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ABSTRACT

In his paper, Tropical Cyclone Moticn and Surrounding Parameter
Relationships, John E. George demonstrares the relationship between
various 200 mb wind fields and recurvatufe/mon-recurvature. Evaluation
of the wind fields with data independent ¢f George's study indicated
that significant modification of his study was required to produce an
operationally applicable recurvature/non-recurvature study. Synoptic
analysis revealed two distinct environments affecting tropical cyclones,
a Winter Regime and a Summer Regime. All tropical cyclones were
stratified accordingly. By integrating the results of the evaluation
with results from rigorous synoptic and statistical analyses, opera-
tionally applicable recurvature/non-recurvature techniques were developed
for, both, Winter Regime and the Summer Regime tropical cyclones.
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OPERATIONAL APPLICATION OF
A TROPICAL CYCLONE RECURVATURE/NON-RECURVATURE STUDY
BASED ON 200 MB WIND FIELDS

s S |

s

I, INTRODUCTION

Since the advent of tropical cyclone forecasting, one

» of the most challenging problems has been that of accurately
determining whether or not a tropical cyclone will recurve
into the mid-latitude westerlies and, if so, when. When a
tropical cyclone is forecast to recurve and does not, or
when forecast to not recurve and does, the resulting errors
can be very large, often exceeding 375 km at 24 hours,
750 km at 48 hours, and 1500 km at 72 hours. Errors of such
magnitude can be costly, both in lives and dollars. Large
errors also expand the range causing the "average' error to
be less meaningful for operational decision making.

Most evacuation decisions must be made 36 to 48 hours
prior to the anticipated arrival of destructive winds, or
winds which would prevent ship sorties or aircraft evacuations.
Unnecessary aircraft evacuations, ship storm-evasions, and
local destructive wind preparations can amount to hundreds
of thousands of needlessly spent dollars. Poor forecasts
lower the operational user's confidence in subsequent
warnings, and reduce the overall effectiveness of the
tropical cyclone warning system.

Riehl and Shaffer (1944), Dunn and Miller (1964),
Burroughs and Brand (1972), and George (1975), have con-
sidered the relationship between the tropical cyclone
environment and recurvature. On the whole, however, little
effort has been directed toward the recurvature/non-recurvature
problem itself. Most investigators have approached it as
merely a small segment of the overall problem of tropical
cyclone track forecasting.

John E. George (1975), in his paper Tropical Cyclone
Motion and Surrcunding Parameter Relationships, has derived
mean 200 mb and 700 mb wind, height, and temperature fields
for the environments of both recurving and non-recurving
western North Pacific tropical cyclones. The methodology
used in obtaining his results limits their use in opera-
tional forecasting. The purpose of this study is to develop,
using George's 200 mb wind field data, an operationally
applicable technique for forecasting recurvature or non-
recurvature, and subsequent timing.




I1. METHODOLOGY
A. Original Study by John George

Twenty one pairs of tropical cyclone (TC) tracks
were used; each pair consisted of one recurving TC and one
non-recurving TC. The TC track pairs were selected such
that the recurving TC and the non-recurving TC were within
59 latitude of each other. A separation point (S) was
selected for each pair of TC's. This point was "arbitrarily
defined as the longitude where the recurving TC track begins
to deviate significantly from the non-recurving track and
acquires a northwesterly to northerly component' (George
1975). The S point time was always at a 00Z or 12Z synoptic
time. Twelve-hourly rawinsonde data were composited for the
recurving and non-recurving TC's at the S point time and at
synoptic times before and after the S point time. The
compositing scheme was applied to a radial band extending
from 9° to 20° latitude from the TC center. The area inside
99 latitude was assumed part of the direct TC circulation
and not representative of the environmental flow. The size
of the data sample was increased by compositing the S point
data with data 12 and 24 hours earlier. Two mean composites
designated S-12 were derived, one for recurving TC's and one
for non-recurving TC's. Similarly, two S-36 and two S-60
mean composites were produced. (Henceforth, the original
wind fields will be followed by an R, designating a recurva-
ture wind field, or by an NR, designating a non-recurvature
wind field; e.g., S-12 R, S-12 NR, etc.). Figure 1 depicts
a TC track pair, the S point, and the compositing scheme
used by George. From the composited data, 700 mb and 200 mb
height, wind, and temperature fields were derived which
distinguished the environments of recurving and non-recurving
TC*'s.

B. Modifications for the Operational Forecasting
Technique

The wind fields at the 200 mb level were singularly
used for the following reasons:

(1) Rawinsonde data in the western North
Pacific is sparse. However, the 200 mb sounding data can be
augmented with jet aircraft wind reports and meteorological
satellite cirrus blow-off wind directions to provide a more
detailed streamline and isotach analysis than at any other
level.

(2) The range of wind speeds is much larger
at 200 mb. Thus, significant changes in horizontal wind
speeds are easier to detect at this higher level. The
200 mb wind regimes from George's study are shown in Figure 2.




In the line up of operational forecasting problems,
the recurvature point (i.e., the point where the TC begins
its easterly movement, being steered by the mid-latitude
westerlies) is more significant than the S point. The
recurving storms of the original study were examined to
determine the time difference between the S point and the
point of recurvature. The average time difference was
24 hours. Therefore, the wind profile at S-12 R was taken
to be representative of the flow 36 hours prior to recurvature.
The S-36 R and S-60 R patterns were considered representative
of the flow 60 and 84 hours prior to recurvature, respectively.

The first part of the technique development
evaluated the usefulness of the 200 mb wind profiles,
obtained by George, in forecasting recurvature and non-
recurvature. The second part used the evaluation to develop
operationally applicable forecasting techniques.

For the evaluation, the original 200 mb winds,
from George, were plotted on transparent overlays at the
same scale as the JTWC daily synoptic charts (1:15.000,000
mercator). These original winds were compared to observed
wind fields.

Storm data for 1974, 1975 and 1976 (Table 1) were
used. This data set allowed the evaluation to be indepen-
dent of the original data used by George, and permitted the
use of synoptic chart series available at the Joint Typhoon
Warning Center (JTWC), Guam.

The comparisons were accomplished by matching:
the S-12 R overlay to observed data 36 hours prior to
recurvature; the S-36 R overlay to data 60 hours prior to
recurvature; and, the S-60 R overlay to data 84 hours prior
to recurvature. Timing errors were calculated if ''reasonable"
matches were better at earlier or later data times. For
example, if the first '"reasonable" match of S-12 R occurred
12 hours prior t> recurvature, the resulting error was
-24 hours. The minus bias would indicate that the S-12 R
wind field was too slow in anticipating recurvature.

I1I. DISCUSSION AND RESULTS
Of the 49 TC's considered in the independent data set,

28 recurved. The recurvers are indicated in Table 1 by the
date and time at recurvature point. All 28 TC's that
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recurved were forecast to do so by George's wind regimes.
However, these wind regimes also forecasted significantly

more recurvature cases than were observed: 10 more by the
S-60 R wind field, 9 more by the S-36 R wind field, and 8
more based on the S-12 R wind field. ‘“hus, the overall

effectiveness of his study in forecasting recurvature cor-
rectly was approximately 75 percent. This result does not
represent a significant improvement over methods now employed
by JTWC in determining recurvature.

The errors shown in Tables 2 and 4 indicate that
George's study consistently anticipated recurvature too
slowly. Several of the recurving TC's exhibited large
forecast errors (Table 4), while others displayed smaller
errors (Table 2). The TC's with smaller forecast errors
were found to occur duriag the winter and transition seasons.
Those with large errors occurred during the summer and
transition seasons. The 200 mb analyses were examined and
revealed that distinct synoptic patterns distinguished the
TC's with large errors from those with small errors.

The TC's with smaller errors were, for the most part,
characterized by a direct link between the outflow circula-
tion of the TC and the mid-latitude westerlies, 72 hours
prior to recurvature. In this regime, winds continuously
increased outward from approximately 9° to 20° latitude in
the northern environment of the TC (Figure 3). This regime
will be referred to as the Winter Regime (WR). The recurving
TC's conforming to the WR are listed in Table 2.

All recurving TC's possessed this direct link prior to
recurvature, however, the storms with large errors did not
exhibit this link until about 24 to 36 hours prior to
recurvature. During the major portion of the life span of
these storms, the mid-latitude westerlies and the upper
level outflow circulation of the storm were separated by the
subtropical ridge and a Tropical Upper Tropospheric Trough
(TUTT) (Sadler 1967) as shown in Figure 9. This synoptic
regime will be referred to as the Summer Regime (SR).
Recurving TC's with the SR are listed in Table 4. (Although
Fran possessed small errors, it still exhibited the SR
synoptic pattern.)

A. Winter Regime (WR)

The evaluation indicated that in nearly all cases
of the WR there was a significant forecast timing problem,
the average timing error being -15 hours at both S-12 R and
S-60 R, and -12 hours at S-36 R. To modify the technique,
twelve hours were added to each regime, reducing the average
error to -3 hours at both S-12 R and S-60 R, and to -0 hours




at S-36 R. The addition of the 12 hours rendered the S-12
pattern representative of flow 24 hours prior to recurvature
instead of the original 36 hours. Likewise, the S-36 R and
S-60 R regimes represent the flow 48 and 72 hours prior to
recurvature, respectively. The need for the 12 hour adjustment
arises, in part, from two reasons. First, the S point is
selected relative to an arbitrarily chosen non-recurving TC,
rather than relative to the point of recurvature. Second,
some of the storms considered in George's original study
were SR TC's rather than WR TC's. As will be seen later,
this would contribute to anticipating recurvature more
slowly than observed during WR situations.

It should be emphasized that the direct 1link
between the mid-latitude westerlies and the upper level
outflow circulation is contingent on a continuously increasing
belt of westerly winds. This belt must be 109 to 11° wide,
but occasionally may begin at a radius (from the storm
center) less than 99 of latitude. 1In such cases the recurva-
ture wind profiles may be shifted toward the storm. If an
isotach minimum is observed in the 99 and 20© radius, the
link between the westerlies and the upper level outflow
circulation is not considered direct. In this synoptic
pattern the criteria of the recurvature wind fields will not
be met.

There are two conditions under which TC's will not
recurve, even if the criteria exceeds the wind profile at
S-12 R. The first condition is illustrated in Figure 4. If
the axis of a mid-latitude trough is stationary, and is more
than 2000 km west of the TC, recurvature will not occur.
This is most common in December and early January when a
long wave trough is quasi-stationary over or near India.

The trough in this position allows the mid-tropospheric
subtropical ridge to exist, without interruption, well into
Asia; TC's will move toward the west, south of the ridge,
and dissipate over land.

The second condition occurs when a TC, still well
south of the axis of the mid-tropospheric STR, collides with
upper level westerlies. When this occurs an upper tropo-
spheric trough is induced near the intersection of the
westerlies and the TC's upper level outflow. Under such
situations (when adequate mid-tropospheric data is available)
the mid-tropospheric STR is observed to build southward,
west of the TC (Figure 5a). This southward building of the
STR may be in response to strong subsidence beneath the
induced upper level trough. The TC is then subjected to a
change in the vertical stacking of the steering current
which causes a change in the normal vertical stacking of the
TC. As a result, the TC is reduced to a weak low level
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circulation and continues westward with the low level flow
while portions of the originally associated convective cloud
mass remain to the east and ultimately dissipate (Figure 5b).

The winds north of a TC were found to have the
most significant importance regarding recurvature. The
influence of the winds north of a TC were generally depen-
dent on the position of a mid-latitude trough relative to
the TC. For example, if a trough were located west-northwest
of a TC, recurvature would best be forecast when the appro-
priate wind regime overlay matched the observed winds
northwest of the storm. If the trough were located north of
the storm, best results were obtained when matching the
appropriate wind regime overlay with winds observed north-
northeast of the storm. Thus, the best correlation of
observed winds and recurvature occurred by utilizing winds
slightly east of the mid-latitude trough axis. This applied
even though the trough of concern moved eastward, and
recurvature occurred ahead of a subsequent eastward moving
trough. Once a trough had moved to a position north-northeast
to northeast of a storm, the wind regimes correlated poorly
with recurvature.

Figures 6, 7, and 8 present the modified wind
fields for the WR synoptic pattern. They will be designated
R 72, R 48, and R 24, respectively. (Winds inserted in the
north-northwest and in the north-northeast were obtained by
averaging the original winds in the northwest and north, and
north and northeast, respectively.) Table 3 lists the
sequence and rules to be utilized when applying the wind
regime overlays to WR situations.

B. Summer Regime
1.8 Background

In the above assessment of the recurvature/
non-recurvature forecasting problem we found a relatively
simple synoptic pattern, the Winter Regime (WR). The Summer
Regime (SR), on the other hand, is tremendously complex.
Figure 9 shows the major features of the upper troposphere
in the SR. During the height of this period, the subtropi-
cal ridge (STR) is anchored near 30°N by the dynamic effects
of the Himalaya-Tibetan Massif (Ramage 1971; Flohn 1968).
Although there is little north-south fluctuation in its
movement, the STR is highly variable, both in its intensity
and eastward extent. Over the tropical North Pacific, a
highly variable east-west ridge exists and is called the
subequatorial ridge (SER) (Sadler 1972). This ridge lies
over the spawning grounds of most tropical disturbances and
tropical cyclones. The STR and the SER are separated by a




trough, the TUTT. The TUTT can contain numerous cyclonic
cells, some very intense, which generally migrate toward the
west-southwest. Sadler (1974 and 1976) has shown the
importance of the TUTT in initiating tropical cyclone
development, and in providing channels for tropical cyclone
outflow. Murakami and Sadler (1973) suggest that energy
transferred from troughs in the mid-latitude westerlies is
primarily responsible for inducing intense cyclonic cells
within the TUTT. Pelissier (1975) hypothesizes radiational
differences between cloud and cloud tree regions as the
mechanism responsible for the development and maintenance of
these cyclonic cells. The TUTT may be continuous across the
North Pacific, but is frequently segmented. The orientation
of the trough may vary from north-south to east-west. The
Mid-Pacific Trough (MPT) is the TUTT most often referred to
in the Pacific. However, another TUTT is frequently observed
in the western Pacific between 115E and 145E during July,
August, and September. This TUTT will be referred to as the
East Asian Trough (EAT) (Figure 9). The EAT is observed to
develop in the manner described by Sadler (1976): A short
wave trough in the westerlies moves into the longwave
position, intensifies, penetrates southward, segments the
STR and forms a cut-off low (south of the STR). Frequently,
cyclonic cells segment from the MPT and, as they move
westward, become associated with the EAT, intensify and
extend the EAT well into the tropics.l As will be shown
later, the EAT can greatly influence the movement of tropi-
cal cyclones approaching it.

During the spring-summer transition the
westerly jet stream weakens and moves northward. By the
height of summer the southern extent of the mid-latitude
westerlies has been displaced some 20 degrees of latitude
north of its winter position. Troughs within the westerlies
are relatively weak, especially in lower latitudes, and
retrogression is not uncommon.

Frequent vacillations of the above four major
synoptic features, the STR, the SER, the TUTT's, and the
mid-latitude westerlies result in a highly complex and
fluctuating synoptic pattern., The pattern becomes even more
complex with superposition of a fifth feature, the tropical
cyclone.

2. Forecast Ctudy
Table 4 lists the storms conforming to the

SR. Also shown is the difference between the time of the
earliest ''reasonable' match of observed winds and overlay

lobserved by the author during the 1974, 1975, and 1976
typhoon seasons at JTWC, Guam.
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winds, and the time that the match would have occurred based
on the S-12 R, S-36 R, and S-60 R wind fields. The average
differences were -25 hours, -45 hours and -55 hours for the
S-12 R, S-36 R, and S-60 R, respectively. The large negative
bias indicates that the original wind fields were much too
slow in anticipating recurvature.

Initially a 12 hour correction was added to
the average errors for SR storms (Table 4) to make them
consistent with the WR storms. This reduced the average
errors to -13, -33, and -43 for the S-12 R, S-36 R, and
S-60 R wind fields, and rendered these wind fields indica-
tive of recurvature 24, 48, and 72 hours ahead of time, as
for the WR storms., Next, further corrections were added to
reduce the errors in Table 4 to a value near zero. This
required that 12 hours be added to the S-12 R result,
reducing the error to -1; and, that 36 hours be added to the
S-36 R and S-60 R results, reducing the average errors to +3
and -7, respectively. For a first guess, the S-12 R wind
field was assumed to indicate winds 12 hours prior to
recurvature. Since the correction for the S-36 R wind field
was 36 hours more than that of the S-12 R wind field the
hypothesis was formed that the wind distribution 12 hours
prior to recurvature should resemble some average S-12 R--
S-36 R wind field. The 36 hour correction for the S-60 R
regime should render it indicative of winds 36 hours prior
to recurvature.

The hypothesis was tested by deriving a wind
field overlay composed of the average of the S-12 R and
S-36 R wind fields. This wind field is shown in Figure 10
and will be referred to as R 36. Results indicated remark-
able similarity between the R 36 wind field and that observed
at recurvature. The R 24 and R 48 wind fields were representa-
tive of the maximum and minimum wind fields observed at
recurvature, respectively. In addition, the S-60 R wind
field closely resembled the observed wind field 24 hours
prior to recurvature. Winds in the north-northwest demon-
strated best results.

Since the need exists to forecast recurvature/
non-recurvature and the time of recurvature up to 72 hours
in advance and the recurvature wind fields were useful only
to 24 hours, a relationship was sought between recurvature
and the non-recurvature wind fields.

During the study no apparent relationship
could be found between recurvature and the winds of the non-
recurvature wind fields equatorward of the axis of the STR.
Therefore, the original non-recurvature wind regimes were
modified and renamed. Henceforth, the S-60 NR, S-36 NR, and

::‘-s\v"




S-12 NR wind fields will be NR3, NR2, and NR1l, respectively
(Figures 11, 12, and 13).

It was observed that at a given time prior to
recurvature, SR storms were always farther south of the mid-
latitude westerlies than their WR counterparts. On the
other hand, recurvers characterized by a WR usually had a
smaller northward component of movement prior to recurvature
than their SR counterparts. Additionally, TC's in a WR
conforming to the NR1 (S-12 NR) wind field did not recurve
for at least 84 hours. In the SR, however, TC's were
observed to recurve as quickly as 18 hours after adhering to
the NR1 wind field. The westerly wind intensities of the
NR1, NR2, and NR3 wind fields are quite similar. They do,
however, indicate deeper westerly flow with decreasing time.
This is best depicted as a small shift of the axis of the
STR toward the TC.

The NR3 overlay was applied to all SR storms.
Whenever the axis of the STR on the overlay coincided with
the axis of the STR of the observed 200 mb wind field, a
reasonable match was assumed. The best correlation between
the wind regimes and recurvature was observed when utilizing
the position of the STR axis in the north-northwest sector
of the TC. The time of the match was considered the onset
of NR3. Similarly, the NR2 and NR1 overlays were applied to
the observed 200 mb wind field, and the onset of NR2 and NR1
were determined, respectively. The onset of R 72 (S-60 R)
was previously found when compiling Table 4. The time
difference between the onset of NR3 and NR1 was considered
the duration of the NR3-NR1 transition. Likewise, the time
difference between the onset of NR1 and R 72 was considered
the duration of the NR1-R 72 transition.

If the duration of the NR3-NR1l transition was
30 hours or less, the SR TC recurved; if the duration was
36 hours or more, the SR TC did not recurve. Thus, a scheme
for determining recurvature or non-recurvature was found for
SR TC's.

The difference between the time of the onset
of NR3, NR1l, and R 72, and the time of recurvature were
ascertained. Correlations were computed between the various
durations and the time differences between the onsets of
NR3, NR1l, and R 72, and recurvature. The correlation coef-
ficients and significances determined by the 1% criterion
for linear correlation coefficients are listed in Table 5.

The northward component of movement (NCM)
between the JTWC first warning position and each onset (NR3,
NR1, R 72), and between each onset and recurvature was
determined. The NCM between the JTWC first warning and
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recurvature was computed and was found to have a minimum
value of approximately 5.5 knots (2.9 m/s). Therefore, all
NCM's, between the JTWC first warning and each onset, less
than 5.5 knots (2.9 m/s) were increased to this value.
Correlations were made between the various NCM's. Regression
equations were computed for those correlations determined as
significant by the 1% criterion for linear correlation
coefficients (Table 5). Similarly, the NCM from each onset
to recurvature was correlated with the NCM between each

onset minus 12 hours and each onset minus 24 hours (Table 5).

The above operation was performed replacing
the NCM with the actual speed of movement. Results are
listed in Table 5.

Finally, the direction of movement from NRI1
to recurvature was correlated with the direction of movement
from the JTWC first warning to NR1. Again, results are i
shown in Table 5.

A synoptic study of the Summer Regime (SR) |
was accomplished to identify relationships between upper ‘
tropospheric (200 mb) flow and the movement of tropical
cyclones. Results of such a study should be useful to the
forecaster in identifying a storm's potential for recurva-
ture, non-recurvature, northward movement, acceleration, or
deceleration. The effects of upper tropospheric flow on
erratic movement will be discussed in a forthcoming paper by
the author.

Figure 14 is indicative of a non-recurvature
situation. When the Asian upper level anticyclone remains
extended over the western Pacific to a position north and
east of a TC, the TC will exhibit a greater westward than
northward component of movement, and recurvature will not
occur. Such TC's commonly affect the southern Ryukyu
Islands, Taiwan, and the Peoples Republic of China. The
westward movement of the TC appears to be related to the
strength of the 200 mb winds at the eastern or southeastern
periphery of the STR. If these winds are 10 to 20 knots
(5.1 to 10.3 m/s) the TC will move toward the northwest into
the ridge; if the winds are 20 to 40 knots (10.3 ot 20.6 m/s)
the TC will move toward the west-northwest; if the winds are
40 to 60 knots (20.6 to 30.9 m/s) the TC will move toward
the west; and if the winds are greater than 60 knots (30.9 m/s)
the TC will move south of west.

Figure 15 is characteristic of TC's with a
greater northward than westward component of movement.
Although intense cyclonic cells within the EAT are projected
down to the middle troposphere, they frequently elude the
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sparse data at this level and the resulting analysis is not
definitive. This is disastrous if one depends on the use of
mid-tropospheric flow in steering TC's. If the EAT is
relatively stationary, a TC moving toward it will eventually
be subjected to northward steering currents. The northward
displacement exhibited by the TC increases with the intensity
of the EAT and decreases with distance from the EAT. This
synoptic pattern is conducive to recurvature.

Figure 16 illustrates another synoptic
pattern which is conducive to recurvature. An anticyclone
northeast of a tropical cyclone can produce strong south-
easterly flow. In such cases, tropical cyclones are observed
tu acquire a large northward component and move toward
recurvature. If, however, the anticyclone to the northeast
builds westward, the storm would acquire a more westward
component (Figure 17). The overall speed of movement could
remain the same, or even increase, but the storm will move
toward stronger mid-latitude westerlies more slowly.

It was observed that during the transition
seasons a TC might initially be in an SR, but change to a
WR. This most commonly occurred with TC's between 135E and
140E, and the Asian land mass. In this region (during
transition seasons) the TUTT is weak and short wave troughs
moving eastward from Asia can be quite strong. East of 135E
to 140E, the TUTT is stronger and the short wave troughs are
weaker. It was found that if during transition seasons, a
TC acquired a direct link between its outflow circulation
and the mid-latitude westerlies, best results were obtained
by treating it as a WR TC west of 135E to 140E, and as an SR
TC east of 135E to 140E.

Figure 18 is an example of a synoptic pattern
which may retard a TC's northward component of movement. An
anticyclone to the west or northwest of a tropical cyclone
can produce flow with a southward component which will
reduce the TC's northward component. Any southward flow
toward the storm, regardless of the synoptic pattern pro-
ducing it, may retard a TC's northward movement.

After assessing all of the data concerning
the SR TC's, some qualitative rules could be derived. These
rules are integrated into Table 6 with the sequence to be
used in determining recurvature/non-recurvature and the
timing of recurvature.

IV. SUMMARY

The original 200 mb wind fields derived by George
provided the basis for an operationally applicable, TC
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recurvature/non-recurvature, forecast technique. When
applied to a data set, independent of that utilized by
George, the original wind regimes for recurving TC's cor-
related well with recurvature of some TC's and poorly with
recurvature of others. A synoptic analysis of the upper
tropospheric environment of all the storms revealed that
recurving storms were characterized by one of two regimes:

1. A Winter Regime (WR) in which there is a
direct link between the upper level TC circulation and the
mid-latitude westerlies at least 72 hours prior to recurva-
ture; and,

2. A Summer Regime (SR) in which the upper 1level
TC circulation and the mid-latitude westerlies are separated
by the TUTT and subtropical ridge, until approximately
24 hours before recurvature.

The WR characterized TC's which correlated well with
the original 200 mb wind fields for recurving TC's, while
the SR characterized those TC's which, in general, cor-
related poorly.

Through a series of small, but significant, modifications
the original 200 mb wind fields for recurving TC's provided
an operationally applicable technique for forecasting recurva-
ture meeting the WR criterion. The technique establishes
the timing of recurvature at intervals 24, 48, and 72 hours
ahead of time. A set of rules for applying the technique,
and for determining recurvature versus non-recurvature was
derived (Table 3).

A straight forward forecast technique based on the
200 mb wind fields of George could not be derived for SR
TC's. The recurvature wind fields were somewhat applicable,
but only within 24 hours of recurvature. Although the non-
recurvature wind fields indicated no recurvature within
84 hours for WR TC's, this was not the case with SR ones.
In the SR, TC's were observed to recurve within 18 hours
after meeting the non-recurvature criteria at S-12 NR (NR1).

It was observed that TC's undergoing the transition
from S-60 NR (NR3) to S-12 NR (NR1) in 30 hours or less
would recurve, while those making this transition in 36 hours
or more would not recurve.

The timing of recurvature beyond 24 hours could not be
determined utilizing the actual wind fields. Several of the
wind fields, however, were utilized as reference points from
which a conditional climatology of recurving, SR TC's was
produced.
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In addition to the wind field study, a synoptic study
was performed to determine how various synoptic features at
the 200 mb level affected the movement of SR TC's.

Results of the wind field study, the conditional
climatology with regression equations, and the synoptic
study were compiled into a forecast technique to determine
recurvature/non-recurvature and the timing of recurvature
for SR TC's (Table 6).

V. CONCLUSIONS

The value of this forecast study can only be determined
after applying it on an operational basis. It will require
two years to acquire a sufficient data base for the evaluation.
This evaluation will be conducted during the 1977 and 1978
typhoon seasons by JTWC.

The most undesirable feature of the forecast technique
is its subjectivity. It is foreseeable that different fore-
casters will arrive at somewhat varied conclusions as to the
timing of recurvature. However, this variance should only
amount to approximately 12 hours with the WR technique if
the forecast rules are correctly applied. If recurvature
can be forecast within 12 hours of its occurrence at the
24-, 48-, and 72-hour forecast intervals, a significant
improvement in the forecasting of recurvature will be
realized. It is unlikely that such accuracy in forecasting
the timing of recurvature for SR storms will be realized
with the SR technique. This is expected from the poorer
correlation between the available original wind fields and
the recurvature of SR TC's. The ability to determine
recurvature vice non-recurvature, however, should contribute
significantly to reducing the overall 24-, 48-, and 72-hour
forecast errors for both WR and SR TC's.

A portion of the subjectivity is inherent from the data
base of the original study. It would be both desirable and
valuable if the original composited data base were stratified
by synoptic regimes. Such stratification is essential for
improving the SR technique.

The SR study illustrates the potential for utilizing
conditional climatology tables in tropical cyclone forecasting.
Although many such tables are available, they have, for the
most part, been prepared without regard to synoptic regimes.

The study has shed additional light on the importance
of the TUTT as a significant synoptic feature. It is
imperative that future dynamic models be able to adequately
forecast both the movement and intensity of the TUTT and of
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the cyclonic cells within it. Additionally, daily upper
tropospheric analyses need to be included in the various
climatological analysis publications.

VI. SUGGESTED RESEARCH

Further studies concerning the environment of tropical
cyclones should consider stratifications similar to the WR
and SR. It would be useful to apply this stratification to
George's original data base, and then utilize the results to
improve this forecast study. The WR wind field at recurva-
ture would be useful for application to 200 mb prognostic
charts. A completely new set of composited wind fields
should be developed for SR TC's and probably for those TC's
occurring during transition seasons.

In the George study, geopotential height fields, meri-
dional and zonal wind fields, and temperature fields were
also derived. Additional operationally useful forecast
tcols for recurvature and non-recurvature might be developed
from these fields. The author feels that such studies
should utilize data from the stratifications suggested
above. This is essential for SR systems.

Finally, a strong effort should be extended toward
producing an accurate dynamic model of the TUTT which can be

incorporated into existing PE models or future global models.
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TABLE 1. Tropical Storms and Typhoons Utilized in the
Modified Recurvature/Non-Recurvature Study

USED IN
DATE AND TIME USED IN DERIVING
OF RECURVATURE DERIVING SYNOPTIC
STORM MONTH  YEAR  TYPE (2) WIND FIELDS RULES

1976
KATHY JAN-FEB 30/18
LORNA FEB-MAR
MARIE APR 10/18
NANCY APR-MAY
OLGA MAY 25/12
PAMELA MAY 23/12
RUBY JUN-JUL 26/18
SALLY JUN-JUL 28/00
THERESE JuL 18/06
WILDA JuL 24/06
VIOLET JuL
ANITA JuL 25/06
BILLIE AUG
CLARA AUG
DOT AUG 21/18
ELLEN AUG
FRAN SEP 09/12
GEORGIA*  SEP
HOPE SEP 16/15
IRIS SEP
JOAN SEP 21/00
LOUISE 0CT-NOV 04/00
MARGE NOV 09/18
NORA DEC 06/09
OPAL** 07/18%%%x

2 > > X X X X X

LOLA

MAMIE

NINA

ORA

PHYLLIS 18/00
RITA®® 23/00%%%%
SUSAN 28/00
TESS 06/06
VIOLA*

WINNIE 10/18
ALICE

BETTY

CORA 03/15
DORIS 06/00
ELSIE

FLOSSIE

GRACE 30/12
HELEN NOV

1DA NOV 09/15
JUNE NOV 22/00

2K XK XK X X X X X

X X X X X X X

>

AMY MAR 16/18
BABE APR 30/00
IRMA NOV
KIT DEC

*Considered, but not utilized; moved toward the northeast under
deep southwesterly monsoon flow and dissipated.

*%*Considered, but not utilized; Opal developed after recurvature.

#%%Rita moved toward the north-northeast throughout most of its life; point
of recurvature could not accurately be determined.

*xikEstimated
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TABLE 2. Winter Regime Storms and the Error
Determined as the Difference Between the Time of
the Earliest Reasonable Match of Observed and Overlay
Winds, and the Time the Match Would Have Occurred
Based on the Original Wind Regimes

S-12 R $-36 R

AVERAGE
ERROR (HR)

AVERAGE

ERROR
PLUS 12 HR =3

*Data not available
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TABLE 4. Summer Regime Storms and the Error
Determined as the Difference Between the Time of
the Earliest Reasonable Match of Observed and Overlay
Winds, and the Time the Match Would Have Occurred
Based on the Original Wind Regimes

YEAR
s-12 5-36

_36
-36
=30
-60
-54
-42

0
~36
-60

AVERAGE
ERROR (A)

TIME ADDED
TO AVERAGE
ERROR (B)

A&B

&S
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FIGURE 6.

R 72 wind field; wind barbs are in knots.
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FIGURE 7.

R 48 wind field; wind barbs are in knots.
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R 24 wind field; wind barbs are in knots.

FIGURE 8.
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FIGURE 10.

R 36 wind field; wind barbs are in knots.
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FIGURE 11. NR3 wind field; STR is the axis of the sub-
tropica.i ridge; wind barbs are in knots.
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FIGURE 12. NR2 wind field; STR is the axis of the sub-
tropical ridge; wind barbs are in knots.

34

Bt
-




FIGURE 13. NR1l wind field; STR is the axis of the sub-
tropical ridge; wind barbs are in anots.
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