I ~ I lU” r~~ U BEFORE COMPLETIN G FORM

I. RCPO~~~_MU I~~~~~ GQ.~~t..AGG~ IBtoW NO. 1u,j~~ ECIPIENT’ S C A T A L O G NUMBER

•
~1_~~~‘ _

- -
5.

~1ETHODOLOGIES AND TOOLS FOR DEVELOPING ROBUST I FINAL RE P~~T..
FTSC SOFTWARE Li Jul~ - 77—.—31 Au~~~~78~). .._ 6. PERFORMING ORG. REPORT HUM

7. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
L CONTRACT O~~ GRANT NUMBER(S)

_ K~H /(IM // ~~~~~~~~~~~~~~~

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJE CT, TASK
ARE K UNIT NUMBERS

University of Souther? California —— - - -..~1 r -

-Departn~~ts cf El~r~ Eng. - and- Computer -Se4-ence 6340 2181 . -
.

Los_Angel es,_ CA_90007 ___________________________

II. CONTROLLING OFFICE NAME AND ADDRESS /Space and Missile Systems Org . (YCO) t _ 1L31 August 1978
LAAFS , P.O. Box 92960, Worl dway Postal Center ~~~ ¶3. NUMBER OF PA r—--~~~ -—-.~~

Los Angeles , California 90009 190 — — - - .

14. MONITORING AGENCY NAME & ADDRESS(II different h orn Contr olling Office) 15. SECURITY CLAS . of this r.po rtY ”

— UN CLASSIFIED
15a . OECLA SSIF ICATION / DOWNGRAO ING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public rel ease ; distribution unlimi ted

17. DISTRIB UTION STATEMENT (of the abatrect entered in Block 20, if differen t from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide if neceaoary end identify by block number)

Fault-Tolerant Recovery Programs Distributed Systems
System Recovery Strategies Roll back Point Insertion
Error Recovery PASCAL Implementation

- 20. ABSTRACT (Continue on reverie aide If necesSary and identi fy by block number)

This is a report of the results that have been obtained from a research project
aime d at learning methodologies and developing tools useful for obtaining re-
l iable software of the Fault-Tolerant Spaceborne Computer (FTSC). Results are
divided in three areas. First, a study was performed on the methods of design-
ing wel l -structured recovery programs which are invoked on detection of an
errorto recover an operational system configuration and a consistent computation
state. This study involved the experimental development of an FTSC recovery

DD ~~~ 1413 EDITION OF 1 NOV 65 1$ OBSOLETE UNCLASSIFIED
SECURITY CLASSIF ICATION OF THIS PAGE (Wh en Data Entered)

/

a-- — - - -

;;:—~~~~ ~~~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W7m.n Data Entered)

program. This report discusses several program design and system recovery
strategies that have been found useful in obtaining an easily understandable

- - recovery program, together with the program developed. Second, a language
processor was developed to facilitate experimenting with recovery block which
is a language construct designed to support structured incorporation of program
redundancy. It translates programs wri tten In PASCAL augmented with recovery
block into equivalent programs in ordinary PASCAL . The translation strategy

-
- used and the organization of the translator are described. Third, a new ap-

- -‘ proach to error recovery in distributed systems of cooperating parallel
processes was developed. In such systems processes must cooperate in recovery,
in contrast to the previously studied approaches that require the program de-
signer to coordinate the recovery point specifications of processes. the new
approach relieves the programer of that burden by using an intelligent proc- -

essor system. Methods for efficient impl ementation of such a processor system
were also developed.

UNCLASSIFI ED
SECURITY CLASSIFICATION OF THIS PAGE(*7,en Data Entered)

~~~~ 

~~~~~~~~ ~ ___ _ .__


METHODOLOGIES AND TOOLS

FOR DEVELOPING ROBUST FTSC SOFTWARE

K. H. Kim

Departments of Electrical Engineering

and Com puter Science
University of’ Southern California

Los Angeles , California 90007

August 31 , 1 978

Final Re port for Per iod July 1 , 1977 — August 31 , 1978

Contract No: FO~$7O 1— 77—C—O12O

Prepared for:

USAF (AFSC)

HQ Space and Missile Systems Organization

P. 0. Box 92960

Worldway Postal Center

Los Angeles, CA 90009

7~ ~ 2 ~~~~

“‘I .

—
~~~~~~ - 

~
————- .— --—- — - 

_~~~~~..I - -  

~~~~~~~~~~~~~~~~


- - -.--------
~~~~~~~ ——~~

--________

Ta ble of Contents

Abstract I
Introduction 1

Part I: Structured Design of a Fault—Tolerant 3

Recovery Program of the FTSC

Part II: A Translator of PASCAL Augmented with 76

Recovery Block

Part III: Programmer—Trans parent Coordination of 124

Recovering Parallel Processes

Acknowledgement 184

L — —  - -- _ _ _ _ _



L
Abstract: This is a report of the results that have been obtained

from a researc h pro ject aimed at learn ing met hodologies and
developing tools useful for obtaining reliable software of the

Fault—Tolerant Spaceborne Computer (FTSC). Results are divided in

three areas. First , a study was performe d on the metho ds of
designing well—structured recovery programs which are invoked on

detection of an error to recover an operational system configuration

and a consistent computation state. This study involved the

experimental development of an FTSC recovery program . This report

di scusses several program design and system recovery strateg ies that
have been foun d useful in ob ta ining an easily un derstan dab le recovery
program , toget her with t he program develo ped . Secon d , a lan guage

processor was developed to facilitate experimenting with recovery 
/

block which is a language construct designed to support structured

incorporation of program redundancy. It translates programs written

in PASCAL au gmente d wit h recover y b loc k into equivalen t programs in
ordinary PASCAL. The translation strategy used and the organization

of the translator are described . Third , a new approach to error
recovery in distr ibute d systems of coo perat ing parallel processes was
developed .~~ In such systems processes must cooperate in recovery. In

contrast to the previously studied approaches that require the

program designer to coordinate the recovery point specifications of

processes , the new approac h relieves the programmer of that burden by

using an intelligent processor system. Methods for efficient

implementation of such a processor system were also developed .

I

I
- •I 

~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

Introd ’iction

This is a report of the results that have been obtained from a
research project carried out at University of Southern California

• under the sponsorship of U .S . Air Force — SAMSO during July 1 , 1977
— — August 31 , 1978. The project aimed at learning methodologies and

developi ng tools useful for obtaining reliable software of the FTSC .
Mo re specif ical ly, research e f for t s were directed in three

di rections.
(1) to study the effective ways of designing well—structured and

fault—tolerant recovery programs . (Recovery programs are the

programs which are ~~voked , on detection of an error , to recover an

operational system configuration and resurrect the interrupted

computat ion.) Also to study the effective ways of using design

redundancy to obtain fault—tolerant programs (i.e., programs capable

of tolerating some residual design errors in them).

(2) to develop a language processor to facilitate structured

fault—tolerant programming .

(3) to study the structure of fault—tolerant distributed systems.

—

The results are described in three parts, following this section .

Part I describes some program design and system recovery

strategies that have been found useful in obtaining an easily

understandable recovery program of the FTSC. The strategies are of

such general nature that they can be useful in designing recovery

programs of other modular fault—tolerant computers. It also presents

a PASCAL specification of a FTSC recovery program that has resulted

from the application of the strategies.

—
1

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — ~~~~~~~
. - :~

r~ r - -

~~~~ 

-- 
——-- - 

-

~~

Part II documents a language processor that translates programs

written in PASCAL augmented with recovery block into equivalent

programs in ordinary PASCAL . The recovery block facilitates

structured incorporation of program redundancy. The basic

translation strategy is discussed and then the full listing of the

translator is given together with some test—run results.

Part III discusses a new approach to error recovery in
distributed systems of cooperating parallel processes. More

specifically when each process is capable of error detection ,

rollback , and retry , the recovery points of the processes must be

properly coordinated to prevent a disastrous avalanche of process
rollbacks . In contrast to the previously studied approaches that

require the p rogram designer to coordinate the recovery point

specifications of processes , an approach of relieving the pro grammer

of that burden was developed . The new approach relies upon an

intelligent processor system (that runs processes). Basic rules of

reduc ing storage and time overhead in such a processor system were

also developed.

2

_ __ _ __ _ __ __ _ __ _ __ _ _  
- . - -



.~~~~~._____ _ _ _ _ _ _ _ _ _

Part I

• STRUCTURED DESI GN OF

A FAULT — TOLE RANT RECOVERY PR OGRAM OF THE FTSC

by

K. H. Kim , J. Huang , and M. Naghibzadeh

3 

~ -.. - - ~~~~~~~ ~~ .~~~~~~~ ~-•. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



r-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — - • -

~~~

- - -

Abstract: This paper reports the results obtained in an experimental

project aimed at developing a well—structured and effective recovery

program of the FTSC (Fault—Tolerant Spaceborne Computer). This

experiment was also chosen as a means of studying the ways of using

design/program redundancy to improve the software reliability, mainly
because of the relatively small program size and the unusual

complexity in analyzing the situations that the recovery program must

deal with. The paper presents several program design and system

recovery strategies ~bat have been found to be useful in obtaining an

easily understandable recovery program of the FTSC but may also be

useful in development of recovery programs of other computers. It

then discusses a recovery program for the FTSC that has resulted from

the application of the strategies . The recovery program has been

specified in PASCAL and its conversion into an assembly language
program is briefly discussed . The listing of the PASCAL specification

is given in an appendix .

4

- - — - --—- — — —
—

~~~~~~ —- -— L•_~ 7~~s ruNtt~ n~r— ?- _ . . - na .a - -- t ,  — g j~~~-,-



- -~--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• - 1. Introduction

- :  This is a report of the results obtained in a research project

tha t involved the development of a program of the FTSC
(Faul t— Tolerant  Spaceborne Computer )  [B 1 , S1 , S2] responsible for

— recovering an operational system configurat ion and resurrect ing the
interrupted computat ion.  The project was launched with two major

objec tives:
( 1)  to ident i fy  good structures and design strategies for the

softwa re that  controls recovery from hardware fau l t s , and
( 2 )  to find e f fec t ive  ways of using desig n/program redundancy in
development and maintenance of robust real—time software ;

First , the systems employed in critical applications requiring

ultra—reliability commonly contain large amounts of redundant

hardware . The redundant hardware is provided primarily to facilitate

fault detection and recovery . Recovery , following the fault

detec tion , is typically a function of both hardware and a special

software called recovery progi’am. The hardware automatically

recovers cer tain modules , collectively called a hardcare, needed for
— 

correctly running a recovery program , and then the recovery program

recovers additional hardware modules , establishes an operational

configuration , and recovers the information needed to resurrect the

interrupted computation. The performance of a recovery program is

crucial to the success of the entire application requiring ultra—

reliability. A recovery program must be both efficient and reliable

itself. Also during the design of a recovery program , considerations

must be given to the possible faults of the hardware modules on which

the recovery program runs , i.e., the CPU and the memory oontaining

the reoov.ry program . The redundant hardware performing fault

detection may also be faulty. Engineering an efficient and robust

recovery program is thus unusually complex . In spite of the

important role that a recovery program plays in any fault—tolerant

5

____ -



system , very little has been published in this field and many

fundamental questions concerning good structures and design

strategies of a- recovery program have yet to be answered .

Secondly , the study of the methods of using program redundancy,

frequently called fault—tolerant programming, was motivated by its

potential as a means of tolerating residual design

errors/inadequacies (H1 ,H2,K1 ,R1]. In spite of recent advances in

rigorous specification , structured design , program validation , and

development of modern high level languages , large—scale software is
still put into operation with residual design errors/inadequacies.

Thus fault—tolerant programming appears to be an attractive

supplement to those already widely accepted practices for the

development of real—time software required to be ultra—reliabe. In

particular , a language construct , called recovery block, developed by

Horning et al (H3,R13 supports the incorporation of program

redundancy in a well—structured form . It thus paved a way to

extensive use of program redundancy without degrading the program

readability and provided a further stimulus to the initiation of this

study. Appendix A briefly summarizes the syntax and semantics of the

recovery block.

As a means of identifying problem areas and testing various

potential solutions, the design of a recovery program of the FTSC was

chosen. A recovery program of the FTSC was considered to be an ideal

subject of a fault—tolerant programming experiment (in addition to

being an obvious subject of a recovery program engineering

experiment), due to the relatively small program size and the unusual

complexity of the situations that the recovery program must deal

with. In addition , the FTSC is a modular computer equipped with a

powerful set of hardware features supporting fault detection and

recovery (S1 ,S23. This rich set of fault—tolerant hardware features

offers a number of options In designing a recovery program , thereby

6

L 
_______________ ______________ - 

~~~~~~~~~~~~~~


---~~~ ~~~

-

providing ample opportunities for employing recovery blocks with

—

~ -

-
benefits. That is, the primary recovery procedure , alternate

recovery procedures , and the acceptance test can use independent test

and configuration techniques. Therefore , alt hough a convent ionally

structured recovery program has operated satisfactorily on the

brassboard FTSC, an experimental development has been undertaken

under the sponsorship of the U.S. Air Force — SAMSO to study the

application of fault—tolerant programming techniques to such a

program . The recovery block provides a means of incorporating

multiple recovery procedures in a well—structured form , but the

individual procedures must also be systemat ically designed and easy
to understand to increase the chance of obtaining a robust recovery

program . This requirement , although not furthur discussed here , was

also implemented in the resulting program .

—
Although the FTSC has been documented fully in [F1 ,S1 ,S2], we

have included a sketch of its features to make this report self—

contained . Section 3 discusses the adopted organization of the

design process. Several basic design strategies that have been found

— to be useful in obta ining an easily understandable recovery program
are discussed in section 4. Section 5 describes a model of the FTSC

devised to support the development of a systematic recovery
•

procedure . The procedure obtained is discussed in section 6.
-

Section 7 provides a brief introduction to the PASCAL specification

and section 8 briefly discusses the aspect of converting the PASCAL

specification into an assembly language program . Appendix B contains

-
a com plete rec overy program spec if ied in PASCAL (augmente d with

- recovery blocks). Appendix C supplements the PASCAL specification in

Appendix B with more details on some subprocedures of testing
• modules .

— 7

A

•

— —-— - _

~~~

—. 

~

— - -  —-- _I
uIII1

2. A sketch of the FTSC structure

The FTSC is a 32—bit microprogrammable machine designed to

operate in long—duration space missions through radiation and

spacecraft discharge events. It is intended to provide a five—year

on—orbit capability with 95% probability of survival [B1 ,S1). Figure

1 depicts the configuration of the FTSC. Every functional unit

(shown in Figure 1) contains a certain amount of hardware redundancy.

Each unit is briefly described below and many features irrelevant to

fault detection and recovery are not described .

2.1 Configuration control unit (CCU)

The FTSC contains more CPU modules and lines on the address and

data buses than required by an operational system configuration.

Selection of a subset of those components to form an operational (CPU

— bus) conf igurat ion is a function of the CCU. In add it ion , the CCU

receives reports from the fault detectors , also called ~~pitors,

distributed throughout various functional units (shown in Figure 1).

For exam ple , each module that uses the address bus (A—bus) and/or

data bus (D—bus) contains a bus code monitor which detects invalid

codes on the bus. When a fault is detected by one or more functional

units (more precisely the monitors contained In them), the condition

is reported to the CCU. Upon receiving fault reports the CCU

categor izes the fau l ty  situat ion , establishes a new CPU—bus

configuration if the performance of the present configuration is in

F doubt , and then forces the CPU to execute the recovery program

through an interrupt called fault interrupt. Throughout the

execution of the recovery program the categorized informa t ion on the

detected fault is supplied to the CPU . The fault categorization

scheme used by the CCU is described at the end of this section. The

CCU is clearly a hardcore unit of the FTSC and is TMR- (triple

modular redundancy) configured .

8

_____________________________________________  
________________  ____ - -~—---~~ —-•• - ~----____________ 

_ _ _



~ 

-
i

- iii I

- 

I
~~~~~~~~~~~~~~ *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J9 141

-

-

. I
- -

~~~~~~~~~~~~~~~~~~~~ _ _- 

, ~~~~~~~~ 
~P~- i  • H_ _ _ _ _ _ _ _ _  -t

- 

~~a 

~ 

_ _ _ _ _ _ _  •Hi I
- 

I i~ ir~ ir~ .
‘—01 ~~~m }01 ~~~~ M —

~~~~~I~~ II ~!1I ~

9

2~~ Central processing unit (CPU)

-r~ system contains four CPU modules and has two of them powered“ - I

on at any one time , one called active CPU (A—CPIL) and the other

caIi-~-d moni tor CPU CM—CPU). As mentioned above , select ion of two
- o i - ’r ~~~ I C P U modules is a function of the CCU. Both the active and

I~ouit -~ CPU S always execute the same program but in d i f f e r e n t ways .

~‘ h i J o t-~~~ ~ctive CPU interacts with other modules in the system

“n ’h the buses during program execution , the monitor CPU com pares
t h c inf~~iiiation loaded onto the buses by the active CPU with the

n~~ t i i t of its own execution of the same program and reports a

- l l i ~~~r e e m e nt , if occurs, to the CCU.

P~ CPU module is microprogram—controlled and contains 8 general

r ’~ i ; ose registers. The CPU uses 16—bit (or 2—byte) addresses and

~-~<row1edges 10 levels of interrupts. Besides the RON containing the

n i c r op r c çr a m , the CPU contains another RON , called reoonf1guration

~~-~~~~~~- which contains a recovery program (to be exact , an initially

~“~ cuted segment of a recovery program). This reconfiguration RON Is

a C P U - resident part of the memory addressed by the 16—bit addresses.

i r~ererore , the system contains four copies of (a segment of) the

r~ covc~ry program distributed among four CPUs. In addition , a CPU

‘ ontaths a pair of special registers, called hardware status word

-
~~~~~~~ 

regthters and denoted by HSW 1 and HSW2, carry ing informa tion on

sy- teln 3tatus (i.e., the current CPU and bus configurations , the most

rc• ~ontly reported fault, etc) partly supplied by the CCU .

10

- ~~~~~~

--

~~~~~~~

- -

~~~~~~~~~~~~~~

-

~~~~

- - - ~
_
~~~_i• _

~1-_ - _ _ _



- - - -
~

The instruction set of the FTSC supports 32—bit fixed—point and

floating—point arithmetic as well as vector operations that are

particularly useful for navigation and pointing applications. Direct

and indirect addressing with predecrement and post increment are

available. Some instructions are specifically oriented for testing

the fault—tolerant features. For example , data words can be stored

with bad parity in order to exercise error—detection and correction

features in the main memory unit (MMU) modules . Some instructions

are designed to be executed differently by the A—CPU than by the

M—CPU. Such instructions can thus be used to cause disagreement

between the two operational CPUs .

There are instructions for powering on/off the DMA , SIU, and MMU

modules. There are also instructions , which may be called CCU

commands (these  are called “ program flags” in [S i ]) ,  by which the CPU

can cause the CCU to change its state and thereby change the system

configuration (including the selection of CPU modules and bus lines

to be u s e d) .

2.3 Main memory unit (MMU)

The MMU can o~~ist of up to 214 non—volatile and non—destructive

— 
readout memory modules , each containing 14K words. As many as 15

modules can be powered on at any one time , with each identified by a

changeable , but unique , four—bit soft (module ) name. A properly

functioning memory module responds to all addresses whose four most

significant bits correspond to the current soft name of the module.

On the other hand , each module can be accessed by a permanent and

unique module number , called hard sam_a, for the purpose of powering

on /o f f , ass igning a new sof t  name , etc .

— 11

L ____ - - 
~~-~~~~~~~~~~~

•--
~~~~~~~~~~~~


_____ -- -

An M)IU module contains 141 bit lines of which 32 are used to

contain data information , 6 to carry parity codes for error detection

and correction , and 3 as spare bit lines. Therefore, up to three bit

lines may be lost without disabling the module and the information

contained in a module can be recovered and saved into another module

as long as the number of lost bit lines does not exceed four.

2.14 Two direct memory access (DMA) units

Two DMA functional units DMA1 and DMA2 , are provided . Each is

redundant , consisting of a pair of modules of which one is powered on

at any one time . Each DMA function provides a direct parallel access

between an external user (i.e., peripheral equipment) and the MMU .

2.5 Serial interface unit (SIU)

The dual redundant SIU functions much the same way as the DMA

but prov ides serial acce-’~ f o r up to s ix ty users. Only one SIU
module is normally powered on at any one time .

2.6 Power unit (PU)

The power supply of the FTSC is provided by the redundant PU

that consists of two modules, each containing dual output (voltage)

monitors. If either monitor finds a (voltage) out—of—tolerance

condition , it immediately announces this condition to the rest of the

system and effects a switohover to the alternate module. Therefore ,

the PU is an automatically recovering unit .

12

- —--
~~~~~ ;_____ _•_

~~_ • _ - •- --- ~~~~~~~~~~~~ -_ -~~~~~~~~~ _~~~ 
-
~~~~~~ - . —• .---.--— - - - .~~- - - . - - - - - - - .-—---------_-


~ - —------ -

2.7 Timing unit (TU)

The TU su pplies clock pulses to the rest of the system and
- J

consists of two modules , each containing dual output monitors. As

with th. power mon itors , either monitor can cause a switohover to the
alternate module. Again , the TU is an automatically recovering unit.

2.8 Circumvention unit (CU)

This TMR—configured unit detects radiation events and (upon

detect ion) clam ps other units in the system until the radiation

disappears , thereby protecting them from possible damage.

2.9 Hardened timer (HT)

— The HT is used to coun t the amount of elapsed time during the

periods of PU failure or high radiation event. It is ThR—configured .

2.10 Bus network

There are seven buses. The A—bus (carrying 16—bit addresses)

and the D—bus (carrying 32—bit data words) use cyclic

error—correcting codes with 8 parity bits (i.e., 1 parity code byte)

and contain one spare byte each. Thus the A—bus consists of four

bytes of lines and the D—bus consists of six bytes of Lines. As

mentioned earlier , selection of the bytes to be used is performed by

the CCU , and the CPU can also cause the CCU to reconfigure the A—ID—

bus by executing a CCU command . In addition , there are the control

bus (C—bus) used in conjunction with the A— and D— buses , the

interrupt bus (I—bus) carrying interrupt signals , the status bus
(S— bus) carrying fault reports and reconfiguration signals , etc .

13

0~~ - •
-

- -

~~~~~~~~~~~~
-- - —-- --- - --- - -- _- — ‘------ - - - - - - --

~~ 
— ,

~
-‘— —--- --—- - - - - -

~~~~~~~~~~~
- ---- -- -- ---- -

2.11 Additional details on the CCU

Each time a CCU command for reconfiguring the CPU , the A—bus , or

the D—bus is executed , the new subset of components is chosen such

that the same subset is not repeated until all subsets have been

tried . There are a number of different states, where the CCU

establish different system configurations , that the CCU can be in.

To be more specif ic , the CCU can be viewed as containing five

flip—flops:

the first called reconfiguration state flag,

the second called alexic state flag,

the third called flag 1,

the fourth called flaa 2, and

the fifth called flaa 3.

There is a CCU command by which the CPU oan clear all five flags at

once. These flags are used as follows .

(1) The reconfiguration flag is set (i.e., the CCU enters a

reconfiguration state) when a fault interrupt is generated by the CCU

(after receiving a fault report in a normal state).

(2) On receiving a report of a PU failure or high radiation event ,

the CCU enters an alexic state (by setting the alexic flag) and this

state transition causes a signal to be generated for turning off the

DMA , SIU , and MMU modules.

14

• iT. . —

-- -~~~~ --

_ _

(3) Flag 1 , flag 2, and flag 3 can be set only by execution of a CCU

command (by the CPU). When flag 1 is not set while the CCU is in a

reconfiguration state , the DMA , SIU , and MMU modules shall not

respond to any address on the A—bus. By setting flag 1 the recovery

program can enable the modules to respond to their addresses and will

do th is at its convenience. In fact , flag 1 was provided primarily

to enable CPU and bus tests without affecting the DMA , SIU, and MMU

modules. Thus flag 1 can be used to indicate that the CPU has been

validated . Flag 1 can be reset in three different ways: PU failure

or high radiation event , CPU reconfiguration due to detection of a

CPU f a u l t , or execution of a CCU command .

(14) Flag 2, when set, inhibits CPU reconfiguration and generation of

faul t interrupts due to var ious faul ts exce pt PU failure , high

ra diation events , and TU reconfiguration (i.e., automatic module

—
switchover). Flag 2 is reset on detection of ~~~ fault and can also

be reset by execution of a CCU command .

(5) Flag 3, when set, inhibits generation of fault interrupts caused

— by the reports implicating the A—bus , D—bus , DMAs , SIU , or MMU . Flag

3 is reset on detection of ~~~ fault and can also be reset by

execution of a CCU command.

The fault categorization scheme used in the CCU is thc.-

following . -

—
Cat I; PU failure or detection of radioactive events by the CU ,

Cat II: CPU implicated (e.g., disagreement between A— and N— CPUs),

Cat lila: A—bus implicated (e.g., detection of an invalid code on

the A— bus by more than one bus code monitors),

Cat Ilib: D—bus implicated ,

Cat IV—DMA1 : DMA 1 implicated (i.e., the DMA1 is the only unit that

detected an invalid code on one of the buses),

15

-—-- •~~~~~ - - - ~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~

- - - -

~~~

•

~~~~~~~~~~~~~

IV— DMA2 : DMA2 implicated ,

IV—SIU: SIU implicated ,

IV—overr un : An MMU , DMA , or SIU mo dul e has not respon ded to a
request within the predetermined period ,

IV—TU: TU reconfiguration (i.e., switchover) has occurred .

While the system is in a reconfiguration state , the CCU supplies the

category information about the most recently reported fault to the

CPU (to be exact , to a field of the HSW1).

16

I

~T-~1~- ~~~~
‘‘ ‘~~~

-
~ -

.

____________________ 1~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ -—--—_-—- -—-- ~~~~~~~~ -- - --——~~~~_- -————~~~~~~~~~~~~

3. Organization of the design process

At the beginn ing of th is pro ject a plan was ma de to carry out
the design study through four major steps:

(1) model ing of the FTSC ,
— (2) identification of feasible recovery procedures ,

(3) specification of a recovery program in PASCAL , and

(13) study the aspect of coding a recovery program in the FTSC

-
assembly language.

The rationale for this plan is given below .

First , it was fe l t that systematic searc h for var ious e f f e c t ive
- recovery procedures could be greatly assisted by working with a

mach ine model which hides many recovery—irrelevant features of the

sophisticated FTSC . Modeling of the FTSC was also motivated by the

hope that a pro perly chosen model woul d fac ilitate the val idation of
the capability and efficiency of a resulting recovery program .

Secondly, a f ter determ ining a recovery p rocedure based on a FTSC

- model , one could directly convert the procedure into a final recovery
program (i.e., an assembly/machine language program). However , it

seemed clear that validation of such a recovery program woul d be
inefficient , especially considering the numerous unusual situations

- that a recovery program must circumvent and t he large number of test
cases that may be required . Modification or debugging of such a- ’

program would also be difficult. Therefore, the chance of success in

obtaining a robust recovery program was expected to be greatly

• enhanced by obtaining a high level language version of a recovery

program first , checking it out by a compiler , and then developing a

- f inal recovery program by using the high level language vers ion as a

- specification. The language chosen is PASCAL. The natural control

primitives (e.g., if—then—else , case , while—do , etc) would relieve

the designer of the burden of implementing equivalent control

17

~ 1 - . .
—-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ — - - --- --

sequences in inconvenient assembly language primitives. In fact, it

was necessary to augaint PASCAL with a recovery block to experiment

-: fault—tolerant programming. A translator that translates a program
- written in PASCAL augmented with the recovery block into an

equivalent program in ordinary PASCAL , has been developed . It is

documented in [K2].

18

A
-- -

- - -

-

,

~~~~~ , ~~TT



14. Design strategies

Several strategies that have been followed throughout the design

and found to be useful in obtaining an easily understandable recovery

program , are now discussed .

4.1 Fixed ordering of units for recovery

- 
When fault monitors are distributed among various modules , it is

highly tempting to check and recover modules in varying orders

depending upon how some modules indict the others. However , th is is

a dangerous strategy , considering the possible occurrence of multiDle

faults (i.e., simultaneous occurrences of faults in multiple modules

or failure of a module before another already faulty module is

located and amputated ) as well as the indictment of operational

modules made by the faulty modules. In other words, the behavior of

a recovery program based on such a strategy in the presence of

multiple faults is difficult to predict.

For example , assume that from the receiv~d fault reports the CCU

has identifed a certain fault category that may be caused by either a

malfunctioning CPU or a malfunctioning (A—/D— ) bus. If the CPU is

first tested using the untested bus and the actual faulty unit is the

bus , disagreement between the A—CPU and the M—CPU may result and lead

the recovery program to implicate the CPU of being faulty. On the

other hand , if the bus is first tested using the untested CPU while

the CPU is malfunctioning , the CPU could mistakenly cause a good bus

to be diagnosed as the faulty one . Worse yet , bus reconfiguration

and reentry of the malfunctioning CPU into the recovery program could

lead to an endless loop. In this sense an endless loop means an

infinite repetition of entering the recovery program cau5ed by an

unidentified faulty module while there remain a sufficient set of

operational modules to form an operational configuration .

19
t

- -
~~~~~. - 

-

•

aa •-ata~~ ~~~-‘-- - —h ,t~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To alleviate such problems , it is useful to observe he rule of

recovering units in the same fixed order and using only~ the already

validated (and recovered) units in recovering other units. Under the

rule the total recovery process becomes a strictly linear sequence of

unit recoveries. To illustrate some implementation aspects of the

rules, consider a system of three units ordered as shown in Figure 2.

Unit Ui occupies the first position and is assumed to be hardcore.

Assume that Ui is capable of performing the function of the CCU in

the FTSC, i.e., receiving fault reports and invocation of the

recovery program , and also that the execution of a recovery program

can be started by using Ui only. The initial segment of the recovery

program first tests and recovers unit U2 and during this process it

must not use unit U3 in any way . Furthermore , if unit U3 contains a

monitor which can indict unit U2 and can cause the recovery program

to be reentered , then either the monitor must be disabled or Ui must

be armed to ignore a fault report from the monitor (during the

testing of U2) since U3 cannot be trusted yet.

After recovering U2, the recovery program proceeds to test and

recover U3 and during this process the recovery program may rely upon

the monitoring capabilities of Ui and U2. At this time it is

possible that U2 is faulty because of two reasons although both cases

have very low probability of occurrence. First , even though U2 was

recovered earlier , it could have become faulty by the time when U3 is

under teat. Second , the recovery program could have misjudged a

faul~~ .2 module as an operational module and (thus misjudged that 3J2

wa~ recovered). Therefore , the recovery program must be designed

such that when all possible configurations of U3 have been tried and

have failed in validat~ton , the configuration of U2 is changed and

validation of U3 is reattempted . It is of course possible that the

monitors in Ut and/or (72 detect the faulty condition of U2 and report

to Ui before all possible configurations of 173 are tried , in which

20

/~:. •

—~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- 

~~~~~~~~~~~

U3

U2

-

Ui Hardcore

Figure 2 A system consisting of three
functional units

I.

- 21

- t
_________ — ~~~~~~~~~~~~~~~~~~~~~ . . _~~~~. ~~~~~~~

- -

_ _ _ _ _ _ _ _ _ _ _ _

case U i wil l reconf igure (72 and reinvoke the recovery program .

14.2 No trust of a module by default

Since the FTSC hardware (especially the CCU) keeps a

considerable amount of information on the fault that has caused a

recovery program to be entered , it is highly tempting to assume ,

during the design of a recovery program , that units not implicated by

the hardware status words (HSWs) are operational. Such an assumption

may not be valid because occurrence of another fault during recovery

of a previous fault is a real possibility and may destroy the

information in the HSW registers about the first fault. Therefore ,

i t was made a rule to assume on entry of a recovery program that

every module coul d be fau l ty and to t rust a mo dule onl y a f t e r it
passes an explicit test . In other words , recover y was regar ded as a
process of finding operational modules out of all potentially faulty

modules rather than a process of finding faulty modules from a

configuration of mostly working modules . This conservative approach

f a c i l i t a t e s the design of a recovery program that avoids en te r ing an

endless loop.

13.3 Redundant design

Unlike the behavior of a correct machine , the behavior of a

faulty machine is very difficult to predict. From the beginning it

was expected to be a difficult task to find a single recovery

procedure which works under all possible circumstances. Therefore ,

it was also made a rule to mobilize a set of alternate procedures .

These alternates can be specified in a well—structured form by use of

the recovery block. Additional specific justifications for this

redundant design are given in section 6.

22

:. J
__________ _______________________________________ - ~~~- -•~--

-
-

~~

-

-
—- - - - - - --- --- . —

~~~~~~
- - - ------

_ _

4~~ J4 Simplicity over efficiency

Finally it was decided that wherever there is a trade—off
between simplicity and efficiency, simplicity would be given a
priority. Only if a recovery program resulted from this strategy
fails to meet the performance requirement , then various ways of

optimizing the program , preferrably without changing the overall
program structure , can be sought for.

23

- i
_ _

_‘
4 _

~~~~• •~~ ~. - 
-

-
_
;~

- -

______ - _~~~~ —~~~~~~ -
- •~~V~~ -

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

— — —------- - - —~ z -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5. Basic functions of a recovery program and modeling of the FTSC
r’

As ment ione d before , a recovery pr ogram in the FTSC is
responsible for establishing an operat iona l har dware conf igura tion
and recovering some of the lost information in the memory . In other

words , a recovery program ident if ies a set of opera tional mo dules

sufficient for normal processing and then restores the system to an

executable state (i.e., restores important memory contents and

conditions peripheral units to the states ready for normal processing

by appropriately setting control registers contained in them). (On

com pleti on of t he exec ution of a recovery program , the executive

(i.e., supervisor) program wili enter and schedule application tasks

to restart from their rollback points.) A useful FTSC model must

therefore illuminate the procedure of expanding the set of trusted

modules until an operational configuration is established . A natural

modeling criteria is the operational precedence among functional

units (each consisting of multiple modules). If unit A has higher

operational precedence than unit B, then unit B cannot operate

reliably unless unit A is Operational . Figure 3a depicts a FTSC

model displaying the operational precedence among units. The

rationale for the ordering in Figure 3a is the following .

(1) Since the PU supplies the power to all other units , it must be

working reliably before any other unit can be used . Naturally it has

the highest operational precedence.

(2) The unit having the next highest operational precedence is

somewhat arbitrarily chosen to be the CU. It depends only on the PU

for proper functioning .

(3) The operation of all other units (exclud ing the PU and the CU)

depend s upon the correct clock signals supplied by the TU. Thus the

TU has the third highest operational preceden ce.
( 4 )  The HT ma inta ins t he record of elapsed t ime dur ing the per iods of
PU failure and high radiation event. The proper operation of the HT

is d epen dent only u pon the PU , CU , and TU. The CCU is also dependent

24

?_~Z ~~~ SSZfl ’ t- %- _ - n~~nr. - - -



—- 
~~

-

~~~~~~
-

0\.
~

\ I’m

I.

I

‘ V

U
V

&

.2
0

U . i.

04 0-

25

L ~~~~~~~
— -~~~~~~~~-- — -_-- ~~~~~~~~~~~~~~~~ ---

- -- ~~~~~~~~~~~
-

on l y on the PU , CU , and TU. Therefore , b ’th the HT ~~~~ i’i the t’Cl1

immediately follow the TU in the order of operat’c~ a1 pF~~ r~e~1Pn0e.

• The HT provides information important to some (real.- ~- ime) arp licat ion

tasks , but no functional unit in the FTSC is reali~’ 4 er v 4 ør ~~ On ~t .

In con trast , if the CCU is not operational , no other re J i •j~~~ I.i1t t 5

such as t he CPU , buses , MMU , etc can be rel ied upon .
(5) If all the units placed below CPU in Figure 3a a~ wei 1 a~ the CPU

function properly , then the CPU can execute the part 0 ! t h e reo.overy

program that does not involve the use of the units riaced above the

CPU. For example , the CPU can interact with the Cru ~ nr~ t h t ~ does

not involve buses except (a part of) the S—bus. On the other hand ,

the A—bus , D— bus , or C—bus are useless if the CPU is nn t available

because the CPU is normally in control of these b”~ e~’. J’h~ i~~ t h e CPU

is regarded as having higher operational precedence than those buses.

(6) The A— bus and D—bus are usable by various fi’nc. t i~~~~ 1~ ~ii’~~ Ofl l y

if the C—bus is operational , but not vice versa .

(7) Similarly the MMU and peripheral units (i.e., 1)MAe end SIll) are

regarded as having lower operational precedences than the A—bus and

0—bus because they are not usable if the buses are not working .

Figure 3b depicts the same model in Fi gure 3a ir . the form of a

precedence graph with one modification. The mn di ficat~ on 15 in the

separation of MMU modules into two sets: one ~“~n~ isti0g of two

modu les called ~ystem memory mod~i!~~ and the -~~~~ i~~~v’ corisi~~t i ng of

remaining modules called application memory m o d u l e s . The two sy s t e m

memory modules contain , among other impor tan t infr~r”~a t io n , an

exeoutive program and duplicate copies of the s~~~jrn in~ p t h a t shows
the status and functional assignment of both periph~ r~ J ~n~ dules and

memory modules . For example , a par.t of the system nap is a table

sh o w i n g for each memory module the soft name as s ign ~~d , L h e “u r r e n t

- hit ~tne configuration (i.e., the three bit lines that m r ” no t ~n
use), the status (i.e., act ive , available spare , or ‘~n t i ~ a h l e) , e t c .

Thus the system map r ep resen t s the most r.~’ent1 y ~st.ablished

26

~~ ;~
.
~
-.

L... - - - - - —
- -

~~~~~~~~~~



__ - - -

- 

DMA ’s
Application

m.iory slu

Systea

• A—bus D—bua

0
C—bus

- 

A-cpu 

~~~~~~ 

~~~~~~~~~~~~~~

* : T~~ configuration ‘ru
— 

.‘~~. (faults of) wires
coming Out from only - 

-

one unit are not
dist inguished

- from the (faults *
— of the) unit. CU

Pu

Figure 3b A preceden ce graph model of the FTSC

27 

-.1. :: “
~:• •~& - •1~_._~ -



—n- — - -  - - - 
~~~~~~~~~~~~~ .:

-
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---—---.-----
~~ 

—

configurations of peripheral units and the !*IU. In addition , what is

more important from the recovery point of view is the useful content

of an MMU module rather than the module itself. Some memory contents

cannot be recovered (to be more exact, are not identifiable) if the

system map is lost , although the operational capability of memory

modules can b e validated wi thout  using the system map. It thus seems

useful to regard the system memory as one having higher operational

precedence than the application memory . Similarly, the execution

states of peripheral units cannot be completely restored without

us ing the system ma p , although the operational capability of their

modules can be validated without using the map.

The units  marked • in Figure 3b are the TMR—configured ones and

thus their internal faults are masked off (privided that two out of

three modules are operational at any one time). In fact , all the

units that have higher operational precedence than the CPU are

automatically recovering ones and thus compose the hardcore that does

not burden the recovery program .

28

\ ~
_
‘L _ _ _ _ _ _ _  _ _ _ _ _ _  

- -
‘ -

—- _.a.~~~ .. - -  .~ _ r_ n_.2 •~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ———————~~ 
-



6. Recovery procedure -

In principle, the overall recovery process can be designed in a

straightforward manner on the basis of the FTSC model presented in

the preceding section. The process should essentially be a

step—by—step expansion of the set of trusted modules in a decreasing

order of the operational precedence. The order in which the modules

having the same operational precedence are tested and recovered is

— 
immaterial as long as the same fixed order is used consistently.

In the FTSC, fiR—configured and automatically recovering units

form the hardcore. No capability is provided within the FTSC for

— direct repair or reconfiguration of the hardcore. (The FTSC was

designed , however , to allow the ground station to intervene and

control various functional units after failure of more than one CCU

module. This ground—override mode is outside the scope of this

paper.) Thus the correct operation of these functional units must be

trusted by a recovery program without explicit checks.

When a recovery program is entered , a certain amount of

information on system status including the categorized fault report

is available from the HSWs . By utilizing this information a recovery

program can establish a working configuration in an efficient manner.

Basically faults of multiple modules causing an invocation of a

recovery program are less probable than faults in •a single module.

In other words, if the categorized fault report implicates a certain

module of being faulty, then the probability of other modules being

faulty at the same time is small. Thus, the recovery program can

cheek the implicated module more thoroughly than other modules . This

strategy of using “weak” and “strong (thorough)” tests is of course

somewhat against the aforementioned rule of not trusting any module

by default. However , it is a way of reducing the (average) execution

time of the recovery program , thereby reducing the probability of the

29



- _ - - -_ -— -- ---- -,-.- -- - ---- -~ --,-----. —‘--- --— - , -

~~~

—----

~~

-

program failing in meeting the execution time requirement . Later an

analysis may reveal that the worst—case execution time of a final

recovery program is far less than the tolerable limit. In such case ,

some weak (module) tests can be deleted to leave only strong tests in

the recovery program , thereby increasing the robustness of the

program even further. A penalty incurred by using a% weak test is

the increased probability of a faulty module being undetected (i.e.,

validated). Therefore , in order to make u~e of weak tests without

much sacrificing the capability of correct recovery , an acceptance

test needs to be provided at the end of a recovery program to ensure
that the entire computer system has been correctly recovered . An

alternate procedure which uses only strong tests must also be

provided to recover the system if the result of the primary procedure

is rejected by the acceptance test. Thus the use of weak and strong

tests is to trade the increase of the worst—case recovery time xor

reduction of the average recovery time.

The t ransient f au l t s are expected to be the predominant

fault-type. The occurrence of a transient fault can be determined if

the module that has been indicted passes a (strong) test .

Nevertheless , the source of the transient fault is not always easy to

locate. For instance , if the A—bus has been indicted but both the

A—bus and its most recent user DMA1 (that loaded an address on the

bus at th. time of fault reporting) pass (strong) tests , then one may

conclude that a transient fault has occurred . Both the A—bus and

DMA I will be suspected as the possible sources of the transient fault

but the exact source cannot be identified . It is useful to maintain

a transient fault count and to set a tolerable limit to the count for

each module. When this limit is reached , the associated module can

be treated as an unusable module and thus replaced by a standby

module. The procedure of updating transient fault counts is not

detailed in this paper.

-

:/.
~1 ~~~~ .

flr~~~ -— ~~ —

p r i • -
~

-
~~~~~~~

-- - -— ~~~~~~~~~~~~
---

~~~~ ~~~~~~~~~~~~~~~ T T~~T’~~

The recovery consists of the following sequence of actions.

(1) validation of the CPU’s capability of reading the hardware status

words,

(2) validation and necessary reconfiguration of the CPU ,

(3) validation and necessary reconfiguration of the A—bus and the

D—bu s,

(~4) recovery of the system memory ,

(5) recovery of peripheral units,

— (6) recovery of the application memory ,

(7) acceptance test of the new system configuration (i.e., result of

the recovery) and normal processing restart.

— The rest of this section briefly explains the above actions.

The first action taken by a recovery program is to check if the

present CPU can correctly read the HSWs. Failure of this validation

will result in reconfiguring the CPU (i.e., selecting a new pair of

CPU modules as the A— and M— CPUs) and reinvoking a recovery program .

If the va].’idation is successful , then the recovery program will

— proceed to check the CPU (to be exact , the part of the CPU not used

in reading the HSWs) because the CPU has the highest precedence among

the units that need to be checked.

— If the HSWs indicate the occurrence of a CPU reconfiguration ,

then the (current) CPU is thoroughly tested . Otherwise, a weak test

procedure is used . In any case , if the CPU fails in validation , it

—
must be reconfigured . (Recall the CCU command provided for this

programmed reconfiguration.) Both weak and strong test procedures for

the CPU are detailed in Appendix C. By the rule of fixed—order unit

• recovery , a CPU test procedure must not use any un it (includ ing the
— A— ID— bus) having a lower operational precedence than the CPU. This

means that a faulty condition of the CPU must be detected by the CCU

(that has the higher operational precedence than the CPU).

31

.—- - -=•- - - —•—— —- — ~~~~~~~~~~~~~~~~~~~~~~~~ - —- ~~

•.•

•.
~~~~~~~~

.— — — — ~~~-
- -‘~

-‘,--•



r — 
—----—~

--------—~
---

~~~
—

Therefore , a CPU test procedure is generally designed to compute a

function by using certain parts of a CPU module and then send a CCU

command (through a part of the THE—configured S—bus) if the

computation result is in a certain expected range. The function must

be chosen such that if the parts of a CPU module under test are

faulty, the probability of the result being out of the expected range

and thus no CCU command being sent out is very high. When the CCU

receives a CCU command from only one of the two powered CPU modules ,

the CCU reconfigures the CPU. Since the H—CPU monitors the C—bus and

the C—bus is THE—configured , a thought was given at first to the

possibility of using the C—bus in validating the CPU although the

C—bus is placed above the CPU in Figure 3b. This could not be

implemented because the FTSC instruction set did not include an

Instruction which changes the C—bus only (without affecting the A— ID—

bus).

Use of a weak test procedure can be justified only if a strong

test procedure requires a large execution time and the weak test

procedure can detect a faulty module with much reduced execut ion time
• and yet with little reduced effectiveness of diagnosis. This was not

the case in validating the A—bus and the D—bus. Therefore , only a

strong test procedure was provided . In addition , t he same test

• procedure can be applied to both the A—bus and the D—bus .

By the rule of fixed—order unit recovery , the val idat ion of the

A— /D— bus must be performed free of the interference by the units

having lover operational precedences than the A— /D— bus. The FTSC

was designed to ease the implementation of this procedure. If flag 1

is not set while the system i~ in the reconfiguration state , the MMU ,

SIll, and DNA modules do not attend to the buses. Thus detection of a

faulty bus relies upon the bus code monitors contained in the CPU.

(It was assumed that the H—CPU will report to the CCU the

disagreement with the A—CPU only if the information on the bus is a

32

• ~~~~~ . -
-

-— _=
~:_ — -~~ Y-&2~~~~~: -sr~~~ ,n . --- - — - - —

--

valid code.) The test procedure involves repeatedly placing a ‘0’ and
• — a ‘1’ on each bit position of a bus.

L~~
Having established a~(working configuration of the CPU , the A—

bus , and the D—bus , the next step is to recover the system memory

modules. Flag 1 is first set so that the MMU , DMA , and SIU modules

may respond . Now whenever a word is loaded onto a bus, a peripheral

module containing a ‘crazy ’ bus code monitor can report to the CCU

— the detection of an invalid code on the bus even though the bus is

correct and the word loaded is a valid code . It is also possible

that a malfunctioning (powered) peripheral module may respond to an

address which is not the one assigned to itself. Since the system

memory recovery must be performed free of interference by the units

hav ing lower operational precedences than the system memory , all the

peripheral units are powered off before search for the system memory

~odulaa begins . During the execution of a power—off comman d for a
peripheral unit , another peripheral unit may interfere by generating

a Cat IV fault since the command involves the use of the A—bus.

Therefore , flag 3 must be set in advanoe to mask such fault reports.
— Note also that a module may “resist” to obey the power—off command ;

it can then be powered off only when the system enters an alexic

state .

—
A system memory module is assigned a soft name 0 or 1. An

operational system memory module contains a special bit pattern ,

called a map flag , in its last location (address: 14095). Therefore ,

—
even if the contents of soft name registers in system memory modules

are lost due to PU failure or other faults, it is possible to

identify a system memory module by checking the last location in
-
- non-volatile memory . In the FTSC , a memory location can be read only

— by a soft address. It may seem reasonable that if it is suspected

that most memory modules are powered on (after setting flag 1), then

a memory read can be commanded with soft name 0 (or 1) and location

—

33

•—..———•—-
~~~

—.—••
~~~~~~~ 

•
~~~ ••~--~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_______ - -

• address I~095 to see if the value read is a valid map flag. However ,

a malfunctioning memory module could have 0 as its sof t  name and thus

- 
more than one memory module may respond to soft name 0 (or 1).

There fore , it was decided to turn all the memory modules off and then
- J  power at most one of them on at any time during the search for system

memory modules. (In the case where volatile memory modules are used

together with backup batteries , the above strategy may be overly

conservative and a different strategy may be desired.)

The search for system memory modules vi].]. result in one of three

different situations: none found , only one found , and both system

memory modules found . In the first (infrequent) case where no system

memory modules have been found , a “cold restart” procedure is entered

to establish the system memory by using the information stored In the

backup memory. The cold restart involves finding two operational

memory modules and one operational DMA module and then establishing

the system memory (i.e., loading system software including the

executive program from a backup memory into the two memory modules

using the operational DMA module and initializing system maps in the

modules). In the second case where only one system memory modu 1.e has

been found , the module is tested . If it passes th’~ test , then

another operational memory module (preferably a module designated as

a spare in the system map contained in the just validated ~~ste n’
memory module) is found and made the other system memory rodule.

That is, the system map is copied into the newly assigned system

memory module and some system software is loaded onto the module from

the backup memory . If the first found system modul.e fails the test ,

then the cold restart procedure is entered . In the third case when

both system memory modules have been found , the two modul es are

tested and if any of them is found to be faulty, the procedures used

in the previous two cases can be used again to recover the en~-Ir e

system memory .

34

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~~~~~


~

With the properly recovered system map, an operational

— configuration of peripheral units can be established efficiently.

The modules indicated to be faulty in the system map need not be

(powered on and) accessed at all. On the other hand , each module

indicated to be operational in the system map is powered on and

tested by a strong test procedure if the module is implicated by the —

HSWs , and by a weak test procedure , otherwise. A peripheral module

is implicated when the present execution of the recovery program was

caused by one of the following events: (1) the module had reported

the detection of an invalid code on the A— /D— bus without being

corroborated by other units , i.e., a Cat IV faul t had occurred , (2)

the address that the module had loaded on the bus for reading from or

writing into a memory location was an invalid code , i.e., Cat lIla
fault had occurred (but since then the A—bu s has been validated), and

(3) the data that the module had loaded on the D—bus for writing into

—
a memory location was an invalid code.

The last unit to be recovered is the application memory .

Recovery of the application memory consists of two steps : one to

— identity all the operational memory modules and the other to recover

the application information (i.e., the content of the application

memory that had existed prior to the fault that caused the entry of

the recovery program). Similar to the establishment of an

operational configuration of peripheral units, only the (application

memory) modules indicated to be operational in the system map are

accessed. Again a module is tested by a strong test proceaure if it

—
is implicated by the HSWs , and by a weak test procedure , otherwise.

A memory module is implicated when all of the following three

cond itions are met: (1) the HSWs indicate the occurrence of a Cat

IlId fault (i.e., detection of an invalid code on the D—bus by more

than one unit) as the cause of the present execution of the recovery

program ; (2) the HSWs indicate that a memory read operation was in

execution when the fault occurred and the address used corresponds to

35

- -

,

~
•‘

~~~

• 
•

_____________ ~~~r ~~~~~~~~~~ -_ ~ 
a -.n r r~~~ , t r —r ~~~~~~~~~~~~~~~ 

—‘k~~”t



-•

the module; and (3) the D—bua has been validated . If the CPU was in

control of both the A—bus and the D—bua when the fault occurre d , then
the address used is kept in a field of a hardware status word

register. On the other hand , if a peripheral module was in control
- J  of the buses , then the address used is kept in a field of a status

register of the module. Recall that at the beginning of the recovery

of the system memory peripheral units are powered off and the

contents of their status registers are lost. Therefore , before

taking power of f a peripheral module that keeps the most recently

used address in its status register , the recovery program must copy

the content of th. status register into a register within the CPU.

The procedure of recovering the application information (after

identifying all the operational memory modules) is essentially that

described in (D1 ,L1 ].

Once all the units up to the application memory have been

recovere d , an acceptance test designed to check the acceptability of

the recovery program execution (i.e., to check if t he system has been

properly recovered ) is executed . This is motivated by the following

considerations. First , a certain unit that has already been

recovered may become faulty during recovery of other units and remain

undetected until the acceptance test is executed . This is a rather

minor motivation because (1) the CPU and the buses are monitored at

high frequency and thus only the peripheral units and the MMU can

have non— negligible latent faults, and (2) even i1~ there is a faulty

• unit on resumption of normal processing , the un it can be detected
later and recovered by execution of the recovery program .

36



A more potentially serious factor that justifies the use of the

- :  
— acceptance test is the possibility of incorrect recovery of a certain

faulty unit by an (imperfect) recovery procedure. If the unit is
- -

~ detected later during normal processing , the recovery program may

again incorrectly recover the unit , thus leading to a disastrous

loop. This rather pessimistic but pragmatic attitude is based on

recognizing the difficulty of complete understanding (or perfect

analysis) of the behavior of a faulty machine . It is realistic to

assume that , given any single recovery procedure , situations could

arise where the procedure is not effective. It is thus a pratical

necessity to make provisions in the recovery program for attempting

to circumvent the situation after a recovery procedure has failed
— (i.e., for tolerating or covering up some local design

faults/inadequac ies during execution). The aforementioned loop can

be broken only if a different recovery procedure is tried . The

acceptance test is obviously a means of recognizing the need for

execution of an alternate recovery procedure.

It is desirable that alternate recovery procedures be logically

— simpler and also take more global (or drastic) recovery actions than

the primary recovery procedure. An alternate that we adopted , takes

the following actions: (1) it recovers the CPU and the buses by use

of strong tests only, (2) it uses (only) the cold restart procedure

to recover the system memory , and ( 3 )  it recovers the peripheral

units and the application memory again by use of strong tests only.

This alternate is substantially simpler in logic than the primary

— 
although it may require a larger execution time.

— 37

- • --c
~

_ ~~~~~~ 
• .

—

-•

• - - -; — • ~~~~~~~a ..a. S.SS.-



___________ -~~ .•-~ ~~~~~~~~~~~~~~ 
- 

~
— -• - •-- -- 

- 

—• 
~~~~~~ •

The acceptance test plays an important role in increasing the

robustness of the total recovery program . Two Important requirements

of an effective acceptance test are the simplicity and the logical

independence from the primary or alternate recovery procedures. That

is, the logic of an acceptance test must be simple so that the

probability of having an incorrectly designed acceptance test may be

minimized. In addition , it must be independent of the logic of the

primary or alternate recovery procedures so that the probability of

having similar errors in both the recovery procedures and the

acceptance test may also be minimized. The acceptance test that we

adopted , takes advantage of the following property: if the new

system configuration is operational , then computation of a function

that involves the use of any parts of the configuration in an

arbitrary sequence must produce a correct result. It also seemed

useful to take advantage of the following property: the difference

between the old system confiauration (i.e., the configuration prior

to the execution of a recovery procedure) and the new system

configuration (i.e., the configuration after the execution) must not

be contradictory to the HSWs (specifically the information on the

most recently reported fault). For instance , if the difference is

only in the SIU configuration , then the acceptance test can check if

the HSWs have implicated the (previous) SIU configuration or any unit

that can be affected by a malfunctioning SIU. However , this approach

was not adopted because of the difficulty of the complexity of the

logic and the difficulty in saving information on an old system

configuration .

If an incorrectly recovered unit is detected before the

initiation of the acceptance test and followed by reinvocation of the

recovery program , then a disastrous looping can still occur (because

an alternate recovery program will not be executed). Since the CPU

and the buses are automatically reconfigured on detection of their

faults, an infinite loop due to incorrect recovery of one or both of

38

_______ __________________________________ —
i~~~ - --—-

_ _ _ _ _ - -

the two units is unlikely to occur (provided that the probability of

the recovery program reconfiguring an operational unit is

negligible). Therefore , the problem is reduc ed to maximizing the

probability of detecting a loop due to incorrect recovery of the

system memory, peripheral units, and/or application memory. Once the

system memory is recovered , recovery indicators or histories of

multiple consecutive executions of the recovery program can then be

recorded as long as there is storage space within the system memory .

—
Thus if the recovery program is reentered later but before resumption

of normal processing , then the recovery program can learn by

examining the indicators that the present execution is not the first

execution since the interruption of most recent normal processing .

(In a sense , flag 1 serves the function of a recovery indicator to a

limited extent.) After some iterations the recovery program can

revert to an alternate recovery procedure.

39

. .

7. Specification of a recovery program in PASCAL

• The prooedure discussed in the preceding section was specified

in PASCAL . Appendix B contains a complete listing of the PASCAL

specification. The specification is in sufficient detail so that a

final machine program can be obtained in a straightforward manner

from it. Some low—level procedures were specified in plain words

(enclosed by ‘< ‘ and ‘>‘) because their PASCAL specification was not

expected to be more readable while their functions are simple.

There are two types of variables declared in the PASCAL

specification. One set of variables called system variables

represent storage components in the FTSC, i.e., registers and memory

words. The other set of variables are program variables that exist

only during execution of a recovery program . Each module is

abstracted into the set of registers and functional capabilities

(including error detection) that th. module possesses. The

abstraction of each type of module is treated as a data type in the

specification. Due to the rsatrictton in PASCAL , descriptions of

functional capabilities of each module were introduced as comments.

The procedures in the PASCAL specification are organized as

follows. The main procedure carries out the sequence of functional

unit recoveries as discussed in the preceding section. The main

procedure calls other procedures which are divided into two classes;

the procedures of testing modules form one class while the remaining

procedures form the other class. Comments were inserted in various

places in order to make the entire program self—explanatory . The

objective of each procedure/function is explained either immediately

after the procedure/function statement or where it is called (i.e.,

inside the body of a calling procedure).

40

_ _

~~~~~

- -
~~~~~~

-
-:
~ -~~~~~~~~ ~~

_j

~
--• - •~ -- - - - - ---- —

•- -
~~~~~~~~~~~

•---
~~~~

-—--- - -
~~~

• ---—
~~~~
-

8. Assembly lanauue coding of the PASCAL sDecification

Assembly language coding of the PASCAL specification can be done

in a straightforward manner. For example , let us consider the

following statement extracted from the beginning portion of the main

procedure.

for i:=5 to 8 do

if hswl.fault_cat [i]=1 then begin pflag6; pflag7 end ;

This statement is designed to test the CPU ’s capability of reading

HSW1 . This can be coded as follows.

LDR ,2 =14 (set the iteration counter)

LDR ,1 X’F800’ (load regl with HSW1)

LRS,1 :—3 (shift left by 3 positions)
(396]: LRS,1 :—1

JPZ , 1 1400 (skip if the lef t—most bit is 0)
STZ X ’F 8OE ’ (program flag 6)

STZ X’F807’ (program fl ag 7)
[1400]: JDN , 2 396 (repeat if 14 i terat ions are not done)

The structure of the PASCAL specification should be preserved in
— assembly language coding to reduce the cost of debugging and

maintenance. - •

The recovery block in the PASCAL specification does not require

saving any register or memory word at the beginning or in the middle

of execution of the recovery program . It was designed in that form
to preserve the simplicity of the overall recovery program . Thus

coding the recovery block in an assembly language should again be

straightforward .

41

I

~ ~~ —

9. Summary

Design of an effective recovery program for a fault—tolerant
• computer such as the FTSC represents a special type of challenge in

software engineering. The difficulty in this design is related to

the unusual input to this program , i.e., a faulty machine whose

behavior is difficult to analyze. In view of the vital role that the

recovery program plays in fault—tolerant computing , it must be

designed with simple (i.e., easy to understand) and systematic

procedures of recovering the system. The rules of fixed—order unit

recovery and conservative recovery discussed in section 14 meet these

criteria . Recognizing the difficulty of complete understanding of

the behavior of a faulty machine , it seems also realistic to provide

an alternate recovery procedure that can be used when the primary is

not effectiv e, and the acceptance test that can judge the

effectiveness of a recovery procedure at run—time. Measures of

success in this direction largely depends upon the logical simplicity

of the acceptance test and the logical independence among two

recovery procedures and the acceptance test that are used .

In order to obtain a well—structured recovery program and also

take advantage of available tools (applicable to high level language

programs), the approach of first obtaining the high level language

specification of a recovery program instead of directly constructing

a machine/assembly language recovery program was adopted . PASCAL was

ohosen as the specification language. The PASCAL speoiftcation is

almost as precise as the machine program and yet almost as readable

as a natural language specifioation. It can also be checked out to a

certain extent by using a PASCAL compiler , provided that various

actions of the FTSC are simulated by (PASCAL) procedures . Such a

checkout is thus limited by the simulation cost.

42

- - - _ _ _ _

-

~~~~~~

r
Although much care has been taken in this development to obtain

an easily understandable recovery program and the checkout of the

program with a PASCAL simulator-compiler might be of help in

establishing confidence in the correctness of the PASCAL

specification , it seems worthwhile and desirable to further enhance

the confidence through supplementary means. The application of a

program verification approach to this recovery program seems well

justified , considering the relatively small program size and yet the

important role of the recovery program . It does not appear that

existing verification approaches can be directly applied to the

recovery program , though. It seems that the existing approaches need

to be modified or extend ed , partly due to the fact that the faults
— (which are inputs to the recovery program) are non—deterministic

events. This remains as a future research subject.

43

I-I. - .-

- — — •  __i_~ _~~~~~

’

~~~

.l

—-—~~~~

- --

Referencea

(Bi] Burchby, D., Kerr , L.W. and Sturm , V .A., “Specification of the

Fault—Tolerant Spaceborne Computer (FTSC)” , Proc. 1976 Int’l Symp .

on Fault—Tolerant Computing , pp .129—133 .

(Dl] DeAng.lis, D. and Lauro , J.A. , “Software recovery in the Fault—

Tolerant Spaceborne Computer” , Proc. 1976 Int’l Symp . on Fault—

Tolerant Computing , pp .1143— 1147.

(Fl) Fanelli, E.V. and Hecht , B., “The Fault—Tolerant Spaceborne ,

Computer”, Proc. 2nd AIAA Digital Avionics Systems Conf., 1977,

pp.73—80.
-

till) Heoht , H., “Fault—tolerant software for real—time applications” ,

Computing Surveys, Dec. 1976, pp.391—1407.

[i~23 ileoht, H. and Stiffler , J.J., “Redundancy allocation in the

Fault-Tolerant Spaceborne Computer” , Proc. 1978 Int’l Symp . on

Fault—Tolerant Computing , paper 6a.14.

(H3] Horning , J . J . et al, “A program structure for error detection

and recovery” , Lecture Notes in Comp . Sal., vol. 16 , Springer—
- Verlag , 19714, pp.171— 187.

(K i] Kim , K.H. and Ramamoorthy , C.V., “Recent developments in

software fault tolerance through program redundancy ” , Proc . 10th

Hawaii Int’l Conf. on System Sciences, Jan. 1977, pp .234—238.

44

~~~~~~~~~
- . — •—-•-•— _ _ • _~~ ~~~~~~~~~~~~ t a _.• _ t  2~~2ht S _ _~~~~~..Sfl



_ __  

(K 2 ) Kim , K.H. and Arshi , T., “A translator of PASCAL augmented with

recovery block” , Part II of this final report (U.S. Air Force —

SAMSO contract F014701—77—C—012O) .

(Li) Logicon , Inc. and Raytheon Co., ‘Brass board Fault Tolerant

Spaceborne Computer (BFTSC): operating system maintenance manual’

CDRL—A017, Nov. 1976.

— 
(01] O’Brien , F.J., “Rollback Point Insertion Strategies” , Proc.

1976 Int’l Symp. on Fault—Tolerant Computing , pp .138— 1142 .

(Ri] Randell , B., “System structure for softwar.. fault tolerance” ,

IEEE Trans. on Software Engineering , June 1975, pp .220—232.

(Si] SAMSO lAD , ‘Development specification for the Fault Tolerant

Spaceborne Computer (FTSC) ’ preliminary version , 1977.

[S2] Stiffler , J.J., “Architectural design for near— 100 % fault

coverage” , Proc . 1976 Int’l Symp. on Fault—Tolerant Computing ,

— 
pp.1 314— 137 .

-• 45

I 4
• ;~~ ~~ 

•



Appendix A: Syn tax and semantics of a recovery block

A recovery block (RB) has the following syntactic structure :

ensure T

by Ol

else—by 02

else— by On

else—error

where T denotes the accentance te~ t, 01 the primary pb•lect block, and

Ok (2_<k_<n) the alternate obiect blocks. -

All the object blooks in an RB spec ify computat ions aimed at
producing the same or approximately the same result. A process

executes the acceptance test T on exit from an object block to

confirm that the result of the object block execution is acceptable.

If it is acceptable , the process exits from the RB. If it is not ,

the process enters the next alternate object block. Also , the

process enters the next alternate object block if the underlying

processor system detects an error (e.g., divide—by— zero) while the

process is inside an object block.

Before an alternate object block is entered , the process state

is restored to the state that existed just before entry to the

primary object block. That is, the process rolls back to the

recovery point CR21 established on entry to the RB. Each variable

that was assigned a new value by the rejected execution is restored

to its original value. The underlying processor system automatically

performs this “assignment reversal~ . To enable th is , the f irst

46

IIri~_ — — — •- — -- ~~~~~~~~~~ — — — ~~~~~~~~~ ~ r ~~~~~ —~--



_ _  
_ _ _  

_______

assignment to a non— local variable v during execution of an object

- :  block is preceded by the recording of the original value of v,

denoted by P R I O R ( v ) ,  in the recovery cache . Actually PRIOR(v) may
-- I also be used within the acceptance test of the RB. These (first)

- assignment records need to be kept until the RB is successfully
— exited . When an RB is exited , the RP established on entry to the RB

may be discarded .

— 47

• - - - 
-

• ~~~~~~~~~



-- 

Append ix B: PASCAL specification of an FTSC recovery projrs.m

const faulty :0;
• working :1;

yes :1;
no :0;
lastmodid :59; (‘no of modules’)

-j  dummy :0;
catl =15;
cat2 :12;
cat3a :8;
oat3b :9;
cat14a =3;
cat14b :1;
catkc :2;
cat 14d = 6;  --

cat14e :7;
mmuid :i; 

- -

siuid =2; —

dmalid =3;
dma2id =14V
cpuid
abusid =6;
dbusid =7;
acuid =8;
htid =9;
cuid =10;
tuid = 11;
puid =12;
mmusize =214;
bustestreptition = 8;

type bit
register:array(0..31) of bit;
word :array(0. .140] of bit;
reg2 =array(0. .1] of bit;

• reg3 =array(O..2] of bit;
reg14 =array (O..31 of bit;
(‘monitor: procedure’)

(I 

(‘modul e ty pes’)
(‘ a)

opumodule:(’module’)

record
hswl : record

flag:array(1. .3] of bit ;
(‘actual bit position: 0. .2’)

- alexioindicator:bit;
fault_cat:array(5. .8] of bit;
statechange:bit;
cputest:bit;

- 48

~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~ ~~~~~~~ -L - - --,42~~~~~:~::~_~ — ___~~~I_ ~~~~~~~~~~~~~~
—

~~~~~~



_ _ _ _ _ _ _ _  -

simplexmode:bit;
busarbiter:array (12. .13) of bit;

• readstate:bit;
— 

softaddr:bit ;
mrar:array(16. .31] of bit

end
hsw2 : record

dbusspare:array (O. .2] of bit;
abusspare:array (3. .14] of bit;
acpuid:array(5. .6] of bit;
mopuid:array [7. .8) of bit;
pustate:array(9. .12] of bit;
tustate:array (13. .161 of bit;
rti:array(17. .19] of bit;

end
mcpumask: register;
intrmask : register;
gpreg : arrayED. .7) of register;

end(’—record’);

(‘operations
— pflago ,pflag l , p fla g2 ,pflag3,

pflag14,pflag5,pflag6 ,pflag7:regular
busoodmon: monitor; (’bus cod. monitor’)
wdt : monitor;(’watchdog timer’)
ilopdet : monitor; (’illegal. opcode detector’)
ctrlcomp : monitor;(’control comparator’)

— adcomp : monitor; (’address and data comparator’)
end—operations’)

(‘end—mo dule’)

mmumodule: (‘module’)

record
status : register;
oldriphigh: register;
oldriplow : register;
newriphigh : register;

— newriplow : register;
soft l : reg14 ; -

soft2 : reg14
syndrom : reg6
wrprotreg : reg14
content : array (0. .14093] of word;
nextto].astword :word ;
lastword : word
(‘contents of the memory words’)
modtype :int.ger ;(‘ll—app lication memory module

00—system memory module 0
01—system memory module 1~ )

— sysmodcontent=
record

hard name:integer ;

ç softtable:array (0. .114] of

— 
49

;c~, . , .- • - -

IIIL - -_.•~~~~~~~ L~~~~• •~~-~~~~~~L~i~~L.•~~;..~~~• - 
~~~~~~ -———--—-~~~—~~~~~ •—-- 

—•
-

- -

record
hardname:array(27 . .31] of bit;
loat :bit;

• ppmask : record
dma lmask:array(26. .27] of bit;
dma2mask:array (28..29) of bit;
siumask :array(30. .31] of bit;

J end
hardtable:array(1 . .214) of

record
activespare: bit ;
dupinfstart: array(0. .114] of

integer ;
dupinfend : array(0. .114] of

integer;
softname :array (28 . .31) of bit;
ripplerconfiguration:

array(0. .140] of bit;
sparebit : boolean

end
applicationmmu : integer ;
transcount:array (0. .lastmodid) of integer;
constlost :array(0. .114] of bit;
lostunit :set of integer ;

end
end(‘—record’);

(‘operations
datacodmon : monitor ; (‘data code monitor’)
buscodmon monitor; (‘bus code monitor’)
analogmon : monitor ; (‘analog monitor’)
syndmon : monitor ; (0syndrom monitor’)
softmon : monitor ; (‘softname monitor’)
wrprotmon : monitor; (‘write protect monitor’)
addrslmon : monitor ; (‘address select monitor’)

end—operations’)

(‘end-module’)

ccumodule: (‘module’) - •

record
faultreg:register;
abuaspid : reg2;
dbusspid: reg3;
aopuid : reg2;
mopuid: reg2;
flagl ,flag2,flag3:bit

end(‘—record’);

50

4

-- - - -

(‘operations
pflagoomp : monitor; (~program flag comparator’)
wdt : monitor;
faulthand : regular ; (‘fault handler’)

end—operations’)

(‘end—module’)

dmamodule= (’module’)

record
costO = record (‘control/status register 0’)

mrar:array (16. .31) of bit;
end

cost i : register; (‘control/status register 1~~)

—
end(’—record’);

(~operat ions
buscodmon : monitor; (‘bus code monitor’)
eobdet : monitor; (‘end of block detector’)
wdt : monitor; (‘watchdog timer’)

—
ifm : monitor; (‘internal fault mo~i~Or~)

end_operations~)

(‘end—module’)

siumodule: (‘module ’)

record
costO = record

mrar:array (16. .31] of bit;
end

cost i :register ;
end(’—record’);

(‘operations -

buscodmon : monitor ;
eobdet : monitor;
wdt : monitor;
seqdbusmon : monitor;(’sequential data bus monitor’)
synchdet : regular ;

end—operations’)

(‘end—m odule’)

— pumodule :(1module~)

record
statusi : bit;
status2 : bit;

—

end(~~ record*);

51

_ - - , ~~~~~~~~~~~~~~~~~~

•-
- :~~• ~~~~~~~~~

- - - - - — —-—--- - — — ----

(~operations
involmon : monitor ; (‘input voltage monitor’)
outvolmon : monitor; (‘output voltage monitor’)

end—operations’)

(‘end—module’)

- j cumodule :(‘module’)

record
ccuclaap : bit;
mmuclamp : bit ;
iohtolamp : bit;

end(‘—record’);

(‘operations
raddet : monitor ;

end—operation’)

(‘end—module’)

tum odule :(‘module’)

record
statusl : bit;
status2 : bit ;

end(’—record’);

(‘operations
voltmon : monitor ;
olkmon l : mon itor;
clkmon2 : monitor ;
rtimon l : monitor;
rtimon2 : monitor;

end—operations’)

(‘end—module’)

htmodule =(‘module’)

record
htstatus : bit ;

end(‘—record’);

(‘operations
comparator: register;

end—operations’)

(‘end—module’)

52

- •
, , - ; - ~~~~~~•- - - - —

.. .‘
-

•

~ -- - - - --•

var

-
•

(‘system variables’)
cpu : arraylO. .3] of cpumodule;
mmu : array(O. .mmusize] of mmumodule;

- j dma l : array(O. .1] of dmamodule;
dma2 : array(0. .1] of dmamodule;
siu : array(0. .1] of siumodu le;
pu : array [O. .1] of pumodule ;
tu : array [0. .1] of tumodule;

— acu : ocumodule;
Cu : oumodule;
ht : htmodule;

(‘program variables’)
status : array (0. .lastmodid] of bit;
indictedset : set of integer; (‘softname’)
reconfcount : integer ;
sysmodid: array[0. .1] of integer;
temptrans: array(0. .lastmodid] of bit; (‘register’)

—
numfound: integer;
sparemmm : integer;
lastusedmmm : integer;
i: integer;
j: integer;
k: integer ;

—

(‘ I)

(‘utility procedures/functions’)
(‘

function faultcat : integer;
(‘this translates a 14—bit vector cpu(ccu.acpuid].hswl.fault_cat

into a decimal faultoat number’)
begin

with cpu [ccu.acpuid).hswl do
faultcat:= bintodeci(0,0,0,0,f ault_ca t(5] , fault_cat i6],faultcat[7],

fault_cat(8])
- end

function id(var unitid ,moduleno:integer):integer ;
begin

case unit id of
i:(’mmu’) id:= 1+moduleno ;
2:(’siu’) id:=25+moduleno ;
3:(’dmal’) id:=27+moduleno ;
14:(’dma2’) id:=29+moduleno ;
5:(’opu’) id:=32+moduleno ;
6:(’abus’) id:=36+moduleno ;
7: (‘dbus’) id::140+moduleno;

— 8: (* cou~) id:=146+moduleno;
9:(’ht’) id:=149+moduleno;
10:(’cu’) id ::52+moduleno;
11:(’tu’) id::55+moduleno;

— 53

_ _ __ _ __ __ _ __ _
•

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~

12: (‘pu’) id:z57+moduleno ;
• end (‘case’)

end

procedure settemptrans ;
(~~arks the occurrence of a transient fault in a temporary counter

4 register’)
begin

- j case faultcat of
12 : begin (‘cat2’)

temptrans(id(cpuid ,aopuid)]::1;
temptranstid(cpuid ,mopuid)) : :1;
temptrans (id(abusid ,abusspid)]:=1;
temptrans(id(dbusid ,dbusspid)] :=1;

end
8 : begin (‘cat3a’)• teaptrans(id(cpuid ,acpuid)] :=1;

temptrans (id(cpuid ,mcpuid)] : = 1;
temptrans (id(abusid ,abusspid)]:=1;

end
9 : begin (0cat3b’)

• temptrans(id(cpuid ,acpuid)]:zl;
temptrans(id(cpuid ,mcpuid)] :z1;
temptrans (id(dbusid ,dbusapid)]::1;

end
end (‘case’)

end

function lastbususer:integer;
(‘this converts cpu (ccu.acpuid].hswl.busarbiter into a unitid’)
begin

with cpu[ccu .acpuid] do
lastbususer:=bintodeci(O ,0,0,0,O ,busarbiter(12],busarbiter(13])+2

end

function ppusoftname: integer;
(‘identity the lastbususer’)
begin

case lastbususer of - •

0:ppuaoftname::19 (‘cpu’);
1 :ppusoftname: l8 (‘siu’);
2:ppusoftname::16 (‘dmal’);
3:ppusoftname:=17 (‘dma2’);

end (‘case’)
end

function bintodeci(var bito,bit 1 ,bit2,bit3,bit14,bit5,bit6,bit7:bit):
integer;

(‘this translates an 8—bit vector into an equivalent moduleno’)
begin

bintodeci::bit7+bit6’2+bit5’2’2+bjt14’2’3+bit3’2’14+bit2’2’5+bitl’2’6
+bito’2 ‘7

54

x-~~ -~~~~~ •~~~~~~~~~~~~~~ —

— -
- •

-

~~~~~

•

~~~~~

~ •

_ _ _ _ _

end

r ~
function suspected:integer;

— (‘converts the right most 16—bit of hsw l into a decimal integer’)
begin

• with cpu (ccu.acpuid).hswl do
suspected :=bintodeci(0 ,0,mrar (16) ,mrar (17] ,mrar [18] ,mrar(19]);
if suspected=15 then
case bintodeci(O ,O ,0,O ,mrar(28],mrar (29],mrar (30],mrar (31]) of

O:suspected:=16 (‘dmal’);
l:suspected:=16 (‘dmai’);
2:suspected::i7 (‘dma2’);
3:suspected:=17 (‘dma2’);
14:suspected:=18 (‘siu’);

—
5:suspected:=18 (‘siu’);

end ~~~~~~~
end

function activeppmid(var unitid:integer):integer;
— (‘returns the id of the active module of a given PPU’)

begin
with mmu(sysmodid(0]].sysmodcontent.ppmask do
case unitid of

3: begin
if bintodeci(O ,O ,O ,O ,O ,0,dmalmask(26],dmalmask (27]):i

then activeppmid(dma lid)::O
else activeppmid(dmalid) :=1

end
14:begin

if bintodeci(0 ,0,0,O ,0,O ,dma2mask(28),dma2ma sk(2 9fl=1
then activeppmid(dma2id)::0

— else activeppmid(dma2id) :=1
end

2:begin
if bintodeci(O ,0,O ,0,O ,O ,siumask(30),siumask(31)):1

then act ive ppm id (s iuid) :sO
else aotiveppmid(siuid): :1

end
end ~~~~~~~

end

function mrusedmmm :integer;
begin

case lastbususer of
dmalid :begin

with dmat(activeppmid (dmaid)).costO do
mrusedmmm:=bintodeci(O ,0,O ,0,mrar (1 6] , mrar (1 7],

mrar [18),mrar (19))
end

dma2id : begin
with dma2(aotiveppmid (dma2id)].costO do
mrusedmmm:=bintodeci(0 ,O,0,0,mrar(16],mrar(17],

— 55

-
_ _ 4 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



mrar ( 1 8], mrar ( 1 9])
end

siuid : begin
with siu [activeppmid (siuid) ].costO do
mrusedmmm: :bintodeoi(0,0,O,O ,mrar (16],mrar (17],

• mrar [l8],mrar (19])
end

end (‘case’)
end

function ismapflag(var hardmodname ,numfound :integer):boolean;
var onecounter : integer;
begin

with mmu (bardmodname] do
begin

onecounter : :0;
soft 1: :numfound ;
soft2: =numfound;
for i:=0 to 39 do
if lastword(i):= 1 then onecounter::onecounter+1

end
if onecounter> 214 or onecounter=214 then

ismapflag ::yes;
else tsmapf].ag::no

end

procedure findsysmodid(var numfound:integer;sysmod (0. .l]:array
of integer)

(0 This procedure finds the mmu modules containing the system map.
“numfound” is an integer which represents the number of system
modules found . Systew(i] represents the hard name of the system
module found , where i is either 0 or 1 corresponding to the first
or the second system memory module found’)
(‘ instructions “power on” , “power off”,”ignore read” , and
“ignore write” are assumed to be working correctly ‘)
var hardmodname: integer;
begin

num found : =0;
hardmodname::0;
sysmod (O):=0;
sysmod ( 1]: =0;
repeat

hardmodname: :hardmodnaa.+1;
poweron (hardmodname); (0 turn on the power of the mmu

— module with hard name “hardmodname”’)
if ismapflag(m u (hardaodnam.],n~~found) then(‘ this will determine if the emu module with hard name

“hardmodname” , containea a syst.m map. numfound is a
dummy soft name that is temporirily stored into the soft
name registers of the corresponding memory module’)

begin
sysmod( numfound ] : :hardmodname;
num found : zflumfound+1

56

.c_r a t C  LSflSC n



_ _ _ _ _ _ _ _ _ _ _  ~j iwr

end( ‘then ’)
else poweroff (mmuid ,hardmodname);

until hardmodname=214 or numfound:2;
end

procedure coldrestart;
var i:integer;
begin

(‘find two good mmu modules’)
i : = — 1 ;  j : a0 ;
repeat begin

i := i+ 1;
poweron(mmuid ,i);
softl(i]::j; soft2(2]:=j;
if mmu.j i ardval(j )  then begin sysm od(j ] : = i ;  .j :=j+1 end

unti l  j =2 or i=mmusize ;
f in ddma ; ( ‘find one good dma module’)
loadsystmem ; (‘initialize the system memory using the information

in the backup memory’)
findppu; (‘find one operational module of each ppu’)
recordppu; (‘record the mod Ida of operational ppu modules into

— the system map’)
findmmu ; (‘find all the operational mmu modules’)
reoordmmu ; (‘record the mod ids of operational mmu modules into

the system map’)
loadapplmem ; (‘initialize the application memory using the

information in the backup memory’)
— end

procedure makecopy(var sottnam l ,hardnaml ,softnam2,hardnas2:integer);
begin

hardnam2: :findspare ;
if hardnam2=0 then hardnam2:=findapp].memwod (‘find an application

— memory module to be converted into a system memory module0)
with mmu(hardnam2) do
begin

softl:=softnam2; soft2:=softnam2
end
copydupinfo((’from’) softnaml ,hardnaml , (‘to’) softnam2 ,hardnam2);

end

procedure updatesysmap (var unitid ,activeppmid (unitid));
begin

for i::0 to 1 do
with mmu(sysmodidtiii . sysmodoontent do

— begin
case unitid of
dmalid : j::26;
dma2id : j:=28;
siuid : j::30
end(’case’);

— if status (unitid ,(activeppmid(unitid)+ 1) mod 2]
working then

begin
if (activeppmid(unitid)+1) mod 2 : 0 then

57 

- •  -• - -  -~~ 
•~ 

r~ -• . •~~~~~ ~ -•



begin
ppmask(j+1):=1;
ppmask(j):=0

end( ‘—then’)
• else begin

- - :  ppmask(j+1)::O;
• ppmask(j):=1

end(’—else’)

else begin
ppmask (j+i):=1
ppmask(j)::1;

end( ‘—else’)
end

end ( ‘—procedure ’)

procedure copydupinfo (var softnam l ,hardnaml ,softnam2,hardnam2:integer);
(‘copies duplicate information from one module to another’)
begin

with mmu (sysmodid(O]].sysmodoontent do
for i:zdupinfstart to dupinfend do
begin

read(mmu (hardnaml].content (i] ,cpu [ccu.acpuid] .gpreg(1));
write(cpu (oou .aopuid] .gpreg (1],mmu [hardnam2 ].content(i J)

end
end

function mmmsoftname(var hardname:integer) :integer;
(‘find the main memory module softname with the given hardname’)
begin

with mmu(sysmodid (0]].hardtable (hardname) do
mmmsof tname:=bin tod ec i (0 , 0 , 0 ,O , so f tn ame(28] , so f tn am e(2 9] ,

softname(30] ,softname [31])
end

function mmmhardname(var softname:integer) :integer;
(‘find the main memory module hardname with the given softname’)
begin

with mmu (sysmodid (0]].sysmodcontent.softtable (softname] do
mmmhardname:=bintodeci(0,O ,O,hardname(27],hardname(28],

hardname (29],hardname (30],hardname(31])
end

procedure setcat14trans(var unitid ,moduleno:integer);
begin

case faultcat of
cat3a : begin

temptrans( id(abusid ,ab u s s p i d ) ] := 1;
temptrans(unitid]::1

end
cat3b: begin

temptrans (id(dbusid,dbusspid)]: 1;
temptrans (unitid ] : =1

end
catlê : temptrans(unitid]::1

58



end(~~~ase*)
• -

~ end(’—procedure’)

function arbitlocation:integer;
- . <returns a random integer within the interval 0 to 14095>

end

- j  procedure pp_test(unitid:integer ,hardval:bit):boolean ;
begin

poweron (unitid,activeppmid(unitid));
case hardva]. of
1: if pp_ha rdval(un i t i d)  then

begin
setcat14trans (unitid);
status(id (unitid ,activeppmid(unitid))):=working

end
0: if pp_weakval (unitid) then

status(id(unitid ,activeppmid(unitid))]: working
end ( ‘case’)
if status(id(unitid ,activeppmid(unitid))]afaulty then
begin

poweroff(unitid ,activeppmid(unitid));
pow ero n (un itid ,(activeppmid (unitid)+1) mod 2);
if pp_hardval(unitid) then -

status(id(unitid ,(activeppmid (unitid)+1) mod 2]:=working
else begin

power o f f (un it id ,(activeppmid(unitid)+1) mod 2);
— 

with mmu (sysmodid[0]].sysmodcontent do
lostuni t  : : lo s tun i t+(un i t id ]

end(’else’);
updatesysmap(unitid);
updateppmask ( unitid)

end
end

function findspare :integer;
begin

with mmu (sysmodid (0]] .sysmodcontent do
begin

findspare:=O;
repeat

i=i+ 1;
if hardtable (i].activespare=i (‘spare’) then
begin

— poweron(mmuid ,i);
softl(i]::15; soft2 [i]:=15;
if mmu...hardval (15) then
begin

findspare : =i;
hardtable(i) .activespare:=0 (‘active’)

end
else poweroff(mmuid ,i)

end
until i>23 or findspare<>0

59 

- - - 
;



- — - :i
_
~~~~T~~

_ . —•- --__ ----_ •••--•---- _-,—-,•---.—,_—-•_ __— 1 _ ’ _ ._ _ _

end
end

procedure updatetranscount(iounitid ,iomodid);
• (~this procedure increments the transient faults as follows.’)

begin
for j:=1 to lastmodid do begin

for i::O to 1 do
with mmu(sysmodid(i]].sysmodcontent do
transcount(i]:=trarzscount (i3+temptrans(j);

if mmu (sysmodid (O)].sysmodcontent.transcount(i)>].imittranscount
then switch_module (‘transcountli] is reset , a spare module

is turned on and then tested’)
end

end

procedure reconfsysmod(softnam i ,softnam2:integer);
begin

poweron (mmuid , sy ,modid(softnam2));
if refreshable(softnam2,sysmodid C softnam2)) then
begin

refresh(softnam2, sysmodid (softnam2]);
status(id (mmu id , sysmodid(softnam2))] : =working ;
copydupinfo(softnaml ,sysmodid (softnaml),softnain2,

sysmodid (softnam2))
end(’then’)
else begin

makecopy(softnaml ,sysmod id (softnaml],softnam2 ,sysmodid [softnam2]);
status(id(mniuid ,sysmodid (softnam2])]:=working;
constlost (softnam2] : =y e s

end(’else’);
record(softnam 2, sysmodid (softnam23)

end

procedure refreconf(aoftnam i ,softnam2:integer);
begin

refresh(softnaml , sysmodid (softnaml]);
status (id(mmuid ,sysmodid (softnaml]))::working ;
poweron(mmuid ,sysmod(softnam2]);
if refreshable(softnam2,sysmodid(softnam2]) then
begin --

refresh (softnam2,sysmodid(softnam2]);
status(id(mmuid ,sysmodid (softnam2])) : =working

end(‘then ’)
else begin

makecopy(softnam l ,sysmodid (softnaml j,softnam2 ,sysmodid
constlost(softnam2]: syes;
status (id (mauid ,sysmodid (softnam2])3:=working

end(‘else’);
record (0,sysmod(0));
record(i ,sysmod(1])

end

60

--- ~~~~~- . - ---- -- - ------ - - -

function aaoeptable:boolean;
begin -

<prepare an arbitrary nuamber x in gpreg— (general purpose register)
1 and write x into an arbitrary location y of a randomly chosen
module> ;
<load x in y into gpreg—2>;
<square gpreg—2 and store the result into an arbitrary location

- .1 p of a randomly chosen module q>;
<load the content of p into gpreg—3>;
<if gpreg— i * gpreg—2 <> gpreg—3 then acceptable := yes
else acceptable :: no> ;

end

(I 0)
(I module test procedures I)
(0 0)

C ’ 1. cpu test ‘)

funct ion cpu_hardval:boolean;
begin
(‘part common to both acpu & mcpu’)
gpreg (1]:= (gpreg(1]+gpreg(2])’gpreg [3] — (gpreg(1]’gpreg(3]

+gpreg (2)’gpreg [3]);
if gprerg (1]=O then begin pflag6 ; pflag7 end ;
(‘mopu comparator test’)
for 1=2 14 to 3 1 do
begin

with cpu(ccu.acpu] do
set (mcpumask ~i3) (set bit position i of mcpu mask register’)

<bus code monitor test>
end

function cpu_weakval :boolean ;
begin

if gpreg(1)+gpreg(2)>O then begin pflag6 ; pflag7 end ;
with cpu (ccu .acpu] do set (mcpumask [i])

end

C’ 2. bus test ‘)

function bus_val:boolean; (0 use the following three test patterns
to put one ’s and zero ’s on each wire of bus.
monitors in cpu will detect the bus fault.’)

— begin
with ocu do
begin

pflag6;
for i:=1 to bustestreptition do
begin

storehard (’O’(’module ’s hardname to be stored to’),
‘OOOO’(’abus’), ‘OOOOOOOO’ (’dbus’));

if flag2:0 then
begin bus_val:zno; go to 100 end

61
—

• ,_ _ -
_
~~~~~ • - .  - • . -

- 
~~~ - _ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~--- _iL~~
_____



_ _ _ _  - --- •
•~~~~~~~~~~~~~ -••-- •—~~~~~~~~~~~~~~~

•- -- --
~~
---—--

~~~~~~
--- • .--_- - - -

storehard (‘0’, ‘FFAB ’ , ‘FFABFFFF’);
if flag2:O then
begin bus_val:.no; go to 100 end
storehard (’O’ ,‘F9F 14’ ,‘F9F14FFFF’);
if flag2=0 then
begin bus_val:=no; go to 100 end

end ;
bus_val:=yes

end
100:

end (‘procedure’)

(* 3. memory module test 0)

function mmu_weakval (var softname ,hardname:integer);
var location:integer;
begin

with mmu [har dname) do
with opu (ccu.acpuid] do
begin

storerippler(softname ,hardname);
location:=arbitlocation ; (‘random location between 0 and 14095’)
read(content (location],gpreg (1]);
write(gpreg (1] ,content(location]);
read(content (location] ,gpreg(2]);
if gpreg(1]=gpreg (2] then

readwrite_val :=yes
else readwrite~.val::no

end
end

function mmu_hardval (var softname ,hardname:integer) :boolean ;
begin

storerippler(softname ,hardname);
if (readwrite_val (hardname) and

datacodmon_val(hardname) and
addrcodmon_val(hardname) and
buscodmon_val (bardname) and
syndmon_val (hardname) and
softnamemon_val (hardname) and
writeprotmon_val (hardname) and
analogmori_val(hardname) and
addrselmon_val(hardname)) then
sysmod_va]. : :yes

else sysmod_val : =no
end

‘ 14. peripheral test ‘)

function pp_weakva](var ppid:integer):boolean ;
begin
(‘send a dummy command through peripheral to the corresponding
control word . 0)

case pp id of
2:(’siu 0) store (~ F8145~(~control word 1 in siu~),~ command~);

62

- ~~~~

-

£~L~~ ~~~~~~~~~~~ ~

~
;LL L L i ~~~~~~~~~~~~~~~~~~~~~~

~~• . • -L
-

~~~~~~~

3:(’dmal’) store( ‘F8141’ , ‘command’);
14:(’dma2’) store(’F8143’,’command’);

end;
• if endofblock (ppid) then

pp_weakval : =yes
else pp_weakval:=no

end

function pp_hardval(var ppid:integer):boolean;
function commonpart_val(ppid :integer);
begin

if pp_weakval (pp id )  and
wdt(ppid ) and
ifm_val (ppid) (‘internal fault monitor’) and
buscodmon_val( ppid) then
common part_val::yes

else oommonpart_val:ano
end

begin
case ppid of

2: if common part_val and seqbuscodmon_va]. then
pp_hardval::yes

else pp_hardval::no;
3: pp_hardval : =commonpart_val ;
14:pp_hardval :=cpmmonpart_val

end
end

(0  0)

(‘functional and monitor test procedures within an mmu module’)
(I 0)

(~addre~s decoder test procedure’)

function addrcodmon_val(var moduleid:integer):boo].ean;
begin

pflag5; (‘set flag 2’)
ezpara ;
(‘arm the enab]. zero address parity hard address function which
forces zero parity as the input address parity’)

read(mmu(moduleid].arbtword ,cpu (ocu.aopu].gpreg (-2]);
(‘after the read action , if the address decoder is working
properly, a fault interrupt would have been generated and ccu
flag 2 reset. ‘)

if ccu.flag2=0 then
addrco dmon_val : =yes

else begin
pflag7 ; (‘reset flag 2’)
addrco dmon_val : :no

end;
am r e se t (m o dul eid )

end

1-
- ‘

I 
-• - - - * t-_ --

~~~~~~~~~~~ ‘ . ~~~~~ IL•~~~~~~~~~~~~ 
L

~ TT~

(‘write protect monitor test prooedurs~)

function wrprotmon_val (var moduleid:integer):boolean ;
• begin

pflag5
ldwp(moduleid ,arbtword)
(‘establish a write protect region associated with the location of
arbtword , using the load write—protect hard address functjo~~)

write(mmu [moduleid).arbtword,cpu (ccu.acpu].gpreg (1])
(‘if the region is protected , a fault interrupt would have been
caused by the write abtion and ecu flag 2 reset’)

if ccu.flag2=O then
wrprotmon_val : syes

else begin
pflag7 ; (‘reset flag 2’)
wrprotmon_val ::no

end ;
amrese t (mo dule id)

end

(‘soft name monitor validatin procedure’)

funct ion softmon_val (var moduleid:integer)boolean;
begin

pflag5 ; -

ldsftn(moduleid)
(‘establish different soft names in the two soft name registers
with the set soft name hard address function *)

read(mmu(moduleid].arbtword,cpu (oou.acpu].gpreg(03);
(*if the soft name monitor works properly, a fault interrupt would
have been generated by the read action and the ecu flag2 reset’)

if ccu.flag2=0 then
softmon_val : =yes

else begin
pflag7 ; (‘reset flag 2’)
softmon_val =no

end ;
amreset (mo duleid)

end

(‘procedure for data decoder test’)

function datacodmon_val(var moduleid:integer):integer ;
begin

pflag5
read(mmu (moduleid] .arbtword ,cpu (cou.aopu] .gpreg(2]);
sbpdo(badword)
(‘use the store with bad parity data instruction to put the
improperly coded information on the bus’)

p flag5
ebadpard (mmu [moduleid] .arbtword) ;

(0 arm the mmu enable bad patity hard address function
to perm it the information to be stored’)

read(mmu(moduleid].arbtword ,cpu(oou.,cpu].gpreg(3])
(‘if data code monitor works properly, above read action

64

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _

1

- -_ - - — _ _- - —•_--------— .w_--——--_--- • . -•-- —
- -

would have caused a fault interrupt and reset ecu flag 2’)
if ocu.flag2=O then

datacodmon_val : =yes
else begin

• pflagl ; (‘reset flag 2’)
- : datacodmon_val. : =no

end;
• amreset(moduleid);

- j write(mmu (moduleid].arbtword ,cpu(ceu.cpu).gpreg(2))
(‘put the original word back to the same location’)

end

(0

(‘ begining of the main program ‘)
(‘ 0)

begin
with ccu do
with oputacpuid] do
ensure acceptable (‘acceptance test’)
by

C’
(‘primary recovery procedure’)
(‘

begin

(‘validation of cpu ’s capability of reading IISW1’)

for i::5 to 8 do
if hswl.fault_eat(i]:1 then begin pflag6; pflag7 end;

— (Ojf ons of the cpu modules is faulty, then the ecu may receive
a program flag from only one cpu module’)

(‘initialization : clear status , tesptrans , & indictedmoduleset’)

for i::0 to lastuodid do begin
— atatus (i):ztaulty;

t.mptrans (ij:z0
end

akip3: aflQ
indioteds.t:z ();
for i:.0 to 113 do
constlost (i]:zno ;

(‘trust all TMR units and other automatically recovering units’)

•
. (‘CPU test’)

if faulteatacat2 then
begin

if cpu_hardval then
begin

status (id(cpuid ,acpuid)]:zw3rking;

65

_

~~~~~~~~~~~~~ 

I.



statua(id(opuid ,mopuid)j:.working;
if bswl.statechange : no then
begin

if bus_val then
begin

ststus(id(abusid ,abusspid)):zworking ;
status (id(dbuaid ,dbusspid)]: =working;
akip3:zyss;
settemptrans

end
end

end
(‘failure in cpu—hardvai. will result in a cpu reconfiguration

and reentry of the recovery program’)
end
else

if cpu_weakval then
begin

statua (id(cpuid,aopuid)]:zworking;
status[id (cpuid ,mcpuid)]:=working

end ;

(‘bus test’)
if skip3:no then

begin
reconfcount : :0;
while not bus_val do
begin

reoonfcount:=reeonfcount+1;
if reconfcount>23 then

cycle_cpu (‘this will cause a fault interrupt’)
else begin

pflag6 ;
eye le_abus;
eye le_dbus;
pflag7

end
end
status[id(abusid ,abusspid)]:zworkiflg;
if (hswl.stateohange=no and faultcatxoat3a and

reconfoount=0) then
begin

if lastbususer:cpuid then settemptrans
• else indictedset:sindictedset

+(ppusoftname (*lastbususer~ ) ]
end ;
status (id(dbusid ,dbusspid)]::working;
if (bswl.statechange=no and faultcat=eat3b and

reoonfeount:O) then
case hswl.readstate of
1(’read’) :indictedset=indictedset

.(suspected( ‘bawl . mrar’));
O(*write~ ):if ~astbususer=cpuid then settemptrans

else indict.dset::indictedsat
+(ppusoftname( ‘lastbususer ’)]

66

-~ 

• 

• - I 
- 

- 
- 

~~~~~~~ 

- _—

-
~
- -

~~~~~~ 

—

~~~~~~~
- -

~~~~
-
~~~~ 

. —

~~~~~~~~

-

~~

- —— -
~~~~~~ 

---•—-

~~~~~~~~ 

-

end(~~a5~*)
end

(‘turn the peripheral units and amu off’)

if (lastbususer:dmalid or lastbususer=dma2id or laatbusuaerzsiuid)
then lastusedmmm ::mrusedmmm;

for i :=1 to mmusize do
poweroff (mmu id ,i);

for i::1 to 2 do
begin

poweroff(dmalid ,i);
poweroff(dma2id ,i);
poweroff(siuid ,i)

end ;

(‘cat14d test’)
if faultca t=catl4 d then
begin

if lastbususer=cpuid then
indictedset : :indictedset+ [suspected]

— else begin
indictedset: indietedaet+ (suspectd);
indicted set: :indictedset+ (mrusermmm]

end
end ;

(‘find the system memory modules *)
findsysmodid(numfound , sysmodid);

(‘system map recovery’)
case numfound of

0:(’no system memory module found’)
begin

coldrestart ;
go to 1000 (‘end of program’)

end ;
1: (0only one system memory module found’)

begin
poweron(mmuid ,sysmodidEo]);
if mmu_hardval(O ,sysmodid(Oj) then

begin
statua ( id(mauid , sysmodidlO) ))  : =working ;
wakecopy (0,sysmodid (0],1 ,sysmodid (1]);
(‘using the memory module with soft name 0 and
hard name sysmodid (0j create the other system
memory module .  assign the soft name of newly
made system memory module to I and assign the
hardname of the module to sysmodid (1]’)

— 
record ( 1 ,sysmod idtl]);
constlost (l ]: :yes;
status(id(mmuid ,sysmodid (l])]:=working

end
else

67

• • • • _
• ,

— 
- _ _ _

~~~~~~~~~ 
- •

______—.~~~ir7-- ;:; - — — — - - - • __ - _ j~_ # • fl- t_fl-fl ’——

if refreshable (0,sysmodid (0]) then

~~~ the module with soft name 0 and hard name
sysmod(0) refreshable Vi’)

• begin
refresh(O ,sysmodid(0]);

(‘refresh the module with soft
name 0 and hard name sysmodid(0]’)

status (id(mmuid ,sysmod(O])]:=working ;
makecopy(O,sysmodid (O], 1 ,sysmodid (1]);
record(0,sysmodid(0]);
record( I , sysmodidl 1]);
constlost( 1]: :yes;
atatus (id (mmuid ,sysmodid(1])] :=working

end
else begin

poweroff (mmu id ,sysmodid [0])
coldrestart;
go to 1 000 (‘end of program’)

end
end ;

2:(’both system memory modules are found’)
begin

poweron (mmuid ,sysmodidto]);
if mmu_hardval (0 ,sysmodid (O]) then

status(id(mmuid ,sysmodid (O))]:=working
else poweroff(mmuid ,sysmodid(0]);
poweron (mmuid ,sysmodid (1]);
if mmu_hardval( 1 ,sysmodid ( 1]) then

status(id(mmuid ,sysmodid( 1])]: =working
else poweroff(mmuid,sysmodid(1]);
case status(id(mmuid ,sysmodid [0])] of
working :

case status(id (mmuid ,sysmodid [1])] of
working : ; (‘perfect’)
fau l ty  :begin

rereonfsysmod(O , 1);
refresh (1 ,sysmodid(1 ]);
record (1 ,sysmodid(1]);
status( id ( mm uid ,sysmodid (1))]::working

end
end ( ‘case’)

faulty:
case status(id(mmuid ,sysmodid[1])] of
working: reconfsysmod( 1 , 0) ;
faulty

begin
poweron(mmuid ,sysmodidto));
if refr eshable(0 , sysmod id( 0) )  then

refreconf(0,1)
else begin

• poweroff(mmuid ,sysmodid(0]);
poweron (mmuid , sysmodid ( 13);
if refreshable (1 ,sysmodid[i]) then

refreconf( 1 ,0)
else begin coldrestart; go to 1000 end

68

_ __ r•. _



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

end
end

end(~ case~)
• 

— end(’case’)
end

end(’case’);

- j  ( I  store the proper soft names of system memory modules into the
corresponding soft name registers’)

ease mmmaoftname (sysmodid (O)) of
0: begin

mmu (sysmodid (O]) .softl=0;
mmu (sysmodid [0]3.soft2zo;
mmu (sysmodid (1]].softl=1;

— mmu (sysmodid ( 1]] . soft2=1
end ;

1: begin
mznu(sysmodid (Q)).softi:1;
mmu (sysmodid (0]].soft2=1;
mmu[sysmodid(1)].softi=0;
mmuf sysmodid ( 1]). soft2=0
i : =constlost ( 1];
constloat ( 1]: =constlost [0);
constlost(03:=i;

end
end(*case~ );

(‘dma l test’)
with mmu (sysmodid[O]).sysmodcontent.ppmask do
begin

if dma imask (26]z0 and dma lmask(27]=0 then
(‘this oannot occur under norma ’ circumstances’)

— begin coidrestapt; go to 1000 end ;
if dmalmask(26] <> dmalmask(27] then
begin

if faultcat=cat14a or 16 in indictedset then
pp_test(dma lid ,(‘har dval:= ’)yes)

else pp_test(dmalid ,(’bardval:= ’)no)
end

end ; - •

(‘dma2 test’)
with mmu ( sysmodid (0)] . sysmodcontent . p pmask do

— 
begin

if dma2mask (283=0 and dma2mask(29):0 then
begin coidrestart; go to 1000 end
if dma2mask(28] <> dma2mask (29] then
begin

if fau].tcat=cat14b or 17 in indictedset then
pp_test(dma2id ,(’hardval :a ’)yes)

else pp_test(dma2id ,(’hardval::’)no)
end

end ;

69

- 
t.

•
.•_ • 

• 
- 

- -
-p1 

~~~~~~


-- • ~~~

(‘siu test’)
with mmu (sysmodid(0j].sysmodoontent.ppmask do
begin

if siumask(303:0 and siusask(31]sO then
begin coldrestart; go to 1000 end;

if siumask(30 <> siumask(31] then
• begin

if faultcatzcat14c or 18 in indictedset then
pp_t.st(aiuid ,(’hardvsl:z’)yes)

else pp_t.st(siuid , (‘hardval : :‘)no)
end

end

(‘recovery of the application memory mØdule5~)

for i:=2 to 11$ do (‘soft name’)
begin

j:=mmmhardname(i);
poweron (mmuid ,j);
mmu(j].softl::i;
m m u(j] . soft2: si;
if 1 in indictedset then
begin

if mmu_hardval (i ,j) then
begin

status(id(mmuid ,J)]::working ;
setcat14trans(mmuid , j)

end
end
else

if mmu_weakval(i ,,j) then
status (id(mmuid ,j)]:=working ;

if status(id (mmuid ,j))=faulty then
begin

if refreshable(i ,j) then
begin

refreshamm(i ,j,k);(’if there is no spare module which
can be assigned to softname i, then
k is set to ‘no’ on returns)

if k:yes then
begin

reeord (i,j);
status(id (mmuid ,j)]:=working

end
else

for k:=O to 1 do
mmu(sysmodid (k]].sysmodcontent.softtable(i) .b at

end
else

for k::0 to 1 do
mmu (sysmodid(k]].sysmodcontent.softtable(i).lost::l

end
end ;
reeover_systmemoonst; (‘recover system memory constant info

L

70

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 
-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

that has not been recovered’)
recover_appimemboet ; (‘recover application memory modules that

have not been recovered’)

(‘update transient fault ~~~~~~~~~~
updatetranscount ;

1000:
~nd(~ primary~)

else—by

C’ 0)

(‘alternate recovery procedure’)
(0

begin

(‘validation of cpu ’s oapability of reading hawl’)
for i::5 to 8 do

if hswl.fault_catti]:i then pflag6; pflag7 end;

(‘initialization ’)
for i:=0 to].astmodid do status(i]::faulty;
for i::0 to 1-4 do constbost [i]:=no ;

(‘cpu test’)
if cpu_hardval then
begin

statusE id(epuid ,acpuid)) : =working ;
status(id(cpuid ,mepuid)) :zworking

end ;

~~~~~ test’)
reconfoount : =0;
while not bus_val do
begin

reconfcount : =reconfeount+1;
if reconfcount>23 then cycle_cpu
else begin

pf].ag6;
eye be_a bus ;
eye le_d bus ;
pflag7

— 
end(’else’)

end ;
• status(id(abusid ,abusspid)]:=working ;

status (id (dbusid,dbusspid)]:=working ;

• (‘turn the peripheral units and mmu off’)
for i:=l to mmusize do

poweroff(mmuid ,i);
for i:=i to 2 do
begin

• poweroff (dmalid ,i);

71

-



-• - -- - - —-=---•
--- -•• - - ••--_ -• - - -- •_

~~- -~~~~~~~
---—

poweroff(dma2jd ,i);
poweroff(aiuid , i)

end;

(~recovery of peripheral units and mmu’)
coldrestart;

end(’alternate’)

else—error ;

start_normal_processing

end C ~program~)

72



- _ - —
~~~ 

•— ---- -
-•-- -

Appendix C: Module test procedures

Test procedures for several modules are detailed in this

appendix .

C.1 CPU module test

Due to a large number of functional sections within a CPU

— module , a spectrum of tests can be designed according to the degree

of coverage desired . To the least extent , a weak test of CPU should

perform the following tasks:

(1) Test of the monitoring capability of the H—CPU : the bits from

position 214 to position 31 in the H—CPU mask register are set to

cause miscomparison of control signal lines.

(2) Exercise of the ALU and registers (by executing a routine): The

—
result of th is routine should cause some predetermined program flags
to be generated and sent to the CCU for the comparison purpose.

(3) Bus code monitor test : pp .3—1145 of (Si) (an improperly coded

information is established on the bus using the “store with bad

— parity data/address” instruction ; a fault interrupt should be

generated if the bus code monitor detects the invalid code).

A strong CPU test can perform more extensive exercises of various

functional sections including the address/data comparator , the

control comparator , etc.

C.2 peripheral module test

— 73

~ — _______

Since the functions of the DMA units and the SIU are similar ,

i.e. to serve as the focal point of communication between the

- : computer and the surrounding environment , only the D~A module tests

will be presented . A weak test of a DMA module can be done simply by

sending a dummy command (using control word 1) to the DMA module and

then observing if this command is properly received by the module. A

strong test can perform the following :

(1) Weak test.

(2) Watch dog timer test:

(2.1) prImary : pp.3—148 of (Si).

(2.2) alternate 1: the CPU sends a reconfiguration ROM address to

the DMA and command the DMA to request data transfer from this

address. No memory module will respond .

(2.3) alternate 2: arm one memory module with ignore write and cause

the DMA to send data to this memory module.

(3) Bus code monitor test: pp.3—1145 of (Si).

C .3 MMU module test

Each memory module must be at least checked for tts capability

to read and write and the correctness of its rippler registers. Thus

a weak test should perform :

(1) Test of the memory read/write capability: a word is read from an

arbitrary location in the memory into a CPU register and then written

back into the same location.

(2) Verification of the rippler register content against the

information stored in the system map.

74

— —_——•—- •——I-•--—

•,

~

-

~~~

- -



-• • - ~•__ • 1vr ~~~~
- ‘ 

.
~~~~~ 

•—•• - -
~~~~ 

- -

A strong memory test can perform the following:

— ( 1 )  Weak test .

(2) Write protect monitor test:

(2.1) primary : pp .3—1146 of ( S i ) .

(2.2) alternate : for each of the fou r protected regions attempt to
read ~ word and then write back to the same location. If any of the

blocks is protected , a write protect violation would have been

generated . If not , set write protect for each of the four blocks in

— 
sequence and then do read and write operations for each block to

cause an interrupt.

(3) Soft name monitor test:

(3.1) primary : pp .3— 146 of (Si].
— (3.2) alternate: use memory monitor test functions CSSU ,ZCON , and

ZCOFF to validate this monitor.

(4) Syndrome monitor test :

(4.1) primary : pp.3— 1-46 of (Si].

(-14.2) alternate:

a) reconfigure bit lines and store two calculated words in any

locations.

— b) go back to the original bit line configuration and read the

first word. This should generate a fault and cause syndrome

monitor register to be filled .

c) enter refresh mode and read the second word .

d) the second word will generate another syndrome different from

the first one.

e) syndrome fault will, then be indicated .

— 
Note: these two words should be so prepared that each will cause one

bit error in different positions when the original bit line

configuration is used .

( 5)  Bus code mon itor test: pp . 3— 114 5  of [Si).

(6) Analog monitor test: pp .3 — 1- 14 6 if ( S i ) .
(7) Data decoder test : pp .3—1-145 of (Si).

(8) Address decoder test: pp.3—1136 of ( S i) .

75

-
-

-
~~~~~~~~:~~~~ 

k - -

IL
-

_ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-} Part II

A TRANSLATOR OF

PASCAL AUGMENT ED WITH RECOVER Y BLOCK

-j

by

K. H. Kim and T. Arshi

76

_______—•

~~

•- - - --

~~

••--- -

-• --

Abstract: Recovery block is a language construct designed to support

— structured incorporation of program redundancy. In order to

facilitate a study on the use of design/program redundancy , often

called fault—tolerant programming , a software that translates a

program wr itten in PASCAL augmented with the recovery block into an

equivalent program in ordinary PASCAL , was developed . The translator

itself is written in PASCAL . The translation strategy and the

organization of the translator are explained . The complete listing

—
of the translator is given together with some teat—run outputs.

— 77

_ _ _ _ _ _- • - ~•‘
~~~~~~~~~~~~~~~~~ 

•—•—--— — • •-•—*—• -..—•— ,_—•--— —••- •— • 
-
- ~~~

#—.•-• • • •-••—

• _••.__•_•••__•__•__l••_•__ — 
__ __ — — •— -. - -•~~ 

- •



-•-- -- •-- ----•- - •- ••- - ----- —•-- 
~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~~~~~~~~

-- 
-•-•- •----

1. Introduction

Recovery block is a language construct devised to support

redundant design , also called fault—tolerant programming, an approach

to obtaining a software tolerant of residual design errors/

inadequacies [Hi]. In order to experiment with redundant design , the

recovery block was introduced into PASCAL and the result is called a

fault—tolerant (FT—) PASCAL in this paper. It was then necessary to

develop a translator of FT—PASCAL so that the programs written with

recovery blocks could be executed .

There are two approaches to translation of FT—PASCAL programs .

One i~ to translate the programs directly into mach ine programs , and

the other is to first translate the programs into ordinary PASCAL.

programs and then translate the PASCAL programs into machine programs

by using already available PASCAL compilers. The former approach has

an advantage of producing more efficient machIne programs . On the

other hand , the latter approach has an advantage of being easily

transportable. That is, once a preprocessor which translates

FT-PASCAL programs into ordinary PASCAL programs and is a PASCAL

program itself , is developed , then the pre processor can be

transported to any installation equipped with a PASCAL compiler and

can support fault—tolerant programming .

In this paper a FT—PASCAL preprocessor is described . The

pr~processor is written in PASCAL and has been operational since May,

1978. In the next section , several FT—PASCAL programs are shown

together with functionally equivalent (ordinary) PASCAL programs.

The organization of the preprocessor is described in section 3 and

some possible extensions are mentioned in section 14. The complete —

listing of the preprocessor is given in Append ix A and some test—run •

results are given in Appendix B.

78

• ~~ • •~~~
•
~~~~~~

.- - - - -

— • :
~~~~~~~~~~~~~~~~~~~~~~~ —I~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

- 
~~~~~~~~~~~


2. Translation of FT—PASCAL into PASCAL

A PASCAL. procedure is recursively defined as a aè4uence of

- i constant declarations , variable declarations , (nested)

procedures/functions , and the body which may be a simple or compound

statement. All the components except the body may be empty . An

entire PASCAL program can be viewed as a (main) procedure. The

FT—PASCAL allows recovery blocks to be included in the procedure

—
bodies. The control flow implied by a recovery block can be

explicitly expressed in PASCAL by using conditional statements . For

example , see Figure 1.

— Basically a re covery b lock i~ equivalent to the following PASCAL

construct.

<save: save variables that may be modified inside the
—

recovery block>

<primary object block 0. 1>

if <acceptance test> then (‘exit’) goto 100;

<restore: restore the variables tha.,. could have been

modified inside the recovery block>

<alternate object block 0.2>

if <acceptance test> then (‘exit’) goto 100;

<restore>

< 0.3>

if <acceptance test> then (‘exit’) goto 100;

<print—error: print error message>

100:<purge: purge the saved variable values>

79

_ _ _ _ _

ensur e 1X 2
- prior (X) I < E

X : SORTA (X)

else-by X : SQRTB (X)

else-error

Figure Ia. An FT—PASCAL program

< Saving of Non-local Variables To Be Changed >

X : SQRTA (X)

M I x2 - xsI < E then goto CONTINUP

< Restoration of
•
Changed Non-local Variables >

X := SQRTB (X) ; - -

— ~ - XS 1 < E then gpto CONTINUE ;

< Send Error. Message ~

CONTINUE : < Purge Saved Variable Values >

Figure lb. An ordinary PASCAL program

equivalent to the program in la.

-

~~~~ 80 
- 

- -~~ • •  ~~~~~~~~~~



The first component in the above PASCAL. construc t is responsible for

saving the variables that may be changed inside the recovery block.

Since the exact set of variables that are modified varies from

• 
execution to execution , the preprocessor must save all the variables

that appear as destinations of assignment statements or actual

parameters of procedure/function calls. A simple approach adopted is

to declare a new variable , called a backup variable , for each of

those variables (which may be called main variables to distinguish

from backup variables), and then to save the content of each main

variable into its backup variable. Each variable and its backup

variable must be of the same type .

Since variables cannot be declared within a procedure body, the

above constructs need to be implemented as a procedure . If the

acce ptance tes t fa ils , then the main variables are restored to their

original values kept In their backup variables. Note that the

specifications of acceptance test and restore operation appear

repetitively in the above description; it is thus useful to implement

those operations as two nested procedures that are repetitively

called . The purge operation in the above description is equivalent
— to discarding the backup variables. If the above construc t Is

implemented into a procedure , the purge is automatic on exit from the

procedure. Therefore , a recovery block can be traz~slated into the

— 
following PASCAL. procedure , oslied a fault—tolerant (PT-) procedure,

and a calling statement. -•

procedure FT;

var <backup—variable declarations>

procedure SAVE ;

<save the contents of main variables into backup

variables>

procedure RESTORE;
<restore main variables by usIng the contents of

81



r -

~~~~~~~ 

_ _ _ _ _ _ _

backup variables>

function ACCEPTABLE ;

<acceptance test>

begin

SAVE ;

< 0 . 1> ;

if ACCEPTABLE then goto 100;

RESTORE;

<0.2>;

if ACCEPTABLE then goto 100

if ACCEPTABLE then goto 100
<print error message>

100 :end

82

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ —— - -~~~~~-—~~~---- ~~~~

— - - —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - — --- -• - -— - — •,•,— ——— - --—,--••---— -.—-—- --•-- • --

~~ 
—

3. Organization of the preprocessor

The preprocessor goes through one “analys is” pass of the source

program , n “translation” passes where n is the maximum level of

nesting of recovery blocks , and a “merge” pass. In pass 1 the

preprocessor pz~ uces a compact representation of the Information on

program structure and vocabulary . The set of variables that may be

changed inside each recovery block are also recognized during this

pass. In pass 2 (i.e., f irst t ransla tion pass ) ,  the first—level

recovery blocks (i.e., recovery blocks not nested within other

recovery blocks) are translated into FT—procedures and stored

together into a new file called text-increment—i while procedure

calls replace the recovery blocks in the source file. The

second—level recovery blocks nested within the first—level recovery

b locks are not translated at this time. The second—level recovery

blocks (in file text— increment—i) are translated in pass 3 and newly

generated FT—procedures are stored into a new file text—increment—2.

Thus each translation pass processes only the outer—most recovery

blocks contained in the text—increment file produced through the

preceding pass. After all the recovery binoks are translated , the

main source file and all the text—increment files containing

FT— procedures are merged . This unoptimized simplistic approach is

motivated by the simplicity in logic and the prevention of the source

— text file from growing during translation .

The following words are reserved for use by the preprocessor and

thus should not be used in source programs .
— ( 1 )  Any character string of which the first 8 characters are

“RB/SA/RS/VT/BV/TP” followed by exactly 6 digits , where “/“ denotes

“or ” .
( 2 )  FAULTFLAG .

83



- ‘ ~~~— - -~~
---

~~~~

• 4 . Extensions

• The recovery block is not the only high level language construct

that is useful in fault—tolerant programming . Horning et al (Hi]

proposed a recoverable procedure that allows the incorporation of a

special procedure of restoring computation , i.e., a procedure
different from undoing variable assignments. Some other possible

extensions of the recovery block are also discussed in [Ki]. The

current preprocessor does not 5upport any of these recovery block

extensions.

As shown in the outputs of tes t—runs in Appendix B , the

preprocessor attempts to indent the output (i . e . , PASCAL programs) to

a limited extent . Although the PASCAL programs generated may be read

inf requent ly , incorporation of a more thorough indentat ion capabil i ty

into the preprocessor seems to be a worthwhile extension.

.84

L _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

• - •



—-—~~ •-  — - -•-• .- - -------—•----•••- - -  -•--•---• — — - •— 

r

Reference

-

• [Hi) Horning , J.J. et al, “A program structure for error detection

and recover y”, Lecture Notes in Comp . Sd ., vol. 16,
Springer—Verlag , 1 97 14, pp .171— 187 .

(Ki] Kim , K.H. and Ramamoorthy , C.V., “Recent developments in

software fault tolerance through program redundancy ” , Proc . 10th
Hawaii Int’l Conf. on System Sciences, Jan . 1977, pp.2314—238.

- 85

• • - ,~~ - ,• .—~~~~~~~ - -. - •- •- “ •

-- ~e•== - ~•~‘—n--- — - _ .~~~~~ 4•%• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.a t —



— • — -  -— - ------ • —------- - --~ -- -r-~~~~ — -~~ 
-, -- -~~~~- - r ’  ~“fl r w  — - - - -  ~~

-
~~~~~

---- - . —
~uIr1

(....e i a*. * . e. . . a • .~~~~a • . . •s .*.).. - . , I.
(.
I. I,

I.
C . -

4 •
(I T HE PU4PO” E fl~ THIS FP 1O~~~~~.O~ IS T~) A CCEPT A PA CA L •)
~ • PPO G~~A M AND 1NA t ~ .LAT C ALL £ 1 ~j R I C) V E 1 Y c L ’)C K ’ I N T OAppendix A. ~~. PHQCI:rJU~~~~ sucpi r,,~ T T H ~ O UT P u T O~ P’u~~PHL) C(SSOR uIF ~(a A C C€ P (L D ICY CONV ~~NT1ON A I . P A S C A L CO M P L L E N . .1

FT—PASCAL ~~~~~~~~~~ I T ~OK N ’ A, FOLLO4S :~C .

a)
p~~~~.. 1* PROGRAM T~~~~~~~~~~~~ ’T r a)

(. INCLU 1ING — — —) I ~~~~ I — — —) P~~~CA L I ———) .1
(a)tc.C.)CLUCK I PROCCS~~oR I I C C M P L L E R .1
C . I I I I ‘I

J I. I I I I .1
4 . ——————— ————— .1
4 . TH E PNEPR0CESSOR CONS ISTS OF T W O PA S S E S . P A S S ONE SCAN S .j
(a T HRU IHI UCPUI P R i) S R A M ANTI CO L L E r T S ~TIM E I N F O R M A T I O N
4 . i~iro OIFI~~R E~~T TA ’ L~~S USCU I~4 P4SJ 143. [N FACT PAS S .1
4 . BU ILD S TH~ F0LL0 IING3 : — a)
I. a ,
(a 1. PROC EDURF,H~~C0 V r R Y RLOCK T RrE W 4 E K E M A I N PROGRAM a)
(a Is IKEAT ED AS INC R O O T OF THE TREt ~. a)
(. 2. VA I~LA8 L E D~ CL A R A T I f l N T RC E,~~~ ICH ~ #JA~~(g PASS 2 10
(a RECOGNI ZE GLOBAL AND LOCAL VA RIA BI .E S . — a)
(S a)
(a PASS 2 00(5 THRU THE INPUT PPOGRA4 AG AIN, USING THE .1
C . COLLECTED I N F O R M A T I ON H! PASS 1. TRANSL A TE S FIR ST L~~~~L •)
(a R L C OV ERY HIOCKS AND LE AVES THZ SECON3.THICC, ... LEVEL a)
(a W~~C.PILOC (S AS THEY ARL . DA SS 2 1 CAL LEC AS LONG AS THERE a)
(a A~~E MORE RECOV ERY BLOCKS TO ~E IRAN SLATEO. •1

- C. a)
(a SPECIAL NOTES a)
(a = :=========== a
I. a)
(. 1. NONE OF THE FOLLO~~TNG NOTES AR~ RE STR ICT ION S TO
(a THE USER . BY CHANG iNG A ‘ CONST ‘ CORRES PONDING TO a)

EACH . FLC~~IPil L TIT IS O~~IA I N ~~O .(a 2. IOt.NT IFIER LENGTH IS CON SZOEREO TO RE A. SORE THAN .)
4. THAT WI LL BE T~lUN CAT EO. CAN C HA ’IGE THE ‘ CONST ‘I. .)
(a 3. LINE LENGTH IS CON SIOERCU 10 RE BC. FOR MO RE LENGTH •)
(. SHOULD CHANG E TH~ R E L A T E D * CON RI ‘ IN PROGRAM . a)
(a 4. PROGRAM LENGTH HAS NO RE STR ICTIO N AT ALL. a)
(a a,
A . a)
(aa a a a a* S . a a aa* a a .* a a* a a* a . .* a* a . . a a . a a a . . a , . e a a)

CONST TEXT LEN G TH= IOO;
NO OF PRoc=20 ;
VO TUE LENG TH=too;
Pfl?S LENG TH 82
HASH PTRS LENGTH=37 ;
LINE LENGTH~~8O ;t o L ENGT H=R;
IO LENG 2=16;
NO NESTED WITH=1 o;
TYPE LCNGTH= ,o;
NO OF COMP :~~~;
N0ThF SIMPLE= sO ;
NL V A R fBI LCNGTPI =ioo ;

TYPE IDTYPE !PACK~.D A~~RAY(1 ..TYPE LENGTH) OF CHAR;
TEXT FILE :FILE OF CHAR; —

T F X T L N E A RRATCi . .LINE LENGTH) OF cHA~~;STR ZR G 4T= PA CK CU A R 0A T f 1 .47] OF CHAR ;
S T R l N G 4~i:P4C,(EO AR~~AYC1. .45) OF CH*~~;STR ING 3O PA CKEO A R I~A YCI ..5O) OF C 144A
STR ING27~~Pf.C((Q AR~CAY(I ..211 OF CHAA
S T R I N . l ,~ :PAC!(EO A R R A T C L . . 1 6 1 OF CHA R ;
S T R I N G I O : P A C K E O A R R A Y (I . . 1 O] OF cHAR ;
ST FC IICG9 PA C KEO ARRAY(t. .9) OF CHA -l j
S1RLNG2C :PAC ~cEU A AYC1. .203 OF CMAA ’~S T t I f J G ’ .~~PA C KED ARIC ..Y(T..63 OF CHAR;

‘c STI~ 1NG ~~~PA CK tD ARRAY(i. .5] OF CHAR .
ST~~I ,1 G~~:PACu (I:O At 4RA Y CT. .43 OF CHAR

4., ~~7 Sf ~~ LN~~~~~P4.c uc f~J A N M A Y C L . . 3 3 UP CHAR ’
“17 S I R t r ~G’ - P A C N~•O A N P A Y t I . .~~) OF CHAR

‘~) I3EN1I~~IE R : P*C (- i) 4R~~A Y C I . . I O LENGT H] OF CHAR;
OCU IILE 10 ~ “A ~~~fU AC ~~A Y (I..I0 L~~NG 2] ~~ cHAR ;
LINKAG E PLACES : ~ECORfl

— —

— if — P O c : I N I C G E R ;
NAM ,’:IoENT IFIE ~

$ VO INFO :RECOR3— V N i M C : I D E ’ 4 T I P V F R ;

Trcoo : I r l T u G E ’ l ;

~~~~

, j
~ 

INUIC IN TE GER
E N D ;

VO NOD E: RECO RT)— - PTpI TO VOTAM L E : IN TEGER ;
SI~~t:Ir Trr,i Il ;
P’~ NA’C P. :I’)~~N T T F I E R ;

rI~u ST ~o~u: tNrU’ ;E~~;Y U U N G(~I n C o T I 4 , R : 1NTEGER
I

HASHE I) AML : RE C ORO

86

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
Pill t o PROC TrlE t:IP41EGER ;
s’(rAoll:INrrGEa

ENDI —

CONPUNCNT:RECOMO
L~ Vr.L :INrcGER’
N AME:IOEPaTZFIIR ;
IHDI :C)IAuC ;
L’O ;’:CHAKI
TCO QE :[NTCGCR

-‘ END; —
PROC NOOE :RCCUKc)

— PR RN  NAM( :ITICNIIFIER;
INflI C ITOR :Sv ’41Nu 2;
FIR TO V DNflO r : [*ITFGER ;
PIN I 0 ’N D  UCL : [NT F.-j~’R1
NO ‘ILVIIC uS~~J: INTEG ~~t;PT~ Ti) NCVAR :ZNTEGE:R ;
FA TR ’R TIPITEGEN;
FIR ST SON 1INTEGER ;
ENTRY . INT EGER
LABLE :
MAR K : CHARI
YOUNG ER B ROT HE R :IN T EGC R

(P101 —

NI VA R: RECORO
INOICATO R:STR ING2 ;
PTR TO V OTAB:IPITE GER(No; — —

PROC INFO RECORD
INOIC4TO R :STRIN G2;
NAME: I DENT IFIER(Plo;

VAR TEXTI :FIL( OF CHAIU
T EXT2:FILE OF CHAR
r E X f $ , f E x T 4 , I N 1x 4 , j NT X ~~: T E x T  FILE;
TEMP STMT :ARRAYCL. .L INE LENGTH ) OF CHAR ;
LINKIGL A RHAY C1. .LINE LEN GTH ) OF CHAR;
BUF EJ( :ARRAYt1 ..LINE LENGTH) OF CHAR ;
NEW TY PC A RRAY C I . .LTN C L ENGTH3 OF C)4AA
NO l l u  TYP E,POS P4(4 TY ~ E:INTE6ER ;
INOLC,CNK :CNTEGER ; —
TIPE ,TI :IOT YPE ;
TYP : IDENTIFIER ;
TO KEN ,PREV IOKEN :STRING2O
PR OC NAM( ;TDEN TIFIER ;
1*1 FIR , STMT NO , LINE NO:INT!GER ;
SYMBOLS OCLIRtTERS:SE rOF CHAR;
PROC RB ~REE :AN HAYC1..NO OF PROC ) OF PROC P100(1
NE XT PRaC NOOE :IPITEGER ; — — —
sTACK :ARUYCI..No _ oFjRoc l OF PR OC _ INFO;

TOP OF STACK: INT GER ;
)4ASll TX 8LE:ARRAY CI ..NO OF PROC ] OP HA SH EC PNA M
HASH PTRS :ARRAYC O..HASR P1’RS LENGTH ] OF INTEGE
HASH INOEX,HI:INTEOER; —

VA R DCL T R E E : A R R A Y C 1 . . P 4O OF PROC) OF VO NOD(I
VARTh CL~~TaBt .E:ARR A Yc i •V ~ TllI. LENGTH ) oF VD INP O
STRDCTURC TAIILE :ARAAYfL ..IIO OF CON.’) CF CO PIPON (NT
SI MPLE TABL (:ARRAY(l. .No OF SZPPLE) OF !C (NTIFIER ;
TYP Sw,~ TT .STRT .AsFR : IN TC (RT
LAST PROC: IDCNT! FIER ;
NE XT VO NOulE iNeRT NO RON INIEGE~~$

— NI V~~R TAB LE: AN ,~AYE i . ’Ji. VAR T BL LC~4 G I H 3  CF NE VAR;
NLV AR CIST :ARRAYL1 ..NL . V~ R TBL L ENGTH] OF INTE ER;
NO NLOC :INIE GCR; — — —NL BUFE R :ARRAYCI..RI. VAR TBL LENGTH] CF NE VA R
P1C~~T !IL:INTEGLR ; — — — —WITH STA CK :ARRAY C I ..NO NESTED WITH,t.,2] OF AN TEOERI
W! Tu4 5W ,TW : IN TEGER ; — —N (X T NL VAR: INTEGE R
RD ~IPE;TP NAM( :XOEPI TZF ZCA I
CMIIO(NIIFTE R ;
PT R I .PTR2 ,PTR3 ,COOE,LEV: INIEGCR;
PRB ,IOT:S TRING2;
FA THEA NAMC:IOL’ITAFTCB; - .PROC C~ LL .FIR S1 CALL ,NORE VA R,ASS IGNEO V IR ,R (AO A~ SZGNCU:J3O LEAN *
OOT ,KCMt COLON:~ OOLtAN ; — —[DEN TTP1CR ~sT:~ Tu4IPi G3;
F L : S T R T M G A ;
A M : ’ T K T N G ~~’ -
RC:~~T RtNGd
CM: CHAR
W C ,LASTNOOE .IMTEGER
STK :ANR4 y( 1..~~J OF I N F E G E R I
TS.ERR CoDr:I PITEGER ;
‘4i~LD M C.N~ E3 MORE PASS:!3001EAN$
DCL Tvp e ,sF:MLcOCoN :MD0LEAN ;

( N R’)H .1. 1. F : I’~1E G~c O I . L I M , P V O T , G O r - ~LA uI , 5W :  INT EGER;
PVS. PRV, F NT: Ifl~ P 4Tf ~~ItR ;
COLMA KER : INT EGER;

— PROCEDURE G IV E TY P EIVA R TY P: [r)ErJ r IFfc q ; VAN PO IR :TN TCGER ) ;
I. TO GET TP$( TY~~~ OF A C~~~~~~~~r~I OF OP~ a )
( a  STRUCT URE vARIAHIr TH1 .~ PP)C~ ()’1RE M A )  .)
( a  ~ F CA Lt .~~J G IV I ’G It A ‘OIHIER 10 TIE a )
1. STHUC IL J M E  IA’ll t.. [I MA! N OT RE US~~J FOR .)
( a  SIMPL E V A R I A u C L E S  TVPr .

~~~~ VA R  L .ILO :zNrrr.1R;
M I G IN ILU ::Purw ;

87

~~IS ?AGI IS BEST
QUALITY PP.A-CTIC~~LZ

ThOM ~C)PY F FI 1SI~~~ D ~O DDO

—
~~~.- - ~~~~~~~~~~~~~~~~~~~~~~~ ~~

‘ -
~~~~~~~


__ -

- -

T~~T : .~~~
-

~~~~

-

~~~~~

-
-

_ _ _ _

LF ((ZTK U C VURP T.nLtEILQl,IN) I :’ ‘) AND
(jtNuCrusr m

tam,Er I~~o).~~p4u)~~:. .
~~~T HE N rv i’::~;TRtsCr u .~~ F 4’U.Et ILO~ .PlAt4r

LL LF K 1UR 1~~I ,LLCILO].Z1IU4: ~ S’
L::~.TF Il C rU RE: TA,’1~ t 1LO ]. ICODE ;

(P40
:S* M PLC ._ TA IILt.CL J ;

ELSE IF STRUCTURE TAOL r~~f~~~3.(4f)~ :IA a
THEN P ::STRL~~1URE fA OL rCI L O .1 ).NA ME

L := STRUCT UNE TA rILECI L O] .TCOOC ;
G IVE TYPE( TYP ,L)$

(P101 
(NO;

( a a a s a a a a a a a a a a aa a a aa a a a . . a a a . . e . . a sa a aa . . . a a a a . .a a a a )
( a  PASS ONE a )
( a  

— 
a )

(a  IN G~.NE*A L PASS ~~L PERFORMS THE FOLLO w ING : a )
( a  a )( a  IN PUT PR OGRA M a)
(a  I a )

1
( a  a )
( a  

______ a )
( a  T —T a )
( a  I PASS _ I I a)

I I a )
( a  I __________ I a )
( a  I — a )
( a  I a )
(a I a)
( a  a )

1. PROC/RB TREE : .
(a CORRE SPON OING TO EACH REC.)ILOCK OR a)(. W ILL lIE A NODE IN THIS TREE. MAIN a )
( a  PROGRAM SITS AS THE ROOT. DE TAILS OF a )
(~ EACH NODE CAN BE FOUND IN TYPE CCL AREA a )
(a  a )

2. VAR DCL TREE:
( a  CORP~.SPONDING TO EACH PROCEDURE W ILL RE ~)( a  A NOEl).. IN THIS TREE .CON TA IPIINS )4RIA~ LE a )
(a DECLARATION AREA FOR THAT PRO CE CLJR (. *)
(a BY A POINTER TO VA R  DCL TA BLE AL L T HE a )
1* VARIA B LES MAY BE FOVNO . a )
(a  a )
( a  3. V AR DCL TADLE : a )
( a  A P~ RT IlIN OF THIS TABL E CONTAINS ALL a )

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
PROCE GU RE :~

(•
(a 4. STRUCTURE TABLE: a)
(a CONTAINS ILL STRUCTURE VARIA B L ES EITH ER a)
(• DECL ARED AS A TYPE OR VAR. NE STED a)
(a RECORDS ARE SHOWN NT LEVEL N JMB E~. FO R •)
(a MORE DETAIL REFER TO TYPE DCL A REA. a)
(a a)
(a s. OrHER TABLES SUCH AS STACPI,HA SH TABLE . .)
(a SIMPLE TABLE.LTC. — a)
(a ~ 1
(~ BESTOE Sa PASS 1 INSERTS A ‘(LINKAGE’ STATE ME NT ‘I
(a WHERE LAT ER ON. SOMETHING IS GOING TO lIE
(a INSERTED INTO THE TEXT. ‘1

— (a a)
(a a a a. a a a* a a . a a* a a a a a a a a aa a * a * a a a . .a a * a e U a a a aa . ae * a h)

PR OC EDURE PASS _ U

PROCEDURE INITIALIZE PASSI ;
BEGIN —

,~
‘ (STMT p,Io:=o; TOP OF sTAcK :=1; NEXT NI V A R :=i ; L IR E l3::o;

4;’ ~ N (*~~ VO NODC::IT NEXT VO ROW ::i ; NuT PROC NooC ::T;

‘ , ‘ ,‘ ; ‘ , ‘:‘ , ‘ (‘ ,‘) ‘ , t t ’ ,’) ’ , ’ ,] ;
~ v q ’ sypq ioLS ::C’A’..*Z’,’O1 ..’9’,t ‘,‘s’];

IP4DTc ::O ; HASH INOEX::1 —

NO NEW TYPE :=O; POS NEW TYPE :=—l ;
Rd NA NE :’R,*OO O O O O ’ TP NA~ E:=~~r °o~~ooOO’

p., ~~ FOR t-II::O 10 HASH PINS LENGT H C~) hAS H P TRS(H 1J 0;
FIRS T CALL: :TRUE R~~AD ASSISNE C :~~FAI .SET PROC CALL ::FALSE ; —

RE 4R;TE (TCX TL) ; REWR TTE (rcx T2) ; —

p.. T W S : : L ; CoI. MAKER: : n ;
PV S:= ’SA OOOOOU ’i PRV :=*Pc000000’ ; FNT :=’ V TOOOOOO ’

La DCI. T YPC: :TRUE ; sENrcoLoN :~~rRuE ;GO IOLAB : :1357;
TY P S W : : ’ S T T : = t ; ST R V : : 1 ;
NEXT NL::U

END; —

PROCEDURE PR INT REsuLT ;
VA R I I INIEGERI
B EGIN

h N!TE LN ; W R IT ELN I
UIC LTE IN(’ HP QC).OURP ’ AND R E C O V E R Y -‘.LOCK T~C~~ ‘)
W R & I , L P 4 W R I T E L N
W R U E L N I ’ ~‘ lUC NA M E ’,’ P4O Z C A T O C ’ ,’ I’TR TO V~ rcC ’ ~~ ’ ,

IN D OF OtL ’~~’ NI V A R U GEG’ .’ PTP TO N1V 61) ’,
FA TH’)C’ ,’ SON’ ,’ l C I) I I . q 1 , — - -

~~~
, l v ’ , ’ L4~~~ t. ’ ) ;

WR I RIM;
~~~ ;::t TO P4(R1_ PROC _ NOO(1 00

88

‘

~ r~- -
,
~~~~~
‘ 

~~~~

_ _ _ _ _ ~~~~~
_

~~— —~~~~~~~~~ -~~~~~~~~ -~~~~

~ - - - - - — - - -. - -

~~~~~~~~~~~~~

- - - ---— - —

WRII(LN (PROC AB _ TIIEE II )aPQ RI) NAM E ,’PNOC RI4_ fRErE I 1.IN!~ICXfOT,PROC RH TREI( I3.PTP TO _ V’3NCDEUI,
- pNoC RI4 r~ r . (I 1.(•TR IO ~P4O DCL I I~~,PR JC RH TRI FI I J.:jo ‘IIWLE uEr.O:tt,

PROC 1411 V •~~ r (  I ].P IR 10 NCVAI) . : 2 4 ,
l’ROI RH IR (I ].FATOI ~(1 Lp14oC i4d rk(~ t r ).FgKS r so~ :,,PRoc— RIC TREEr I ].YouNarR 4RCTH (R:G,

PROC TR ~~~C I 3 . L A B L E : T ) ;
WRI TEL N ;4R!TCLN T
WR ITELN I’ .... VA R DCL TREE .. ..‘); WRET rLN; W R ITCUI
V R ITL L.N(’ PIN TO V DV A U L E , ,, Stzr ’ ,’ PROC 4A~~~’,‘ F A T H E R ’ , ’ F I R S T  50k ’ , ’ NROTMER ’ )L . iR ITC LN;
FOR I::i TO NEXT VO NO 0E—l 00

• WRI TLLN (VAR _ OCL _TR rCI] .PTR TO VOTAf3IE,
VAR JCL _ TR ECI].SIZE:15,’VAR ’)CL IREEçI).PR NA ME ,
vaR:ocL~ T PEEk I) .F ATHER : I),
vAR~~)cL_ vRErrI] .FIRST SON:l4.VA N ~)CL TREEc[) .YowIGr~ _ BRcrHc q :l4) ;

WRITC LN ; w~ ITECN;WRI1ELN (’ .... VA R DCL fA8LE ....‘); ~R tTE L N ; W R ITE LN ;
WRIIELN (’ TCOOE ’,’ NAME ’,’ TTCOCE ’,’ INOIC’li
WRC TELN ,
FOR I::! TO NEXT ND R O W — I  00
WRI TE LN (V AR _ DCL _TA HC CC I 3.TCOOC:4,’ ‘,VA 4 JCL _ IAALE g I ] .VNAM E, ’ ‘,

VAR :OCL _ TAU LEL I ].TTCDOE :(,
VAR LJCL rasLErz) .INuzc);

WRI 1ELM~~ RITELNt’
IRITELN(’ ... . (ASH TABLE ....‘) •RETELN ; URITEL’l;
WRITELN (’ PROC NAME ’,’ FIR TO PROC TREE’ ,’ 5(0 &OR ’ ;.RITELN ;
FOR I:1 TO h ASH INO CX—t 00
~R ITELN (HA~ H TAHCCE().PR NAME,

MASH TA !4Lc (I).PTN TO PROC _ TREE ,
F HASH TA B LE CI3 .S(Q A 0 R) ;

WRLTE LN;W R ITZLN ;
WRITELN (’ .... NONLOCAL VAR TABLE ....‘)~~ ¶JRITELN ;WRITELN ;
IRITLLN (’ [NoIcAroR ’,’ TO ~O fA8LE’) WR I ICLN;
FOR I::1 TO NEXT NI VAR— I 00

— WK ITELN(’ ‘,‘TL 7AR TABLEC I ].[P(OLCA TO ’I,, ‘,
NI VAR TAaC~Cfl.PTR _ TO _ V3TAl:6% ;

WNIIEI.N ;WRETEL?I;
WRIIELN (’ .... SIMPLE TAR LE .... ‘U VR! T EL P4I W RITE EN;
FOR £t:t TO SIT—i 00 W R ITE LN( ’ ‘,S!MPL (_ TA ULE( !3);
WRI TE. LN WR XTEL N;
W R ITCL P4 (’ .... STRUCTURE TABLE ....‘)  W R [ T E L P 4~ WR E T ?LN ;
WRI TELN (’LEV~ L’,’ NA ME ‘,‘ ‘,‘ TCOOE’) , WRI TEL N

FOR 1 2:1 TO STRT— 1 DO
W R ITE LN (STRUC TUR E TARLEC I ].I.EVEL:3,’ ‘,

STRUCTUR E TARL (EI).NAME ,’ ‘,
STRUCTUR E TAaLC C I) .INDI, ’ ‘,
STRUC TU .R( TABLE(I).[N02 ,’ ‘,
STR UCTUR E TAU LEt I ].TCOOC:5J ;

WAI T EL NI  W R [ T E L N T
WRI T ELN ( ’  .... NEW TYPE pos!TI0N:’,Pos NEW TYPE :2UWRI TELN;
WRIIE LN (’ .... NEW TYPE DCL SIZE= ’.No _ ’IEw_TYPE :2);

END ;
(.a a a p . a . . . a a a a a a. a a a a a . a a a a . a a a a a. a a a a. a a . a a a a)
(a  PROC _ OCL _ PROC (SSO R a )
( a a)
(a  GOES THRU INPUT PROGRAM TOKEN AFTER TOKEN a )
( a  AND ON HITTING A ‘ROCEOURE WILL 03 THE a )
( a  FOLLOWING: -

(a  a )
( a  1. F I N OS ALL DECLA RA T I O N S  AND S A VES THE M a)
( a  2. GOE S THRU THE PROCEDU RE BODY AN D a )
( a  FINDS ALL CHANGA BLE NONLOCAL V A RS a )

— ( a  AND STORES THEM [N NE _ VAR _ TA BLE tO OE a )
( a  USED IN PA SS ‘. a )
( a  3. -I N CASE OF NE~ rEO PRO CEDURES ~4 ILL(a  CALL ITSEL F RE CUR SI V E LY (P4 0 ODES THE a )
(a  SAME THING A GA IN. a )
C. a )
( a  IN GENERAL THIS PROCEDURE CONSISTS OF THE a )
( a  FO L LOWING PROC EOURES: a )
( a
(a  .VAR DCL PROCESSOR ..... a )
(a .B ODT P R OC ES S O R , a a a a . . a  ‘I
( a  .IC(C ILOC’C PROCESSOR .., a )
( a  .W ITR PROCESSJR........ a)
( a  .0 T B E R S a.. a ,
( a a ,
( aa a a .*aa .  a a. a a a a  a a a a a a  a a a . a a a a  a. a . a a a a a  a a a  a a . a

PROCEOL’RC PROC _ OCL_PROCESSORI

PROCEDURE GE T TOKEN ;
- V AR [,J ,P,R:INTFG(R ;

PROCEDURE SAVE _ STMT; FORWA RO;
PROCE0(~RE R . A fl SIRT;

VA R t,J:v4rr’wo; ~~QM~~~PT F14~~IS1i~~ TOD~C ._.— .. “

III A NK ,COMt Nr :HOOL E A N;
II (GIN

12 : 1 ;
IF NO T C DF( INPUT)  THEN

— 
dililE NOT ~O L N ( I N P Uf )  00

89

—~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. - --- -



r
I’-

AD AOb4 489 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES FIG 9/2
METHODOLOGIES AND TOOLS FOR DEVELOPING ROBUST FTSC SOFTWARE. (U)
AUG 78 K H KIM FO*701—77—C—0120

UNCLASSIFIED SAMSO—TR—78—1~ 2 ML

CU! 
_ _ _

H.

_ _ _  

U 
________I Ct: p_ 

_

_ _ _ _ _

_ _  

_ U t  
_ _ _



BEGIN
(NO~

CAD (TE MP_STMI(Il); i:~~t.u

NI A3LN
FO~ J.:I TO LINE LENGTW CC TEMP 3TM~(J1~~~’ •;

(NIH
sr’~r No::srMr NO~ L; TxT PTa:~~t;NLINE ::TRuI.; coM ,T:~ FAL ’~~FO.( J:=1 TO LINE LENGTH—I
~ .G LN IF TEMP ~ TMTC J~ *’ ‘ *14th

BEGIN RLA K :FA L 3 E
IF ( g1 .~ P IPTt~IJ :’(’) AND

(TrM P ;TpTtJ.13:..., I T11C 4
HEG IN C E~ r::t~ u€; G3T0 ~I~ 3ELSE GOTO ‘380;(NIH

END I
IF (BL ANK OR COMENT) THEN
BEGIN

t~4OCC::I; SAVE STMT; READ STMT;
(NO; —

READ ASsIGN(u::FALsE; PROC CALL :=FALSE ;
I iotC:=t;

(NIH

PROCEDURE SAVE STI3T;
VAR I,J:INTEG(R;
BEGIN

IF INDIC:~) TH~ N BEGIN INO(C::L; GOTO 101 (NIH
IF IND!C 1 THEN BEGIN VRITELA(T EXI1, TCMF STMI)$

LINE NO::LIM( NO.TT GOTO io;
(NIH —

(TEMP STMTCI] ’ ‘) DO I~~~I~~1FOR J::1 TO~~ INE LENGTH 00BEGIN
LLNKAGEtJI:=’ ‘; RuFETC.&)::’ ‘;ENO

LINKIGEE13:=’t’; LTNKAG (r’l:=’L’; LINKAGEC3I ::’T’;
LINKAGEE4~ :=’N•; L!NKAGE~3~~:~~’K’; LINKAGC~6)::’Ae;LINKAGEC1]: :’G’; LINKAGE~ ’3):=’E’;IF (INOEC:’) AND (LNK:4) f~4EN

BEGIN WRITELN (TE*1t,LINKAG(); LI NE NO:=LIN ( NO.1;
GOTO 70; END; •— —

IF (INOIC :2) AND (L$K:3) THEN
BEGIN

~IRITELN(TCXTI .3. INKAGEH
~R*TELN (TExTl,TCMP STNT);

~
_7

~ ~
:LI NE_NO. 21

(NO i
IF (INOIC :2) AND (LNK 2) THEN
BEGIN

IF TtMP STMTEI):eB’
THEN BECIN

BuFERE I3:=’B’; 93~FERCI.t]::’Y’TEMP ~tMTCI1 ::’ ‘ TEMP STM1(I.I~ :’ ‘1END —

ELSE BEGIN
BUF~ RCI~~ :’t’; 3UF RC1.13::’L’
BuFI!RCI.2)::’Sf; BUF(RCI.33::’E’;
BUFER(I.~~~::’ H BuFEREI.5)::’t3’*

FOR j:=I TO i.~ DC TEMP STMTCJI::’ ‘;
(‘40;

Jw~ 1 WRITEL’4 (1E*T1,BUF (RH
~~ ~~ W R ITE L N (T EXT L , LZ ’4K A GE H

~~ IdR Z TE LN (TC XT I ,T EM P STNT)
~~ LI’JE No::LINE NO.3!

A ~~~ G0’O TO; —

(NIH
IF (INOIC !) AND (LNK:*) THEN
BEG IN

FOR J::t TO ID_LENGTH 30 MUF(RCJ~ ::RI4_NANE(JJ;

WRITE LNITEIT1.LINKAGE H
~~~~‘ Gj ~R z r EL~~(rt xrI,~ uFER);

.RI 1ELP~(T E X T 1 , T(M P ‘ 3 T P T) i
4 LINE rdo::LINE NO.3!

, (NO; — —
la :;

~
(No;

FUNCTION IPInENC VA R CH:C34AR):tNTEGERI

4, 1. LUOX F3R TH~ FIRST STMGOL:CM If~ TEM P SPIT ‘I(. IF HO T FCIUN~ RETUR N ZERO, CTH(HHISE RETURN •)
I. THE PO~ I1ION .V AR Z:INT~ GER

F~ R t::TXT PTH TO L INE 1EN1 1M 00
810 P4

£ , CH:IIMP STMICI3 tH(~4
—

*NOEX: :I; 0010 ~o;C Nt)
P40;

~No;

FUVICT ION ~ f~~ L* N K (V A R Tx : z ’4 r r r ,E K :e0flI.EA ’4 ;

90

— — - — -— —- ~~_i ._~~~~
- - -

(. P(~~t rn.ANK V~ET ~ TRUE V ALUF i~ t~ i ~cst o~ •
(. tEMP sr.~t ~ 1AR1(NG FROM TX IS HLAr(K .~.LSE •)
(a RET URNS FA L~ (.VAR J:L~ITL GE.~

nr.sr HLA lK: :T RU t$
FUN 3:=Ix TO LINE LENGTH DO

IF TEM P SVMT CJ3 I ‘ • THEN lEST OLAN ::I’AL E
•

— —

ENO I
• PROCEDURE FIND PROC NAME

(a PR’ vio’j c T E N ~ A S HEEPJ pq)~~~ tJR~~~.F~~1’) a)

C. THL ~I EXT TOK EN W HIC H I~ TH~ PK.)C EDURE NAMC.)
• VAR I,d:INICGER;

BEGIN
WHI LE (TEMP STMTCTXT PTR 3:’ ‘P 0) TXT _ PTR : : IXT ?T~~.1;

—

I)E PFA T
P~ 0C NAMEEJ :~~TENP ~TMrCUT PTR3;
J::J ;; TX, prn::txr PI.(.T

UNTIL NOT (TEMP STMTETXT PTRI IN SYMROLS Oi4(J)ID L l ~ T)4) ;
IF J(I0 LENGIWTKE’I — —

NE G IN —

FOH 1::J TO 10 LENGTH DO PROC NAMEtfl:~~’ ‘IENO —

(NO;

PROC EOtJHE FIND 101
(a F I~~O A TOKEN .TRUNCATC IDENTIFIERS ilTH a)

1~ MORI~ THAN IL) LENGTH:B. COMMEP4IS AND a)

(a S Ta lING A SSI Gfl M I N T S ~)ILL BE ~E~FASEO HERE.)VA R j,J:INIEGER
PROCEDURE PA SS COMM(NTS

V A X I:LNTEGET ;
BEGIN I::IXT PIR.I;

IF NO T RE ST~~LANKCI) THENBEG I N
WHI LECTF.PP 5TM T t I3 ~~’) 00 I :t.l1
IF ((T E M P S T M T C L) ~~’(’) A), ’)

(TE M P ST MT t X ’ l) ’.’)) THEN
BEGIN t:~t.i;

~~PEAr t:= i.t;
UNTIL ((rEM ~ ST MIC I):’.’) AND

(TE MP STMT (I.L) ’)’))
C. SKIP OV ER COMMENT .)
TXT PTR:~~I.1;END ; —

ENO
(No;

PROCEDURE PASS QUOTES;
V AR E,J:ZNTEGER
BEGIN I::O

IF TEN? STMTCTXT PTR.L1 ”’’ THEN t:sTXT PTR.2
ELSE IF TEMP STMTCTXT PTR.2~:’’’’ THEN I~~~TXT _PTR.2$IF IsO THEM —

BE GIN
I::I.l ~~~~~WHILE (J MOO 2 50’ 00

—
BE GIN

IF TEMP STMT(fl:’’” THEN
BEGI N —

~HZLE (TEMP STM1CI~ :’’’’) 00HE G I N j :*j ;i; L:~~I.1; ENO
END

ELSE z:~~z.i;(NO;
(a SKIP STRING ASSIGN ME N T •)
TxT PTR:=I;
PASS QUOTES;

(NO; —

(No;
BEGIN
PASS QUOT(S
PA. S C OMME NTS
IF REST RL ANK (TXT PTR) THEN
dE G I N — *

SAVE STMfl REAO STRI;
— —

— PR~ V TQI(EN T0*ENI
roKFI1:~~’1:=T XT PTR
(4 PASS DEL IMETERS a)
WHILE ((I(LINE LENGTH)AP40(NOI (IEMP STMTCZI IN SV M . O L S 1 E)

no g::T.L;
IF I:UNE LE’IGTH THEN
UEGIN —

sA VçSTMf REA O STMT*

— ,~Hi&(N0t(TEMP SIMICI3 IN SYMBOLS)) 00 i:~~r.i;(No; —

J::Ii
wH1~~r((!c:L1NE L ENG TH)AN3 (TL ’IP SPIT E!) I’l SY M~4OL ’))) C)— —

roXcNcJ):~~ rMP ~ T M y(J,
I::t.~ ; J::J 1;

~I~~r PTR ::L;
~‘)t t::I ,o IL) LC~4GT H 00 I0t1]::T E~ C)

— EF (1O),I.N:’IVPI. ‘ T HCN CCL _ TYI ::u L. ; ;

~flIS P,&GZ IS B
91

_ _

I

—

~

--—

~

~~~~~~~~~~ — ______ _____________



~~r r  • _ i-
~~~

-—---
~

• ----
IF(IOPCEN:’ELSC ERROR ‘I THEN L*i~~t~~ R!O~’ :— LINt ~)—L ;LF ((PR(V TONFN:’ELSC ENR ~ R ‘) A ILr

(TOKEEI ~~•(Pki ‘) A?J~Cf ~ MP STMT CV *T PTR]2 a 1)) THEN SEMICOLUPl::FAL~ r;
£F (1flKIN!’PRfld~F0UIIf ‘) OR(1Oi(LN;’FU’~C f f 0 N ‘) ON

‘ OR
(Yo)CEN :aVAN ‘)TP4E N MORE VaRUr*L~ ’;tF ((T0,~C?1:’REAt) ‘P 1” —

(TOKEN:’RFAOLN ‘)) THEN
RLAJ AS~ IGt 0 :TMU(

IF IENP SVWICT XT t~TR):’(’ THENBEGIN —

4P(ILE(TLH P ~T I ’T t T X I PTR) II]’) 30 UT PTN:~~T X r °T?. f l
• UT PTR:~~T~ T PTR.lr—

IF TEM P STM1CTXT PTRJ:’a’ TH~~1 C O T ~~~T°UE
— EL~~ COT::FALSE;

IF TEMP SIMTCTXT PTR)z’;’ fHt. d SP’ X cOL 3N: T~l,rELS’ sF MrcOLoN~~F2L~r.;IF (RE AD ASS!5NEO) AND TFMP TP1t T~~T P V P J ’ P’) THEN
— READ ASSIGNED::F*L~E; —

• ENo; —

PR OCE D URE FIND TYP fl
VA R £,4,K,L~ INIt GERBEGI N

IF (ID :’ENO ‘I AND (COOE:3) THEN GOTO 317
IF COOE=5 THE N CM::’:’ ELSE CH::’:’;
IF (I’SDEX CH :O) AND (MORE VAR) THEN
ITEGI TI

SA VE STIlT; REAO _STM T
F I N D IO ;

(no; —

IF MOPE VAR THEN
B E G I N —

IF CODr:5 THEN CH:=.:’ ELSE cH:=’=’; I::INT)E* CH ,1
11t!LE(TEMP_STMTCI]=’ ‘ 00 I::I.1;

~AiUtNOTITEMP..STMTtt] IN t ’ ’,’)’))) DO
BEGIN

TI PECL)~~TEMP STMTCI)iI::I.1; L:=L~~I;IF REST BLANK (I) THEN GOTO R5
(NO —

85:;
IF CODe:, THEN TxT PTR :=1;
IF Tt~ EE 1):’C’ THEfl BEGIN TIPEZL :’’;L::L.l;ENO;
FO~ K:=L TO TYPE LENGTH CO 1IP~tXr :’ ~FOR K::! TO ID_LENGTH 30 TYPCK) :T!PECK)

FOR I::1 TO 3 00
BEGIN
STCI3 ::TV’ECti FLCII::TIPECI1I
(CIL TIPECI); RCCI)::IIPECI]1

FLCR)::TIPEt4];ARCR)::ri_C4);Rcc4)::F%_C R);
ARC5)::TIpECS);RCC5):~ ARC5);RCC6]:: IiPEC6~ ;

• 337h

*
(NO;

• (* MAIN BODY OF GET TOKEN •)
~~GIN

~~~~‘ CASE CODE OF
~~ i: BEGIN

PROC NAME:=’ou T MO ST’ ;  PRS::’PR’;
r”~ / T 3 C ~~::’PROCEQU~ E

~~~ A FIRST CALL ::FALSE;
~ V J’ SAVE ~ TI4T~ RE AD STM T

- .~~s ~‘ (NOr —

2: SAV F STMT
~~~~ ~~~‘, 3: FIND IO;

4: FINO P~ OC NAM E;
~ 5: BEGIR FZ?~fl 101 PINO TYb ’C* END;

~~ ~: IF IXI Pr~~<Cp~r LENG TM T~4~~4
~~~ 4~ P IF TEN S T M T E T * r ?T R ) : ’ . ~H~ N PROC CALL::FALSE I

7~ IF T X T PT1 LI9E LENGTH THEN —

IF TEMP S T M I C T X T PIR3:’(’ T HEN PROC CALL: :T RUE ;
9: FI ND_TyPE; — —

l
~%’~$

~~
” NEGIN• P::TxT PTR—I ;

VHIL((TP)I,) AHO ((TCMP SIMTCP) I ‘1’) OR
(TE MI’ STMICP3 a ‘t’)fl 00 P::P—t;

IF READ ASSIGNED THEN
IF (P!L) OR (TF’(P STNTCP~:’)’)THEN ASSIGNEL) VAp ::1~ UE

EL SE A$SIGNEU V*1::FALSE;
IF NO T RLAO A JSIGNED 1MEV
B E GI N —

CM::’:’;
IF IN~~EX (C’0 * 0T H E N ASSIGNCI VAR ::l~ U(E L S E 5S~ tGNED V*~~::FALSE ;

ENO —

E MU
END

E N D I

— FUNCTION HASH (VAR Iu_NAME:;UtNTIrIcqI:I),Tr~~(R; FOP1dAR(U

92

~‘
~

—~ M~~. ~~ ii

~

-r ~~~~~~~

PROCLI)URI CREATE PROC NODE
V A R I,4:INr(GC~~
PROCEDURE FILL SON IPROTHERI

VAR J :INt ~ Gtw —

(a A P4~ CCDU’1C 1. AI)OEO TO P~oC~~ B TXC (a)
(a ‘(ODIFI IPIt L P*W.S TO LIZ N*O$HER AND •)
(a FAVH CN . a)
BLGIN

IF PROC ‘lAME ~ ‘OUT MOST’ THEN
BEGI N

a::PR)C ML) T RC (C NEX T PROC NO DE)aFA T HCR
— IF PROC RI TPE~~(J)a F TN3T 10N 0

THEN P~ OC Fli TREEt J~~.F1R~ 1 SON := NZXr PROC il0~~ELSE BEGIN — — —
J:~ PROC RH TR~~ CJ1.FIRST SON;
~IHrLE (PROC RFI IRt. tJ).YOONG (R 3ROIHERIfl) DO

j:~~
PQ 0C R~ 1N~ E(J1.YOU NGE~T ~ROTHF’ ;

PROC RU 1RE EtJ~~.T ’)JNGE R URO0THER::
NC ZT PROC NC0C~

—

EN DI — —
EN 0

— EN D I
I. MAIN BODY OF CREATE PROC NOOC a)
~EG IN

WITH PROC RB TREECNEXT PROC NODE) 00
BE GIN — — —

(a I NSE R T THE NODE I N T O TRE E a)
PR R~ NAM!::PROC NAM(1
zNOzcA1OR::P~ i4i —

PTR TO VONOOT. 2NE*T ND NO)Z
— PO ~ILV1R USED::O; —

PT~ TO NCVAR ::O;
FI RST SON::O;
YOUNGER RROfHER:~ O;
MARX := ‘0’
TXY::LINE NO.1;

IF PRB:’~8’ THEN BEGIN LAaL(:~~GoToLAa2GOT OLAB::GO TOLAB .tO 1
END

ELSE LABLE::~~;
— IF PROC PIAME :’OUT_ MOST’ THEN FATHER:=O

ELSE UCOIN(. LIN K THE NODE TO ITS FATHER a)
FATH E R NAME ::STAC : CPREC (TOP CF STACK) J.VA EI
I:=HAS~ (FATHER NAHC ; — —
JI:HASH PTRSC Z1
IHILE(FUHER NAME * HASH TA8LECJ) .PRJIAME) 00
BEGIN — —

REPEAT I::(I.t) MOO HA5H PTPS_LE’lGVH;

UNTIL (HASH FIRSt!) I Ofl
J::HAsH PTRSCT);

—

FATHER ::HASH TABLEC.J).PTR TO PROC TREEI
END I — — — —

END;
FILL SON BR OT HER I
N (XT PROt NODC ::NCXT PROC NODE.!;

ENO — — —
• PROCEDURE POP STAC~~(a A PI1OCEDU~(IS SCA~lNED,POP IT a)

BEGIN
TOP OF STACK:=TOP OF sTAcK—i;

ENQI — — — —
PROCEDURE PUSH STACK ;

(a A NEW PROCEDURE IS SEEN , PUSH IT a)
B E G IN

— STACKETOP OF STAL .K).IN31CATORUP~’)STACKE IOP OF STACK).NAME ::PROC KANE;
TOP OF ST1CKI:TOP OF STACKaI; —

-

(MDI — — — —
PROCEDURE INSERT HASH TABLE

VAN J :IVTEGENT
BE G IN

4 :HASH(PRO C ~lAME)
W HIL~ (HA ~ *s PT RSCJJ a 0) DO
J::(J.LrMOfl HASH PTR ~ LEN~ 198HASH P U~~(J) :~~HASH T N’) ExT J :HAjH INDCX;

HA~ W1NDE*:=HASH t~ OEX•i; —

WIT H HASH TAdLEEJI 00
Ut . GIN —

PR NAME ::PROC NAME ;• ‘fR 1) P~’)C INE(::PRFD(M X1 011CC NoDE);
IF PROC ‘lAM (:’OUT MOST ’ THCR SEQ 4d11::O

CLS~ SEQ AOR:;STMT No;
ENDI —

• LASTNOOE::PRED (Nr*T PROC NOOC)
END ; — —

FUNCTION HA SH;
Vai l t,J.rr’l,SU~ : IHTEG ER;
bEGIN

(a U I’lC~ IM’ O (” !NIL ~lj ~~4 F P •)F ~Y ML)O LS a)
C . A’l) IHE A EINu I P,1 S 1.4LNG 4~ A ?dL ,~ aER a)
(a HAS H T HE a f R E H O . a)
L::I; ;- .‘~::t; SuM::O;
WNR~~(I(~~ID LE NGTH) t)U
IILGI’4 —

93 THIS P&~~ IS B~~T QUAIsITE P U
~~AIBITA*

J2~ON Q(~PY J%aIEIS.1~~ TO D~Q .~~~~~~~~~ .—

I ~~~~~~~

•Jt -

J::ORD(ZrJ NANE (II);
IF JC. 4 IRE’I J:~ J— 64 FL~~F~ J::J—32;
~uM::~ uM.JaV’: N; TEN:: IEV a IGS I::I.L

EPiD I
HASH:ISUM NO’ HASH_PT RS _LEPIGIN;

INO
PROCEOURE VAN OC~ PROf.ESOOR I

PROCEDURE NEd ,V P C J I A M E I
VAR I:IN !LGER ;
(a IN CA 1 OF PIESTED RCC O KO~~. AV R * Y , F IL(a)
(a SET,... A TYPE OrCLAM~ T ZO 1 MLST BE a)
(a 4ENCa,AT~ O. TH~ TY~~ NAME U E~N SI t~ERED’)(a TO :IE tPOOQ3OL,TPO QO0G.~, BEGIN

• NO NEW TTPE::NO NEW TYP(•U
I:!ONDTTP MAPICCTI)j.ENGTH))
IF I:~~7 r P NBEGIN
TP NAM(tIO_LE-NGTH):=’O’;
I P:NA~CZ IU_LE~ GT PI—1)::cPIfIcS’Jcc IORO TPJIAMEC tO _LENGTH-i)) I) I

EN D
ELSE rP_NA M(CID_LENGTH]:=CHR (SUCC (CRO(TP_ NA MECIO _ LE’fl~TH))));ENO

PR OCEDU RE SA VE _SI MPLE (VAR IO:IOCNTIFIER ;
BE GIN

SIMPL(_ TABLECSIT)::10 Srf::SfT.1;
ENO

PROCEDURE SIMPLE OR RECOPO (VAR II.eJ:INTEGER U
(a IN CA~ C OF ARP4AYC ...3 OF....IT MAY HE a)
(a AMRAYE...)DF RECORD. OR A R RA Y C . . .) OF a)
C’ SIMPLF TV~~.,OR ARRA!t ...3OF REC dHERE a
(a RE C IS PREDE C L A RED A S ST R~JCT URE TYPE. a)
(a JJ !5 A CODE FOR RECOGNIZING THE CASE a)
(a a)
(a J J L — — —— > A R R A Y f~ OF RECOR D a)
(‘ J42 — ——— > ARRAYt....JOF RLC a)
(a J J 3 ~~~~~) ARRAYC ...alOF SIMPLE I)
(. LI WOULD ME A POINTER TO REC IN THE a)
(a ST RUCT URE TA BLE, a)
V AR I,a,K:INf(GER ;

T~ IDENTIFIER;BEGIN
I:=TYP
WNI LE(~ T~~~ ?~HIN C’ ‘.‘ ‘l) CO I:=I—LI

WH ILE (T!P(CJ] IN SYMBOLS) DO
BEGIN J:=4—L;

IF J:0 THEN BEGIN J::j; GOI O ii ; ENDI

END;
ii:;
FOR KU! TO ID L E N G T H DO TtX) U’ ‘; ~:=i;W HIL(((J(:I) ARD (K(:IO LE’ IGT l)) DO
BE SI N T tX ~~::T IP(~ J3 ; K:=K.I; J::J.1; ENO
IF T:’NECORO • THEN BEGIN JJ::1; GOtO 12 END1
K::!;
WH1LE (K(STRT—1) 00
BEGj~ STRUCTUR TABLC(K).LEVEL (2 THENBE G IN

IF T:STNUCTURE_ TABL E C K~ .NAME THEN
BEGIN JJ:=?; II:=K ; SOTO l2~ END
ELSE KI=k.1;

EN D
ELSE KUK.t(

(NO 1
4J::3;
12:;

•

•

(‘ IF TYPE IS SIMPLE ARRAY,FIL(,~ ET,OR a)

EN O
PROCEDURE MANOI.~ AR_ST_FL 1

VAN £.a :INrEGE~~;

~~~ 
(a  (...) MEN GENERATE A NEW TY FE NAME a )( a  DECL ARE A NEW TYPE AND USE THAT, a )
BEGIN

FOR IU1 TO LINE _LEN GTH DO NUFERCIR:’ ‘;
NCW _ TY PE _ NAM E
Foal I::L TO ID_LENGT H 00 BUFCNCI) ::rp_N&Mccn;
GUFERCI)::.:’;
FOR J::1 TO TYP E LENGTH 00 IIUFLRCI.J.1]::TIP(J J);
BUFEi~C I .J.1 1::~~;T ;
W R I TELN TEXT.. ,EUIF(R);
FOR J:=L TO TYP E LENGTH 00 TIPECJ) : :’  •FOR j ::l To IO LENGCH 00 TY’C,hi::TP_N A MtC ~I3I , (Mu;

PROCEDURE GEMt~1A TE DCL STMT(VAR LC .MG:INTEGER ;
( a  WH EN A ‘R tCC~~)’ ES COMPt.CTE(j  ST L) 1EJ  a )(a  (N ~ T~~UCT U l1 TA ~JLE,C’”.A 1t.. A N~~I T V P ~ a)

I, , ( a  N A M E  AND DE CCA M E I f  AGA I N  , THEN SAVE a)
( a  IT  IN 1EX12. a )
(a  I xAMPLE :
(a T a l Q O Q f l O t : R F C O R r~ a )(a  SAME ( L) M F O NE N I S  a)
C. END a)
( a  a )
VA R I, J ,K, I:LN Tr r ,rq ;

IIEGIPI

94

a -

• • -~~

L —
~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~~~~~ 

- 
~~~~~~~~ ~~~~~~~~~ 

•

FOR I::! TO LINE LENGTH 00 AUPERCI)::’ ‘;
Rc::’REcW)’)’; JT:LIH CUE ~YPCUYP,J)FOM 4::! 1(1 ID LEN GTH 00 LJtFERCJJ ::IYPCJ3;

FOR 1::J.I TO J.6 DO BUFF.RCI)::PCCI—JU
WRIrcLN(rt.XT~~,,lurLR);LO::LO.11 I::STRUC TURE TAHLL(LO3.LEVEU
WHILE (LO (HG) 00 —

I4CG IPI
FOX .J::L TO LINE LENGTH CO BuFEREJI::’ .1
(a SKIP OVER THE INNrR MCCOROS a)
IF (STRUCTUNE TAbL(CL03.LE~ EL:I) THEN3 BEGIN —

~1 IO::STRUcTUHr IA ILCCLO3.NAME ; JULO;• G I V E TYPC (ITI TJ);
FOR ~~ :L TI) ID LENGTH CO HUF(R CJ.1S)::IU~~J I;

J FOR K::1 TO IL) LENGIM CO IuFERCJ.K.151::Ty’EK);
LAST::TRUE ; L~ :LO.1(a TAKE CARE OF .IENI COLDN FOR THE •)
(a LAST COMPONENT CF GENERATED a)

— C a RECO RD TYPE. a)
WHILE (L(:HG) 00
BEGIN

IF STRUCTURE TABLCCL) .LEVEL:I
T H EN LAST:=FIL2(;
L::L.1;

(N0
IF (NOT LAST) THEM BUF(RCJ.K.t53::’ ’
WRITELN (TEXT2,BUFER)i

— Lo:=s.o.1;
(NO
FOR K::L TO LINE LENGTH DO %FERCKI::’ I;
IIUFERCIO) :=’EIi T3UFEREI13 ::.N’; aUFtqtt2)::’o’;
BUFERC I3]:z’;’; URIT ELN(TEx rz ,BuFER) ;

E’IDi

PROCEDURE HANDLE REC0RD VAR ID:IDENTIFIER)
VAR ZI,J4,I,JEINTEGER
BEGIN

STICCTS):=STRT; Ts:aiS.i;
IF L(Vs1 THEN
BEGIN -

F CAS E TYP BV OF
t: B GIN

C a CALLED PROM TYPE PROCESSOR a)
WITH STRUCTURE TABLECSTRT] DO
BEGIN LE VEL:=LEV; KANE::ID

IND1::’ ‘1 1K02::’S’i
TCODE::STT;

ENO
ENO.

E _ Y E _N A E SAV(_SIMPLE TP_NA ME);

2~ BEGIN
(a CALLED FROM VAR _OCL PROCESSOR a)
(a a)
(a IF IT HAS BEEN ARRATC ..al OF a)
(a RECORD .THEN RE°LAC E ‘RRECO RD ’ a)(a W IT H & NE W TY PE KA ME AND USE a)
(a THIS NAME FOR CREATING THE NEW •)
(‘ DECLARATION. ‘P(a EXAMPLE: a)
(a ARRAYC...)OF RECORD a)
C’ IS CHANGED TO~ a)
(a A R R AY C . . .] O F TP000002 a)
(a T P00000 2:REC3RO a)
(a ••,• a)
(a (MCI a)
(a a)
IF ASFR :3 THEN
BEGIN I::TYPE LENGTH; -

WHILE (TIPCCT) IN C’ ‘,‘;‘)) DO I:=I—1;

S~HILE(TIPCCJ] IN STMfTOLS) DOHEGIN TIPCEJ)::’ ‘; J::J—1 ; END;
NE W TYPE NAME;
FOR I::1 TO 10 LENGTH 53 TT PECI.J) ::TP ‘lAMEd);
W ITH ST RUCT U RE ?A L~.C ! T R T) DO
BEGIN L V i : :CEV; ‘lANE::rP NAME ;

—

ENO
IP4D1U~ ‘; INC2::’ T; TCOD(::3;

Tt::TIPE; GOTO 34R;

NEW TYPE NAME ;
WITR STII1)CTURE TA LLCSTRT) 00
BEG IN LEVtL: :LrV ; KAM C : :TP NA NE

I N D;: :’ ‘; IKU2::’ ‘1
• TCODE::o; SEND
— END -

END
END EL SE
BEGIN •NEW TYPE NAME ;

dzrq STROCTuRE TANLFC STR T3 Doufr,IN L (W r L : :C v ; N.I~ ’ ::10 INOP:’ ‘1
IND2::’~~’; TCO)EUSIT;

(Nfl
S A V t . S I M P L E(T P N A M E) ;

~

Th - -

L a __S - • -•
- —- —~~~~~~~ -

-5,—,—’

.

_—
_~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~

STRTUSTRV.); L(V: LEV .L;
CODE::~ ; GCT TOKENI

ILE (£DI’LPID) 00

IF ((kC :’ PACK FD’) OR (5 T : ’ S C Y I) OR
BEGI,~

FL IL() OR CTY ~’dL~~~’(’)l THEN
wIT H STRUC TURE TA ’lLEESTRT3 DI)
BEGIN LrVEL::CEV; MAMt ::IO; INDI::’ Il

(P101
!NQ2U’S’; TCDCZUSTT (S

END.
A a! PLE

~
#Y) G3TO

~~~~
?T

IF AR :’ARRAY’ THEN
BEGIN

SIMPLE OR RECORO (II,JJ)$
CASE ~J OF
1: BE GIN

(a RESERVED a)
END S

2: BEGIN
C’ ARMAYC ...JOF 11CC, REC PNCDCL a)
WIT H STRUCTURE TA~L(CSTRT) 00BEGIN LEVZL::LEV ; NAME ::I’~;11101::’ ‘ INO2::’R’;

T CODE:: ill

CN D~~
0

3~ BEGIN
(‘ ARRAYC...) OF SIMPLE TYPE a)
WIT H STRUCTURE TADLECS1RT~ 00BEGIN LCvEL ::LEv; MIME :=Ij;

INDI::’ ‘ 1fi02::’S’;
TCOOE::STt;

END;

(NO 
OLE

_ _
ST_FL; SAVE SINPL((TYP);

(ND~~
f t T S TR T a 1 GOTO 347;

IF RC:’RECOROI THEN
GOTO 347~ END;

BEGIN
WITH STRUCTURE TAOLEESTRT) 00
BEGIN L(YEL::CEV; NAM(::tO; t~ioi::’ ‘I
END 

INO2::’R’; TCOOE ::II;

GOTI~ 3411

(ND;
WI TH STRUCTURE TABLECSTRT ) 00
BEGIN LEVEL :=CEV; NA MEUIDI zrun::’ SI

1N02::’s’; TCOOE::STfl
END;
SAV E SLMPLE(TYPU STRT::STRT .1;
347: GET TOKEN;

(NOl —

LCV ::LEV—1;
I: :STRT—t ; J ::STKCTS—1); T S :=TS—1 ;
GENERATE DCL STMT (J,I)I

(No;

PROCEDURE CREATE VO MODE l
VAR x ,J:INTCGEK; —

PROCEDURE FILLUP SON BROTHER;
VAR K :INTEGER ; —

BEGIN
IF PROC NAME I ‘OUT MOST ’ rHEN
BEGIN —

c::vAR OCL TREECNEK T VC NOOE).FATHER ;
IF VAi DCL TREE (K).FTR~ T !ON:OTHEN VEIl OCL fREECK).FIR~~T saN::p4zxr VO NODE
ELSE BE G I N —

i(::VAR DCL TREECK] .FIRST SON ;
WHILE (VAR DCL IR t~~ ] . V 0 D N ~~E.~ N R O T H ~~~It 3 ) 0 O

Ic::VARThcL IRE(t.c ].YOLjNSZd ,,!OTHrQ;
VA R OCL TREEC~~~.YO LNG ER HqQT ~ t~ ::— N E X T VO NOSE;

ENOl —

~~~ I ENG I
(MD I

S

BEGIN
~~~ W I T H VAR DCL TR (EC NEXT ND NCOE) 00

BEGIN — —
~~
., C~’ PTR TO VOTARLEUNENT V3 KOW

size::’!;
V ‘~~ - Pal Na~ c::p POC NAME :

F L~ cT 0N::flr
YOIJN;r” H, OY H ER: :0
iF PNOC NAM(:’OU ( MOST ’ IHEN F *T$F.R : O

~~ v ~~f CL.~E dLGI J
1 NAMr::~~TAc Ic t T 3 P  oc ~ r A C x - ’1.’l~ ’’;I::,lA

~

rV FA Twf 1
J ::H~~~~4 p I’~.dt i ;
WHILE (~ ITHF11 NAME * HASH T*OLE(J3.PR NA M~ IUO
OEGI ’l

Mf

~

,CA1 t:: I.i) do.) HA~~I4 L It- ( ; L~ \, TM~UNTIL (HA~H_ FT1~ (t~ i

96 

—— 5- -  •
~~

-
~~ I
-

__________________________________________ ~~-5 ~~~~~~~~~~~~~~~~~~~~~



— J :SNASN PTASCI3I
(MDI —

J::HA~ H TAH LECJ) . PT R TO PROC T~ E1:$
F*T H L~I:YPROC ~ J IR~~ErJ3 ;PTq TO VJ )~~ 0t~CND — —

END;
FILLUP SON IIROTHER;
NIXI vO NODE ::NEXV VO NODEaLI

tND —

— PNOC (O’JRE FILLUP VD TANLE
VA R I,;I.JJ:INTEGER ;
PR OCEDURE INSERT INTO Va~TABBE G IN  — —

CASE ASFR OF
1: BEGIN

( a  SIMPLE VAR a )  S
WITH VAR DCL TA .~LE(NEXT VD ROW ) 00J BEGIN VNEMC :!LD; INOIC:!ASFR; TCODt::~ TT;END:

— SAVE SIMPLE (IYPII
ENO —

2.3: BEGIN
C. SIMPLE STRUCTURE VAR , NOT a )
(S AHR AY OF CECONDS.
WITH VAR DCL rA3 LrC~~(alT VO ROW] 00
BEGIN VNZME !Iu; INOIC: !ASFR; TCODE::STRT;
END 1 S

END;
5~ BE G IN

— (a SIMPLE VAR ,S TRL ~CTUA E TYP E. PREDCL . .
W ITH VAR DCL TABLECI,EX T VO ROW) DO
BEGIN VBANE~ =ID; INDICI:ASFR; TCOOE::I!;END;

END
~: BEGINI’ ARRAYC...3OF REC .REC PREDCL. •)

WITH VAR SCL T4IILEC NE (T VO ROW ] 00
BEGI N VNXME:!I5; LNOIC:!A3FR; TcoO(::II;

T T C OO ::SrT ;
— HAN OLE A R ST FL 3

SAVE SIPIPCE(TP NAM~~ENDI —

END
(NO;
NE XT VD RoU::NEXT VO ROW.j;
VAR OCL TRE(E NEXT VO NOO(—I ].SI ZCU
V AN OCL _TREEC N(XrVD ’400(—j ].SIZE.1;

END ;  —

(a  MAIN BODY OF F ILLU P _ VO J A B  a)
BEGIN —

COD(:=S GET TOKEN;
REPEAT —

IF (ST~ ’S(T’) OR (FL:’FILE’) OR(RC:’PACKED’) OR CIYPCI)=’ (a)
THEN BEGIN

HANDLE AR ST FL; ASFR::1;
XNSERT INTO 7CTABI

END —

ELSE IF AR :’ARRAT’ THEN
BEGIN

SIMPLE OR RECORD(zi,JJ);
CAS E ~J 0F
1: BEGIN

ASFR:=3; INSERT INTO VOT AK;
1EV::!; T1::Ir —

HANDL E RFco~ o(Io);V AR DCC TAM LECNEXY VD RDW—1).TTcOuc ::STT;
TIPE::TT —

HANDLE AR ST FL;
SAVE STMPCE(TP NAME)

- 
END ; -

2. OCGj ~ p~~: 4 ; I N S E R T  INTO V OTA B;
END; —

3: BEGIN
A sFR : : I ;  HAP ~OLE AR ST FL ;
INSER T INTO b U T A B ; —

(NO —

EN DI
(NO
ELSE IF RC ’RECORO’ THEN
BEGIN

ASFH : :2 ;  I N S E R T  I N TO V D T A B I
1EV::!; is::!; —

HANDLE RECORDI 13)
EN D

• ELSE BEGIN
S ( M ~ L C OR ( c C o a l o ( I I , J J ) ;
IF JJ:2 TT1~ NB E G I N  *SFIl :=~~; I N S E R T  : N T J  v 0 I A ~I~(ND ELSE —

BEGIN ASFM::1; TMSCRT _ I N T O_V0f A~~;

GE T T O X I N ;
UNTIL ROT MORC_ VA R ;

PR OC~ DU’I1 TYPE PROCESSOR; ____
VA t I  ,JJ:I r~TC CEll ; _ _~

:-- o~ x ~~~~~~~~~~ ~~~~
97

~~~ • ‘
\~~~~~ ~~- ‘Sk -

IL _________________
_ _ _ _ _ _ _ _ _ _ _

_ _ _

__________________________ -- —
~~~~~~~~~~~~~~ ~~i__ i - .  —

COOE::3 G IT _ TI)KEN$
Coor::9; GET TOKE P I
IF ((iCC:’PACKtU’) DC (1:’S(T’) OR

(FL:’FILp.~’) OR (Tft’C1)~~’(’))TH EN S~ V E SIMPLr( lnb
ELSE IF A R : ’A K K A V ’  rHEN
B E G I N

~IMPLC OR R (CORO (IL,JJp ;
CASE 34 0F
1 HEGIN

WITH STR~ CTU.t IA flLCCS T~tT) 00B E G I N  LEvp L:~~~T NA M( ::1O; I~~Dt:: ’~~’;IND’::’I~’; TCOl )F_ :~~ST q T .~~;(‘(DI
STPT::STRT.1; NEW TYPE PCA ME

— 1EV::!; rZ: :t1 — —
£NO

OL _ ..3C ( TF_ NA MC);

2: ‘4EGIN
WITH STRUCTUHE TAML (CSTRTJ DOBE G IN LEV~L::T N*4(::I0’

INOI ::’A’; INO2::’~~’;TCO-)E::II
(NI);
STRT: :STRT.1;

END;
3~ SAVE S!MPLEUD
END;

(N!)
ELSE IF RC:’R(CDRO’ THEN
BEG IN LEN::!; TS :~~1; H*NflL ( RECO1O( Ilf l; C~-lO
CODE::3; GE T TOKE NI 

SAV E S IMPLC(ID,;
UNTIL (NOT MORE VZR)I
TTPSW::2;

END I

BCG IN BODY OF VAR _OCL _PROCESSOR a)

CREATE V O NODE;
VAR _DCC TEBLECNEXT VO R0W].V’IAM(::PROC NAME;
VAR DCL TR (EC NEXT Vo ~OCE — L) .S LZE:: S —

va R ocL:TR EEC NEXT VD NOOE—1 ).SIZE.1;

CODET:3; GET TOKEN;
WHILE ((MOR !_VAR ) AND (ID ISTYPE ‘)IOO GET TOKEN;

~~~~~~~ THE N TYPE _PR GC ES~~ R~0

BEGIN
IF POS NEW TYPE:—! THEN POS NEW TYPE::STMT NO-U
MORE 1ER:=TWJt; — —
FILLUP VD TABLE ;

END I — —
EMO

PROCEDURE NI VA R PROCESSORCVAR NV: IOEMTI FIER ;VAR TV:Slll111G 2);
FOR WARD ; — —
PROCEDURE LOOKUP PROC NAMES (VAR PROC NAM E F0UND :MOOLEAU~~VAR I.J,K:INTEGER r — —

(a CHECK IF IDENTIFIER IS A PROCECURE a)
I. NAME. IF SO.SAVC IT IN NI. VA R TA BLE a)
B EG I N —

PROC NAME F0UNO::FALSE;
.J::HZSHCID); I::J; S

K::p,ASH PTRSCJ];
IF (:0 THEN GOTO ~~OI
WHIL~ (I0 I HASH TAOLECK).PR _NAME) CO
B(G

~~PEAT J:: (J,1) MOO HASH PTRS L (NGTH
uNrIL (HASH PTRSCJJ I O~

—

K:=I4AsH PT~ S(3]IF 1:4 THEN 6010 5001
~~5 I END ;

i~~~ 1 I’~ DT::HAsR TARL(EK).PTR TO PROC TREE;
t~ I IDT::’pR’; ML V A R PRO CESS DRCIt , ICT U

CODC::7; GET TONER; PROC N4M~ FCUNO: :TRUE
E f boo:; —

(NO;

PROCEDURE CURRENT °ROC (VAR L:INTEGER)
VAR I,J:INTEGER;
C . G I V E A POINTER TO PROC/R O TREE TO THE a)
(a CURRENT PROCEDURE WHERE IDENTIFIER IS a)
(a F3U.N3 IN ITS BODY .
BEGIN

LQ c~ PROC NAME : :STA C K C TOP OF S IAC K-L) . NAME
•J::HISN (p’Moc NAME); —

I::H~~s PTllSC J fl
WP4IL P.CPFOC NAMLVII A SH TAtLECI3 .PR NAME) 01)

~~~ J E G I N  — —

REPEAT J~~~ J.L MDC HASH PINS LENGTH;
UIfIL (4A’~H PTRSCJ) SC)T4, I: :HA 1i PTHS( 33

END ; —

L::HASH TABLEt I].PTR TO PROC TR EE;
— —

PROCEDURE DCL A ’EA ( V A R  L,LO.HI I N T E G E 1 1  S
V A R  1.J:INT (GER;

98

4
1111,11. — —~~~~~n.tr;.. _u -  —— ~~~ .2S_.Z _3 .~.S rn.__..rrxnsss. -



- -  ‘
~~ 

~ -5 _.___S-5- _ 5. - -.
~II~

(a GIVE LOWER AND HIGHER POINTERS TO ~)(a DCCLA alA IION AREA OF )‘AOCEDU9E a)
(a POINTED TO DY I • a)
BE G IN

J::PKOC R~I TRrEtL) .PTR TO VONOOC I
Lo: :VAMThCC TNUCJ].prR III V J;A ~L(;HI :ZVAR DCL TREUJ3.SIZ(.LD;—

PROCEDURE SEARCH VO TBL( VAR L,PTVSIC3L:INT’GER);
— VA R L,J.k:INTEDER;

(a ~EA RCH VAR DCL TABLE FOR IC’NTEFI(R a )
(a  TO LC IF TO 1~ GLOBAL OR L )CAL. a )
BEGiN k::L;

REPEAT
DCL AR (A (L,J,I);
WHItE (J(t) 00
BEG IN

IF IO :VAR DCL TAI$L(CJ].VNAR( THEN GOTO 697;
— (ND;

L::PROC RB TREECL).FATHER;
UNTIL (L~ O)TC a  IOCNr IFIER IS NOT FOUNO A T  A LL. a )
PTVOTBL ::o;
GO T O 698;
GB
(a  TF PTV OTAH ( 1) — — — — )  ID E NTI F IE R I~ LOCAL a)
(a IF PTVOTA II~ 0 — —— — IDENTIFI ER IS GLOIAL a)
( a  IF  PTVOTAN:O — — — — )  IDENT IFIER NOT FOUNO a )
iF K— I THEN PIVDTOL: :— .J ELSE PTVCTCL::J;
698:;

END.
PROCEDURE SEARCH OMPON(NTS (VAR J:INTEG(R; VAR FO’JNO:BOOLEAN);

VAR M :INTEGEP ;
(a SEARCH STRUCTURE TABL E ID S~E iF a)
(a IDE NT I F I E R  I S A COMP ONENT O~ SOME a)
(a STRUCTURE VARIA BLE , a )
BE G IN

IF J(3 THEN 3EGIM 4 :=—J ; J::J.1; END
ELSE J ::VAR DCL TAO LE CJ] .rCODE.L;

FOUNO ::FALSC; M::STRUCTURF TA3LECJ).LEVEL ;
WHILE (M( STRUCTURE TARLEC3).LE~EL) DOB EGI N —

IF STRUCTURE TABLEEJ).LEVEL:N THEN
IF STRUCTUR E TABLE(J].NANE:!D THEN
BEGIN FOUNDT:TRUE; GOTO 854$ END
J::J.i;

(PID S854:;
— ENO

PROCEDURE STRUC VAR HANDLING
VAR L,PTVDTBC,I,3UNTEGER

FOUND BOOLEAN I
BE GIN

CURRENT PRDCCL);
SEARCH VO T8L(L,PTVDTBL);
(a A ~TR0CTURE VARIAHLE IS GLUBAL,SAVE IT h )
(a IN THE WITH STACK . a )
IF PTVOTHL)O THEN
BEGIN 4ITH STACICCTWS,13: :PTVDTBL;

WITII STAcK(TWS,2)::O;
I hIS :~ T ws. I;

ZNO
C’ IDENTIFIER IS NOT FOUND IN ~AR DCL FABLE a )
(a  SO IT MIGHT 3E A COMPONENT CE TO ME a)
(a STRUCTURE VARIA BLE. THEREFOHE ,SEARCH THE a)
(a  STRUCTURE TA IILE,IE It WA S FOUNC THERE, a)
( a  SAVE IT IN WITH STACX .  TI! SECONI) COLUMN a)
(a  OF W I T H  STACK IS IN A SENSE A KIND OF a )
(a  DYNA M IC LINK... ............. ..... ........ a)
IF PT V OTt ~L:0 THEN
BEG IN - -

I : :T WS — t ;
W N ILE (I):!) DO
BEGIN

J::WZTP’ STACKCI.i3;
S EAR C H CO MPUNEN1 S(J ,FOt J~4 3) ;
IF FOU RU THEN
BEGIN

W I T 4  STIc K C T W S , L f l : — J ;  S

GOrO 13!;

• 

~~~~~ 11~QM~~~~
END;

FUNCTI ON C~4ANG4l,L C :(a A vak:AULt. IS CHANGA ILE IF: a)
(a •)
(a I. ;OMEIHLNG 13 A 1 f ~N EJ TO IT a)
(a ;‘. API’ A CS IN A 11(A r) S T A T E M I N T •)
(a 3. APP~ A (S IN A CALL 13 4 a)
(a PROCIOUR AS API ABGUMCPIT . a) • -

— Ii(GI?
Cn ::R ; G ET To .cFeI ;
CHAP4I~AdLL ::(ASSIt;NLD _ VAR p OR (PROC_ CALL);

gq
S

-5 - _ _ _ _ _ _ _ _ _ _

-~~~
• -

-

. ..

S

(‘40$
-

PROCEDURE GLORAL IVA R PIONLOCAL: !IOOL !ANIVAR JJ,II:I’J tFG~~);(a EHtCK .~ ~~1€f- Il R A V A C I A t ~~ . t; f~~~)~~AL UN NOT. a)
(a FIRSI BY LOO KING AT CO MPONENTS. r I I N a)
(a VAR DCI. TAICLI . THAT IS TI) S A T , IF W I T H a)
(a ST ATE M C RT IS US~ fl. 1.-si P C I O ’ t I T V IS WITH THE ‘P
1* COMPONE Nt. •.,• •, •••• • a)
VAR I,~s.L ,P:INT EUER;

FOUNO :BOOLVAN;
BEGIN

NONLOCAL: :E*LSE ;
IF TIS)! THEN
BE G IN

1
WHI L E(I:l)UO
BEGIN

J::W ITH s rA c K f I . z) ;
SEARCH COMPO NENTCJ,F o urdo) ;
IF FOU~ O THEN
CE GIN

NONLOCAL ::TRUE; JJ::—J ; I1::I GOTO 132;
(MDI

END.
L32~~END

ELSE BEGIN
C a NOT INSiDE OF WITH STATEMENT .1

— CURRENT PRoC(L) ;
SCAKCH VO TBL(L.P)I
IF P~~ THEN
BEGIN

NONL0CAL::TRUE; 14::P;
END;

(NO
ENO

PROCEDURE CHNG ML V AR S
VAR II,J.J.I~~INTCG(RNONLOCAL ; 800LEAN
BEG IN

(a SAVE ANY CMAP1GA8LE NONLOCAL VAR IABLE a)
(a ~M PIL VAR TABLE BY CALLING THE a)
(a NI VAH PROCESSOR...... a)
IF CHARGABCE THEN
BE G IN

GI.OBAL (NONLOCAL,JJ. in;
IF NONLOCAL THEN
BEGIN

IF ..W>O THEN

BEGIN
(a NONLOCAL SIMPLE VARIABLE ‘)

IOT:=’IO’; PIL_ V A R _PROCESSOR (1D,IOT);
S

IF JJ(O THEN
S BEGIN

1. NONLOCAL STRUCTURE VARIA BLE a)

~~ f~~—JJ; IDT::’C D’; NL VAR _ PROC ESSORUO,131 ;
- WPIILC ’(U I T I STAC KCI ,Z3 IO 00

BEGIN —

PVDT:=—WITH STACKEI,!); IOT::’CO’;
10::’ ‘; NL VAR ~‘ROCESSOR(ID,IOT)I::WITH STACKEI.2); —

END
PVDT::WITH STACKEI,!); IOT:=’ IO’ ;
NI_ VAR PROCESSOR (ro,IOT);• ENO —

ENO
ENDIEND ;

• PROCEDURE ML V A R PROC~~SSGR i -

~~ j (a SAV E TIE RONLOCAL CHAPIGA8LE VARIABLE , a)
ti- I (• a)

S ~~1
~

(a IF INO!CATOR :’XO’ ————)SIMPLE ~4R a)
7~ I - I’ IF INDZCATOR :’llJ’ ——— — IIECOVERT BLOCK a)

(a IF IROICATOR: ’PQ• — — — — PPOC ’OURE a)

~~~ I (a IF I’.3ICATOR:’CD’ ———— )COMPO’IENT a)
-

S R, r (a  EXAMPLE: a)
1. Ca P,X,Y IS STORED AS a)

(a
( S  •CO’ ,——— — TO (I) IN STRUCTU RE TA NIC a)
Ca ‘CD’ ,——— — TO CX ) IN STRUCIUR TA;ILE ‘P

-~~~~ C’ ‘ID’,——— — tO CP [N VA R DCL rABi a )
C. — — a )
(a  R E P E A T E T I O N  IS TAKEN CARE OE.......... a )
VA R I,J.PC :INIEGCR;

FL AG : H OULE API I
HEGIN

PROC NAM~~::S1ACX1TOP OF STICK— 1; .NAMC ;
IF P~ OC N4”(:’OUT MO’IT’ TIIEN GO) !) s st ;

~~~~ R~~ HA’~MTP’!OC NANET IZ::HASH PIRS rMI ;
4, wHILE C~ I~UC NAM E F HA’ PI T A C L I C I) . P R NAME) DO

8~
B E G I N —

R c P rA r w ::(~~.I) •OU HA s H PT~~ 1EM1ri;
~~~y UNT IL ( IA ,~,i ~T*~ t M )  U OT; —

I::HASPS P145(R);
—

100

—~ 
__•__,_.__i~

_______ —



M: :HA~~H ,A IlLrrpq ).pTR TO ~ 4O C rR~~~;IF psoC R[( T KC. tM l . PTR 10 NCV * H:~ THE N
PIOC f T p  TRI P.[M)•PTW TO ‘JL~lAR~~~N EX1 ML VAR
IF TV :’CO’ TH P1 (.)lO ~~~~ ‘i; 

—

J:~~PROC R I  TU1(M).NO ULV4~I ~ ;ro;
1 :PROC Rfl T R E E C M 3 . PT R  To NLVL ; ~:~ J.i;.PHILE(I~ J) UO — —
HCGIN

IF I:; THIN FL*G::TRUE
ELSE FLA 1 :~~(P.L VA SE TASIIE (I—i).INDICAIORI’CD’)
IF (ML VAR TAIICCtfl .PTR TO w-)T*~1~~’VOt ) AN D- .  (NL VA R TA RL(( 11.1 )1CATCR ~~TV ) AND• FLZG THEN GUTO ‘V)I

• ELSE I:~~I.1;• END
549:;
ML VAR TABLE (NEXT NI. VAR).IND IcATCR::Tv;
PJL vAR rAaL~ tNEwr NL vAp ).pr) IQ VCTAB ::PVOI ;
PH~ C R~T IKE ECM ] . PJ D ~CvAH USr I3T:
PROC I T RCE ( M ) . PIC NLV A4 U5E0.I;
NEZI NL VA R:= NExr  ~L V AR 1;
sSI:T — — —

END;
PROC EDURE BAC KT RA K NIVAR;

(a NONL3CAL VA R IRBLE AREA OF NESTED a)
(a PROCEDURES (N NI. VAR TABLE A.4( a)
(a NEST ED AS W ELL. — — a)
C’ A Y CALLING T HIS PROCEDU RE AN3 ‘)
(a USI’:G A BAC (T RAC KIN G STRATE GY a )
(a  NI WAR TA,ILr WILL BE REA P.RAN CC a )
(* AND THE POINTERS WILl. BE MODIFIED a)
I’ IN PROC/RB TREE.... ........ a)
VAR I,L3 .HX.M:INIEGER;
OLGI N

CURRENT PRoc(M) ;
LO:~ PROe RH TR(E(M).PTR TO NIVAR I
ML:= PROC RB TR EEEMI.NO RLVER USLD’LO—l S
IF LO*0 IREN —

BEGIN
PROC Rd TRCECMLPTR TO NLVA R :~ P1EXT NI;

— FOR r:=co To PsI 00 —

BEGIN
ML BUFE~TCNEXT Nt).[NDICATOR:zNL VAR TARLEET] .INDICATOR S
NL BuFERCNEX r  NL),PTR TO V U t A 8~~NL VAR TAB LE ET] .pr R TD vDrAf ~~ 

S

NUT NC:=NExr NL+1~~ 
— S

END; — - —

NEXT NI VAR::IO ;
(No; — —

— END;

PROCEDURE WITH BlOCK PRocEssoR; FORV A RDI
PROCEDUR E REC BLOC PROCESSOR; FOR 4A RC;

S (aaaaa .aa ,a .a ~~.a.aa ~~aaaaaa.aa.a ..a .aaIaaa .aa .aa .)
(a BODY PROCESSOR a)
(a a )
(a  BODY PROCESSOR GOES TPIRU THE BOD Y OF THE a)
(a HITIED PROCEDURE. IT W ILL LOOK FOR THOSE a)
(a VARIABLES NONLDCAL TO THE PROCEOURE ANt) a)
C’ CHANGARLE AC WELL. [F THERE AR E SLCPI VARS a)
(a THEY WILL 5’ SAVED IN PlC. VA R TAI)LE. a )
(a  IF THERE A RE SOME PROC EODRE CALLS IN THE a)
Ca PROC EDURE P103Y, THEY ~ILL B’ SAV E D IN TH E ‘) ‘-~~~ /(a  SAME TA t t L E TOO . *MDTHER WORD S , AN T CA LL EP) a) ~% 1
C’ PR~ CCDUBL HAY CHANGE SOME OF THE KONLOCAL a )
(a  VAR IANLES AS WELL. a)
I. THIS PROCEDURE IS RECURSIVELY CALLED IN a )
( S  CASE OF NESTED BLOCKS . a )  

~~, ~~~
C’ BY SEEING RECOVE RY BLOCKS OR WITH •)
( a  STA CHEN TS ,CO R4EC PO NOING PROCE DURES WILL a )
(a BE CALLED. THESE PROCF.DURES M A Y  CA LL FR’ .)
(a  BODY PROCESS OR (F A NEW BLOCK HAS %TAR T tO .  a )

• (a CASE STAEMENTS ARE TREATED AS BLOCKS.......’)(a a)
(aaa .aa .aaa .aa. aa e a aa .a a . . a aa a a a a a a a aa a ,a a . , ,a a a )
PROCEDURE BODY PRocEssoR ;

VAR PROC NAME F3UPJD:000LEAN;
— xW : I~!TtGER;

BEGIN
coO E:=3; GET TOKEN; las
W HILE  ( TOK EN AT ENO ‘) 00
BEGIN

IF TOKEN :’BCGIN ‘ THENS B E G I N  -
HOOT o~~~~~ 55Øq ; GOlD 3Ot ~- END;

IF FOKEN :’ENSURE ‘ 171CM
BEGIN

IND)C :2 LNK :~~L ;
NE HLOCK _ PROCCSSOR ; DC” S T A C K ;  GO1O 3O’P~END; — 5.

IF CDKEN ’WITH ‘ THEM
UF~ C. IN  4 IT H ~‘LOCIc PROC F ;-;OR; G O lD 3-11 ; LND

IF rfl. rN: ’CA ~~ 
— ‘ TH EN ~5 S

~1i.GIN ts ’ v PROc ESS0P;  GOlU ‘11; END;
IF 001 TH€ N
III G IN — - 

S

— I. 71-SE N DOT IS THE VA L %J t V T . UE , T Ht N I) ..•
C ’  SFPIUC1Ufl~ V A R I A B L E  PI~~~ THF F 3 K M :  a )  -~~
C • X X X . X X * X . X X  

101

‘ a ,

— 
~ i_ aa ass -~~~.naarrt S 

_ _ Ls•,~ r- ‘•:_



wc:=o;
WHILE DOT DO
BEGIN Oor ::cAIz(;

- ST RUC V A R  HAND LING ;
wc::wC,ar CooE :z3; GET TOK EnS

LN Lfl
CHNG ‘IL VAR I
1ws:!TwS— Wc ; ooTo soo;

EN DS
CPSNG ML VAR;
IF NDF(~~ HANGABIE ) THEN

- LOOKUP PROC NAHCSIPROC NAME FOUND);
300:; — —

COD E::3; GET TOKEI~;301:; —
- I END;

COQE:=3; GET TOKEN;
EN D S —

( a a a a a a a a aa a a .a a a a a a a a a a a a . a s a .a f r .a a a a a . )
(a REC BLOCK PROCESSOR a)

- — 
- (a  — — a)

(a  RECOVERY BLOCK IS CALLE’) WHENEVER a)
(a AN ‘ENSURE’ STAEMENT HAS BEEN SEEN a)
(a IN THE BODY OF £ P”OCEDURE. a )
( a  A NY R EC OVC RY BLOCK WILL BE TREATE D a)
(a AS IF IT WERE A PR)CEOURE . A NAM E a )
(a W ILL RE CR EATED AND ASSIGNED TO a)
(a TPSAT,& MODE. IN PROCIRB TREE WILL a)
(a BE INSER TED WIT H ALL INFO RMATI ON a )
(S ABOUT THE RECOV ERY SEL.OCK. a )
( a  IN THE CASE OF NESTED RCCOVE ~7Y a )
(a  BLOCKS, THE PROCESSOR IS CALICO a )
(a RCCIJRSIV~~LT. THE REST OF IT IS a)
Ca SIMILAR TO BODY PROCESSOR......... a
C a a)
(a aaaa.aaa.a.aa ...aa...aaa.aaaa .a *aaSa.a)
PROCEDURE REC ULOC ( PROCESSORS

VAR PNOC NRPCE FoONo:eooL(AN;
I .J:TNTEGER;

PROCEDURE CREATE RB NAME ;
(a NEW NA MES FDR ~ECOVCRY BLOCKS ‘I
(a  ARE CONSIDERED TO BE LIKE:
(a RB00000I,RH000002,R11000003,....a).
(a THEY WILL BC CREAT ED W HENEVER a)
(a A RECOVERY BLOCK IS SEEN.... ...a)
VAR I:IPiTEGER;
BEGIN
I:=ORDS-RB_ NA MEE XD LENGTHI ;

IF 1=57 THEN
BEGIN

Rd NAME CID LENGT~~3:=’o’;
RB:NAME C Io:LENGTaC—1) :=c llRCsucc C CR0 C RB _ P I A M EC  IQ.LC N G T H— 1 ) ) ) )  I

R~ PIAMECID LENGTH] :=CHR(SucC(ORO(RB..NAHEUO_Lt’SGTH)))1EN D ; — —
(a MAIN BODY OF RCC BLOCK PROCESSOR )
BEGI N — —

CREATE RB NAMES IOT:=’RB’;
PVDT:=REXT PROC NODE;
ML VAR PP0CESSOR (RB NAME,IOl)
PRDC NIME:=R Ii NAME~~ PRB:=’RB’ ;
CREATE PROC NDOE
“USH STACK ;
INSE R T HA SH T A B L E ;
C0OF::~~; 

— GET ToKEN ;
WHILE (TOKEN A ‘ELSE_ ERROR ‘) 00
BEGIN 

TO R EN~ ’BEGIM • THEN
BEGIN

ROOT PROC ESSOR; 6010 soi;
END ;

IF TOkCN~’(NSURE ‘ THEN
BEGI N

INOIC:=2; LNK:=1;
REC BLOCK PROCES’~OR PCP ST AC K r,OTO B00

EN D ; —

IF (TOKCN~ ’OY I) OR
(TO~(EN~ ’ELSE BY ‘) THEN
BE G IN  —

IN0 IC::2; LNK:=~~; G O T O  B O O S
END;
IF TOKEN :’WITH • THEN
HIGIN W ITH B%•ICK PRo c E s s o R ;  6010 ~~~~ ENJ ;

IF TOKEN:’CISE — ‘ fHt (
BCGI.I 1100? PROC ESSO R ; 6070 801i EPU ;

(F -101 TH ER
LIE GIN

W HI L E  (DOT) DO
BEGIN OQf : :FA LSE;

STRUC VA R i4A ri~)1I’1G;WC ::WC.I; Cu,W ::3; r,rr_ TDECCN ;

— ~ C1P.G ML NAR I
END ;

~~ 
Iws: T WS —w C ; GO! *3 b lO ;

(NO;
CHNc NI VAR;

~~1.W ~ %1~ I~ NO) (CH ANGA PILE ) THEN

102

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• .1* -

LOO KU P _PROC NAMCS (PROC_N AMC _FOUNO);

coaE ::3; GET _TOKEN;
‘Si):;

END;
ITACKT NAC K _NLVA R
ZNOIC:=2 LndK:=3;

(No ;
(.a a a .a a a a a a a a a a a a a a a a a a * a a a a a a a a a *)

S

—
(a WIIH _ OL OCK _PROCCSSOR a) -
(a - . - a)

S - ‘a ALL I TS A C T I O NS AM £s.4s~rLY a)
a SAKI . A THD C OF BODY a)

- a PRUCISJOR AND NEC OLOCK a)
a PRt)CES~ OR. THI PROCESSOR IS a)
a DESIGNED TO TAKI CARE OF ALL ~l

is POJ. [DLE FORMS OF WITH STMTje a)
(a EPIAMPLE : a)

S (a WITH XX, *XX, . . . DO a)
(a bEGIN a)

— (• WITH X,RXXX,,.. 00 ‘)
(a WITH XXXU DO a)
(a ..,,.....
(h ALL THESE NAMES K,XN,XXX,,... a)
(a WILL BE STUEIEU IN W I T H STACK .5
(a AS THEY AP PEA R, AND WILL tIE ‘P
(a ROPED OFF STACK AS THE BLOCK a)
(a IS ENDED a.a...e.a

aaa a. a a a a a a a a a a a a a a a a aa ,aa a a, .a a s .)
PROCEDURE ~C 1tS HLOCM PROCESSORS

VAR PROC _ NAME FOJNDII300LEAN
LAST _ F 13,PTVDTaL .L, I ,j: INTEGER;

FOUND :BOOLEAN;
BEG IN

LAST TWS:=TWS;
9~ o:T
cooE:= 3; GET TOKENS
WHILE (TOKEN 1 ‘00 ‘) 00
BEGIN

ST RU C VA R _HANOLI NG COoE:~~3; GET_ TOKEN;
— END;

COD(::S; GET TOKEN;
IF TOKEN:’WITH ‘ THEN GOTO 940;
IF TOKEN ’B (GIfl ‘ T H EN
BEGIN 53001 PROCESSO R; GOTO 944 ; E1ED
IF TOKEN:’CASE ‘ THEN
BEGIN BODY PROCESSOR; GOTO 944; CP05
IF t O KE N~~’ENSURE ‘ THEN
BE G IN
[NO!:::? ; LNK::t;
REC _ bI.OCK_ PROC ESSOR POP_ STACK ;

ENDI
RE PEAT

IF T OKEP :’BEGIN ‘ THEN
BEGIN BoO T PROCE SSOR ; GOlD 94 1 ENDS
IF TOKEN:’ESSUR(• THEN
BEGIN

S - INOIC : 2; LNK :=z;
REC_BLOCK _PHOCESSOR; PoP srAcK;

END;
IF TOKEN:’UITH ‘ THEN WITH_BLOCK_~ ROCESSO’ClING ML VAR ;
IF N~ T(CpsANGABLE) THEN LOOKUP FROC _NA MES (PROC_ NA ME_FOU’IO)
COOE::3; GET_TOKEN;
9,1:;

U~CTIL (SEMI _COLON)OR(PREV_ TOKEN ’END
9,4:;
TWS:=LAST_ T WS;

E ND ;
PROCEDURE FILl. END DCL PTR

(a PROCEDUITES ~RE ~LWAY S DEC LARCO TN a)
(a DECLARATION AREA OF OTHER a)
Ca PRUCtDSJRCS. THE END OF DECLARATI O N ‘P
(a OF ANY PROCEDURE THEREFORE IS THE a)
C a LAS T DECLARAT ION BEFORE 11 .5 MACN a)
C’ BLOCK• THIS POINT MUST RE SAV ED a)
(a IN PROC/ R~S TR E~ FOR EACH PROCEDURE a)

— (. TO BE (ICED LAT’ R ON. WHEN A a)
C. R E C O V E RY ‘l.IC HA5 BEEN rRA r ISL- *TE O a)

- (a 10 A PRDCEQIJRE, IT MUST RE (M~~ERTCQ .)C. A l THE END OF OCCLARAT [ON OF IFS •)
(a FATHER’ S 0~ CLA RATI ON AREA.... a)
VA R 1,J:INTEGER
ISCGIH

PROC NAME ::STAC K C PR EDC TOP 0F_ S T A C K) ~.NAM E
J::H~~SN I P R O C S l A KE) ;

• I::wASsi PIRSCJI;
W HILCIRR OC _ NAME a HASH_ TAOLECI3.PRJIAME) DO //BEGIN

RCP !A T J: :CJ. 1 ~øD HAS H PIRSJ ENGTM ;
UNTIL (HASH PTRSCJ3 a
I ::HASH _PrRSCJ~ ;

END; 4, -
J::NA~ .l T An((CJ1.,’TSE TO PROC TREE

PROC_RDjR&E(J j PTR_ tO _ 1 N0 DC).?:L~~ E_ ND
ENDS

(a a. aa. . a a a a a a a a aa . a a . a e a a a a a. a, a a a a a a’a. aeaaa aS)
C’ a
(a MA IN P5001 OF PROC _OCL_PROCES,DR..... a) - ‘C. a)
a a a a a a a a .a a a . aa .a a a a a a a . .a a . . a a . . aa , . a a a a a . a a , a) 103

-
• -

RETaIN -

IF F I R S T _CALL T HEN
BEGIN

COOE::t; GET_ T O K E N S
(ND;
CRE ATE PROC _NODES
IN S ‘. T -t A 511_ f A BLE
PUSH STACK;
VAR OCL PROCESSOR ;
WHICE(TTOKEsI:’PKOCEDURF ‘) OR

CTOKEtS: ’FUPSCTION ‘)) 00
BEGIN

CODE::4; GET TOKEN;
LAST PROC:=P’OC NAME; S
eRoc:ucL_PRocEs~

oR;
END ;
FILL ENO_ UCL PTR;
IF TOKEN A ‘BEGIN ‘ SlIER
BEGIN

U R I T E L N C ’ a a a a ERROR AT STMT ‘IO. ’,STMT NO:~~);‘4RITELN(’” BEGIN EXPECTED , RL~ ENCOUNTERED •,TOKEN)
(NO I
CUDL ::2; INOIC :2 LNK :=4; GET_ TOKEN;

S INOIC::t; TIS:=t;
BODY PROCESSOR
BACKTRACK NLVAR S
POP STACKT

EN0
PROC EDURE COPY RACK S

VAR I INTEGER S

B E G I N
FOR I::1 10 NEXT NVI DO
B E G I N NL _VA R TABCE LI).IN0ICATOR::NL_ BUFERCII .INOICAVOR ;

NL_VAR TA8CEEII .PTR TO VOTAB::
NL_BUFERC I I . e TR_ TO_VO TIN; S

ENO
NEX T_NL_VAR: :NEXT_NU

- (NO;

(a * s ea a. a, a a * as a a * a a a a a* a a* * *a *aa a 5*55* a * a)
(a ‘P
(a MAIN BOOT OF PASS_ i ‘P
C. a)
(aa a.. .aaa .aa a, a.. aS , a, as .. as a. a. aa a.,,, aa p

BEBIN
INITIALIZE PASSU
PROC_DCL PROCESSOR S
COPY BAcR;
PRINT_RESULT;

END;
PROCEDURE SAVE_LINE (VAR EILCN:TCXT_FILE;VAR BUF~ R :TCXT LINE ;

V A R L1N~_NO:INTEDER);FORWARD;
PROC EDUR E REAO _LINE VAR FILEN:TCXT _FILE; VAR BUFFER:TEXT LINES

V A R L I N E _ NO:INTEGE~~);VAR I,.~~INTEGERI- BEGIN I:=1;
WHILE (NOT EOLN (FILEN)) DO
BEGIN KEAOCFILCN .BUFFCRCII); I:=I.i; END;
RE AOLN (F I LEN P I
FOR J:=I TO LINE LENGTH DO BUFFERCJ]:=’ ‘;
L IN E _ NO ::LINE_N0~ J ; TXT_°TR::t;

END;

PROCEDURE SAVE LINE;
BEGIN WRITECNCFILEPI,RUFER)

— LINE No::L INE NO.1; COL:=1;
WHILE((BUFCRCVOLI:’ ‘)AND(COL<LINE _LE SIGTH))OO COL::COL.1;
IF COL=LITIE_L (NGTH THEN COL::I; - -END ;

(.saaa a aaa ssa .a.se...aaaa a.a aa. a aaa a)a aaa a ,aaa ,aaa,aa .a a)
PASS TWO

C a a)
(a PASS 2 GOES THRU THE INPUT ?ROGNAM ONCE MORE AND a)

‘1

Ca USING THE CONTENTS OF SEVERAL TABLES GENE RA TED B? a)
C. PASS 1.WX LL DO THE FOLLOW ING:
C a a)
(, I. ANY FIRST LEVEL RECOVERY BLOCK GILL HE TRANS a)
(a LATCO INTO A PROCEDURE AND COPIED INTO A FILE a)

~~~ 

(a CALLED INCRFPIEN F TEXT . ‘P
( a  2. THE RCCOIE RY BLOCK I’S THE O1IGINAL TEXT WILL ‘P

~~~~~ 
(a HE tGNOki O AND REPLACED 57? A CAL). TO JUST ‘P
C a t RA N S L A T E D v :COv ERY 110CR.

- (a 3. THE F I R S T TWO STEPS WILL ME PER~~ORME3 FOR ALL ‘5q C . F I R S T LEV E L RECOVERY fLOCKS IN THE TEXT INPU T a)
(a FROM PASS 1. a)

- (a 4. IF THERE APE NESTED REC .PSLOCKS,PASS 2 WILL ~E a)
C a CAL IF IS At~A I’4 7111 - S l IME ITS ~. L1’~~T (5 ‘~I1E a)
C a (N C HtMFNT T-~~T,T HE OUTPUT F~~)P4 - ‘ASS ‘ IT~ c L F . a)
C a 5. PAS S ~ 41 11 lIE CALL~ J A~ 104-. A~ TH~~R F A R t a)

U t, MORE LEV I IS t)F PrCOV P :S Y LOC~~~.
a)

(a I. A T THE V L R V T P4I~ ,A LL 7H~~~E Y~~~(T ~~ JIIL ‘W #IE R~UJ a)
(a TOGt THt II AN) T H A T ’ S aHAI CA ~I it 4C C~~PT EO Ill ‘5(a A RP.ijULAR PASCAL COM PILER, a)
(a a)
Ce IN GENE RAL PASS ? HAS TIlE FOLLO4INI. FORM: a)

— (a - a)
C a FRO M PASS _i a)
(a • I)
(a • ‘) 104

5:
- -

~~IIL. ~~~r L ~ :. - ---_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~t:-,~ - -

—

F1T~~
S C a a a)

C. a)
(a - 1 T a)

PAS S _I
(a

_______________ •1
(a • a)
(a , a)
(a . . a)

• a)
(a T EXT I INCREMENI _ T E X T I ‘ P* (a • a)

• —
I. • a)
Ca • a)
(a a,
(a T . t a)

(a a)
(a . . a)

S_ _i (a . . .1
(a . • a)
(. • a a)

— (a TE X T2 I I C R E M ENT _ TEXT2 a)
(a • a)
(a • a)
(a • a)
C. • a)
C a TEXTI.TEXTZ,...AND THE LAST INCREMENT _ TEXT TO BE a)
(a MERGED.
C’ a)
(a.aa aa a aaa .a .aaaaa...a.aaaaaaa.a .aaaa ..a.aaaa. ..aa.a.a.)

— PROCEDURE PA SS _ 2 C V A R T E X T I , T E X T 2 ,TE X T 3 : IEXT _FILES;
VAR

I ,J,R,N: INTEGER;
dUF,LASTL INESTEXT LINE;
,SODE,NODEPTR,SEARCH_OIRECTI ON : INTEGER;
OLOPTR : INTEGER;
ELDER 8ROTHER ,~~~D_ PT R:(N TEG ER;
PPo:STRING9;
RB TO PROC :ARRAYEI. .MO OF PROC 3 OF INTEGERS

PR OCEDDRC PUF _L.Z1((VAR FXLCN :TEXT_F1LE; VA R 8UFCR :TEXT LTNE ;
— VA R L I N E _ NO:INTEG?.R ;

VAR I:INTEGCR;
C. A GENERAL PROCEDURE TO WRITE A TEX T LINE a)
(a ON A FZLC. ’COL ’ IS A VARTA ;1L (POiNTING TO a)
(a THE STARTING OF ‘ACH LINE JU~~T .R~~rTCN ON a)
(. ON FILE . ~ I IS U~~E0 FDA THE eURPO~ C OF a
C • I NO E N I AT ION . •,•,.,.....,.,..,. . a)
BEGIN WRITE LN EILEN .RUFER ;

L I N E N O: :L I r IE 110.15 I::i;
NHILECCBUFE*CT):’ ‘) AND (I(LINE_LEN GTH)) DO

I:=I.i; IF 1< LINE_LENGTH—i THEN COL!:!;
ENO

S PROCE DURE GET _LIISE (VAR FILEN :TCXT_FLLE; VAR BUFFE R:TEXT_LIPdE;V AR LI N E _ rlO:INhGER);
VAR I,J:INTEGER ;

A NK , c OMEN~~ RD OLE AN ;(a A GENERAL PROCEDURE TO READ A TEXT LINE ‘I
C a FROM A FILE. COMMENTS AN D SLiNK L I N E S ‘P

— (. W I LL BE TA K EN C A R E HERE........,....,,... a)
BEGIN I::);

WHILEINOT EOLNIFILEN))OO
BEG IN REAOCFILEN.BUFF(R(I)); !::I.1; END;REA DL N(F ILEN ;
FOR J:: (TO LINE LENGTH 30 BUFFERCJ~~::’ I;
LINt No::LINE N0 1; TXT_ FTR: U
IF IODIC:) THEN GOTO 771;
BLANK::TR U ES CONE NT ::FA LSC;
FOR J::i TO LINE LENGTH—i CC)
BEGIN IF 8UFFEPC~~14 ‘ THEN

BEGIN HLANV: :FALS.:;
IFCCBUFFEHCJ):’(’) AND

Ct4UFFERC JaL~ :t.’)) THEN
BEGIN conc NT::TRUE; GOFO 770; EPSD
ELSE GOTO 7 7) 5

EN D
END S -
770:;
IF (BLANK OR COMENT) TMEP.

— BEGIN IF INOIC:2 THEN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ELSE °UT LI ’SECTEXT 3,UUFFCR,PTR3);
- - GE T _LINE (FILEN,BUFFER,LINE_NO);

E N D S
ENO

PROCEDURE FCDI-TCVAR TE*TI,TEXT3 :TEKI _FILE; VAR N (,F:T:XT LINE;
• VA R PTRI,PTR s, ?I:IP;Tr,,ER) ;p D E G I N

(a COPY A PORTION OF ANY FiLE a)
C’ INTO ANY iTI-4~ R FILE. a)—
WHILE (P7 01(N) 00
NEGIN Z?.OIC::1; G’~T_Lt NEcTExTi,(7uc,pTRi) ;PUT_ LINE C fEXr 3,HuF,PFK ~); S

‘40 S
S E N U
- -

P’ROCEOURE FXLL AOR _ FIELDCV*R IIIJF!R ItXT _LINE;V*R ~~~~~~~~~~~~~~~
‘i’OC~~)I)RC G’~~CRA1E CALL (vAH *~UESTC L I N~~ VA R J:1NT~~_ L

-

.‘NOCIOURC CREATE _LIN KAGE ;

105 ~~~$ NO~ IS B~~T QUA~aIl’Y P~~G 1~CA~~Z

7~ $ CUP! JJ~~LS~~~ ~O D~Q .. ‘... ~~
‘

— --5--
-

5 - - - -- --~~
- - -

F.—
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—
-_ — -

- S

(a CREATE A ‘A L I N K A G E AUR’ SIACMCMT,WKCRC a)
I. ADR POINTS T I INCKEMFNT TTXT . 11 dh.L ‘I(. U~EO IN MEKGIN~ THE T~~*IS,..... .•.
HEGIN

K::PROC HR TRFECNODEPTR).FAT4-4ER;
•N : :p ?O C l (r qc r c C).pro l~ tRO UCL—U ,j::to;FILL AO R FTc-L0CLASTLINE,JTh);~PROC PU TPE’~C K 3.l’lR TO ~~4) flCL: :PTR2$
ULNE~ A (T CALL flIUFCR NOD ’PTR ;
PUT LINE TIEXT3,NUFER ,P r t s) ;

EN D S
FUNCTION YOUNGER (VAR NO0F PTR :INTEGEAI :EOOLC*N;

VA R I:IRF[~~ R;
C. THIS FUNCTION RETURNS TRUE IF a)
I. T~C P CE000E 0~ RI C O V F R Y ‘SICK a)

j (a POITCIEO T~l ~~ ‘400EPTR HA S A N) a)
(a YOUNGER dROTHER. OTHERW ISE 11 •)
I’ RETURN -S FAL SE ,.. I)
HEGIN

I::ROOEPTR; YOUNGFR ::FALSE ;
WHILE (PROC RB TREECI~~.YOUN~3ER BRCTHCR (J) 00
BEGIN —

1:=PROC RB TRE!tI~~.YOU~1GE 4 BROTHER;
IF PROC RB T R ECCI] .C N D ICATDR :‘RB’ TH EN YOUNGER~~ TR’JE

EPIC;
END;

PROCEDURE FIND ELDER BROTHER ;
VAR I,J:fNfE~ EP;

—
-

(a R E T U H N ~ THE ELDER MROTHER OF a)
(a THE RECOVERY *ILOCK OR
(a PROCCUIIRE POINTED TO BY a)
C. NOOEPTR IF ANY. OTHERWISE a)
(a RETURNS NULL.(NULL:i) a)

ELDER RROTHER::U
I:~ PR DC RB TREECNOOFPVR~ .FATH(RI::PROC~~ O TREEC ().FIRST 5Cr);
IF I:PSDDEPTR THEN GOTO 1!O
WI4 IL~. (I ANOOEPTR) DOB E G I N J :I

I: :PROC RP_ TREEC I ~. YOUN GER _ BRO THER;

~~~~ROC RB TREECJ3 .INDZCATOR:fPR’ THENELDER BROTHER::1
- ELSE ELCE ’T BROIHER: :2;

iso:; - —

(MO;

PROC EO UR E CONV ERT _OCCIMAL IVAR BUFER:TEXT_LINES

VAR I,J ,K : INTEG R) ;
S VAR M :1NTEGER ;

(a A PORTION OF THE TEXT LINE IN REFER a)
( a  STARTISG FROM J 154 POSITION AND ‘P
C. ENDING AT I TH POSITION IS CONVERTED a )
(a  10 A DECIMAL NUMBCR .(. STR I NG :::::::: ) NUMBE R
BEGIN

K:=o ; M::1;
REPEAT K::K.(ogO (RUFERCJ),—4~~p aM;J::j—1; M::M.10;
UNTIL (J(I)

END S
PROCEDURE FILL ADR FIELO

VA R M .I.L:INTEGER;
Ca A NUMBER K WILL RE CONV ERTEC TO A a)
(a STRI NG AND WILL BE CO~ T EO I N T O  THC .)
( a  TExT LINE LOCATED AT BUFER SIA RTING a)
Ca FR OM J TM POSITION. ‘P
(a NUMOER :*::~~~> STRING --BEG IN

M::i000; L::K;
‘TI REPEAT I:=JC DIV N; K ::K—IaM ;

J::j.i; M::M DIV 105
VS I UNTIL (51:0);

~~~~~ I
~~~

- 
~~ 

END;

~ I PROCEDURE GENERATE CALLS
‘~~ ‘ VAR NAME IOENTEFIER;

1~ IN TEGER ;BEG IN
(0 GEP4’RAT~ A CALL TO THE r~E KERA T ED a)
(a pIlI)CrDUP( CORRESPONOING TO THE a)
C .  R E C O V E R Y  141.0C R . ‘P
NA’C::PROC 74 T-liE(J).P-k RB Ni* E~Pa FO l  I::I TD .TNE LIXGlP-4 3*) RuFCIJ ::’ ‘S

~~ FOR I::1 TO 0 L~~~GTH C~) -SLFCCSL .I—1):: Pl Mr(IJ;
fr IF(C NI.J 1 C M I C O C O N )  £4 0  L E L T ~~L ;4 0 O R P P

(HtN sL ’ S LCO LON: :To uE ELSE HL~~CCOL .I—L) :’ ’CM OS S

CROCUPURC DCL FIULTFLAG;
- V A R  I,J:rlTtG’’;

NAME:S TRINS’O
(a  G ’ii~~A~ 1 A J* C LA O A T ( O P I  ~T75 MI 4 t EOR •)

~~~~ 

(~~ IløuL~~A . 4- i a IA IL ! CA L L I ’) ‘~~7 U t f F L * G’ .
C ’ A t (II. (P41 OF UECL A I4A T ION A R E A CF .1
C . VIS E M A I M PR OC TO URt . • • • •p

106

BEGIN
I~~ Pq’)C RI TREECNOOC PTR3 .FIRSI SON;
IF P C O C R I TRrP~C 13 • INO I CA Tlil ‘PR’
tllr C I! HTOC RH t~ (.’t1 3.i ’ITRv
LL~.&. 1 :P’4OC (“I T’~L(CNflOt ;’FR~~.u TR TO END DCL.5
~çO~~~~tt X!t.TLxT3.IsUFrRaPvRt.PrR3;z)T

—

FOIl J :1 (0 LINE LEN’STH DO IILFEA(J3::’ ‘;
NAMEI~~’FAUL fFLA G1MOOLtAN ; ‘;

— FOR j::~ TO VI DO NUFER((aJ.L]::NANECJ3
PUT _ LXNE (? (XT3 ,N IJ F(R ,P T R3) ;

END;
PROCEDURE NE4 N O U C C V A R SEARCH D IRE CTIO N :IN TE GER);

VA R J,I :IN IEGIR ;
C. TRAVELLING ON PROCFRB TREE •)
(a I~. O(I’II-t FIRST SCA~ CH • ‘PBEG I N

CASE SE ARCH D IRECT ION OF
I: BEGIN —

C. DIRECT ION (: : SON a)
I:=PROC RD TR (ECNOD&TR1.FIRSI SON;
j::FJODEPTRT —

IF lAO THEN
BEG IN

(a AS FAR AS PIOOE HAS BEEN VISITED a)
(a GO ON TO THE NEaT NODE . a)
WHILE (PROC RB TRCECIJ.MARK :~ Va) DO
BEGIN 4::I;’I:~ P4oC ~B TREECZ].FIRSI SON;

IF 1:0 THEN GOTO 1005 —

ENDS
— PIODEPTR:=I;

IF PROC RD TREECI]•I’IOICATOR :’PR’
THEN NOOE::1 ELSE NOOE::3;

ENDS
GOTO 2005

too:;
NOOE::2; N0DEPTR:=J;
20°:;EN D S

— 2 BEGIN
(a DIRECTION (:=:= ::: AROTHER ‘P
I::PROC RB TREECNOOEPTR3.YCUNGER BROTHER ;
WHILE (PROC RB TRC(tI3.MAPK:’V’) DO

I :=PS OC RB T REEC I) .TOU PIGER BROTHER ;
NODZPTR::I;
IF PROC RB TR EEC I~~.INO LC ATOR:’PR ’TH EN N0~(::1 ELSE AOO(::3;

END;

3: BEGIN

(a RESERVED a)
END

ENO
ENDS

PROCEDURE INITIATE PASS25
V AR I:IPCTEGER; —

BEGI N
R C s ET (T E X T L) ; R(W R IT E(T EXT I) ;
IF NEED MERGE THEN RESET (TEX1~~)— ELSE PEWRITCCTt.Xr2);
PRO::’%LINKAGE ‘;
FOR I::1 TO LINE LENGTH CO LASTLINEC I)::. I;
FOR I::1 TO 9 O0 LASTLINECI) ::PROCI]

S
- PT R1:=1; PTR2::1; PTR3:=1;

SEARCH DIRECTION::1;
NooE:=t; NOOEPIR::t; ‘ICED NOIS E PASS:= FA LSE ; LIM::t;

S - COLMAKER::CQLMA KER.1;
(‘40;

PROCEDURE GENERATE PROC(VAR BUF:TENT LINE)
(a GENER A TE PRO~EDUR ! HEADIN G FCR THE a)
C’ PROCEDURE COR~ESPON0ING TO THE a)
5. RECOVERY BLOCKaa.............a...,.)

VA R IaJUNTEGER
BEGIN

S PRO::’ PAOCE DURE’;
S coL::Co~ M* KER a 5 ;

FOR 11:1 TO LINE LENGTH 00 BLiECI1:: ’ ‘• RH NAMr::DKDC RI3~ rRCEt NOCrPTN3 .FR RB NAME;
PROC RH TREED orPTR) .ENrlY :~~’T9’~

—

FOR r::~ TO 8 DO UL7FCCDL.() :PROeI.ifl
FOR J::l TO ID LENGTH 00 HUFLCOL.I .J3::RB NAM C C JJ;
BUF(COL.I.J)::t;’;

E N D S

— FUNCTION HASH (VA iS NAME :IDENTIFIC%):INIEGER; -•

V A R I,W,fCN, SUM :IN IEGER

S I::i; TEN::tS SUM::0;
WHIL E (1(:ID LrNGT H) 00 ‘

.- S

• HEG IN J :OR~JC~~A U’ (1 3) 5
IF J)(,’a THrPI J::J—;; CISE J::J—~~~;SuM::SuM .J.FEN ; IrV::IEN.10; !::I.I; . ‘ -

HA~~H::SUM MOD HASH PTDS LENGTH ; C -

— END;

PROCEDURE N&’P C PFATTOPflVAR NA ’C :TC~ M tI F T E Q P ;
C’ A GEPa ’II AC PRO CED U R E 10 CR IA TA. VE NT ‘S 107
~~IS ?AGj IS ~ZaST QUALITY PMC~~ ,as~~~

- S

- r f l L _ ~ . -
~~~~~~~~~~~~~ - - -- --~~~~~~~ - - 5 -  --—‘5 -5 - - - - S



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(a NAME FOR ‘SAVE ’ 054 ‘RFSTOSC ’ OR a)
Ca ‘VAL 1DAT I3N FUNCTION ’. NAM LS ‘SAV E .
Ce THF. FOLL0~*L NG FORM: a s
(a a )
( a  SAVE ) SA 00’P00I,~S$330332, ... a)
~a R~ .atQN( —~~ ) KSOoQoOI,Rc- ~uo~ ’,2,.., ‘)
(a  FUNCTION —) VT00000I,V1000u32,.., .5‘1 ( a  a )
VAR I:INT(G(R;
B EGIN

• L::ORO NAMETIO LENGTH));
S IF 1:57 T’4SN

— NEGIN ‘4A ’ IETIO LrNGT,l3::.o .;
• - NAMEDID LEN(irH—LJ::

CHR(S’JCC ( * ) R O CP IA MECIO _LE N G T H— I ) ) ) ) ;  S
(ND S

ELSE NA PPEI ID LENGTH)::
CHRCSUCCCORO(NAM&IU LENGTH3~~~~;END S

PROCEDURE BV NAMr (VAR PIMSE Ifl (NTIFIER; VAR 1:INTEGCR ;
V AR ,J,K,S~ INTCG (R ;C. CREAT E A 4ACRUP VAR IA BLE N.%M( FOR a )
C’ T*iC IDENTIFIER CHARA CTFRUED MY ‘P
C’ POINTER I POINTING TO N LVA C LIST. a)
(a ANY BACKUP VARIABLE NAME HAS THE a)
(a FflL LO~4ING F O R M A T :  a)
(a BV 00000 I ,Rv 00L1002,54V000003,. ...... .
C’ T~ EY ARE NOT CREATED IN SE~~Ut’lCE. a)
BEGIN

S:=I;
FOR c::o TO 10 LENGTH—3 DO
BEGIN J~~ I N0O~ 1O I::! DIV 101

NAMED ID LENGIH—K)::CMR (OROCJ).,8);
Cr40;
I :=S;

END S
PROCEDURE OBJRLK TRANSLA TION S VA R NDCEPTR:INTEGERI; FORWAR D;
PROCEDURE VA&.IOATION_FUNCTION FORhAA.D

PROCEDURE RB TRANSLATION(VAR NOOE~ TH:INTEGER ;
VAR PTRS:~ RRAYCO ..PTRS LENGTH) OF INTEGER;

I:INTEGER ;

PROCEDURE FIND NP_DC VA RCV A R NOOEPTR :INTEGER ;
Ca I: LO POTP4TER TO NL VAR TAiSLE ‘Pso j: *41 POINTER TO NL VA R TANLE ‘S(-a BOTH PO INTING TO THA T P~l RTCOP4 a )
C’ OF THE TABLE WHICH IS ASSIGNED a )

(a TO THE PROCEDURE OR REC.8LOCK a)
(a POINTED TO BY N03EPTR......... a)
(a IF A PROCEDURE OR REC.~3L0CK IS a )

C’ NONLOCAL TO THIS PROC EJURE, a)
1’ IT WILL CALL IT SELF RECURSIVELY 0)
(a TO FINO ALL NONLOCAL VAR IA BLES a)
(a  CHANGA RLE . ‘P
VAR I.J,K,1,M :INTE GERI

COOE:STR1NG2;
BE G IN

I:=PROC RB TREEDNOOEDTRJ .PTR TO ‘4LVAR ;
,J::PROC RIP TREECNODEPTA ).NC RLVXR _USED;
J::J.I ; —

WHILE (1(J) 00
BEGIN

CODE::NL VAR TA9 LCDI3.IMMCATOR ;
K:=NL VAF TA ~!L (CI).P1-4 TO V O TA SI ;

S I~ (CODE~~’PR’) CR tCO~~E:’Re’PTHEN FIND NLOC VA RCK )
ELSE IF C3OE= ’TO ’

TH E N BEGIN
FOR L~~ 1 TO NQ _NLOC— i DO

‘TI BEGIN
M ::NLVAR LISTDL]

S ‘~~ I IF (MI1) *NC
I (NL VAR IA PLECM).IN3I CATO7I’ )’)

~7 I THEN BEGIN
I IF NE VAR T A R L E D M — t 3.INDI A T O R

#~~~ F A t~~I~ a T~~ ri
‘~~ I’ IF NI VA R T415LF(M3.PTR r~ V J T * 4

:NL VAR TA FS LrC I ~.PTR TO V)T.~ S* ~~~~ THEIS 6010 3139
~‘ E N D S

~~
‘ ~% “ E N D S

b N P_ V A R LIST EID ILOC)::1;
P~0 NLOC::N*) ‘ItlC.I

4? END
~~ 

ELSE HEGIN
~~~~~ NIVAR L I ST ( ’4 O  ‘4LDC3::I;

TI) N1.~~C :T) ‘j t) c .~~
~HTL L (NL_ v I5(_ T A ~~L r C I S . I N D I cA T *) S : . i~a) ‘~U

4, a& E N D S

-
• : - -PlOC)I3IJME ‘41. 1t TYPES VAR I IMTCG ’.l, V%R TYPP (D~ P 4T I I T ‘S

Vaja J.K.Mh TNr rr ,ER

108

- . -
S ,

--
—-5— 5 -, — — 5— - —


~~~~
j5-

~~~~~~
5 - 5 -

TN: IOCNIIFIE R;
(a FINS) THE TYPE OF NONLOCAL VAR IA IS LE a)S C’ POIN TED (0 BY THE INDEA I. a)

S BEGIN
IF NL VAR TA HLC(I3 .INQTCATG SSA ’IO’ THEN

S B EGIN
S Ce SIMPLE VA R IA DLE ‘S
* K::NI. VA R T A S L E (I J . PT’l 1-) lO rA N ;

J::VAR DCC TA ILEDIC J.Tc0c r.1
IF VA R DCL TA SLED K 3.INDLC:I

• TREfl TYPP:=SIs’PL€ TA~ LCCJ]•
—

ELSE GIVE _ TYPES IY2P ,~~)(ND LLS(

(a STRUCTURE VAR IANL E a)
C. i~i T s-s~~S CAS E STOP LGOK ING a~C. FOR TyPE (F THE TYPE Is ‘~Ca A RRAY . a)
PS::!;
WHELE(NL V A R IAHLEtMJ .IN’J!CATI)R :’COP) 00 M::~~.L;K::NL VA T TARLEDM3.P14 I-) WO TA N ;

— SF (VIR flCL rAi4Lt:CR) .IIUIt:3) OR
(VAR OCL TA IILECIC 3.(Iu!C:4) 751EV

BEGIN L~ :VAR OCI IAOLZCK).TTC000 IS
TYPP::SIMPCE TAdLEDL)i 0070 735

ENDS —

K:=VAR DCL TA’ILE(K).TCOCE
IF S1R0CTU~ E TANLE (I(J.ITpl:’&’ THEN
BEGIN

TYPP::SIRUC TURE T*PLt(IC3.NAN(; GO TO 1355
END
ELSE GIVE TYPE(TYPP,K ;
M::M—i; —
WHILE (N):j) DO
BEGI N

K::NL VAR TAB L €CAJ. P TR TO VOTAS S
GIVE TYP(TTYPP,*fl N:!M—T;

EN0;
(NO ;
735:;

END $

PROCEDURE NL_ IO _ NAM E (VAR I :INTEGER ; V A R NAME :!o:NTIF!c2;
VA R TENP :SV R ING4 S ; VAR CO:JJOLCAN)

VAR L.J.K.M:INTEGER:
TN: IQENTIFIER S

(a GIVE THE NAME OF NONLOCAL VARIABLE a)
BEGI N

• IF NL _VA R _TABLECL3.I NOZCATOR :,IOa THEN
BEGIN

C’ SIMPLE VARIABLE a)

,C:=NL VAR TABLECII.PTR 10 V O T A B S
S NAMEI~~VAR DCL TA3LEcx] .~~r4~~Mt;CO::FALSET S

END ELSE
BEGIN

Ce STRUCTURE VARIA BLE a)
• C’ IV THIS CASE NAN~ OF THE a)

(a NONLOCAL VARIABL E ‘4AS a)
(a FOLLOWING FORM : a)
C a X X . X X X. X. THEN STOP a)
(a BUILDING THIS NANC iNEN a)
C’ TIlE TYPE OF LAST APPENDED .)
(a COMPONENT IS ARR*Y,......’)
N::!; CD:: V Pu E;
WII ILE (NL VAR TAHLE (~~).!N)IC Ar0R = .CO~)DO M::q,1;FOR L;:t~ TO 5 DO T~ M~~ L)::’ Nji:~~o; *:=Ns. V A R T A B L C E M] . P T R _ To V O T A D ;
TP4::VAR DCL TAHLECK3.VNAMC —

FOR J:~~T TO IO _LENGT*4 00
BEG IN

If TNCJJU’ ‘ THEN
BEGIN L::L.1; TE~~tL)::TNtJ); ENDSENDS

• L::L.t TEMPELI::’.’;
IF (VAR DCL TAOLECK].IN CIC:3) OR

(VAR fl~~~~TA54LiCK).IMC!C :q) THEN GOTO 7)7;
K::VAR ~CL TAIsLccKl.rcoc .E;
IF SrR0CTU~ E IABLECK).Ih0t:’A’ THEN GOT S) 7)7;

—

WHILE CM):!) 00
BEGIN

K::Nt. VAR TAKLEtM) .PTR _ TO V OTA MS
T’4 ::sTRUCTu RE TA pL~ r~~J .r4A 1E;
FOR J::1 TO £0 LENGTH DO
BEGIN

IF TNCJ3I’ ‘ THEN
UEGIN L:=L.t; Tr.MPCLI::TN(J); END S

L:=L.t ; TEM PELI::’ .’;
- ,

5

END; - -
is?:;
TV MP (L 3::’ •
FI SH 1::! (0 10_LENGTH CC N)MCCJ3 :’ ‘;

S

W * I j L f C(J<:(’)_ L C . G T P4) AT’) (V c ’S P(J 3N’ .’)) I)’)

HIGIN
r4AMe rJ1 ::TrMp r J~~; J: :JaL ;

END;
END;

~~Z3 PAGE IS BEST QUALIrf PR&g~~g,A
109 ~~~~~~~~~~~~~~~~~~~~~~~ ___- -

— — - Sr__fl —~~~
—

55 55 5
-

— — • - •
—

—
———-5

—5---- .——-——-- - ~~
,

~~~~



—- - ~~~~~ -— ---- -F— -5’— 
- •  - 9

(NC);

PROCCOUIC E DCL SP ICUP VA IN SC. FINS) IHF NRPE AND TIlE TYPE OF ‘)(a 1145. TONLIICA L VA ’ (tAI ILr AND (ISEN a )
(a DECL ASS E A IPACKUP VARIA BLE FOR ‘I
(a THAT . ENAMPLI : a )
I’ If $0*’4II;IrR NAME IS If) AND .5
(a  IDENTII-IER rvpr: 15 IDrVPE ru(’4:a)

p (a  VAI~ IV00000IZD :101vP5 . S b
C’ IS WHAT WE A Rc LOOKING FOSS . ‘SVA R I,J,K:I~s 1El,rP;

TYPP.NA -1r :Lr~ETSTIFIER; •
-- TrVP :STRING4S; S

BEGIN 
cD:BOOLEAN; S

FOR I::! TO LINE LENGTH DO RUFERCI) :: ’ ‘;BUEEICECOL . i3: :’V T O U F ( RCC OL a SS 1::’A’
PUT LI’4E(T~~ T~ ,dUFER,PTR2UF0R 1;:; TO NO NLOC~ 1 30
BEGIN

FOR K::! TO LINE LE’4:TH Do qJFERt~~)::I ‘ 5
K::’4LVAQ P_ !STLI) NAISE::I~ VOOO0 03I
BV NAME(~~AM C , U ;
FOR d:=1 TO ID_LENGTH GO BUFERCCDL,J.33::NA MECJ);
J::coL.J.3;
P41 ID NAM((K .NAME,TCMP ,CD);
NP_ ID TVPC (K,IYPPS
FOR 1C1=t TO ID LENGTH CO 8UFERCJ,K—I 1::ME(~~J;
aUFCRCK.J~ 13::T:a; J:= .J;
FOR IC::) to zo LENGTH co BUFERCK.J)::TyP’cJ();
BUFCRCKOJ3::’ ;T;
PUT LINECTEXT2,BUFER,PTR2)
COL~~ COL—4ENO S

ENO

PROCEDURE PROC HEADINGS VA R PSVR~~I0ENIIFIER);(a GENERATE PROCEDURE HEADING FOR a)
— ( a  SAVE AND RESTORE PROCEDURES, a)

( a  PSVR CARRIES THE NAM E OF THESE a)
(a PROCEDURES..,...,.,.,. . a)
VAR I,J:SNTEGER ;

CRPAT :STRINGI6;
BEGIN -

PRO::’ PROCEDURE’ I S

• FOR I::! TO LINE LENGTH DO euF(RtIr=’ ‘;
FOR I::O TO 8 OO BUFERCCDL.I)::PROCI.1);

* 
BUFERC COL.I)::’ ‘; NAME CRCAT ION (PGVR )
FOR j::t TO ID LENGTH 00
BuFERCCOL.I.d.T)::PSVRCW);
BUFERE COL.I.Ja1)i:’ ~IF COD(:1 THEN CMPIT::’ (a SAVE ‘P

ELSE CMNT:=’ ( a  RESTORE -as ’ ;
I:=COL.!.J.2
FOR J::1 TO TA 00 BUFERCI.J)::CMNTC.J)
PUT LINE (TEKT2,BUFER,PTR2)
PROT:’BEGIPI •;
FOR I::! TO LINE LENGTH DO BUFEREI)::’ N ;
FOR 1:~~O TO R OOThUFERCCOL.I.3)I:PROCI.1);
PUT LINE(TEXT2.OUFER.PTR2);

END S —

PROCEDURE SAVE VAR
(‘ GENERATE STA EM ENTS FOR TIlE BODY OF - a )
Ce SAV E PROCEDURE. THE ST*EMENTS MUST •)
Ce BE. ABLE TO STORE TAlE O-~!~~!BAP. VALUE ‘S
(a OF NONLOCA L VARIABL ES INTO IRE MACK a)
(a UP VARTA SIL  a )
VAR I.J,Ic,L.u:IP,ITESER ;

NA”E : IDENTIFIER;
• NA ’I:oouDLF. ID ;

TF :DTR I NG S
C D B 0OLE AN

5 OEG~N

ci I FOSS I::; TO NO :NLoc—t 03
- A, BEGIN

FOR J::L TO LINE LENGTH DO iIJFERCJ~~~:’ ‘;NAME: :’OVOOOOOO ’T NV NA4( CP4A~ C.I P
FOSS J::1 TO 10 LtNGT,I CC NAMcJ]: :’4AMEDJl ;

7 K: :PILVAR L ISTIT);

~~ 
NI. 13 NAP~-OC ,NAM r ,TE,CD);
FUf T j~~:& TO ii) LE NGTH C* NARE JOID LE’Ir,TH3::’4~~~~ j);

~ I FOR J::L TO t,3 LENGT P4.2  3D
MIIF(PCCr,L.J.4)T:’:’; B1.FEqCcoL.J.51:=’:’ ;

.~~ °~ J::c’,L.Jac;
— ~~~~~~~~~ 1* CD THEN

MEGI N
FO~ L:=1 TO 45 DO
BEG IN

IF fEEL IN ’ •
u!f1N M::L ; R U F r R C J . L— ! J : : T C C L 3 ;  ENs ;

S . END;

4, ELSE BEGIN
— 

S 
FOR 1::! TO IO Lr~4GTM 00 RUFERCJ,L-t1::

110 -

—
~

r_ S=~~~~~
_._•~~ - ~~~~~~~~~~~~~~~~~~~ ~

- 
~
-- - - - - -— —-‘-5—



5-  _ 5 - 5 - —--—~~~~—— - -~~~ -

-PUT L~ P~E (T(XT?,NUfER.~~TSC2)ICOLT:tOL -~~~;EN D ;

~~PUT LIN’ C TEX12,IIUFER,PTR2)
COLT:COL—) 

SEND S

PROC (DU
~~~~~~

S K (
T~~~~~%TS FOR THE 1400! O~

a)
-• (a RESIOR’ PROCEDURE. THESE SIA (McNI., a)

~: O G I L ~~~ LU(OF NflNL~ CAS . VARIABLES .)
(a FROM AAC K UH VARIA B LE S INTO THE VARS .5j VM I,J,Ic.N,L:I’)TEG(p,

NAME,NA :IOENTIFX (R,
NAM :UOJ’$LE 101
TE:STRING,5
cD: BOOLE AN S

8EG~ N~~~~~ . PROC SCLAOING(PRV);
FOR I::! TO No:NLoc—L 00
BEGI N

J::$ TO LINC LENGTH DO BUFERCJ)::’ ‘; J::COL.4;
K::NLVAR LISJL !JT
NI SO NAP (CIC,NAME,TE,CO)
IF CD THEN
BEGiN M::I To 4S DO

8~.G1NF T((M)*’ ‘ THEN
BEGIN L::M BUFERCJ.M 1): T(CM3 (PlO;

BEGIN
M::l TO ID LEN Tn 00

BUF(REJ,M—l] ::ICeMdM J
euFERtJ.~S—t) :=’;’ BUFERCJ.N).:’’.

NA :’~~V~~ OoOo’ BV NAI!E (NA,I)$

~~~ ~~ ~2 ~~~~~~ iOM&~~TH3::NAMECL ;

FOR L::1 TO ID LENGTH’2 DO 8UFERCL.J.-1)::I4AMCL);
HUFER(L.J—l)::T;’;
PUT LINE (7EXT2,DUFER,pTR2)$
COLT:COL—4;

- N ; 
SFOR x:=1 TO LINE LENGTH DO BUFEREKIS:’ ‘5FOR K::0 TO 3 OO BUFERCCOL.Ic3::PROCIC.l);

PUT LINE S TE*T2,BUFER,PTA2~ 5COLT:COL—3;
END S

(a NAIR BOOT OF RB TRANSLATION I)BEG IN
RB TO PROCCLE MI::Noo(pTR; LIbq::LIM.l;
FOR 1 1:0 TO PTRS LENGTH 00 PIRSCI)::o;
GENERATE PROCCBUFEN,;
PUT LINETTEYr2,SUFER,PTR2);
FINO NIOC VAR (NODEPVRJ;
DCL 3KUP VAR;
SAV E VA RT
RC~~TOBE VAR ;I’JOIC::3; S- - - 
GET LIVE (TEXTI,BUFER,PTRI,; GET LINE(TEXTI.BuFER.PTil);VALTOATION FUNCTION; S
INOLC::21
G~ T LINE(T’*T1,TENP srMr,PTRI) 

SGET L INC IT FM TL , TEMP ST’sT,PTRI,
GET L INECTF. *T1 TIMD STVT ~rR1 ;
OB.JBLK TRANSLAIION(I’S0OEPI.~)EN0

PROCEDURE VALID ATION FUNCTION; —
VA R Trs T,T :STRING;1;

IST:STR ING )O; S
I~~J.KIC,IC,M: INTEGER ;NI A MIS : b OLE AN 1

PROCEDURE SUBSTITUTE PRIOR CVSR LSI :STRII~ 47;VA R R,ICI (:INT(GER);* VA R P:~~TRIMG ~ ;N,I,L, ,lj,v: INT EG ER;
IDI~~I D V M f ( F 1ER;
1O!D:DO ,1ft.~ In; S(~ wM CP~~V’ s( TI-sE T EN IS : PRSr)R(Ux) APPEARS a )

( S  IN t~4L VAL IDAT ION TEST , tts .LSCE IT sIT ‘)(a  THI BACKUP VA R IA B L E FOb R54. a)
(I 5~~ (•  P Mt O - 4 ( x X ( p  ~ILL H- ,s~ ,rrr r, AND •)C a AT THL ~AM * . PLAC L. HV O II3IJG. !*XX W ILL BC •1(a  1MSURT!C),,,.,....,.., . a..Alt~ 1N 

.
5

111 
~~~~~~~~~~~~

S BESTQUA~ IrP~~~~~~~~~~~~~

- - -~~~ - - .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - . --



FOSS M::1 If) IC—S DO
BEGIN

FOSS L::I III 5 00 PtL) :rE ~ T(M.I.1);
IF P: ’P S k 1 O ~~’ THEN
JEGIN

FOB L::o TO N— I OS)
BEGIN KK::KK.I; T C K K 3 : : T t S T t L ~~ END;

.IPS IL.(. ( T E S T E Q I I ’ ) ’ )  DO ~::C,f Q::Da l
N::Q— l S
IS4ILE (TUSTCNIN’C’) DO N:: P4 — 1 ;  Pj :=rlat;
FOR ~::L TO SD LEFISTI CC 101(G)::’ ‘; S::1;
WHILE C P4(0 1 T c~ç,
BEGIN I0I(SJ ::Tr;TCNJ; l::N.1; S::S.1; ENO;
FOR U::! TO NO BLOC 00
BEGIN S

S::NLV&R LISTCUU
IF NL VAR _ TAMLE(S1.IMCIC*TO’ ’IO’ THEM
NCGEN 

MAP TAOLECS ).PTR TO VOTAM;
IF VA R _OCC_TABLEC’).VNJMC!IOI THEN
BEGIN 

VI:! TO 50 LEt~~tR.’ DO IO1flrJ): :’ S
FO R V::ID LENGTH.! TC 10 LENGIH’2 DO
IOTDCV)::131C V— SO LcNG T~l~); SIOI :’OVOOOQO)’; *~ V NAMEI)Ol,U) S

FOR V::I (0 10 1E5- TR 30 IDXUCV ):=LOICV );
GOTO 173)

ENDSEND ;
113:.
FOR V::i TO 10 LETIGTN’2 DO
BEGI N

ENDS
(MDI

EN D S
EN DI
~~~~~~~~~~~~~~~~~~~~~~~~~~~ TC KK) :=TESTCI); (No ;
FOR L::1 TO KR 00 TEZTCI 3::TCL.;

ENDS
(a MAIN BODY OF VALIDATION FUNCTION a)
BEG IN

(a GENERATE STAEMEN TS FOR THE VALIDATION a)

I’ FUNCTIO N HEADING AND ITS 800?. a)
TEST::’FUNCTTON :HDOLrA P~ Ca VA LIDA TIDN •) ‘FOR I::t TO LINE_LENGTH oo BUFtI]::’ I;

NAME CREAT1ON (FNT ;
FOR T:=i TO ID LENGTH 00 TE3TçI.~~::FP4TcT i;FOR L:=L TO RT OO BUFtCf)L.I—tj;:TI~STtI3;PUT LINE(TEXT2,BUF,PTR2);
FOR I::t TO LINE LENGTH 00 BUFC 1)::’ ‘;PRO::’BEGIPd ‘T
FOR I::) TO 9 00 BUFCCOL.I.23::PROCI];
PUT LINE(T EX T2 ,ISUF,PT R2) ;
T(ST:S’NOTCFAIJLTFLA G AND C
FOR I::! T) LINE LENGT H 00 PUFC I)::’ ‘;
FOI 11:! TO £0 LtNGTH CO BUFCCOLaI.3)::FNTEZ];
BUFCCOL .I.33::T:’; 8UFtCOLa1 .~~):: ’:’;
1 ::COL.I.S;
FO~ 5::! TO 20 00 BUFCI.J—t)::TESTCJ);I::!.J; J :1
WHILE (KUFCRCJ):’ ‘) oo J::J.1;
WHILE (dUFERC JJ$’ ‘ 00 J::J,~~;WHILE (BUFEREJI: ’ ‘5 30 J::J,z;
FOSS X::1 TO 4? 00 TESTER)::’ I;
K::!;
REPE AT

T (ST tK3::9UF(RCJ]; K::K.t; J::J.1;
BL A NJC : :TR UE 1
FO~ M::J TO LIN E LENGTH DO

- BEGI N
IF BUFER (M]I’ ‘ THEN NLANK ::FALSE;

END ;
UNT IL (P LANK)

~~~ S U LS ST IT UT E PRIDR (T EST ,sc ,K ic ) ;
FOP J : : s  PT ‘(K

‘y’ 1 BEGIN % UF( I ) : :TES T (J3 ; 11:1.1; END;

7 IAUFCI3:: ’ ’ ;  ‘SUFtl,I)::’ ’PUT ILNc(1 ~ *T2,N UF ,PfR 2I;

FOR 1::! t3 LIME LENGTH 00 IIUFtI):’ 5;
UUFC COIJ::’r’; IDF(coI.LJ::’P4S; EUFCCOL .21::’OS ;

a, Q7 AUE(COL 3) :1 ’(4 
~~~‘ PUT LI’It(T~ (T P,4SjF PTR2)

~c e c tN00
~~~~~~~~~~

_ T0_ E _ 0c1:
~~

PT
~
2_t;

~~ PO’( I::; TO LINE LENGTH DO .)UF( 1 ::’ ‘;7 P w u: : ’t ~~t~~~A~.c ‘TF ou z::i To 1 DO P11cc! ~~:P~i( 11;q IF PROC Rp _ rRr cNo,~I PTpJ.FI~~s; -GENN O THEN
• ISE 1N Fur I fB- ( TEN t� . I t SF  ,‘t 42T;

LNJ
COL::J;
PI ,J :::I 5 : . jNf  N;

FO R 1 .-I I-) LIN’ L’PJGTN CO I!Ib-( f~~..’ I .
FAIR ~~~~~~ TO ’S UD WrtCDL.l—5): :~’

,
~O(1);

112

- 

‘-



PUT LINF (T’*T2.OUF,PTR2fl
ISTT:’SAULTFLA.,::FAL~ EI 5 ‘I
FOR 1::! 10 ID LEN ’ TH DO T TC I9.I)::PVStI3;
FOR I::! TO L1Ri LENGTH CO tUb(I)~~~’ ‘FOIl I::! TO 30 oD iuF(C0L .t.SG:;1STt13
Pill LiNE- C T~~X T 2 . IUF.P TIl2—

PROCEDURE ORJHIK TRANSLATION;
VAR (IS CNT:1q1E0P. iS ;

PHEV_ WORQ,UCICT WORO :STRINGLO; 
S

PRO CED URE CRE A TE E NDS
C’ GENERATE THE END STAEMENT FOR THE a )

- •  — (a IRANSLAI(0 RECOVERY BLOCK. a )
• (a EXAMPLE : s)
S C. 1351:(No a)

( a  LAHICS AR E 1337.1347,1377,1387,... a )
(a  USED FDA RECOVERY BLOCKS AS THEY a )

-S (a  APPF.AR IN TExT ........... ...... ... a)
VAR J,K:INTEGER;
BE G IN

K::PROC RB TR(EErsooroTkI .IAIILE ;
FOR J:T TO LINE LLN~ II- 00 SUFEREJO::’ •~
J::coL; FILL A!)R FIll )EUF~ R,J,e C ;
LiUFFRCCDL.4 )~:’:’ -IUI- t~~CcuL.G)::’E’;PUF RCCOL.c]::’N’; BuFEKCCOL.1]::’D’
tIuFESICCDL.$]::’ ’PUT LINE (TEXT2,OUFER,PTR2);

ENDS

PROCEDURE GIVE NEXT wORD)
VA R I,J:IPJTEGER;

FUNCTION MORES VAR Tx : INTEGER ) : ISOOL EAN;
VAR J:INTEGER ;
BEGIN

ISORE :=TRuE
FOR J::TX TO LINE LENGTH 00
BEGIN

IF TEMP STMT J *‘ ‘ THEN M0RE::FALSE ;
END;

END S
PROCEDURE ~*SS QUOTESSVAR 1,J:INTCGER;

BEGIN I::O;
IF TEMP STISTETICT PTR.13:•’’’ .THEN £::TXT PTR.t
ELSE IF TEMP STNTCTXT PTR.2):’’’’ THEN —

I::TXT PTR.2T —

IF I*3 THEN
BEGI N

I:=I,t; J::t;

— WHILE (J MOO 2 NO) DO
BEG IN

CF TEMP STMT CI ] : ’’’’ THENBEG TN
WHILE (TEMP STNTCI3:’’’’) DO
REGIN J:= 1 1 ;  I::I.1;

END
ELSE I::!.! ;

E AIO
TNT PTR::1;

END~
AS
~~

QUOTES

END S - -

PROCEDURE PASS CONMEN TSS
V AR I:IPITEGERI
BEGIN I::TXT PTR.I; S -

IF NOT MORE (T) THEN
BEGIN

— 
- WHILE (TEMP STMTEI):’ •) DO I:=I.I S

1FCC TE S S P STIST(I):’(’) AND
THEN

REPEAT 11:1.1;
UNT IL (CT’:MP SIFI5j3:’a’I AND

(TEM P ST~~Tt 1.13:’)’));TNT PTR::1; —

END; —

EN O
— END ,

(a MAIN 000! OF GIVE NEXT ~0ND a)
( a  a )- ULsI N INIUC::2;

PREy WDRD::NEXT WORDS
PA~~ Qw)TES — 

SPA~~~ COMNENIS;
IF !O’ S L(T *T  PIR) THEN

- BE GI N
PUT II’4T (TLxT2,rt’b~ SI4T,P1R~ )

• 
EMI • 

LI AE TE*T1.T MP SIMT,PTRU,

‘i I: :TxT PT R
d’SIL E(( I<LIN.  I ( ’ I G t H )  iNI

5 5; a~( 13 I r~ ~~MAAOLS ) ) uo I: :1.5;IF (:1 I.E LFNGI~ THEN S

BE~aIN PIJT LIM~~(tEXI2,T ~.MP ~ TPf,PIR2);

I c_ T~~
INr (TrAT I.T

~~
’S :.T f.PTRI);

E.NO 
WHILf.CNOE4 TLNS Stir(S) Irl SYMESOLS )) Or) I:~~I’I;

113 
1~HI S PAGE IS REST QUALI TI PB1LC~I,CA~L4
J~o~ OQ~~ ~~~ISk~~ I’O D~O ~~~~~~~~~~

— 



- - - 
- -

WHIL ((1I<:1-INC LE JGTH ) 4P40
(TEMP ST~~T (I ) IN ~!P’IOLSJ) 00BEGIN FOK (’ltJJ::TC’SP 51 11 1 5 3 5  £::I.t; J :J,L; . su;

Tx t PT’S::!; —

For!::! TO 10 00 NEXT woHJcS) :~~ro KE r~c IJ ;
IF NEX T WORDCI] IN C’OT ..’l’) fl-sEN GIVE N E ( T  4 J ~~flIF (TOxrN :~ ELzE ERRO R ‘) THEN CE::~~’; <I— ,;

END; —

PROCEDURE CREATE IF TNCN 
S

( S  GEN~ PA TE ~TA EMt NTS FOR THE RCOY OF a)  - S(a PROCEDURE CORRESPON )IN; TO a )
(a  THE TRANS LATED RE-C4.IERT BLOCK. s )

S ( EXAMPLE: a )
(0 IF VT00000I THE’S GOTO 1357 .5
(‘ (155. OEGIN RSOOfl OQL a )
(a  FALSLTFLAG ::FAI.SE; a

• (0 END; a)S VAR TFMPI:STrT !N0435
TEMP2 :SrRIPJG4T;

BEGIN
THEN GOT’) Ca EXIT .1 ‘;

FOR I::! TO TO LE’IGIH CI) TEM°ltI.3)::FNTtS);
FOSS 1:=1 To LIRE LENGTH ~O iJEERCI)::’ ‘IF C3L.44 11N( L~ NGtH Tl .N CUL::LINE LEN~~r’S—45;FOR I::! TO 45 00 iUFER(C0LaI—t): :Tl~ P1tLI ;
R :=PROC RJ TREELNOOrPTR ].LA~LE; J::COL.~ 2;F?ILL *OT FTCLD(’WFER ,J,’(,
PuT CSNCTTE*T2,SUFER .PTR2);

TEN’2:!’EL~E BEGIN S FAULTFLAG ::FALSE ; ENDS ‘;
FOR I::I TO ID LENGTH CO TE’SP2CI.l13 ::PRVEZ];
FOR U:! TO LINE LENGTH DO .1UFEPCIJ ::I N
IF COL.4d)LINE LENGTH THEM CDL :=LIBE LENGTH—RI)
FOR I::! TO 4r00 BuFLRrcOL.x) ::TtMp~CI];PUT LIMES TEXT2,BUF(R,PTR2 ;

EPIO

PROCEDURE ERROR MESSAGES
(a GENERATE ERROR MESSAGE FOSS THE *5
(a CASE THAT ALL ALTERNATES OF THE a )
(a RECOM(RY BLOCK FAILED. a )
VAR TEMP :STRING4S;

T EMP2:ST RIPIG47 ;
NAME:IDENTIFIER;
I,J,K:INTEGCR ;

BEGI N
T(MP:=’TF THEN GOTO (a  EXIT a )
FOR I::! TO ID LENGTH 00 TE MPCE*3) :=FNTCI);
FOR 11=1 10 LIfl(_ LENGTH oo PUFERCI]:;’ ‘;

IF COL.44)LINE LENGTH THEN COL ::LINE LENGTH— ,5;
FOR 1::! TO 45 DO 8UFERCCOLaI*I3::r’’JPtz];

RB TREECNOOEPTR3.LA~ALE% 4;:COL.22;
FILL AOT FTELO (PUF(R,J,’();
PUT CINETTEXT2,BUFER,PTR2);
TEMPT:’ELSE HEGIPI ‘S
FOR U:! TO 45 DO BUFE P CCO L.f . I ): = TEp SpC r] ;
PUT LIBE(TEXTP,RUF (R.PTR2);
FOR I::t TO LINE LENGTH 33 BUFER( l~~~:’ ‘ STENP2::’MRITELB ’’RCCOVERY PR~ CEOU RE
NAMEI:PROC RN TREE(PIOOEPTR).PR RS NAM E;
FOR JI:! TO SO LENGTH CO tEMP2tJ.~ 9)::NAMrtJ);IF  COL~ 57>LINE LLNGTM THr~M CGL:=LINC LENGTH-SB;S FOR 1::I TO ~roo BIJFERCCOL.1 .100::TEUP2(I);PUT LINE (TCXT2,UUFER,PTR2);
FOR J::1 TO LINt LENGTH 00 HUFERCJ3 ::’ ~~TtMP::’FAULTFLAG :~~TRuE ; ‘S

FOR II:! To ID LENGTH 00 ‘EM,’CI.17)::PRVEfl;
TEMPt 1.113::’ 5’;
FOR J:=! TO ID IE-NGTH.2~ DO DCFERCCOL,J_ 11: :rr4DCJ];
PUT LINC(TEXT2;IIuFER ,PTR2); -

FOR j::l TO LINE LENGTH U’) FiJFCRCJ]: ’ ‘;
NUFEVAECOL— 63::’L’; ‘4UF~~ CCOL—53 ::’N’,IUFERCCDL—43 ::’)’; RUF~ ’SfCoL— 31J := ’;’;
PUT LINC(TEXI2,RUF (R,PTR2);a~’ COLT:C3L.12

F (NO;

~~ -, PROCEDURE TRAVEL;
C’ VH(’I THERE ARE NESTED RECCVER! OLOCKS a )

~~ C. JUST TRAN SLATE THE OUTER ONE AND SKIP a)
C ’  DV~ R THE INNER ONES.... .. -a s-

~~~ S VAR I,J-:IP4IEGER ;
BEGIN

INOIc::2;4 c~ Wn(L~~ (N3 CN1 0 DO
B E G I N —

S
c

~,
GIVE NEXT WORD
11 NEX T N~~RQ:’ ENSUR(‘ T H E N
BEGIN —

NE~ D M ORE ?ASS:: TIlhJE ;
E t A I TI) 10 LEN~~ T H DO SOt J 3: :PR~ V ii0IS ,1.J 3;S • I::MA~~HUUU ~J::-4AS1 P T ~~~S t S) —

4~
WHILE (IU I HA~ H TAIIILCD). PH N A M E) flu
BEGiN

N’ PEA T 11:51,1, soo HASH PYPS LEN-sIt ;
U’,,IIL CHASM PT~~S (I 3 a’J)T —
J::HASH PI,t~ CT J ;

(Ml ; —

o1L,PTSS::MASH T~~5L’tJ) .P!~’ TO r’!oC r u r ;

~14

- -

— — — —-~~~~~~~~~
S
~ ~~~~~~~~

S - .. -~ ~~~~~~~~~~~~~~~~~~ — -,

(NO;
IF NFX~ WORD :’IIEGIN N THEN ENS CNT ::ENS CPJV .I— LIZ). 1F MEX 1 WOSID ’VNI) ‘ —

THEN INS CNTr:(Ns CNI —L ;E ND; —
- - ENDS

• •
- (a MAIN HOD! OF OBJBLK TRANZLA IION a)

S BEGIN
OLOPTR ::NouEpTR; INOIC:=2 ;
GIV E N E X T WORIfi
WHILECNLXT WORD I ‘ELSE ERROR’) DO
BEGIN —

— IF S (XT WORO ’TLSE ~Y ‘ THEN
B E G I N — —

CREATE IF THEN ;
S GET LIRr (T(xTt,TFMP ;rFr,cTs~t);(.ET L ! N t (T (X T L , T € M P SI,’r,PTIII)

GIVE NEXT WOHD —

IF NEXT WORO :INEGIN N THEN
JEGIN —

ENS CNT::1;
TRAVEL ;
PUT LINE(TEXT2,ZEMP STMT ,PTR2)

END —
ELSE PUT L I N E C T E X T 2 , T E M P S T MT ,PTR2) ;
GET LXM!T rExTl.rEMc STPT PTRL ;
GIVE NEXT WORO ;
iF NEX T RO:’SLTNKA~ E ‘ THEN

GET CIN((ICXIL,IEMP STPT,PTR1)
ELSE 6010 2 305 —

(NO
E~~S(IF NEXT WORO:’BEGIN ‘ THEN
BEGIN

EN S CNT: : i ;
TR AU~ LENDS

G IVE NEXT WORDS
250:T

END S
ERROR MESSAGE S
CREATE END ;

ENO —

(aaaaa ..a ,.aaaaa .,a*aa ,,aa,*aa ,a,,,.,a ,aaa,)
(a a)
5. MA IN BODY OF PASS 2 a)S
5, —
(aaaa aa ,aaa aaa aa .a .a s,,, Sa*aa .aa** .aa*aa. .)

BEGI N

INITIATE PASS2;
WHILEINEED MERGE) DO
BEGIN —

(a WHEN NEED MERGE ES TRUE, ~E HAV E .)
C a NEW TYPE OECLARAIIONS GEN (RATEO a)
C’ BY PASS I. THESE NEW TYPE UCI’S .)
(a ARE IN A FILE CALLED TEITa. MERGE a)
I’ THEM INTO THE MA IN TEXT ‘5
N::POS NEW TYPE.!;

— FCOPY (TEXTT,TEYT3,BUFER,PTRt,FTR~~,N);IF DCL TYPE THEN
BEGIN FOR II:! TO LINE LE’IZTH ao BUFERCI)::’ ‘S

BUFERC2] ::’T’ ; H0F1QC3: ::’T ’ ;
BUFERC,)::’P’; HUFERCS]::’E’;
PUT _LIP4ECTEXT3,BUFER,PIR3);

ENO
N:: !;
IdI-IILE (BIJFERCNI :‘ .) 00 N::M.1;
WHI LCI NOT COF (T EXT2) 00
BEGIN S

FOSS I::! TO N—I DO 3 UFC IO:= ’ ‘S J :P4
WII IL E(C NDT EO LN(T E X T 2)) R r ’ l D (J<:L.INE LEPIOT rI)) 00
BEGIN ~EA D (TE X T2 ,O UF C J 3) ; J::,J.1; trio;

- k E A D L N C T L X T 2) S
FOX L::J TO LINE LENGTH 00 OuFCI)::’ N;
PuT_ LINE (TEXT3,ssQF,PTR3);

(NO ;
NEED M G (:FALSE;

END; —

— PTR2::1; It(WRITE (TEXT2);
WHILE (NOQENO) DO
BEGIN S

IF FIRST CALL THEN DCL FAULTF LAG S
FIRST CA CL::rAL~ E;
NEw _ NOo5. (s EAKc H_ o IREcr IoN) ;
5’ NOOE:O ——— s T R EE HAS BEEN VISITED a)
(a NOO’~~1 — — —) PROC EDURE a)
(a NI)Jr:2 ——~~ TERMINAL NODE IN TREE a) -Ca NOD~ :3 — —— SSEC.ULOCK MODE a)
(a lIT ~4I)UE WE MEAN A HIDE ON THE a)
5. PKOC/RIT TREE. a)
CASE NUDE OF
1~~ BEGIN

N::pqnc P’S TpurtNoIlFrq1 .ENT~ y;
FCOt’YC 1EX1 T ,rExTj, jF -~~,PT(1,~~TN3,N);SI-ARCH O1R~ CTIOPJ ::I;

~~fl
E N D S —

— 2: ‘516CM 115
S PAGEIS~~ S~~~~~~~”~~
M QOF~J jij~ isli~~ TO D~ C _~~~~~ — -

L — — —

1::PPOC M’S TREECN OOEPTR) .VOUNGrR_HQO THEK;
WH ILE CT :AT DI)

‘- BEGIN NOI)iOTR::PROC N’)
- 5F NODLflTK:L YHER

IICGIH PaflOC:25; 6010 5’)-)) FNO

I :ZPXOC .R8_ TMU(NOOEPTR 3.YDJNG(R _ IJRUTS-SER
(NO)
J::pRoc_ RB TR€.c CNnocprq 3. Y OU NGCSS r) ’OT-SER
IF PROC P~ T R(s : t J) .M A - A ,s :’v’TMrN U). IN pdOu5.PIM := I ; SEARC H_ DIRECCIO N::L ; S

(MN
— EL SE SEARCH _ DIRECIION::2;

• ENDS

j : BEGIN
FIND_ELDER BROTHER;
CASE ELDE!_BP O T HER OF
i: BEGIN

(a ELDER eROTH cS R ~ 5 MDL). a)
(a OR A PROCECURC a)
c:=pRoc ~T5 TRE~(HCDEPTSS3 .FATP4CR;N::PROC~~~~~T3EEC53 .PTR TO ENO DCL.!;
FCOPY (TtXTT,TEAT3.IIUFER,PTR1,PTR~~,N);INOIc~~~3;GET LINE C TEXT ! ,BUFER,PTRI);

FILL AO R FIELD (9UFER,J,PTRZ,;
PUT ZINETTEXTS 5iJFCR,PTR3);PROC RB TREZCKj .PT R TO END OCL::PT~ 3;N :PROC RH TREECNCOrPTR) .E~ T X Y ;
FCO}’YIVEXTj.T (x13,BUFER,PTlt,PTR3,N);
INDIC::3;
GET LINE (TEXTL.BUFER,PTRI);qj~ TR ANSLAT IONINOCEPTR);CREATE LINKA GE ;
NOOE pTW :=0LOPTR;
IF NOT VOUNGERINOOEPTR) THEN
PUT LINECTEXT2 ,L4STLINE,PTR2);
SCA~ CH_3IRECTEON::1;

ENDS
— 2: BEGIN(a ELDER IIPOTHER IS REC.OLOCX a)

N :PROC V3 TPEECNCOEPTRO.ENTRy;
FCOPY C TEXTI,TEXT3,BUF(R,PTTC I ,PTR3,N);
IMOLC :=3;
GET LINE (TEXTI,SIUFER,PTRI);
J::To; I::Lo;
WHILE LASTLIHELIO a’ ‘ Do I::I.1;

I:=E—1*
C ONVER T _OCCI$AL (LASTLCNEsJ,t , Ic)i
I~ :PROC _RB TREECNOOEPTR).FATHER;
PR OC RH TRt~tI).PTR TO r’SD DcL: K;
RB TRAN~ LAT C0 N(NOC E PTRT~CREA TE LINKAGES
NOOCPTR::OLDPTR;
SEARCH_DIRECT ION::!;

—
(ND

ENO
END- ENO

END
(* CHANGE THE MODE INDICATOR OF a)
(a THOSE REC.BLOcK NOOES.WBICH ‘5
(a ARE TRANSLATE!) INTO PROCEDURE •)
FOR S~~~L TO LEN— i 00
BEGIN N:=Ra TO PROCCIIS

PR OC_RN_TREECN). INDICA TOR:: ‘PR’S
— ENOS

INOIC::i;
REHEAT GET LCNECTEXTI,BUFCR ,PIRI) $

• PUT LINE(T (XT3,BUFER,PTR3)
UNTIL (t’)F(TEXTI))S

~r

,
j

E N D S
PROCEDURE PR INT PROC _TREE ;

VAR I : IP IT EGCRS
BEGIN

W R I T E I N C ’ a.,. PR OCEDURE TREE,JAR YING C3~ P3NtNTS‘ S
~~

v ci WRITE L N ;WRTTE L N ;
~RtTEL N (’PSOC ISME ’,’ ENOC CAI G N ’ ,’ END OF DCL ’,

ENTRY ’,’ M ARK ’ ; WR ITELN ;
FOR II:! TO NEST PRI)C NDIE—t UI)
WRITELN(PROC_R’l IRE CT).PR RB NAME ,’ a ,

PROC R TXFECI) .INDSE3IOR.
PRJC Rfl TREF.tI1. PT~ TL E~ O_OCL:II,

PROC RSI TRCEC I].MA3X);
WRIT EL NflJRS ICLNT

(MU;
PROCEDURE MEPGE INTN1 CV AR T :XT3,Trjr’ ,TE XT !:rCxr _FTL! ;

(a MERGE TUX T.S IN’O T~~5T 2 ——— T E X I I •)
!d4R i,f,K~~LP4Tt:GER;5k t I N

INOIC: :1 Slj R I;rt(rI nT~~5; RtSrt (tEA YS)~ RL .4RTtr (TIXT!);

REP’P.A I
— ~EA O LtMt C TrX T~~,ttUFrP ,PT-~’I;IF HOt- (RC Ij:’ 4’ THEN

116

~~~~~~~ -



- ~~~~~~~~~~~~~~~~~~~~~~~~ 
55 

- -
“I,

B E G I N
is :.z a;
IF  (CB:D?ENCIO):a ‘) AN i (BUFERELL):’ ‘5 AM!)

CI ,I~~Lprt2):’ ‘) AND CB IJFEMEIfl :’ I) )
THLN c::0;

FOSS I::! TO LINE LENGTH 00
BEGIN IF VE~~P STMTCI):’:’ THENBEGIN IF ((TLMH ~ TMtCC .t3:’t’) AN !)(TrMp ~ sTprrz. 11 :.s,) AND

UEMP STMTCIa;]:’DN)) IHEN T::O;
(NO.

END,
IF ((RIO) AND (110)1 TI-tEN

L BEGIN
..HILC (NOT EOF!TEXT3)) U!)
BEG IN RC AO L INECT EXT3 ,B UF ER,PT RI I ;

IF H0F(R(1):’A’ TH~~ GOT O 650
ELSE SAVC LIN~~(t(XT1,JUFER, PTRj )S

ENDS
END

— ELSE IF( (KIO) AND CT: ’ ) ) )  THEN
SAV E LINE(T EXT I,BUFER,PIRA)

EN D
ELSE BEGIN

SAVE ).INE(TEXTt,~SUFER.PTR1);TrMP STNT: :BUFER
£ND

UNTIL (E0F TEXT2 ;
EN DS

(aaa.a.,aaaaaaa. ,a .aaa ,. a... aa a a .aa~~..,..a,a.afra*)(a a)
(a MAIN BODY OF MAIN PROGRAN .....,..,,.., a )
(a .5
(aeaaaaaa.eaaaa .a.aa ..aaa.a .aaaa .....a.aa a aa .aaaaa)

BE G I N
PASS )1

~ I R S T 0C :TR~~~
0 THEN NEED_MEKGE::TRI.E ELSE NEEU_MERGE::F&LSC;

PRINT PROC TREE;
PASS 7(TEXTI,TEXT2,TEXT3)1
PRIN T PROC TR EE;
IF NUT(NEEO MORE PASS ) THEN
BEGIN MERGE INTH (TCxr2,TCXT3,T(xTj); GOTO 2000 5 ENDS
PASS z(TEXT2;INTX,,TEzu,;
PRINT PROC TREE;
IF NOT(NEEL~MORE_PASS) THEN

BEGIN MERGE INTXT (INTX R,TEXT1,TEXT2);
RGE lNT~ T (TtXT2,TtxT~~ TEXT)1;

GOTO 2000;
E N D ;
PASS 2(INTXR,INTXS,TEXT2)1
PR INT PROC TREE ;
IF NOTCr~E(V MORE PASS THEN -
BEGIN

MERGE INTXTCINTXS,TEXT2,TNTXR );

MERGE INTX T (  T (XT2 ,  T (xT3,TExTI);
GOTO 2000 ;

(NO!
Sv::L S
WNILE(NEEO MORE PASS) 00
BE G I N  — —

MERGE INVXT(TCXT2 ,TEXT1.TEXT4)1
IF Sd!L THEN
BEGIN PASS 2 (INTX5,TNTX4.TEXI2U

sw::Z;
END --

S ELSE BEGIN PASS 2CINTX4 .INTXS,TEXT2)
sw::r ;

EN D S
END;
IF SW:! THEN MERGE INTXT (I5ITXS ,TEXT2,TFXT I)

ELSE NERGE !NTxTIINtXR ,TEXT2 ,l~ X T t f l
MERGE 1NTX1 (TEX T 1, T~ YT4,TZVT2 );N(RGE INTXT(TEXT2,TLXT3, TEXT ! )S
2000 :T

(NO.

L 

117

-- - S-~~~~ - - -- - -5 -- -—~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - _~~_~~~~~~~~~~~~~~~~~ _ . 5  _ _ _ _  
~ 

S

Appendix  B. Sa~ p1e test—runs of FT—PASCAL preproces3or

— 8. 1  An FT— PAS CAL program

TVP ~ P=R~~CuRO

~~ INTEGER ;
Y:RtAL

5 A A ) RAY4Iaa5J UF e~ ;VAR I.J:INTEG~~R ;

— 
B E G I N  ~~~..LOj  OF P

S ENSURE 1 J

ELSE_By I:~~ i+~~;ELSE_BY dj2A.~~:~~L.-~~;ELSE ERROR ;
WRI T~~ ..N( II

— END.

- -

-
~s ‘ø~

~~~ 118

•. —

~~~~~~~~~~~~~~~~ ~~~~~



-~~T - - — -  ------—-- --- - —

8.2 Translation of the program in 8.1 by FT—PASCAL preprocessor

TYPE P RECORO
x: INTEGER ;
Y:REA&.

A~~ARRAY11..5j OF P.TP00000I RECORE)
X :INT E~ EH
V :RtAL

END;
TP000002 A R R A Y jI . . l O j  OF P ;

VAR I,J:Il- .TEGER;
o :ARRAYI1a .1Oj . Op P;
F AULTFLAU : tSOULEAN;

PROCEI)URE R~Iooooo1;VAR
Bv00000ll INTEGER ;
dV000002b : TP000002 ;

PROC~~)UR~ SAOO O O OI ~ Cs SAVE 5)
BEGIN

dV00000iI

~ VOOOOO ~~B

PROCtDUR~ I X S O D O~)ol; (5 HESTORE *1
BEG IN

:=dv000.,o Ii
o.=BV000002b ;

END ;
FUNCTION VTOOQOOI :BOULEAN; (5 VALU ATION *1

~~.GIN
VT00000L:-=NUT(FAULTFLAG ) AN~) ( I~~J );

END;
BEGiN

FAuLTFLAG:=FA~.SE; SA 0 0 0 DOI
z:-=i+i ;
4F VT00000I Tr1~~N GUTO 1357 (5 EXIT 5)
ELSE BEGiN k~~OOOOO1; FAUL TFLAG:=FALS E; ~ ND;

I :=1+4;
IF VT 00000 I  T i-SEN GuTO u S ?  (-* EXIT 5)

ELSE B~~GIN RS00000I; FA ULTFLA~J.=FAL.SEi END;dj 21 ,x: = I + t~;
IF VT000001 Ti-thN GUTO 1.3~~7 (5 ex iT *1
ELSE BECsIN

ITELN (’ICEC)VEMY Pi-s .aC~~OURE RL)OO~JOU1 FAILED’ );
FAULTILAG:=TRUE ; RSO 0001-,

EN );
1

i :=i ;

Ru 0 0 0 0 0 l;
WRI TELN( I)

END a

~$IS PLG~ IS BEST QUAIs1T~ 
rnCTIC-P~~~

J’&~O~ O~
F1 B ~~S1.SBB1) TO D~ Q _~~~~~~

-

119

~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

S
~~~*~~~~~:


-5
-5- —~~ — --

U.3 An FT-PASCAL program

TYPE P=RECORD
x:INTEGER ;

S Y:ARRAYLI.a31 QF CHAR
Z:REM..

END ;
VAR A :ARRAVjI..lOj OF LNTEGER

N .I-IINT~~GER;REC:P;
FUNCTION ALL_ sORT:~~QC4..EAN;VAR I:INTEG€R;

BEGiN
ALL SORT:=TRUE;
FOR j:=z To N ~IOS
ÔEGIN

I F ALI.L < AjI—Lj ThEN
BEGIN

ALL_ SORT~~~FALSEEND ;
END ;

END;

PROCEOUR~ SOHT 1
VAR I,J.K.Iii-STEuERI

aIRI TELN (’tNT~~RED SOR T I’);WRITELN (’A WAS AS I~~OLLC.IES ’fl
FUH i :=i TO N DO WKITELN (AjIj);

VSNITELN ; WHITELN;
FOR I~~~I TO N— i DU
BtGl N

FOR J~~~l+1 TO N DO
5 ~ EG1N -- -

IF Aill -~ A JJ.L THEN
BEGIN

~. : Aj I j;
AjI1~~~AjJ1.

END ;
—

END ;
WRITCLN(’M~~TURNEO FRUM SORT i’;;
W R I T E L N(’A 15 NO W AS F O L L O W S : ’) ;
FOR i:=i TO N DO HRITELN (AjI1);
WR1 TL~LN; WH ITELN ;

5 Er-A);

l-’MOCEDURE SONT2;
VA 1 I,J.lc:INTEc,s F.l;

S I B E G I N - -

ITELN (’tNT~~~EO SORT ~~‘J ,
wR;TELN(’A W A S AS FuLLO~~S:’);
FOR I :~~ i 10 N 00 WRITELN AjIj);
REC.Z:=3
WR L TELS4; wR I TLLN;

FOR 1 = i TO N-! DO
- S BEGIh.

S t-OR J := i + i TU N 00

“ IF A LIL) ALJk THE N
IN

AjJJ:=K;
END ;

- continued

— IIHIS PAGE Is BEST QUALITY P ACTICABL~

12

— ~~
- —

~~
-— — -

~
- . ‘-• ~~~~ ~ ~~

- —

WRLTELN (’NETURNEi,) FROM SORT ~‘);

~RuTELN(’A A S NOW AS FOLLOWS:’);
FOk L:=i TO N 053 WRLTELN (AjI.L);
WRITELN; WS I TELN,

END ;

BEGIN
N:~~Io;

-
- WRITELN (’INITIAL ELEMENTS OF A ’) ;

FOR I:=i TO N DO REAOLN (AjIl)
FOR i :=i TO N DO WRITEA.N (AjTj);

S WR ITELN ; WRITs LN; -

ENSURE ALL SORT
• ESY SURT1 ;

ELSE ...DY sQHrZ;
ELSC_ERRQR ;

WRITELN(’FLNAL ELMcNTS OF A’);
FOR L~~~ I TO N DU WRITEL.N(AjIJ);

END.

- 8.5 Translation of the program in B.3 by FT—PASCAL preprocessor

TYPE P RECLIRO
x:INTEGER;
Y;ARNAYj1,.3~ OF CHAR ;
Z R ~~AL

END ;
TPQOOOU~~~ ARRAYLI...3L OF CHARTP00000I=RECURs,)

X :LNTEGER ; S

V :TP000002; - S

Z :REA*,.
ENQ I

TP000003-= ARRAYjL. .1OL OF INTcGER ;
VAR A ARRAYjI..IOj OF INTEGER ;

N,!: iNTEGER
REC:P;
FAULTFLA~~ BOOLEAN;FUNcT ION ALL_ SOhT:BOOLE~~N;

VAR I:LNTEGER;

ALL_~ OMT:~~TRJE;FOR I= 2 TO N OCi
BEGIN

IF AIIA < Aji-I~~ THENBEGIN
ALL_SORT: =F AL SE~END ; -

END ;
END ;

-
PROCEDURE SURTI;

VAR 1.J.X:INTEGER ;
8EGIN
ARLTELN (’ENIERED sORT I’);
~RITtLN (’A WAS AS FOLLOWS:’);FOR i:=i TO N DO WRZTELN (AjIjI;
REC.x:=2 ;

1UHITELN ; WRITEs.N;
FOR I:=i TO N—I DO
B~ G I N ~njjiI T~

?~~~
-

FUR ~ :=I+i TO N DO ~~~~~~~~~~~~~~~~~~~~ ~~~
IF Ajlj < AjJ~ THEN
BEGIN

• AjI~~:=AjJJ ;

END ;
~

I-..,);
END;
~IRITELN(•RETU RNED FROM ~ ORT i’i;
~RITELN (’A 15 NuW AS FOLLOWs:’);
FOR 1:=a TO N DU WRLTELNIAiLA);
WRITELN . WRITELN ;

- cc~ntinued
121

5

-
-5 - -5 _ _ _ _ _ _ _-

~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ -~~~~~~~~~

PROCE~JURE SORTS;
VAR L,J,ac: INTE~,ER ;BEGIN
WRITELN (’EMTERtO SORT a’);

- -
— WRITELN(’A WAS AS FOLLOWS;’);

FOR I:al TO N DO WRLTELNCAL I.L)
REC.Z:a3;
WRI TELN; WRITELN;

FOR I:=1 TO N—i DO
BEGIN

FOR .i:aI+i 1*) N Du
BEGIN

IF Ail l. > AjJj THEN
tSEGIN

AjJj :=l(
END ;

END;
END;
WRITELN(’RETURNEO FROM SORT 2’J
WRUTELN(’A I S NOW AS FOLLOWS:’).
FOR i:=i TO N DO WRITELTt(AjLlI;
~.RITELPI ; WRITELH;

END;

PROCEDURE p8000001; 5

VAR
dv00000IREC : INTEGER ;
8V000002A : TP000003;
BV00000-3REC : REAL

PROCEDURE SA000001; (5 SAVE 5)

BV~)OOOO 1NE~ ~~REC.X.S BV000002A ~~A ;
— DV00000.3R C.L

END ;
PROCEDURE P5000001; (5 RESTOF~~. 5)

BEGIN
RtC.X :=BV 00000 IREC
A ~=~~V0O0O02ARtC.Z:=~~v00c~003kEC

END ;
FUNcTION VT000001 ;DOOLEAN; (5 VALIJATION 5)

t,EGIN
VTooooo 1:=NsjTtFAuLrFLA~..) AND C ALL_SORT) ;

END;
BE~~1N FAuLTFLA~~:=FA1..sE ; SA00000I ;

SORTI;
IF VT OOCiOUI THEN GUTO 1J5? (5 EX IT 5)
ELSE BEGIN hS00000I; FAULTFLAG :=FALSE; END;

SURT ~~
-

IF VT000001 THEN GDTIJ 1357 (~~ E XIT 5)
ELSE nEGIN

WRITELN(’RECOVERY PROC EDURE P8000001 FAILED ’);
FAULTFLAG:=TRUE ; Rs00000I;

END ;
l357:END ;

àEi~.1N

wR1TtLr~(’INIT1~~L ELEMENTS OF A’);
FUR i:=t TO N DO REAULN (AjlI);
FOR :=i TO N DO WRIT ELN(A j lj i ;S
wW LTELN~ ~RLTE LN;

RuC3C3O);

I T t L N (’ F 4 I oAL ELMENTS UF A ’);

S FOR . 1 TO N DO
~RITELN (Ajl.L);END.

.— 122
~~I$ PAGE IS BEST QUALII’Y P ACTICABLI

~~~~

—



B.5 Input  data  for the program in B.3

• 
00100 9
00200 1ooaoo
00400 2

• 00500 7
00600 3
00700 o
00800 4
c0soo 5
01000 9

8.6 Result of the execution of the program in B.~ with the data in 8.5

A f t e r  SORT 1 fails, SORT2 succeeds in producing acceptable resul t .

INITIAL cLEMENTS UF A ENTERED SORT 2
9 A W A S  AS FOLLOWS:
1 9
8 1
2 8

- 2
3 7
6 3
4 6
5 4
9 - 5

9

ENTERED SORT I
A W A S  AS FOLLOWS: RETURNeU FROM SORT 2

9 A IS NOw A~ FULL.CmS:
1 1
e 2
2
7 4
3 5
6 6
4 - 7

8
9 9

9

RETLJRNE&) FROM SORT 1
A IS NOW AS FOLLOWS: FINAL ELMENTS OF A

9 1
9 2
8 3
7 4
a 5
5 0
4 7
3 8
2 9
1 9

TillS PAGE IS BEST QUALITY PMCTICABLI

123

I ‘-



-- -— _
~~~~~

_
~~~~~~~~~~~~

J J_ —_- _ __ -_ -_ _
~~~~z~~~~~~~~~~~~--~~

-—_ --5_ - ---— -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5_~ S~~ S

Part III

PROGRAMMER—TRANSPARENT COORDINATION

OF RECOVERING PARALLEL PROCESSES

by

K. H. Kim

124

PROGRAMMER-TRANSPARENT COORDINATION OF RECOVERING PARALLEL PROCESSES

by K. H. Kim
-

ABSTRACT: A new approach to coordination of cooperating parallel

processes , each capable or error detect ion , rollback , and r e t ry , is

presented . Error detect ion , rol lback , and re t ry in a proccess are

specified by a well—structured language cons t ruc t called recovery

b lock . Coordinat ion of processes is needed to prevent a disastrous

avalanche of process rollbacks . In contras t to the previously s tudied

approaches that require the program designer to coordinate the

recovery block st ruc tures of in teract ing processes , the new approach

relieves the program designer of t ha t burden . It instead relies upon

an intelligent processor system (that runs processes) capable of

establishing and discarding recovery points of interacting processes

-
in a well coordinated manner such that (1) a process never makes two

consecutive rollbacks without making a retry between the two , and (2)

every process rollback beco mes a minimum-distance rollback. Following

the discussion of the underlying phi losophy of the new approach , basic

rules of reducing storage and time overhead in such a processor system

are discussed . For speci f ic i l l u s t r a t ion, systems in which processes

communicate through monitors , are considered and then an intelligent

-
processor system equipped with new monitor mechanizations termed

fault—tolerai t monitors and new process stores termed extended

recovery caches is developed .

Index Terms: rollback propagation , process interaction~ programmer—

transparent coordination , recovery block , fault—tolerant monitor ?

extended recovery cache.

125

k - ~ -----~~~

-_ -=-.--—------5__— -
~~~

-— - :Z~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T

~~~. Introduction -

£3 a pragmatic supplement to other widely practiced approaches to

obtaining reliable real—time software, incorporation of run—time error

detection and recovery capabilities into large—scale software is

— becoming an increasingly common practice (H1 ,K1 ,M1 ,R1 ,R2 ,W1 ,!1,!2]. To

successfully exploit the potential of this approach , it is essential

that program redundancy (specifying error detection and recovery

funct ions) be embedded within the program in a well—structured form so
that the clarity of the overall program is not degraded ED1 ,B3, P1 ,R1).
A language construct called recovery block (RB) or fault—tolerant

block was introduced by Horning et al to support structured

-
incorporation of redundancy into a program (113]. It has the following

syntactic structure: ensure V by 01 else—by 02 else—by ——— else—by

O~ else—error , where V denotes the validation test, 01 the orimarv

ob leet block, and °k (2~ Içjn) the al ternate oblec t blocks.
— Readers familiar with the semantics cf the RB and with the efficient

storage scheme called recovery cache (A1 ,H3] supporting execution of

RBs, may skip the next four paragraphs.

All the object blocks in an RB specify computations aimed at

producing the same or approximately the same result. A process

executes the validation test V on exit from an object block to confirm

that the result of the object block execution is acceptable. If it is

acceptable , the process exits from the RB. It it is not , the process

enters the next alternate object block. Also , the process enters the

next alternate object block i.f the underlying processor system detects

an error (e.g., divide—by—zero) while the process is inside an object

block.

—
Befor. an sltsrnats object block is entered , the process state is

restored to the stats that •xisted just before entry to the primary

object block. That is, th. proc.ss rolls back to the recovery ocint

126

—-5 — —-5- ——---—--- — ‘-5- —~

(RP) established on entry to the RB (A1 ,C1 ,H3]. Ea~h variable that

was as5igned a new value by the rejected execution is restored to its -
S

- original value. The underlying processor system automatically

performs this “assignment reversal” . To enable this , the first

assignment to a non—local variable v during execution of an object

block is preceded by the recording of the original value of v , denoted
-

by PRIOR(v), in the recovery cache. Actually PRIOR(v) may also be

needed by the validation test of the RB. These (first) assignment

records need to be kept until the RB is successfully exited . When an

RB is exited , the RP established on entry to the RB may be discarded.

For example , consider a program in Figure la. Figure lb shows a

snapshot of the recovery cache taken when primary object block

is in execution. As shown , there is a stack , called a cache stack,

used for saving the original values. Similar to the main stack, the

cache stack is also divided into regions , one region for each nested

RB in the “active” state (i.e., an RB that has been entered but not

exited). The top region of the cache stack in Figure lb contains

names (representing logical addresses) and previous values of the non—

looal variables that have been modified during execution of the

current object block 02.1 i.e., T2,I1 ,X2). Similarly, the bottom

region of the cache stack contains the previous value of non—local

variable Xl which had been modified by execution of object 01.1
before 02.1 was entered. Figure lb also shows a flag field in the

main stack. The flag indicates whether the original value of the

associated variable has already been saved since the current object

block was entered. Thus the flags attached to T2, X1 , X2 in the main

stack are currently set.

If the result produced by execution of 02.1 is rejected by

validation test V2, then the top region C2 of the cache stack can

be uae4 to reset the main stack to the state that existed on entry to

127

-—-- —--~~~~~

d.clars xi, xa
X1 a 9 ; XZ~~~Z ;

ssau.r. V 1
by i— b.gta declars Ti, Y2. T3

•.. Xl :. 8: Y2 : 6;
fsnsura v2

~
. I by , b.gln d.clar. I
1 F~<

Oz.4_
...; TZ :~ 5: Xl ~ 7;

— o I .~a.by
1
(
1 (,~

0
~•~

__
I .t..-.rr eF

- L~i 5•b.by

-
oi~i

Figure la A block—structured fault—tolerant program

Vat,,. Flag tegtc*t prsvto~a.
.~~ck m arks address vaLus

—

Z 4

10

555t n7 t0

~~2 4 ~~~~

2

!
x z s Xl 9 1 C 1

main stack

5

~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~

Figure lb Recovery cache during execution of la

- RB F2~ If it passes the test, execution of F2 is complete and
5 C2 j~ merged into C 1 such that the result will contain previous

values of those variables that are non—local to 01 1  and have been

— 
modified since 01.1 was entered. Thus the result  will be a single

region containing (X1 ,9) and- (X2,2). Flags in the main stack are also

adjusted such that only the flags of Xl and X2 are set. Therefore ,

creation of a region ifl the cache stack can be viewed as the

establishment of p rs~~very noint (HP ) and the number of regions in

the cache stack at any time is equal to the number of RP3 existing at

128

__________________



S 5-

that time.

In a system of cooperating parallel processes each of which is

independently structured by RBs , process rollback and retry becomes

greatly complicated by the possibility that rollback of a process X

may cause the rollback of other processes which have interacted with

X ( R l ,R 3 , S l ]. A process I often has to roll back into an RB from which

it already exited successfully , because other processes which

interacted with I while I was inside the RB , fail their validation

tests later (i.e., after I exited the RB). This means that a process

cannot always discard an RP on successful exit from an RB. In

addition , a disastrous avalanche of rollback propagations between

processes , called a domino effect (Rh , could occur. To control the

- domino effect, either the program designer must carefully coordinate

RPs (by coordinating the RB structures) (Rl ,R3.] or the processor

system that runs processes must be designed to automatically manage

RPs properly and coordinate the rollbacks of interacting processes.

Randel]. proposed a language construct  called conversation to

aid the programmer in coordinating the RB structures, thereby

supporting a orogrammed (RP) coordination aporoa-’ti [Ri]. In this

p paper a programmer-transparent coordination acoroach relying upon an

intelligent processor system is explored , and some pr inc iples useful
for its practical realization are discussed. To provide a specific

example , an intelligent processor system that supports processes

communicating through monitors (Bl ,D2,H2] is developed. The processor

system uses new monitor mechanizations termed fault—tolerant

monitors and new process stores termed extended recovery caches.

(The fault—tolerant monitor is not directly related to the recoverable

monitor that was developed in (Si] for a different purpose.) Again ,

the basic princip les related to coordination of the RP establishments

and rollbacks of processes are valid independently of the mechanism by

which cooperating processes communicate. A short review of the basic

~29

-5-- — - —-—~~~~~ -—--—-
~~

—— 

- -- S~ --—-- - — —-5--- -
5
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-y-~~

. 
~ 

- - - - __ ,_ 5_IA



- - ____________________________

character istics of a monitor is given in the next paragraph.

- 
A monitor consists of a shared data structure and all the

opera tions , called mon itor procedures, that processes can perform on

it. No more than one monitor procedure of the same monitor may be in

execution at any instant. A process X which has gained exclusive
- J  

— possession of a monitor and entered one of the monitor procedures, can

release the monitor in two ways: one is to exit from the monitor

procedure and the other is to execute a “wait (q)” where q is the name

of a queue , called a condition Queue , into which process I will

enter to sleep. Without loss of generality , the capacity of each

condition queue is assumed to be one. A process I which enters a

monitor procedure while another process X is sleeping in condition
- queue q may waken the process X by executing a “signal(q)”. A process

can execute this signal operation only as it exits a monitor

procedure. A process checks, at various stages during execution of a

monitor procedure , to see if the current state of the monitor
— satisfies the prerequisite condition for the next operation; if the

condition is not satisfied , the process will enter a condition queue.

In section 2, basic problems arising in communication among

parallel fault—tolerant processes are delineated and then the

underlying philosophies of the programmer—transparent coordination

approach are discussed. Seotions 3 and 14 develop a fault—tolerant

monitor and section 5 discusses a possible extension . Proofs of two

lemmas stated in section 3 are given in Appendix A.

130

- - -
~~~~~~~~~ ~~~~~~~~~~~ - 

-

~~~~~~~~~~



- -5S-5~~~~~~ ’- ~~~~~~~~~~~~~~~~~~~~~

2. A pro~ram~er-transparent approach to coordination of recovering

parallel processes

For convenience in exposition and specific illustration of basic

- 
; principles , the systems of processes dealt with in the rest of this

- I 
paper are assumed to have the following characteristics. For ease of

r eference , the assumptions , the notations , and the definitions that

are developed in this paper are numbered Al , A2 , eto, Ni , N2, eta, and

Dl , D2, eta , respect ively .

Assumption:

(Al) All the processes are created during system initialization and ,

once created , either exist forever or terminate together.

- (A2 ) Processes can communicate only through monitors , and every

resource shared among processes must be contained within a monitor.

(This assumption is removed in section 5.)

(*3) There must be a procedure (known to the underlying processor
- system) by which the state of a monitor can be recorded at any instant

and a procedure by which a recorded state can be restored later.

(AU Monitor procedures do not contain wait or signal instructions.

(This assumption is removed in section 3.5.)

Assumption A2 implies that the only operations that can be

performed on a shared resource are monitor procedures. This

restrictive assumption is adopted mainly to simplify the presentation

of the basic Ideas of the proposed scheme and it is removed in section

5. Assumption *3 is trivially met if the contents of shared variables
(includIng condition queues) in a monitor completely represent the

state of the monitor , because at any time the contents can be readily

copied Into another memory region and later reloaded , if necessary .

Recording and restoring a state of a special resource (e.g., disk)

contained in a monitor may require special procedures unique to the

resource , perhaps supplied by the program designer . This then would

c

L 

131

5--——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



be the only burden put on the program designer.

— 
Figure 2a depicts a history of a system of two fault—tolerant

processes communicating through a single monitor. The figure uses the

following notations.

Notation :

(Ni) The processes progress downward.

(N2) A bracket represents an RB execution (RBE) and each short wavy

line represents a recovery point (HP) of a process. The bottom end of

a bracket represents an execution of the associated validation test.

013) A shaded column represents the history of the state of a monitor ,

and a change in the direction of shading represents a state change.

(N1 ) A horizontal line represents execution of a monitor procedure. A

line directed toward a shaded column represents a monitor undate

oneratlon (i.e., execution of a monitor procedure which only changes

-‘ the state of a monitor without examining the state at all), while a

line directed toward a process from a shaded column represents a

monitor reference ooeration (i.e., execution of a monitor procedure

which does not change but examines the state of a monitor). In most

— 
cases a monitor procedure contains both reference and update

operations . Execution of such a procedure is treated as a monitor

reference operation immediately followed by a monitor update

operation . 
-

Process A in Figure 2a produces information at A.3 for other

processes and stores into monitor H. A little later process B picks

— 
up this information (or a part of it) at BJ4. Process B passes its

validation test at 8.5. If process A tails at A.p , then it will roll

b*ck to HP A.1 and revoke the information it sent out between A.l and
A .p .  (As part of th is  rollback , process A must restore monitor M to
the state that existed prior to A.3.) Revocation of A.3 should cause
process B to roll back to an HP established prior to 8.14 , even though

132

L ~~~~~~~~~~~~~~



_ 
--5-- - - ~ - - - - 5 -——~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~ 

-

proc ... / ~ Monitor M p rocess B

Figure 2a A system history

-

B has already passed its own validation test. A programmed val idat ion

test cannot detect all possible errors. Therefore, it process A
fa ils , process rollback is propagated to process B due to the

-
revacat ion of the information sent out by A. This type of rollback

propagation is called an R—nropagation in this paper.

On the other hand , if process B in Figure 2a fails at 8.5 and
- rolls back to RP B. 2, then the question arises as to whether process A

should roll back. The information received at B.14 may have caused the

failure of B. Therefore, process B may be suspicious of the integrity

of process A and ask A to roll back to an HP p’-ior to A.p . This type

of rollback propagation is due to the susoicion by process B and

called an S—orooagation.

- When S-propagations are permitted , an avalanche of rollback

propagations may occur unless the program designer takes great care in

coordinating the RB structures of in te rac t ing processes. For example ,
if process A in Figure 2b fails at A.p , then process A may be

-

suspicious of the integrity of the information received at A.22.

S
Process B may have supplied the informat ion ei ther in ful l at B .2 1 or
in parts at B.5, B. 1 3, and B.2 1. Some part of the informat ion may

-
even have been deposited in the monitor by process A itself at A .1 ,

A .9 or A.u 7 . Upon receiving a request from process A to roll back to

133

L - -

-
- -

-
-

~~~~~~~ ~~~~~~~~~~~ ~

-
-

~~~~~~~

-

~~~~~~ 

5-- - -
—5-. — 5-- - ‘  — —~- 

—
-_.

~~~- ; __  - -- - - S -~~~ 5- -5- --


an HP preceding 8.21 , process B may in turn be suspicious of the

integrity of the information received at B.18 and thus request process

A to roll back to an HP preceding A.17. Continuing this way, both

processes will have to roll back all the way to their beginnings (a

H domino effect occurs). Note that when S—propagations are permitted , a

process can roll back to an RP r and then continue to roll back to

— another HP without making a retry at r. Because of this, 3—

propagations are prohibited in the programmer—transparent coordination

approach explored in this paper .

pro~es. A Mocitor M process B

-

-

Figure 2b A system history

Allowing only H—propagations means that a process which sends out

incorrect information is solely responsible for detection and

correction of this error. Under this stategy a process can discard

the HP established on initiation of an RB on passing the associated

val idat ion test if the process did not receive information from other

processes but only sent out information during execution of the RB.
For example , process A in Figure 2a which does not know the speed of

the progress of process B can discard HP A.1 on passing validation

test A.p . In a sense, process A gives a posteriori accreditation o1

the information sent Out between A.1 and A .p on passing A.p and then

no other processes can challenge the integrity of the info—mation .

134

‘- - - - - -5 --

-~~~4 \ ‘. -
~~

- _~~
- .

-~
_ - .

5 . - 5

— ~~~~~~ - - - — .~~~~~~~-,——- -
5--

~~
5-p

~
5-—

~~~



-- _~~~- S - 
- 5  ‘~~~~~~~ 5 - 5 -  ‘

When only H-propagations are permitted , it is possible to prevent
a process from making two consecutive rollbacks (without a retry after

the first rollback), by establishing RPs immediately before certain ,

but not all , monitor reference operations. These fiPs are in addition

to the RPs established on initiation of RB executions (RBEs). The EPa
- J established immediately before monitor references are called branch

- 
~~~~~~~~~ while the RPs established on initiation of RBEs are called base

I~~.. Establishment of branch RPs is transparent to the program

designer. For example , process B in Figure 2o established a branch HP

immediately before monitor reference B. 7 . Such an HP will be referred

to by the name (e.g., B.?) of the immediately following monitor

operation in the rest of this paper. Process A also established

branch HP A .3 . If process A fails validation test A.p and revokes

monitor update A.6 , then process B rolls back to HP 8.7 and no more
rollback propagation will ensue. In this case, process B makes a S

minimum—dista~iae rollback. If branch BPs B.7 and A.3 had not beam

established , process B would have rolled back to base HP B.1 and
- revoked monitor update B.2, which in turn would have caused process A

to roll oack to an HP preceding A.3; process A would thus have made

two consecutive rollbacks , first to HP A.5 and then to the HP

preceding A .3, withou t a retry from A.5.

Process Mo&tor Process
A M B

-

.

Figure 2c Establishment of two branch BPs A .3 and B.?

135
-

S

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~

~~4
~~~



Figure 2c also reveals an additional aspect of monitor update

accredidation . Before process A executes validation test A.p, process

- 
B has passed validation test B.i1 and thus has given a posteriori

accreditation of monitor update B.1O . Note that this accreditation is

indirectly voided when process A fails at A.p and causes process B to

roll back to B.7, although the accreditation issued is not directly

challenged.

In short, the essence of the programmer—transparent coordination
approach is to prohibit S—propagations and to establish certain branch

BPs in addition to base BPs, thereby ensuring that a process never

makes two consecutive rollbacks. A process need also save the states

of a monitor immediately before certain , but not all, monitor update

operations in order to be able to restore the monitor if the updates

are revoked later. The approach is practical only if at all times the

number of RPs and the number of previous states of monitors that each

process needs to maintain is manageable. All the management

functions , including maintenance of BPs, restoration of monitors , and

coordination of process rollbacks, must be automatically handled by

the underlying processor system. Basic principles that can be

gainfully exploited in practical implementation of the programmer—

t ransparent  coordinat ion approach are discussed in the next section.

- 136

- - — Sj ~~~
- -;~ -~~~~~ 5~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



3. Fault—tolerant monitor and extended recovery caches in systems

using one monitor

It was mentioned in the preceding section that the feasibility of

the programmer—transparent coordination approach is largely dependent

upon the reduction of the time and storage overhead required by an

— 
intelligent processor system . Two major sources of overhead are in

creation and discard of (1) BPs and (2) records of previous states of

monito rs. Basic pr inciples  useful  for reduction of this overhead are

now discussed. To s impl i fy  the presenta t ion , th is  section deals only

— with the systems using one monitor. Figure 3 depicts such a system.

Furthermore , most illustrations are made with simple two—process

systems .

I 

‘

- 
Figure 3 A system of processes communicating through one monitor

3.1 Minimal recovery point (HP) establishment

— To get an intuitive idea, consider Figure 14a. Process B
established a branch RP at the beginning of monitor reference B. 14
since the information existing then in the monitor was subject to
possible future revocation (due to the possible failure of the EBE

initiated at A.l). However , it was not necessary for process B to

establish additional BPs at monitor references between B.6 and B.j.

This is because ar.y information picked up from M between 8.14 and B.i

- is revoked only when process A rolls back t~ A .l , and thus the

—. 137

- -- - -~~~~~~~~
- -- -~~ _ S~~~~~~~~~ -~~~~~~~~~~~~~~~~ 

-

~~~~~ ~~~~
-

~~~~~
- 
~~~~~~~~~~~~~~~~~~~


r
r — ~~~~ -~ --—---~ - - - - - - - - -s -~~- -~ —..---S 5

references (made between B.6 and B.j) are voided together with
reference 5~1~ Therefore , an on—going RBE of a process X causes
another process Y to create at most one branch HP , and process I must
maintain the HP at least until the RBE (of X) deceases. If process A
in Figure 14a passes validation test A.p, then HP B.~ may be discarded-
(Communication of validation results and other notices among processes
is discussed in section 3.3.1.) Base HP 8.2 can not be discarded even
after validation test B.k succeeds as long as branch HP 8.14 remains .

This is because once process B rolls back to branch HP B.14, it can
- fail at B.k in which case it needs to roll back to base HP B.2. In a

sense, the RBE that was initiated at B.2 is not completely validated

even after B.k until the RBE that was initiated at A. 1 is completely

-

validated at A .p and branch HP B.1e is discarded.

P rfA

Mo~~~~~~~~~~~~icess B

Figure Z$a A system history

So that the conditions for establishment and discard of BPs can

be stated precicely, the following notations and terms are introduced.

N.otatij?jl: 015) An RBE is represented by (a :] or [: b] , where a and

b are the starting and the ending execution points , respectively , of

t~e R!3E. For example , 01.2:] and (:B.k] in Figure 4a represent the

same RBE . -

138

5-- -~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~-
-

Difinition:

(Dl) When a monitor H is updated by a process X during an RBE [X.a:],

the RBE (X . a :] becomes a p oten tia l. recaller of moni tor M and holds
that right until (X.a:] deceases. For example , (A.1:] in Figure 14a

is a potential recaller of H from A.3 to A .p . Monitor H is said to be

rollback—chained or H—chained to the base HP established at the

starting point X.a of RBE (X.a:].

(D2) When a monitor M has no potential recallers, it is said to be

rollback-tree.
(D3) If a process I references a monitor M which is B—chained to base

B? X.a, then process I becomes H—chained to HP X.a throuzh monitor

~~~~, and thus RBE (X . a : ]  becomes a notent ia l  recaller of erocess I. -

If process I becomes R—ohained to HP X .a during an - RBE [1.0:], then
RBE (!.c:] is said to be B—chained to RP l.a. Thua RBE (X.a:] is a
notential recal].er of RBE ry .e:1.

(Dli ) An RBE of a process I is a noteiitial recaller of orocess I

- 
it~~~~.

In Figure lIb RBE (A.2:] in becomes a potential recaller of M at

its first update (A.3) of M , and RBE (B.1:] of process B becomes B—
chained to base RP A.2 at the first reference (8.4) to H after M

became H—chained to the HP A.2. Monitor H has two potential recallers

(A.2:] and (8.1:] immediately after 3.5. By definition Dli , BEE
(8.1:] is a potential recaller of process B between 8.1 and B.p.

Definition :

(D5) The set of all the potential recallers of a process I (or a
monitor M) at a given time t is called the notential recaller set
(PRS I of X (or H) at t, and is denoted by PRS(X t) (or PRS(M,t)).
The second argument t may be omitted it there is no ambiguity .

• Similarly, the PBS of an RBE (X.a:] at t is defined and is denoted by
PRS([X.a:],t), where t may be omitted if there is no ambiguity.
(D6) The potential recaller closure (PR’) of an RBE (X.a:] at a

139

Ill_S ~~~~— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F

Process A Mocuor M Proc .ue B

“
-

Figure lib A system history 
•

given instant, denoted by PB’((X.a:]), is a set of RBEs defined as

follows: every potential reed ier of RBE (X.a:] is a member of

PR’((X.a:]); if an RBE a is a member of PR’((X.a:]), then every

potential recaller ote is also a member of PR’((X.a:]).

(DI) An RBE [Z.e:) which is not a potential recaller of RBE [X.a:)

but a member of PR’((X.a:fl, is called an indirect ootential

reca1].ei~ of RBE (X.a:3.

(D8) The set of all the indirect potential recallers of an RBE (X.a:]

18 called the Lndirect notential recaller set (IPES) of RBE (X.a:]

acd i~ denoted by IPRSUX.a:]).

- 

The PRS of an RBE (X.a:) can be a proper subset of PR’((X.a:))

because PR’([X.a:]) may increase after process I passes the validation

test of RBE (X.a:] (and thus PRS([X.a:]) is fixed). For example ,

process C in Figure 1$c already passed the validation test of HBE

(C.l:] at C.6. Thus PHS((C.l:j) was fixed at C.6 and includes on—

going RBE ( B . 2 : ]  of  process B. When RBE [8.2:] became H—chained to

RP A .5 of another process A later at 8.9, HBE (A.5:) became a member

of PR’((C.t:’j) but, it. is not a potential recailer of (C.l:].

~~~ init,i~n:
(D9) An RBE (:X.b) is said to be oartialiv validated if -ialidation

test X.b has been successful but there remain potential. recallers of

(:X.bl (i.e., there are RBEs of other processes which became potential

14Q

-

Process Monitor Process Process

I

-

A M B ~~~~~~~~~~~~

Figure lb An indirect potential recaller (A.5:] of RBE CC.1:]

recallers of process I during (:X.b] and have not deceased).

(D1O) An RBE (:X.b] is completely validated if (1) validation test

X.b has been successful and (2) either PH’((:X.b)) is empty or every

member of PR’((:X.bj) has been completed with passing of the

associated validation test.

An informal definition of “complete validation” is validation of

every aspect of an EBE. Therefore, once an RBE (X.a:3 is completely

validated , there will never be any need for process I to roll back to

B? l.a. In the case of Figure lib , complete validation of RBE EA.2:]
— or (B.1:] consists of validation tests A.? and 8.p. HBE (A.2:] is

first partially validated at A.?. Then BBE (A.2:] becomes completely

validated together with (8.1:] at B.p when every member of

PR~((A.2:]) C PR’((B.l:]) C ((A.2:] (B.1:)) has obtained the partially

validated status. On the other band, RBE (C.l:] in Figure lic is not

completely validated even when validation test B.p succeeds, because

PR’((C.l:]) contains on—going EBE (A.5:]. Figure 5 depicts various
- states that a newly initiated RBE may go through.

The rule for maintaining the PESs of processes and of the monitor
stems from definitions Dl — D5, and is stated below.

-
141

:~
-
~

~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S 5-~~ø

PBE initiation

•
Qfl-qoin~~

1

~

-

-

stats I if he information received
white the RBE was in “on-
gOing” stote ,is-revoked

R8E discard

®:if the informat ion
“p~rtialty received before the RB~
ve~det ed - was tnit iat~d , is revoked

stat e

complete y validated

Figure 5 L.ife cycle of an RBE
-

Rule: (R I) “PRS manpgemerit”

(R 1 . - 1) RBE in i t i a t i o n : when a process X is about to i n i t i a t e an RBE
at X. a , P R S (X) is updated to PRS (X) U t (X .a :] } where U is a se t—union

Operator.

CR1.2) Monitor update: when a process X is about to update a monitor

H , P H S(M) is updated to PRS (M) U P R S (X) .

(R 1. 3) Monitor reference: when a process I is about to reference a

monitor 14, PRS(I) is updated to PRS (X) U P RS (M) .
C R 1 . 1 4) Complete val idat ion of an RBE : If an BEE (X . a :) has been

completely validated , (X .a :3 is removed from the PHSs of processes

and from the PBS of the monitor.

(H1. 5) Discard of an BEE : If an RBE (: X .b) is discarded due to a
fa i lure at or before X . b , (:X . b J is removed from the PR S5 of’ processen
and from the PRS of the monitor .

142 -

— —, ~-5-l-— -•— ~~~~~~~~~
5-

—5-- -— S_ 5- S----5- 5 -------~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ uII~

-- By using the PRSs of processes and the moni tor , a ru le for

correctly es tabl ishing BPs can be stated as follows.

Rule: CR2) “EP e s tab l i shment and d i scard” : when the PB S of

process I , P R S C X) , is expanded by incorporat ing a set E of new

members , a new HP is established by I. E is called the PB S of the

E~.. The HP may be discarded only when all the members of its PBS E

have been removed from P R S (X) .

Note that the PRSs of BPs are mutual ly d is jo in t and that the PB S

of a nrocess X is the same as the union of the PRS s of all the RP s

main ta ined by X at that t ime. In addit ion , the PBS of REE [~ X .b 1 at

X ..b is ecual to the union of the PRS~ of the RP s that were established
durinz [: X . b l and have remained. As an i l lustration of the above

rule , P R S (A) in Figure lia is expanded at A. 1 and thus a base HP is

established at A . 1 . Similarly , P R S (B) is expanded at 8. 14 and thus a

branch HP is established at B Ib . When va l idat ion test A .p succeeds ,

RBE (A . 1 :3 is completely validated and thus is removed from P R S (A) ,

PRS(B) , and P R S (M) . Since the ?RS5 of both BPs A . 1 and B. 14 are now

empty , the two BPs are discarded. RBE (B.2:] has also been

oompletely validated and HP B.2 is discarded. In the case of Figure
S

2c, HP B.9 is discarded when validation test B.11 succeeds but RP5

8.7, 8.1 , A.5, and A.3 are all discarded when validation test A.p

succeeds.

The above ‘RS management rule Ri is not complete yet. See Figure

6a . Under the present rule process B establishes an HP at B.1I.

Therefore , if process A fails at A.p and rolls back to A.1 , then

process B rolls back to 8.11 and resumes execution. However , the

infor~eat1on produced at B.3 has been lost and thus the information

— process B acquires at B.lb after resuming execution may be incorrect.

A logical solution to this problem is to establish an HP at (the
beginning of) 8.3 instead of 8.11. The problem then is how to

143

L - 5 ~
-

-

_____________ — —

recognize the need for HP establishment at a monitor update such as

B. 3. Note tha t P R S (M) contains an HBE which is not contained in
—

P RS (B) at B .3 . Therefore a solution is to modify the rule H i as

follows.

-
Modified rule: (R1.2) Monitor update: when a process X is about to
update a montor H, both PRS(X) and PRS(M) are updated to PRS(X) U
PRS(M).

Proc... A Monitor M Proc... 3

Figure 6a Incorrect establishment of a branch HP

In the case of Figure 6a, PRS(B) is a null set before B.3 but it
becomes ([A.1:)} at the beginnir.g of 8.3. Therefore, by the HP

management rule R2, an HP is established at the beginning of 8.3.

Since PRS(B) does not change at B.ib , no HP is established there.

The following statement can be made about this HP management
rule.

kemma: (1.1) Under rule R2 processes maintain the minimum number of

BPs required to enable every rollback to be made to the most recent
valid execution point, provided BBEs can be removed from the PRS3 as
soon as they are completely validated or discarded. (Proof in
App endix A)

144

II

-5 - - - --- -—~~ - - - -- --~~~~——--— --- - -~~-—--- - --~~~-— 5-—.-~~~~5----

An example of an HP having more than one potential recaller is HP

B.7 in Figure 6b which has two potential recal].ers, (P. 1 :] and

(A.5 :], until A. 1O. This means that HP B.7 must remain intact until

A.1 1 (even after (A.5:] is succes3fully completed at P.10).

Therefore , the number of BPs maintained by a process X is always less

than or equal to the cardinality of PRS(X). PRS(X) is of course a

subset of’ on— going or partially validated RBEs of the processes in the

system.

- Process A Monitor M Procg,s 3

6
~~~~~~~~~~~~~f4 .

Figure 6b A branch HP (B.7) having two potential recallers 
- -

3.2 ReductIon of the number of RPs

Although no redundant RPs are maintained under the HP management

rule R2 given in the preceding section, the number of BPs maintained

at one time could, in many cases, exceed the tolerable limit (imposed
- 

mainly by storage space available). For example , consider Figure 7a
which looks similar to but possesses the opposite characteristics of

Figure 2b from the HP management point of view. (Every BEE in Figure

- 
2b is completely validated as its associated validation test

succeeds.) Each time a validation test succeeds , it results only in a

partial validation because there is a potential recaller which is

active at that time. Therefore, no BPs could have been discarded by
- A .p. It process A passes validation test A .p, then all the BPs

(except 8.25) can be discarded.

145

- — _ - —, - - .: ~~-~~~~
S - -

~~~~~ 
;~

5 - - -~~--———--

- 5-5 5~~~~~ - - S - - -

Proc.. . A Monitor ~j Process 3

-

-

- 14 ~~
~~ ~~—~~~~~z.L~- 6

t~9A ~~~~~~~~~~~~~~~~~~~~~
-~~

22
~

M5.Was
£ -___

~~4_ ___ .L. _

Figure Ta A system history S

In order to avoid intolerable accumulat ion of part ial ly validated
BEEs and associated RPs in a process X , process I can safely remove

old BPs which have low probability of being used. For example, HP B.!

or B.? in Figure 7a is considered to have a comparatively low

probabI l i ty of being used because it can be used only when all the
subsequent BEEs (by both processes A and B) that have been partially

validated were actually wrong . Therefore, process B may remove B.7

and thus sacrifice the capability of rolling back to the most recent

valid execution point B.7 in the case where BEE (A.5:] is discarded.

Process B must retain base HP 8.1 after discarding HP 8.7. It RBE

(A.5:] is later completely validated , then HP 8.1 can also be

discarded . If (A.5:) is discarded , then process B can immediately

declare that BEE [8.1:] has failed and then roll back to B.1 as if it

bad made a retry from B.7 and failed the validation test of (B.1:].

This will cause process A to roll back to A.3. Therefore, process B
as well as process A can still be recovered as long as it maintains

the oldest HP, although it sacrificed the ability to make a minimum—

distance rollback every time. In other words , a process can trade

146

h11 ..
- -

- -

~~~~~



—5--- - —5-.----

increase of rollback distance (in case of less probable rollbacks) for

reduction of BPs.

Definition: (Dli) A base or branch HP r is said to be suonorted

~~~~
. a base HP q if r was established during REE (q:3. For example, RP

B.? in Figure Ta is supported by HP 8.1. Also HP A.5 in Figure 6b is

supported by RP’ A. 1 .

A two—part rule for safe reduction of RPs is now given.

Rule: CR3) “HP reduction”

(B3.1) A branch HP r can be removed if (1) its immediately preceding

HP q is a base HP and (2) r is supported by q. Once removed , r is

called a defunct branch of q. If process I is required to roll back

to defunct branch r, it will immediately notify other processes and

the monitor that RBE (q:3 has failed and then it will roll back to q.

— (R3.2) A base HP r can be removed if (1) its immediately preceding HP

q is another base RP and (2) there are no remaining BPs supported by

r. Once removed , r and its defunct branches become defunct branches

of q. When process I removes r , it notifies other processes and the

monitor that the role of HBE [r:j as a potential recaller is taken

over by RBE (q:]. If process x is required to roll back to defunct
branch r, it Will immediately communicate that RBE tq:] has failed

and then it will roll back to q.

The immediate effect of removing a branch HP is local to the

process. However , the effect of removing a base HP may propagate to

other processes. For example , suppose that process B in Figure Ta

first removed branch BPs 8.7 and 8.15 and then removed base HP B.9.

Now whenever process B is required to roll back to B.9, it has to roll

-
back to B.1. This means that process A will never roll back to A.1 1 ;

instead it will be required to roll back to A.3. In other words, the
role of (8.9:] as a potential recaller has been taken over by (3.1:].

147

‘
I

S

~~-~~~~~~~:
‘-

Therefore , if’ a base HP 1.3 has been made a defunct branch of another

base HP X.i , BEE (1.3:] must be removed from the PRSs of processes

and of the monitor . Removal of (X.3:] from the PBS of a process I

may enable discard of BPs in the process I. Figure lb shows the

result after process B removes the five BPs 3.7, 3.15, 3.9, B.23 and

B.17 in sequence. Again RFs L.3, &.21 and B.1 can be discarded when

validation test A .p succeeds.

Proc... A Proc... B

-

11
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~9_~~~~~~~

Figure 7b Result after process B removes five BPs from Ta

Implementation of the rules for HP establishment , discard, and

reduction is discussed in the next section.

3.3 Imp le mentat 1~on of the HP management rule

3.3.1 Store structures, PBS maintenance , and mailbox operations

Figure 8a depicts store structures in an abstract form. Each

process or monitor owns an independent store space. A process store

(PS) which is an extended recovery cache, consists of a main stack,

a cache st9re, and a tablejhsT containing the PBS of the process.

As in the recovery cache shown in Figure ib , a main stack provides

space for local variables of internal procedures and monitor

148

- ~~~ 
— 

-~~~~~ ~ - -
;

- -~~~—- 
—



- - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - 5 - —55—---

procedures that have been entered by a process but not exited. A

cache store , which is an extension of a cache stack (shown in Figure

- ib), contains information necessary for validation and rollback.

Although the PBS of a process as a whole is contained in the table

PRST , the PBS of each RP is recorded in a cache store (detailed in

section 3.3.2). Thus information on the PBS of a process as a whole

can also be assembled from the PBS records of RP3. Table PRST within

a process store is redundant in a sense but its use is motivated by an

efficiency consideration. Updating table PRST always accompanies

updating some of the PRS records of RP5 kept in a cache store. Note

that table PEST and PBS records of RPs are transparent to the program

designer; the processor system automatically provides and manages

these.

Monitor Store MZ(M)

~~~~~~dda~~.tore -

~‘ l  1 r: RP name
~~~~~~~~~~~~~~~~~~~~~~~~~ .: pot.at tat r.ealter name

. ~
r •.. Mailbox A I: “oc-goiag/paretafly

—

r I

validated tndLcator

- PRST(M) Mailbox B

Proc.., Store PS(A) Proc.., Store PS(B)

S Male Mate

:: : :I

C l •
~1 ~~~ Stor.) C t ~ i ~~Ster.

PRST(A) PRST(B) ‘
~~~— “

Figure 8a Process store and monitor store

A monitor store (MS) consists of a shared data store, a table
PRST, and mailboxes which are queues of messages addressed to

149

~~rli..5 — - 
~~~~~~~~~~ .~d.s ~~~~~~~


- S - 55 - —5---- 5— — 5 - .5 5 —5- 5---~~-5-.--: ~-~~—~~- - ~~~~~~~~~~ 5~~5~~~~5 - - 5~~~~

-

-

processes. Also attached to each entry (i.e., potential recaller

name) in table PRST(M) of monitor M is a queue of HP names.

Notation:

(N6) The process store of process I is denoted by P5(X) and the

monitor store of monitor M is denoted by MS (M). The mailbox of

process X within MS(M) is denoted by MB(X ,tl), where the second

argument M may be omitted if there is no ambiguity .
(NT) A queue of HP names attached to the entry for RBE (X.a:) in

table PBST(M) is denoted by BPQ(M ,(X.a:]).

Again table PRST and mailboxes in a monitor store are transparent to

the program designer. These resources are used as follows.

When a potential recaller (X.a:] of monitor H becomes a new

potential recaller of a process I, process I establishes an HP and

inserts the name of the HP into RPQ(M,(X.a:]). When RBE (X.a:] is

either completely validated or discarded , process X accesses table

PHST(M) (after obtaining exclusive possession of H, of course). For

every HP name r in RPQ(M,(X.a:]), process I puts a message in the

mailbox for the process I that established HP r. It then deletes

tI.a:] (as well as RPQ(M,[X.a:))) from table PRST(M) and releases H.

The message is either a comn lete validation notice “tX .a:]

associated with r has been completely validated” or a rollback

notice “[X.a:] has failed , so roll back to r” depending upon how EBE

(X.a:] has deceased. If RBE (X.a:] has been discarded , process X

also removes the RBEs and the branch BPs of process I that were

initiated or established later than r, from table PBST(M). (This

implies that BEEs and HP names must be assigned such that they provide

the ages of the RBEs and BPs.) Then later when process I gains the

monitor for some reason (e.g., update , reference , notification to the

monitor of the decease of’ an RBE, eto), it checks the mailbox first.

If there is a message, process I picks it up, releases the monitor ,

150

- .~~~~-

- -
- - ---.

~~~‘— - -- - --5 -----5- — 5  - _S5-__5-,__ -



and interprets the message before regaining the monitor to take the

intended action. When process I regains the monitor , it again checks

the mai lbox f i r s t .  Therefore , monitor acaut si t ion  and mail che ck
‘I

far m a sinzle inseparable operation.

— Note that there is a variable time gap between the decease of an

BEE and the receipt of its notice by other processes because each

process checks a mailbox at its own pace rather than being interrupted

when mail is deposited. This means that a process could keep a
- 

defunct EBE in its table PRST for some time , but this cost seems well

justified , considering the complexity of an entirely interrupt—driven

implementation.

However , a situation may arise where a process X never accesses a

monitor M a f te r  a rollback notice is put in the mailbox MB (X , M ) .
Therefore , it Is not possible to completely do away with an interrupt.

— A process interrupt used to inform a process of the existence of

messages In a mailbox can be implemented in var ious ways.  In this

paper , it is simply assumed that a system contains a programmer—

- 
transparent “watahdo”~~ process which perlo 4ically examines all the

mailboxes and can force any process In the system to check its mailbox

if the process has one or more messages that have been in the mailbox

for a time exceeding the preset limit.

When a process Z passes the validation test of an RBE (Z.a:], it

needs to determine whether RBE (Z..a:] has been partially validated or

completely validated. To make this decision , process Z in general

needs to check the status of every member of PR’((Z.a:]) (refer to

definition nb ). Therefore, a process must know not only the PBS but

also the PR’ of its RBE that consists of both the PBS and the IPRS

- (refer to definitions D6 and D8). As will be shown in section 3.3.2,

the IPRS of each BEE is recorded in the cache store. Whereas a

process Z learns of its new potential recallers without any delay and

151 

-S -~~~~ ---~~~~~ S - -—~~~~~~~ — - ~~~~
S
- -

~~~
—— - -

~~~
-—S 

-
S

-’ — 
-
~~~~~~~~~


“— ~~

- - - - .5-,- 5—---- - .5

I ts table PRST(Z) as well as Its record of the PBS of each HP is

always up—to—date , the process Z learns of new indirect potential

- recallers of its EBE (Z.a:] with some delay . This is because process

Z is informed of new indirect potential recallers through the notices

sent by other processes. To be more specific , when BEE (Y.c:], a

potential recaller of RBE (Z.a:], has been partially validated ,

process I identifies all the members of PR’((T.c:3) known to itself by

that time and attaches the (possibly incomplete) information on

PR’((I.c:]) to a partial validation notice (i.e., a notice of the

success of validation test Y.d) sent to process Z. Upon receiving the

notice , process Z updates not only its record of the status of (I c:]

(kept in both table PRST(Z) and its PBS record of an HP) but also its

record of IPRS((Z.a:]) kept in its cache store. Since Information on

PB’([Z.a:3) is not collected at one time, a question may arise as to

whether there is danger that process Z will Incorrectly judge its RBE

to have been completely validated while there Is an on—going RBE of

another process which is actually a member of PR’([Z.a:]) but not yet

known to process Z. The following lemma settles this question with a

proof that a process always judges the validation status of its RBEs

correctly.

Lemma: (1.2) The members of PR’((Z.a:]) known to process Z at a

particular time cannot all have the “partially validated” status until

all the members of PR’((Z.a:]) become known to process Z with the

“partially validated” status. (Proof in Appendix A)

In summary, a process accesses a monitor store not only for an

update of or a reference to the shared data store but also for

updating table PRST(M) and putting messages in mailboxes. (The latter

accesses are transparent to the program designer.) A prerequisite for
taking any of these actions is that the process obtain exclusive

possession of’ the monitor and ensure that its mailbox Is empty. If
the mailbox is not empty , the process must pick up all the messages

152

-~~ \ _ ~

-_—
~

--
~~
-——.--- — - ~~

~~~~~~~~~~~
-- --~~~~~ -—-5~~~~~~~ -- S - ~~~~~~~~~-—- -- 5-- ____

and immediately release the monitor. A complete procedure (P1) for

message interpretation which follows the release of the monitor is

- 

- 
described in Appendix B.

5 
3.3.2 Cache store and recovery point (HP) management -

The structure of a cache store (which is a part of a process

store) is a tree of cache segments as depicted in Figure 8b. Figure

8b actually corresponds to process A in Figure 8c. A cache segment

roughly corresponds to a region of a cache stack in Figure lb. That

is, establishment of an B? r means creation of a cache segment CS(r)

while discard of HP r means merging of CS(r) into its Immediate

predecessor cache segment. There exists a one—to—one corresnondence

between an HP and a cache segment; in implementation , both the HP and

the cache segment may be referred to by the same identifier.

(Furthermore, an BEE may be represented by the name of the base HP

— established at its beginning and thus each potential recaller of a

process or a monitor may also be referred to by a base HP name in

implementation.) The terms “base cache segments” and “branch cache

segments” carry meanings analogous to base ard branch BPs. There is a

table, called HP directorv,~ in which an entry consists of an HP

name, the corresponding instruction address, and a pointer to the

associated cache segment. -

The tree structure represents the sunnort relation among BPs .

For example , cache segment CS(A.6) in Figure 8b is linked to CS(A.1)

because HP A.6 Is supported by HP &.l. This tree structure

facilitates safe reduction of BPs by the rule R3 if the number of BPs

exceeds a limit determined by storage space available. In addition ,

since this tree provides information on the relative ages of the

— existing Bps , it facilitates locating the immediate predecesaor of

every cache segment and thereby facilitates merging of cache segments.

For example , if HP A.6 is to be discarded in Figure Sb , the immediate

153

-~~~~~ c~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5 5 -  - - = - - - - - -.S~~~~~~ -S - - - -

Procels A

CS(A.4) CS(A.8)

RP Dtr.cto~ v 3 hW

.‘ CS(A.Z) CS(A.3) CS(A.4) CS(A.7) ~ , ~~ -4

: c
A. 2 __ CS(A. 10)

- 

A. 1 

ta.~~~~~ti~~~~~~ poLC~ter 

(::) cS(A. 1) 
~~~ ~~~~~~~~~ 

-

~~m. ~ddr.,a to &
..gm.et 10

~~
— -

~~

Sb br&nc~ cach.• - (Sc)

Figure Sb A cache store
-

Figure 8c A process owning the cache store in 8b

- predecessor of CS(A.6) is found to be CS(A.L~) from the tree and thus

merging of CS(A.6) into CS(A.Z$) takes place.

More detail on a cache segment is given in Figure Sd. A cache

segment CS(r) contains a tree linkage , a base/branch indicator , either

PRS(r) if B? r is a branch RP or IPRS((r:3) if HP r is a base HP, and

variable assignment records (already shown in Figure Ib). It also

contains a “monitor snanshot” that will be described in the next

section. Figure Sd also shows that a special record which is a

pointer to a region which has been separated out of the main stack ,

may be contained in the assignment records area. To illustrate such a

situation , note that cache segment CS(A.1~) is used from ~~ to A.6 (in

Figure Sc). A region of the main stack that corresponds to (:A.51 is
discarded at A.5. This region must be saved in Cs(A.’4) because

rollback to A .L~ includes restoration of the region in the main stack

with the values that existed at A.~4. This example also points out

that local variables of RBE (:A.5] must be treated as non—local

154

-
5- .

- - - -~~~~~~~- - - - - ~~~~~~~~~-— -- - --—~~
5-S-

~~~
-—- -- - -- --  S

,1,
_
., ~

variables from A.L$ to A.5. Therefore , local variables of RBE (:A.5]

can be restored to the values at A .L~ by relinking the region saved (at

A.5) in CS (A.U into the main stack and then undoing the assignments

recorded (between A.~ê and A.5) in CS(A.1).

-

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Va r iable
Assignm ent

— R ecord s

1PRS((r]~ / PRS(r)
p

ba.. /b ranc h

—
tr ee I1oi~aga Monitor Snapshot

Cache Segment CS(r)

Figure Sd A cache segment

3.~& Minimal number of monitor snapshots

We now turn to the problem of savin, and restoring monitor

states. See Figure 9a. When process A fails validation test A.p and

rolls back to A l , process B rolls back to 8)4. In addition , monitor

H must be restored to the state that existed immediately before the

first update A .3 by the failed EBE (A.l:]. In order to prepare for

this monitor restoration , the responsible process A must record the

original state of H before it modifies H at A.3. Unlike the main

stack of a process which is recorded incrementally by making

assignment records , the recording of a monitor state is performed by

creating a snapsho t of the entire shared data store and keeping the

snapshot In a cache segment of a saving process.

Notation: (NB) A wavy line crossing a shaded column which

represents the state history of a monitor M , represents creating a

155

— I

55 ~~—- - - ——~~~--~~~- -~~ ~~~~~~~~~
-5

- 55 _- 5 5 5 _ -~~~~~~ —-
-

~~~~
. - -  -

snapshot of M by a process.

- Proc... A Monitor M Proc... B

5- 

p_ _

5

_
~~~~~~~~~~~~~~~

—e.J

Figure 9a Creation of a monitor snapshot (at A.3)

On the other hand , there is no need for a oroces~ to take a

mnanshot of a monitor at the be~ inniri~ of a reference to the monitor.

To illustrate this , if process B in Figure 9a failed validation test
- 8.6 and rolled back to 8.2 to make a retry , process A would not be

aware of the rollback of B. Figure 9b shows such a system history .

As shown , process B makes a monitor reference (B.~~’) again during the

retry. If’ monitor operation A .5 were a monitor reference , then the

monitor state referenced at B.k’ (during the retry) would be identical

to the state referenced at 8)4 (during the previous unsuccessful try).

In such case, creating a snapshot of the monItor at the beginning of
- - monitor reference B.II was clearly unnecessary . If A .5 is a monitor

update as shown, then either the information deposited at A.5 is not

needed for reference 8)4’ (or 8)4) or reference 8.14 was executed

incorrectly. This is because of the asynchroni~m among processes in a

system of cooperating parallel processes. Each process must be

designed to watt in a condition queue if the monitor does not contain
the desired information . If process B should have waited from A.14
until process A supplied the desired information at A.5, then the

S monitor will contain all the desired information at reference 8.14’

during the retry . On the other hand, if the monitor contained all the

156

-
1.

- 55

_ _ _ _ _ _ _ _ _ - ____ _ _ -S- — ----5 —--~~~~~~~~

__
~~~~~~~~

desired information at B.14, then at monitor update A.5 process A would

not know whether process B has already made a reference B.14 and thus

would not destroy the information desired at B.14 (unless the process A

is faulty). In addition , the information that process A supplies at

A.5 will not be needed at B.14’. Thus the monitor will again contain

— all the desired information at B.14’. Therefore , a monitor reference

never accompanies a monitor state re~ordtng .

Process A Monitor M Process B

dtaca rd.d

Figure 9b Monitor reference (B.14) not accompanying a monitor recording

Note in Figure 9a that monitor update A.5 is not accompanied by a

monitor recording . This is because the most recently established base

HP is A.l and process A has already made a monitor update along with a

- snapshot before A.5. In other words , any spontaneous rollback of

process A occurring after A.5 will be made to base RP A.) (or to an

earlier execution point) and thus will involve restoration of the

monitor - 
to the state that existed before the first update A .3 by RBE

(A.i:] which precedes £5. The rule for recording monitor states is

stated below .

55 

Rule: (R14) “~~nItor recording rule”: A snapshot of a monitor

must be taken when (and only when) an RBE is about to become a

potential recaller of the monitor (at a monitor update). Such an

— 157

- - 5 --~~~~~~~~~~ —S  - 55 _ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

55 —-— - —~~~~~~~~~ - —
—-

--.55- — _ 55___55 S.-—. — — — —S

update Is called an R— chaining uodate.

-

In systems using one monitor , every H—chaining update is the

first update made by a process X during its EBE (X.a:]; in systems

using multiple monitors , an update which is not the first to be made
- -‘

- by a process during its RBE can be an H—chaining update as will be

shown in section 1$~

Once an RBE e is completely validated , the ronitor snapshots

taken at monitor updates during e may be discarded unless there is

another on—going or partially validated RBE f that encloses e and had

not made a monitor update before e began. For example , see Figure 9c.

- When validation test A.7 succeeds and thus RBE [A.k:] is completely

validated , the monitor snapshot taken at A .6 - is discarded because the

enclosing RBE tA .1:) already made a monitor update at A.3. On the

other hand , the monitor snapshot taken at B.12 can not be discarded
- when validation test B.13 succeeds , because the enclosing RBE (B.9:]

had not made a monitor update before (8.11:] began . That is, merging

of cache segment CS(B.11) into C3(B.9) should involve moving the

snapshot taken at B.12 into CS(B.-9).

3.5 HandlIng of wait and signal instructions

- Assumption A.14 is removed now. A rnonitor procedure may involve

one or more executions of a wait instruction and at most one execution

of a signal instruction (at the end). Condition queues are now a

legitimate part of the shared data store; they must be included In a

snapshot and in a monitor restoration. Three aspects of executing

such a procedure which are not present when executing a monitor

procedure without any wait or signal instructions are: (1) treating

segments of a monitor procedure execution as atomic (uninterruptible)

monitor operations (with respect to both process interaction and H—

chaining); (2) recalling an active process into a condition queue; (3)

158

55 - -‘ 55 —-~~~~~ ~~~~~ ~~~~~~~ ~~~~~~~~
-. 5555

~~
-
~~

-- S~

—-- -S - - -- - --55 --- -----5---— - — ----S.-—— —- --.5 -5-- — .-- — — -S 5~ _-555- __•-S-S-S55-S•_55 - S —

process il Mon itor ~.t process B

‘4

2

- S i 3 p.
4 A

— ‘4

6

7 -

8

12

A 13

S Figure 9c A system history

notifying a waiting process of a rollback .

First , when a process executes a monitor procedure that has wait

and signal instructions , it generally goes through an alternating

sequence of monitor—possessing periods and waiting periods during

which it does not possess the monitor. Only the process activity
during each of those monitor—possessing periods is uninterruptible (by

other processes) and thus is an a tonte monitor opera t ion. As before ,

an atomic monitor operation is classified as a reference operation , an

update operation , or a reference—update operation. Since it is

generally impossible to predetermine a sequence of atomic monitor

operations involved in execution of such a monitor procedure , a

practical approach is to classify the monitor procedure as a whole and
- then pass that classification to all of its atomic monitor operations

-

as they are dynamically defined. Note that execution of a wait or

signal instruction should be treated as an update action since it

changes the content of a condition queue that is a part of the shared

data store. Analogously , when a waiting process is awakened , the

awaking action is treated as a reference action since the awakened

159

- 0

—
~- ,~-

-~~~

-- -- — —
~~~~~~~~~

process received information (i.e., wakening signal) from the

signalling process. In addition , an awakened process checks its

mailbox first. Thus the rule that obtaining monitor possession and

checking a mailbox form an inseparable operation still holds .

tiatatton:

(N9 ) A waiting period of a process Is represented by a discontinuity

in the vertical line that represents the progress of the process.

(Nb ) An undirected horizontal line represents a çnitor reference~-

uodate operation.

For example , process A in Figure bOa executes a monitor procedure

(involving wait instructions) from A .3 to A.8. The monitor procedure

execution consists of three atomic monitor reference—update operations

(A.3, A.6, and A.8). Process A is in a condition queue after A .3

until the beginning of A.6 (at which time it is awakened by the signal

generated by B at the end of’ 3.5), and again after A .6 until the

beginning of’ A.8. Note that process A establishes an HP at (the

beginning of) A.6. Actually a process may establish multiple RPs

during a single monitor procedure execution if the execution involves

multiple atomic monitor operations.

Second , restoration of the monitor , which is required when a

process rolls back to an RP, may include recalling some processes into

the condition queues in which the processes slept previously. For

example , assume that process B in Figure bOa fails validation test 3.9

and needs to roll back to 2.11. Process B is then responsible for

restoring the monitor to the state that was recorded at monitor

reference—update B.5, which must include restoration of the condition

queue that contained process A. Obviously process B can not restore
the queue by itself but it can only request (by mail) process A to

roll back to HP A.6 and retur n into the condition queue. When process
A has returned into the queue , process B must detect that the monitor

160

~
5 5_ S - - - -

-5—— -



——-- 55 ---- 55 --5----—- - - - -- - — - — - - —- - -
~~~~~

- - .- - -S-- - - -—-—— -—--— - - - -
~~

— - - 5 - —-5-
_ _ _ _

~~

process A Moni t o r M process B

:f ~~

~~~~W 4

6-~~~~

8~~ -

b r

Figure bOa A system history containing waiting periods of a process

store has been completely restored and then roll back to B.11.

To implement this scheme , a monitor store incorporates the

following resources transparent to the program designer : a register

DOOR , two single-position condition queues MRP and RCPH , and two

multiple—position condition queues UNLOCK and PRTR. (Here names MRP ,

RCPR , and PRTH were derived from “monitor—restoring process”,

“recalled process” , and “processes to roll back out of monitor
— 

procedures”, respectively.) When DOOR is in a “locked” state, the

shared data store can not be accessed by any process except the

monitor—restoring orocess that has looked the store. A process

- which has obtained monitor possession checks its mailbo~ but if it

finds the shared data store locked when it accesses the store to

perform an operation on it , then th. process will execute

“wait (UNLOCK)”. Therefore, queue UNLOCK keeps a set of processes that

are waiting for the shared data store to be unlocked. Queue MRP is a

single—position queue in which the monitor-restoring process that has

already restored the shared data store except condition queues and

locked the shared data store may be waiting. A process which has

received a return request (from the monitor—restoring process) returns

into special queue RCPR and then the monitor—restoring process, solely

— 161

~~~ -:- ~~~~~ 

- -
-~

.

55

.

S. -J,~
-
—

~ -5--—

- - _ _ _ _ _ _ _ _ _ _ _ _ _
-

capable of accessing the locked shared data store including condition

queues , transfers the recalled process from RCPR to the destination

condition queue w. (The name of the queue w is obtained from the

- :
monitor snapshot.)

For example , if process B in Figure lOa becomes responsible for

restoring the monitor to the state that existed immediately before

B.5, then It performs the following in sequence:

(1) restores the shared data store except for the condition queues by

using the snapshot taken at 8.5;
5 - (2) learns, by comparing the snapshot with - the current state of

condition queues, that process A must be returned Into a condition

queue;

(3) sets DOOR to “locked” , thereby locking the shared data store;
(1 1) puts a recall notice “roll back to RP r and return to special

condition queue HCPR” into mailbox MB(A);

(5) executes “wait(MRP)” (thereby releasing the monitor).

Therefore, a process which has received a recall notice performs

the following in sequence:

(1) rolls back to an HP;

(2) obtains the monitor possession;

(3) executes a special instruction “signal(MRP)—and—wait(RCPR)” which

causes the monitor—restoring process to be awakened from MRP and the
5 recalled process Itself to enter RCPR.

The awakened monitor—restoring process performs the following in

sequence

(1) if RCPR Is not empty , transfers the recalled process in RCPR into

the destination condition queue w, where w Is identified from the
monitor snapshot;

(2) checks if the condition queues have been completely restored (by

comparing the monitor snapshot with the current state of the queues);

162

55- ~~~~~~~~~~~~~~~~~~~~~~~~~ — - T - -—~~~~~~~~~~;

-_ :T~~
--- -- - —

~
-- -----—-—-- - ---- - -- ----—-- --- —-----55 --S ~~~~~~~~~~~~ ~~~

::—T
~

5 (2 . 1) it’ so, unlocks the shared data store by changing DOOR into

an “open” state, executes “signal (UNLOCK)” (thereby releasing the

monitor), and rolls back to an B? to make a retry ;

(2.2) otherwise , executes “wait(MRP)”.

- When a process I s ready to exit from a monitor procedure while

the shared data store is not locked , the process examines programmer—

transparent queue UNLOCK and if it is not empty , executes

“signal (UNLOCK)” or else simply exits.

Now suppose a process X decides to restore a monitor to a

previous state first and the-n to roll back to a base RP X.q. Process

—
X obtains the monitor possession and checks its mailbox as usual. If

there is a recall notice from process T asking X to roll back to a

branch RP X.r and return into special queue RCPR , then the shared data

store has already been locked by process Y and thus process X compares

- base RP X.q with branch HP X .r . If branch RP X.r was established

before base HP X.q then process I will try to roll back to HP X.r and

enter into RCPR. Otherwise , process X must reestablish the shared

data store to a state preceding the state which Y has been trying to
- reestablish. Process y is now asked to roll back to the RP

established when it became H—chained to HP X.q. Therefore, after

learning that base HP X.q was established before branch HP X.r ,

-
process X performs the following in sequence:

(1) obtains the monitor possession;

- (2) leaves rollback notices into appropriate mailboxes including that

of process Y;
— (3) determines whether or not there is a process that X has to recall

into RCPR ;

(3.1) if there is, executes “signal.(MRP)” so that process Y may
-

be awakened to receive the rollback notice while process X rolls back

to an HP to make a retry ;

(3.2) if there is not , executes a special instruction

— 163

_ _ _ _ _ _

“replace(MRP)” which causez the process Y in queue M~2 to be replaced

by the process X executIng the instruction. As a consequence , process
- I takes possession of the monitor . Once the process I in MEP is

- - : awakened , it will read the rollback notice .

Third , restoration of a monitor may include driving processes out

of some condition queues. For example , assume that process B in

Figure lOb has failed validation test B.p. At this point process A is

sleeping in a condition queue and thus will not check its mailbox

unless it is awakened. Process B should therefore waken process A so

that process A may read the rollback notice. The programmer-

transparent multiple—position queue PRTR in a monitor store is used to

buffer the processes that have been waiting in condition queues and

need to be awakened to read rollback notices. When an RBE e of

process X fails, process X accesses monitor store MS (M) and examines

RPQ(M,e). Then process X performs the rollowing in sequence :

(1) puts rollback notices in the mailboxes of all the processes that

established the BPs contained in the HP queue .

(2) moves each of those processes that established BPs contained in

the HP queue and have been sleeping in condition queues, into special

queue PHTR by executing a special instruction “move—to—PRTR (condition—

queue—name)” ;

(3) locks the shared data store;
(II) executes a special instruction “signal (PRTR)—and—wait(MRP)” which

causes a process I at the front of queue PRTR to be awakened while

process X enters into queue ME?. The awakened process I then reads

the rollback notice.

The actions taken by a process while releasing a monitor without -

executing a signal instruction are summarized as follows.

Procedure: (P1) “Monitor exit”

(case 1) DOOR “open”:

164

- -- . _ _ ~___ 5_ ____.._,____.__ __________ _

- - ~~ 5 5 - --

‘

-
proce ss A Mon~~or M process B

H

-

_

Figure lOb A process (A) that needs to be driven out of a queue

- it UNLOCK is empty
then simply release the monitor ;

else execute “signal (UNLOCKP’;
- (case 2) DOOR = “locked” :
-

it PRTR is empty
then execute “signal (MRP)”

eLse execute “signal (PRTR)” ;

-
End—Procedure

Clearly the message interpretation procedure Pb (in Appendix B) must

now be extended to handle the situations discussed in this section.

- The extended version will not be detailed in this paper.

3.6 Indirect recovery

We now consider the case in which a process that has produced

erroneous information for other processes cannot have an opportunity

to execute its own validation test. The system would crash unless

- additional features have been incorporated . In Figure 11 , assume

• that process A stores erroneous information into the monitor store at

A.3. Process B takes the erroneous information at B.1I and

subsequently fails the validation test at B.p. A retry by process B
-

might fail again at B.p since the erroneous information generated at

A..3 is still in the monitor and is referenced again . Meanwhile

165

L. - -_ _ _ _ _ _ _ _ _ _ _
-

~~~~~~~

-

~~~~~~


process A is not aware of the failure(s) of process B and is waiting

inside a condition queue for a wakening signal that has to be supplied -
by process B (after B.p) but has not been produced because process B

has not passed B.p. In a sense , this is a deadlock situation .

P r ocess A Monit or M Proces s B

Figure 11 A process (A) entering a condition queue after

depositing bad information

If process B does not maintain any HP earlier than 8.1, then

process B will, have to be abandoned after the unsuccessful retries

with all the available alternates and the system will crash. In this

case , the system crashes despite the possibility that validation test

of RHE (A.2:] may be able to detect the error and a retry by process

A from A.2 may circumvent the error. That is, the resources in the

system are not fully utilized.

There are two possible solutions to this problem . One is to make

the programmer—transparent watchdog process (introduced in section

3.3.1) also responsible for periodically examining the status of every

process and , upon detection of a process that has spent an excessive

amount of time in a condition queue , forcing the process to roll back

to the Imnediately preceding base HP and to begin a retry. A process

X that has exhausted all the alternates waits (at the point of the

last failure) until another process I that interacted with X and has

slept long, is forced by the watchdog process to roll back. Process I

166

L 55 _________
_ _ _ ____________________ 2~~~~~~~~~~~a~~~ Xfl

—.5-- 5-
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 5 - - - - —.-- ---.-

~~~~

-— ---- --- -

sends out the notice of this rollback and , upon (being awakened by the

watchdog process and) receiving the notice , process X initiates

S another retry. The other solution Is to allow S—propagation as a last -

resort when process X has exhausted all the alternates and is about to

be abandoned. That is, process X requests the processes that have

produced information which was referenced by X , to roll back to their

earlier base BPs , and thereafter process X makes a retry. This

exception (i.e., S—propagation) can be justified since the system

would have crashed anyway. However , the first approach of relying

—
upon the watchdog process may allow faster recovery in many cases.

Either way , the error is indirectly detected and recovered.

Suppose now that process B in Figure 11 maintains an RP B.O

preceding B.1 and its rollback to B.O entails the rollback of process

A to RP A.a preceding A.2 (through B-propagation). Assume , as before ,

that process A stores erroneous information at A.3. As process B

repeatedly fails at 8.p and rolls back to B.O (once every n failures

at B.p, where n denotes the number of alternates within the RB

originally entered at B. 1), p rocess A will repeatedly roll back to A.a

and reenter the RB originally entered at A.2. Again this looping

situation cannot be circumvented unless process A executes a new

alternate , starting at A.2. Therefore , it is desirable for a process

to try a new alternate at some time if it is repeatedly forced to

reenter the same RB.

167

¶

- — - —55 -—
~~~~~~~~~~~~~ - - -- ~~~~~~~~~—.- ~~~~ -- S- 



~~. Fault—tolerant monitors and extended recovery caches in systems

containing multiple monitors

This section discusses the problems introduced by the systems

containing more than one monitor and solutions to those problems.

Systems without nested monitors are considered in section ILl ann then

systems with nested monitors are considered in section k.2.

~.l Systems containing multiple non—nested monitors

If a process can access multiple monitors , then the process must

in general maintain snapshots of multiple monitors and its rollback

may involve restoration of multiple monitors. Process B in Figure 12a

is such a process. An RBE (B.a:] of process B may become a potential

recaller of both Ml and M2 and through them , a potential recaller of A

and C. The extension of both a fault—tolerant monitor and an extended
- 

recovery cache to handle this is obvious and thus is not elaborated.

Figure 12a A system of three processes and two non—nested monitors

A less obvious problem is that of handling a rollback chain

formed through multiple monitors. For example, a rollback chain may

be established in Figure 12b which connects RBE (A.1:] of process A

to process C (at C.5) through three other system components: monitor

Ml (at A.2), process B (at B.3), and monitor M2 (at B.1I). In that

case, rollback of proces8 A to HP A.1 will require rollback of process

B to B? B.3 whi ch will in turn require rollback of process C to HP

168

55— -~~~~~~~~~~~~~~~~



-

C.5. A natural path through which a rollback notice or validation

notice is sent is the rollback chain itself’. Therefore , when process

• B is about to excute an update at B.14 that  H—chains  RBE (A . 1 : ]  to P42 ,

it must detect that the monitor (Ml) through which it became B—chained

to RBE (A.l:] is different from the monitor (M2) which it currently

f t—chains  the RBE to , and must  record this  fact  in cache segment

CS(B.3). Process B will then be responsible for relaying a rollback

notice or validation notice (related to EA.l: )) to the processes that

may become H—chained to (A.1:] through M2. If process B is asked to

roll back to B.3, it can perform the following in sequence :

(1) finds from CS(B.3) the record of B—chaining (A.l:) to P42;

(2)  obtains possession of P42 and restores the shared data store;

(3) finds HP C.5 from RPQ(M2,(A.1:]) and puts a rollback notice in the 
S

mailbox of process C; -

(ii ) releases P42 and rolls back to B.3.

Figure 12b A rollback chain connecting five system components

A notice of the valIdation of (A.l:] can be relayed in an

analogous manner. In short, if an RBE (X.a:] of a process X has

become a potential reach er of a monitor P4 through ar update by

another process I, then process I serves as a messenger or acting

— agent of RBE EX a:].

169

LIU L 55 
- — 

- 

—



S ~~~~~~~~~~~~~~~~~

In systems using multiple monitors , the function of a watchdog

process needs to be extended further. To see the need , consider a

process X waiting in a queue within monitor store MS(M2) while another

- : process I puts a recall notice in the mailbox of process X within

another monitor store MS (M1) and enters queue MRP . If process X is

waiting for a wakening signal from process I, then both processes are

deadlocked until the special watchdog process intervenes. The

watchdog process now has to waken process X from the condition queue.

and then force it to release P42 and check the mailbox MB (X ,M1 ).

~I.2 Systems containing nested monitors

If a monitor procedure p includes calls to other (nested) monitor

procedures, then execution of p is treated as a compound monitor

operation which may be broken into several atomic operations between

which BPs may be established.

Notation: (Nb ) A continuous execution of a monitor procedure

including cafls to nested monitor procedures is represented by a

vertically shaded horizontal column.

For example, consider the system in Figure 13a of which a segment

of execution history is depicted in Figure l3b. Process A executes a

monitor procedure that belongs to Ml and involves both a reference to

and an update of Ml , from 1.3 to 1.7. Similarly , process C executes a

compound monitor operation from C.2 to C.8. On the other hand , the

monitor operation C.9 is an atomic monitor operation since the monitor

procedure (of P42) executed does not involve either a call to M3 nor an

execution of wait or signal instruction. For the same reason , every

execution of’ a procedure of M3 shown in the figure is an atomic

monitor operation. RBE (1.1:] becomes a potential reed ier of M3 at

A.~~, and the snapshot of 143 taken at this time is appended to the

snapshot of Ml taken at A.3. Process C then becomes ft—chained to HP

170

- -—

5 5 —  55



A.l at C.5 and thus an HP is established. This HP establishment

involves checkpointing of’ the state of’ both process store PS(c) and

monitor store MS(M2) (i.e., creation of a cache segment in PS(C) and

taking a snapshot of MS(M2)).

Figure 13a A system containing a nested monitor M3

?~
i j ,  

4

~!I IT1E~Figure 13b A history of the system in l3a

Given that taking a snapshot of a nested monitor and
— establishment of an HP are performed as mentioned above , another area

that requires an extension is communication of rollback notices or
validation notices among processes . A message communication scheme is
given below.

171

-~~~~~~~~ — 
~~~~~

------ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~
- _~~~~~~~~~~~~~L_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

- S

First , when a process in possession of several nested monitors

executes wait (q) to enter a condition queue q in the last acquired

monitor Mn , it releases only Mn but it maintains the possession of

other earlier acquired monitors while sleeping in q. Thus a sleeping

process may be in possession of some monitors. In order to allow the

mail kept in the mailboxes within such a monitor (possessed by a

sleeping process) to reach the receiving processes, the mailboxes must

be accessible to any process. That is, a sleeping process does not

have complete exclusive possession of such a monitor but only keeps

the shared data store of the monitor locked; another process may

acquire the monitor just to check a mailbox , find the shared data

store locked , and thus enter the queue UNLOCK (introduced in section

3.5).

Second , a nested monitor maintains mailboxes only for system

components (i.e., processes or monitors) that have direct access

capabilities to the monitor. For example, monitor P43 in Figure 13a

maintains mailboxes only for two monitors Ml and M2.

Third , mail addressed to a process which is B—chained to a

monitor P4 is forwarded through the ft—chain. For example , if process C

in Figure 13a , which has become a potential recaller of P43 through M2,

needs to send a message to process B which is H—chained to P43 through

• Ml , then it can put the mail addressed to process B in the mailbox

within P43 maintained for Ml . In a sense, Ml is viewed as a cover

of process A or B when either proc ess accesses M3 through MI. This

mail can reach process B in two ways. First, if process B accesses

monitor P43 through MI before process A , it cheeks the mailbox for its

cover Ml. Since the mailbox is not empty , process B picks up the

mail , releases P43, and then opens the mail. Process B learns that the
mail is addressed to itself and thus releases Ml before starting the

interpretation of the mail. In the other case where process A

accesses P43 through Ml before process B, it takes the mail (addressed

172

— - —5- ~ - —~~~~~~~~~~~ S~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~

to B) from the mailbox within P43 maintained for its cover Ml , releases

P43, and puts the mail into the mailbox MB(B ,Ml). Process A reaccesses

P43 and the mail will then be read later when process B accesses Ml.

Therefore , both processes A and B are responsible for checking the

mailbox within P43 maintained for their common cover Ml.

The above scheme implies: when a process X in an RBE that is a

potential recahler of a nested monitor P4 decides to send a rollback or

validation notice to another process I that is H—chained to H, process

I must know the H—chain leading to I. Process X must use the B—chain

as the destination address of the mail. To enable this, when a

process becomes H—chained to a nested monitor P4 and establishes a

branch B?, the name of the HP is prefixed by the name of the cover and

then the prefixed HP name is inserted into the HP queue attached to

table PRST(M). For example , when process C in Figure 13b becomes H—

chained to M3 at C.5, the prefixed RP name M2$C.5 is inserted into

RPQ(M3,(A.l:]). If a monitor P4 is a multi—level nested monitor , then

the HP name will be prefixed by the names of all the monitors on the

fl—chain being established.

173

55 ~—~—- t_-z--5-~~

5. Shared resources not contained within a monitor

5

- Enclosing some shared resources within a monitor may lead to an

inefficient system because of the rule that a monitor may have no more

than one of its procedures in execution at a time. Each use of such a

resource by a process generally takes a large amount of time and thus

there is strong motivation for allowing several processes to use the

resource simultaneously as long as there is no danger. For example ,

it is sometimes safe to allow several processes to simultaneously

reference the same sizable record (without modification). An

efficient design would then provide a monitor in whiàh processes , one

at a time , obtain or return only access rights to a shared resource

while the shared resource itself is located outside the monitor and

may be used by several processes possessing access rights (02].

Figure lka depicts such a design and Figure 11th shows a typical

structure of a program using a shared resource associated with but

located outside a monitor. Program structuring in the form shown in.

Figure 11th is not a requirement , however.

SR
A ,3: proco~ a

M mo~ Lt or

A

M
SR: shared resource

Figure l1~a A shared resource SR associated with but located

outside monitor K

174

L - - --~~~~~~~~~~~~~~~~~~~~ —~~~ ~~~~~~~~~~~~~~~~~~

- -
.
~~~~~~~~

~-



- -- 5555-,

Access right acquisittOc% 1 a ino iitor proceduts L~ M

— Use of shared resource SR

[
Access right release a mooleor

Figure 114 b Typical program structur~ for using SR in 11$a 
- - -

We assume that the portions (e.g., a statement or a block) of a

program that uses a shared resource outside a monitor can be

recognized through automated analysis of the program text; this is a

prerequisite for applying the programmer-transparent coordination

approach discussed so far to systems ~ontaining such a shared

resource . A syntactic unit recognized as one using such a shared

resource may be a statement, a block of statements , or the entire

— portion between the monitor procedure call for obtaining an access

right and the other for returning the access right (depicted in Figure

lieb). Execution of such a syntactic unit is treated as a unit

operation on a shared resource and may involve reference , update, or

both; it is analogous to the execution of a monitor procedure. Once a

process obtains an access right to a shared resource SB , it may

execute many unit operations on SR (each involving reference , update ,

or both) before returning -the acces8 right. Recovery of processes

sharing a resource SR outside a monitor can be facilitated again by

maintaining table PRST(SR) and operating mailboxes for the processes

that may access SE , in a manner similar to that of managing table PRST

and mailboxes within a monitor store. The only problem is the

possibility of conflicts among several processes that possess access

rights to SR and try to update table PRST(SR) or mailbox

simultaneously .

175 ‘
~~~~‘55 

_ _ _ _

— 55 - - - — -5--- - — — - 5 5- - - - — - — ~~~~~~~~~ 55 - - -- —

— — _____~

___ __ _5 _ ~~

A simple and natural solution is to enclose table PRST(SR)

(together with the attached HP queues) , mailboxes , and their

- management procedures within a monitor , called recovery monitor (RM1

and denoted by RM(SR). This recovery monitor , unl ike the monitor M in

Figure l~lb , is transparent to the program designer and can be provided

by the processor system (in cooperation with a parallel program
S

compiler). Before performing a unit operation on the resource SE , a

process always accesses r ecove ry mo ni tor R M (S R) to exam ine ta b le
PRST(SR). Acquisition of’ recovery monitor RM(SR) and the subsequent

- mail check form a single inseparable operation as before. Although

multiple processes may possess access rights to SR simultaneously,

they can become potential recahlers of’ SR or become R—chained to ROEs

through SR one at a time only.

If the number of resources shared outside a monitor is large ,

then the number of recovery monitors provided will also be large. If

-
a smaller number of recovery monitors is desired , then a recovery

monitor can be provided for and associated with a group of shared

resources as if the grou p of resources were a single large shared

resource; the price paid is the increased frequency of process

- synchronization due to increased access to the same recovery monitor.

-

176

~~

- -

~~~~~~~~~~

-

~~~~~~~~~

- — -

~~~~~~~~~~~

-.



-. ~_55~s__55~ 55S~ ~~~~~~~~~~ WW -- ~~~ 5 - 5 ‘~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - S -

6. Summary

Programmer—transparent coordination of process rollbacks in

systems of interacting fault—tolerant processes is a goal pursued in

this paper. The approach explored is based on the strategy of
- 

~~ , prohibiting rollback propagation due to suspicion , in keeping with the

spirit of designing processes to harmoniously cooperate with one

another. An important requirement that any practical scheme for

automated coordination must meet is the maintenance of a manageable

number of’ RPs at all times. Two useful rules were formulated to meet

the requirement: maintenance of minimal HP sets based en PRSz, and

safe discard of useful BPs under practical constraints such as limited

- 
memory space . A monitor mechanization , termed fault—tolerant monitor ,

and an extension of recovery cache were presented to demonstrate the

viability of the automated coordination approach.

—‘ There is a trade—off between automated coordination approaches

and programmed coordination approaches. Automated coordination

involves greater time and space overhead than coordination by the

program designer . On the other hand , rollback coordination , even with

the help of language tools such as a conversation (El], can often

become an unbearable burden on the program designer. This limits

programmed coordination to being practical only wheu it is applied at

a relatively macroscopic level. In fact, an optimal approach in some

situations may be a combination of programmed coordination and

automated coordination approaches such that the program designer is

concerned only with coordination at a more macroscopic level while

coordination at a microscopic level is automatically handled by an

intelligent underlying processor system equipped with fault—tolerant
S 

monitors and extended recovery caches. Such a combination as well as

— 
evaluation of the performance of an intelligent processor system

presented in this paper remains as a subject for future study.

— ~~ 177 -

•_ ,. 5 \ - - --~S
.
~

S . -  
55 

—

-
- 

— ~~~~~~~~~~~



References

( I i~~3 Anderson , T. and Kerr , R., “Recovery blocks in action : a system

supporting high reliability”, Proc. 2nd Int’l Conf. on Software

En2ineerin,~~ 1976 , pp.kl~7—~57.

(Bi] Brinch Hansen , P,, “The programming language Concurrent Pascal” ,

IEEE Trans. on Software Engr ., June 1975, pp .199—207.

(Cl) Chandy, K.M., “A survey of analytic models of rollback and

recovery strategies” , Commuter, May 1975, pp.~4O—~47.

(Di] Dahl , 0., Dijkstra , E.D., 
- 

and Hoare , C.A.R., Structured

Programming, Academic Press, 1972.

(D2] Dijkstra , SW ., “Hierarchical ordering of sequential processes” ,

Acta ~nformatica, Vol.1 , No.2, 1971 , pp .115— 138.

(H i ] Hecht , H., “Fault—tolerant software for spacecraft applications” ,

Tech. Rept. SAMSO_76_ Z~O , Aerospace Corp., Dec. 1975. (also in Cr2])

(R2] Hcare , C.A.R., “Monitors : an operat ing system s t ruc tur ing
concept” , Comm. of ACM , Oct. 197k , pp.5119— 557.

(H3] Horning , J.J., Lau er , H.C., Melliar—Smith , P.M., and Rande].l, B. ,
“A program structure for error detection and recovery ” , Lecture Notes

in Comm. Sci., vol. 16 , Springer—Verlag , 197~4 , pp.17 1—187.

(K i ]  Kim , K . H .  and Ramamoorthy , C.V., “Recent developments in

software fault tolerance through program redundancy ” , Proc. 10th

Hawaii Int’l Conf. on System Science,~~ Jan . 1977, pp.2314—238.

178

i— -



(141) Meyers, M.N., Routt , W. A ., and Yoder , K.W ., “Maintenance

software” , Bell System Technical Journal, Special Issue on No.k ESS,

Sept . 1977, pp. 1139— ll67 .

[P 1] Parnas , D.L. and Wurges , H., “Respon se to undesired events in

software systems ” , Proc. 2nd Int’l Conf. ~n Software E1~~ineerinR,

1976, pp .L437~l~146.

(Hi) Randell , B. ,  “System structur e for software fault tolerance” ,

IEEE Trans. on Software Engr .,, June 1975, pp .220—232.

CR2] Repton , C.S., “Rel iability assurance for System 250: a reliable ,

real—time control system” , Proc. Int’l Commuter Communication

Conf., 1972 , pp.297—305.

CR3] Russell , D.L., “Process backup in producer—consumer systems ” ,

Proc. 6th Svmo. on Oceratings Systems Princim].es, Nov. 1977 ,

pp.l51— 157 .

(S i ] Shr ivastava , S.K. and Banatre , J . P . ,  “Reliable resource

allocat ion between unrel iable processes ” , Tech. Rept. SRM/177 ,

Computing Lab., Univ. of Newcastle upon Tyne , (to be published in

IEEE Trans. on Software En .glneerinz).

(W i) Wuif , W.A., “Reliable hardware—software architecture” , ~~~~
Trans. on Software Engr ., June 1975, pp.233—2140.

(T i ] Yau , S.S. and Cheung, B.C., “Design of self-checking software” ,

Proc. 1975 Int’l Coaf. on Reliable Software, pp.1450—1457.

Cr2] Yeb , R.T. ed,, ‘Smecial issue on fault—tolerant software ’,

Comoutin~ Surveys, Vol.8 , No.14, December 1976.

179



F 55 
- 

55 ~~__ _55
55 ~~~ S=_S ~~~ _  55

55~ SS

ADDcndLX A: Proofs of two lemmas stated In section 3

Ec~~~f of _U.: To each current potential recaller e of a process

there corresponth3 a valid ftP z ’ establ1~~hed by the proc~ ns wh ’n ROE c

became a potential recauler of the process. The RP r Is obviously the

most recent valid execution point of the process when EBE e has

tailed. On the other hand , to each RP r currently maintained by a

process there correspond one or more current potential recallers of

the process. Since the process needs to roll back when and only wh en
S 

- any of its potential recallers fails , the process maintains no

redundant RPs . Therefore , processes maintain the minimum number of

BPs required to make every rollback with minimum distance. Q.E.D.

Proof ofj~,Z: Suppose that the members of PR’((Z.a:]) known to

process Z at time t are all partially validated RBEs while there in an

on—going RBE fX.e:) belonging to PR’([Z.a:]) but not known to process

Z. Obviously RBE [X.e:J is an indirect potential recaller of ROE

[Z.a:1 and t.huu there must be a sequence of RBEs ( e 1, e2 1 —— — ,e0
)

where e
1 (X.e:], e11 

( Z.a :] ,  and e
~ 

(1< - i<n) i~ i a potenti~ 1

reca1l~’r of e1~,1. Suppose ek ,  where 1,�.k<n , is known to process Z at. t
S 

while ek i  is not. The notice of the partial validation of ek must

have Included information on the then known members of PR*(ek) that

includes ek_ l . In addition , when process Z received the notice , it

- 
must have learned both the fact that ek. had been partially validated -

and the fact that ek_ l was a member of PR*(ek). Thus every e1, 1.�iIn ,

must be a member of PR*((Z.a:)) known to process Z at t. This means

that e1 (
~ (X.e:)) is an on—going RBE known to process Z, in

contradiction to the assumption made at the beginning . Q.E.D.

180

— 
- 
‘ ... ..

_________________________________________________ -‘



Ammendi x _li: A message iriterprete~t ion proc’~dure in systems using one

- 

monitor without wait or signal instructions

j Procedurc~ (Pb) “Message Interpretation (Y: process; M : monitor)”

— (Intended—monitor-ope ration The monitor operation that process I would

have performee if the mailbox , that conta ine d the messages current ly

being Interpreted , had been empty)

(Operation A = a monitor up date or reference)

(Operation B notificati on of’ a success of’ the validation test of [I.c:))

(Operation C not ificzt tlou of the discard of ROE [Y.c:])

(Operation D notification of the discard of a useful base RP)

- 
(Operation li notification of new member3 of the PR’ of already

partially validated ROE [Y.e:])

(Message 1 “ODE [X.a:) that is a potential recaller of HP Y.r has been

completely valid :jted” )

(Message 2 “ROE [X.a:) that is a potential recaller of’ HP Y.r has been

part ia ll y validated , and the currently known PR’([X.a:)) is ——— “1

tMesz~age 3 “RIl E [X.a:] has failed , so roll back to HP Y.r”)

(Messag~ 14 = “b a 3 e  RI ’ X.j ~ become a defunct branch of base OP X. i and

RBE [X.J:] is no longer a potential recaller of’ HP Y.r”}

(Message 5 “ROE [W.a:] that is a previously known member of’ PR’([X.b:)),

where ROE [X.b :] is a potential recaller of HP Y.r , has been

partiall y validated and the new members of PR’ ([X.b:]) are ——— “1

sort the messages In the chronological order of the RPs mentioned in

the messages ;

discard the messages placed after the first message of type Message 3

in the sorted list;

starting with the beginning of the sorted list , interpret each message

as follows: 
-

181

-— ~~~~~~~~~~~~~~~~~ ~ : ‘  
- 

-~~ -- - - -



(case 1) Message 1:

(case 1.1 ) Intended—monitor—operation = A , B , D , or E :

11 RP Y.r remains ~~~~~

~egl n

remove (X.a:) from table PRST (Y) and the record of PRS(Y.r);

- ‘ - if PRS(Y.r) Is now empty then 
-

begin

discard HP Y.r;

if discard of HP Y.r has caused a base HP Y.q to have no

branch RPs to support and RBE [Y.q:] has passed its vail— S

dat ion test , thou ROE (Y ..q:) has become completely vali-

dated , so add Its notification to the list of intended

- 
monitor operations (I.e., operations to be performed

within the monitor store)

end

- “continue ” (i.e., if there is another message , interpret It;

otherwise , regain the monitor);

(case 1.2) Intended—monitor—operation = C:

it RP Y . r  preced es HP I . e

then do the same as in (case 1.1)

eLse do nothing and continue;

(case 2) Message 2:

S 
(case 2.1) Intended—monitor—operation A , B , D, or E:

update the status of [X.a:] in both table PHST(Y) and the

record of’ PHS(Y.r);

jj there Is a base HP Y.q supporting RP Y.r then

be ~ in

update the record on

it ROE (Y.q:] has been partially validated and all the members

of PR’((T.q:]) now have the “partially validated” status ,

then ROE (Y.q:] ha~ become completely valid~ited , so

be~ th -

182

~
- ~~~~~~~~ ~~~~~~~~~

L -55- 
. 5 - 

_ _ _ _ _ _



discard base HP I..q and the branch BPs including Y.r

supported by Y .q;

add the notificati on of the decease of both ROE (1.q:)

and other ROEs that have become completely validated

S 
together with (Y.q:}, to the list of’ intended

monitor operations

end

else add the notification of the new members of’ PR’((Y.q:))

and of the partia l validation of (X.a:] to the list of

intended monitor operations

continue ;

(case 2.2) Intended-monitor—operation C:

.j~~ 
HP Y.r precedes OP I.e -

then do the same as In (case 2.1)

~~~~ do nothing and continue ;

— (case 3) Message 3:

abolish the list of intended monitor operations and roll back to Y.r;

(ca se 4) Message I l :

remove ROE [X.j:] from table PRST (Y) and the record of PRS(Y.r);

continue;

(ease 5) Message 5:

(case 5.1) Intended—monitor—operation A , B, D, or E:

do the same as in (case 2.1) except ROE (W.a:) substituting for

(X. a :) ;
(case 5.2) Intended -monitor — operatIon C:

it HP Y.r precedes HP I.e
then do the same as in (case 5.1)

else do nothing and continue;

£nd-Procethi~~

183

IL ~~~~~~~~~~~~~~~~ S s s~~ s
- -

____________ ~~~ ~~~~~~~~ ~.- ‘a.-

Ac k n o w l e d ~~ein e n L

The authors wish to thank C. Hasselbach and L. Simoneini for

helpful discussions during the research reported in part I, F.
- Farran d for hel p fu l discus sions on th e work re porte d in par t III , F.

P. Dyke for his guidance during the initial period of’ this project ,

and H. Hecht for his suggestions and guidance at every stage of’ this

project.

184

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- S

