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N /
In this thesis we examine the one warehouse, N retailer production

inventory system. We present properties of optimal operating policies

and methods to determine various operating policies given a fixed cost

for set-up and an inventory carrying charge at each facility. We

assume that the external demands on this system occur either at a known

continuous rate that is stationary over an infinite time horizon, or

at a known rate that may vary in each of a finite number of periods.

We will refer to the former case as a continuous one warehouse , N

retailer problem and the latter as a dynamic demand problem.

A one warehouse, N retailer system is a special case of the more

general arborescent production inventory system. We begin by examining

the previous research on sys tems with this arborescent structure as

well as reviewing the literature dealing with the serial and assembly

multi-echelon production inventory systems.

The continuous one warehouse , N retailer problem is then examined

in detail. The basic model is introduced as well as some previously solved

special cases. Several basic production policies that have been suggested

for this system are reviewed and properties of an overall optimal solution

are discussed. We develop optimal and heuristic algorithms to determine

the values of the parameters in “single cycle” policies (Schwarz, 1973)
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and mak e comparisons based on both the quality of solutions obtained

and the computational effort. It has been conjectured by Graves and

Schwarz (1977) that these single cycle polici es are optimal for certain

larger classes of production plans and we demonstrate that this is not

the case. Finally , we ciscuss the class of multiple cycling policies

and their relation to optimality.

We then explore the dynamic one warehouse , N retailer problem.

The basic model is introduced and both the Wagner-Whitin (1958) and

the Zangwill (1966) algorithms are reviewed. Veinott (1969) has

suggested the extension of Zangwill’s algori thm to the case of N

retailers , and we present this extension along with computational simpli-

fications. Easily computed upper and lower bounds on the optimal solution

value are developed. Exact solution techniques for several special cases

for the cost structure are also discussed. Finally, areas for future

investigation are suggested.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

In this thesis we examine the one warehouse, N retailer production

inventory system. We present properties of optimal operating policies

and methods to determine various operating policies given a fixed cost

for set—up and an inventory carrying charge at each facility. We assume

that the external demands on this system occur either at a known con-

tinuous rate that is stationary over an infinite time horizon , or at a

known rate that may vary in each of a finite number of periods. We

will refer to the former case as a continuous one warehouse , N retailer

problem and the latter as a dynamic demand problem.

A one warehouse , N retailer system is a special case of the more

general arborescent production inventory system. In the next section we

examine the previous research on systems with this arborescent structure

as well as review the literature dealing with the serial and assembly

multi-echelon production inventory systems. Particular emphasis will be

placed on the assumptions in these works that are common to the research

in this thesis.

In Chapter 2 the continuous one warehouse, N retailer problem is

examined in detail. The basic model is introduced as well as some

previously solved special cases. Several basic production policies that

have been suggested for this system are reviewed and properties of an

overall optimal solution are discussed. We develop optimal and heuristic

algorithms to determine the values of the parameters in “single cycle”

I.
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policies (Schwarz , 1973 ) and make comparisons based on both the quali ty

of the solutions obtained and the computational effort. It has been

conjectured by Graves and Schwarz (1977) that these single cycl e policies

are optimal for certain larger classes of production plans and we demon-

strate that this is not the case. Finally, we discuss the class of

multiple cycling policies and their relation to optimality.

In Chapter 3 we explore the dynamic one warehouse , N retailer

problem. The basic model is introduced and both the Wagner-Whitin

(1958) and the Zangwill (1969) algorithms are reviewed. Veinott (1969)

has suggested the extension of Zangwill ’s algorithm to the case of N

retailers , and we present this extension along with computational simpli-

fications. Easily computed upper and lower bounds on the optimal solution

value are developed. Finally, exact solution techniques for several

special cases for the cost structure are discussed.

In Chapter 4 we summarize the major results. In addition , we suggest

areas for future investigation.

1.2 Serial, Assembly and Arborescent Production Inventory Systems

A multi-echelon production inventory system is one in which products

are partially processed at certain facilities. Each subsequent facility

perf orms additional processing until the product , or products , is available

to satisfy external demands. Work in process inventories are permitted

between the facilities. The problem is to determine an operating policy

that meets the external demands while minimizing production and inventory

costs.



__  •

All the research on multi-echelon production inventory systems is

based , at least in part, on the methods used in explicitly solving the

single facility problem. Single facility problems have been studied

extensi vely and excellent summaries of the resul ts on these sys tems

can be found in the books by Hadley and Whitin (1963), and Johnson and

Montgomery (1974). For the case of dynamic demands , the classic paper

is by Wagner and Whitin (1958). Their results have been generalized many

times to include multiple set—up costs (Lippman , 1969), piecewise concave

costs ( Love , 1973 ) and backlogging (Zangwill, 1966). One generalization

of the basic single facility problem that has been extensively researched

is the capaci ty constrained problem (Florian and Klein , 1971; Lambrecht

and Vander Eecken , 1978; Baker, Dixon, Magazine and Silver , 1978). The

Wagner-Whi-tin single facility algorithm and a capacity constrained single

facility algori thm can be used to determine optimal policies in one

warehouse, N retailer sys tems under certain cos t res trictions . (These

results will be developed in Chapter 3.)

One can envision many configurations for the facilities in a multi-

echelon system; but, three particular structures have been extensively

studied in the past. These three structures are the serial, assembly

and arborescent systems (Figure 1.1). We will discuss each of these

structures individually and summarize the relevant research.

In a serial multi-echelon system, each facility has only one immediate

predecessor and one immediate successor. Work in process inventory flows

from one facility to the next and at each facility additional processing

is performed. External demands occur only at the final facility. A

single conveyor belt assembly line with work stations along the route

of the belt is an example of a serial multi-echelon system.

__________

V .



( a)  SERIAL: 

i
EXTERNAL DEMAND

(b) ASSEMBLY:

EXTERNAL DEMAND

ARBORESCENT:

EXTERNAL DEMANDS

FIGURE 1.1 MULTI-ECHELON SYSTEM STRUCTURES
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The research on serial production inventory systems with c-~ntinuous

deterministic demands includes two restrictive assumptions. Operating

policies are chosen from among the policies in which there is a constant

lot size at each stage and the lot size at a stage is an integer multiple

of the lot size at the succeeding stage. Although this type of policy

may be optimal for concave cost cases, there is no reason to assume it

is optimal in a multistage syst~tn having constraints imposed by fixed

• production rates and lead times.

In addition to the assumptions discussed above, Taha and Skeith (1970)

also assur~ that there is a delay between production and use of a lot and

that backorders are permitted at the final stage. No explicit solution

technique is given to determine the integers multiplying the lot sizes

that specify the policy. Jensen and Khan (1972) examine a similar con-

figuration but without the assumption of a delay between production and

use of a lot. A discrete dynamic programming formulation to determine

the optimal cycle length is developed for what is essen~Ially a continuous

parameter problem. Johnson (1972) provides expressions for the average

in-process inventory levels with or without delays following production .

A direct solution is obtained for the two stage system and an iterative

procedure is developed for the three stage system.

For the case of dynamic demand, the classic reference is by Clark

and Scarf (1960). They introduce the concept of “echelon stock” for

computational simplicity and prove the optimality of a modified (s,S)

policy for a serial system in which the demand in each period is determined

by an observation from a known distribution. The echelon stock at

facility i is inventory that has been processed by facility i and is 

•
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awaiting processing at any succeeding facility. That is, the facility i

echelon stock is inventory that has passed through facility i but has

not yet been used to satisfy external demands. An (s,S) policy is

being followed if , at review , the stock on hand plus on order, i, is

less than s , then S-i units are ordered; otherwise, no ordering is

done. A more detailed discussion of (s,S) inventory models can be

found in the book by Tijms (1976).

For the serial system with deterministic dynamic demand , the basic

references are by Zangwill (1966,1968,1969). He extends the single

facility Wagrier-Whitin model (1958) to the serial system with backlogging

permitted at the final stage. Of particular interest are the representation

of the problem as a minimum cost flow in a single source , concave cost

network and the characterization of the solution by exact requirements,

that is, the production quantities are always the sum of the requirements

for a certain number of future consecutive periods. The network repre-

sentation and exact requirements will be discussed in more detail in

Chapter 3.

As in the single facility case, there have been many extensions to

the basic serial system models. For example , Lambrecht and Vander Eecken

(1977) have extended the Zangwill algorithm to include capacity constraints

p for facilities in series. Also,for the serial system with concave costs

and storage costs non-decreasing in order of facilities and production

costs non-increasing in time, Love (1972) has demonstrated that an

optimal schedule has the property that if in a given period , a facility

produces, then its successor does also. This nested structure is

e..ploited in an algorithm for finding an optimal schedule.
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In a multi-echelon assembly system each facility supplies at most

one immediate successor, but it may be supplied by more than one imme-

diate predecessor. External demands occur only at the final facility .

Clearly, the assembly of components into subassemblies and eventually

into one final product is an example of such a system. Also, the serial

system is a special case of this more general configuration.

Crowston, Wagner and Williams (1973) investigate the continuous

demand case with instantaneous production and integral lot sizes. Under

the assumption of a stationary lot size at each facility , it is demonstrated

that the optimal lot size at each facility is an integer multiple of the

lot size at the successor facility. This fact is used in the construc-

tion of a dynamic programming algorithm for the computation of optimal

lot sizes. Schwarz and Schrage (1975) omit the assumptions of instan-

taneous production and an integral lot size at the final stage and

present a heuristic solution technique and a branch and bound algorithm

to determine optimal lot sizes. In addition, Schwarz and Schrage assume

that no lot splitting is permitted. That is, no part of a lot produced

at a facility is available for use by its successor facility until the

entire lot has been completed .

For the case of dynamic demand in a multi—stage assembly system,

Crowston and Wagner (1973) present a dynamic programming algorithm

and a branch and bound algorithm to determine optimal lot sizes that

take advantage of Love type nested schedule for a particular cost structure.

In a multi-echelon arborescen-t system, each facility is supplied by

at most one immediate predecessor , but it may, in turn, supply more than

one immediate successor. External demands occur only at the facilities

without successors. A national warehouse which supplies a group of
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regional warehouses , each of which, in turn , supplies a group of retailers

is an example of such a system. An arborescerit system with only 2

echelons where the upper echelon consists of only a single facility is

referred to as a one warehouse, N retailer system.

A limited amount of research has been conducted concerning one

warehouse, N retailer and general arborescent systems. For the dynamic

demand case, Veinott (1969) discusses the possible extension of Zangwill’s

algorithm to problems with an arborescent structure. Kalymon (1972)

presents a decomposition algorithm which reduces the arborescent problem

to a series of single stage problems at each lowest echelon facility.

The dynamic demand case for the one warehouse , N retailer system will

be investigated further in Chapter 3.

For the continuous demand case, Schwarz (l97a) proposes the use of

“singl~ cycle” and “separate retailing” policies for the one warehouse ,

N retailer system. Attempts have been made (Graves and Schwarz, 1977)

to relate these policies to more general arborescent structures and to

determine the optimality of su~n solutions. A complete discussion of

these policies will be presented in Chapter 2 along with a theoretical

foundation detailing their relation to optimality.

V .



CHAPTER 2

CONTINUOUS ONE WAREHOUSE, N RETAILER PROBLEMS

2.1 Introduction

In this chapter we examine the continuous one warehouse , N retailer

production inventory system. We begin by introducing the basic assumptions

as well as some previously solved special cases. Schwarz (1973) has

proposed two basic production policies called separate retailing and

single cycle. We will reexamine both of these policies with particular

emphasis on algorithms to determine the optimal single cycle policy. We

will also carefully examine the optiiuality of single cycle policies for

several wider classes of production plans.

2.2 Basic Model.

The one warehouse , N retailer system is a special case of the

arborescent production inventory system discussed in Chapter 1. The lower

echelon consists of N “retailers”, that •is, those facilities that directly

experience the external demand and the upper echelon consists of one “ware-

house”, which is the predecessor facility to all the retailers. Raw

materials enter the warehouse, where some processing takes place. Units

flow from the warehouse to the retailers where final processing takes place

and these units then flow out of the system to satisfy external demand .

We will refer to the warehouse as facility 0 and we will refer to the N

retailers as facilities 1 through N respectively (Figure 2.1). This

structure of facilities is common to both industrial and military situations.

9

V .
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EXTERNAL DEMANDS

FIGURE 2.1 ONE WAREHOUSE , N RETAILER STRUC TURE

In the Air Force , for example , the lower echelon facilities are referred

to as bases and the upper echelon as a depot (Muckstadt , 1977).

In the continuous demand case , the demand at retailer i is assumed

to occur at a known constant rate Di. The demand rate may differ from

one facility to another . We will assume that the warehouse experiences

no external demand and thus the demand at the warehouse occurs at a

constant rate , D0, where

N
- D0~~ ~~ D~. . (2. 1)

i=l.

At each facility there is a set-up cost and a holding cost . In

particular , let

= Set-up cost incurred to produce a lot at facility i

and h1 = Echelon holding cost per unit held at facility i,
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where i 0,1,2,... ,N.

It is important to point out that the echelon holding cost is charged

against the echelon inventory, a concept first introduced by Clark and Scarf

(1960). For the retailers, the echelon inventory is the on-hand inventory in

the usual sense. For the warehouse, the echelon inventory is equal to the

inventory held anywhere in the system. The use of echelon inventory in

the model permits some very convenient simplifications but it has been

pointed out that the use of echelon inventory instead of the more typical

on-hand inventory may be confusing to anyone who wants to apply the

model in practice (Szendrovits , 1978). Schwarz and Schrage (1978) have

demonstrated that a policy which is optimal under the echelon stock

charging scheme is also optimal under a charging scheme based upon the

actual on-hand inventory.

With the cost structure defined in the above way , we can relax the

restriction that only the retailers directly experience the external demand .

If the external demand rate at the warehouse is D~~, one can add to the

problem an additional retailer with demand rate D~ , a set-up cost of 0

and an echelon holding cost of 0. This creates a one—warehouse, N÷1

retailer problem with no external demand at the warehouse which is equiva-

lent to the original problem.

The assumption that no lot splitting is permitted is common to much

of the research on multi-stage production inventory systems (Schwarz

and Schrage, 1975). The no lot splitting assumption states that :

(1) No part of a lot produced at a retailer may be used to satisfy

external demand until the entire lot is produced and (2) No part of a

I-.
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lot produced at the warehouse may be shipped to any retailer until the entire

lot is produced. This assumption simplifies the computational effort and

is quite realistic in many cases. For example, the warehouse and

retailers may be physically far apart and it is logical that units will

be shipped in bulk rather than individually. For the present, we will also

assume that no lot splitting is permitted, although we will examine the

alternative in a later section.

In addition , we will assume that the delivery times between the ware-

house and the retailers and between the retailers and the external customers

are constant. Given this assumption along with no lot splitting, we can

also assume that production is instantaneous. The results presented can

easily be extended to the case of finite production rates. Under no lot

splitting , no part of a lot can be used until the entire lot has completed

production and the flow of units through the system will remain unchanged

if we assume that production is instantaneous. Finally, due to the zero

delivery times and instantaneous production rates, units can be made

available to satisfy external demand at time zero. Thus, we may also

assume that the initial system inventory is zero.

2.3 Properties of an Optimal Solution

We will begin our investigation of production plans for the one

warehouse , N retailer production inventory system by introducing some

properties that optimal. policies must possess (Graves and Schwarz, 1977):

P1. Each facility produces (orders ) only when its on-hand inventory is

zero .

P2 . The warehouse produces only when at least one of its successors

produces.

0..
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P3. For each retailer, all lot sizes produced in the time interval

between successive production runs at the warehouse are equal.

Properties Pl-P3, stated in a slightly more general fashion , will

hold for the optimal policies of general arborescent systems as well.

The proofs of properties Pl-P3 may be found in Schwarz (1973).

We will define a simultaneous production point for a retailer ~

as a point in time when stage ~ and the warehouse produce simultaneously.

There is , clearly , a simultaneous production point at time zero for all

retailers in any feasible plans since we have assumed initial inventories

of 0. In order to ins(ire the existence of a simultaneous production

point, after time zero , it is necessary to assume that h
0 

> 0. If

h0 
= 0, the optimal policy for the warehouse is to produce an infinite

• lot size at time zero, regardless of the policy at any of the retailers.

Thus, if h0 = 0, the one warehouse , N retailer problem becomes simply

N independent one-retailer problems which have been thoroughly analyzed

(Hadley and Whitin , 1963). From this point on, we will assume that

h0 
> 0. Given this assumption, we can add the following properties :

PL~. The time interval between successive simultaneous production points

is finite for each retailer .

P5. The lot sizes for each retailer are non-decreasing between its

successive simultaneous production points.

Graves and Schwarz (1977) present proofs for properties P~ and P5.

In the proof for P’~, they incorrectly assume that the greatest lower

bound on an infinite set of positive numbers is positive . A revised

proof based in part on an incorrect proof by Graves and Schwarz (1978)

is presented below.
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Proof of P4. Consider some retailer violating P14 in an optimal policy F’.

For simplicity, we will assume that the only simultaneous production point

for retailer 3 is at time zero. (If this is not the case, a simple shift

of the time axis will make the proof valid.) Let I~ (t ) be the echelon

inventory of stage j at time t. Let {t
1
,t2 ,t3,.. .} be the times when

production takes place at the warehouse in P’. (The existence of such a

countable set of production points is assured if the set-up cost at the

warehouse or at all the retailers is strictly positive.) Let

1
rnifl 

= inf( I .(t,)}. That is, I.(t.) is the amount of inventory at] 1. J 1.

retailer j at a point in time when there is production at the warehouse.

There are two possible cases: Case 1, in which ~~~~~~~ > 0; and Case 2 , in
mm . -which I. = 0. The proof for Case 1 is presented in Graves and Schwarz

(1977).

The proof for Case 2 will construct a plan P with no greater cost

than the assumed optimal policy P’ and with a simultaneous production point

after time 0. In P, we will reduce the amount produced at the retailer

in P’ for a particular point in time. This reduction will force a group

of subsequent productions to be shifted earlier in time . This shift will

create a simultaneous production point in P.

In particular , define Q4 = sup {Q .4(t~ )} where are the times
-j i J

when production takes place at j  and Q~(t~) is the lot size at retailer

j at time T . in plan P’. Incidentally, < 
~
; otherwise, the cost

of P’ would be infinite, assuming of course the holding costs are posi-

tive. Let T = (h~/h0).~~ /D~ . Intuitively, Q~ /D~ may be viewed as the

maximum time interval between successive production runs at j.

Define t
k 

to be the smallest t~ >T. (Such a t
k 

exists if the

holding cost at the warehouse is non-zero.) Let c = mm (I~(t.)} >0.
i 1 ,2,. .. ,k

V.

—a
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(If c = I
1
(t~) = 0, then there is a simultaneous production at t

i
).

Consider policy P which is identical to P’ at the warehouse

except that at time 0 the warehouse produces c less than in P’

and at time t
k the warehouse produces s more. The echelon holding

costs at the warehouse on the interval (0,tk) in P are c•t
k•hO

less than the echelon holding costs on the same interval in P’. (See

Figure 2 . 2 . )

We will now show that it is possible to construct P at retailer j

such that the increase in costs from P’ is no larger than the decrease

in costs at the warehouse evaluated above. Let be the earliest time

after t
k 

when production takes place at retailer 3 .  Also let

= min {-r~~I Q
1

(’r )  > c}. That 15, T
m 

is the first production point for

which retailer j has lot size greater than c. Since Ir~ 
c, < t

2

or I
1
(t
2
) < £ contradicting the definition of c. We will denote the

production points at ~~, in the revised plan P , by ‘r
11’r2 Up

until time -r ’, P is identical to P’. That is,. r. = ‘r . and

Q!(t.) = Q.(t ) for 1 < i < m , where Q!(T.)  is the lot size, at

retailer j ,  at time T i in the - revised plan P. Let Tm = T,~ but

Q T )  Q . ( T ’ ) - e. The conditions on m will insure that this change

maintains feasibility at r~~. Since fewer units are produced at

to satisf y the demand at retailer 3 , the next production point, T~5f1

must occur earlier than to maintain feasibility. Since £ less

units are produced at t , r = ‘r ’ - c/D to insure feasibility.m m+l m+l
In fact, if we set Q~(t .) = Q~(T~) for m < i < t then all production

points t., , for m < i ‘C 9., are shifted earlier in time than the

corresponding production point in P to maintain feasibility and they

_ _ _ _

~~~~~:I’_ ~~~ 

~~~~~~
::-

~~ 

_ _ _ _- .



16

are all shifted back by the same amount, eID.. That is, Ti = -r. - cID~

for m < i < 9.. Finally, we add s units to the production at 1
9.
.

That is , Q!(r
9.
) = Q.(1 ) + c. On the interval (-r ,°’), P is identical

to P’.

To clarify this construction , at retailer j ,  consider Figure 2.2.

In this particular case , it is assumed that m = 14 , k = 4 , 9. = 7 and

c I~ (t2). The holding costs under both P’ and P are illustrated ,

with the holding costs under the revised plan P denoted by the shaded

area. P is identical to F’ on (0,t~ ) and on .(T;,~~). At ~~~ , ~

fewer units are produced in P and thus, retailer j reaches zero

inventory at T~ T~ — cID~ . 1
6 

and 1
7 

are also shifted c/D~ units

back in time from 1
6 

and T . . At T
7~ 

£ additional units are produced

and thus at 1; plan P is again in phase with F’.

Let us denote t as the production point in P’ at the warehouse
mm

for which ~~~~ = i.(t . ) = c. At (t . + LID.), in P’ , retailer j
3 j  miii miii j

- 
- has 0 inventory and thus, by the feasibility of P’ , (t min ~ =

for some m < I < 9.. Therefore , t . = -r ’ - ~~ . .. = 1. by the construc-
— miii i j  1

tion of P. Thus, t • = -r . is a simultaneous produc~~~. point after

t ime 0 in the plan In Figure 2 .2 , I~ (t 2 ) c and t 2 = is

a simultaneous production point in P.

It is obvious from Figure 2.2  that the holding cost in P is less

than the holding cost in P’ on the interval (0 ,17 ) and equal to the

costs in P ’ on ( r .,,.). In general , the only increase in costs , from

P’ to P , is on the interval (r 9., r ) .  In P . Q
1

( t )  additional

units are held over the interval (r ,r ) .  Therefore the increase in costs

can be written as

0. ,

. - - - - -
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h. • (c /D .)~ Q . ( T ) .

Furthermore , by definition Q~(t~) <Q ~, and t
k 

>T . Substituting in

the definition of ~ and rearranging terms , we see

c t k hO > e h . - Q . ID . > h . •( s / D . Y Q . ( t ) .

Therefore , the decreases in holding cost from F’ to P exceed the

increases in holding cost and since P has the same number of set-ups as

P ’ , P is no more costly than P’ . By repeated use of this construction

plan , we can show that there is a plan , at worst identical in cost to

the optimal plan , for which the time interval between successive simul-

tarieous production points is finite. D

2.14 Renewal, Single Cycle and Stationary Policies

We define a renewal policy to be one in which there exist points in

time t , 0 < t ‘C ~~~, at which all stages produce simultaneously . If

there exists a renewal policy with a point at which all stages produce and

some stage j has non-zero inventory, e, we can reduce the costs of

this plan by reducing the previous production lot at stage j  by C.

Thus , we will always assume that at each renewal point, all stages have

zero inventory. Given this assumption, the system at a renewal point

appears exactly as if we were starting the system again at time zero .

If a renewal policy is the overall optimal policy and the first renewal

occurs at T , we will clearly have renewals every T time units and

the policy will be the same between each pair of renewals. Furthermore,

V ., V

— —--~~ — ---~~~~~~----—- .— - - - - - -- -- . - - - -



in the best renewal policy the retailers produce the same lot size each

time they produce. Alternatively, we can state,

Lemma 2.1. The optimal renewal policy is stationary at the retailers.

Proof of Lemma 2.1.

Suppose the optimal renewal policy is not stationary at retailer j ,

i.e. between a pair of renewals, retailer j produces consecutive lots

of sizes Q
1 and Q2 where Q

1 � Q2. The holding cost in this policy

is:

-~Q1(Q1/D 1
) + ‘~Q2 (Q2 /D 1

) = ~{Q~+Q~)ID1.

Look at the revised policy where we produce two lots of size (Q 1÷Q2 )12.

This policy certainly is feasible if the original policy is feasible.

The cost of this policy is:

2(~.((Q1+Q
2

) / 2 ) ( ( ( Q
1

÷Q ) / 2 ) / D ) )  = ( ( Q
1+Q2

)/2)2/D1
.

2
So if 

2 ) < 2 then the revised policy is cheaper than the

original. This is clearly the case. 0

In a renewal policy , the warehouse produces at every renewal point

by definition. Furthermore, suppose that at every warehouse production

point, we also have a renewal. This special type of renewal policy is

referred to as a single cycle policy. The best single cycle policy is

clearly stationary at the retailers and at the warehouse.

LL ~~~~~~~~~~~~~~~~~~~~~
. __  

__
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The optimal single cycle policy may be found by solving :

N n .X. h .TD .
Minimize z = + , (2.2)

subject to T > 0, (2 . 3 )

n
0 = 1, ( 2 .4 )

> 1, integer for j  = 1,... ,N , (2.5)

where n . ,  j  > 1, is defined as the integer number of lots delivered to

stage j from the warehouse and T is the length of time between renewals .

The equation (2 . 2 )  is the expression for the average cost per unit

time for the single cycle policy (n
1,
n
2
,... 

~~~~ 
Clearly , if the

warehouse s.~ts up every T time units , the average set up cost per unit

t ime is K
0

IT. Retailer i sets—up a. times every T time units so

the average set-up cost per unit time for retailer i is n
~
K
1
IT. If

retailer i produces a lot of size at each production , then because
- Q •

of the constant demand rate D., the retailer holds —
~~

- units on the2

average. The total demand at retailer i during the cycle length T
T•D .

is T~D1. Since n~ equal lots are produced by Lemma 2.1, Q. = ni

l

The average holding cost per unit t ime at retailer i can therefore

be wri tten as h1T •D 1/2n1. The warehouse holding cost can be expressed

sl.g5~~ r1y because the echelon inventory is drawn down at the constant

rate , D0 . The validity of using the average cost per unit time formu—

].ation has been verified by Schwarz (1973).

In Figure 2.3 , a two retailer single cycle policy is illustrated

where n1 = 2 and n2 3.

- - 

:~~~~~~~~~~

‘ 

_ _ _ _
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Let us consider the implications of relaxing our assumption that

no lot splitting is permitted . In this case , we can also assume a finite

production rate p. at each facility i = 0,1,... ,N. If we start with

zero initial inventories , to insure feasibility , we must have

and

p. > D . for all facilities i.
1—  1

In this case, rather than having an immediate jump to a height of

Q.,, as in the no lot splitting case , the echelon inventory at facility

i increases for Q./p . time units at a rate of 
~~~~~~~ 

and then

decreases at rate D. for Q
~
/D. - time units. If the cycle

Length is T , then Q. TD~/n. for the single cycle policy

(n
1,n2 , .. .  ,nN ) .  In this case , the average echelon inventory held per

unit time at facility i can be expressed as

TD. D.
~~~~~~~ (1-p.) where p

~ 
= —#

Thus , the optimal single cycle policy , with lOt splitting allowed, may

be found by solving -

I -
_

_ _ _ _
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Minimize z = + 
h
1

TD
1 (1_n
.)

subject to T > 0,

n0
= 1 .~

n~ > 1, integer for j = 1,... ,N,

and =

Since p. is a constant we can define
1

h’. = h.( l—p .)
• 3 3 3

and the optimization problem above reduces to precisely the one described

by (2.2)-(2.5), that is, finding the optimal single cycle policy with no

lot splitting permitted.

- The following results concerning single cycle policies have been

established (Schwarz, 1973). . 
-

Theorem 2.1. For the one warehouse, one retailer system, the optimal

policy is a single cycle policy . 0

Theorem 2.2. For the one warehouse, N retailer system, where the N

retailers have identical costs and demand rates, the optimal pclicy is

a single cycle policy . 0

We can derive more general relationships concerning the optimal single

cycle policies and the retailer costs .

. 7  1
- ~~~~~~~~~~~~ -~~- - ~~~~ - . - .- - - -—- -—~~ ~~~~~~~~———.-..- - - - - -~~~~ -- -__________

0-,
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Theorem 2.3. If h.D./K. < h.D./K., then n~ < n’~ in the optimal single
1 1 1  3 3  3 1 — 3

cycle policy.

Proof of Theorem 2.3.

Suppose we have the optimal single cycle solution ~~~~~~~~ . ,n~)

and an optimal cycle length T* such that h
1
D
1/K1 ‘C h~D~IK~ but

> n~. The cost of this policy is less than or equal to that for all

policies with the same cycle length but a different vector of n.’s. In

particular , the cost of the optimal policy is smaller than or equal to

* .~ * * * * *the cost of the solutions (n
1,n1,

n3,.. ,n11~
) and (n2 ,n2,n3,...

both with cycle length T*. If we were to write out the cost function

(2.2) for these 3 plans with cycle length T*, the only terms that

differ involve retailers 1 and 2. Thus

n~K1 
n~K2 

T*h
1
D
1 

T*h
2
D
2 n~K1 + n~K2 T*(h 1D1 + h2

D
2
)

T* ‘ T* + 
* 

+ 
* T* + 

* 
(2.6)

and

n~K1 
n~K2 

- T*h
1
D
1 

T*h
2
D
2 n~K1 + n~K2 

T*(h
1
D
1 + h2

D
2
)

T* + T* + 
* 

+ 
* ~- T* 

÷ 
* 

. (2 .  )

n1 
.

Thus

n~K2 
T*h

2
D
2 n~K2 

T*h
2
D
2

T* + 
* — T~~~

+ 
*2n2 2n
1

and -

n~ K1 T*h1D1 n~K1 T*h1D1
T* + 

* ~ T* + 
*2n1 2n 2

Thus

(n~ -n~ )

0.,
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and
K T*h D

• (*_ *\ l < ll ( 1 2 1
2 ~\n2

fl
l

Dividing both sides of both inequalities by n~ - n~ > 0 we get:

h
2
D
2 

2n~n~ h
1
D
1

~2 (T*)2 ‘<1

h D  h D
This contradicts our original assumption that 2 2 

> 
1 1 

0

2 1

Theorem 2.14. If h.D./K. = h .D./K., then n~ = n~ in an optimal
1 1 ] .  3 ] ]  1 3

single cycle policy.

Proof of Theorem 2. 11.

• Suppose we have the optimal single cycle solution ~~~~~~~~ . ,n~)

and an optimal cycle length T* such that h
1
D
1
/K
1 h

2
D
2
/K
2 

but

� n~. The cost of this policy is less than or equal to that for all

policies with the same cycle length but a different vector of fl
j
’S and

as in the proof of Theorem 2.3 we again arrive at equations (2.6) and

(2.7). Thus

~*1( T*h D n*K T*h D2 2
÷ 2 2 < 12

÷ 2 2  (2.8)
T* * ~_ T *  

*2n2 2n
1

and
n~K1 T*h1D1 n~K1 -

T* + 
* — Te + 

* 
. (2 . 9 )

2n 2n 2

Rewriting (2.8) we have 

.
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(n -nt) < (T*)2(2~~2) (-~
;- - . (2.10)

2 n
1 n2

Since by assumption h
2
D
2
/K
2 

= h
1
D
1
/K
1
, (2.10) becomes

(n~-n~) < (T*)2(2~~l) (-i- - -
~;) 

. (2.11)
1 n1 n

2

By (2.9)

___  - k)~~
. (n~-n~). (2.12)

1 n1 n2

So clearly for (2.11) and (2.12 ) to hold simultaneously,  both relations

must be equalities which implies that (2.8) and (2.9) are also equalities.

Then clearly we can change the optimal policy from- ~~~~~~~~~~~ ,n~)

to either ~~~~~~~~~~~~ ,n~ ) or ~~~~~~~~~~~~ ,n~ ) without any increase

in cost . 0

2.5  Optimal Cycle Length and Separate Retailing

We will begin by examining the cost for a sun~le cycle policy in

greater detail. Recall (2.2)—(2.5)

N I n K  h T D \
- 

Min z 
~~

( 
~~~~~~ ~ 

i i ,
flj j

T > 0 ,

> 1, j = 1,... ,N.

-

~

-

~

‘ 
V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _
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For fixed values of ~~ j = 1,... ,N, the optimal T, denoted T*(n.),

satisfies :

N 1/2
2 ~ n.K.

T*(n.) = j=0 ~ (2.13)

~ h.D./n.
j=O ~ ~

and the optimal average cost per unit time denoted C*(n.), satisfies :

N N 1/2
C*(n.) = [2( ~ n.K.)( ~ h.D .In .)] . (2 . 14)

~ ~ j=0 ~

Since (2.2) is separable and convex in the ii., we may determine the

optimal ~~~ j = 1,... ,N, for fixed T, denoted n’~(T ) ,  as the smallest

n satisfying

V n~ (n .+l) > T 2(h.D
1
/2K~ ) . 

V 

(2.15)

Given the value C*(n
1
) as in (2.14), it is possible to show that if two

problems have the same basic cost structure , then the optimal solution

vector of n
1

t s will be the same. More specifi~a1ly , we can state

Theorem 2.5. If we have 2 different one warehouse, N retailer problems

with costs ~~~~~~~ and ~~~~~~~~ i = 0,... ,N where

= c I K m  i = 0,... ,N

and

~~~~~ = B.hi D
i 

i = 0 ,. . .

V.
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then the optimal single cycle solution vectors (nt,... ,n~
) and

,. . . ~~ ) are identical.

Proof of Theorem 2.5.

Suppose (nt,. .. ,n~) is the optimal solution for the first problem.
Then

~~~~~~~~~~~ < C(nl,...,nN
) for n

0 
= 1 and for all

integer , > 1  (2.16)

and by (2.14):

N N N N
[2( ~ n’~K .) (  ~ h . D ./n ~ )]1”2 < [2( ~ n .K . ) (  ~ h.D .hn .)]1”2

j = O ~ ~ j = O ~ ~ j = O ~ ~ j 0  ~ ~

for a
0 

= 1 and for all

n1,... ,nN , integer , > 1. (2.17)

Multiply both sides of (2.17 ) by (~ 8) l~’2 Then regrouping terms yields

N N N N
[2( ~ n~ zK 1 )( ~ 8h1D4 /n~ )]1”2 < [2( ~ n~aK., )( ~

‘ j =o ‘~~~ - 
— j =o j =o ~~

for n0 = 1 and for all

,n~, integer , > 1.

This clearly demonstrates that (nt , . . .  ,n~ ) is also the optimal solution

for the problem with costs ~~~~~~~~

These two problems do not have identical ratios but the relationships

between these ratios within each problem are the same . 0
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We will now examine the one warehouse , one retailer problem more com-

pletely. For one retailer, i.e. N = l , = D1 and (2.14) becomes

C*(n
1

) = [2(K
0
+n
1
K
1

)(h
0
D
1

+h
1
D
1
/n
1

)) 1”2. (2.18)

Given the convexity of the expression within the brackets of (2.11), the

optimal n1, denoted n~ , is chosen as the smallest integer satisfying :

n(n+l) > K0h1/K1h0. (2.19)

Thus we can explicitly solve the one warehouse, one retailer case

to find the best single cycle policy , which by Theorem 2.1 is the overall

optimal policy.

This suggests an alternat ive policy for the one warehouse , N retailer

system. If we split the one warehouse, N retailer system into N one

warehouse , one retailer systems and solve each of these one retailer systems

separately , we will arrive at the policy called separate retailing.

It is clear that the separate retailing policy is the overall opti.mal

solution for the special case- where = 0. If K~ = 0, then the

on-hand inventory at the warehouse is always zero in the overall optimal

solution. Therefore, the warehouse echelon holding cost, h
0
, is only

charged against the inventory held at the retailers . In this case , we

can solve N independent single facility problems with the ~
th such

problem having a set-up cost of K~ and a holding cost of (h
~

+ho),

V 
and then schedule set-ups at the warehouse whenever they are necessary .

By setting K
0 

to zero in (2.18) and (2.19) it is clear that the

procedure outlined above is simply separate retailing .

0. ,

- - - —---- ~~~- V - -~~
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2.6 An Algorithm to Find the Optimal Single Cycle Policy

In this section , we will present a method that is guaranteed to find

the optimal single cycle policy. Goyal. (19714) has presented an algorithm

that determines the optimum packaging frequency of items jointly

replenished . A number of items are manufactured jointly and then

packaged with different frequencies. Goyal’s method determines an

ii, the frequency of manufacturing set-ups for the product, and a K.,

the frequency of manufacturing set-ups for the product/frequency of

packaging set-ups, to minimize

= + ~ ~~~~~~~~~~~ + -~~- ~ ~~~~~~~~~~~~~ (2.20)
~ 2N j=O ~

where n+l number of items,

= manufacturing set-up cost,

= demand per year ,

= stock holding cost per unit per year,

and cost of a packaging set-up.

It should be noted that ~i is continuous and is discrete. If we

redefine,

= T, ‘~~~ = 0, = h~D~/2~ i~~~ = nj~ ~~~~~ = K~ and n = N

then (2.20) becomes 
V

V — V . - . .
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C(T~n~ ) = T(
•~ 0 

h~D~/2n~) + T~~ =0 
K~ .n~ )

N
= ~ (n.K./T + h. D .T/2n .) .  (2.21)’

j=O ~~ ~~

This is simply the cost of the single cycle policy given in (2.2) provided

a0 = 1. Thus , the algorithm presented by Goyal, with suitable redefini-

tion of terms , will find the optimal single cycle policy.

In order to understand Goyal’s method , we will recall from (2.15)

that given T , the best n., denoted n’~(T ) ,  has the property that

T
2
h.D.

n’~(T)(n ’~(T ) — 1) ‘C 2K
~ 

< n’?(T)(n~(T) ÷ 1) (2.22)

Thus ,

n.(n~ (T ) ( n~ (T) - l))~~~~
2 < T < n.(n~ (T)(n~ (T) + l) ) l/2 (2.23)

where ni = (2K1/h1D~
)1”2. (2.24)

For each retailer i, we can summarize this information as in Table 2.1

which gives the range of the cycle length T for which n
1

( T )  remains

constant. We can put all these tables together to form one master list

of intervals, 11,12,13,... where the values of a. remain unchanged in

each interval. We can then compute the cost of each permissible solution

by going through this master list interval by interval each time com-

paring the cost to the best value found so far. Since at each step we

only change a single n~ by one , we will eventually hit upon the optimal

solution.

-~~~~~~~~~~~ 
_  _   _

___ -- - - - - - 
V .  — - -~
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T n.(T) = 1 n.(T) = 2 n.(T) = 3 n.(T) = 14
1 1 1 1

Lower bound 0 ~ .(2 )~~
’2 

n.(6)~~
’2 

~.(2O)~~
2 

V

Upper bound r).(2)h/’2 ~.(6)
1”2 n1

(l2Y~
”2 

~.(30)~~
2

Lower and Upper Bounds for T for Different Values of n.(~’)

Table 2.1

It is clear from (2.13) that T*(n.) increases as the n. increase.

In particular,

T(l ,l,... ,l) < T( n
1
,n
2
,...

if at least one n. > 1 and all the other n. > 1. Thus we can begin
1

the Goyal procedure with cycle length T(l ,l,... ,l). To halt the

procedure we will use an upper bound on the value of T*. Clearly ,

K T*h D N n’~K. T*h.D.
* * 0 00 ii 11C(n1,.. . anN) = + 2 + 

i l  
‘
~
‘ + 

2n~

+ 
T*h

0
D
0 

+ 

~~ 1 
(2K

1
h
1D.)

L’2. (2.25)

This is the case because if we relax the integer restriction on the a.,

then

n.(T) = T(hjDi/2Ki
)1”2 = T/ni (2.26)

V — V~~~~~ V - -~~
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where n . is defined as in (2.24), and we can substitute this value for

• n.(T) into the cost expression and get (2K.h.D.)~
”2. In addition,

C(l ,l,... ,1) > C(n~ ,... ,n~)

so

C(l ,l,.. . ,i) > K0/T* + T*h0
D
0
/2 ÷ 

~ 

(2K.h .D .)~~
2
. (2.27)

Define

N

~(l ,l,1,... ,l) = C(l ,l,... ,~~~ - 
.~~ 

( 2K. h .D .) 1”2 . (2.28)
i=1

Thus

+ T*h
0
D
0/2 < ~(1,l,. . . ,l). (2.29)

The left hand side of (2.28) is convex in T* and theref ore

T* < (1,1,... ,l)

where

— ~(l ,l,.. . ,l) + [(
~ (l ,l,... ,1))2 - 2K

0h0
D
0
]~~

2

T(1,l,... ,l) h D V 
.(2.30)

0 0

This bound on T* can be used to halt the search procedure on the n ’s.

It should be pointed out that Silver (1975) has presented a simple

graphical procedure to solve the problem presented by Goyal. This same

procedure is not applicable to the single cycle problem because of the

restriction that the warehouse only produces once in each cycle

~ 

.-~
_.~VV- -



34

2.7 A Heuristic Algorithm to Find Good Single Cycle Policies

The Goyal algorithm , presented in the preceding section , increases

only one n~ by 1 at each iteration and at each iteration a comparison

is made to the incumbent solution. In the heuristic method , we will

reduce the number of comparisons to the incumbent by allowing the a.

to increase more quickly if possible. Given a set of n ’s we can

compute the best cycle length for those n
i
’s, denoted T*(n.), using

the formula in (2.13) and given the cycle length T, we can compute

the best unrestricted n.(T) using (2.26). The heuristic is essentially

an iterative procedure that alternates between computing the T*(n.) and

the n.(T). Since the minimum cost given a vector of n.’s, denoted

C*(n.) and computed as in (2.14), i~ not a convex function , we could

converge upon a local minimum by simply iterating back and forth between

T*(n.) and n.(T). We will avoid this problem - by’ insuring that the

cycle length is increased at each iteration which may force us to move

in a direction that does not decrease the cost, C*(n.).

As in the Goyal method , we will begin by evaluating T(l ,l,... ,l)

and C(l ,l,... ,l). We can compute the upper bound, T(1,l,... ,l) ,  on

T* using (2.30) as in the Goyal algorithm. We will use T(l,l,.. . ,l)
rh.D~ 1/2to compute the best unrestricted n.(T(l,l,. .. ,1)) = T(l,1,.. ‘ 3-

~ L ~
1(
~Jfor all i. We will examine all the lattice points surrounding this

possibly non-integral vector of n
i
’s. By examining all lattice points

surrounding the unrestricted n
1
’s, the - n’~(T) as defined by (2.15)

are included. We will, however, only compute the cost for a vector of

integer n
i
’s provided

0..
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> 1 1 = 1,... ,N,

n . > l  for some l < n . < N ,:~ 
—

~~~~~~
—

n. < a. if h .D . /K . <
1 J  1 1 1  3 3  3

and a. = a. if h .D ./ K . = h .D . /K . .
1 3 11 1 3 3 ]

Clearly, we need only check solutions th-at satisfy Theorems 2.3 and 2. 11. .

All the n. > 1 from the original statement of the problem and there

is no point in computing the cost of (1,1,... ,l) again.

Let

smallest integer greater than or equal to n
~

(T(l ,l,...

We can compute T(n
1
,n
2
,... ‘~N~ 

and check if this cycle length exceeds

the upper bound on T* determined using (2.30). If it does not exceed

the upper bound , we will compute the best unrestricted n ’s based on

this larger’. cycle length and repeat the procedure outlined above. If

it does exceed the upper bound , we will halt the procedure. It is also

possible that when we generate the new unrestricted n
1
’s that all the -

surrounding lattice points have already been examined. In this case,

we will halt the procedure as well. To improve the bounding procedure,

we can recompute the upper bound on T* whenever we find a better

incumbent solution by computing ~*(Incumbent) using (2.30).

To demonstrate the heuristic procedure , let us examine the following

example:
.-
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= .1, h0 1, D0 2 ,

= 99.9, h
1 

= 99, D
1 

= 1, (2.31)

= 99.9, h
2 

= 199, and D
2 

= 1.

To begin , we will compute ’ 1/ri. for all i, where r~. defined as in

(2.24). That is, l/~ . = [h.D./2K.]1”2. From Theorem 2.3, we know if

1/i~~ < 1/ri~ , then n
1 

< a
2
. For this example i/n

1 
= .7039 and

= .9980 so we need only examine those lattice points for which

a
1 

< n
2. Next we compute

C(l ,l) = 346.323, T(1,l) = 1.15 and T(l,l) = 6.266.

Next we compute the best unrestricted (n
1
,n
2

) for T(l ,l):

n
1

(T (l ,l) )  = l/~1.T(l,l) = ,8l26 and n
2

(T ( 1,l) )  = l/~2~T(l ,l) = 1.15.

The only lattice point to be examined is (1,2) since (1,1) has already

been checked and

C(l ,2) 346.727, T(l ,2) = 1.729.

Since T(l,2) < 
~F(l,l) ,  we continue to the next iteration. We compute the

best unrestricted (n1,n2) for T(l,2 ) :

n
1

(T(l ,2)) = 1.21 and n
2

(T( l ,2 ) )  = 1.72. 

— ——V—.--—-— — ‘-..--——.V’—..- — _
~~
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The lattice points surrounding (1.21, 1.72) are (1,1), (1,2), (2,1) and

(2,2). The first two of these four lattice points have already been

examined and the third can be eliminated since a
1 

> a2 and by

Theorem 2.3 this is impossible.

The only lattice point to be examined is ( 2,2) and

C(2 ,2) = 3147.11.32, T(2 ,2) = 2. 30 ‘C T(l ,l).

We compute the best unrestricted (n 1,n2) for T( 2,2):

n
1

( T ( 2 ,2)) = 1.61 and n
2

(T ( 2,2)) = 2.29.

The lattice points surrounding (1.61, 2.29) are (1,2) ,  (2 ,2 ) ,  ( 1,3) and

(2,3). Only the last two lattice points have not yet been examined.

Therefore we compute

C(l ,3) = 365 and C(2,3) 343.13125.

Clearly C(2 ,3) < C(l ,l) and (2 ,3) becomes the new incumbent solution.

We can compute T(2 ,3) < ~(l ,l) using (2.30) and

f(2,3) = 3.056.

To insure “that (n1,
n
2
) increase the most at the next iteration we next

compute T( 2,3) since (2 ,3) is the largest lattice point neighboring the

non-integer n
i
’s from the previous iteration. We therefore compute

T(2 ,3) = 2.912 < ~ (2 ,3)

‘ V
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and we continue the algor ithm by computing

n
1

(T (2 ,3)) = 2.05 and n
2

(T( 2,3)) = 2.91.

The only previously unexamined lattice points are (3,2) and ( 3,3). (3,2)

can be eliminated by Theorem 2.3 and so we need only compute

C(3,3) = 346.84 and T(3,3) = 3.457.

T(3,3) > f(2,3) and so we can halt the procedure. The best solution

found by the heuristic is (2 ,3) and , in fact, this is the optimal single

cycle policy for this problem .

It  should be pointed out that although the example presented above

has a local minimum at (1,1), the heuristic procedure does not get

“caught” by it. This is due to the fact that the heuristic does not

have to move in a direction that decreases cost. Regardless of the

costs, the heuristic increases the cycle length at each iteration.

2.8 
‘ Computational Comparisons

The Goyal and heuristic algorithms have both been programmed Th

order to assess the quality of the heuristic and possible differences

in computational effort. The problems ranged in size from 2 to 7

retailers , the holding and set-up costs were uniformly distributed on

the integers from 1 to 100 and the demand rates were uniformly distributed

on the integers from 1 to 10. The measure of effectiveness is the number

of times the algorithm computes the cost of a complete plan and compares

that cost to the value of the incumbent solution. To keep the two
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procedures on an equal footing, the updating of the upper bound on T~

discussed for the heuristic is not used .

On the average , the heuristic procedure performed better than the

Goyal algorithm. For the 1140 test problems , the Goyal algorithm

averaged 8.32 comparisons to the incumbent the heuristic averaged 6.61

comparisons per problem. More importantly, the heuristic found the

optimal solution in all 1140 problems. There is, however , one disturbing

factor. In 22% of the problems, the heuristic procedure required more

comparisons than the Goyal algorithm. In the worst case, the Goyal

algorithm required 119 comparisons and the heuristic 150. This might

seem contradictory , since the heuristic was constructed in such a way

as to allow the vector of n. ’s to increase more quickly at each

iteration than in the Goyal algorithm. The problem with the heuristic

lies in the examination of all the lattice points surrounding the vector

of non-integer n ’s. For certain problems , this can lead to a large

number of unnecessary comparisons when using the heuristic procedure.

As the number of retailers increases, the number of lattice points to be

examined at each iteration in the heuristic increases exponentially .

The performance of the heuristic therefore àeclines in relation to the

Goyal algorithm for larger problems. Fortunately , a simple selection

rule can improve the computational efficiency of the heuristic signif i-

cantly without greatly hurting its performance in terms of finding the

optimal solution. This improved heuristic will be discussed in the next

V section.

0..
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2.9 An Improved Heuristic Algorithm to Find Good Single Cycle Policies

In this section , we will discuss a method to revise the heuristic

algorithm presented in Section 2.7. Essentially, instead of examining

all the lattice points surrounding the non-integer n. vector , we will

examine only two particular lattice points. Thus the maximum number of

solutions to be evaluated and compared to the incumbent at each iteration

is two, regardless of the number of retailers in the problem.

We would like to ensure that the revised version of the heuristic

examines fewer solutions than the original heuristic. Since the maximum

number of solutions examined at each iteration in the revised heuristic

is fewer than in the original approach , we need only guarantee that the

number of iterations in the revised heuristic - does not increase from

the original. Recall that in the original heuristic , the largest lattice

point neighboring the non-integer vector of n.’s is the one which is

used to get the next value of T, the cycle length. This same rule will

be used in the revised heuristic and the increases in the cycle length

at each step, and therefore the total number of iterations,wil3. be the

same in both heuristics .

It should also be noted that if the two algorithms have the same values

for the cycle length , then the values for the best unrestricted n
1

t s

found using (2.26) at each iteration will also be identical. By examining

a selected group of problems for which the original heuristic performed

worse than the Goyal procedure, (Table 2.2) it was found that if in

addition to examining the largest latti5e point neighboring the non-integer

vector of n
i’
s we also examined the closest lattice point, then the

optimal solution remained among those solutions examined . This rule

0-V
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Set-Up Holding Demand Optimal # Comparisons
Costs Costs Rate Solution Cost Goyal Heuristic

Warehouse 24 27 18 (1,1,1) 816.9 1 2

Retailer 1 98 36 9
2 71 81 6
3 29 69 3

Warehouse 72 35 23 (1,1,2) 838.4 3 4

Retailer 1 92 4 10
2 25 28 5
3 35 93 8

Warehouse 65 95 26 (1,1,2,3) 1356.0 4 7

Retailer 1 78 11 6
2 99 66 7
3 7 59 7
4 5 914 5

Warehouse 70 65 16 (1,1,2,3) 778.7 5 8

Retailer 1 51 51 14
2 15 51 3
3 8 93 3
14 8 93 6

Warehouse 99 76 18 (1,1,1,2) 1184.9 2 3

Retailer 1 63 143 4
2 57 93 6
3 31 95 6
14 10 61 14

Warehouse 76 69 16 (1,1,1,2,2) 924.2 3 6

Retailer 1 62 44 1
2 50 98 1
3 19 25 8
4 10 88 2
5 13 77 14

Selected Examples: Heuristic Performs Worse than Goyal

Table 2 .2

- .. --- 
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performed better than picking n~(T) using (2.15).

One can also mathematically justify the use of the closest lattice

point. Let us consider a two retailer problem f or the moment. Given

a particular value for the cycle length T, the cost of the single

cycle policy where retailer 1 produces n
1 

times between each warehouse

production and retailer 2 n
2 

times can be written :

f(n 1,a2(T) = + 
Th
0
D
0 

+ 
n
1
K
1 ~ 

Th
1
D
1 

+ 
n
2
K
2 

+ 
T

~~~
2 (2.32)

and the gradient of f (n 1,n2IT) can be written

Vf (n
1,
n
2IT) ~~~~~~~~~ ~~~~~~~ ; ~~~~~~~~

_ 
2~ 2~~ (2 .33 )

2n
1 

2n
2

The unrestricted (n~ ,n~ ) pair is chosen by (2.26) which is equivalent

to setting V f (n
~ ,

n
~ IT) = 0. Let us approximate the cost , given T , at

the lattice point (n~ ,n~) by expanding the cost function about (n~ ,n~ ).

That is:

f(n~,n~lT) = f (n~ ,n~~T) + (n~-n~ , n~_rl~)
tV f (n~ ,n~ IT)

+ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
n~_n~)

t
. (2.34)

By definition , Vf (n
~ ,n~ IT) = 0, and from (2.33)

V 2f (n ~~,n~~I T )  = ( ~ ) . (2 .35 )

(n~ )~~~~

V.
-~~
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Therefore, we can rewrite (2.34) as

f(n
~ ,n~ IT) = f(n~ ,n~ JT) + ~~n~~n~ )

2 
(u1~~ ÷ ~~~~~~~~~~~~~~~~ (2.36)

and clearly the minimum functional increase in (2.35) over the value of

f (n
~ ,n~ IT) will take place at, the closest latti~e point to (n~ ,n~).

Therefore, we have demonstrated :

Lemma 2 . 2 .  If we have computed the best unrestricted n . ( T ) ,  i = 1,... ,N,

for a given value of T , then the closest lattice point to —

(n
1
(T),.. . ,n~ ( T ) )  will have the smallest increase in cost compared to

the cost at (n
1
(T),. . . ,n~(T)). 0

To summarize, the revised heuristic will examine only 2 lattice points

neighboring the unrestricted n
~
(T)’s at each iteration: the closest

lattice point, denoted (n~(T),. . . ,n~ ( T ) )  and the largest lattice point,

denoted (~ 1(T),... ,flN(T)). To review, let us rewrite the revised heuristic

as follows :

Step 0: Set the active node equal to (1,1,... ,l). Set the incumbent

solution equal to (l ,l,...,l) with cost C*(1,l,...,l)

using 2.9. Compute f, the upper bound on T*, using (2.28).

Go to step 1.

Step 1: Compute T = T* (active node). If T > F, halt. Otherwise

go to step 2.

Step 2: Compute the best unrestricted n.(T) (insuring n~(T) > 1)

- V ‘ i = 1,... ,N using (2.26). If (n~(T),.. . ,n~
( T ) ) ,  the

closest lattice point, was not previously evaluated , then

‘

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 

-
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compute the cost and compare it to the incumbent. Go to

step 3.

Step 3: If (~1
(T) ,. . . ~r1}~( T ) ) ,  the largest lattice point, was not

previously evaluated then compute its cost, compare this

cost to the incumbent, set the new active node equal to

(~ 1
(T),.~~ ,~N

( T ) ) ,  and go to step 1; otherwise , halt.

2.10 Computational Comparisons for Revised Heuristic

The decision rules in the revised heuristic were based in part

upon the perf ormance of the original heuristic on a particular series

of test problems. To assec .. the performance of the revised heuristic

adequately in comparisor to the Goyal algorithm, it was necessary to

generate a new series of 175 test problems. The problems ranged in

s’ze from 3 to 7 retailers, the set-up costs were uniformly distributed - 

V

on the integers from 1 to 100, and the demand rates were uniformly

‘~~3tributed on the integers from 1 to 10. The holding costs were

uniformly distributed on the integers from 1 to 10, from 1 to 100 and

from 1 to 1000 for various groups of problems. The results for these

175 test problems are summarized in Table 2.3. In these 175 test

problems, the Goyal algorithm averaged 8.43 comparisons to the incumbent

per problem and the revised heuristic only 2.22 comparisons, a 73.6%

improvement. In addition, even for these relatively small test problems,

the revised heuristic solved the 175 problems in 3.16 seconds, the

GoyaJ. algorithm in 3.5 seconds. For these small problems, the average

computation time is still very short for both procedures. -

- V

- 

- V 

--- - 
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No. of No. of Holding # Comparisons
Retailers Problems Cost Range Goyal Heuristic # Optimal

3 25 1—10 109 31 25

3 25 1—100 121 31 25

3 25 1—1000 180 45 25

5 25 1—10 119 56 24

5 25 1—100 342 79 23

5 25 1—1000 300 63 24

7 25 1—1000 304 83 25

Totals: 175 1—1000 1475 388 171

Performance of Revised Heuristic vs. Goyal Algorithm

Table 2.3

The examination of only 2 lattice points has eliminated the problem

of the original heuristic examining too many possible solutions in a

significant proportion of the problems. In only 1 example out of 175 does

the revised heuristic involve more comparisons than the Goyal procedure

and the difference is only a single comparison. (For this one example

the heuristic reevaluates a previously examined solution because it

only checks this solution for repetition against those generated at the

preceding iteration rather than 2 iterations back.)

Although the revised heuristic requires less computational effort

than the Goyal approach , it no longer finds the optimal solution for

every test problem. In four out of 175 cases (Table 2.14) or 2.3%

the heuristic fails to find the optimal solution. Essentially , in

these examples the heuristic is examining the wrong lattice point at a

particular iteration. The average absolute error, for these four problems

I _ 
.T -.
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No. of Cost ofComparisons Final Incumbent Solution Absolute %To Incumbent Error Error

Goyal Revised
Heur. Goyal Heur. Goyal Heur.

20 6 771.9117 772.2543 (1,1,1,4,6) (1,1,1,3,6) .3426 .044%

75 9 757.9408 758.6303 (1,1,2,6,7) (1,1,2,5,6) .6895 .091%

11 6 3378.9765 3382.9260 (.1,1,1,1,4) (1,1,1,1,3) 3.9495 .12%

12 5 369.4374 379.0333 (1,2,2,2,3) (1,2,2,3,3) .5959 .16%

Examples Where Revised Heuristic Fails to Find Optimum

Table 2.4

in error, is 1.39 and the average percentage error is only .1%, certainly

small enough to be acceptable for all practical purposes.

The improved heuristic was also tested on a series of larger problems V
with real demand rates and holding costs for a large corporation. There

were 20 retailers in these problems each with identical set-up and

holding costs. The demand rates for retailers 2-20 were integer

multiples of the demand rate at retailer 1 ranging from 2D
1 

to lOOD
1
.

The holding cost at the warehouse was 1.06 times the holding cost at

the retailer and the set-up cost at the warehouse was varied to test

the effectiveness of the two procedures. The results for the two

algorithms are summarized in Table 2.5. Because of the similarity in

cost structure , it is only necessary to examine selected examples

(Theorem 2.5).

In all the examples tested , the heuristic found the optimal solution.

More importantly, the heuristic seemed to remain as effective, both in

terms of the number of comparisons and in time , as the set-up cost at

‘V 
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K ~ Comparisons Execution Time (seconds )
0 Goyal Heuristic Goyal Heuristic

2K
1 

7 5 .07 .07

10K
1 

7 14 .06 .0 7

lO OK
1 

40 8 .13 .08

1000K
1 

193 6 >.41 .08

Selected Computational Comparisons for Revised Heuristic vs.
Goyal on 20 Retailer Problems

Table 2.5

the warehouse was increased relative to the set-up cost at the retailers.

The Goyal procedure , on the other hand , became much worse than the revised

heuristic, by either measure, as the set-up cost increased . As the

set—up cost at the warehouse increases, the number of times the retailers

produce within each cycle increases as well. The GoyaJ. procedure only

increases one n~ by one at each iteration and the heuristic can make

larger jumps and save a great deal of computational effort.

Graves and Schwarz (1977) have presented a branch and bound algorithm

to find the optimal single cycle policy. Although no direct comparisons

have been made, the improved heuristic seems superior for larger numbers

of retailers. There have been no indications that the improved heuristic

fails to find the optimal solution as frequently for problems with a

larger number of retailers as was the case for the branch and bound

algorithm of Graves and Schwarz. Although computation time seems

comparable for the two approaches on small test problems , the enumeration

tree in the branch and bound algorithm has a level for each retailer and 

-.- -_ V . V . . ~~~~~~~~~~ _ V~~~~~~~~~~~~~~~~~~
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for extremely large problems, the storage requirements may be unwieldly.

Also , at every level of the enumeration tree there is a branch for each

integer value of n . . Thus, for those problems where the n .’s get

large and the Goyal algorithm performs much worse than the revised

heuristic, the enumeration tree in the branch and bound algorithm also

will be wide at each level. Although no definitive statements can be

made without further direct comparisons, the iterative heuristic seems

at least as effective, if not more so for large problems, than the

existing solution techniques.

2.11 Single Cycle Policies and Optimality

With the computational techniques discussed in sections (2.6)—(2.1O),

it is possible to determine the optimal single cycle policy. The major

remaining question is whether a single cycle policy is the overall

optimal policy. The answer to this question is yes, in the cases of

one retailer or N identical retailers from theorems 2.1 and 2.2, but

we are interested in examining the correlation between single cycle

policies and overall optimal policies in more general cases.

Let us begin by recalling the example used to demonstrate the

heuristic algorithm :

K
0 

= .1, h
0 

= 1, = 2,

1(1 99.9, h
1 = 99, = 1, (2.31)

1(2 = 99.9, h
2 

= 199, and p2 = 1. 
V

For this example , the optimal single cycle policy has (n 1,n2
) = (2 ,3)



with an average cost per unit time of 343.13125. Let us split the problem

into two independent one warehouse , one retailer problems , and then deter-

mine the best “separate retailing” policy as discussed in Section 2.5.

First, we compute

K0h1
/K
1
h
0 

= 9.9/99.9

and K0h2/K2h0 = 19.9/99.9

and in both cases , the smallest integer a such that n(n+l) is greater

than these quantities is one and thus best separate retailing policy has
SR SR . .

~~ ,n~ ) = (1,1) and the average cost per unit time of this policy

from (2.18) is:

[2 (K 0+l. K1
)(h 0D1÷h1D1/l) ]1”2 + [2(K 0÷1~ K2

)(h
0D 2+h 2D 2/ l) ]1”2 = 341.42.

We have therefore demonstrated,

Theorem 2.6. The overall optimal policy may not be a single cycle policy

and

Corollary 2.7. The best separate retailing policy may be less costly than

the best single cycle policy.

In the best separate retailing policy described above, the retailers

have optimal lot sizes of

Q
SR 

= T~~•-D
1 

= 
[2(X o+K1

)D

1]
l/2 

= /~~ and
0 1 (2.37)

V 
- SR - SR ...r2(1(0÷1(2)D21l12 

-- T
2 

•D2 L h0+h 2 J - 1,

______________________
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where T~R and T~R can be derived from (2.13) for one retailer. This

separate retailing policy is stationary at the retailers but not at the

warehouse. The warehouse produces lots of size ~ when it is producing

for retailer 1 and lots of size 1 when it is producing for retailer 2.

Consider now the stationary policy based upon the separate retailing

plan described above. The retailers again have lot sizes of I~i and 1;

but, the warehouse produces a lot size of 1 + i/ 1 whenever its on—hand

inventory is insufficient to meet a retailer ’s demand requirements. To

evaluate the average cost per unit time for this stationary policy , it

should be noted that, on the average the warehouse sets-up once every

(1 ÷ v’~)/2 time units and the average on-hand inventory per unit time

at the warehouse is (1 + “~)/2. Thus the average cost per unit time

for this policy is :

c = .l( 2 
~~~ 1(1 

+ ~~~~~~ 99~9 + + 100 (~
)+ 200(1)$ \ l + v ~~J \ 2  j  1 2 2

warehouse costs retailer retailer holding
set—up costs costs -

= 342.54. -

Thus this stationary policy, although more costly than the best separate

retailing, is less costly than the best single cycle policy. 0

The stationary policy described above cannot be a single cycle policy

since there are no renewal points after time zero. (Due to the

irrationality of f~~, retailers 1 and 2 never produce simultaneously

after time 0). This example therefore proves,

- . V— ~.~~_ _ _- V _



51

Theorem 2.8. Among the class of stationary policies, a single cycle

V policy need not be optimal. 0

Theorem 2.8 contradicts Theorem 1 of Graves and Schwarz (1977) which

states, that the optimal stat~~nary policy for a one—warehouse, N

retailer system is indeed a single cycle policy . Their proof of

Theorem 1 is in error because it relies upon the application of proper-

ties P1 and P14 to the optimal stationary policy. These properties which

hold for the overall optimal policies need not be valid for optimal

stationary policies.

Even if we had not previously computed the cost of the best separate

retailing policy, it is obvious that the stationary policy constructed

above cannot be the overall optimal solution. The irrationality of

in addition to precluding the existence of renewal points as

discussed above , also forces the warehouse to produce when its on-hand

V inventory is greater than zero. This violates property P1 which holds

for all overall optimal policies. Graves and Schwarz (1978) have

suggested that if we restrict our attention to the class of stationary

policies which satisfy Pl-P5, then among this class of policies , a

single cycle policy is optimal. This, however , is also not the case and

we can prove

V 

Theorem 2.9. Among the class of stationary policies satisfying P1-PS ,

a single cycle policy need not be optimal.

Proof of Theorem 2.9.

The proof will be by construction of an example for which there

‘V
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exists a stationary policy satisfying Pl-P5 with lower cost than the best

single cycle policy .

Consider the following one-warehouse , two retailer example :

K
0 

= .1, h0 = 1, D
0 

= 1 +

1<1 
= 34.9, h

1 
70/i - 1, D1 =

K2 
= 99.9, h~ 199, D

2 
= 1. (2 . 3 8 )

For this exampl e, one can determine that the -best single cycle policy

has (n
1,
n
2
) = (3,2) with average cost per unit time equal to 300.38022.

- . . . . SR SRThe best separate retailing policy for this problem has (a
1 ,n2 

) =

(1,1) and an average cost per unit time of 298.99494. The optimal 1~t

sizes for this separate retailing policy are :

SR r2(K0÷K1)D
11 

1/2

~1 L h0
+h
1 J = 1  and

V 

Q
SR [2(K 0

sK
2

)D
2]l

/2 
= 1. (2.39)

Therefore retailer 1 produces a lot of size 1 every l/V’
~ time

units, retailer 2 produces a lot of size 1 every 1 time unit and

the warehouse produces a lot of size 1 each time either of the

retailers produce , except at time zero where the warehouse produces 2.

Let us examine the stationary policy where the retailers follow the

same policy as in separate retailing and the warehouse produces 2

each time it produces. The average time between productions at the

— — — — -V—-- .—-.— —V-- -V- - V----

-
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warehouse is 21D
0 

= 2/ ( 1  + v’~) and the average inventory held physically

at the warehouse is 1/2. The average cost per unit time for this

stationary policy is:

= .i(1 
~~~~~ 

1(4) + (34.9)(/~) + 99.9 + 100 + 35/i

warehouse costs retailer set—up retailer
costs holding costs

= 299.37423.

Due to the irrationality of /~~, there is no point at which retailer 1

and retailer 2 produce simultaneously after time 0. Thus there are n~

points after time zero where the system inventory is zero, hence no

renewals. Due to the fact that both retailers have identical lot sizes,

the warehouse will only produce when it has zero inventory on-hand. Thus,

property P1 is satisfied for this stationary policy. Properties P2-P5

are obviously also satisfied and therefore this policy is stationary ,

satisfies P1-P5, and has lower cost than the best single cycle policy

thereby establishing Theorem 2.9. 0

As mentioned earlier , in the proof of their Theorem 1, Graves and

Schwarz (1977) applied properties P1 and P4 to the optimal stationary

policy which may not be valid. However, if we restrict our attention

to the class of stationary policies satisfying properties P1 through

P5 , then the proof of Theorem 1 would seem to demonstrate that among this

class of policies , a single cycle policy is optimal. Theorem 2.9 disproves

this conjecture and therefore there must be an additional flaw in the

arguments presented by Graves and Schwarz. The flaw lies in the

-— . ---.V-- ~~~~~~~~~~ -. V - .- V.V -_e_~---_
__
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assertion that stationarity and property P14 together imply that there

exists an integer such that every n
k
th production run at the

warehouse is a simultaneous production point for retailer k. Although

property P4 implies that the time interval between simultaneous produc-

tion points is f inite , it is not necessarily the case that this time

interval is also constant. In the example used to prove Theorem 2.9,

the irrationality of ,~3 and the lack of renewal points causes the

time interval between simultaneous production points to differ over

time. Thus, there is no single integer n
k 

such that every n
k
th

production point at the warehouse is also a production point for

retailer k. .

To summarize, we have demonstrated in Theorems 2.6, 2.8 and 2.9

that a single cycle policy need not be optimal for increasingly

more restrictive classes of policies. A common property of all the

examples pr esented in this section is the lack of renewal points

in those policies that are less costly than the best single cycle

policy. Further investigation of single cycle policies as a member

of the class of renewal policies is warranted and this is the subject

of the next section.

2.12 Single Cycle Policies and Renewal Policies

A single cycle policy is a special case of a renewal policy.

In this section , we will derive results concerning the holding cost in

multiple-cycling policies and then demonstrate that, in certain

instances, single cycle policies are indeed optimal.

We begin by noting that the example used to prove Theorem 2.9 has a

stationary , non-renewal policy that is less costly than the best single

V -
V V~~~~~ -~~
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cycle policy. The following theorem relates optimal , stationary and
V 

renewal policies.

Theorem 2.10. If the overall optimal policy is stationary , then it is a

renewa l policy.

Proof of Theorem 2.10. V

We begin by assuming that the optimal policy is stationary and has

no renewals. In this case, we will construct a non-stationary poltcy 
V

which has lower average cost per unit time than the hypothesized optimal

policy.

By stationarity and property P1, retailer i has a production point

every T. = Q
i
/D. time units. By property P2, the warehouse produces

• only when at least one of the retailers produces and thus, without loss

of generality, we may assume that the first warehouse production after

time zero is a simultaneous production point for retailer 1; that is,

the first warehouse production point af ter time zero is at time

k
1 

integer. During k
1
T
1
, lots of size Q.., including the

lot at time zero, are required for retailer j ,  where lxi is the

~~k T
smallest integer greater than or equal to x. Let k. = 1 

-

k
1
T
1 j

T 
cannot be an integer for all j � 1, or k1T1 would be a

renewal point, contradicting the hypothesis.

Since property P1 must be satisfied for the optimal solution, the

warehouse must have zero inventory on-hand at k1T1. Therefore ,

V ~o = k1Q1 + 2 [~ ll Q~ = k
1Q1 

+ 
j~ 2 

~~~~ (2.41)

‘V

-- . - - V .  - - - -  V V -~~
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Since we have assumed that the first warehouse production occurs at k
1
T
1
,

it is clear that

(k .-1)T. < k T < k.T. for ~ � 1. (2.42)
j j 1 1—  j j

In fact, this inequality must be a strict inequality for at least one

retailer or the system would have a renewal at time k
1T1

.

It is also clear from (2.41 ) and stationarity that the length of

time between successive warehouse production points is greater than

or equal to min(k
1
T
1
,k
2
T
2
,.. . ,k~T1~

}, which is equal to k
1
T
1 

by (2.142).

Thus, all warehouse production intervals have length at least k
1
T
1
.

Now consider those intervals where the on-hand inventory is zero

at the warehouse. Due to the lack of renewals, intervals with lengths

equal to infinitely many values between 0 and min(T1,T2,.. . ,TN ) may

be found. Let

6 = k
1
T
1~
min (Q

1
/(Q

0
+Q.)). (2.43) V

Look at an interval , (p
1

,p
2

) ,  with zero on-hand inventory at the

warehouse beg inning at time p
1 

and lasting until time p
2 

and length

6’ , 6 ’ < 5. Let p
0 

be the time of the warehouse production point

iunnediately preceding p
1
. It should be noted that p

0 
and p

2 
are

warehouse production points, while is a production point for a

retailer, or some group of retailers.

In the present policy, Q0 units are produced at the warehouse

at times p
0 

and p
2
, and zero units are produced at the warehouse

at time p
1
. At least one retailer produces at time p1

, and we will

V..
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denote the total produced , at this time , over all retailers by Q. Clearly,

Q >  Q. for some j .  (2.44)

Consider a policy which is identical to the original optimal policy

at all the retailers but is revised at the warehouse as follows:

(1) Produce Q 0 - Q at time p
0
,

(2) Produce Q0 
+ Q at time p

1
, and

(3) Produce 0 at time p
2
.

The only cost differences from the original production plan are over

the interval (p
0

,p
2
). The set-up costs remain unchanged ; but , in the

revised policy , Q fewer units are held over the time interval (p
0

,p
1
)

and Q0 additional units are held over the time interval (p
1

,p
2

) as

compared to the original plan. Therefore, the net change in inventory

of this revision equals

Q0
(p
2—p1

). -

Let us assume that

6’ = (p
2—p1

) > (
~/Q0

)(p
1
—p
0
); (2.’45)

that is, the revised plan carries at least as much inventory at the ware-

house as the original plan.

As discussed earlier , all warehouse production intervals have length

at least k
1
T
1 

and therefore



58

p2 — p0 .~~ k1
T
1
. - (2.46)

But p2 
— p0 

= (p
2-p1

) ÷ (p
1
-p0
) = 6’ + (p

1-p0
). From (2.46),

and , therefore, ( 2.45 ) implies

6’ > (~/Q0
)(k

1
T
1
— 6’). (2.147)

Since Q >  Q. for some j ,

6’ > (Q./Q
0

) (k
1
T
1-
6’) for some j .

Rearranging terms, we see that

6’ 
(

0~~~
) 

~~~~~~~~~~ (k
1
T
1

) for some j ,

or 6’ 
> (Q~~Q)kl

T
l 

> k
l
T
l~
min
(Q

~~~~
) 

= 6 by definition.

This is clearly impossible by the choice of 6’ , which is strictly smaller

than 6. Therefore, this revised plan has fewer units of inventory carried,

and hence lower cost, than the original over the time interval (p
0

,p
2
).

By repeating this construction for all intervals with zero on-hand

inventory at the warehouse and length less than 6, we have demonstrated 
V

that there exists a policy with lower average cost per unit time than the

hypothesized optimal policy. This establishes Theorem 2.10. 0 V

_  
_ _ _

V 
p~~~~~~~V V~~~ V V V V V V ~~~~~~~VV ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ VV
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Theorem 2.10 indicates that further examination of stationary renewal

policies is in order. In stationary renewal policies, a renewal point

will occur at every n
0
th warehouse production point, where n

0 
> 1

and integer . Clearly , if n
o 

= 1, we have the usual single cycle policy .

If n
0 

> 1, we will call this policy a multiple cycle policy.

We will demonstrate that for a particular problem , the best single

cycle policy may have higher average cost per unit time than a multiple

cycle policy . This is not as obvious a fact as it may seem . Multiple

cycle policies do constitute a wider range of policies than single

cycle policies , since n
0 

is not constrained to be 1. But the warehouse

echelon inventory in a multiple cycle policy may not be easily computed .

To illustrate some of the properties of a multiple cycle policy,  let

us consider the multiple cycle policy with (n
0,n1

,n
2

) equal to ( 2,2,3)

and T equal to the time between renewals. We begin by developing an

expression to represent the average cost per unit time of this policy .

Retailer 1 produces lots of size Q1 at times 0 and T/2 .

Retailer 2 produces lots of size Q2 at times 0, T/3 and 2T/3.

In this multiple cycle policy , as in a single cycle policy , retailer 1

holds an average of Q112 units per unit time , and retailer 2 holds

an average of Q
2
/2 units per unit time.

By stationarity , the warehouse produces two lots of size Q0, where

TD TD TD 2Q 3Q

0 n
0 

2 2 2 2

If the warehouse was to produce at times 0 and T/2, then the average

amount of inventory held per unit time would be Q0
/2 as in a single

-

~ 

-~ - -- - _ _ _

~~~~~~~~~~

-- - ---- -- - - - -- --~ ----~~~~~~~-- V -~~
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cycle policy . Unfortunately , this plan is infeasible.

Consider Figure 2.14, which illustrates the amount of echelon inventory

in the multiple cycle policy (2,2,3). In addition , the on-hand inventory

at the warehouse is represented by the shaded area. At time zero,

is produced at the warehouse and lots of Q
1 

and Q
2 

are sent immediately

to retailers 1 and 2 , respectively. From (2 . 4 8) ,  this leaves the

warehouse with an on-hand inventory of Q
2
/2. At time T/3, retailer 2

requires another lot of size Q2 from the warehouse. But the on-hand

inventory is insufficient to meet this need . To maintain feasibility ,

the warehouse must produce a lot of size Q 0 at time T/3.

Recall that if the warehouse produces at times 0 and T/2, then

the average echelon inventory is Q0/2 . In the actual plan, the ware-

house must produce at T/3 rather than T/2 and thus the total echelon

inventory for the cycle T is increased by Q
0

(T/2 - T/ 3) = Q
0
T/6.

The increase in the average echelon inventory per unit time is Q
0
/6.

Thus the average warehouse echelon inventory per unit time is

~l 1)_ 2
2 
+ 
6 3 

(2.4 )

For each facility i, including the warehouse, n.K. is the cost

of set-ups in each cycle of length T. Thus, the average set-up cost

for facility i, per unit time is n
~
K
i
/T.

Given (2.49), we can now express the average cost per unit time

of the multiple cycling policy (2 ,2,3 ) as

2K +2K +3K

T 
2 ÷ h

o(*Q o
) + h

1
(-~~Q1

) + h
2(4Q 2

). (2.50)

1.,

-d
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— —
p 

3Q1+-~Q2

C~~~~~N~~ 

\ IREHOUSE#10~~~ii 1

- F GURE 2.4 MULTIPLE CYCL E POLICY WITH n0~2, n1~ 2, n2z 3
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By stationarity , 
~~ 

= TD ./n 1 for all i. Then for this example with

(n
0
,n
1
,n
2
) = (2,2,3) we can rewrite (2.50) as

2K
0 

21(
1 

÷ 3K
2 
+ T (h oDa 

+ 

h1D1 
+ 

h2
D
2) . (2.51) 

V

Therefore , given the choice of (n 0 ,n1,n 2
) (2 ,2 ,3) ,  it is clear that the

optimal cycle length T*(2,2,3 ) is given by

r 2K +2K +3K 11/2
T~ (2 ,2 ,3) 

[
h0D h1D1 h2 D

2j  
(2 . 5 2 )

3 ~~~4

and the average cost per unit time obtained when T*(2,2,3) is substituted

into (2.51) is given by

h D  h D  h D  1 1/2
C*(2,2,3) = 2 [(2K0 

+ 21(
1 
+ 3K ) ( o ÷ 1 1 

+ 
2 2~~

j

Consider the following one warehouse, two retailer system with costs

and demand rates as follows :

= 1, h0 = 1, = 2 ,

K
1

17 , h
1

l0, D
1

1,

K
2

17, h
2

22 , and D
2

1. (2.5 14 )

We can compute the cost of the multiple cycle policy (2,2,3 ) for this

example using (2.53) and we find

C+( 2,2,3) = 48.7647.

V -~~ V - -~~
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However , the best single cycle policy (1,1) has cost

C~ (1,l) = 148.7852

and , therefore, we have demonstrated

Theorem 2.11. Among the class of stationary renewal policies , a single

cycle policy may not be optimal. 0

It is clear , however , that the multiple cycling policy discussed

above cannot be the overall optimal solution either. Note that property

P1 is violated at time T/3. That is, the warehouse produces at time

T/3 with an on-hand inventory of Q
2
/2. Clearly , if the warehouse

produces Q212 fewer units at time zero and Q2/2 more units at time

T/3, feasibility will be maintained and the average inventory per unit

time at the warehouse will be lower than in the multiple cycling policy

discussed above. Thus, there is an easily constructed non-stationary

policy with lower average cost per unit time than the multiple cycling

policy (2 ,2,3). V V

V 

Furthermore, it is possible to perform the same type of shifting

of production for any general multiple cycle policy, thus demonstrating

that a multiple cycle policy cannot be the overall optimal policy. We

know by Theorem 2.10, that if the overall optimal policy is stationary

then it is a renewal policy . Therefore , we have shown

Theorem 2.12. If the overall optimal policy is stationary, then it is

a single cycle policy. 0

..11

v- V

V —-------~~- V - . V -~~~
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We would also like to compare the quality of single cycle policies

to multiple cycle policies in more general cases. In order to do this ,

it is necessary to derive a general expression for the echelon holding

costs at the wareI~ouse , as we did earlier for the multiple cycle policy

(2,2,3) .  Unf ortunately , it is impossible to derive an exact expression

based solely on the policy (n0,n1,n2,. ~~~~ This can be seen by the

following result.

Theorem 2.13. In a multiple cycle policy (n
0,
n
1
,.. . ,n~ ) ,  the echelon

holding cost at the warehouse is dependent upon the lot sizes

‘~~N~~
•

Proof of Theorem 2.13.

Consider the multiple cycle policy with (n 0,n1,n2) = (2 ,3,5) .  Assume

that the cycle length is T. By s-ta-tionarity , Q0 = 
~
- Q1 + } Q2 . At time

4, the warehouse has 4 Q1 ÷ 4 Q2 units on hand and units are

required for retailer 1. If < Q1, then the warehouse must produce

Q0 units at time 4 . If 
V~~~~2 

> then the warehouse need not produce

at time 4 but it will have to produce at ~~~~~~. Thus if Q2 < Q1, the

average echelon inventory at the warehouse is Q0(4 + ~ .) and if Q1 < Q2 ,

the average echelon inventory at the warehouse is Q

0
(4 

+ h.). This

demonstrates Theorem 2.13. 0

It is clear from the example above, that for n
0 

= 2, the echelon

inventory at the warehouse is determined by which retailer has a simul-

taneous production point with the warehouse after time zero. Similarly,

if a
0 

> 2, then the echelon inventory at the warehouse is determined by
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the sequence of retailers having simultaneous production points with the

warehouse . The problem of determining the warehouse echelon inventory

for a general sequence of retailers appears impossible but we can

analyze a special case.

Theorem 2.1 14. For the multiple cycle policy (n
0,
n
1
,... ‘~ N~ ’ 

~f each

warehouse production point is a simultaneous production poin t for the

same retailer i , then the average echelon inventory at the warehouse,

I , can be expressed by

1 
n
0
1

= + ~~~~~ if a. is not an integer multiple of n
0 

(2.55)

and is bounded below by

1 n0 l
I = Q0 (-~

. ÷ ) if is an integer multiple of n
0 

greater

than n
0
. (2.56)

Proof of Theorem 2.14:

if a. is not an integer multiple of n
0
, then we can write

= kn
0 

+ c where k is an integer and c is an integer strictly

between 0 and a
0
. There are n

0 
production intervals to be considered.

The length of each of these production intervals is either ~~~
- T or

— T, where T is the length of time between the overall renewals.

If there are b intervals of length .1 T and c intervals of

length , then

b(-~--)T + c(~
.t!)T = T and b-s-c = n.

I i

4
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It is clear that b = n
0
-c and c = c. Furthermore , the ending echelon

inventory for each of the warehouse production intervals takes on the
0 1 (c—l)values — Q0, — ~~~~~~~ a for the ~ production intervals

with length ~~~~T and the values ~~ Q0 , 
~~~~~ 

(n
0
-l) 

Q0 
for

the (n
0
-e) production intervals with length k T. This is clear

because there are no renewals and thus each value between — Q. and
n. i

(n0-1\

~ ~~ :1~~
t be taken on. Also, for each production interval that

lasts for — T time units the echelon inventory is (~—)Q 0 units higher
1 kat the end than at the start and therefore each — T type interval must

1
have ending inventory of at least 

~~
-. Q0 .

Also, since it requires T/n
0 

time units to use a lot of size Q0 ,

the amount of inventory used in an interval of length k/n
i 

is

Q0
(kn

0
/n
~
). Similarly , the amount of inventory used in an interval of

length (k+l )/n. is Q
0

( (k+ l )n
0
/n
~
). Therefore we can write the total

warehouse echelon inventory for a cycle as
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(Average height of production interval )
All production

intervals - 
-

-(Length of production interval)

= (Inventory used in production interval 
+ Ending inventory)2All production

intervals with
length Tk/n

1 
.(Tk/n.)

+ (
InventorY used in production interval

+ Ending inventory)
2All production

intervals with
length T(k+l)/n. .(T(k+l)/n.)

i i

/ Q0kn
0\ 

~~ 
(Q~c Q

0
(€÷l) Q0 (n

0
-l)~~

= (n —e) . (0 n. j 2n. ~ a. a. - a. I n.
\ i / i \ 1 1 i /

V + (
~~(k+1)n

0
\~ 
(T(k+ 1)

) ÷ (Q (..~_) + Q ( l ) • Q (
(C_ 1) \ .( T(~~~~) )
n. n.

I I i i i i

(n
0
_c)(~~ )Q0(0

0
~~~~~ + £(

T(k+1)
2n i n. 2n.I I ..i i i

_ _ _ _  _ _ _  
J 3 - 0

= (n _c)(Th.)Q (i 0 ~(T(k+l) tn.+n _l)
2n ~ + a. ~ o\ 2n.
i )  i L i

since a. = kn
0÷~ 

and
i

n + n -1~ V

• ( i O  JTQ0
.

Therefore , the average echelon inventory held at the warehouse per unit

t ime can be expressed as

f~+2 2 n1...

I I  
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ __ _ _ _ _ _  -- - -~~ —--___

V .  
• -
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If , on the other hand , a. = kn
0 where k is an integer and

greater than 1, then the first warehouse production after time zero

k-ioccurs no later than at time T(—). This warehouse production cannot

occur at time -‘- or the system would have a renewal at that point in
0

time. The ending echelon inventory for this warehouse production interval

is at least as large as Q
0
(1 - ~j~j! T/~

L) = Q0 (~ ) . In fact, because n.

is a multiple of a
0
, the ending echelon inventory cannot be any lower

1 . . .than Q
0
(j~) until the final warehouse production interval in the cycle.

If the warehouse production intervals have lengths .! , ~~ i-,. .. ~~~~~~~ .t!
,

1 1 1 1

‘— _ _ _

n
0-2

then the ending echelon inventory for all the warehouse production

intervals, except the last, is exactly Q0(~’). So, clearly, the average

echelon inventory for this plan is a lower bound for the average echelon 
V

inventory in the actual production plan. 
V

If we compute the average inventory , I, for this plan we find

= ((
~ 

(n
1
_k_l)\

) 
+ ((

k_i ) (k 1)1) + O k  
+

Ending echelon Average inventory used for
inventory each warehouse production interval

= Q (1 + 0

There do exist some special cases of multiple cycle policies where

al]. warehouse production points must be simultaneous production points for

a particular retailer.

V . -
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Corollary 2.15. The formula (2.55) may be used to exactly express the

average echelon inventory at the warehouse for the multiple cycle policy

(n
0,
n
1
,... 

~
n
N
) ~~

(a) n. � a0, 
for some i , and a. = a

0 
for all j ~ i or

(b )  n
~ 

= a
1 

for all i ,1 not equal to zero .

Proof of Corollary 2.15.

It is only necessary to show that Theorem 2.14, for a. not a multiple

of n
0
, may be applied. In both cases (a) and (b), all warehouse produc-

tions are triggered by a retailer i production. In either case, if

= kn0, then all the a. are divisible by n0 
and the multiple cycle

r11 a
Npolicy is equivalent to the single cycle policy (1, i—, ~~~~~~~~~ ,~~—). 0

O V  0 0

V Suppose we evaluate the formulas (2.55) and (2.56) for each of the

retailers in the multiple cycle policy (n
0,
n
1
,.. ,n~). Denote the

minimum of these quantities by L(n 0,a1,.. - ,nN ) . For some special cases

V of multiple cycle policies L(n
O ,
n
l
,...,nN

) is a lower bound on the

average echelon inventory held at the warehouse.

Corollary 2.16. L(n
0
,n
1
,... ,n

N
) is a lower bound on the average echelon

inventory at the warehouse if

(a) n0 2 or

(b ) a
1 ‘ 

n0nj for ~ � I.

Proof of Corollary 2.16.

(a)  If n0 2, both warehouse production points are simultaneous

production points for a particular retailer. Without additional information

con~erniag the lot sizes, it is impossible to determine which retailer
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should be used to evaluate (2.55) or (2.56). By evaluating (2.55) or

(2.56) for all the retailers and choosing the minimum , we must have a

lower bound on the actual average echelon inventory .

(b )  If a. > n
0
n
1 

then ~~~ < a 
1 and clearly L (n 0 ,n1, . ..  ,nN

)
I O j

is found by evaluating (2.55) or (2.56) for n .. Suppose the (9~+1)st
1 k .

warehouse production is triggered by retailer i at time ~~~ T where k
1

k.
is an integer. Then the total echelon inventory is Q0(~~- T - T)

0 ’  j

higher for this plan than if the warehouse produced exactly at time
k. T

— T. Since ~~, a , k . and n. are all integers , T(— - ) >

1 1 
] n0 a. n0n.

Since , by assumption, there is a retailer i production
~ 

n~~ .

k.
between -~~ T and ~

-
~
- and the total echelon inventory would be lower ifn. n

J
it were possible to delay the (2.+l)st warehouse production point and V

make it a simultaneous production point for retailer I.

This same argument will hold for all warehouse production points and

therefore the possibly infeasible plan where all warehouse production

points are simultaneous production points for retailer i has average

echelon inventory no larger than the actual plan. Since n~ minimizes 
V

L(n
0,
n
1
,... ,nN

) ,  this is clearly a lower bound on the average echelon

inventory. 0

In genera l , it is possible to compute a lower bound on the average

echelon inventory for the multiple cycle policy (n0,a1,.. . ,nN ) that

is better than the obvious lower bound of Q0/2. Simply determine the
T 2T (n 0-l)T

retailer productions closest but prior to — , ,.. •,  and
0 0 0

and then compute the average echelon inventory as if these were the V

warehouse production points.

V V 
V

- V  V -~~~ ~~~~~~~~~ ~~ VV ~~ ~~~~~~~~~~~~~~~~~~ V - - - - - V
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This bound can be achieved in certain instances. Consider the multiple

cycle policy with (n
0,

n
1,
n
2
) = (3,4,5). The warehouse produces at either

T T Tor . If > Q
2
, the warehouse produces at . Also, the ware-

house produces at either 4 or T(}). If Q
2 

> Q
1
, the warehouse produces

at T(}). Thus if Q2 = Q1, the warehouse produces at ~~- and T(-~-) and

the lower bound described above is achieved .

If. = Q2 in the multiple cycle policy ( 3,14,5 ) then the average

warehouse echelon inventory is Q
Q(4 

+ a.) . However , for this case

L(3,14,5) = Q0.min(4 + 4, 4 ÷ ~~
.) = Q

0
(4 + 4). Thus L(n 0,n1,... ,nN ) may 

V

not be a lower bound for general multiple cycle policies although it is

an easily computed approximation.

The above results give us a way to express the average warehouse

echelon inventory,  or a lower bound on that quantity,  for multiple cycle

policies. Given such an expression , we can write out a lower bound on the

average cost per unit time for a multiple cycle policy solely as a function

of the policy (a
0,
n
1
,... ,n

N
). We can then compute the best T*(n0,n1

,. .. ,n~)
and the cost C*(n 0 ,n1,... ,nN ) as was done earlier for the multiple cycle

policy (2 ,2,3) in equations (2.52) and (2.53). We can then compute the

best unrestricted a.’s and perform the same iterative procedure as

was discussed earlier for the determination of single cycle policies. The

only difference is that we must ensure a
1 

> n0 
for all I.

Using this iterative procedure , 50 of the randomly generated problems

used to test the heuristic procedures were evaluated to find multiple cycle

policies with lower average cost per unit time than the best single cycle

policy . In all 50 prob lems , no such multiple cycle policy was found.

‘- V

V - —
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There may indeed be such policies but none were found with this heuristic

search technique.

2.13 Summary

There appear to be few cases where one can guarantee the overall

optimality of single cycle policies. We have demonstrated that single

cycle policies need not be optimal among the class of:

(1) all policies;

(2) separate retailing and single cycle policies;

(3) stationary policies;

(4 )  stationary policies satisfying properties P1-PS;

and (5) stationary renewal policies.

However , single cycle policies are optimal for the classes of problems V

where : V

(1) all retailers are identical ;

(2) all retailers have identical ratios;

and (3) the overall optimal policy Is stationary.

In many of the proofs presented , non-stationat’y policies were con-

structed with lower cost than single cycle policies. But, it is

precisely the stationarity of single cycle policies that makes them

appealing when one considers the practical concerns of implementation.

The single cycle policy is not only stationary in lot size but in time as

well. Each facility not only produces the same lot size each time it

produces but the t ime between these productions is constant as well.

This property is not present In multiple cycle policies. Also, the

presence of renewal points in cycling policies offer the system opportunities

-
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to restart the system with a revised policy should any of the system

parameters change. Furthermore, the optimal single cycle policy or near

optimal single cycle policy is easily computed. Graves and Schwarz (1977)

have presented a method for determining good single cycle policies in

general arborescent production inventory by computing single cycle

policies for many one warehouse , N retailer systems. In a procedure

such as this , the eff icient computation of good single cycle policies is

crucial.

The empirical evidence also suggests that although one cannot guarantee

the optimality of single cycle policies , they do appear to be close to

the optimum , at least for small problems. Further research is necessary

to establish exact bounds on the difference in costs between the best

single cycle solution and the true optimum for any general N retailer

problem.

S .



CHAPTER 3

DYNAMIC ONE WAREHOUSE , N RETAILER PRO BLEMS

3.1 Introduction

In this chapter we examine the dynamic one warehouse , N retailer

production inventory system. We begin by introducing the basic assuxnp-

tions and notation. We review the Wagner-Whitin and Zangwill algorithms

for the single facility and one warehouse, one retailer problems ,

respectively. We show how to represent the one warehouse, N retailer

prob lem as a single source , concave cost, network flow model. A dynamic

programming algorithm is presented for this case . Easily computed upper

and lower bounds for the optimal solution value are developed and several

special cases are discussed.

3.2 Basic Model

The basic structure of facilities is identical to that discussed in

Chapter 2. The warehouse will be referred to as facility 0 and the N

retailers will again be referred to as facilities 1 through N ,

respectively.

In the dynamic demand case, the demand at retailer i is assumed to

occur at a known rate r~ in period t, where t = 1,2, . . .  ,T. The demand

rate may differ from one facility to another and from one time period to

another . We will assume that the warehouse experiences no external demand .

Inventory is maintained between stages and the output of the warehouse

in period t can be used by any of the retailers in the same period . T ime

lags can be included by redefining the decision variables to account for

- ._!~ 
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the lead time. Also, we assume that backorders are not allowed . At each

facility , L... re is a production cost and a holding cost which may differ

from one period to the next. In particular , let

x~ = Production at facility 
~ 

in period t,

= On-hand inventory at facility i at the end of period t,

P~ (x?~) = Production cost for facility i in period t ,

H~ (I~~) Holding cost for facility j in period t , where

= 0,1,... ,N and t = 0,1,2,... ,T.

In order to be consistent with the previous research on related 
V

problems, we charge the holding cost at the warehouse against the on-hand

inventory and not the echelon inventory as in the continuous demand case.

We will also assume that the production costs and holding costs, P~ (x~)

and H~~(VI~~) are concave and non-decreasing for non-negative arguments.

Without loss of generality, we can also assume that I~ = I.~. = 0 for

all j .

The objective function is the sum of the holding and set-up costs.

The constraints reflect the inventory balance and the no backlogg ing

assumption. We can therefore express the problem of determining the

best sequence of production and inventory quantities by;

IV
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T N . . -
Minimize z = ~ [P~ (x~ ) + H~(I~ )] ( 3.1)

t l j = O  -

subject to I~ = I
~~l 

+ - 

~~~ 

x~ , t = 1,... ,T (3.2)

= ‘t l  ÷ x~ — r~ , j = 1,... ,N ~3 3~ 
V

t = 1, . . .  ,T

x~~ > 0 , I~~ > O  ( 3 . 4 )

We will derive a dynamic programming algorithm for this problem which

is a generalization of Zangwill’s (1963) algorithm for the serial produc-

tion inventory system. In addition, we will develop upper and lower bounds

on the optimal solution value for this problem which made use of Wagner

and Whitin ’s (1958) solution technique for the single facility problem .

Before discussing the algorithm for the one warehouse, N retailer system ,

it is therefore necessary to review these two previously examined cases.

3.3 A Dynamic Programming Algorithm for the Single Facility Problem

In this section, we will review the Wagner-Whitin (1958) solution

technique for the single facility problem. The algorithm exploits the

structure of the problem when determining an optimal solution.

For the single facility problem , we may rewrite the mathematical

progranmiing formulation, (3.l)-(3.4), as

V .  ~~~~
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T
Minimize z = ~ [P~ (x~ ) + H~ (I~ )] (3.5)

t 1

subject to I~ = ~~~ + x~ - r~ , t = 1, . . .  ,T (3.6)

> 0, I~ > 0, t = 1, . . .  ,T. ( 3 . 7 )

Since the objective function is concave, the solution to the above

problem must occur at an extreme point of the set of feasible solutions.

In this case ,

= 0 for all t in an optimal solution. (3.8)

Therefore , x~ ~ ~~~~~~~~~~~~~~~ ,r~
+r
~÷1+.. .+rT}. The dynamic programming

algorithm to be developed will take advantage of this form for an optimal

solution.

Let f~(y) minimum cost for the first k periods when the

on-hand inventory at the end of period k is y.

Then

= min{P~ (x~) + H~ (y)  + f~~1
( y_x~ +r~ ) }.  (3. 9)

p . 1 1Since Xk lk l  = 0 ,

(P~ (r~+y) + ~~~y) + 
~k-l~

°
~~

= min ( ~
- . (3.10)

+ H~ (y) +

Furthermore,

- - —---- ~~ -  - - - - - -~~~~ - - V



78

= mm Y
k
(i) where (3.11)

i

Y
k

(i) = ~ (?+~o~ + H~ (y + ~ ri))
j i+l ~ u j+l U

+ P~ (y + ~~ r
1) + H~(.y + ~ 

r
u
) (3.12)

U 1  u i+l

+ f. (0).
i—l

Thus Y
k
(i) = the cost of periods 1 through k under the

assumptions that an optimal policy is followed

for the first i-i periods and the inventory

at the end of period i-i is zero, and an

• order arrives at the beginning of period i

satisfying the demand for periods i through k

with the on-hand inventory at the end of period

k equalling y .

We need not compute 
~k 

other than for y = 0. Thus the task of finding

the optimal solution requires less effort than applying a standard back-

ward recursion dynamic programming algorithm . However , for the one

warehouse, one retailer problem the backward recursion Zangwill algorithm

(1969) will be developed in the next section.

3.14 A Dynamic Programming Algorithm for the One Warehouse, One Retailer

Problem V

V In this section, we review a dynamic programming algorithm for the

one warehouse , one retailer production inventory system. Zangwill (1969)

H _  _ _ _

~~~

V

~~~~~ 

_ _ _ __

L~ _ _ _ _ _ _ _ _ _  __________ _ _ _ _ _
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has presented a dynamic prograimning algorithm for the serial deterministic

demand production inventory system. Clearly, if the serial system has

only two stages, then this system is identical to the one warehouse,

one retailer problem described in the preceding section. Zangwill has

shown that the serial system may be represented by a single source

network flow model. To illustrate this, consider Figure 3.1 which

depicts the single source network where T = 14 and node (j,t)

represents facility j  and period t .

4

t.w1

DI ~~~~~~~~~~~~X11 —

~~~~
—- xo___ __

~~
_— X4

0
~~~

{ ‘\13 ~~~~(
~~~) 

WAR EHOUSE

4 4 4

1,1 W 1,2 13 ~ j4 
RET~ ILER V

I I I Ir2 r4

PERIOD I PERIOD 2 PERIOD 3 PERIOD 4

FIGURE 3.1 NETWORK REPRESEN TATION OF ONE WAREHOUSE ,
ONE RETAILER SYSTEM

- V -
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Clearly , the conservation of flows in the network in Figure 3 .1 ensures

that the constraints (3.2) and (3.3) are satisfied. By charging the

appropriate cost for the flow along each of the arcs , it is clear that

finding the minimum cost solution to the mathematical programming problem

(3.l)-(3.14) with N = 1, is equivalent to finding the minimum cost flow

in the network representation.

Since the cost functions are concave on the arc flows and the network

has a single source, we know that at least one “extreme flow” is an

optimal solution (Zangwill , 1968). That is, at most one arc entering

a node will have a positive flow.

Therefore, the flow into each nod e , f, can be expressed by

= 
i~a 

r~ where t < a < b < 1. (3.13)

In this case , it is said that the extreme f low has the “exact requirements”

property. Clearly, for any node (l,t), a = t in (3.13) to prevent

backorders. Thus, 
V

b

~ r~ , t < b < T ,
J i t+l

I~ = ( ~ (3.14)

L 0 ,

From (3.13), if the flow into (O,t ) is 

~L r~ , t < a < b < T,

then there are two cases to be considered : a = t and a > t. If

a = t, then x?~ > 0 to insure that r~ is satisfied. Thus, if a =

there exists an integer c , t < c < b such that

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _

IV -
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= ~ r~ , and I~ = r~ . (3.15)

If a > t, then x~ = 0 or the two arcs into node (l ,t) would have

positive flow and therefore

b
i
0 

= ~ r~ . (3.16)
t . 1

Define K~(a ,b) to be the optimal cost of completing the production
b

schedule if r . units eater node (j,t). Also let

P~ (a ,b )  = ~~ CL r~~ and 
-

H~ (a ,b) = H~
(q

~~ r~
)

If a = t in (3.13), for the retailer node (1,t ), then by ( 3 .114) ,

K~(t,b) = H~ (t+l ,b) ÷ 1ç~÷1
( t÷l ,b)

(3.17)
b

~ H~
( i+l ,b ) ,

i=t

which holds for 1 < t < T-l, t < b < T; if t = T then 4(T ,T) = 0.

If a = t in (3.13), for the warehouse node (o ,t ) ,  then by (3.15) ,

K0(t,b) = mm {P1(t,c) ÷ H0(c÷l ,b) + K1(t,c) + K°
÷1

(c+l,b ) } , (3.18) 
V

t t<c<b t t t

for 1 < t < T-1 and t < b < T; if t = T, K~ (T ,T) = P~ (T ,T).
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If a > t in (3.13) for the warehouse node (o ,t ) ,  then by (3.16),

K~ (a ,b) = H~ (a ,b) + 
÷1

(a ,b) , (3.19)

for 2 < t < T-l and t < a < b < T. If t = 1, then a 1 and

Ki(1,b) from (3.18) can be applied . 
V

To complete the algorithm , we must determine the decisions at the

source node , i.e. how much to produce at the warehouse in each period.

Let K~ (a ,T) = minimum cost of shipping 

~L r~ units from the source

to satisfy the requirements at nodes (l,a) ,(l ,a+1),. .. ,(l,T ) ,  that

is , the optimal cost of satisfying demands r1,... ,r~ through production

in periods t ,t+l ,. .. ,T. Demand is assumed satisfied for the first a-i

V periods from production in the periods prior to t. Also if a t, we

must produce in period t at the warehouse. -

Therefore ,

K~(a ,T) = minimum {P~ (a ,c) + K~ (a ,c) + K~÷1(c+l ,T )} , (3.20)
max(t ,a-l)<c<T

where 2 < t < T-1 and t < a < T. If c = a-l , x~ = 0 by convention

and if t = 1, we use (3.20) only with a = 1.

We begin the algorithm with 4(T,T) = 0 and work backward until

K~(l ,T) is evaluated. K~(l ,T) is the minimum cost attainable in this

network .

Zangwill (1966 ,1969) has extended the single facility model

V 
discussed in Section 3.3 and the one warehouse, one retailer model

discussed above to include the possibility of backlogging of external

I- - 
V

V - - V - - - - - V - -~
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demand. Each retailer node (1,1’) in Figure 3.1 is revised to include

additional arcs to represent the flow back in time (Figure 3.2). If we

let

I~
+ = inventory on-hand at the end of period t at retailer 1,

I~~ = inventory short at the end of period t at retailer 1,

H~
+(I~~) = inventory carrying cost associated with Itt,

and H~~(I~~) shortage cost associated with I~~.

O, t

1
1+ Tx1~ 1+

Itt —I I,t I,t+1

fI— 1—It

FIGURE 3.2 NODE (1, t ) WITH BACKLOGGIN G

We will omit the development of the recursion because we will only

extend the no backlogging case to the one warehouse , N retailer system .

An extension to include backlogging is possible. But as we shall see in

the next section, the one warehouse, N retailer algorithm is quite

_A - - - -~~ - ~~~~~~~~~~~ *~~~ V~VV - ——  -~~- _ _ _ _ _ _ _ _ _—

~

- - - - -~~ - - -
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complicated computationally and such extensions will only further exacer-

bate this problem .

3.5 A Dynamic Programming Algorithm for the One Warehouse, N Retailer

Problem

It is possible to generalize the one warehouse , one retailer dynamic

programming algorithm presented in Section 3.14 to solve the one warehouse,

N retailer system. Veinott (1969) first noted that this generalization

was possible but he failed to point out the basic differences between

the generalized algorithm and the Zangwill procedure. Veinott also

presented an efficient algorithm for the general arborescent problem

under a severe set of restrictions on the cost structure that is similar

to Love ’s nested algorithm (1972) for facilities in series.

We begin by repres4nting the one warehouse, N retailer system

by a single source network flow model. To illusti’ate this, consider

Figure 3.3 which depicts the single source network for two retailers

where T = 14 and node (j,t) represents facility j and period t.

Clearly , the conservation of flows in the network in Figure 3.3

ensures that the constraints (3.2) and (3.3) are satisfied. By charging

the appropriate cost for the flow along each of the arcs , it is clear

that finding the minimum cost solution to the mathematical programming

problem (3.1)—(3.14) is equivalent to finding the minimum cost flow in

the network representation .

Since the cost functions are concave on the arc flows and the network

has a single source , we know that at least one extreme flow is an optimal

solution. That is, at most one arc entering a node will have a positive

flow.

IV~ V

V V V
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In order to clarify the exposition for the dynamic programming algo-

rithm , we will discuss only the two retailer case but the results can 
V

easily be generalized . -

As in the one retailer case , the flow , f ,. into a retailer node

(j , -t ) ,  i.e. j  > 0, can be expressed by
-Il

- -  V~~~~~
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r! where t < b < T,

and therefore

~ r~~, t < b < T ,
I i=t+1

I~ = (3.21)

L 0 ,

Define K~(t,b ) ,  as before , to be the optimal cost of shipping
b . 

t

~ r~ units from node (j , t) to their respective destinations. Then ,
i=t i

it is clear that

K~(t ,b) = H?~
(t+l ,b) ÷ K~÷1

( t÷l,b) , (3.22)

• which holds for j > 0, 1 < t < T-1, t < b < T; if t T, then

K~,(T ,T) = 0 for j > 0. Also,

K~(t,t) = H~(t÷l ,t) + K~÷1
(t+l ,t), (3.23)

which by convention,

= 0 + 0.

The recursion is somewhat more complicated for the warehouse nodes

(0,t). The extreme flow property demonstrates that the flow, f, into

a node (0 ,t )  can be expressed by

i~a 
r~ ÷ 

i~ c 
r~~, (3 .24 )

HV V L. VV ~~~~V V V V  
V~~~~~~~~~~~~~~~_

_ _
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where there are 3 cases for the values of a, b, c and d. Either

(i) t < a < b < T a n d t < c < d < T ,

or (ii) a=b -s- l, b < T  and t < c < d < T ,

or (i i i)  t < a < b < T and c = d+l, d < T.

Case (i) is exactly analogous to the flow into a warehouse node for the
b

one retailer case. By convention , ~ r~ 0, for j = 1,2, and
i=b+l 1

case (i i)  and (iii) are necessary because the flow into a warehouse node

may only consist of the sum of requirements for a single retailer .

Let K~ (a ,b ,c,d) be the optimal cost of shipping 
Ja 

r~ + r~

units to their respective destinations. Also define

b d
H~ (a ,b ,c,d) H~(~~ r+ + 

~ 

r~
) and

P~(a,b,c,d) = 

~~~~~ 

r~ ÷ 
Jc 

r?). 

V

By convention ,

H~ (b÷l ,b,d+l ,d) P~ (b+1,b ,d÷i,d) = 0.

We beg in by considering case ( i)  t < a < b < T , t < c < d < T

for which there are four subcases , since both a and c either equal

t or are greater than t.

(i-I) If a = t and c = t , there exist integers f and g, t < f <

t~~~g < d  such that

= ~ r~~, X~ ~ r~ and I~ = ~ r~ + ~ r~ (3.25)
i a  i c  i=f+ 1 i=g+l

V ~~~~~~~~~~~ V V~~~ 

_  

V
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V 
(i-2) If a = t and c > t, there exists an integer f , t < f <

such that

x
~ 

= ~ r~ , x~ = 0 and I~ = 
- 

~ r~ + ~ r~ . (3.26)
i a i f+l 1c

(i- 3) If a > t and c = t, there exists an integer g,  t < g < d ,

such that

g b d
= 0, x~ = ~ r~ and I~ ~ r~ + ~ r~ . (3.27)

ic  ia  i g+l

(i~~L1~) If a > t and c > t, then

x~ = 0, x~ 0 and I~ = 
i~a 

r~ + r?. (3.28)

We can now determine the recursive equations for each of these 14

subcases of case Ci).

(i— i) If a = t and c = t, by (3.25),

K~(t,b ,t,d) = mm (P~(t,f )  + K~(t,f) ÷ H~ (f +l,b,g+1,d) 
%

\
t<f<b ç );(3.29)
t<g<d 

~ + p~(t, g ) ÷ K ~(t, g ) ÷ K ~,.1(f÷l ,b ,g÷l ,d)J

for 1< t < T - l ;

V 

if t = T, 4(T,T,T,T) P~ (T ,T) + P~ (T ,T).

(1—2) If a t and c > t , by (3.26),

• V~~~~~~~~~ VV - ~~~~~ VV V V V V V V V V~~~~~~~ V~~~~~~~~~~~~~~ V V V

_

- - _ _ _
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K~(t,b ,c,d) = mm fP~(t ,f)  + K1(t,f )  + H 0( f-4~l ,b ,c ,d)
’
\

t<f<b ~ 
t t 

, (3.30)

+ K~÷1(f÷ i,b,c,d) J
for l < t < T - l .

(i—3) If a > t and c = t, by (3.27),

1<°(a ,b,t,d) = mm ~P~~t ,g ) + K~(t,g) + H~ (a ,b,g+l,d)\
t<g<d ç / 

(3.31)

+ K~÷1(a ,b ,g+1,d)

for l < t < T - l .

(i—14) If a > t and c > t, by (3.28),

K~ (a ,b,c,d) = H~ (a ,b ,c,d) + K~~1(a,b ,c,d). (3.32)

Thus far the N retailer case is a straightf orward extension of

Zangwill ’s one retailer algorithm. But, the development of recursion

equations for cases (ii) and (iii) is somewhat more complicated . Let us

examine case (ii) more carefully.
b

Case (i i)  corresponds t-D ~ r~ = 0 units for retailer 1 and
d i=b+l ~

units for retailer 2 carried into the warehouse node (0,t).

There is only one possible way to arrive at such a situation. In either

the recursion (3.29) or (3.30), for some preceding time period , f was

chosen equal to b. That is, the requirements up to and including period

b were produced and then held at retailer 1. Clearly , the retailer

requirements for period b÷l and after have not yet been produced at

the warehouse.

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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d 2Let us suppose now that b = t-l. Then in case (ii), ~ r. units

flow into node (O ,t) but as discussed above the requiremeflts for

retailer 1 for period t and after have not yet been produced.

Clearly , to maintain feasibility at least r~ units must be produced

at the warehouse in period t. This implies that the two arcs into node

(o ,t )  both have positive flow which is impossible by the property of

extreme flows. A similar argument for case (iii) illustrates that

d t-l yields the same contradiction. To ensure that the dynamic

programming algorithm only examines extreme flows we define

K~(t,t-l,c,d) ~ for c < d and

K~ (a ,b,t,t-l) °‘ for a < b.

Given these definitions, we may now write the recursive equations

for cases (ii) and (iii). For case (ii) there are two subcases since

either c t or c > t. If c t, x~ > 0 and we may write 4

K
0(b+l ,b,t,d) = mm (p2(t ,g) + K2(t ,g) + K~ 1

(b+1,b ,g+l ,d)~t t~~ < d ç  t t + I . ~~~~~~~~~

L ÷ H~(b+l ,b,t,g)

If c > t, = 0 and we may write

K~(b+l ,b,c,d) = M~ (b+l ,b,c,d) ÷ K~÷1(b+l ,b,c,d). (3.35)

Similarly, for case (iii) the two subcases are whether a t or a > t.

If a = t , > 0 and we may write
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K°(t ,b,d+l ,d) mm (P
1(t,f)  + K~ (t ,f)  ÷ K~~1(f÷ 1,b,d÷l ,d~~t t<f<b/ ~~ ) . (3.36)

+ H~(t,f,d+1,d) J
1If a > t , x~ = 0 and we may write

K~ (a ,b,d+l ,d) = H~ (a ,b ,d+1,d) + K~÷1(a ,b,d+l ,d). (3.37)

Finally ,

K~(b+1,b,d÷l ,d) = 0. (3 .38)

To complete the algorithm , we must determine the decisions at the

source node , s, i.e. how much to produce at the warehouse in each
T Ts . .  . . 1 2period. Let K

~
(a ,T,ciT) = minimum cost of shipping 

~ 
r.~ + r

t=a t=c
units from the source to satisfy the requirements at

(l ,a) ,( 1,a÷l),... ,(l,T ) , ( 2 ,c) , ( 2,c+1),... ,(2,T ) ,  that is, the optimal

1 1 2  2cost of satisfying demands r
a
e... ,r

T
,r ,. .. ,rT through productions

in periods t,t÷l,. .. ,T. Demand for each retailer is assumed satisfied

from production in the periods prior to t. Also if a = t or c =

we must produce in t at the warehouse.

Therefore

K3(a ,T,c,T) = minimum (P
0(a ,f,c ,g) + K~(a ,f ,c ,g)’\t max(t,a—l)cf<T <~ 
t (3.39)

m x(t,c-l)~g~T ~
I
L + X~÷1(f+l ,T,g+l,T) J

where 2 < t < T-1 and t < a , c ~ T. If t 1, we use (3.39) only with

a = c = 1.
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We begin the algorithm with 14(T,T) = K~ (T ,T) = 0 and work backwards

for each of the retailers , followed by the warehouse and then the source

node until we compute K~(l ,T,l,T) which is the minimum cost attainable

in the network.

Clearly , the computational effort involved in computing the minimum

cost attainable in the network increases exponentially in the number of

retailers. However, the properties of an extreme flow allow us to cut

down the computational effort considerably.

Theorem 3.1. If the flow into a node (0,t) is an extreme flow and is
b 1 d 2equal to 
i~a 

r
~ 

+ r1, where t < a < b < T and t < c < d < T,

then (a,b) intersects (c,d) on the time axis, i.e. it is impossible

for either a < b < c < d or c < d < a < b to hold.

Proof of Theorem 3.1.
d

Assume a < b < c < d. Clearly, the ~ r~ units must be carried
ic ~

at the warehouse level until period c. This must be the case since to

insure feasibility, > 0 for t-l < r < c-l and for any of the

~ r~ units to be carried at the retailer level prior to period c would

2require x~ > 0 for some t < t < c-l. This is impossible by the property

of extreme flows. Therefore, I~ > 0 for r , where t < t < c-i.

By assumption b < c and r~~1 must be satisfied by period b+l

to maintain feasibility. Therefore, x~ > 0 for r , where

t < ~r < b+l < c. Thus x~, ~~~~ > 0 for some r’, where t+l < t’ < c

which contradicts the extreme flow property. Therefore, it cannot be

the case that a < b < c < d. The proof for the case where c < d < a < b

simply reverses the role of the retailers in the above argument. 0

4
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It may be possible to improve the computational efficiency of the

dynamic programming algorithm further through the use of bounds on the

optimal solution value. Such bounds will be discussed in the following

section.

3.6 Bounds on the Optimal Solution Value for One Warehouse, N Retailer

Problems

The dynamic programming algorithm presented in Section 3.5 computes ,

for each node ( j , t), the optimal cost of shipping a group of exact

requirements from that node to their ultimate destinations. If the

cost of such a partially completed production inventory plan exceeds the

cost of a known feasible solution to the entire problem , then we can

omit consideration of any completions of this partial plan. This is

clearly the case if all the cost functions are non-negative , which is a

realist ic assumption.

Obviously , the closer the known feasible solution value is to the

optimum, the more likely it is that this bounding procedure will enable

us to eliminate prospective solutions and thus save computational effort.

We will discuss two methods of determining feasible solutions that will

hopefully have this property. To simplify the discussion, we will again

only explicitly consider the class where N 2. The discussion is

easily extended for larger values of N.

The first method consists of N+l 3 applications of the Wagner-

Whitin single facility algorithm discussed in Section 3.3. Begin by

solving for the best production inventory plan for the retailers , where

each one is treated as an independent single facility problem . Let us
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ncw assume that this portion of the one warehouse , 2 retailer plan is

fixed . Consider the warehouse node (O ,t ) .  Define r~ ~ x~ which

is determined by the choice of the production plans for the retailers.

Theref ore , given the production plans for the retailers, the problem

reduces to a single facility problem with requirements r~ and costs

and P~ which can again be solved by the Wagner-Whitin algorithm.

This plan guarantees feasibility by satisfying all the demands at

the retailers and insuring that the inventory balance constraints at the

warehouse nodes are met. It is also clear that this feasible solution

will be an extreme flow . Furthermore , the value of any feasible solution

is an upper bound on the optimal solution value. This method of decom-

posing the system is similar to the method proposed by Kalymon (1972)

for general arborescent systems.

Since the optimization at the retailer level does not take the

warehouse costs into account , the feasible solution obtained by this

technique need not be the overall optimal solution. We can, for a

particular cost structure at the warehouse, revise the production costs

at the retailer to reflect, at least in part, the warehouse costs.

Consider the node (o,t )  in the single source , network flow representa-

tion of the one warehouse , N retailer problem (Figure 3.4) .

If (x~+x~ ) > 0 , then

0 0 1 2
+ xt !~ 

x~ +

to maintain feasibility. By the property of extreme flows I~~1 x~ = 0

and so either
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0 1 2
It_]•~~.

X
t + X

t 
or

~~. 
x~ ÷ x~.

0 1 2  0 1 2Therefore, a cost of at least min (H
~~i

(x
~
+x
~
); P

~
(x
~
+x
~
)) is incurred

at the warehouse level by fixing x~ + x~ at the retailer level.

t

t
t—1

xi. x~

FIGURE 3.4 NODE (0, t) IN THE NETWORK FLO W
REPRESENTATION

If

( 0  if x 0 ,

H0(x) and

~~H~~+ h ~x if x > 0,

( 0 i: 0 ,

P°(x) =~~~
if x ’ O ,

where t = l,....,T, then we can revise the production costs at the



96

retailers to reflect the cost that must be incurred at the warehouse level

by fixing the production levels at the retailers. That is, set

(0 , if x O ~

~~(x ) =
~~ H° K° ~~~, for i = 1,2. (3. L~O)

+ min(-~~,-~~) ÷ min (h~x ,p~x ) ,  if x > oJ

The H~ /2 and Kt
°/2 are present to insure that if both retailers produce

in period t , only a single fixed charge of either H~ or K~ is

incurred at the warehouse. (A similar revision in costs can be made if

the warehouse costs have either a fixed charge at zero or a linear charge

but not both.)

Thus we may summarize the technique to find a feasible solution as

follows :

(1) For each retailer i, use the Wagner—Whitin algorithm

with costs and H~ and requirements r~ to compute

a production plan for each retailer.

(2 )  Compute r~ x~ + x~ for all t.

(3) Solve for the best production p-lan at the warehouse

using a Wagner-Whitin algorithm with costs K~, H~ and

requirements r~.

(4) Compute the overall cost of this production plan using

the original costs for the network .

An alternative technique to find a feasible solution for this

system is analogous to the separate retailing policy for the continuous
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demand case . Simply split the one warehouse, N retailer system into N

one-retailer systems and solve each of these systems independently using

Zangwill’s algorithm. This technique, however, requires much more compu-

tational effort than the method described above which used the Wagner-.

Whitin procedure.

We can also determine the quality of the feasible solution determined

by either of the two heuristics described above by compar ing the value

of the solution to the value of a lower bound on the optimal solution. One

possible lower bound can be computed by summing the costs of the Wagner-

Whitin plans for each of the retailers, omitting the warehouse costs

except in the cost i~ . That is , these plans are determined and evaluated

with the revised production cost for retailer i. Clearly , no plan

can be found with revised costs lower than this for the retailers and

was chosen to reflect the minimum cost added at the warehouse for

any plan at the retailers.

An alternative lower bound may be determined by computing the Wagner-

Whitin solution for the single facility with production costs K~ , holding

costs ii.~(x) = min(H~(x),H~(x),H~(x)) and requirements r~ + r~ . We

can demonstrate that this is indeed a lower bound , if we examine the

mathematical programming model for the one warehouse , 2 retailer system,

i.e. (3 . ] . )— ( 3 .u )  with N = 2. If we define J~ I~ + I~ + I~~, we can

rewrite the inventory balance equations, (3.2) and (3.3) as

0 0 0 1 2x~ + J
~_ 1 - = r

~ 
+ r

~
. ( 3.41)

By the definition of H , it is clear that

4-
---- -

~

- - - -

~ 

- - - . -  - - _____



98

~~~~~~ 
< H ~ (I~ ) .

Furthermore,

~~~~~~~~~~~~ 
+ 
~~

(I
~

) by concavity

+ H~ (I~ ).

Similarly ,

+ H~ (I~ ) + H~ (I ~ ) .

Therefore , the objective function value for this relaxed mathematical

• program with constraint (3.41) and holding cost function H
~

(J
1

) is a

lower bound on the optimal solution value for the original problem.

These lower bounds can be achieved when certain restrictions are

placed on the cost structure of the system. These special cases will

be discussed in the following section.

3.7 Exact Solutions for Restricted Cost Structures for One Warehouse,

N Retailer Problems

It is also possible to use the Wagner-Whitin algorithm to get the

optimal solutions for certain special cases of the cost structure in the

one warehouse, N retailer system.

Theorem 3.2. If K~(x) = px, then the optima]. solution for the one

warehouse, N retailer system may be found by solving N independent

single facility problems, one for each retailer.
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Proof of Theorem 3.2.

If K~(x) px , we may ignore the per unit production costs altogether

since the total number of units produced at the warehouse must equal
T N

~ r~. Therefore, the cost of production at the warehouse may be
t l i l
assumed to be 0. Clearly, no units will be carried at the warehouse

from period t to t+l provided H~ is non-negative. Summing the

costs for the N independent Wagner-Whitin solutions is clearly a lower
N

bound on the optimal cost . If we set x~ = ~ x~ for t = 1,2,... ,T,
i= 1

then the additional charge for this part of the production plan is 0

and the overall cost of the policy achieves the lower bound. 0

Although the assumption that K~(x) = px may seem unrealistic,

there are cases where such a cost structure is likely. If the warehouse

receives deliveries each time period from its supplier, then there may

be no additional fixed cost associated with placing orders in a particular

policy. Similarly, if shipments are made each period from the warehouse

to each of the retailers , then there may be no additional fixed set-up

cost associated with a retailer placing an order in a particular policy.

In this case , we may show

Theorem 3.3. If for all t and 1,

K~ (x) = ptx , and

H~(x) < H ~(x),

then the optimal solution for the one warehouse, N retailer system may

4..
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be found by solving the single facility problem with costs K~(x), H~
(x )

0 N .
and requirements r

~ 
= ~ r~.
i=l

Proof of Theorem 3.3.

As in the proof of Theorem 3.2 for the warehouse, we may ignore

the production costs at the retailers entirely in this case. Now

suppose that I units are held from period t to t+l at retailer i.

Clearly, we can decrease the preceding retailer production by I units.

If those I units are carried at the warehouse until period t+l, a

lower cost is incurred since H~(x) < H~ (x ) and H~ is concave. Adding

a retailer i production in period t adds nothing to the cost.

Therefore, all units are carried at the warehouse in an optimal policy.

This case is analogous to the second lower bound on the optimal

• solution value discussed in the preceding section. By that same argu-

ment, the optimal cost for the single facility problem with costs

K~( x ) ,  ~~( x) min (H~(x ) )  = H~ ( x ) ,  and requirements r~ = 

~ 

r~ is

a lower bound on the overall optimal cost. Since the production costs

at the warehouse are ostensibly zero, this lower bound is achieved by

following the plan for the warehouse discussed above and simply setting

x~ = r~ for all i and t. 0

A similar result can be proven if retailer i has lower holding

cost over all t than the warehouse has .

Corollary 3.4. If K~(x)  = K + p°x, K~(x )  = p
i~ for all t and i

and for each i either

(a) H~(x) < H~ (x ) ,  for all t and x > 0

or (b) H~(x) = hi .x < h°~x = H~(x), for all t , and x > 0,
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then the optimal solution of the one warehouse, N retailer system may be

found by solving an appropriate single facility problem.

Proof of Corollary 3.’4.

As in Theorem 3.3, we may ignore the retailer production costs totally .

If H~ (x ) < H~ (x) , then no units are carried at retailer i in an optimal

solution. If for all i, this is the case then the corollary reduces

to Theorem 3.3.

i i 0 0 . iSuppose H
~

(x) = h •x < h .~~~ = H
t
(x) for some i and suppose

is carried at the warehouse from some period r to some period r ÷ 6.

Clearly, we may reduce I~ by r~ units and add a retailer i production

in period r. This must reduce the holding costs over the periods r to

r + 6 since h1•x < h°.x. Therefore, no units are carried at the warehouse

for retailer i.

Thus , the requirements for a particular retailer are either carried

exclusively at the warehouse or exclusively at the retailer depending on

whether case (a) or (b) holds concerning the holding costs. Denote the

retailers that satisfy (a) by 1,2,...

It is also clear that if the warehouse produces in period t, then

it produces for all the retailers. If not, then the holding costs may be

reduced by decreasing the preceding warehouse production and increasing

the production in period t. By assumption, this cannot increase the

production costs at the warehouse.

If each time the warehouse produces it produces for all the retailers,

then it is clear that the system has common regeneration points. There-

fore , we may solve a single facility problem with production costs of
N

and requirements of ~ r
~ 

in period t, provided that we charge
1=1

V..
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the holding costs properly. In particular, if the requirements for period

t+l are carried from period t to t+1, the system holding costs are
N

H~( ~ r~) + ~ h
1•r~ . By suitable redefinition of (3.12) in the

i l
Wagner-Whitin recursion, we can solve this problem by that algorithm with

some additional computation but no increase in the number of decisions. 0

As was mentioned in Chapter 1, an extension of the Wagrier-Whitin model

that has received a great deal of attention is the problem with capacity

constraints. Florian and Klein (1971), Lanthrecht and Vander Eecken

( 1978) and Baker , Dixon , Magazine and Silver (1978) have all proposed

algorithms to solve this particular problem.

Theorems 3.2, 3.3 and Corollary 3.4 demonstrate that under certain

restrictions on the cost structure that one can solve the one warehouse,

N retailer problem by the solution of single facility problems using the

Wagner-Whitin algorithm. Similarly, if there are production capacities

on some of the arcs , then for certain cost structures it is possible to

solve the one warehouse , N retailer capacitated system by the solution of

single facility, capacity constrained problems.

Corollary 3.5. If K~ (x ) = px and there are capacity constraints

< c~, i = 1,... ,N, t 1,... ,T, then the optimal solution for the

one warehouse, N retailer system may be found by solving the N

independent single facility, capacity constrained problems.

Proof of Corollary 3.5.

As in the proof of Theorem 3.2, we may ignore the production costs

• at the warehouse entirely, and also no units need by carried at the ware-

house. The solution for the general one warehouse, N retailer capacity

E~.
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constrained problem is bounded below by the sum of the costs of the optimal

solutions for the N independent single facility capacity constrained

problem. For this cost structure the bound is achieved. 0

In a similar fashion, we may demonstrate

Corollary 3.6. If for all t and i > 0 K~ (x) = p1x, H~(x) < H ~ (x ) ,

and x~ < c~ , then the optimal solution for the one warehouse, N

retailer capacity constrained system may be found by solving the

capacity constrained single facility problem, with costs K~(x ) ,  H~ (x )
N

and requirements r~ = ~ r~. 0i l

A similar restatement of Corollary 3.4 cannot be made because of

the need to shift units produced at the warehouse to demonstrate common

regeneration points. The capacity constraints on the production arcs

at the warehouse preclude this argument.

3.8 Suimn~ry

In this chapter , we have examined the dynamic one warehouse , N

retailer production inventory system. This problem is a generalization

of the 2—stage serial system discussed by Zangwill. The dynamic program-

ming algorithm presented extends the concepts of Zangwill’s algorithm

to this more general problem. There are some computational simplifica-

tions that can be made and upper and lower bounds for the optimal

solution value are discussed. The method for determining upper bounds

is a heuristic technique to determine “good” feasible solutions.

Although the dynamic programming algorithm may seem intractable

for problems with a large number of retailers, there are a number of

— —--— -- --- --—— .- - - -- — - - — - — - - . —  - - _________
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special cases where single facility algorithms may be applied to determine

the optimal solution. Further investigation is necessary to establish

when these much simpler computational techniques yield solutions that

are either optimal or sufficiently close to optimal.

- --



CHAPTER 4

CONCLUS ION

In this thesis we have examined one warehouse , N retailer pro-

duction inventory systems with both continuous and dynamic demand rates.

For the continuous demand rate case , we have demonstrated that a single

cycle policy need not be optimal for various classes of production

policies. On the other hand, single cycle policies are optimal for

certain classes of problems and the stationarity and renewal points

present in such policies along with ease of computation make them

especially appealing with regard to implementation.

Further research is indicated to determine bounds on the cost

difference between the overall optimal solution and the best single cycle

policy for those cases where it is not the optimal solution. In addition ,

direct compar isons of the iterative procedures presented in this thesis

and the existing branch and bound algorithm (Graves and Schwarz, 1977)

to determine single cycle policies should be performed. Particular

attention should be paid to the relative effectiveness of these techniques

for solving general arborescent problems through - the examination of many

one warehouse , N retailer problems.

Also , it was demonstrated in Chapter 2 that different one warehouse ,

N retailer problems with identical set-up and holding cost ratios have

the same single cycle solution. An interesting sensitivity analysis

question would be how much these ratios can be perturbed without changing

this identical solution property. Finally, one warehouse , N retailer

problems with less restrictive continuous demand assumptions also warrant

105
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investigation. The deterministic single cycle solution may also serve as

a good starting point in an algorithm to determine operating policies for

two-echelon inventory systems with probabilistic demands (Muckstadt, 1977).

For the dynamic demand case, we have presented a dynamic programming

algorithm to determine optimal policies along with computational simpli-

fications that can be made . In addition, upper and lower bounds on the

optimal solution value were discussed. Selected special cost structure

cases where single facility techniques can be used to determine optimal

policies were also introduced.

Further research and computational experience to dt~ ermine the quality

of the solutions obtained by single facility methods for general cost

structure one warehouse, N retailer problems is indicated. Similarly ,

the one warehouse, N retailer problem with capacity constraints also

warrants further attention. Dynamic one warehouse, N retailer problems

with stochastic demands should also be investigated.

Finally , the techniques presented in this thesis should be applied

to the other multi-echelon structures both with continuous and dynamic

demands . It is possible that an iterative procedure similar to the one

presented in this thesis can be used to determine the integer multiples

of the basic lot size in the operating policies that have been proposed

for serial and assembly systems . In addition , the relation of these

policies to overall optimality without the restrictions of stationarity

and integer multiples can be investigated in a manner similar to this

thesis .

Finally , the techniques developed in this thesis should be applied

to determine operating policies for actual one warehouse , N retailer
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production inventory systems. Such systems can be found in many industrial

and military situations and hopefully methods presented here can lead to

more efficient and economical operations.

_  _
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