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AN ANALYSIS OF RECOVERABLE ITEM INVENTORY SYSTEMS
WITH SERVICE FACILITIES SUBJECT TO BREAKDOWN

Peter L. ICnepell, Ph.D.
Cornell University 1979

The purpose of this study is to analyze an inventory/maintenance

system for recoverable items, that is, items which are subject to

repair when they fail. The repair of items is performed by a main-

tenance facility which has a fixed number of service stations or chan-

nels which are also subject to failure. When an item fails, a demand is

immediately placed for a like replacement from a spare pool. The failed

part is sent to the repair facility to be serviced on a first—come,

first—served basis. The spare pool is replenished when repair on the

item is completed. When a service station fails, repair is initiated

immediately and the failed server is replaced by an operative spare

server if one is available. This analysis is limited to a single—

echelon system with no outside sources of supply or repair.

The objective of this study is to model the system described in

order to observe the relationship of system performace to spare stock

levels and service facility design. Specifically, the model is used to 
0

minimize the total expected unit backorders given an investment con-

straint on the number of spare items, service channels and spare servers

in the system. For long range planning purposes, this is accomplished

for a system with demands which are stochastic and stationary in nature.

P An extension is provided, to consider the case where demands are non—

stationary and/or the time dependent behavior of the system needs to be

described.
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In order to express the total expected unit backorders, a repre-

sentation for the distribution of the number of units requiring repair

is needed. Approximations are developed using diffusion techniques

since the actual distributions are difficult to express. The diffusion

approximation is applied to an optimization problem to provide the best

allocation of investments in the system. A simple solution algorithm is

given.

Finally , a view of the time-dependent behavior of the system is

provided. The problem is decomposed into finding the distributions f or

(1) the number of units in requiring repair given no service channel P

failures and (2) the time between service channel failures. We provide

a brief review of the literature for the first distribution and an in—

depth study of the latter distribution.
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LIST OF BASIC SYMBOLS

A, is the failure rate of item i

A — x ii— i

is the service rate of a single service channel

is the failure rate of a single service channel

is the rate of repair of a failed server

p is the system traffic intensity

c~
2(x) is the infinitesimal variance of the diffusion process

given state x

is the variance of interarrival times

is the variance of service times

c1~ (s) is the Laplace transform of the p.d.f . S~ (t)

a~ is the 1th row of subinatrix A , i0 ,1,...

A ( t )  is the arrival process for a queue

B is the budget available for purchase of spares arid servers;

also , the BAD state and a submatrix

b~ is the j th row of subsia trix B , i 0 ,l , .. .

B~ (s
1~

L) is the expected backorders for item i given a spare stock
level of s

1

B(S ,L) — ~ B~ (s~~L)
i—i

C is the number of service channels

C is the expected number of service channels operational at any

point in time

C~ is the cost of a service channel 
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is the cost of a spare server

Ci is the cost of a spare item I

D(t) is the departure process for a queue

E~ is the essentiality of item i

E ( x ,t) is the infinitesimal ~th moment of a diffusion process in

state x at time t

f(w ,t;x,t) is the probability density of a transition from state w at

time t to state x at time t

Fk
(x ,t) is the probability of x or less units in the system at time t

given k service channels operational

— 
fSp

(Y)dY the survival function of

F
C
(t) 

J

°’
Sc(Y)dY — the survival function of

F~~(t) is the probability that the ~th failure occurs before time t

given i servers are being repaired at time 0

C is the GOOD state

L is the number of spare servers provided

m (x) is the infinitesimal mean of the diffusion process given

state x

N(t) — A ( t ) — D ( t )  — continuous—time , discre te val ued ra ndom variable

— p (nJA ,u,~~,fl , C,L) — the stationary probability of n units

in the system

is the approximation of

P
k

(a ,b,t) is the probabil ity of a trans ition from a to b in time t

given k service channels operational

is the stationary probability of k servers are in operational

order

is the stationary probability k servers are in operational

order just prior to a service channel failure

x
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R is a f.... .ed repair time

s~ is the spare stock level for item i

S — (s1,s2,. . . ,s )  — the set of spare stock levels for all items

S~ (t) is the p.d.f. of the transition time from state k to k + 1

SG
(t) is the p.d.f. for the variable TG

S~ (t) is the p.d.f. for the variable T~

is the post recovery failure time

is the post failure recovery time

T~ is the time from the perfect state to the BAD state

is the 1th row of submatrix w, i—0,l,...

X(t) is a continuous—time, continuous valued random variable

Yk
(t) is an Erlang distribution with shape parameter k

T
1. is the column vector (1,1,.. .1)

xi 
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CHAPTER I

INTRODUCTION

The purpose of this study is to analyze an inventory/maintenance

system for recoverable items, that is, Items which are subject to

repair when they fail. The repair of items is performed by a main—

tenance facility which has a fixed number of service stations or chan-

nels which are also subject to failure. When an item fails, a demand Is

immediately placed for a like replacement from a spare paol. The failed

part is sent to the repair facility to be serviced on a first—come,

first—served basis. The spare pool is replenished when repair on the

item is completed. When a service station fails, repair is initiated

immediately and the failed server is replaced by an opera tive spar e

server if one is available. This analysis is limited to a single—

echelon system with no outside sources of supply or repair.

The objective of this study is to model the system described in

order to observe the relationship of system performace to spare stock

levels and service facility design. Specifically, the model is used to

minimize the total expected unit backorders given an investment con-

straint on the number of spare items, service channels and spare servers

in the system. For long range planning purposes, this is accompl ished

for a system with demands which are stochastic and stationary in nature.

An extension is provided, to consider the case where demands are non—

stationary and/or the time dependent behavior of the system needs to be

described.

These inventory/maintenance systems involve vas - capital invest—

1
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ments; hence , the design and control of these systems are a great

concern for managers. In large scale industrial and military activi-

ties , a majority of the inventory items are inexpensive consumable (non—

recoverable) units; however, a large proportion of the inventory invest-

ment is for spare stock levels of recoverable items. Sherbrooke [32]

states tha t recoverable item spares in the Air Forc e account for 78

percen t of the total investment, amounting to approximately five billion

dollars. Currently, automated repair stations, costing up to 16 million

dollars each , are being purchased by military organizations to repair

units which cost an average of 100 thousand dollars each.

To provide a better understanding of the structure of this system ,

we will describe a specific example where the units which fail are

sophisticated aircraft electronic (avionics) components, such as radar ,

navigation instruments and radios. Spare units are stocked at the

airfield where the demands occur. The unit failure rates are usually

low and failures occur independently. Occasionally, a rash of break—

downs occur in a particular item or the failure of one item may induce

the failure of different units. These sources of dependent demand are

infrequent arid difficult to predict and, therefore, are no t cons ider ed

in the analysis. In practice, a small number of units are sent to

another facility or higher echelon level for repair or replacement.

The repair stations are situated at the airfield. They also in—

volve sophisticated electronic components and their failure character—

istics are similar to those of the recoverable items. In addition,

these stations are periodically out of service for modification , pre—

ventive maintenance, and calibration. If a service station fails, a

high priority is placed on its repair since service interruptions 

- —•,~~~~~~~~~~~~ --- .•~~~~~~--• -. .-
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ultimately affect the number of operational aircraft. A supply of spare

components for the repair stations is usually provided.

Thus the objective in designing the system In this example Is to

provide the optimal investment allocation for spare units and service

facilities at the airfield so that the maximum number of aircraft are

operationally ready.

We begin the study in Chapter II with a brief description of some

previously developed models of recoverable item inventory systems. This

is followed by a justification for the use of the expected number of

unit backorders as a measure of system performance. After some basic

assump tions are listed , a mathematical statement of our model is pro-

vided.

Chapters III and IV provide a planning tool for managers to use

when designing a recoverable item inventory system. Chapter III devel-

ops methods for obtaining the stationary probability distribution of the

number of units being repaired. We use this distribution to compute the

expected number of unit backorders. Approximations are developed using

diffusion techniques since the actual distributions are difficult to

express. In Chapter IV , the diffusion approximation is applied to an

optimization problem to decide on the allocation of investments in the

system. A simple solution algorithm is given.

A view of the time dependent behavior of the system is given in

Chapter V. The problem is decomposed into finding the distributions for

(1) the number of units requiring repair given no service channel

failures and (2) the time between service channel failures. We provide

a brief review of the literature for the first distribution and an in—

-“.-.- -- -- ~~~-.-—
.
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depth study of the latter distribution . The final chapter contains some

closing remarks and suggestions for future research.
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CHAPTER II

THE MODEL

Much attention has been focused on attempts to model inventory

systems like the one described earlier. Feeney and Sherbrooke [5]

examined single—echelon recoverable item systems where demand was

generated by a compound Poisson process. Sherbrooke [32] extended the

results to a two echelon system in a model he called METRIC (Multi—

Echelon Technique for Recoverable Item Control) . Muekstadt [23] ex-

tended the METRIC model to include part hierarchies. All of these

papers assumed that the service facility has adequate capacity to repair

all items without delay (i.e., the infinite server assumption). Cross,

et. al., [2,9] considered a recoverable item system with finite service

capacity. They modeled their system as a classical machine—repairman

problem. However, they too assumed the servers were reliable.

Typically, service facilities are constrained in their capacity to

a finite number of servers and, in some cases, the servers are subject

to failure. Under these considerations it is important to consider the

effects of service facility design on overall system performance. Some

of the work done in this area will be discussed later: in general , very

few results are available in the context of production—inventory con—

trol,

2 1  Purpose of the Model

A model for a single—echelon, recoverable item inventory system

will be developed in this chapter. The model can then be used to

quantify the relationships between (1) service reliability and capacity

5
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and (2) overall system performance. While it will be useful as a design

tool for managers , it is not intended to help them make day—to—day

decisions in the dynamic environment of the inventory system. Although

it is our objective to create a realistic model, some simplifying

assumptions will be made to facilitate the analysis. The most important

step is to establish a meaningful performance measure.

2.2 The Expected Backorder Objective Function

We shall use the sum of the expected unit backorders as our per-

formance measure. Consider the system ’s operation for a f ixed number of

day s , and count the total number of days in which units are backordered

for that period. The expected value of this number divided by the

number of days in the period gives the expected backorders per day. Our

goal is to minimize this function . Note that by this definition, a ten

day backorder is equivalent to ten backorders for one day.

Other performance measur es , such as NORS rate, f i l l  ra te, and r eady

rate, are not as versatile as expected backorders when modeling recover-

able item inventory systems. In Air Force parlance, the NORS (no t

operationally ready , supply) rate Is considered an excellent measure of

logistics support. This figure represents the minimum number of air-

craft which cannot perform a mission due to supply backorders. It has

the advantage of measuring the direct impact that the inventory system

has on the fleet it supports. Unfortunately , it is a difficult measure

to quantify and use in inventory models. For example, if ten d i f feren t

aircraft are grounded, each due to a different component being back—

ordered , then only one aircraft is considered NORS. This Is further
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complicated by component interchangeability, substitutability and

redundancy. Once quantified, the NORS function is not separable and,

hence, Is difficult to work with.

Another measure, fill rate, is defined as the fraction of demands

that are immediately satisfied by supply. This measure ignores the

length of time a unit is backordered. Sherbrooke (321 points out that

when fill rate is employed in a multi—echelon inventory system, managers

are encouraged to concentrate nearly all stock at the lowest echelon.

While backorders will be infrequent, they will have long durations.

Another disadvantage is that a “fill” is usually defined as an immediate

satisfaction of a demand. If a short delay in satisfaction is accept—

able, the resulting optimal policy may be considerably different. In

F fact, as longer delays are accepted, the more closely the results

resemble those of the backorder criterion.

Ready rate is defined as the fraction of items which are not back—

ordered. This measure does not reflect the number of units backordered

on a particular item. Thus, it is conceivable that inexpensive items

will be stocked heavily in favor of the expensive items . Then back—

orders will accumulate only on the relatively few expensive items and

the system performance , measured by ready rate, vii]. appear excellent

while large numbers of backorders exist for expensive items.

The expected backorder criterion combines the number of backorders

and the length of each backorder as a penalty. It eliminates the need

to determine arbitrary backorder and holding costs and provides a direct

measure of support that the inventory system provides. Sherbrooke [32]

mentions a single—echelon example in which fill rate, ready rate, and

expected backorder objective functions provide essentially identical 

-
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stockage policies. However , when applied to multi—echelon problems , the

expected backorder criterion yields more reasonable results . Addition—

ally, the expected backorder function is convex and separable, proper-

ties vhich are computationai].y helpful and not necessarily possessed by

other criteria.

2.3 Basic Assumptions

A list of the basic assumptions made for this model will be given,

followed by an expanded discussion of each.

1. The demand process for each of m different items is a Poisson

process. All demands occur independently at a rate A i, Ial,...,m.

2, With each demand, units are exchanged on a one—for—one basis .

3. Al]. units turned in are serviced.

4. Service times are stochastically independent and exponentially

distributed at rate ~i. There are at most C service channels available.

If service is interrupted by a channel failure, then the unit is immedi-

ately moved to the next available service channel and service is resumed

without delay.

5. There is no batching of items for repair. Items are serviced

on a first—in, first—served basis.

6. Service channels fail independently as Poisson events at a

rate ~~~ .

7. Failed servers are repaired immediately with exponentially

distributed repair times at a rate r~.

8. Failed channels are replaced instantaneously, if a spare is

available. If no spare is available, channels are replaced in order of

breakdown times when repaired servers become available. L spare servers

__ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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are provided.

The f irst  assumption implies that the arrival rate of units does

not depend on the size of the population. In a standard application,

there is a finite source of demand ; however, when looking at the scenarios

we are modeling, this assumption is valid. For example, consider a

fleet of aircraft as generating units requiring service. As aircraft

units are backordered, the number of operational aircraft decreases.

Since the flying schedule is fixed, the remaining aircraft will have to

fly more to satisfy the schedule. Since we assume an aircraft ’s failure

rate is directly related to its usage, the perceived fleet failure rate

is assumed to remain the same. This, of course, neglects the possibil-

ity that a large proportion or, for that matter, the entire fleet could

be grounded at the same time . In a later chapter we will allow the

demand rate to vary over time to reflect changing flying schedules or

failure characteristics.

The second assumption reflects an (S,S—l) inventory policy. The

next assumption states that the system is conservative (i.e., no condem-

nations). In practice, the inventory items are expensive, so these

assumptions reflect a reasonable policy.

The fourth assumption gives non—preemptive priority to a unit whose

service is interrupted. Theoretically, given the memoryless property of

the exponential distribution, this assumption does not matter. It will

become apparent later that exponentially distributed interarrival times

are not necessary for the approximation techniques used. This assump—

tion Is made because the approximation method proposed was tested

against systems with exponentially distributed service times.

The sixth assumption implies that service channels can fail even
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when idle. This is realistic since calibration tests, preventive main-

tenance and modifications are typical for the systems being modeled.

The next assumption implies that there is an adequate number of repair-

men to work on the failed channels. This can be altered to specify a

limited number of repairmen; however, this adds to the notational and

computational complexity, but does not alter the method of analysis.

In Chapter I, it was mentioned that the service channels are large

and costly to establish. Spares for these channels are relatively

inexpensive. Therefore, it is reasonable to assume that while C + L

servers are provided, only C are useable service channels and the

remaining L must be held in reserve.

2.4 Mathematical Statement of the Model

The objective of inventory managers is to provide the greatest

system performance given a fixed budget. Thus, our goal is to minimize

total expected backorders outstanding at any point in time subject to a

budget constraint. This model will be different from those mentioned

earlier because the investment constraint links the purchase of unit

spares, service channels, and spare servers. Thus the system perform-

ance will be dependent on the service facility design as well as the

allocation of funds to unit spares.

Suppose p(nI’) represents the probability that n units are In the

service facility (In service or awaiting service). We know this number

will be a function of the input and the output of the service facility.

The parameter A 1 characterizes the input process for item i and the

parameters ~.i ,~,T1,C, and L determine the output process. For each unit

of type i we can express the expected number of backorders outstanding
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at any time as
~ (x — s~) p (xlA 1,~ ,.~,n,C,L). (2.1)

x>si

Backorders in some items may be considered more serious than for others.

In this case, we can weight the backorder function in (2.1) with an

essentiality factor, E~.

The costs of unit spares and service channels are considered to be

linear. Since the initial setup cost for service channels is very

large, there will be different costs for service channels and their

spares. An expression for the investment constraint is

C•C~ + L C 5 + ~ C~s~ < 8. (2.2)
i~1

If we are concerned with a long range planning tool, we must be

careful to design a service facility which can provide adequate service

over an extended period of time. Clearly , the potential output rate

must be at least as large as the input rate:

(2.3)
i~1

where C is the expected number of service channels operational at any

point in time. The mathematical derivation of this constraint will be

provided later.

Combining all the statements above we have a mathematical statement

of the model as follows:

minimize ~ E~ ~ (x - s~ ) ~~~~~~~~~~~~~~~~~
i—I X>S

~

subject to m (P)
CC~ + LC5 + ~ Ciaj  < B ,

i—i 
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and A < ~~~ ,

where C, L, and s~ are non—negative integers, i—i ,.. .m.

For future reference, this optimization problem will be denoted as

problem P. 

~~ . _~~~~~~~~ __ __ _~~~~~ -. — 
-:
~.:• .— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— .- 14



CHAPTER III

STATIONARY DISTRIBUT ION ANALYSIS

To apply the model developed in Chapter II as a long range planning

tool, we need to find an accurate expression for p(nI’), the stationary

distribution for the number of units in the system. To do this, we view

the single—echelon, recoverable item system as a queuaing system in

which the service facility has a finite number of servers, each subject

to failure. The servers and their repair facility will be another

queueing system imbedded in the first one. This structure will be

exploited to develop the stationary probability distributions of units

in the service system. Some analytic results will be given and a

general approximation method will be derived.

3.1 The Queueing Model

This section will develop a queueing model to represent the system

introduced in Chapter I. It will become apparent that this system has

much in common with the classical machine—repairman problem. The assump-

tions given previously establish the queue service discipline and allow

for the creation of a state space for a continuous—time Markov process.

The system to be modeled can be described schematically (see Figure

3.1). Units demanding service come from an infinite source. They enter

a multi—server queue and are setved on a first—come, first—served basis.

As soon as a unit joins the queue, a replacement unit, if one is avail-

able, is immediately returned to the source from the spare pool. If no

replacement Is available It is backordered.

13

~

—-—--  - - 
A
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Figure 3.1: Queueing System Model

Servers are subject to failure and are replaced by spare servers , if one

is available. Figure 3.1 illustrates why this system could be called “a

two—dimensional machine—repairman system.”

We must assume this system is non—saturated in order to guar~ ~ee

the existence of a stationary probability distribution. To assure this ,

as mentioned earlier, we will require

A < (3.1)

where ~ is the expected number of servers available at any poin t in

time. This condition is necessary and sufficient when there are no

spare servers (LmO); however, it does not seem easy to prove in general

[20 ,33].

For the queueing system developed , the p robability function p(n~’)

has some familiar fo rms in special cases. (For notational convenience ,

we will let p~ a p ( n t • ) ,  for the remainder of the chapter.) If C ’~~, 

- - -~~~~~~~~~~~ -—~~~~~~~~~~—-. .- - - .~~~~~~- -- -- - - -
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then f rom Palm ’s Theorem we know that Is Poisson with rate A/u . If

C—l and there are no service station failures (i.e., ~~O or L~~ ), then

t’n is geometric with parameter X/~ , since we have a simple MIM/ l

queue . If there are no spare service stations (L”O) and C is finite ,

then can be determined using the results of Mitrany and Avi—Itzhak (20] .

Since the servers can fail at any time , the number of operational

channels is independent of the number of units in the system. (The

reverse, however, is not true.) Thus , the stationary probability

distribution of the number of servers operational can be obtained

separately. This subsystem can be viewed as a classical machine—repair-

man problem where the servers and their spares are the “machines ” and

there are always an adequate number of “repairmen.”

Theorem 3.1.

If we have a system with C service channels subject to failure , L

spare servers, and C + L repairman where:

I) the servers fail independently, as Poisson events at rate ~,

and

ii) the repair times are independent and exponentially dist ributed

with rate fl,

then the stationary probability of having k operational servers,

exists and is given by

r
(C+L-k) k! {

~
) , 0 < k  < C - 1,

a 
C+L—k

1 f~
) , C < k < C + L , (3.2)

I. nJ 
—
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where
r L C+L —1

= ~~ ~~~k + ~ __________

k 0  k~ ~nJ k—L+l (C+L—k)!k! 
~

j (3.3)

A simple proof of these results can be found in reference 6.

Thus the stationary probability of having k repair channels oper-

ational is

O < k < C — 1 ,

PrCk channels up} .11

1 C+L
k = C .

L naC (3.4)

In the special case where L—O (i.e., no spares) we have

q = 
~~~~~~~~~~~~~ o < k < c , (3.5)

1 1
where qC+L = 

~
. .

, ~k 
= 

~C 
(3.6)

~ I C ! ~ l +~~k=O lk) nj n
Defining P = we have

Ic) k

~k (1~~~p) C 
= 

]

k~~~
i J

C k  
. O IkIC .

(3.7)

So when no spare servers are provided , the stationary probability

distribution is binomial.

The conditional probability that k servers are operational given

that a failure is just about to occur is not the same as since the

failed service units come from a finite source. A derivation for this

new distribution , ~~ can be found in reference 9.

-_

~
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Corollary 3.1. Let the same conditions as Theorem 3.1 hold . Then the

stationary probability

• Pr { k servers operational a server failure is about to occur)

exists and is given by

kq~
c , O < k < C

C — 
~~ 

(C_n) q~
n 0

~1 a
‘k

c 
,C + l < k <~~~~.

C — 
~~ (C—n)q~n 0  (3.8)

3.2 Analytic Results

The typical procedure used to derive the line length distribution

involves probability generating functions. A Markovian state space is

designed, balance equations are developed and a generating function is

derived. The poles of the generating function provide information which

is otherwise difficult to derive. The previous work found in the

literature has been limited to cases where no spare service channels

are available. This work will be discussed in greater detail and then a

derivation for the “simple” case of one server and one spare will be

given.

3.2.1 Previous Results

The earliest published work done on queueing systems with service

station subject to breakdown was by White and Christie in 1958 (34].

The most comprehensive article on single server queueing systems with

Poisson inputs and exponential service times was written in 1963 by Avi=
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Itzhak and Naor (1]. They allowed a general distribution for server

breakdowns and repair and were only able to derive the expected line

length and expected waiting time. Shogan in 1977 provided the line

length distribution for a single server system (33]. His results are

summarized below.

Theorem 3.2 (Shogan)

Suppose we have a system with:

(i) Independent, exponentially distributed inter—arrival times,

rate A ,

(ii) independent Erlang distributed service times with mean 1/u

and shape pa rameter k ,

(iii) a single server, no spares, with exponential inter—failure

times, rate E~, and

(iv) Erlang distributed repair times with mean 1/ n and shape

pa rameter rn

If A/u < ~/ ( F  + fl), then the stationary probability distribution

a Pr { i phases of repair required on the server ,

j  phases of service in the system)

exists and is defined by the recursive equations (for j  — 0,1,2,...):

P00 — n/ (~~+n) — X/~ , ( 3 .9)

a (X-mn Y~ (~ P0~~ 
+ XP m ,j_ k

)
~ 

(3.10)

• (X—m ~)~~ (mflPj+i j 
+ AP i j..k~ ’ 

i—rn— i, tn—2 ,...,l, (3.11)

j j

a (ku)~~ (A
~~j l k  

P0~~ + 
~~~~~~~ 

P~~~ — m n !  P1~~ )~ ( 3.12)

_ _ _ _  Al
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where P1~ is zero if It has a negative subscript and summa tions are zero

if the lower limit of summation is negative.

The expressions in Theorem 3.2 are typical. A closed from solution

for the line length probabilities has not been found. The recursive

relations are a direct result of the balance equations and P00 was

obtained from the pole of a lengthy generating function. After solving

for all the state probabilities, the steady state probability of having

n customers in the system is given by:

~ 
f o r n O

1—0

p an

~~0 ~— (n—1)k+l~~ 
for n > 0. (3.13)

The groundwork for multi—server queues with server b reakdowns and

no spares has been established in an article by Mltrany and Avi—Itzhak

in 1968 (20]. Their results for a two server system are summarized

below.

Theorem 3.3 (Mitrany and Avi—Itzhak)

Suppose we have a system with:

(i) independent, exponentially distributed inter—arrival times,

rate A ,

(ii) independent, exponentially distributed service times with

mean

• (iii) two servers, no spares, with independent, exponentially

_ _ _ _  _ _ _ _ _ _ _ _ _ _  - - -. .~~ ~~~~- -—-~~~~~ - . - - -~~
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digtributed~int.r—f ailure times, rate ~ , and

(iv) independent, exponentially distributed repair times, with

mean 11 n

Define

— [ (X+~i+~+r~) — / (A+~+~+ri ) 2 
— 2Au I / 2A , (3.14)

N - ~~~ - An - A~ , and (3.15)

D = u(~+n) [2(~+fl)(2~+A+2~z) + A(1—z)(2p+A)J . (3.16)

If A/u < 2n / (~ +r~ ), then the steady state probability

— Pr { 1 operating servers, j units in the system }

exists and is defined by the recursive equations (for I — 0,1,2) :

p = 
~
2[4u + (2A + 4.~)z].N / (A4r~)D , (3.17)

p (A 4fl) P00 / ~ , (3.18)

= ((A +~~)~ + (2~fl — A~~) z ] .N  / D , (3.19)

[Ju+i~+A+( 2— i)~~] — (3_ i)n P 1...1,~ + (i+1)~~P1~ 1~~ +

+ (i+1)u Pj~~41 , for j  < 1, (3.20)

[iu +i~+A+ (2—i )r i ] ~~ — (3—i)Tu P
1...1~~ + (i+l)~ P1÷1~~ +A P~~ J ...I

+ IUP
IJ+1 ~ for  .i ~ 

i~ (3.21) 

.~~~~~~~~~~



r .~ ~~~~~~~~~~~~~~ 
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where P1~ is zero if I ‘ 2 or any subscript is negative.

The steady state probability of having n customers in the system is

simply 2
p “~~~~ P for n >0.
n ~~0 i,n —

The work required for n> 2 is computationally and notationally

intractable and Mit rany and Avi—Itzhak suggest numerical methods. In a

related article published in 1973, Yechiali was also unable to derive

closed form solutions excep.t in very specific cases. He stated that,

“In general, no closed form relations are available for the probabil-

ities P~~0~ and, except for numerical results, no analytic comparison to

the elegant results of the classical M/M/l queue can be made.” (35]

3.2 .2 The Single Server, Single Spare System

This section will show a technique to solve analytically for the

stationary line length distribution for a single server queue subject to

breakdown, where one spare server is provided. In addition to the

assumptions stated in Section 2.3, we will also assume that operable

spares do not fail while held in the spare server pool. This is a

reasonable restriction considering the application; however, it can be

lifted without significantly affecting the analysis.

The solution procedure to be used follows. A state space for a

continuous—time Markov process will be defined . The Markovian nature

of the state space allows us to describe the flows in the system with

balance equations. These equations cannot be solved directly so proba-

bility generating functions are derived. Thsse will assist us in 
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solving for three of the stationary probabilities. When these proba-

bilities are known, the entire distribution can be obtained using the

balance equations.

We start by defining a state space for this system as

{(i,j) 1. — number of operable servers • 0,1,2,

j  — number of units in the system —
Since the state transition times are all independent and exponentially

dis tributed , the process described is Markovian . Defin e ~~~~ as the

steady state probability of being in state (i ,j ) .  The transition flows

are illustrated in Figure 3.2.

0,0 0 ,1 0 ,2 0 ,3 . .

~( )~ 4” 12ri ~ ~

0 )
~ (1,1 ~~ 1,2 J 1,3 ~~~~~~~~~~~~~~~~~ 

. .

u

ii n

G~ ~~~ , ~~~~~~~~~~ , 
. .

ii ii 
‘

~
—

~~
“

Figure 3.2 :  State Space Transitions
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The balance equations for this system are:

(X+2n)P 0~ XP 0 ,~ _ 1 + ~~~~ . j~o,i,..., 
(3.22)

(X+~+fl)P10 — 2nP 0~ + ~P~0 + uP1~ , 
(3.23)

(X+~+u+r~)P1~ — 2nP 0~ + ~P2~ + uP1~~+~ 
+ 

~~~~~~~ , j l ,2,..., 
(3.24)

(X+~ )P 20 
a ~P10 + ~P21 

(3.25)

(X+~+u)P2~ 
a nP~~ + uP2,~+1 + ~~~~~~ 

, j—l ,2,... (3.26)

Define the probability generating functions (pgf)

G1(z) 
a ~ 

p
1 
z~ , i 0 ,l,2.

j —0
Note that these generating functions evaluated at z 

• 1 give the

stationary probability of the number of operational servers. Applying

Theorem 3.1 we have

2
— , 1—0

~ 
+ 2n~ + 2ru

C (1) — q 
2ru~ 2 

1a1

~ + 2 ~~ + 2ru

2n 1—2.

+ 2fl~ + 2n
2 (3.27)

A A
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Also note that

C0
(l) + G1(l) + G2(l) —1.

We can solve for each pgf by ia.iltiplying equations (3.22) through

(3.26) by the appropriate z~ and suunning. The result is:

[X(1—z)+2~ ]G0(z) 
— ~G1(z) — 0, (3.29)

—2~zG0(z) + (Xz(l—z)+p (z—1)+~z+flz]G1(z) 
— ~zC2(z) — u(z—i)P10,

(3.30)

—flzG1
(z) + ( X z ( l — z ) + ~ (z—l ) +~ z 1G 2 (z) — ii(z—1)P20

(3.31)

After some elementary row operations we have an equivalent matrix form

A(z)’&(z) — u (z—l) 1,, where:

—
~~ 0

A(z) Xz(l-z)  ~Xz-~ ) (l-z) az-u) (1-.z)

[ 0 —i~z Xz(l—z)+u(z-1)+~z

G0 (z) 
[ 

0

i(z) — G1(z) and b — 
J 

p10 + p20
G2(z) 

L 
~2°

If we had values for P00, P10 and P20 we could solve for all ~~~ via

the balance equation8. Equation (3.22) provIdes one equation in P00 and

~io~ 
The above pgf’s will be used to provide two more independent equations.

Using Cramer’s method for solving simultaneous equations we have:

IA~(z) I
G1(z) — u ( z — l )  , i—0,l,2, (3.32)

where I Ai(z)I is the determinate of A(z) with column (i + 1) replaced

by b. Examining row 2 of A(z) it is clear that I A ( z ) t  — (z—l) ~Q(z)l

- n- --. . — . - - --- --.
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where 
A(1—z)+2n —

~~ 0

Q(z) — —Az —Xz+~ —Az+~

0 —r~z Az(l —z )— u(l—z)+~

So we have

G1(z) a 
________ , 1—0,1,2. (3.33)

IQz i
By its definition , Gi(z) must be continuous and bounded on the interval

[0 ,1] and we know G
1

(l) — q1, where q1 is given in (3.27). Thus we have
G~ (1).tQ(l) I

1 — 0,1,2. (3.34)

It is easy to show that these three equations are dependent ; therefore ,

we only get one useful equation in P10 and P20 . For i 0 we get

— 2 n (A — u )  (~+~ )+A~
2 

= P + P . (3.35)10 20

If we had a root for I Q(z)  ~on the interval (0 ,1), then by continuity of

G
0

(z) on (0,1) we would have another independent equation for P1 0  and

~~~~ Evaluating JQ (z ) J at z a 0 and z — 1 we have:

IQ(0) I a -(A + 2~) u
2 

< 0 (3.36)

and

I Q l I  — —21i(X — u)  (
~+ i i)  — (3.37)

Forcing I Q ( l ) I > 0 yields the relationship:

< 2~n + 2~
2 

2 — q
1 

+ q2. (3.38)

~ + 2 ~~~+ 2 ~

~ 

~~~—- -~~~~~ -- -~ ---
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This is the f amiliar constraint requiring the expected service demanded

per unit time to be less than the expected service available. Given

that this condition is met, the fourth degree polynomial Q(z) I has a

root, z1, on the interval (0,1). Then we have 1A0(z1) — 0, or

equivalently

+ ~z1
P20 0 • (3.39)

Equations (3.22), (3.35), and (3.39) provide three independent equations

in P00, P10, and P20. Using these, the balance equations and the

traff ic intensity condition (3.38) we have:

Theorem 3.4

Suppose we have a system with:

(i) independent, exponentially distributed inter—arrival times,

rate A,

(ii) independent, exponentially distributed service times with

mean l/u ,

(iii) one server and one spare, with independent, exponentially

distributed channel inter—failure times, rate ~ , and

(iv) independent, exponentially distributed repair times with mean

i/n

Define

K(z) (Az-u)(l-z) + ~z , (3.40)

D(z) — [A(z—1)—2~ ](Az—~ ] [K (z ) +iz] — X~zK(z) , (3.41)

2
and q0 — 2 2 • (3.42)

~ + 2n~ + 2~

_ _ _ _ _  ~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~ - . -
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If A/u < 1 — q0, then

a) D(z) has a root, z1, on the interval (0 ,1), and

b) the stationary probability distribution

P~~ — Pr 
{ i servers are operative,

j units are in the system }

exists and is defined by:

—q0D(l) K(z1)
— 2 ‘ 

(3.43)

~ u~[~z1 — K(z 1) ]

q z D(1)
— 

0 1  (3 44)
1 

~ 
[~~z~ - K(z1) 1

p
00 ~

p
~0 / (A+2~ ) , (3.45)

and the balance equations (3.22) through (3.26).

3.3 Diffusion Approximations For Queueing Systems

It should be evident that analytic results for large systems are al-

gebraically cumbersome and do not provide any insight into the nature of the

desired distribution. A computationally efficient and relatively simple

approximation technique would greatly assist us in solying the optimization

problem proposed earlier. For the situation that we are modeling, diffusion

approximations provide simple and accurate representations for the queue

size distribution.

The application of diffusion approximations in the study of queueing

systems was introduced in 1961 by Kingman (15]. Subsequently Iglehart [11),

Kingman (161, and Newell (24] provided substantial results in 1965. These

approximations have also been applied to problems found in such diverse



- . --— — -. ~~-‘- ~~—.~~ -~~~~~~-~~~---—~- ~~~~~~~~~~ --~~-~~~~~~~—~~~-—— ..~~ - .- -- ,— -- ------ -- --

27

fields as statistics , engineering , physics, genetics and neurophysiol—

ogy . An interesting historical review of the use of the diffusion

equation is in reference 14.

When employed in describing queueing systems with congestion or

heavy traffic, diffusion approximations provide very accurate results.

A system is considered congested when the traffic intensity, P , is

never much less than unity (say, p > .70), where the traffic intensity

generaily measures the ratio of the system’s input rate to its output

rate. The system we are modeling should fi t  into this category . The

fixed cost of each channel is extremely high , and thus, the imputed cost

of server idle time is high. Therefore, it is reasonable to expect the

number of service channels will be kept to a minimum, forcing the

traffic intensity to be high in many real situations.

The previous work done in approximating the line length distri-

bution for multi—server queues can be divided into three categories:

1) p < 1, 2) p > 1, and 3) p — 1. The third category is highly

unlikely in practice, so this case will not be discussed.

In the case p < 1, Iglehart (11] developed approximations for the

M/M/C queue and a machine—repairman problem. Although, he provides weak

convergence results in some extreme cases, his approximations are

generally not very accurate because he did not restrict the queue

lengths to be non—negative. Ralachmi and Franta [10] incorporated this

restriction into their analysis and demonstrated good approximations for

the Cl/N/C queue. Their work Will be discussed in greater detail later

in this section. Fischer [6] introduced an approximation method for the

distribution of the virtual waiting time in an N/N/i queue subject to

breakdowns. His analysis, however, cannot be extended to multiple

_  -- ~~~~~~~~
—. - -
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server systems nor does it help in approximating line length distri-

butions.

When p > 1, the number of units in the queue will become unbounded,

almost surely, as time goes to infinity. Although a stationary prob-

ability distribution does not exist, we can explore the transient dis-

tribution. The non—stationary problem is not discussed until Chapter 5.

For continuity of development, these diffusion approximation methods

will be covered in this section. Iglehart and Whitt (12] developed a

diffusion approximation to the transient distribution of the line

length for a GI/G/C queue. Their results are accurate for the case when

p > 1. Although they prove some weak convergence results, Newell (27]

provides an improvement to the transient distribution for all categories

of traffic intensity. Both of these approaches will be covered in more

detail later.

Diffusion approximations are developed by essentially replacing the

queueing system’s discrete state space with a continuous state space.

Conditions are imposed on the continuous state space so that the newly

defined process captures the characteristics of the original process.

When modeling a queueing process in this manner, one gets a partial

differential equation with boundary conditions that play a rather

natural role. This differential equation is called the diffusion

equation and its solution will yield a probability density function.

Since we are trying to find a distribution describing a discrete process,

the density function will have to be integrated over specific intervals

to yield the desired approximation.

In this section we first derive the basic diffusion equation and

the required boundary conditions. We will then review the previous work 

- ~~~~~~~~~~~~~~ 
- .
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done in obtaining diffusion approximations to the line length distri-

butions for multi—server queues. Then an approximation will be derived

for the stationary line length distribution for a multi—server queue

subject to server breakdown. Numerical examples will be given to

compare this approximation to analytic and simulation results .

3.3.1 Derivation Of The Diffusion Equation

This section will discuss some of the underlying assumptions

necessary to develop a diffusion approximation, introduce some new

notions and notation, and then display the derivation of the diffusion

equation and the boundary conditions imposed on it. The derivation

follows one found in ICleinrock. (See [17], pp. 69—71.)

The first assumption, which was previously mentioned, is that we

will only be examining queues with heavy traffic. Thus it is reasonable

to expect that the number of units in the system, N( t) ,  is relatively

large compared to unity. On a coarse scale of measurement, N(t) changes

very little in a short period of time. Although N(t) is discrete, it Is

mathematically convenient to view it as a continuous random variable,

X(t), and thereby allow “infinitesimal” queue changes. To be consistent

with the nature of the queue being modeled, we will define XO!) as a

continuous—time, continuous—state Markov process with conditional

transition probability

F(w,t;y,t) — Pr [X(t) < y 1 XCr) w1 for t < t. (3.46)

So F(w;t;y,t) is the probability that the process X(t) is no greater

than state y at time t given that it was in state w at time T

We will assume that the conditional probability density function,

f(v ,r;y,t), exists, is continuous and twice differentiable. Then we

L -
-
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have

f ( w ,t ;y , t) a ~F(w ,T ; y , t~ . (3.47)

This density function satisfies the Chapman—Kolmogorov equation

f ( w , r ; v , t) — 
J 

f ( x ,u ;y , t) f (w , t ; x ,u) dx  for  1< u < t.

(3 .48)

Define the conditional mean, M(x,t;t), to be the expected value of

the process X at time t, given it was at x at time t . Define the

conditional variance , V(x ,T;t), in the same manner. Thus we have:

M(x ,t;t) — E[X(t) j X(T) a 
~] for T < t, (3 .4 9)

V(x, r ; t )  — E ~ [X(t) — M(x,T;t)]
2 

X(T) — x } for i < t. (3.50)

Notice that these moments are dependent on the state of the process as

well as the time. This is an important distinction which is valuable in

approximating multi—server queue distributions (as opposed to single

server queues). We shall assume that these moments have continuous

derivatives which are defined as the infinitesimal mean, m (x,t), and the

infinitesimal variance, ~
2(x,t). Specifically we have:

m(x , t) 3M(x~ t ;T)~ 
~~~ 

‘ 
(3.51)

02(x t) = 3V(x ,t;~~ 
Tat 

(3 .52)

Incorporating definition (3.49) and the fact that M (x ,t;t) — x , we have

m (x,t) — u r n  [M(x ,t;t+L~t )  — H(x , t ; t) ]

- lim E y f ( x ,t ; y , t+At)dy - x]
L —

~~

- lim (y-x)f(x ,t;y,t+At)dy . (3.53)
.1 -~~~

-.—

~
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Similarly ,

~
2 (~~,t) — u r n  (y—x)2 f(x,t;y,t+At) dv . 

(3.54)

L~t— >O 
..

~~~

and, in general, we define

E~ (x ,t) a ~~~~ i(y_x)
’
~ 
~~~~~~~~~~~~ dy, n—1,2,...

(3.55)

where E~ (x ,t) is the infinitesimal nth moment. These relations will

become useful later.

Now we will derive the forward diffusion equation by employing an

expedient analytical technique. An arbitrary integral, I, will be

defined. Then an alternate representation using Taylor series will be

derived . By taking the difference of these two integrals and by employ-

ing a theorem of integration we Will obtain the diffusion equation.

Consider an arbitrary function Q(y) which is infinitely differen-

tiable and sufficiently bounded so that the integral

I a f” Q(y) 
3 f (w ,T;y~t) dy (3.56)

is well defined. Using the definition of a partial derivative and the

Chapman—Ko lmogorov equation (3.48) we get:

a 

J 
Q(y) lim [f(w~r;~~ t+~t) — f (w~T;Y~t)] dy

—~~~

- 
~~ ~~~~~~~~~~~~~ [r~

f w .r;x.t f x .t;Y~t+~t dx] dy

- f (w ,t;y,t) 
dY} 

(3.57)

Let I — lim 
~~

-_ (I1
_1
2

) ,  where I~ and 12 are the two Integrals above.
L~At~ >O

—

~ 

.,- - 
. 

_ _ _ _ _ _ _
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Examining I~ alone, we substitute the Taylor series expansion for Q

about x and then interchange order of integration to obtain

1l ~~ (~—x)~ 
d~Q(x) [1 f(v;t;x,t) f ( x , t ;y , t+M ) dX~~ dy

a if(w ,T;x ,t) 
[~~ 

1 d~Q(x) i
(y_x)nf (x ,t;Y,t+At)dYl dx.

(3.58)

Careful examination of the integrand reveals that the inner integral 
is

the definition for the nth moment.

Taking the limit of I~ we get

u r n  
~~ 

- Urn 
~~ 

1Q~ 
f (w ,r;x ,t)dx + 1~

,t;x,t) [~ 
1,~~~(x , t )

-~~ 
-

~~ L~~’

n id Q(x) j dx
ndx

= lim I + ~ ~~~ , f(v ,T;x , t) E ( x ,t) d~Q( x) dx
n 1  —~~~ dx

(3.59)

Substituting back into (3.57) we get

— 
n~1 

~~ J

°°
f(w ,T;x~ t) E ( x ,t) dx . 

(3.60)

The nth term (n — 1,2,...) in this equation can be integrated by parts

n times to remove derivatives of Q. For example, define

I — ~~~f (w ,t ;x .t) E ( x ,t) d~~~~) dx , n 1,2 , ... •(3.6 1) 

-~~~~~~~~~~~~~~
- - --.

~~~~~~~~~~~~~~
-.--
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Let

u — f(w,t;x,t) E ( X ,t)  and dv - 
d~Q(x) dx.

Then
I ~~uv~~ - J vdun 

~~
__

~~~ 
-

~~~

— f (w ,r ;x ,t) E (x ,t) ( 1)

- i[d 1
~~1 [F[f(w,r ;x~t) E ( x ,t)]] dx

H 1’° d~~~
1) 

~ ~— — 

~ dx~~~~~ 
L~ 

[~~~w ,t ;x , t)  E ( x ,t )]]  dx , n — 1,2,...,

- 
(3.62)

since by previous assumption Q(x) and its derivatives must vanish at

± ~ 
. Thus by an inductive argument we have

I — 
~~~ i— [E (x ,t) f (w ,r;x,t)] dx. (3.63)

Subtracting this equation from the original definition of I, (3.56),

yields

0 - 
J
°°

Q( x) 

f
~~~ C ’t) - 

n 1  
~~
‘ 

~~~— [E (x ,t) f(w~T;x~t]} dx.

(3.64)

By assumption, Q(x) was an arbitrary function . Thus the second factor

in the integrand must be identically zero , giving

af(w,t;x,t) — 
~ (_ 1) fl 

~~~~~~~ 
[E (x ,t) f (w ,t;x ,t)]. (3.65)

n—i

It is reasonable to expect the conditional density , f , to be “tightly
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concentrated” around the value x. Thus we shall assume that the third

and higher infinitesimal moments are negligible (i.e., E~(x,t) — 0,

n —3,4,...). We finally get the second order partial differential

equation 

~2 ,
— — [ni(x,t)f] + ~~~~~~~~~~~~ [f(x ,t ) f ] .  (3.66)

This equation is known as the forward diffusion equation, the one—

dimensional Fokker—Plank equation and the forward Kolrnogorov equation.

When the infinitesimal mean and variance are not time dependent, the

process X(t), which this equation describes , is defined as a stationary

Ornstein—Uhlenbeck process. When the infinitesimal mean and variance

are constants, the process defined is a Brownian motion or Weiner

process with drift .  Thus , in some cases , th e normal probability density

or Gaussian function is a solution to the diffusion equation.

Boundary conditions must be imposed upon the density, f , in order

to assure a unique and meaningfu l solution to the diffusion equation.

The most natural conditions are to require f to be a probability density

which is non—zero in the positive quadrant. By this we mean

f(w,t;x,t) — 0, for x < 0 and when t — t, x ~ v, (3.67)

and

10 f(w ,T;x,t)dx 1, for t > r . (3.68)J o
As the process X(t) wanders through its domain, we expect it to

spend very little time around its lower limit, zero. Most of the

probability mass of X(t) should in the tail of the distribution and so

it is natural to impose a boundary condition on the diffusion equation

to enhance this concept. We can take advantage of the first two con—

~

. - ---- -
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ditiona to derive another boundary condition , often termed the “re-

flecting barrier” condition . The first step is to integrate the diffu-

sion equation,

~~ 
~~.1x 

~
f° ~~~ (m(x,t)f]dx + 4 

1 
_

~~~~~~ 
R72(x,t)f] dx

~~ 
Ifdx  - -m(x,t)f + 4 f (a2(x,t)f]
y x—y x y  (3.69)

The nature of the system we are modeling suggests that X(t) will not

become inf inite in finite time. Thus condition (3.68) and the con-

tinuity of f yield

u r n  f(w,T;x,t) — 0, (3.70)

Urn f(w,T;x,t) — 0 , and (3.71)

~~~ 
- [1] - 0. (3 .72)

By taking the limit of (3.69) we get the boundary condition

Urn —m(x,t)f + 4 -~~~~~ [a2(x t)f]~ = 0. (3.73)

The diffusion equation and the three boundary conditions derived

above, given in this general form, have never been solved analytically.

If the infinitesimal mean and variance are expressed as functions of

only one variable or as constants, then a solution can be found. The

remainder of this section will display these solutions.

3.3.2 Previous Approximations For Queueing Systems

The key to finding an accurate diffusion approximation for a

queueing system is in finding good representations for the infinitesimal 

— --- -~~~~ -.~~- - - -~~~~~ -- —~~~~~~~
, 

~~~~~~~~~~~~ --~~~~~ --. - - -~~~~~~~~~~~~~ - - -  ~~~~~~~~~~ - -~~~~~ -- -~~~-~~~ 
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mean , m(x ,t), and variance, c72(x,t). In order to find these, it is

convenient to think of the random variable N(t)  as the difference of two

random variables, N(r.) — A(t) — D(t), where A(t) represents the arrival

process and D(t) represents the departure process. The distributions

underlying A(t) and D(t) then determine whether m (x,t) and c~
2(x,t) are

constants or functions of one variable. We will explore three diffusion

approximations which differ in infinitesimal moments and traffic in-

tensity.

3.3.2.1 Stationary Distributions For The Cl/N/C Queue

The most accurate approximation of the stationary line length

distribution for the Cl/N/C queue was developed by Halachmi and Fran ta

(10]. For stationary results they assume the traff ic  intensity is less

than unity (p < 1). They were able to capture the nature of this system

by making the inf initesimal moments depend upon the state of the system .

The methodology used to arrive at these moments will be displayed firs t

and then the solution to the diffusion equation will be provided.

Finally, some comparative results will be discussed.

H We start by assuming that the number of units in the system is

continuous—valued random variable, X(t). Letting X(t) — A(t) - D(t), we

can define

M(x , t )  lim E(X (t+~t) — X ( t ) l X ( t )  = x]
t

E(A(t+ 1~t) — A (t )  !X( t  — x]
— lirn —

t~t4O

E [D (t+ L~t) — D ( t ) I X ( t )  — xl
(3.74)

- -

~ 

- -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-- - “-.- - .  ~~--~~~- - ~~--. -~~ J
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The arrival process is independent of the state of the system so we can

drop the conditional statement in its expectation . Since we are in-

terested in obtaining steady state results, we need to find the limit of

(3.74) as t -‘ ~~. Since A(t) is a renewal (or counting) process, we can

use Blackwell’s Theorem [4] if we assume that the interarrival times are

non—lattice (or non— arithmetic) random variables. This theorem yields

litn E [A(t +~t) — A ( t ) ]  — Xt~.t, (3.75)

where A is the interarrival rate.

The departure process does depend upon the state of the system.

Since the interdeparture times for each active server are independent

and exponentially distributed, we can take advantage of the memoryless

property of this distribution. Let ii be the service rate of an active

channel. To accomodate the continuity assumption for the system’s state

space, we assume that the servers act as independent infinitesimal

units. This allows the definition

1x~
th(t) + 0(~ t ) ,  O<x(~

Pr(D(t+E~t) — D(t)  > O 1X ( t )  — x] =

~~~~~~~~~ 
+ 0(~t), x > C , (3 .76)

which together with Blackwell’s Theorem gives

~ 
x1I~t, 0<  x < C

lirn E [D(t+t ~t) — D( t)~ X(t) — xl
~~~ CpLt, x > C

min(x,C)i.i~t. (3.77)

Thus , using (3.74) the infinitesimal mean is

m(x) a A — min(x,C)~~. (3.78)
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Similarly, we can define the infinitesimal variance

02 (x , t) — u r n  Var[X(t+~t~_— X(t)IX(t) ax]
t

— tim Var (A(t+~ t) — A ( t ) 1  
+ ~~~ 

Var (D(t+i~t) — D ( t ) I X ( t )  = xl
t t

(3.79)

where we again assume that the arrival process is independent of the

state of the system. Since we do not have the equivalent of Blackwell’s

Theorem for the variance of a renewal process we need to employ a trans-

formation to fit the conditions of a known renewal theorem. Define

~A(t) — A(T + i~ t) — A(t), n — [t/~ t], and ó.A~ — A(i~~ t) —

where the brackets, H], denote the greatest integer function. Then by

our assumption that arrivals are independent, we have

V a Var ~ ~A1] 
— Var [M(t)]/n. (3.80)

i—i

But assuming A(0) — 0 we also get

V = Var [1 
~ 

- Var~~A(n~~t) - A(0)]/n~
i-i I J

— 2 
Var (A(t)] (3.81)

Combining (3.80) and (3.81) yields

Var[LtA(t)] — nV = -
~~ Var [A(t)] — Var [A(t)]/[t/L~t] (3.82)

Taking limits we get the equivalent statements

u r n  Var (M(t)] — iirn~~Var [A ( t) ] / [ t/~t]

- lire ~Var [A (t ) ]  d t/ t ~ . (3.83)
t-~~ I I

- ~~~~~~~~~~~~---- - --“-- ~~~~~~~~~~~~ -.-.- ---~~~- - --- - —---. -~~~~~ - .
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From renewal theory (see [28], pp. 180) we have 
-

Var [ACt)] 
— ~~~ , (3.84)

where is the varIance of the ineerarrival times. So ye finally get

lire Var [A( t+~t) — A(t)l — A 3~
2 1~c. (3.85)a

In a similar manner, we can find the variance of the departure

process, keeping in mind the dependence on the state of the system.

Since the service times for each active server are exponentially dis-

tributed , we know the variance cT~ of each time is the square of the

expected service time (i.e., l/u~). Therefore, we have

lire Var (D(t+At) — D(t)jX(t) — x] — mir~(x,C)u ~~t .  (3.86)

Thus, using (3.79), the infinitesimal variance is

= A3a
2 

-4~ min (x,C)1I. (3.87)

The diffusion equation (3.66) derived in the previous section

relates a change in state to a change in time. Since we seek a station-

ary distribution, we must discard the conditioning on the initial state

and take the limit as t-’ ~ . Thus

lire f (w ,t;x , t) — f(x), and lire -~f 
= 0

are necessary for the existence of a stationary distribution. We then

get the diffusion equation

1 d 2 2 d
2 2 ~~ 

(x) f(x)] — ~~ [.m (x) f ( x ) ] = 0, (3.88)
dx

and the associated boundary conditions

!~~..... (~2(x) f(x)l — rn(0) f (0 )  — 0 , (3.89)
x 0
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and

J f(x)dx — 1. (3.90)
0

The solution arrived at for this differential equation by Halachmi and

Franta (10] is

2 u—i

[111
(0 (x)] exp (—2x) , 0 < x — C

f(x) —

L 112 exp~ 2m~~~x~ , x > C , (3.91)
Lo (C)]

where
u — F ~~~~~~ + 1], (3.92)

10 f(x)dx = 1, (3.93)
Jo

and

1 -,

H
1
[02(C)] exp(-2C) = 112 exp [2m C~~ C 1  . (3.94)

L ~ (C) J
Conditions (3.93) and (3.94) solve precisely for the constants 111 and

112. Condition (3.94) requires f to be continuous . The solution , f , is

a probability density function. To get the approximation for the

distribution of the number of units, N, in the system, we def ine

r~~
5

~
‘
n — Pr [N = n ]  — j f(x)dx , n = 1,2 (3.95)

n- .5
Certain adjustments must be made since the approximation for p0 is not

well defined. These are discussed in another section.

Some comparisons can be made between the diffusion approximation

and the analytical sciution for the Gu M/C queue, but unfortunately only

for n >C. A known queueing result for the Cl/N/C queue (8] states

-

~

- - -
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that when p — X/Ci.t < 1, the stationary probability distribution, p~,

exists and there is an r, 0 < r < 1, such that

— Ar’1 , n > C. (3.96)

When we evaluate the approximating density (3.91) , we get

p f(x)dx

n— .5

= 
112:

2 (c) 

{ex~ [2~~~ (n+.sj - exp [2~~~ (n_ .5)

}

— Ks’1 , n > C , (3.97)

where

E2m(C )ls — exp (3.98)
L~~~~~~~cJ

and H 02 (C)2 n+.5 n— .5K —  2m(C~ 
Es — s  1

- K (1 - s) .  (3.99)

Thus , comparing (3.96) and (3.97), we can see that p and agree in

form .

Examining the N/N/C queue yields some convergence results. Equation

(3.96) becomes

p a Ap’1 
, n > C , where A — ( l—p) / p  for C — i. (3.100)

The infinitesimal mean and variance in (3.98) become

in(C) — X — C~.i and 0
2

(C)a A3(12) + C~.i — A + C~.I ,
A

so that the multiplicative factor in (3.97) is

s = exp 
~~~~~~~ 

— exp [_2 l_P] 
. (3.101)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —-~~~ - - -- -~~~~~~~~~- -  .-- - . --~~~~~~~~~ - - -~~~~~~~--- 
- -  - -
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Thus as p -* i , then s -‘ 1. Moreover , for an M/M/l queue , Kobayashi

(18! points out that if we define — 1 — p , then the approximation

(3.97) will become

~~~ r~—~ , n = O
p =n 1p(l — S) S  , n > 1 . (3.102)

As well as being very close in form to (3.100) , this suggests that

convergence is rapid as p -
~
. 1.

Basically these convergence results are due to the fact that

a i /A 2 which simplifies a2 (C) . This suggests that the diffusion

approx imation developed here would also be accurate for systems which

have a coefficient of variation for the arrival process close to unity

(i.e., ~
2 /X2 1).

3.3.2.2 Transient Distributions For The Cu/C/C Queue

Iglehart and Whitt [12] explored a diffusion approximation f or the

transient line length distribution for the Cl/C/C queue. They con-

sidered the cases P = 1 and P > 1. The latter case , only, will be

discussed. Their derivations do not involve the solution of the diffu-

sion equation; they are lengthy and involve much notation, so only the

maj or results will be displayed . The analysis involves modif ying the

queueing system, finding an approximation for the modified process, and

proving the same results are good for the unmodified process. Since the

approximation converges it can be expressed as a theorem.

Theorem 3.5. (Iglehart and Whitt)

Suppose we are given a Cu/C/C queue with N(0) — 0.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Let A represent the arrival rate of units ,

~
j represent the service rate of a busy server,

represent the variance of interarrival times, and

represent the variance of the service times.

Define — + c . If 
~ 

— > 1,
a S Cu

then

lire Pr f ~~
t) - (\-~~~~ 

~~~~~ - 

J

exP(_Y2/2)dY . (3.103)

(2ir) -
~~~

This approximation is a direct solution of the diffusion equation

without regard for the boundary conditions or the dependence of the in—

H fintesimal moments on the size of the queue . If N ( t )  were allowed to be

continuous , then it would represent a Brownian motion process with dr i f t

which would give positive probability to negative line lengths . Since

the process “drifts” away from zero, the approximation becomes more

accurate as time progresses. If an initial condition, say N(0) — k, is

introduced, where k is large, then the approximation would also be

improved.

Newell (27] points out that when some of the boundary conditions

are ignored, the solution found for the diffusion equation may not be

unique. For this case, the diffusion equation is

3f ~~ 0
2 
~~- -m ~~~

- + (3.104)

and the boundary conditions are

f(y,0;x,t) — 0, for x < 0 and t — 0, x ~ w, (3.105)

1f(w,o;x,t)~~ 
— 1, for t > 0, (3. 106)

L~~ ~~~~~~~~~~~~~~~~~~
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and

-mf (w ,0;0,t) + 
0 3 f (w , O , x , t )  

= 0 . (3.107)
- x—0

Using the same notation defined in Theorem 3.5, Newell provides the

following solution

f (w ,0;x , t) 
72~ y 2t {ex~ [_ [x w;( A _ P ) t J 2] 

+ exp [÷2~~
A_ ]
~~~

[ex~ [[
~~~~~A~~~t1

2] 
- 

~~~~~~ ~~
exp

~~ [~~~~ ~i~)t)
2] 

d
~~1. 

(3.108)

L 
2 y t  y 2y t J

This solution satisfies all the boundary conditions and is valid for all

values of p . No tice Iglehar t and Wbitt ’s approximation, (3.103),

corresponds to the first term in this solution. They actually provide

a solution to the diffusion equation (3.104) but do not meet the bound-

ary conditions . The second term in Newell’ s solution is a correcting

factor so that the reflecting barrier condition (3.107) is met.

3.3.3 Approximation For Cl/MI C Queue Sublect To Server Breakdown

The method we use to find an approximation for the line length

distribution in a Cl/N/C queue subject to server breakdown is the same

4 as the one discussed in Section 3,3.2.1. A representation is found f or

the infinitesimal moments, the diffusion equation is solved and the

derived density is integrated to get the approximation for the station-

ary distribution of the number of units in the system. In this section ,

we shall also restrict the traffic intensity, p — )/~C, to be less than

one. After the approximation is developed, a region in which to expect

the best results is created. Finally , some numerical examples are given

- —— —
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so that we may compare the approximation to analytic and simulation

results.

3.3.3.1 Derivation Of Infinitesimal Moments

We start, as before, by assuming that the number of units in the

system is a continuous random variable, X(t). We then express X(t) as

the difference between the arrival process, and the departure process,

that is, X(t) — A(t) — D(t). Given that C(t) is the number of operational

service channels, we can define the infinitesimal mean

m(x k,t) — lire E[A(t+h)—D(t+h)—A(t)+D(t) IC(t)—k,X (t)—x]
h

a lire E[A(t+h)—A(t)j — lire E[D(t+h)—D(t)JC(t)—k,X(t)—xJ
h-’O 

h 
h-’O 

h

(3.109)
Notice that in this case, the departure process is dependent upon the

number of operational service channels as well as the state of the

system. Using the same procedure as described in Section 3.3.2.1,

we have

lire E(A(t + h) — A(t ) ]  — A  h ,

and

lire E(D(t + h) —D(t) I C( t) k, X(t) — xl — inin(X,k) ii h (3.110)

Thus,

m(x,k) — A — min (x,k) ii . (3.111)

Notice m (x,k) depends on both x and k. We can find the infinitesimal

mean m(x) using m (x,k) as follows:

C
m(x) — ~ m(x,k) Pr {k channels operational!x units in the

k—O system}

H 
-

— [A — min (x ,k)u] Pr {klx}
k—O
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C
A — (xu) - ~ Pr{kjx} , 0 < x < 1

k—i

C
A — (xp) 

~ Pr{k~x} — pPrfllx} , 1. < x < 2
k— 2

a

C 2
A — (xii) 

~~ Pr{klx} — p ~ k Prfklx}, 2 < x < 3
k— 3 k—i

C
A — p  

~ kPr {klx} , x >C .
k=l

(3.112)

The infinitesimal variance , can be written as follows :

02(x ,k,t) u r n  Var [A(t+h)—D(t+h)—A(t)+D(t)IC( t)=k,x(t)=x

h~O 
h

= lire Var(A(t+h) — A ( t) ]  
+ lire Var [D(

t+h) — D ( t )~~C ( t ) — k ,X ( t ) = x )
h-~O 

h 
h~O 

h

(3.113)

Again we know that

- - lire Var [A(t + h) — A( t) ]  = A3 ~2 h,a (3.114)
and

lire Var[D(t + h) — D(t) I C(t) —k, X( t) — x] — min(x,k) ph.
(3.115)

Thus

c12 (x ,k) — X3a2 + min(x ,k) p. (3.116)

Taking expectations , we see that

C
02(x) ~ c12(x ,k)’Pr tk channels operationa1~ x units in the system}

k-0

—

~ 

-—- -- - “-- ---- —-- - - - - - - - -

. 
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/ 

A3~
2 + xp Pr ~k (x } , < x <

k—l — —

3 2  C
A 
~~ 

+ ~~~ ~ Pr- [Ic Ix~+ p ?r [)4x}, 1 < x ( 2
k—2 —

3 2  c 2
— ~ 0a + xp ~ Pr {k x}+p ~ k~Pr CkIx} , 2 < x < 3

Ic—) k—i

3 C
A cy 2 + ~j  

~~ 
kPr{kjx} , x > C.

k—i.

(3.117)

3.3.3.2 Definition of an Approximation Region

Finding the conditional distr ibution Pr [ki x} is as d i f f icu l t  as

solving for the distribution we wish to approximate. Using Bayes ’

Theorem to solve for Pr CI I x}, where the continuous variable X(t) has
been replaced by the original discrete variable N(t), we get

Pr (kln} — 
pr- Cn k} Pr Ck} — ____

Z Pr {n l k} Pr { 1C} 

-

kaO (3.118)

If we knew any of the probabilities in the above equation, then we ‘gould

not need to use approximations since solving for Pr (id is our objective.

Under some conditions, however, it may be reasonable to use Pr{k}

in place of Pr{kI n}. Looking back at equations (3.112) and (3.117) ,

one can see that the probabilities of interest are only Pr (kI  id

I ~~~_ _ _ __ _ r~~~~~~~~ . .  
--
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when n > C. For example , in the two channel case, we wish to have

PrC k (nJ Pr (k} , for Ic — 1,2 and n — 3 ,4 , . . .

(3.119)
The stationary probability distribution for the number of operation-

al channels is given by Theorem 3.1, equation (3.2).

A comparison between the conditional distribution Pr{kI n} and

PrCk} was done for one and two server systems using the results of

Theorems 3.2 and 3.3. It appears that the relative error,

Pr{k} — Pr{kln}, is a function of X/~ , p/~ and A ICp , where
Pr{kjn}
C

C — ~ kPr Ck} and the last term is the traffic intensity , P . As
k—O

p + 1 the relative error decreases. As X/~ increases beyond a certain

point, the approximation improves. As p/fl increases, the approximation

gets steadily worse, A proposed region for approximatlor.s which have

less than ten percent relative error is as follows:

p > .75, (3.120)

> 1.00, (3.121)

u/n < 1.00, (3.122)

The comparative data are displayed in Figures 3.3, 3.4 and 3.5.

Figure 3.3 shows the results in a system having one server and no

spares. Figure 3. 4 shows the results for two servers and no spares .

Figure 3.5 compares results for the single server, single spare system.

Negative errors show up because one density does not necessarily bound

the other for all values of the parameters. The natural logarithm of

was used for the abscissa to show the insensitivity of the relative

error to large changes in A/~ . The numerical results also exposed

considerable round—off error problems when trying to apply Theorems 3.2

L - -  
- 

-
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An interesting effect was also observed when the relative sizes of

the server breakdown rate and repair rate were increased while main—

tam ing the same ratio. Suppose we fix a set of base rates, ~ and r~,

and define — K~ /K~ , where K~ and K~ are the actual breakdown and

repair rates. Then as K increases , Pr [k} remains the same (see

equation (3.2)); but, the relative error decreases. These results are

displayed for the single server, single spare case in Figure 3.6. It

could be said that server breakdowns induce a non—stationary service

rate and that the “more stationary” the service process is, the more

independent the line length is from the number of operating channels.

This is similar to a conjecture by Ross [30] for a single server system

with non—stationary arrivals. Unfortunately , it is difficult to quanti-

fy this phenomenon and define a reasonable bound .

LELA~ LVE
ER OR

.10 - -

5

- 
-.05.

Figure 3.6: Effects of Relative Size of K~ and Kfl
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3.3.3.3 Solution Of The Diffusion Equation

Within the region defined by relations (3.120), (3.121) and (3.122),

we shall define

n—l Cr — l.i ~ k Pr{k} — px ~ Pr{k) , n—i < x < n, n l ,2...
k n

m(x) ‘
~~

I A — ~~ ~~k Pr{x} , x > C
L k—i

A — xp , n—1< x < n , n l ,2,...,C

~ 
- , x>C , 

(3.123)

where
n-l

A — A — p ~ k Pr{k} , n l ,..., C+1, (3.124)
k—i

and
C

11 — p ~ Pr{k} , n—l,. .. ,C. (3.125)
kn

Similarly,

[ ~~~~~~~ 
, n— 1 < x < n , n—l , . . . ,C ,

c,2(x~ — <
I, 

x > C, (3.126)

where

n—i
— + p ~ kPr{k} , nal,... ,C+l , (3.127)

n k—i

and
— 1.1 ~ Pr{k} , n 1 ,2,... ,C. (3.128)

These moments can now be used to solve the diffusion equation subject to

the boundary conditions, which are repeated fr ~~ Section 3.3.2.1,

2 2[~ (x)f (x)] 
— f- [n(x)f (x)] — 0, (3.88)

dx X

- - - —-
~~~~—--~~

---_ -
~~~

_ - - - -
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— [a2(x)f(x)3 — m (0 ) f ( 0 )  — 0 , (3.89)x

rl
f(x)dx a (3.90)

0

It is easy to establish that m (x) and a2(x) are continuous for

x > 0 .  These functions , however , are not differentiable at the lattice

points (l ,2 , . . . ,C} . Thus one must be careful to evaluate the diffu-

sion equation only on the interior of each interval, (n—i , n ) ,  where

n — l,2,...,C. Integration of the diffusion equation yields

-i- f- [a~(x)f(x)] — m(x)f(x) H , ( 3 . 12 9 )

where Hn is the constant of integration peculiar to the evaluation 
on

the interval (n — 1, n), ii — i,2 , . . . ,C , and H
~+i 

is for the interval

(C ,co ).

From the reflecting boundary condition, (3.89), we get H1 0. In

order to have a proper density function, we need u r n  f(x) — 0 and

lire d f(x) a 
~~• Thus Hc+i — 0.

~~~ m ( x) ,  c7~(x), and f (x) be the respective evaluations of

these functions on the intervals (n — 1, n) for n — l,...,C, and (C ,°3 ) ,

for Ti a 
~ + 1. Then by continuity of m (x) and c72(x) we have (for

n — 1,...,  C)

m (n) m~~1(n), 
(3.130)

and ~~(n) — (n). (3.131)

To establish the composition of f, we shall require f to be continuous.

S —-S 
—- ~~,—-- —S - ~~~~~~~~~ 

— S
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Thus

~~~~~ 
— f

~+i
(n ) ,  n — 1,..., C. (3.132)

With the three continuity relations above it is natural to set H~ — 0

for n — 2 ,.. . ,  C.

Now the differential equation (3.129) is a homogeneous, first order

equation with variable coefficients. Using well known techniques, the

solution, in general form, is found to be

H (3.133)

f~ (x) a exp (K (x) ] , n—i < x < n for n—i ,... ,C and x > C for
a (x) n C+l,

where K (x) f 2in(x) dx and H is a new
~ (x)

constant of integration. Examining K
n

(x) more closely for n — 1,...

we have

f2 ( A ~ — xp)
K (x) — 

J ”n 
+ 

~~ 

dx

—2xp A p v l
— 

~n 
~ + 2[~~ + :~Tij l ( v  + 

~~~~~ 
(3.134)

For n — C + 1,

Kc+i 
J2A c÷i dx 

2X
c+i

x 
(3.135)

One can also show that K(x) is continuous for x > 0. Thus the final

solution form for f(x) is

+ x w ]~~~
1 
exp(-2xp~/~ ] ,  n—i < x < n , n—i ,...,C ,

f(x)
Hc+i exp [2A c+i x/vC+l] ,  x > C , (3.136) 

_ _ _



~~~~~~~~

56

where p V
— L + , n—i ,... ,C. (3.137)

It now remains to solve for H and evaluate . First we shall

ambiguity in evaluating . We vili use the method

— J f(x)dx to compute the approximating density. This evalu—
a- .5

atioi~, however , is not well suited fo r p0. Methods for approximating p0
will be discussed in the next section .

The constants Hn can be evaluated by using the continuity constraint

and the last boundary condition, which requires f to be a proper density

function. If we define g~ (x) to be the variable portion of f
n
(X) in

equation (3.136), then fn (x) = H~ g~ (x) and continuity requires

Hng (n) H
~+i ~~~ 

(it), n 1,.. . ,C. ~3.138)

We can solve for R~ in terms of HC+l using (3.138) recursively.

Hc Hc+i g~~1(C)

ad 
Hç~1~~~1(C) g~(C—l)

g~(C) g~.1(C—l)

H~~1g~41 (C)...g~~1(n) — Hc+iR~
, n — l,...,C.

g~(n) (3.139)

Define

n+.5

Fn — J g~ (x) dx and — g~~1(x) dx , n—i ,... ,C.
n— .5 it

~~~~~~~~ — -

- —-,---------S ~~~~~ Li
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Then
fn

a f (x)dx  — +
n— .5 n— .5 it

— H5F~ + H~~1 G~~1, fl — ~~~~~~~ (3.140)

Assuming we have a good approximation for p0, the boundary condition

(3.90) yields

l _

~~
o

a if(x)dx

— 
~ p + J H

~~1 ~~~~ 
(x) dx

n—i C+. 5

a 

n~i 
(HF

~ 
+ Hn+i 0n+i~ 

+ MC+l f exp[2 ~1]~ dx.
C+. 5

Substituting in (3.139) gives

- 
~o 

- R F  + 
n~ 2 

R~G + Gc+i 
- 

~~~~~~~ 

exp
[
~~~1 ] ~~

(3.141)
Finally we have

1 — p
0

— C A (C+.5)
R1F1 + 0C+l + ~~~~~~~~~~ - 2A c+i 

exp~~ 
C+1 ] 

(3.142)
We can then use equation (3.139) to solve for the remaining H~, n—i,... ,C,

and equation (3.140) to solve for , it — 1,2 

- -~~~~~~~~~ -~~-~~~ ~~~~~~~~~~~~~~~~~~~~~~ ——S— -S~~~~~~~~~~~~~~ -~~~~- - .- —~~~~~~ ~~~~~~~~~~~~-— ~~~~ - —- — - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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3.3.3.4 Approximation For P0

As pointed out in the last section , we cannot use diffusion approx—

(.5
ireations to estimate p0 

accurately~ Defining — f (x)dx under—

estimates the value and empirically we find that p0 — j f (x) dx is also
~~

not a good estimator. Redefining all estimates p —
~ 

f (x)dx, n — 0 ,1, . . . ,
~

is also ineffective. This section will provide some analytic formulas

which are good in specific cases and then discuss several alternative

estimates. In all cases, the estimates have been empirically found to

be at least as large as p0 . The cases considered are briefly described

below.

Case 1. M/M/l subject to breakdown , no spares :

— 
[ini — X (~ + ~

) ]  (r~ + A + ~~ (3 143)p0 p(~~ +~~ ) (A + n)

from Theorem 3.2, equations (3.9) and (3.10).

Case 2. M/M/2 subject to breakdowns , no spares:

p0 — P00 + + 
~2O’ where these probabilities are defined in Theorem

3.3 , equations (3.17), (3.18) , and (3.19).

Case 3. N/NIl subject to breakdowns, one spare:

p0 — P00 + P10 + p20, where these probabilities are defined in Theorem

3.4 , equations (3.43), (3.44) , and (3.45) .

Case 4. M/N/C with no breakdowns :

- [c
~i i x  

+ 
i x C

c~~~

] 

-l 
. (3.144)

h ~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
- — -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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This analytic result was suggested by Halachmi and Franta [10] as an

approximation for Gu M/C queues when p0 is very small. An adjustment to

p, to reflect slower service due to failures, will be provided later.

Case 5. N/C/co

p0 — e~~~~:~~ (3.145)

where E( S]  is the expected service time . This equation is a result of

Palm’s Theorem (8] and is useful when the number of servers is greater

than two. Here we assume that when a channel fails, the unit being

repaired does not change channels. Evaluation of E(S] requires some

analysIs which will be provided later.

Case 6. M/G/l:

- p0 — 1 — AE[S], (3.146)

where E(S] is the expected service time. This is the analytical solu-

tion for the N/G/l queue, proven in reference 6. No analytic results

exist for the M/G/C queue. For a multi—channel queue, we will assume

that all units are served by a single server which works as a “super

server” at a rate ~p , where ~ is the expected number of operational

channels .

Cases 1, 2, and 3 are analytical results and can be directly

applied to solve for 
~~~~

. Cases 1, 2 , 4 , 5 , and 6 are analytic results

for specific systems which can be adapted to provide reasonable approxi-

mations. Finding a way to adjust the service rate (11) is the key to

altering the equations (3.143) through (3.146) to suit our needs. This

will be done by assuming that all channels are occupied and finding the

expected service rate when servers are subject to breakdown .
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The total time a typical unit occupies a channel can be expressed

as .~~~~~
T — S + D1 + D2

+ ... + DN ( S)~ 
(3.147)

where S is the service time , Di is the delay caused by a ser ver failure

and N(S) is the number of channel failures encountered in a time S.

Given all channels are occupied and no other channels fail while the

inoperative channel is being replaced, then we can find the conditional

expectation

(c+L—i)n , when k other channels were oper—
i-k

ating just prior to the failure ,
K — k] a k—0 , 1,. . . , C—i

0 , otherwise .

(3.148)

Then using the results of Corollary 3.1 and assuming all delays, D1, are

independent

C—i
E[D] — 

~ 
q
~+1 

F[D~ K a k],
k—0 (3.149)

where is the conditional probability that k servers are operating

just prior to a failure.

We now need an expression for N(S), the expected number of failures

in a time 5, which has an exponential distribution with rate P . Since

failures occur as a Poisson process having rate ~ ,

Then 

Pr (N(S ) — k} pe~~
t e~~

t(~t)
k 
dt. (3.150)

E(N(S)] — ~ k Pr{N(S) — k}
k— 0

- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~~ — ~~~—--~
-
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- I’

- iue~~
t 

[
~~k

5
~~~~~t ]  dt

- ~ ~~~e~~
tdt - c/p . (3.151)

0

Reference 28 provides the result

E [D1 + D2 + ... + DN(s) ] E(N(S) ] •E(D ] .  (3.152)

So, assuming independence for all tandom variables,

E[T] — E[S] + E[N(S)] .E[D]

a -~~~ + E[D] a 
~ [i + ~EED]]

• (3.153)

Therefore we can define the adjusted service rate as

— 1 + ~E( b] (3.154)

We will apply p’ in cases 1 and 2 to approximate p 0 for systems

with one or two channels and spare servers. The modified service rate

will be employed in Case 4 for all systems with over two channels. For

Case 5 we can use l/p as an estimate for E(S]. Case 5 will be used for

systems with over two channels and Case 6 will be used for all systems

with spare servers.

Some empirical results are compared to values for p0 estimated by

simulations in Table 1. In all cases, p0 was overestimated. Thus a

reasonable approximation would be to select the smallest value.

3.3.3.5 Comparative Analysis

The diffusion approximation derived in the preceding sections was

tested against analytic and simulation results . The actual stationary



Case

C L P~ SIMULATION 1 2 4 5 6

1 1 .75 .231** .244 ______ ______ ______ 
.250

1 1 .95 .023** 
- 

.043 
______ ______ ______ 

.050

2 2 .7 5 .159 
_____ 

.181 .204 
______ 

.250

2 2 .95 .026 
_____ 

.056 .083 
______ 

.050

3 0 .75 .108 
_____ ______ 

.183 .150 .250

3 0 .95 .034 
_____ ______ 

.126 .098 .050

3 3 .75 .083 
— _____ ______ .153 .121 .250

3 3 .95 .023 
_____ ______ 

.076 .069 .050

5 0 .75 .051 
_____ ______ 

.126 .064 .250

5 0 .95 .008 
- ____ _____ 

.095 .031 .005

5 3 .75 .030 
____ _____ 

.098 .034 .250

5 3 .95 .005 
____- _____ 

.062 .014 .O5
~~~~j

= 
A **Analytjc Result

Comparison of Estimates for p
0

TABLE 1
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probability distributions were derived from the results of Theorems 3.2,

3.3 and 3.4. The simulated distributions were developed using a simu-

lation routine involving at least 20,000 state changes. The results are

graphically displayed in the figures that follow. Each figure is

labeled using the following nomenclature:

C — the number of channels,

L a the number of spare servers provided ,

p — the traffic intensity —
Each graph includes information on the ratios, X I ~ and p/~

We know from Section 3.3.3.2 that the accuracy of the approximation

Pr {k ~n} Pr {k} improves as ~ and r~ get large; therefore, we

should expect the size of ~ and ri to affect our diffusion approxi-

mation. As the relative size of the rate of repair for servers (n )

decreases, the ratio p/ri gets large. Examining the data, we see, the

approximation suffers as the ratio p/ri increases above the proposed

bound of one. On the other hand, the approximation is relatively

insensitive to the ratio X/~ . Thus, this diffusion approximation is

most sensitive to changes in the server repair rate (r~ ) and improves as

the rate increases relative to all other parameters.

Some simulation results show a slight perturbation due to auto

correlation effects. Regardless, it appears the exponential tail of the

diffusion approximation matches the true shape of the distribution in

all cases. When the approximation is inaccurate, the tail of the

approximate distribution is slightly low.

_ _ _ _ _ _ _
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CHAPTER IV

AN OPTIMIZATION METHOD

This chapter will derive a method to find the optimal allocation of

resources for the inventory system we have modeled. We will first ex-

amine the backorder function given the diffusion approximation developed

in the previous chapter for the stationary distribution. Since the dis-

tribution is for the total number of units in the system, it will be

modified to describe a multi—item system. Then using the exponential

tail of this distribution, we develop sufficient conditions for convexity

of the backorder function. Finally , a simple marginal analysis technique

is given to find the solution to the optimization problem, P.

The optimization problem , P, we wish to solve is:

minimize ~~ E
1 

~~ (a - Sj ) P (nIX~ ,U,~ 1fl,C,L)~ (4.1)
i—i n>s

i
subject to

C.C~ + L~C + ~ C~ s~ < B, (4.2)
i—i

and
A < IIC. (4.3)

Here C, L, and s~, i = 1, ... ,m , are the decision variables. Because of

the high setup costs for service channels, it is -reasonable to assume C

is small. We shall show later that, for fixed values of C, P is relative-

ly easy to solve; thus, we shall enumerate solutions for small values of

C. For notational simplicity in the following developments, the vari-

able C and parameters II , ~~~, and r~ will be suppressed.
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4.1 Approximating The Backorder Function

After examining the objective function, we can see that P is not

separable. In fact, it is difficult to explicitly express p(n I X1,L),

the distribution of the number of units of type i in the system, as a

function of L. An expression for the expected backorders of item 1,

will be created that will assist in the analysis.

Define

B~(s11 L) ~ (n — s~) p(n I A~ 1L). (4.4)
n>s

We now develop an expression for an approximation to p(n I X~ ,L).

Since the influx of each type unit is an independent Poisson process,

the entire input process is Poisson. The conditional distribution for

the number of units of type i in the system is binomial, i.e.,

Pr {k units of type i in system j it total units in systeln}

0 , n < k

x ~~~~~ 
n-k —

n I — i , n > k. (4.5)
k A  A

Using the law of total probability gives

p(k~X1, L) - 

n~k~~~~~~~
(
~~~~ 

p (4.6)

where 1
~n 

is the stationary probability of it total units in the system.

For a > c, the diffusion approximation, 
~~~

, for p~ 
given in the

previous chapter is

n+.5 n+.5
a f(x) dx - H exp (Kx ) dx

n—.5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~~~~
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— ~ {exp [K(n + .5)] — exp (K(n —

— ~ [exp (.5K) — exp (— .5K)] exp (Kit)

H r~~, n > C, 
(4.7)

where

A + 
(4.8)

H — -
~~~ (exp (.5K) — exp (—.5K)], (4 9)

and r exp (K). (4.10)

Recall that the average number of operating channels, C, is a function

of the number of spares provided , L , so that K — K( L) and r a r(L).

Unfortunately, the expression for the few values of p~ where it ~ c is
not as concise.

Applying equation (4.7) to equation (4.5) for k > C, we get
k n—k

p(kfX1,L)~ ~ 
(
~ ~‘i 

A
~
Ai

n a k \/A A 
-

= 

n~k(k)(~~) (X )  
H r ~

= H 

(

~~~~~~~~)k

L(

~~~
) 

[(x_xi
)rr_k (4.11)

Under the assumption that A < u ~, we have K < 0 and thus r < 1. Then

the factor being raised to a power in the summand is less than unity and

we can apply the binomial expansion to get

H (A r)
k

p ( k I X i,L) 
r ik+l
I i  - -~~~~~~ ) r I
L 

A J

- - 
— -5- ---- -
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h A  1 A~r

— X~~ LA (l—r) + X~rj

— Ai b~~
1, (4.12)

A~ r
where - b~ A(l—r) + A~ r ‘ (4.13)

and HAb 2
a • (4.14)

Equation (4.12) shows the similarity to the geometric distribution.

Generalizing for all k > 0 gives

k \n-k
p(kIX~~

L) 
~ 
(n~ 

A~ X—X~
n k  ‘ A

k n-kA—A
~~~~~ i i H r

a ~~~k)3~ x
n max (C+1,k)

k -

~ 
n—k

j
~~\ 

A~~ A_A
j

+ 1. 
~k))T X

n-k

A~ ~~~ + di k , k > 0 , (4 .15)

where 
(X
)
(A
~X )  

n-k 

~~ 
, 0 < k  < ~

n—kdi,k

0 , k > C ,
(4.16)

and A~ and bi 
are defined in (4.13) and (4.14).

We can now solve for a general approximation of B~(s~~ L), the

expected backorders for item i. Since- b~ 
< 1, we have

Bj(si,L) a ~ (n—s 1) P ( n I X ~~L)
n
~si
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C
— ~ (n—s i) p(nIA~~L) + ~ (n—si

) p (nIA~~L)n 04-l

‘ 

~ 
(n—si

) (A
i
b
~~~ 

+ d~~~) + ~ (rt—s~) Ajb i~~~it— C+ln_s
i

C
= ~ (n—s i) A1b~~

1 
+ ~ (n—s1

) ~~~
n—s n_s

i

Si C

= 

A1b1 + ~ (n—s
i

) di n
(1—b )2 n— s i

(4. 17)

We expect Bj(si, L) to be a monotonically decreasing function of

s~~. In fact, -

= B~(s + l,L) — B
i

(s ,L)

A s+l C

(ib~)
2 [b~ — b~~ 

+ 
n~s+1 

nd~ n - nd~~~

S
A b

= 
2 °‘~~

— 1
~ 

— sd~ < 0
(l_b~)

since b~ < 1 and d > 0. It is not clear that d~ is decreasing ini,s
s for 0 < s < C; however, since d~~5 — 0 for $ > C, the function

z~ B(s,L) is increasing in s for all s > C. Therefore,..Bi(sj,L) is

convex in s
~ 
alone, for s

~ 
> C.

The parameter ~~ as a function of L, has some properties which

will be useful later. These are easiest to display after first cx—

I~ 5-- — --—--5- — ----—- _- -- - - - 5 - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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pioring C, K and r as functions of L. The expected number of operative

channels, C, is a bounded , strictly increasing function of L. Further-

more, u r n  C(L) — C. For feasibility we assume there is an L such that

A < 1i~(L). As a result, K is a bounded, monotonically decreasing

function of L. Specifically, -

2[X—pC(L)], 2(A—pC)
= lirn K( L) — liin A + p~(L) A+ pC < 0,

L~~

since A < ~ C. To show monotonicity, we note that

~K(L) — K(L + 1) — K(l)

2_~~A— u?(L + 1)1 —2(X -1i~(L)1
A+ ~~ (L + 1) A.,- UC(L)

— 4X 1.i (~ (L+l) — ~(L)] < ~— (A+pr(L+l)] I X+pU(L)]

since ~(L + 1) > C(L) . Since C(L ) increases towards its upper bound C,

we expect ~~(L) to be a decreasing function of L. Then ~K(L) would be

increasing (becoming less negative), and therefore K(L) is a convex func-

tion of L.

The parameter r = exp(K) is a convex function of a convex variable;

thus, r is convex in L. It is bounded below by r~ — exp (K~,, ) which is

in the interval (0,1). If we assume, for b — 
A~r 

, that L isi A (l—r)+A~r
a continuous variable we have

dBi — 
Air (A(l~

r) + Air] - A i
r(_Ar + A

i
r)

dL (A(l.—r) + A~r] 2

A Ar
— i < 0
(A(l— r) +

since r < 0. Thus b1 is strictly decreasing in L. Additionally,

b~~~- 1im b A~r

~ A( 1—r ~ ) + A~ r~

--— --5 - 5- - - 
- - -
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lies in the interval (0,1) and is the lower bound for bi.

The above analysis is displayed graphically in Figures 4.1 and 4.2.

Figure 4.1 displays parameters for a system which is saturated when no

spares are provided. In Figure 4.2, the system is never saturated. The

variable L is considered a continuous variable for purposes of illus-

tration.
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4.2 An Algorithm For Determining Unit Stocklevels And ServIce System
Des ig~

The steps fo r a generalized algorithm will be presen ted with an

explanation and justification of each given afterwards. The algorithm

is given in the context of solving the problem graphically :

0. Set Cmin , where [‘]  is the greatest integer function.

1. Determine lower and upper bounds for L, L and L , by
mitt

inf {~ > oI~~< ?(L)) and L — inf{L > Lmi k~~ ~~~. 
.95C}

2. Solve for the optimal allocation of spares, S* — (4,. . .  ,s~~ ,

for a given budget in item spares and a mid—range L, using marginal

analysis.

3. Compute B(S*,t) for each value of L with S* found in step 2.

4. Select a new investment level for item spares and go to step 2.

5. Increment C by one and go to step 1.

6. Plot fixed total investment curves and select the optima l

solution.

The selection of Cmjn and in the first two steps provide the

lowest feasible investment in service facilities. In a very congested

system, it is possible that ~~~ since Lmjn would have to be large

enough to provide a very high level of service reliability.

Steps 2 and 3 fix the investment in unit spares and compute the

expected backorder-s over a range of server spares. Since

i — l,...,m, are convex for > C, then the total backorder function,

B(S,L) — 
~ 

Bj(ai,L), is convex for > C. In practice, inventory
i—i

systems are often budgeted so that all items are stocked with at least

-— - 5 -5---—- — —. - 5—--— -5—-- 5- - -- -- -- — - 5 - --~~~~~~~~ - - --~~~~~~~~ — - --
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the mean number of units expected in the system (co only called the

“expected pipeline inventory”). Generally, the mean of the distribution

p(nJ A1 
,L) is greater than C; so, we should be outside the region

< C, i — 1,...,m, provided the investment budget is sufficiently

large. Under these conditions, the optimal values Sj*, i — 1,... ,m, can

be found by marginal analysis due to the decreasing incremental returns

to scale. We shall start with all s~ set to some minimum value and then

successively increment the level of item i* where

~~1*(s1*,L) 
— ~~~~~ J~

.B1(s1,L) -

C1* l<i<n~ C~

That is, we increase the spare level of the item which provides the

greatest improvement in the objective per- dollar invested. This allo—

f 

cation can be followed until the entire budget is used since the

objective function E(S,L) is strictly decreasing in sj~ I 1,... ,m.

Notice this procedure would not be altered if essentialities , ~~ were

assigned to each item and our objective function becomes

B(S,L) — ~ E~B~(s1,L).
i=l

We assume that for a given level of investment in unit spares, the

optimal values s ~~, i — 1,...,m, do not change for different investments

in server spares. Figures 4.1 and especially 4.2 show that for small

changes in L, b1 does not change significantly. Moreover, we can

expect the same relative changes in bi for all i — 1,...,rn. We should,

therefore, not expect great changes in the backorder functions for

various values of L. The only area in which the backorder function

changes significantly is in the range 0 < < C. This is most easily

explained by the presence of the nuisance parameter ~ (it — ~~~~~~~ ii
n—si 
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equation (4.17) for the expected backorders when s~ < C. As previously

mentioned, we should expect a budget large enough to prevent this from

becoming a factor.

An illustration of the performance curves obtained for a fixed

value of C is given in Figure 4.3. The solid curves represent fixed

investments-in spare servers. As increased investments are made in

spare items, the objective function decreases. The dotted line repre-

sents the trade—off curve for a fixed net investment in item spares and

spare servers.

Expected
System
Backorders

15.

‘S
‘S

‘S

lQ~

- — —

L—0

L—].
—2

L— 3
— I I— I —~~~-

200 3Q0 400 500

Allocation to Unit Spares ($K)

Figure 4.3 : Performance and Tradeoff Curves (C Fixed)
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Note that we must include the cost of establishing C service channels to

this to get the gross investment. The lowest point on the ti:ade off

curve represents the optimal mix of investments for this budget. tn

this illustration, it is best to purchase one spare server (at $100,000)

and al locate $400,000 to unit spares when the investment that can be made

is $500,000. With all the data displayed in this fashion, a manager can

plot several trade—off curves and observe how expected backorders vary

with changes in total investment.

I
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CHAPTER V

NON-STATIONARY ANALYSIS

5.1 Introduction and Motivation

Inventory systems must often operate in dynamic environments which

preclude the use of stationary planning models. For example, demand rates

may cycle much like traffic during the day on a city Street; surges in

demand can occur when a military environment goes from peacetime to

wartime; or, expected demands could steadily increase as a new aircraft

system is being purchased. Sometimes inventory problems require a model

for short horizon planning only, such as, equipping an aircraft carrier

for a four month cruise. In all cases, the objective is to describe the

system’s ability to provide support through time. This chapter is

devoted to modeling the changes through time of a recoverable item

inventory system, with servers subject to failure, where the unit

demands may be non—stationary.

In general, we are considering a system whose input and output

processes are both non—stationary. As will be shown, it is extremely

difficult to describe a multi—server system’s transient behavior for the

case when both processes are stationary. We can remove one element of

non—stationarity by considering the service facility as operating in

different “service states” through time. Each state would represent a

period when the output process is stationary. The length of this period

can be a random variable.

We will define the service state as the number of servers requiring

repair. Thus, the state space is {O1 ,...,L,L + 1,..., L + C]. For

each service state, we want the transient distribution of the number of

87
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units in the system. For ~~amp1e, let G represent the state set when

ail service channels are operating, C — ~0l ,...,L}, and B represent the

state when one service channel is inoperative, B — (L + 1). The length

of time the system is in each state will be represented by TG and TB.

Figure 5.1 shows how the system behaves through time.

Number of
Units in
the System

N(t)
SERVICE SERVICE SERVICE
STATE B STATE C STATE B

__ _~--~
t---__ _ _ - - I

.
.

a
-

C~

)‘4’C TB

Figure 5.1: System Performance for Different Service States

Notice, - while the system is in state B, the service facility is not as

efficient and the number of units in the system drifts up. Let N(t) be

the number of units in the system at time t. Define the time dependent

transition probability,

P3(a,b,t) — Pr{N(0) — a, N(t) — b service state

The time period we are concerned with, TB, is a random variable. Then

the transition probability for this period is

P3(a,b) — Pr{N (0) — a, N(TB) — b}

_ _ _ _  

_ _ _ _ _ _ _

-~~~~~~~~~~~~ -
- 
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PB(a~
b) — 1° P~(a,b,t) SB(t)dt, (5.1)

where S3(t) is the probability density function for the variable TB.

Using the same notation, we can express the transition probability of

going from b units at the beginning of service state C to c units at the

end of this service state as

P0(b ,c) — Pr{N(T3) — b , N(T B + T0) — c}.

This analysis can be carried further to describe the transition from a

to c through service states B and C:

PBG(a,c) — P (a,b)P0(b,c). (5.2)
b—O B

It is apparent that in order to model the system in this manner, we

must know two different probability functions: (1) the time dependent

transition distribution for the number of units in the system given a

particular service state, and (2) the density for the length of time

each service state exists. The latter density is frequently referred to

as the “passage time” density. We will explore each probability U.’ etion

in the context of the inventory system we are modeling.

5.2 Time Dependent Distribution Analysis

The recoverable item inventory system will be modeled as a queueing

system, as discussed in Chapter 3. In this case, we are not concerned

with server failures since we need the line length distribution when the

system is in a particular service state (i.e., a fixed number of opera-

tive channels). Thus, we want to describe the time dependent behavior

of an M(t)/M/k queue, where M(t) is the shorthand notation for a non—

stationary Poisson input process and k — 0,l,...,C. This section will
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provide the closed form solutions ivailable for some special cases and

then review some approximation procedures that are in the literature.

5.2.1 Closed Form Solutions

Consider a system for the period when exactly It service channels

are operational, It — O,l,...,C. Without loss of generality, we will

assume the period starts at t — 0. To describe the system’s time

dependent behavior during this period, we need the transition proba-

bility

Pk (a ,b , t) — Pr {N(t) — b~

N(O) — a and exactly It service channels operatioual}.

For the case k — 0, we have a counting process with Poisson arrivals.

Thus given a time dependent arrival rate of X(t), then

P0(a,b,
t) — Pr(b — a arrivals in time t }

e
_m(t)

(m(t)]b~~ , b > a, (5.3)
— (b — a) 

—

where

m(t) f~~ (t )dt .
0

Closed form expressions for Pk(a,b ,t) for k > 1 are very complex.

Saaty [31] provides a general procedure to find these distributions for

queues with stationary Poisson arrivals. The procedure involves establish-

ing the balance equations, obtaining a partial differential equation for J
a probability generating function, and using i:ttegral transforms to

arrive at a transform representation of the distribution. To get the

distribution fioa its transform requires a lengthy inversion process.

For the case It — 1, we have
r (a—b)/z

P1(a ,b ,t) — ~~~~~~~ 

+ .L)t Ib_a (2
~~~~ 

t)

________ 



-
~~~~~~~~~~.—— -~ -~~~ -- - ~~~~~~~~~-~~~~~-----— --- -- -~~~ --~~~~ .- -.. - --

91

(a—b+l)/2
+ 

(
~
.) I ,~1(2v’X~ t)

~~~~ 
n/2

+ 
( 

— ~)f~) z(~4 I~ (2v~~ ~], b 
.~~ 

1. (5.4)

~ — 
~ (~/~)n+2k is the modified Bessel function of thecrc n ‘~~ 
k~O 

k~ (n+k)~

first kind. Obtaining solutions for It > 2 is extremely arduous. The

resulting solutions are not easy to apply and are too complex to be

useful for simple comparisons. Thus, we will consider approximation

methods to arrive at these distributions.

5.2.2 Approximation Methods

The application and accuracy of approximations proposed in the

literature depend upon the stationarity of the arrival process and the

traffic intensity. Unfortunately, there is a paucity of computational

comparisons among methods. We will review the results for multi—server

queues with (1) stationary Poisson arrivals (HIM/k) and (2) non—station—

ary Poisson arrivals (M(t)/MIk) .

Kotiah [19] uses an approximate transform inversion method to

arrive at an approximate distribution for the line length. He uses the

integral transform given by Saaty [31] to arrive at some numerical

results for the case N/H/i. His numerical examples are accurate for

.5 < p < 4 and, in some cases, provide bounds for the actual distri-

bution. He describes a method for generating a distribution for the

M/M/2 queue, but does not provide any numerical results.

For congestion cases, Newell’s diffusion approximation

(given in Chapter 3, equation (3.108) ) is very accurate, especially as 

~~ - -~~~~ - --- 1~-- .- -- ~~~~~ .— ~~~~ - - - . - ~~~~~~- -
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p exceeds unity. Equation (3.108) can be applied to cases where It > 2;

however, when p < 1, the accuracy suffers since the infinitesimal

moments are not functions of the system size. This approximation has

computational advantages over Kotiah’s method.

For the M(t)/M/i queue, Moore [21] provides the most general re—

suits for a single server queue. Re uses an interactive procedure on an

imbedded Markov chain to find the Line length distribution. His model

allows for bulk arrivals and Erlang distributed service times as well (so

called, MX(t)/E~/l queue), and his numerical examples are accurate for

A computationally simpler approximation is given by Pokress [29].

He compares the finite server queue (It > 1) to the M(t)fN/~ queue and

gets very accurate results when the range of p(t) is less than .8. The

probability distribution for the number of customers in an infinite

server system, which is empty at time zero, is Poisson with mean

m (t) e i~i(t x) x (x) dx ,
J O

where X(t) is the time dependent arrival rate.

Finally, Newel]. (25,26] proposes a diffusion approximation for the

M(t)/M/k queue which is similar in form to equation (3.108).

Define Fk(x,t) — Pr(aumber of units in the system at time t is < x}
rx

— I P~ (O,y,t) dy.
J oThen

~ (x—m(t)\ ,(— mçt )\ 1_2(k~—x ct) )x I, x > 0 ,
Fk(x ,t) ~ a( t) J — \ a(t))~~~ L kjj +A(t) —I

i. 0, x < 0 ,

~~~~~~~~~~~~~~~~~
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where x—m (t)

• (
x_m(t)) — 

a(t)
e
...y2/2 dy,

o(t )

ft

a(t) - A - J [k~i - X(y)] dy,

0
and

ft
c2 (t) — B + 

J 
[k~ + X(y)] dy. 

(5.5)

0

Newell (26] claims that for t “large enough”, the constants, A and B,

are negligible. Be suggests that for It > 1, the accuracy improves when

p ( t )  < 1 and as t gets large. The approximations of Newell arid Pokress

have computational advantages over Moore’s method.

5.3 Passage Time Distributions

The distribution of transition times from one service state to

another is developed in this section. The flows in the system are

displayed in Figure 5.2.

1 2 3 L L+l ~L+2 ~T+i~ .1.

Figure 5.2: Transition Flows for Number of Inoperative Servers

Since the state transitions are only to adjacent states, we have a

birth—death process. The states {0 ,1,... ,L) are outlined because all

channels are in operating order when the system is in these service

states. The work of i~.ilson , et. al. , (7 ,13,14] assume that the birth 

J
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and death processes are Poisson. This section will discuss their work

and provide extensions for Erlang and deterministic death (server

repair) processes.

5.3.1 Previous Results

If we assume the birth and death processes are Poisson, then the

birth and death times are exponentially distributed. Define Sk(t) as

the probability density for the time in service state It. Then we have

sk(t) — (~~ + ~~) e k ~~k
)t 

, k — 0,1,..., L + C , (5.6)

where — 0. In addition, the probability of a transition from

service state i to state j is

xi j — i + 1
x
i+ l.li

Pu — x i~
i
ui 

, j  — I — 1

0 , otherwise. (5.7)

To best describe the service system, we need the passage time

densities for transitions in the number of operational channels. For

the service state set {O,1,...,L}we have C operational channels and for

service states It > L we have C + L — k operational channels. Keilson,

et. a].., describe the passage time from a “good” state to a “bad” state.

In our case, the GOOD state is defined as the service state ~b,i,...,L}

and the BAD state is defined as the remaining state set ~L + 1,...,

I. + C). This is illustrated in Figure 5.3. The server system can

wander through the GOOD state for some time before going to service
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Service State , N(t)

r~ +c
~AD

Stat e

L+1
L — .—

~ 
—

GOOD )  — 

—

~~~~~

State — —
L~~~L_ ~~~

— -

>< T~ ~~Z

Figure 5.3: Transitions from GOOD to BAD States

state L + 1 and thus enter the BAD state. For this reason, the dis-

tribution of the passage time from the GOOD to the BAD state is not as

simple in form as the distributions previously described.

Define the time from the perfect state, ~~ to be the passage time

from service state 0 to L + 1. and the post recovery failure time, T
~
,

to be the passage time from first entering service state L to first

entering state I + 1.. The time T~ can be useful when observing a system

which starts in perfect operating condition (e.g., an aircraft carrier

starting a cruise). Let

S~ (t) — the probability density function for

SG(t) — the probability density function for TG,

— the survival function of

—

i t

!G(t) — the survival function of T
~

— S~ (y) dy~ and
i t

-
~~~~~~~~~~~~~~~~~~~

_ 

___
~~

_
~

_
~~~~~j --~~~~~~~ - - - - — AAA
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S~ (’~) — the proba~ ~1ity density f unction of the first passage time from

service state It to k + 1.

Then we have

5(t) a * ~~~~~~~~~~~~ S~(t), (5.8)

and

S0(t) — S~(t), (5 9)

where “*“ denotes convolution. Using equations (5.6) and (5.7), we have

S~(t) ~A3 e~~O
t, (5.10)

and

S~(t) — Xke~~~
k
~~
k
~ + ~~~~~~~~~ *S~_1(t)*S~(t), k > 1.

- 
(5.iI.)

Graves and Keilson [7] take advantage of the convolution properties

of Laplace transforms to arrive at the desired densities. Define

at(s) — Laplace transform of S~(t) — ~~~~ S~ (t) dt.

Then we get the relations

+ 
10

ao s+1
0

~~(S) — 
+ ,

S + + - 

~k~k-1 
(S)

(S)
— !‘k+l(S) 

(5.12)

and L
ab(S) — IT’ o~ (S) , (5.13)

k’mO

_ _ _ _ _ _ _ _ _
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where P0(s) — 1

P (S) — (S+A.K+Ii.~) P (S) — P (S) , k—2,3...

Examining the polynomials 
~~~~ 

we get the following properties:

Theorem 5.1. (Graves and Keilson)

~~ ~~~~ 
has k simple roots ,

~~~ ~k+l~~~ 
has k + 1 simple roots , r l, . . ., rk+l , such that

—~~~ < rk+l< ~~ 
< rk < ... < q~ < r~ < 0.

Since is a polynomial of degree k, Theorem 5.1 provides the corn—

plete factorlzation of 
~~~~~ 

Property (ii) of the theorem proves that

the roots of each polynomial provide upper and lower bounds for all but

one of the roots of the succeeding polynomial . Thus , the roots for each

polynomial can be determined using a recursive algorithm. From equation

(5.13) we have

L + L X.KPk(S) x
0
x1. . .

~~ ~k (S) — 
~~ 

p s~ 
= p (S

k—O k—O k+1’ / L+1’

L+1 (5.15)

~fl’ 
(S_r

k)k—i

where ~~ i — 1,..., 1 + 1, are the distinct negative roots of P1+i(s).

Using partial fractions and the fact that 
~~~~~~~ 

is the transform of
rkt k
e , we get the following result:

I, 

~~~~~~~~~ - -- ~~~~- 
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Theor em 5.2.

The probability density function of the passage time from the

perfect state, T , is
L+1 r t .

S (t) — 

k—i 
$kC 

It 
, ~ > ~~, (5.16)

X A •••A ~where tk < 0 and Bk — L+1. ,

iT’ (rk~~i)i—i
i#k

1+1
Notice 

~ 
B~ — 1; however < 0 is possible for some k. In a similar

k—i
fashion we get:

Theorem 5.3.

The probability density function of the post recovery failure time,

T , isC L+l r t
Sc(t) — e It 

, (5.17)
k-i

where k — i,. . . ,L , are the distinct negative roots of

rIt, k — 1,..., L + 1 are the distinct negative roots of PL+l(s),

and 11+i1T (r ~—~1)
— 

i—i
cLk 1+1

‘fl’ (r~—r1)i—i
1+1 

i,~k

In this case, — 1 and > 0 due to property (ii) of Theorem 5.1.
i—i

Notice both distributions are mixed exponential distributions . This

leads to some interesting properties of these distributions . Below are

some useful properties given by Keilson (13]. 

-
. 

- 
~~~~~~~~~~~~~~ -- -~~ -~ - - - - -
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Definit ion

A funct ion f is 
~~~~ 

concave (convex) if ln(f) is a concave (conve:~)

function.

Theorem 5.4 .

If S1(t) and S ., (r )  are log convex probabili ty densities defined on

some connected interval T , wi th  means and variances ~~~ then

(i) X
1
S
1
(t) + \ 1S 2 (t )  is log convex on T where + = 1 and

~1’~
’2 ~~ - ~~~~

(ii) p1(t) 
= S~ (y)dy is log convex ,

(iii) ~
‘i <1, and

(iv) th~re is a distribution function C such that

S1(t) = J y e
_Yt

dG(y).

Theorem 5.5

If S
1
(t) and S2(t) are log concave probability densities defined on

2
some connected interval T, with means ‘-‘i and var iance s ~~~~, then

(i) S~~(t )  * S2
(t) is log concave on T ,

(ii) F1
( t) S1(y)dy is log concave ,

(iii) k— •~ 
1, and

a1
(iv) u r n  ~~~~~~~~~~~~~~ 0 for some ji >0.

These theorems have obvious extensions to include discrete dis tr ibu—

tions. The exponential distribution is the only function which is log

concave and log convex . Most probabili ty densities which are unimodal

are log concave, such as: the normal , binomial , Pois~’.n, geometric ,

negative binomial , beta and Erlang d i s t r ibu t ions .  The gamma density

-
~~~~~~
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r -xx e with —l < r < 0 , however , is log convex.r (r+l)
Theorem 5.4 proves that S

~
(t) and FG(t) are log convex and Theorem

5.5 proves that S~(t) and F~(t) are log concave. Moreover, from prop-

erty (iv) of both theorems, we can expect the tails of 5(t) and Sc(t)

to be bounded by negative exponential curves. Since both Sc(t) and I:

5(t) are mixed exponentials, we expect !~(t) and ~,(t) to have expon-

ential tails. The numerical examples of Graves and Keilson (7] verify

this. A pair of typical survival functions are illustrated in Figure

5.4.

ln(F),

_

Figure 5.4: Log Survival Function Comparison (7]

5.3.2 Extension to Erlang Distributed Repair Times

We now consider a system with a Poisson failure process and Erlang

distributed repair times. A failed server viii require It “phases” of

repair, each exponentially distributed in length. For this case, the

service state space must be modified so that the arrival and departure

processes can be accurately expressed as functions of the state of the

system. We will use the method of phases and will assume that the

server repair facility has only one repairman whose repair rate is

proportional to the number of units in the system. It is sufficient to 



101

expand the service state space to the number of phases in the system ,

C0,l,...,k,k+1,...,2k,...,k(L+C)}. Now the GOOD state is the set C —

jO ,1, . .. ,kL }and the BAD state is the set ~ — ~kL+i,.. .,k(L+C)}. The BAD

state can only be entered upon the arrival of a failed server so we will

examine the state of the system at each arrival. After describing the

state changes between arrivals , we will construct a transition matrix.

Using the structure of this matrix, we can derive the passage time

distribution.

The service state changes at each arrival epoch , X~, are illus-

trated in Figure 5.5. Let N(t) be the service state at time t. Notice

that N(X~) >k , for all X~, since the state is examined just after the

arrival of It phases. We know the interarrival times , — X~~1, are

independent and exponentially distributed , with rate C~ , while the

system is in the GOOD state. The number of phase completions in an

interarrival period is dependent upon the initial service state. The

N(t)

rk(L+c)
B~~~ —

LkL+L _______________

_  

(
5 IT 

~~~~m

~~~ T~ ~~~ >~~ T
3

Figure 5.5: Service State Changas Between Arrival Epochs

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r—~
—----

~
-
~

- — -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

102

interdeparture time for a system in service State I is exponentially

distributed with rate (i/k] .n, where (i/k] represents the number of

servers being repaired. Thus, the next service state transition is

governed by the following probabilities:

d~ — Pr {a phase completion is the next event in service state n~

( fr~/k]n 0<C~+(n/k1n 
fl 

—

a

(C+L-[n/k~~+t n / k ] f l  kL+1 < n < k(L+C) ,
(5.15)

and

U — Pr C a server failure is the next event I in service state n }
— 1 — d .  (5.19)

Each service state transition is independent of the previous one because

of the memoryless property of the exponential distribution. At an

arrival epoch, we add k phases to the current service state. Thus we

have the following transition probabilities:

P~~ 
a Pr (in service state j at an arrival epoch [ in service state I

at the previous epoch}

— Pr ( 1 + k — j phase completions in an interarrival period ,

i + It — j >0 start in service state i}

— d1 dj..l...dj_~~l
Uj_k

d
fl
Uj_k~ 

I •~~
j — It. (5.20)

n”j —k+ l
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The transition probability matrix is:

0 ~ ~
‘0k 0 0 . . . 0 o . . . 0

0 . . . 0 
~ik ~l,k+1 ~~ :o . . . 0

~ t 
0 . . . ~~ 

~kL ,k . 

~kL ,kL ~~kL ,kL+1 ~kL ,k(L+C) 

O . . . 0 
~kL+l k . . 

~kL+1,kL PkL+l,kL+1 . ~kL+1,k(L+C)

L
~~~~ 

. ~~ 

~k(L+C) k • •
~~k(L+c ) kL~~ k(L+c) ,kL+1 ~~k( L+C) ,k(L+C~~

kL4-l kC

~~~~ ~ kL+l

= -
~

-1- -
~

- kC

Let

a~ represent the ~th row of A’1; n = 0,1,...,

bi represent the 1th row of B , I — 0 ,1, . . ., kL , and

1 represent the kC — dimension column vector (1,1,...
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Notice that submatrix A represents transitions from the GOOD state to

the GOOD state and submatrix B represents transitions from the GOOD

state to the BAD state. If we define N to be the number of arr ivals

required to enter the BAD state from the perfect state (e.g. — 4

In Figure 5.5), then

k(L+C)
PrCN~ a i} — ~ P0~ — P0~ — b

0 1, (5.21)
jcB j—kL+1

kL k(L+C)
PrCN~~— 2 }— ~ ~ P P. —~~~ P

IcC jeB 1—0 j—kL+l

kL
— Z P~~(b 4 1) — a,., B l ,

i—0

P r { N~ — — ~ ~0I ~i~j ~JkicC jcc kcB

— ~ Po1~ ~ 
P1 ~ ~ k~ 

— ~ P01(a1’B~1)icc jcc kcB icG

2
— a0 B 1 ,

and, in general,

Pr { N~ — ni — a~
’1

~~~~ B 1 , it — 2 ,3 (5.22)

Similarly, defining N
~ 
as the number of arrivals required to enter the

BAD state just after entering the GOOD state, we get :

Pr CN
~ - i} - 

~~ 
~~~~ - (5.23)



—
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PrCN
~ 

- 2} - P 
~ 

P 1icG jcB ‘

k(L+C) kL
— 

~ ~kL I ~ ~i 
a 
~ ~ 

(b~~1)
icC ‘ j=kL+l i=O

a akL B 1 ,

Pr {N G ~~ ~ ~
‘1cL i ~

‘i ~‘ It
icc; jcG kcB ‘ ‘~~ ~~‘

a P
icc ‘ jcG ‘ kcB

kL
= 

~ 
1’kl i(ai~~~

l)
1—0

2
— a~~ B 1 ,

and , in general

Pr {N
~ = n} a~~~~~~~B 1 , n = 2 ,3

(5 .24)

The distribution for  T and T can be derived from the above work.
p C

For example, if N — it , then the time from the perfect state , ~~ is the

sum of n identically distributed exponential random variables, I.e.,

is Erlang distributed with mean n/Ce and shape parameter n. Thus, we

get

F (t) — Pr (T >

.,— —— 
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— 1 — Y (t) Pr{N — n }, t > 0, (5.25)
it p

where t

Y~(t) — 
(
~~~~~~ t

’1_l
~~~~_n

2t/c~~dt. (5.26)

Similarly,

— 1 — ~ Y,~(t) PrCNc - fli, t > 0 (5 .27)
n 1

where Y (t) is defined above.

5.3.3 Extension To Deterministic Repair Times

If we assume the repair times are fixed in length, the queueing

process becomes non—Markovian; thus, describing the service state of the

system through time is an arduous task. The problem can be simplified

by considering the state of the system at certain lattice points in

time — specifically, at integer multiples of the repair time, K. In

this case the GOOD state is the set C — {0,l,.. .,L} and the BAD state is

the set B — CL + 1,..., L + c}. The state transitions and passage times

are illustrated in Figure 5.6. We will assume that repair is only

initiated on the failed servers present at the beginning of the repair

period. This could be viewed as a periodic review inventory model where

orders are placed for new servers every R days and the lead time Is R

days. Notice the BAD state can be entered during a repair period and

exited at the completion of the period. As a result, we will have to

examine the state of the system just prior to the end of a repair period.

We will use a method similar to the one used for Erlang distributed

repairs. A transition probability matrix, P, will, be created , in order

to find a distribution for the number of service periods in a passage

time. Then the results will be refined to allow for transitions into

-

~ 

~~~~~~~~~~.. ~~~~~~~~~~~~~~~~~~~~~
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N(t)

LL÷l _ _

~~~~~~~~~~~~~

- -_

~~~~~~~~~~~~~~~~ 

_ _ _

C ~~ 

_

~~~~~~~~~

_

~~~~~~~

_

~~~~~~~

_ 

I

.

. 

-

R 2R 3P .. . k~?. (k+i )R.  . .n~. . . .  nR (~+1)R

~~< T~,

Figure 5 .6 :  Service State Changes ~etween Service Epochs

the BAD state at non—lattice times. Define

=~Pr in service state j just prior to completion of

repair period in service state i at beginning

of repair period }

a Pr ((j—i) servers fail in time Rj in service s:ate i

at beginning of service period }.

As long as the system remains in the GOOD state, the servers will fail

as Poisson events with rate C~. Thus, - ..e number of failures in time R,

given j <L , is Poisson distributed , i.e.,

—C~R (C~R)P~ . 
e 

(j—i) ! 0 I I i  ~~ L.

(5. 28)

Since the server failure rate is constant when j above is in the GOOD

state, equation (5.28) is the probability of (j—i) server failures in

time R. Thus, we have the following important proper~y:

= 
~o,(j—i) 

whenever j — 0,1,. ..,L and i< j. (5.29)

- .- —- —- . — -‘ ~
,
~~~~ — — .,
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The remaining probabilities, however, are not as simple because while the

system is in the BAD state the server failure rates are dependent on the

service state.

The interarrival times are independent; therefore the number of

server failures, N(t), Is a renewal process. Define the distributions

Fi~
(t) a PrC the nth failure occurs at time <

i servers are being repaired at time ~

and

F~(t) — PrCthe interarrival time between failure j and

failure (j+1) is < t}, j — 0,l...,C+L.

Then

Fi~
(t) — F~ * * ... * F~~~~(t) , (5.30)

where * denotes convolution.

For the one—step transition distributions, we know

f i _ e ”
~~~

F~ (t) =

- e
_ +

~~
j
~~~

t , L+l < j  < L~~ (5.31)

Using the Laplace transforms of equations (5.30) and (5.31) we can find

the distributions Fij(t)~ 
j — L,L + 1,... , L + C.

From renewal theory (28] we now have the remaining probabilities

— Pr((j—i) server failures in time RI

i servers are being repaired at the beginning

of the service period}

— ~F~~(R) — Fj,j+1(R)
~ 
j L, L+l,...,C+L—l,

j — L + C. (5.32) 

-~~~-,-~~~- — -~~ - ~~
——-- - --.--—-- 

~~
--
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Now a transition probability matrix , P, can be established :

~~POo P01 . . 

~O ,L ~O ,L+l ‘ 

~O ,L+C

O P P11 l ,L 1,L+1 . . 
~1,L+C

~L,L . ~L L+1 ~L L+C
P = 

. 

-

. ~~~~~~~~~~~~~~~~~~~~~~~~ 

-

.

-

O . . . . 0 0 . . ‘ 

~L+C,L+C

L+l C

= 

A B 

~1 
1’ 

~

Let a1 represent the 1th row of the subtnatr ix A ,

b~ represent the ~th row of the submatrix B , and

1. represent the C—dimensional column vector

Let N~, be the number of repair periods prior to entering the BAD state

given the initial service state  was zero (the “perfect ” state) . For

example N~ = It in Figure 5.6.

_-
~~~~~~~~~~~~~~~

--
~~~~~

-- ---- .-~~~ ~~~~~~~~~~~~~~ .
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Define the matrix

p
00 

p
01 ~0 ,L—2 ~0 ,L-1 ~O

P00 
p
01 . 

~0 ,L—2 1’O ,L— l 0

~00 ~0l ~0,L—2 
0 0

W a  . .
P00 P01 . 0

where w1 is the ~~~ row of W. Then using the property (5.29), we have

L+C
Pr {N~ = o} = ~ P01 = ~ P0~, = b~ 1 (5.33)

icB i=L+1

L L+C
Pr (N~ = i} = ~ P0~, P1. = ~ P01 ~ P1

icC jcB 1=0 j=L+1

L
= ~ P0~ b .~~1 a0~ B~ 1

i=O

Pr{N~ = 2] = ~ ~Oi ~~ ~•_i Iti~C jcG kcB ~

L L L+C
= ~ ~

‘Oi ~ ~
‘i ~1=0 j =i k=L+1 ~

L L-i L+C
= ~ ~ PQ 4  ~1=0 j= 0 ‘~ k=L+1 -‘

L L—i L
= ~ P01 ~ P0~ b~~l — ~ P01 w~~ B l

1—0 j O  j =0
— a0 w B l

and by an inductive argument, we have

Pr{N — k} — a0’w
1
~
”
~~B 1 , k = 1,2 (5.34)

I — 
~~~~~~~~~~~~~~~~~~ 

- -
~~~~~~

_
~~

-- -
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Let N G be the number of repair periods from the time the system

“recovers ” from a BAD service state , to just  prior to re—entry into the

BAD state. For example , in Figure 5.6 , N
~ 

n—rn. The service s ta te  at

the beginning of our observation is unknown ; it is the numb er of server

failures during the las t repair period which contained a BAD ser~zice

state. This situation is expanded in Figure 5.7. 
-

N ( t )

LL+i~—

- —

L. I

rrn
~

l )R mR

~~~
TGB -‘~-T3 ~-c---

Figure 5.7: GOOD to BAD to GOOD S ta t e  Transit ion

Since the server failure rate is dependent, the state j depends upon the

previous state I. (Notice, service state i need not be in C.)  We are

assuming that the number of servers in repair at time (m—1) R does not

depend on any initial conditions (i.e., we assume steady state condi-

tion). Then(Pr N((m-.l)RJ = i} fij , where i’r~ is the stationary proba-

bility of being in service state I. We want the probability

V
j  

— Pr (N(mR ) a j, jcG, N((m—1)R] = 1, i + jcB}

a ~ Pr(j server failures in time R~ N( (m—1)R] —

i+j cB
L+C—j

a 
~ ~~~~~ 1÷.~ir1, j — 1,...,L.

i=L_j ‘ 
~ (5 .35)
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Let v —  (vl,...,vL)
T. Then in a manner similar to that used for N~ 1 we

have L L+C
Pr CN G 

= 0] — Y ~ v1 P1 v B ]. ,
1—0 j —L+l

Pr{NG 1] — ~ V
i 

I’i P~~ _~~ kicC j cC kcB

L L L+C
a ~ 

~ ~i4 ~i=O j — i ‘ k=L+1

L L-i L+C
= ~ v~ ~ P0~ ~ ~

‘j k
i—O j—0 k—L+l

= v~w B 1 ,

and , in general ,

Pr(N0 — k} — v w 1
~ B’1, It — 0 ,1 (5.36)

We now have distributions on the number of whole repair periods in

the times T and T0. It remains to find the distribution for the time

within a period until the BAD state is entered. This time is repre-

sented in Figure 5.7 as TGB . This passage time is dependent upon the

service state, i, at the beginning of the period, where iC C. We have

the stationary probability 
u~ — Pr CN[(m—1)R] — ii j~~~

}

— , i— O ,l , . . .  ,L. (5 .37)

1—0
The times in each state i, i + 1,..., L are independent and ex’ponen—

tially distributed with mean l/C~. Thus the passage time distribution

is

Pr CTGB < t I N((m—l)R] — I } — Y
~.~i+i

(t) ,  I — 0,l,...,L,

(5.38)
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where Yk (t )  Is the Erlang distribution with mean k/Ct and shape para-

meter k. Combining (5.37) and (5.38) yields
L

Pr 
~ 
TGB < t} — 

~ 
11’
IYL j+l(t).— 

1=0 (5.39)

Combining equations (5.34), (5.36) and (5.39) gives us the desired

distributions (for k = 0,1,...)

Pr ~ T < ~ } a Pr ( N = k}.Pr 
~
TGB 

< t}, kR < t < (k+1)R ,

(5.40)and

Pr C TG < t} = Pr (N
G 

k }~ Pr (T
GB < t} kR < t < (k+1)R.

(5.41)

It may be more realistic to allow repair to be initiated on a

server as soon as it fails as opposed to waiting until the end of the

repair period. Then conceptually , if we consider the systet&1 at lattice

points only (every R time units), the analysis could be very simple.

Suppose P
~ 

is the probability of being in the GOOD state at the end of a

repair period , independent of the starting service state. Then the

distribution for NCB, the number of repair periods in the GOOD state

before reentering the BAD state , would be

Pr C NGB k } P~ 
~~~~~~ 

k = 0 ,1 (5.42)

Unfor tunately , P~ is dependent upon the starting state which complicates

the analysis considerably.

In the previous analysis, the service state transitions could only

be in one direction between lattice points. If repair on a failed

server begins immediately and not at lattice points , then the service

state can wander in either direction. Figure 5.8 shows how the system

- 

I 

can conceivably enter and exit the BAD state during a period of length

R. This transition would change the server failure rate and thus affect
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N( t)

L+C

L+1 — -. _
~~~.TT_ . —

L . —  — — — —

2R
F

Figure 5.8: Transitions When Repairs Initiated In ediately

the number of server failures in the period R. Since the repair time is

B., the number of servers in repair at the end of the period is precisely

the number that failed during the period. To find the distribution for

this number, we need to know (1.) how many servers are being repaired at

the beginning of the period and (2) how much repair remains to be done

on each server. Given certain considerations, these problems may not be

significant factors.

Suppose that the service channel failure rate is small compared to

the repair rate and the chance of entering and exiting the BAD state in

a single period is negligible. Define P~ as the probability of staying

in the GOOD state in a time interval R. If N(t) is the number of server

failures in time t while in the GOOD state, then

L
— Pr (NCR> L} a Pr (NCR) ai} (5.43)

1—0

Since we remain in the GOOD state for the entire period, then N(B.) is

Poisson distributed (equation (5.28)) and we can apply equation (5.42)

to get a simple result.

We have now completely described the passage time distributions for

the service states given exponential, Erlang, and deterministic distrib-

uted repair times. These distributions can be integrated with actual or

— ..——- —~~
- ,
~
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approximate time dependent line length distributions to describe the

inventory system ’s time dependent behavior.
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CHAPTER VI

CONCLUDING REMARKS

This thesis presented stationary and non—stationary (time depend-

ent) analyses for a recoverable item inventory system. It differs from

the previous work done in this area because the capacity of the service

facility was limited and variable due to server breakdowns.

The mathematical modeling of the system in Chapter II demonstrated

the need to derive a representation f or the distribution of the number

of units in the system. In Chapter III we showed that analytic attempts

to find this distribution yield neither comprehensible closed form

solutions nor a means for comparison between systems. The development

of a diffus ion approximation, however , did give us some insight into the

nature of the system’s performance. The approximate distribution was

found to have a geometric tail which led to a simple way to obtain a

solution to an optimization problem. The solution of this problem can

be used by managers to allocate limited resources optimally among item

spares and repair facilities.

The time dependent analysis of Chapter V provides a basis for

examining the short term or non—stationary behavior of the recoverable

item inventory system. A study of the distribution for the times be-

tween service channel failures -gives a technique to analyze the effects

of different service facility designs. For example, the frequency and

duration of changes in the service facility’s performance can be cal—

culated. This information can also be integrated with transient line

length distributions to provide a measure of overall system performance

through time.
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There are several different areas where this work can be extended .

One obvious extension would be to consider multi—echelon systems. The

result would be a modification of Sherbrooke ’s METRIC model [32] to

include a finite number of servers . In the same manner , items which

require service could be composed of sub—units which need to be re-

placed , repaired , and stocked. This multi—indentured concept is con-

sidered for the adequate server case in Mucks tad t’s MOD—METRIC model

[23).

Another possible extension is to model the service channel failures

as partial breakdowns due to sub—unit failures. Typically, the service

channel sub—units can be removed and the service station’s ability to

perform is only partially affected.  An example of this is an electron—

ics test station which can independently repair radio and radar uni ts .

Failure of the radio section may not a f fec t  the ability to service

radars. Thus an investment in service channel spares should be con—

sidered for sub—components and not for entire servers.

This situation requires a complex reliability analysis. Spare sub-

units can be considered as elements in parallel with the installed sub-

unit. Consequently , the entire repair station could be modeled as a

system composed of sub—components linked in series and parallel. The

purchase of an additional sub—unit would provide a certain marginal

improvement of the service channel’s reliability. If this phenomenon

can be quantified, then performance curves could be derived for fixed

levels of investment in server sub—units and the remaining analysis

should be similar to that performed in Chapter IV.

Chapter V suggests one final area for future research with its

discussion of the dearth of comparisons between the different time—
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dependent distributions for queues found in the literature. It would be

instructive to have a standard set of co on time—dependent problems

(including non—stationary inputs to the queue) to provide a means for

comparing the various proposed approximation methods.
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