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AN ANALYSIS OF RECOVERABLE ITEM INVENTORY SYSTEMS
WITH SERVICE FACILITIES SUBJECT TO BREAKDOWN

Peter L. Knepell, Ph.D.
Cornell University 1979

The purpose of this study is to analyze an inventory/maintenance
system for recoverable items, that is, items which are subject to
repair when they fail. The repair of items is performed by a main-
tenance facility which has a fixed number of service stations or chan-
nels which are also subject to failure. When an item fails, a demand is
immediately placed for a like replacement from a spare pool. The failed
part is sent to the repair facility to be serviced on a first-come,
first-served basis. The spare pool is replenished when repair on the
item is completed. When a service station fails, repair is initiated
immediately and the failed server is replaced by an operative spare
server if one is available. This analysis is limited to a single-
echelon system with no outside sources of supply or repair.

The objective of this study is to model the system described in
order to observe the relationship of system performace to spare stock
levels and service facility design. Specifically, the model is used to
minimize the total expected unit backorders given an investment con-
straint on the number of spare items, service channels and spare servers
in the system. For long range planning purposes, this is accomplished
for a system with demands which are stochastic and stationary in nature.
An extension is provided, to consider the case where demands are non-
stationary and/or the time dependent behavior of the system needs to be

described.




In order to express the total expected unit backorders, a repre-
sentation for the distribution of the number of units requiring repair
is needed. Approximations are developed using diffusion techniques
since the actual distributions are difficult to express. The diffusion
approximation is applied to an optimization problem to provide the best
allocation of investments in the system. A simple solution algorithm is
given.

Finally, a view of the time~dependent behavior of the system is
provided. The problem is decomposed into finding the distributions for
(1) the number of units in requiring repair given no service channel
failures and (2) the time between service channel failures. We provide
a brief review of the literature for the first distribution and an in-

depth study of the latter distribution. i’




s e —— R

———

TABLE OF CONTENTS

1. INTRODUCTION
2. THE MODEL
2.1 Purpose of the Model
2.2 The Expected Backorder Objective Function
2.3 Basic Assumptions
2.4 Mathematical Statement of the Model
3. STATIONARY DISTRIBUTION ANALYSIS
3.1 The Queueing Model
3.2 Analytic Results
3.2.1 Previous Results
3.2.2 The Single Server, Single Spare System
3.3 Diffusion Approximations for Queueing Systems
3.3.1 Derivation of the Diffusion Equation
3.3.2 Previous Approximations for Queueing Systems

3.3.2.1 Stationary distributions for the Gi/M/C queue
3.3.2.2 Transient distributions for the GI/G/C queue

3.3.3 Approximation for the GI/M/C Queue Subject to
Server Breakdown

3.3.3.1 Derivation of infinitesimal moments
3.3.3.2 Definition of an approximation region
3.3.3.3 Solution of the diffusion equation
3.3.3.4 Approximation for p

3.3.3.5 Comparitive Analysis

4. AN OPTIMIZATION METHOD

4.1 Approximating the Backorder Function

4.2 An Algorithm for Determining Unit Stocklevels and Service

System Design

Page

10
13
13
17
17
21
26
29
35
36
42
44
45
47
53
58
61
75

76

83




e i S A e B 0 41 o s 290

5. NON-STATIONARY ANALYSIS
5.1 Introduction and Motivation
5.2 Time Dependent Distribution Analysis
5.2.1 Closed Form Solutions
5.2.2 Approximation Methods
5.3 Passage Time Distributions
5.3.1 Previous Results
5.3.2 Extension to Erlang Distributed Repair Times
5.3.3 Extension to Deterministic Repair Times
6. CONCLUDING REMARKS

BIBLIOGRAPHY

vi

87
87
89
90
91
93
94
100
106
116

119




3.1
32
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3021

3.22

3.23

c=1,
c=1,
c=1,
c=2,
Cc=2,
c=2,
Cc=2,
c=2,
c=3,
Cc=3,
c=3,
C=3,
C=5,

C=5,

L=1,
L=1,
L=1,
L=0,
L=0,
L=0,
L=2,
L=2,
L=0,
L=0,
L=3,
L=3,
L=0,

L=0,

Queueing System Model

State Space Transitions

C=1, L=0, p=.55
C=1, L=0, pP=.75

C=1, L=0, pP=.95

=.55
o=.75
=.95
P=.55
p=.75
p=.95
p=.75
0=.95
p=.75
=.95
=15
p=.90
P=.75

P=.95

LIST OF ILLUSTRATIONS

Relative Errors for Single Server, No Spares
Relative Errors for Two Servers, No Spares
Relative Errors for Single Server, One Spare

Effects of Relative Size of K§ and Kn

vii

Page

14
22
49
50
51
52
64
64
65
66
66
67
68
68
69
70
70
bl
71
72
72
73

73




3.24
3.25
4.1
4.2
4.3
5.1
S
5.3
5.4
5.5
5.6
5.7

5.8

B o

C=5, L=3, p=.75

C=5, L=3, p=.95

Parameters K, r, and bi (A>uc(0))

Parameters K, r, and bi (A<pC(0))

Performance and Tradeoff Curves (C Fixed)
System Performance for Different Service States
Transition Flows for Number of Inoperative Servers
Transitions From GOOD to BAD States

Log Survival Function Comparison [7]

Service State Changes Between Arrival Epochs
Service State Changes Between Service Epochs
GOOD to BAD to GOOD State Tranmsitions

Transitions When Repairs Initiated Immediately

viii

74

74

82

82

85

88

93

95

100

101

107

111

114




+ N

ag

(s)

=

A(t)

Bi(si.L)

B(S,L)

ol

LIST OF BASIC SYMBOLS ik

is the failure rate of item i

m
y 121 i
is the service rate of a single service channel
is the failure rate of a single service channel |
is the rate of repair of a failed server
is the system traffic intensity

is the infinitesimal variance of the diffusion process

given state x

is the variance of interarrival times

is the variance of service times

is the Laplace transform of the p.d.f. S;(t)

is the ith row of submatrix A, i=0,1,...

is the arrival process for a queue

is the budget available for purchase of spares and servers;

also, the BAD state and a submatrix
is the ith row of submatrix B, i=0,1,...
is the expected backorders for item i given a spare stock

level of si

)
= B, (s,,L)
{=1 2 s

is the number of service channels

is the expected number of service channels operational at any

point in time

is the cost of a service channel

ix




s g 5 G AR GO0 <

(g}

D(t)

En(x.t)

f(w,T;x,t)

m(x)

N(t)

is the cost of a spare server

is the cost of a spare item i
is the departure process for a queue
is the essentiality of item i

is the infinitesimal nth moment of a diffusion process in

state x at time t

is the probability density of a transition from state w at
time T to state x at time t

is the probability of x or less units in the system at time t

given k service channels operational

= IwSP(y)dy = the survival function of TP
s

= fmSG(y)dy = the survival function of TG
t

is the probability that the jth failure occurs before time t
given i servers are being repaired at time 0

is the GOOD state

is the number of spare servers provided

is the infinitesimal mean of the diffusion process given

state x
= A(t)-D(t) = continuous-time, discrete valued random variable

= p(nlk,u,s,n.C,L) = the stationary probability of n units
in the system

is the approximation of Py

is the probability of a transition from a to b in time t

given k service channels operational

is the stationary probability of k servers are in operational
order

is the stationary probability k servers are in operational

order just prior to a service channel failure

X



is a f...ed repair time

is
= (

is

is

is

is

is

is

is

is

is

is

the spare stock level for item i

si,sz,...,sm) = the set of spare stock levels for all items

the p.d.f. of the transition time from state k to k + 1

the p.d.f. for the variable TG

the p.d.f. for the variable TP
the post recovery failure time
the post failure recovery time
the time from the perfect state to the BAD state

the 1th row of submatrix w, i=0,1,...

a continuous-time, continuous valued random variable

an Erlang distribution with shape parameter k

the column vector (1,1,...1)T

x1i




CHAPTER I

INTRODUCTION

The purpose of this study is to analyze an‘inven:ory/maincenance
system for recoverable items, that is, items which are subject to
repair when they fail. The repair of items is performed by a main-
tenance facility which has a fixed number of service stations or chan-
nels which are also subject to failure. When an item fails, a demand is
immediately placed for a like replacement from a spare peol. The failed
part is sent to the repair facility to be serviced on a first-come,
first-served basis. The spare pool is replenished when repair on the
item is completed. When a service station fails, repair is initiated
immediately and the failed server is replaced by an operative spare
server if one is available. This analysis is limited to a single-~
echelon system with no outside sources of supply or repair.

The objective of this study is to model the system described in
order to observe the relationship of system performace to spare stock
levels and service facility design. Specifically, the model is used to
minimize the total expected unit backorders given an investment con-
straint on the number of spare items, service channels and spare servers
in the system. For long range planning purposes, this is accomplished
for a system with demands which are stochastic and stationary in nature.
An extension is provided, to consider the case where demands are non-
stationary and/or the time dependent behavior of the system needs to be
described.

These inventory/maintenance systems involve vas: capital invest-

L




ments; hence, the design and control of these systems are a great |
concern for managers. In large scale industrial and military activi-

ties, a majority of the inventory items are inexpensive consumable (non-

recoverable) units; however, a large proportion of the inventory invest-

ment is for spare stock levels of recoverable items. Sherbrooke [32]

states that recoverable item spares in the Air Force account for 78

percent of the total investment, amounting to approximately five billion

dollars. Currently, automated repair stations, costing up to 16 million

i dollars each, are being purchased by military organizations to repair

units which cost an average of 100 thousand dollars each.

To provide a better understanding of the structure of this system,
we will describe a specific example where the units which fail are |
sophisticated aircraft electronic (avionics) components, such as radar,
navigation instruments and radios. Spare units are stocked at the
airfield where the demands occur. The unit failure rates are usually
low and failures occur independently. Occasionally, a rash of break-
downs occur in a particular item or the failure of one item may induce
the failure of different units. These sources of dependent demand are
infrequent and difficult to predict and, therefore, are not considered

i in the analysis. In practice, a small number of units are sent to
another facility or higher echelon level for repair or replacement.

The repair stations are situated at the airfield. They also in-

volve sophisticated electronic components and their failure character-
istics are similar to those of the recoverable items. In additionm,
these stations are periodically out of service for modification, pre-

ventive maintenance, and calibration. If a service station fails, a

high priority is placed on its repair since service interruptions
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ultimately affect the number of operational aircraft. A supply of spare
components for the repair stations is usually provided.

Thus the objective in designing the system in this example is to
provide the optimal investment allocation for spare units and service
facilities at the airfield so that the maximum number of aircraft are
operationally ready.

We begin the study in Chapter II with a brief description of some
previously developed models of recoverable item inventory systems. This
is followed by a justification for the use of the expected number of
unit backorders as a measure of system performance. After some basic
assumptions are listed, a mathematical statement of our model is pro-
vided.

Chapters III and IV provide a planning tool for managers to use
when designing a recoverable item inventory system. Chapter III devel-
ops methods for obtaining the stationary probability distribution of the
number of units being repaired. We use this diétribution to compute the
expected number of unit backorders. Approximations are developed using
diffusion techniques since the actual distributions are difficult to
express. In Chapter IV, the diffusion approximation is applied to an
optimization problem to decide on the allocation of investments in the
system. A simple solution algorithm is given.

A view of the time dependent behavior of the system is given in
Chapter V. The problem is decomposed into finding the distributions for
(1) the number of units requiring repair given no service channel
failures and (2) the time between service channel failures. We provide

a brief review of the literature for the first distribution and an in-




depth study of the latter distribution. The final chapter contains some

closing remarks and suggestions for future research.
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CHAPTER II

THE MODEL

Much attention has been focused on attempts to model inventory
systems like the one described earlier. Feeney and Sherbrooke [5]
examined single-echelon recoverable item systems where demand was
generated by a compound Poisson process. Sherbrooke [32] extended the
results to a two echelon system in a model he called METRIC (Multi-
Echelon Technique for Recoverable Item Control). Muckstadt [23] ex~
tended the METRIC model to include part hierarchies. All of these
papers assumed that the service facility has adequate capacity to repair
all items without delay (i.e., the infinite server assumption). Gross,
et. al., [2,9] considered a recoverable item system with finite service
capacity. They modeled their system as a classical machine-repairman
problem. However, they too assumed the servers were reliable.

Typically, service facilities are constrained in their capacity to
a finite number of servers and, in some cases, the servers are subject
to failure. Under these considerations it is important to consider the
effects of service facility design on overall system performance. Some
of the work done in this area will be discussed later; in general, very

few results are available in the context of production-inventory con-

trol,

2.1 Purpose of the Model

A model for a single-echelon, recoverable item inventory system
will be developed in this chapter. The model can then be used to

quantify the relationships between (1) service reliability and capacity
5




and (2) overall system performance. While it will be useful as a design

tool for managers, it is not intended to help them make day-to-day
decisions in the dynamic environment of the inveantory system. Although
it is our objective to create a realistic model, some simplifying
assumptions will be made to facilitate the analysis. The most important

step 1s to establish a meaningful performance measure.

2.2 The Expected Backorder Objective Function

We shall use the sum of the expected unit backorders as our per-
formance measure. Consider the system's operation for a fixed number of
days, and count the total number of days in which units are backordered
for that period. The expected value of this number divided by the
number of days in the period gives the expected backorders per day. Our
goal is to minimize this function. Note that by this definition, a ten
day backorder is equivalent to ten backorders for one day.

Other performance measures, such as NORS rate, fill rate, and ready
rate, are not as versatile as expected backorders when modeling recover-
able item inventory systems. In Air Force parlance, the NORS (not
operationally ready, supply) rate is considered an excellent measure of
logistics support. This figure represents the minimum number of air-
craft which cannot perform a mission due to supply backorders. It has
the advantage of measuring the direct impact that the inventory system

has on the fleet it supports. Unfortunately, it is a difficult measure

to quantify and use in inventory models. For example, if ten different
aircraft are grounded, each due to a different component being back-

ordered, then only one aircraft is considered NORS. This is further




complicated by component interchangeability, substitutability and
redundancy. Once quantified, the NORS function 1s not separable and,
hence, is difficult to work with.

Another measure, fill rate, is defined as the fraction of demands
that are immediately satisfied by supply. This measure ignores the
length of time a unit is backordered. Sherbrooke (32] points out that
when f1ll rate is employed in a multi-echelon inventory system, managers
are encouraged to concentrate nearly all stock at the lowest echelon.
While backorders will be infrequent, they will have long duratioms.
Another disadvantage is that a "f111" 1is usually defined as an immediate
satisfaction of a demand. If a short delay in satisfaction is accept-
able, the resulting optimal policy may be considerably different. In
fact, as longer delays are accepted, the more closely the results
resemble those of the backorder criterionm.

Ready rate is defined as the fraction of items which are not back-
ordered. This measure does not reflect the number of units backordered
on a particular item. Thus, it is conceivable that inexpensive items
will be stocked heavily in favor of the expensive items. Then back-
orders will accumulate only on the relatively few expensive items and
the system performance, measured by ready rate, will appear excellent
while large numbers of backorders exist for expensive items.

The expected backorder criterion combines the number of backorders
and the length of each backorder as a penalty. ‘It eliminates the need
to determine arbitrary backorder and holding costs and provides a direct
measure of support that the inventory system provides. Sherbrooke [32]
mentions a single-echelon example in which fill rate, ready rate, and

expected backorder objective functions provide essentially identical
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stockage policies. However, when applied to multi-echelon problems, the
expected backorder criterion yields more reasonable results. Addition-~
ally, the expected backorder function is convex and separable, proper-
ties which are computationally helpful and not necessarily possessed by

other criteria.

2.3 Basic Assumptions

A list of the basic assumptions made for this model will be given,
followed by an expanded discussion of each.

1. The demand process for each of m different items is a Poisson
process. All demands occur independently at a rate Xi, i=1,,..,m.

2, With each demand, units are exchanged on a one~for-one basis.

3. All units turned in are serviced.

4, Service times are stochastically independent and exponentially
distributed at rate u. There are at most C service channels available,
If service is interrupted by a channel failure, then the unit is immedi-
ately moved to the next available service channel and service is resumed
without delay.

5. There is no batching of items for repair. Items are serviced
on a first-in, first-served basis.

6. Service channels fail independently as Poisson events at a
rate &,

7. PFailed servers are repaired immediately with exponentially
distributed repair times at a rate n.

8. Pailed channels are replaced instantaneously, if a spare is
available. If no spare is available, channels are replaced in order of

breakdown times when repaired servers become available. L spare servers




are provided.

The first assumption implies that the arrival rate of units does
not depend on the size of the population. In a standard applicationm,
there is a finite source of demand; however, when looking at the scenarios
we are modeling, this assumption is valid. For example, consider a
fleet of aircraft as generating units requiring service. As aircraft
units are backordered, the number of operational aircraft decreases.
Since the flying schedule is fixed, the remaining aircraft will have to
fly more to satisfy the schedule. Since we assume an aircraft's failure
rate 1s directly related to its usage, the perceived fleet failure rate
is assumed to remain the same. This, of course, neglects the possibil-
ity that a large proportion or, for that matter, the entire fleet could
be grounded at the same time. In a later chapter we will allow the
demand rate to vary over time to reflect changing flying schedules or
failure characteristics.

The second assumption reflects an (S,S-1) inventory policy. The
next assumption states that the system is conservative (i.e., no condem-
nations). In practice, the inventory items are expensive, so these
assumptions reflect a reasonable policy.

The fourth assumption gives non-preemptive priority to a unit whose
service is interrupted. Theoretically, given the memoryless property of
the exponential distribution, this assumption does not matter. It will
become apparent later that exponentially distributed interarrival times
are not necessary for the approximation techniques used. This assump-
tion is made because the approximation method proposed was tested
against systems with exponentially distributed service times.

The sixth assumption implies that service channels can fail even
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when idle. This is realistic since calibration tests, preventive main-
tenance and modifications are typical for the systems being modeled.
The next assumption implies that there is an adequate number of repair-
men to work on the failed channels. This can be altered to specify a
limited number of repairmen; however, this adds to the notational and
computational complexity, but does not alter the method of analysis.

In Chapter I, it was mentioned that the service channels are large
and costly to establish. Spares for these channels are relatively
inexpensive. Therefore, it is reasonable to assume that while C + L
servers are provided, only C are useable service channels and the

remaining L must be held in reserve.

2.4 Mathematical Statement of the Model

The objective of inventory managers is to provide the greatest
system performance given a fixed budget. Thus, our goal is to minimize
total expected backorders outstanding at any point in time subject to a
budget constraint. This model will be different from those mentioned
earlier because the investment constraint links the purchase of unit
spares, service channels, and spare servers. Thus the system perform-
ance will be dependent on the service facility design as well as the
allocation of funds to unit spares.

Suppose p(nb) represents the probability that n units are in the
service facility (in service or awaiting service). We know this number
will be a function of the input and the output of the service facility.
The parameter Ai characterizes the input process for item i and the
parameters W ,§,N,C, and L determine the output process. For each unit

of type 1 we can express the expected number of backorders outstanding
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at any time as .
I (x-sp px{A1,E,n,CL). (2.1) g
x>si !

Backorders in some items may be considered more serious than for others.
In this case, we can weight the backorder function in (2.1) with an
essentiality factor, Ei'

The costs of unit spares and service channels are considered to be

linear. Since the initial setup cost for service channels is very
large, there will be different costs for service channels and their

spares. An expression for the investment constraint is

m
GsC, + L*C_ +1§1 Cys; < B. (2.2)

If we are concerned with a long range planning tool, we must be

careful to design a service facility which can provide adequate service
over an extended period of time. Clearly, the potential output rate

| must be at least as large as the input rate:

m
A= ] A <, (2.3)
1=1

where C is the expected number of service channels operational at any
point in time. The mathematical derivation of this constraint will be
provided later.

Combining all the statements above we have a mathematical statement

of the model as follows:

m
minimize [ E, ) (x - 51) p(xlki.u,s.n,C,L)
i=1 x>si

subject to m (P)
cc, + LC, + 1-2-1 Cysy < B,

L : poer—




and ) < uC,

where C, L, and s, are non-negative integers, i=1,...m.

For future reference, this optimization problem will be denoted as

problem P.

12




CHAPTER III

STATIONARY DISTRIBUTION ANALYSIS

To apply the model developed in Chapter II as a long range planning
tool, we need to find an accurate expression for p(n|*), the stationary
distribution for the number of units in the system. To do this, we view
the single-echelon, recoverable item system as a queueing system in
which the service facility has a finite number of servers, each subject
to failure. The servers and their repair facility will be another
queueing system imbedded in the first one. This structure will be
exploited to develop the stationary probability distributions of units
in the service system. Some analytic results will be given and a

general approximation method will be derived.

3.1 The Queueing Model

This section will develop a queueing model to represent the system
introduced in Chapter I. It will become apparent that this system has
much in common with the classical machine-repairman problem. The assump-
tions given previously establish the queue service discipline and allow
for the creation of a state space for a continuous-time Markov process.

The system to be modeled can be described schematically (see Figure
3.1). Units demanding service come from an infinite source. They enter
a multi-server queue and are served on a first-come, first-~served basis.
As soon as a unit joins the queue, a replacement unit, if one is avail-
able, 1s immediately returmed to the source from the spare pool. If no

replacement is available it is backordered.

13
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Figure 3.1: Queueing System Model

Servers are subject to failure and are replaced by spare servers, if one
is available. Figure 3.1 illustrates why this system could be called "a
two-dimensional machine-repairman system."

We must assume this system is non-saturated in order to guar:  ‘ee
the existence of a stationary probability distribution. To assure this,
as mentioned earlier, we will require

A < uC, (3.1)
where C is the expected number of servers available at any point in
time. This condition 1s necessary and sufficient when there are no
spare servers (L=0); however, it does not seem easy to prove in general
[20,33].

For the queueing system developed, the probability function p(n|*)
has some familiar forms in special cases. (For notational convenience,

we will let Py * p(al+), for the remainder of the chapter.) If C+e,
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then from Palm's Theorem we know that P, 1s Poisson with rate b/ TR i
C=1 and there are no service station failures (i.e., £=0 or L+« ), then
p, is geometric with parameter A/u, since we have a simple M/M/1
queue. If there are no sgpare service stations (L=0) and C is finite,
then p, can be determined using the results of Mitrany and Avi-Itzhak [20].
Since the servers can fall at any time, the number of operational
channels 1is independent of the number of units in the system. (The
reverse, however, 1s not true.) Thus, the stationary probability
distribution of the number of servers operational can be obtained
separately. This subsystem can be viewed as a classical machine-repair-
man problem where the servers and their spares are the "'machines" and

there are always an adequate number of '"repairmen."

Theorem 3.1.

If we have a system with C service channels subject to failure, L
spare servers, and C + L repairman where:

i) the servers fail independently, as Poisson events at rate &,
and

11) the repair times are independent and exponentially distributed
with rate n,
then the stationary probability of having k operational servers, Qs

exists and is given by

Fa C+L-k
.C__C!__.___. & q C<k<t =1
(CHL-K) | k! |n o Yoo ,
U - CH+L~k
ol q ,C<k<C+L, (3.2)
o7 (n i
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where
L C+L =1
TN R o T N |
k=0 k! (n k=L+1 (C+L-k)'k! (n i (3.3)

A simple proof of these results can be found in reference 6.

Thus the stationary probability of having k repair channels oper-

ational is

qk s
Pr{k channels up} = CEL
q_, k=¢C
n
e (3.4)
In the special case where L=0 (i.e., no spares) we have
C-k
- [2(g)
h o i b b e 00 (3.6)
WRene Yol T 6 K R :
AN
k) (n n
k=0
Defining P = 7 we have
el K c-k
- 1k - fC11.e 1 0<k<C
b kK T+o (T+o0 » Y2 R Z L

1+
(3.7)

So when no spare servers are provided, the stationary probability
distribution is binomial.
The conditional probability that k servers are operational given

that a failure is just about to occur is not the same as Qe since the

failed service units come from a finite source. A derivation for this

’
new distribution, Gy » can be found in reference 9.
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Corollary 3.1. Let the same conditions as Theorem 3.1 hold. Then the
stationary probability

L}
Q= Pr { k servers operational | a server failure is about to occur}

exists and is given by

qu

i
cC - (C-n)q
- n=0 -

qu

,C+l < k < L¥C.

C
c- 1 (C-m)q
n=0 (3.8)

3.2 Analytic Results

The typical procedure used to derive the line length distribution
involves probability generating functions. A Markovian state space is
designed, balance equations are developed and a generating function is
derived. The poles of the generating function provide information which
is otherwise difficult to derive. The previous work found in the
literature has been limited to cases where no spare service channels
are available. This work will be discussed in greater detail and then a
derivation for the "simple' case of one server and one spare will be

given.

3.2.1 Previous Results

The earliest published work done on queueing systems with service
station subject to breakdown was by White and Christie in 1958 [34].
The most comprehensive article on single server queueing systems with

Poisson inputs and exponential service times was written in 1963 by Avi-~
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Itzhak and Naor [1]. They allowed a general distribution for server
breakdowns and repair and were only able to derive the expected line
length and expected waiting time. Shogan in 1977 provided the line
length distribution for a single server system ([33]. His results are

summarized below.

Theorem 3.2 (Shogan)
Suppose we have a system with:

(1) independent, exponentially distributed inter-arrival times,
rate A,

(11) independent Erlang distributed service times with mean 1/u
and shape parameter k,

(111) a single server, no spares, with exponential inter-failure
times, rate &, and

(iv) Erlang distributed repair times with mean 1/n and shape
parameter m.
If Mu < n/(E + n), then the stationary probability distribution

Pij = Pr { 1 phases of repair required on the server,

j phases of service in the system}

exists and is defined by the recursive equations (for j = 0,1,2,...):

Py = n/(E+n) - A/u, (3.9)

-1
L (A=mn) (EPO,J * kPm’j_k), (3.10)

P = (A-mr\)-1 (mnP

3.9 g41,9 * Py ) 1L 2,01, (D)

3 3 3

-1
P = (k) - (A} P, _+EY P, _-mn}] P ), (3.12)
0,3+l aof4l-k 00 n=g 000 asg 1B
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where Pij is zero if it has a negative subscript and summations are zero

if the lower limit of summation is negative.

The expressions in Theorem 3.2 are typical. A closed from solution
for the line length probabilities has not been found. The recursive
relations are a direct result of the balance equations and POO was
obtained from the pole of a lengthy generating function. After solving
for all the state probabilities, the steady state probability of having

n customers in the system is given by:

-

)

P for n=0

=0 10
P, = ﬁ

m nk

P
|- i=0 j=(n-1)k+l ij for =n > 0. (3.13)

The groundwork for multi-server queues with server breakdowns and
no spares has been established in an article by Mitrany and Avi-Itzhak

in 1968 [20]. Their results for a two server system are summarized

below.

Theorem 3.3 (Mitrany and Avi-Itzhak)
Suppose we have a system with:

(1) 1independent, exponentially distributed inter-arrival times,

rate A,

(11) 1independent, exponentially distributed service times with

mean 1/yu,

(111) two servers, no spares, with independent, exponentially




distributed inter-failure times, rate & , and

mean 1/n .

Define

5 / 2 R
z = [ (A+p+E+n) = vV (A+u+E4n) T - 22w ]/20

N =2un - An - A§ , and

D = u(&+n) [2(&+n) (2u+A+2Ez) + A(1-z) (2u+A)]

T ——

If M/u < 2n /(£ +n ), then the steady state probability
Pij = Pr { i operating servers, j units in the system }

exists and is defined by the recursive equations (for { = 0,1,2):

P

- E2[4n + (20 + 4E)z].N / Q4n)D ,
Pio = A+) Pyo 8.5

12

90 = [A+2)u + (Z&n-Au)z]+N / D,

[Ju+i&+A+(2-i)n] p,, = (3-i)nP

33 j-1,3 F (HDER ) o+ Ry

+ (j+1)uP

)j-l

n 50 ) R for j < 1,

(1ip+iE+A+(2-1)n]

J

gy = G-inpy o+ (i+1)§Pi+1’j *APy 4

i,
+ 1u91’j+1 > for j >

(iv) independent, exponmentially distributed repair times, with

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

20
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where Pij is zero if {1 > 2 or any subscript is negative.

The steady state probability of having n customers in the system 1is

simply
2
p. =) ¥ for n > 0.
n e b7

The work required for n> 2 is computationally and notationally
intractable and Mitrany and Avi-Itzhak suggest numerical methods. 1In a
related article published in 1973, Yechiali was also unable to derive
closed form solutions except in very specific cases. He stated that,
"In general, no closed form relations are available for the probabil-
ities Pi,O’ and, except for numerical results, no analytic comparison to

the elegant results of the classical M/M/1 queue can be made." [35]

3.2.2 The Single Server, Single Spare System

This section will show a technique to solve analytically for the
stationary line length distribution for a single server queue subject to
breakdown, where cne spare server is provided. In addition to the
assumptions stated in Section 2.3, we will also assume that operable
spares do not fail while held in the spare server pool. This is a
reasonable restriction considering the application; however, it can be
lifted without significantly affecting the analysis.

The solution procedure to be used follows. A state space for a
continuous-time Markov process will be defined. The Markovian nature
of the state space allows us to describe the flows in the system with
balance equations. These equations cannot be solved directly so proba-

bility generating functions are derived. These will assist us in
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solving for three of the stationary probabilities. When these proba-

bilities are known, the entire distribution can be obtained using the
balance equations.

We start by defining a state space for this system as

{(1,3) | 1 = number of operable servers = 0,1,2,

j = number of units in the system = 0,1,...} .

Since the state transition times are all independent and exponentially |

distributed, the process described is Markovian. Define Pi j as the

steady state probability of being in state (i,j). The tramsition flows

H are illustrated in Figure 3.2,

Figure 3.2: State Space Transitions
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The balance equations for this system are:

O42m)B, = NPg 4y + EPy o e (3.22)
(ME+HMP, ) = NPy, + Py + WP, o (3.23)
()""E"'“"'n)Plj = ZnPQj + Esz + upl,j+1 + )‘Pl,j—l T (3.24)

(3.25)

()P, = NBy o + UEyy

(>\+£+u)P2j = nPlj + uPZ,j+l + sz’j_l s J=L,2,00. (3.26)

Define the probability generating functions (pgf)
@
gy =) B9 , 1s0,1,2.
1 5= 1
Note that these generating functions evaluated at z = 1 give the

stationary probability of the number of operational servers. Applying
Theorem 3.1 we have

5
2
& 1=0

52 + 2n¢ + 2n2

5 2ng - , 4=l
E° + 2nE + 2n

2
2n 1=2.

52 + 2ng + 2n2

G (1) = qy = ﬁ

(3.27)

L
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Also note that
Go(l) + Gl(l) + 02(1) =],
We can solve for each pgf by multiplying equations (3.22) through

(3.26) by the appropriate z'1 and summing. The result is:

[X(l-z)+2n]Go(z) - EGl(z) = 0, (3.29)
-2nzG, (2) + [Xz(l-z)+v(z-1)+€z+nz]G1(z) - €2G,(2) = u(z-1)P, 4,
(3.30)
-nzGl(z) + [Xz(l-z)+u(z—l)+£z]G2(z) = u(z-l)on.
(3.31)
After some elementary row operations we have an equivalent matrix form
A(z)+g(z) = u(z-1) b, where:

[\ (1-2)+2n - 0

A(z) = Az(1l-z) Qz-u) (1-2) (Oz=u) (1-2)

B 0 -nz Az(l-z)+u(z-1)+£zJ
Go(z) 0
&(2) = G, (2) and b = Pio + LI
G, (2) P20

If we had values for POO’ P10 and on we could solve for all P via

i,]
the balance equations. Equation (3.22) provides one equation in POO and

Using Cramer's method for solving simultaneous equations we have:

u(z-1) , 1i=0,1,2, (3.32)

where |A1(z)| is the determinate of A(z) with column (i + 1) replaced

' by b. Examining row 2 of A(z) it is clear that |A(z)| = (z-1) |Q(2)]

PlO' The above pgf's will be used to provide two more independent equatioms.




25
where ™ A(l-z)+2n "E : 0
Q(z) = -z =Az+U -Az+U
0 -nz Az (1-z)-pu(1l-2z)+§
So we have
G, (2) = |4, (2| Lo 1m0,1,2. (3.33)
lQ(z2) |

By its definition, Gi(z) must be continuous and bounded on the interval

[0,1] and we know Gi(l) = q, where q; 1is given in (3.27). Thus we have

G, 1)+l |
SRR -|Ai(1)| o Ao GAE, (3.34)

It is easy to show that these three equations are dependent; therefore,

we only get one useful equation in PlO and on. For i = 0 we get

-nQO-p) (Emagd

+ P d (3.35)
u(E2+28n+2n?) S

If we had a root for |Q(z)|on the interval (0,1), then by continuity of
Go(z) on (0,1) we would have another independent equation for P1 o and

Pz 0" Evaluating lQ(z)l at z = 0 and z = 1 we have:
’

1QC0)| = - + 2n) w? <0 (3.36)

and
|Q(1)| = =2n(A - w) (E+ n) - Ag2 (3.37)

Forcing |Q(1)| > 0 yields the relationship:

A 20+ 2n’

W g2 4 2en+ o

¥ =9 + a,- (3.38)




This is the familiar constraint requiring the expected service demanded

per unit time to be less than the expected service available. Given
that this condition is met, the fourth degree polynomial [Q(z)| has a
root, z;, on the interval (0,1). Then we have IAO(zl)I = 0, or

equivalently

[(Azl-u)(l—zl)+521]P10 + Ezleo = 07 . (3.39)

Equations (3.22), (3.35), and (3.39) provide three independent equations
in POO’ PlO’ and on. Using these, the balance equations and the

traffic intensity condition (3.38) we have:

Theorem 3.4
Suppose we have a system with:

(1) 1independent, exponentially distributed inter-arrival times,
rate ),

(1i) independent, exponentially distributed service times with
mean 1l/u ,

(111) one server and one spare, with independent, exponentially
distributed channel inter-failu;e tiﬁ;s, rate £ , and

(iv) 1independent, exponentially distributed repair times with mean

1/n .
Define
~K(2) = (Az=p)(1-2) + E2z , (3.40)
D(z) = [A(z-1)-2n][Az-u][K(z)+nz] - AEzK(z) , (3.41)
and q, = & . (3.42)

0 2

52 + 2ng + 2n
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If \/u<1- qqg» then
a) D(z) has a root, z,, on the interval (0,1), and
b) the stationary probability distribution
Pij = Pr { i servers are operative, :
j units are in the system } J
exists and is defined by:
-q,D(1) K(z,) §
Py = 20 1 , (3.43) ‘
ETus[8z; - K(z))]
q,2,D(1)
Plp = —— : (3.44)
gu [8z; - K(zp)] .
Pog = EPpg / (A+2n) 3 (3.45)

and the balance equations (3.22) through (3.26).

3.3 Diffusion Approximations For Queueing Systems

It should be evident that analytic results for large systems are al-

gebraically cumbersome and do not provide any insight into the nature of the
desired distribution. A computationally efficient and rélacively simple
approximation technique would greatly assist us in sof?ing the optimization
problem proposed earlier. For the situation that we are modeling, diffusion
approximations provide simple and accurate representations for the queue

size distribution.

The application of diffusion approximations in the study of queueing
systems was introduced in 1961 by Kingman [15]. Subsequently Iglehart [11],
Kingman [16], and Newell [24] provided substantial results in 1965. These

approximations have also been applied to problems found in such diverse
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fields as statistics, engineering, physics, genetics and neurophysiol-
ogy. An interesting historical review of the use of the diffusion
equation is in reference 14.

When employed in describing queueing systems with congestion or
heavy traffic, diffusion approximations provide very accurate results.

A system is considered congested when the traffic intensity, P , 1is
never much less than unity (say, p > .70), where the traffic intensity
generally measures the ratio of the system's input rate to its output
rate. The system we are modeling should fit into this category. The
fixed cost of each channel is extremely high, and thus, the imputed cost
of server idle time is high. Therefore, it is reasonable to expect the
number of service channels will be kept to a minimum, forcing the
traffic intensity to be high in many real situationms.

The previous work done in approximating the line length distri-
bution for multi-server queues can be divided into three categories:

1) p< 1, 2) p> 1, and 3) p = 1. The third category is highly
unlikely in practice, so this case will not be discussed.

In the case p <1, Iglehart [11l] developed approximations for the
M/M/C queue and a machine-repairman problem. Although, he provides weak
convergence results in some extreme cases, his approximations are
generally not very accurate because he did not restrict the queue
lengths to be non-negative. Halachmi and Franta [10] incorporated this
restriction into their analysis and demonstrated good approximations for
the GI/M/C queue. Their work will be discussed in greater detail later
in this section. Fischer [6] introduced an approximation method for the
distribution of the virtual waiting time in an M/M/1 queue subject to

breakdowns. His analysis, however, cannot be extended to multiple
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server systems nor does it help in approximating line length distri-
butions.

When p > 1, the number of units in the queue will become unbounded,
almost surely, as time goes to infinity. Although a stationary prob-
ability distribution does not exist, we can explore the transient dis-
tribution. The non-stationary problem is not discussed until Chapter 5.
For continuity of development, these diffusion approximation methods
will be covered in this section. Iglehart and Whitt [12] developed a
diffusion approximation to the tramnsient distribution of the line
length for a GI/G/C queue. Their results are accurate for the case when
o > 1. Although they prove some weak convergence results, Newell [27]
provides an improvement to the transient distribution for all categories
of traffic intensity. Both of these approaches will be covered in more
detail later.

Diffusion approximations are developed by essentially replacing the
queueing system's discrete state space with a continuous state space.
Conditions are imposed on the continuous state space so that the newly
defined process captures the characteristics of the original process.
When modeling a queueing pr?cess in this manner, one gets a partial
differential equation with boundary conditions that play a rather
natural role. This differential equation is called the diffusion
equation and its solution will yield a probability density function.
Since we are trying to find a distribution describing a discrete process,
the density function will have to be integrated over specific intervals
to yield the desired approximation.

In this section we first derive the basic diffusion equation and

the required boundary conditions. We will then review the previous work
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done in obtaining diffusion approximations to the line length distri-
butions for multi-server queues. Then an approximation will be derived
for the stationary line length distribution for a multi-server queue
subject to server breakdown. Numerical examples will be given to

compare this approximation to analytic and simulation results.

3.3.1 Derivation Of The Diffusion Equation

This section will discuss some of the underlying assumptions
necessary to develop a diffusion approximation, introduce some new
b notions and notation, and then display the derivation of the diffusion
equation and the boundary conditions imposed on it. The derivation
follows one found in Kleinrock. (See [17], pp. 69-71.)

The first assumption, which was previously mentioned, is that we
will only be examining queues with heavy traffic. Thus it is reasonable
to expect that the number of units in the system, N(t), is relatively
large compared to unity. On a coarse scale of.measurement, N(t) changes

very little in a short period of time. Although N(t) is discrete, it is

mathematically convenient to view it as a continuous random variable, |
X(t), and thereby allow "infinitesimal" queue changes. To be consistent
with the nature of the queue being modeled, we will define X(t) as a

continuous-time, continuous-state Markov process with conditional

transition probability

F(w,T3y,t) = Br(X(t) < y | X(r) =w] for 1 < t. (3.46)

So F(w;T;y,t) is the probability that the process X(t) is no greater

than state y at time t given that it was in state w at time T .

We will assume that the conditional probability demsity function,

f(w,T;y,t), exists, is continuous and twice differentiable. Then we

.. e 3
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have
iv, iy, k) » SEMLTIZE) : (3.47)
Ay

This density function satisfies the Chapman-Kolmogorov equation

©
f(w,T;y,t) = I f(x,u3y,t) f(w,T;x,u)dx for T< u < t.
e (3.48)

Define the conditional mean, M(x,T;t), to be the expected value of
the process X at time t, given it was at x at time T . Define the
conditional variance, V(x,T;t), in the same manner. Thus we have:

M(x,T;t) = E[X(t) | X(T) = x] for T < t, (3.49)
Vix,t3t) = E { [X(t) - M(x,T;t)]2 |X(t) = x } for T < t. (3.50)
Notice that these moments are dependent on the state of the process as
well as the time. This is an important distinction which is valuable in
approximating multi-server queue distributions (as opposed to single
server queues). We shall assume that these moments have continuous
derivatives which are defined as the infinitesimal mean, m(x,t), and the

infinitesimal variance, cz(x,t). Specifically we have:

m(x,t) = M(x,t;T)

5t (3.51)

T=t y

0 (x,t) » DAXEIT) (3.52)

9T l T=t

Incorporating definition (3.49) and the fact that M(x,t;t) = x, we have

m(x,t) = lim %E [M(x,t;t+At) - M(x,t;t)]
At->0
= 1lim %E- ryf(x,t;y,t+At)dy - }J
At->0 ~
= 1im %E f” (y=x)f(x,t;y,t+At)dy . (3.53)
At~>0 —o




where En(x,t) is the infinitesimal nth moment. These relations will
become useful later.

Now we will derive the forward diffusion equation by employing an
expedient analytical technique. An arbitrary integral, I, will be
defined. Then an alternate representation using Taylor series will be
derived. By taking the difference of these two integrals and by employ-
ing a theorem of integration we will obtain the diffusion equation.

Consider an arbitrary function Q(y) which is infinitely differen-

tiable and sufficiently bounded so that the integral

I = fw Qy) Qﬁiﬂ*%%llil dy (3.56)

is well defined. Using the definition of a partial derivative and the

Chapman-Kolmogorov equation (3.48) we get:

Q0
3. J Q(y) lim [%(“’Tiy»t+ﬁzz - f(w,t;y,t)] dy
S At=>0

= lim %E f“ Q(y) [:fw f(w,Tix,t) f(x,t;y,t+At)dx | dy
At->0 =00 =

= fm Q(y) f(w,T:iy,t) dy (3.57)

Let I = lim 1 (11-12), where I1 and 12 are the two integrals above.
At=>0 o

h'---'--ﬁ;---------------.-..................__'“....,"I .
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Similarly,
o (x,t) = lim (o ? HLin.teae) 4, G250
At->0 />
and, in general, we define
E_(x,t) = lim (y-" HEEVEHO) 4y oo,
At=>0 7/ ~»
(3.55)
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Examining I1 alone, we substitute the Taylor series expansion for Q

about X and then interchange order of integratiom to obtain

T 1 d"Q(x)
Il’ Z = (Y"'x)n X f(w;T;x,t) f(x,t;y,t+At)dx dy
—on=0 °° ax™ -

— fn f(w,T;X,t) 2 L dng(x) [” (y-x)nf(x,t;y,t+At)d{] dx.
-00 n

= 1
n=0 © ax® =00
(3.58)
Careful examination of the integrand reveals that the inner integral is
the definition for the nth moment.

Taking the limit of I1 we get

{” {° Mo

lim 2 I, = lim b Q(x) f(w,T;x,t)dx + f(w,T;X,t) z l,En(x,t)
ae 1 At n!
At>0 At>0 =00 - n=1

q" x) | dx

dxn

n
Z %! fimf(w,T;x,t) En(x,t) é;iéil ax .

1
= lim At I2 +

At~>0 n=1
(3.59)
Substituting back into (3.57) we get
) dn )
Z l' f(W,T;X,t) E (X,t) —_gi'x_— ax . (3-60)
n! n n
n=1 - dx

The nth term (n = 1,2,...) in this equation can be integrated by parts

n times to remove derivatives of Q. For example, define

n
[ = r ow,Tsx,t) B (x,t) SEL ax, no=1,2,... .(3.61)
n e n dxn

L‘—“————-———-—-‘-——_....m
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Let !
n |
u= f(w,T;x,t) E (x,t) and dv = 4 09(x) dx.
n n
dx
Then e 2
I = uv - [ vdu |
n X= =00 -0 %
(n-1)
ax " 1) e
d® Do | |3
- -y Ag;[f(w,r;x,t) En(x,t)] dx
- dx
(n-1)
4 Q) [_8__ [f(w,T;x,t) E (x,t)] dx, it = 125 00s
oo dx(n—l) Ix n
(3.62)
since by previous assumption Q(x) and its derivatives must vanish at ?
+ © ., Thus by an 1nductive argument we have |
I= rQ(x) , 3—— [E (x,t) f(w,T;x,t)] dx. (3.63)
n=1 ax"
Subtracting this equation from the original definition of I, (3.56),
yields
o-=rnc;(x)"i(i%é-’—‘a—cl ZS—L——[E(xc)f(wr}rc] dx.
- n=1 9x
(3.64)
By assumption, Q(x) was an arbitrary function. Thus the second factor
in the integrand must be identically zero, giving
n
lniine 7 L o [E_(x,t) £, T5x,0)]. (3.65)
n=1 n: ax"

It is reasonable to expect the conditional density, f, to be "tightly

J
1
!
!
|
- .
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concentrated" around the value x. Thus we shall assume that the third
and higher infinitesimal moments are negligible (i.e., En(x,t) =0,

n =3,4,...). We finally get the second order partial differential
equation
2
af 3 19 2
il [m(x,t)f] + 2 3x2 [0 (x,t)f]. (3.66)

This equation is known as the forward diffusion equation, the one-~
dimensional Fokker-Plank equation and the forward Kolmogorov equation.
When the infinitesimal mean and variance are not time dependent, the
process X(t), which this equation describes, is defined as a stationary
Ornstein~Uhlenbeck process. When the infinitesimal mean and variance
are constants, the process defined is a Brownian motion or Weiner
process with drift. Thus, in some cases, the normal probability density
or Gaussian function is a solution to the diffusion equation.

Boundary conditions must be imposed upon the demsity, f, in order

to assure a unique and meaningful solution to the diffusion equation.
5 The most natural conditions are to require f to be a probability density

which is non-zero in the positive quadrant. By this we mean

f(w,T;x,t) = 0, for x < 0 and when t = T, x # w, (3.67)
and
; [w f(w,T;x,t)dx = 1, for t > T . (3.68)
0

f As the process X(t) wanders through its domain, we expect it to

| spend very little time around its lower limit, zero. Most of the
probability mass of X(t) should in the tail of the distribution and so
it is natural to impose a boundary condition on the diffusion equation

to enhance this concept. We can take advantage of the first two con-




o -l = 4 o, dna' s
B —

ditions to derive another boundary condition, often termed the "re-

flecting barrier" condition. The first step is to integrate the diffu-

sion equation,

2
J‘»%tdx = -r -g—f [m(x,t)f]dx +% rgx—z- [Oz(x,t)f] dx

3
p i ¥y y

© ]

+3 3= 0o

x=y

N

%E fmfdx = -m(x,t)f
y x=y (3.69)

The nature of the system we are modeling suggests that X(t) will not
become infinite in finite time. Thus condition (3.68) and the con- ]
tinuity of f yield ’
i
lim f(w,T;x,t) = O, (3.70) ;
e |
lim %; f(w,T;x,t) = 0, and (3.71)
X0
. rfdx -3 1 -o. (3.72)
0
By taking the limit of (3.69) we get the boundary condition
13 2
lim {-m(x,t)f + 7 5= [07(x,t)f] = 0. (3.73)

x>0

The diffusion equation and the three boundary conditions derived
above, given in this general form, have never been solved analytically.
If the infinitesimal mean and variance are expressed as functions of ’
only one variable or as constants, then a solution can be found. The

remainder of this section will display these solutioms.

3.3.2 Previous Approximations For Queueing Systems

The key to finding an accurate diffusion approximation for a I

queueing system is in finding good representations for the infinitesimal
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mean, m(x,t), and variance, oz(x,t). In order to find these, it is
convenient to think of the random variable N(t) as the difference of two
random variables, N(t) = A(t) - D(t), where A(t) represents the arrival
process and D(t) represents the departure process. The distributions
underlying A(t) and D(t) then determine whether m(x,t) and Uz(x,t) are
constants or functions of one variable. We will explore three diffusion
approximations which differ in infinitesimal moments and traffic in-

tensity.

3.3.2.1 Stationary Distributions For The GI/M/C Queue

The most accurate approximation of the stationary line length
distribution for the GI/M/C queue was developed by Halachmi and Franta
[10]. For stationary results they assume the traffic intensity is less
than unity (p < 1). They were able to capture the nature of this system
by making the infinitesimal moments depend upon the state of the system.
The methodology used to arrive at these moments will be displayed first
and then the solution to the diffusion equation will be provided.
Finally, some comparative results will be discussed.

We start by assuming that the number of units in the system is
continuous-valued random variable, X(t). Letting X(t) = A(t) - D(t), we

can define

E[X(t+At) - X(t)|X(t) = x]

M(x,t) = lim At

At>0

E[A(t+At) - A(t)|X(t) = x]
At

= lim
At>0

14m E[D(E+At) - p(t) [X(t) = x]
A0 At (3.74)
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The arrival process is independent of the state of the system so we can
drop the conditional statement in its expectation. Since we are in-
terested in obtaining steady state results, we need to find the limit of
(3.74) as t + =, Since A(t) is a renewal (or counting) process, we can
use Blackwell's Theorem [4] if we assume that the interarrival times are

non-lattice (or non-arithmetic) random variables. This theorem yields

lim E[A(t+At) - A(t)] = AAt, (3.75)

£t

where ) is the interarrival rate.

The departure process does depend upon the state of the system.
Since the interdeparture times for each active server are independent
and expomentially distributed, we can take advantage of the meméryless
property of this distribution. Let 1 be the service rate of an active
channel. To accomodate the continuity assumption for the system's state
space, we assume that the servers act as independent infinitesimal
units. This allows the definition

xuA(t) + 0(At), 0<x<¢
Pr(D(t+At) - D(t) > 0|X(t) = x] =
cud(t) + 0(At), x > C, (3.76)
which together with Blackwell's Theorem gives

xpdt, 0 < x<C
lim E[D(t+At) - D(t)[X(t) = x] =
T Cult, x >.€
= min(x,C)uAt. (3.77)

Thus, using (3.74) the infinitesimal mean is

m(x) = A - min(x,C)u. (3.78)
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Similarly, we can define the infinitesimal variance
o?(x,t) = lim Var[x(t‘mt‘)k‘ X(8) [X(t) =x]
At>0
< ke Var[A(t-Xlé.t) - A(E)] | g4, Var[D(t+At) ;tD(c)lxcc) =x]
At>0 At+0
(3.79)

where we again assume that the arrival process is independent of the
state of the system. Since we do not have the equivalent of Blackwell's
Theorem for the variance of a remewal process we need to employ a trans-
formation to fit the conditions of a known renewal theorem. Define

M(t) = A(T+ At) - A(t), n = [t/At], and AAi = A(i*At) - A((i-1)-At),
where the brackets, [+], denote the greatest integer function. Then by
our assumption that arrivals are independent, we have

1 n

V = Var [}- z AA, | = Var [AA(t)]/n. (3.80)
n {=1 i

But assuming A(0) = 0 we also get

n
V = Var EL Y AA,| = var{[A(n*At) - A(0)]/n
n a1 i

Var[A(t)] (3.81)

=1
2
n

Combining (3.80) and (3.81) yields

Var[AA(t)] = aV = % var [A(t)] = Var [A(t)]/[t/At] (3.82)

Taking limits we get the equivalent statements

1im Var (AA(t)] = 1lim {Var[A(t)]/[t/At]>

£ too

= 1lim {Var[A(t)] At/t} : (3.83)

£t
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From renewal theory (see [28], pp. 180) we have
lim V2% lé§Ell = A3o§ , (3.84)

>0

where ci is the variance of the interarrival times. So we finally get

lim Var [A(t+At) - A(t)] = A3o§ At. (3.85)

>

In a similar manner, we can find the variance of the departure
process, keeping in mind the dependence on the state of the system.
Since the service times for each active server are exponentially dis~

tributed, we know the variance 02 of each time is the square of the

d
2

expected service time (i.e., cd = 1/u2). Therefore, we have

lim Var [D(t+At) - D(t)|X(t) = x] = min(x,C)u At. (3.86)

[ o a2

Thus, using (3.79), the infinitesimal variance is
o?(x) = 2%? + min(x,0)u. (3.87)
The diffusion equation (3.66) derived in the previous section
relates a change in state to a change in time. Since we seek a station-
ary distribution, we must discard the conditioning on the initial state

and take the limit as t+> « ., Thus

lim f(w,T;x,t) = f(x), and lim %% =0

£ oo
are necessary for the existence of a stationary distribution. We then
get the diffusion equation

3 & .0 d

= — [0°(x) £(x)] - 5= [m(x) £(x)] = O, (3.88)

2 2 dx

dx
and the associated boundary conditionms

1d .2 "
7 3% 07 £(x)] s m(0) £(0) = 0, (3.89)
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and

1
J f(x)dx = 1. (3.90)

0

The solution arrived at for this differential equation by Halachmi and

Franta [10] is
4 2 u-1
Hl[o (x)] exp (-2x) . 0<x=2¢C

£(x) =4
H, exp[gl’igcﬁ] U xse, (3.91)
- o2 (c)
where
2X 2
=25 [Qo)? + 11, (3.92)
r £(x)dx = 1, (3.93)
0
and
u-1 A
B.[0%(0)]  exp(odc) = H, ewp | 2BEGIC} (3.94)
1 2 e

Conditions (3.93) and (3.94) solve precisely for the constants H, and
Hz. Condition (3.94) requires f to be continuous. The solution, f, is
a probability density function. To get the approximation for the

distribution of the number of units, N, in the system, we define

n+.5
?;n s Pr [N = n] -J flx)dx , 0 =1,2,0e0 .« (3.95)
n-.5

Certain adjustments must be made since the approximation for Py is not
well defined. These are discussed in another section.

Some comparisons can be made between the diffusion approximation
and the analytical sciution for the GI/M/C queue, but unfortunately only

for n > C. A known queueing result for the GI/M/C queue [8] states

40
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that when p = )\/Cu < 1, the stationary probability distribution, Py
exists and there is an r, 0 < r < 1, such thaf
B & onk 6 (3.96)

When we evaluate the approximating denmsity (3.91), we get

n+.5
En I f(x)dx

n-.5
“2°2‘C) 2m(C) 2m(C)
= ———— (exp | ——= (n+.5)| - exp | =~ (n-.5)
2m(C) [GZ ©) } [02 «©) ]
= Ks" , n e, (3.97)
where
¢ = 2? €Ly . (3.98)
g~ (C)
and H,02 (C)
St ("5 - g0+5y
2m(C)
“% = a). (3.99)

Thus, comparing (3.96) and (3.97), we can see that % and ?;n agree in
form.
Examining the M/M/C queue yields some convergence results. Equation
(3.96) becomes
P, = Ap" , n > C, where A = (1-p)/p for C = 1. (3.100)
The infinitesimal mean and variance in (3.98) become
m(C) = A - Cu and o2 (C)= A36i2) +Cu = A+ Cy,

so that the multiplicative factor in (3.97) is

g 200-cu) | _ -2(1-p)
s = exp |7 o exp | T4 5 » (3.101)




Thus as p -+ 1, then s - 1. Moreover, for an M/M/1 queue, Kobayashi
[18) points out that if we define Bb =1- p, then the approximation

(3.97) will become

]
o

e l1-p . n
Pn"
n-1
p(l - s)s A n>1 2 (3.102)
As well as being very close in form to (3.100), this suggests that
convergence is rapid as p > 1.
Basically these convergence results are due to the fact that
2

ci = 1/X\" which simplifies OZ(C). This suggests that the diffusion
approximation developed here would also be accurate for systems which

have a coefficient of variation for the arrival process close to unity

oe., ci i3° s 3.

3.3.2.2 Transient Distributions For The GI/G/C Queue

Iglehart and Whitt [12] explored a diffusion approximation for the
transient line length distribution for the GI/G/C queue. They con-
sidered the cases P =1 and P > 1. The latter case, only, will be
discussed. Their derivations do not involve the solution of the diffu-
sion equation; they are lengthy and involve much notation, so only the
major results will be displayed. The analysis involves modifying the
queueing system, finding an approximation for the modified process, and
proving the same results are good for the unmodified process. Since the

approximation converges it can be expressed as a theorem.

Theorem 3.5. (Iglehart and Whitt)

Suppose we are given a GI/G/C queue with N(0) = 0.
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Let )\ represent the arrival rate of units,
1 represent the service rate of a busy server,
oi represent the variance of interarrival times, and
oi represent the variance of the service times.
Define YZ = )‘302 + C u30‘2 « If o= A 1,
a S Cu
then
x
lim Pr N(e) - i%;ul; <xp) = ———lT7§ ’ exp(-y2/2)dy . (3.103)
too Yt 2m =

This approximation is a direct solution of the diffusion equation
without regard for the boundary conditions or the dependence of the in-
fintesimal moments on the size of the queue. If N(t) were allowed to be
continuous, then it would represent a Brownian motion process with drift
which would give positive probability to negative line lengths. Since
the process 'drifts" away from zero, the approximation becomes more
accurate as time progresses. If an initial condition, say N(0) = k, is
introduced, where k is large, then the approximation would also be
improved.

Newell [27] points out that when some of the boundary conditions
are ignored, the solution found for the diffusion equation may not be

unique. For this case, the diffusion equation is

Xamt +%3-§i§ (3.104)
and the boundary conditions are
f(w,0;%,t) = 0, for x <O and t = 0, x # w, (3.105)
Jm}(w.o;x,t)dx =1, for t >0, (3.106)
0
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and

2

-mE (w,050,6) + 9~ 0L -0, (3.107)
p 4 X =)

Using the same notation defined in Theorem 3.5, Newell provides the

following solution

2
f(w,0;x,t) =v7-37._. exp -[X-W-(A-U)tl} + axp [?Zxék u{] ;

Oyt 2v2e y

2 2
exp [’[X‘H\?‘F(A-u)tj] o 2_(_\:2_)_ EXPE[VM()_‘J)Q] } dy . (3.108)

2 2 2
2y°t X % 2yt

This solution satisfies all the boundary conditions and is valid for all
values of p . Notice Iglehart and Whitt's approximation, (3.103),
corresponds to the first term in this solution. They actually provide

a solution to the diffusion equation (3.104) but do not meet the bound-
ary conditions. The second term in Newell's solution is a correcting

factor so that the reflecting barrier condition (3.107) is met.

3.3.3 Approximation For GI/M/C Queue Subject To Server Breakdown

The method we use to find an approximation for the line length
distribution in a GI/M/C queue subject to server breakdown is the same
as the one discussed in Section 3.3.2.1. A representation is found for
the infinitesimal moments, the diffusion equation is solved and the
derived density is integrated to get the approximation for the station-
ary distribution of the number of units in the system. In this section,
we shall also restrict the traffic intensity, p = YuC, to be less than
one. After the approximation is developed, a region in which to expect

the best results is created. Finally, some numerical examples are given
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so that we may compare the approximation to analytic and simulation

results.

3.3.3.1 Derivation Of Infinitesimal Moments

We start, as before, by assuming that the number of units in the
system is a continuous random variable, X(t). We then express X(t) as
the difference between the arrival process, and the departure process,
that is, X(t) = A(t) - D(t). Given that C(t) is the number of operational
service channels, we can define the infinitesimal mean

E[A(t+h)-D(t+h)-A(t)+D(t) [C(t)=k,X(t)=x]

m(x,k,t) = lim

o z
- 14p ElACEH)-ACD)] o o E[D(t+h)-D(:)%Q(t)-k,x(t)ax]
b0 h>0

(3.109)
Notice that in this case, the departure process is dependent upon the

number of operational service channels as well as the state of the
system. Using the same procedure as described in Section 3.3.2.1,
we have
1lim E[A(t + h) - A(t)] =X h,
to
and
1im E[D(t + h) -D(t) | C(t) = k, X(t) = x] = min(X,k)u h (3.110)
Thus, S
m(x,k) = A - min(x,k)u. (3.111)
Notice m(x,k) depends on both x and k. We can find the infinitesimal

mean m(x) using m(x,k) as follows:

C

m(x) = 2 m(x,k) Pr {k channels operationallx units in the
k=0 system}
C

= )} (A - min(x,k)ul* Pr {(k|x}
k=0
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(’ c
A= () ] Prik|x} ,0<x<1
k=1
c
A= (xu) ) Pr{k|x} - wPr{l]x} , 1 <x <2
k=2
= ¢
c 2
A= (xu) ) Pr{k|x} - u ] k Prik|x},2 <x <3
k=3 k=1
PRE
A-u ) kPr {k|x} T
K\ k=1
(3.112)

The infinitesimal variance, can be written as follows:

Var [A(t+h)-D(t+h)~A(t)+D(t)]C(t)=k, X(t)=x

oz(x,k,t:) = lim 5

h>0

Var[A(t+h) - A(t)] Var [D(t+h) - D(t)]c(t)=k, x(t)=x]

= lim + 1lim
70 o h0 "
(3.113)
Again we know that
lim Var[At + h) - A(6)] = A o>,
t-o (3.114)
and
lim Var[D(t + h) - D(t) | C(t) =k, X(t) = x] = min(x,k) uh.
00 (3.115)
Thus
2 32
0“(x,k) = A ca + min(x,k) u. (3.116)

Taking expectations, we see that

C
cz(x) =) az(x,k)°Pr {k channels operational' X units in the system}
k=0
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A3G§ + xu E ik jx} , o0zxm<ca
k=1 e

(&
3 2
A o, + xu Z Pr {k |x}+ u Pr {1]x}, 1 < x <2
k=2 &

2
3
= ¢ A ci + xu k§3 Pr {k |x}+u } kePr {k|x} , 2 <x <3
- k=1 =

3.2 <
A Ua + U z kPr{k|x} , X > ¢,
k=1

(3.117)

3.3.3.2 Definition of an Approximation Region

Finding the conditional distribution Pr {k| x} is as difficult as
solving for the distribution we wish to approximate. Using Bayes'
Theorem to solve for Pr {k| x}, where the continuous variable X(t) has

been replaced by the original discrete variable N(t), we get

Pr {k,n}
Pr {k|n} = Pér{nlk} gx {8) - ;r {n?
§ Pr {n|k} Pr {k} '

k=0 (3.118)

If we knew any of the probabilities in the above equation, then we would

Under some conditions, however, it may be reasonable to use Pr{k!}

in place of Pr{k| n}. Looking back at equations (3.112) and (3.117),

one can see that the probabilities of interest are only Pr{k] n}

Nh‘-“---"---ﬂ-h----n-n---i----n....w» —

not need to use approximations since solving for Pr {n} is our objective.
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when n > C. For example, in the two channel case, we wish to have
Pr{k [} « Pr (k} , for k = 1,2 and n = 3,4,...
(3.119)
The stationary probability distribution for the number of operation-
al channels is given by Theorem 3.1, equation (3.2).
A comparison between the conditional distribution Pr{k[ n} and
Pr{k} was done for one and two server systems using the results of

Theorems 3.2 and 3.3. It appears that the relative error,

Pr{k} - Pr{k|n}, 1s a function of A/E , u/n and \/Tu, where
Prik|n}
C

C= )] kPr {k} and the last term is the traffic intensity, 0 . As

k=0
P + 1 the relative error decreases. As A/£ 1increases beyond a certain
point, the approximation improves. As 1/n increases, the approximation

gets steadily worse, A proposed region for approximatiors which have

less than ten percent relative error is as follows:

B & 75, (3.120)
A/E > 1.00, {3.121)
u/n < 1.00. (3.122)

The comparative data are displayed in Figures 3.3, 3.4 and 3.5.
Figure 3.3 shows the results in a system having one server and no
spares. Figure 3.4 shows the results for two servers and no spares.
Figure 3.5 compares results for the single server, single spare system.
Negative errors show up because one density does not necessarily bound
the other for all values of the parameters. The natural logarithm of
A/E was used for the abscissa to show the insensitivity of the relative
error to large changes in A/£ . The numerical results also exposed
considerable round-off error problems when trying to apply Theorems 3.2

and 3.3.
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An interesting effect was also observed when the relative sizes ;f
the server breakdown rate and repair rate were increased while main-
taining the same racio.A Suppose we fix a set of base rates, £ and n,
and define pg = Kg /Kn , where Kf and Kp are the actual breakdown and
repair rates. Then as K increases, Pr (k} remains the same (see
equation (3.2)); but, the relative error decreases. These results are
displayed for the single server, single spare case in Figure 3.6. It
could be said that server breakdowns induce a non-stationary service
rate and that the "more stationary" the service process is, the more
independent the line length is from the number of operating channels.
This is similar to a conjecture by Ross [30] for a single server system
with non-stationary arrivals. Unfortunately, it is difficult to quanti-

fy this phenomenon and define a reasonable bound.

RELATIVE
ERROR

a0l

054

o -osd

Figure 3.6: Effects of Relative Size of K§ and Kn
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3.3.3.3 Solution Of The Diffusion Equation
Within the region defined by relatioms (3.120), (3.121) and (3.122),

we shall define

n-1 C
A-u ) kPr{k} -ux } Prik}, n-1 < x < n, n=1,2...,C
k=1 k=n
m(x) = C
A-u )k Prix} o
k=1
A - xu , n=-1< x < n, n=1,2,...,C
n n =
Acel ; “ (3.123)
where
n-1
A =X-u )} kPr{k} o ML, c., CHL, (3.124)
n
k=1
and
C
uo= u) Prik} o T (3.125)
n k=n
Similarly,
vV o+ xw » =1 < x < n, n=1,...,C,
2 n n o
o°(x) =
Vest . £, (3.126)
where
39 Ut
v_ = A%0% + u } kPr{k} L TR (3.127)
n a
k=1
and c
w = uy) Prik} o TSy o e (3.128)
X k=n

These moments can now be used to solve the diffusion equation subject to
the boundary conditions, which are repeated from Section 3.3.2.1,

| 14
' 2

o

(P @E@] - & @] = o, (3.88)

g‘N
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|n.

[02(x)f(x)]

N

- m(0)£(0) = O, (3.89)
x=0

A

X

1l
[ f(x)dx = 1. (3.90)
0

It is easy to establish that m(x) and oz(x) are continuous for
x 2_0. These functions, however, are not differentiable at the lattice
points {1,2,...,C} . Thus one must be careful to evaluate the diffu-

sion equation only on the interior of each interval, (n-1, n), where

n=1,2,...,C. Integration of the diffusion equation yields

2L 1P @E] - @i = |, (3.129)

Q-ID-
%

where Hn is the constant of integration peculiar to the evaluation on
the interval (n - 1, n), n = 1,2,...,C, and HC+1 is for the interval
(Cy=).
From the reflecting boundary condition, (3.89), we get Hl = 0. In
order to have a proper density function, we need lim f(x) = 0 and
x>0

lim d £(x) = 0. Thus HC+1 = Q.
X+ dx

2
Let mn(x), On(x), and fn(x) be the respective evaluations of

these functions on the intervals (n - 1, n) for n=1,...,C, and (C,* ),

for n = C + 1. Then by continuity of m(x) and Gz(x) we have (for

% I ueiy C)

() =n, (), (3.130)
and  (n) = °i+1 n). (3.131)

To establish the composition of f, we shall require f to be continuous.




|
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|
i

fn(n) = fn+1(n), =l G (3.132)

With the three continuity relations above it is natural to set Hn =0
forn= 2,,,., C.

Now the differential equation (3.129) is a homogeneous, first order
equation with variable coefficients. Using well known techniques, the

solution, in general form, is found to be

- (3.133)

exp [Kn(x)] » i-1 < x < n for n=1,...,C and x > C for
On(x) n=C+1,

fn(X) =

2m(x) i

2 and Hn is a new
g” (x)

where I(n (x) = [

constant of integration. Examining Kn(x) more closely for n = 1,...,C,

we have

22 - xu)
K (x) = [—“———“— dx

Vo + xw
n n
-2xun An unvn
- + Z'E_ + =5 1n(vn + xmn). (3.134)
n n w
n
Forn=C+ 1,
2\ 2\ .. X
By _vc_+1 dx = —VC—*L . (3.135)
C+1 C+1

One can also show that K(x) 1s continuous for x > 0. Thus the final

solution form for £(x) is

u
n-1

- - < = % s

Hn[\)n + xmn] exp|( 2xun/wn], n-1 < x < n, n=1,...,C

f(x) =
HC+1 exp [2)\c+1 x/\)C+1], £ >e, (3.136)
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where 9 BV
“atu [t » p=1,...,C. (3.137)

n

It now remains to solve for Hn and evaluate gn . First we shall

point out an ambiguity in evaluating 30 . We will use the method

f(x)dx to compute the approximating density. This evalu-

o a+.5
o ® |

n-.5
ation however, is not well suited for Py- Methods for approximating Py

will be discussed in the next sectiom.

The constants Hn can be evaluated by using the continuity constraint
and the last boundary conditiom, which requires f to be a proper density
function. If we define gn(x) to be the variable portion of fn(x) in

equation (3.136), then fn(x) = Hngn(x) and continuity requires

Hngn(n) = Hn+l Bl (n), no= L., C. 3.138)

We can solve for Hn in terms of Heyq using (3.138) recursively.

Ho = Hoyy 804 (©)

sc(c)

. Hey18041 (O gc(C-1)

B = Boei8ee1 ©c-o8y ™ g p o na=1,....cC.
o 2.(0 .. (0 el
c <o 8y (3.139)

Define

n+l €+l

n _ n+.5
L ’ Sn(x)dx and G = (x)dx, n=1,...,C.
n-.5 n
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Then

n+.5 n n+.5
N
g [ f(x)dx = J fn(x)dx + J fn+1(x)dx

n-.5 n-.5 n

= HnFn + Hn+1 Gn+1’ n=1,...,C. (3.140)

Assuming we have a good approximation for Py» the boundary condition

(3.90) yields

1- ?)'0 = rf(x)dx
«5

c
= z o + | H (x)dx
ey c+l Bc+1
C

+.5
o 2\ .. X
C+1
-Z [HF +H G ] +H exp[ dx.
a=1] 0D n+l n+l C+1 vc +1
C+.5
Substituting in (3.139) gives
c c v 2) (c+.5)]
N C+1 C+1
1-p,=H Yy RF + )} RG +G.,, - exp
0 C+1 qe] DD gup B0 C+1 2)‘C+l Vel _]
(3.141)
Finally we have
o ?"o
Boag * C v W 5
C+1 C+1 ¥
RjF) + Ggyp + L R(F G ] - 5 e""r v J
n=2 C+1 C+1 (3.142)

We can then use equation (3.139) to solve for the remaining Hn, n=1,...,C,

and equation (3.140) to solve for Sln g - R




58

3.3.3.4 Approximation For Po

As pointed out in the last section, we cannot use diffusion approx-

25
imations to estimate Py accurately, pefining go = f f (x)dx under-
0

G
estimates the value and empirically we find that 30 = f f(x)dx is also
=.5
n+l

n
is also ineffective. This section will provide some analytic formulas

which are good in specific cases and then discuss several alternative
estimates. In all cases, the estimates have been empirically found to
be at least as large as Py The cases considered are briefly described

below.

Case 1. M/M/1 subject to breakdown, no spares:

clm=An+8)] A+ A+ £)
Po WE+m O+ e

from Theorem 3.2, equations (3.9) and (3.10).
Case 2. M/M/2 subject to breakdowns, no spares:

+P  +P 0’ where these probabilities are defined in Theorem

L Sl e
3.3, equations (3.17), (3.18), and (3.19).

Case 3. M/M/1 subject to breakdowns, one spare:

=P _+P _+ on, where these probabilities are defined in Theorem

00 10
3.4, equations (3.43), (3.44), and (3.45).

Case 4. M/M/C with no breakdowns:

c-1 a c -1
- Ly oL A c
o= | b ar@) * o) (cu-x)] : (3.144)

not a good estimator. Redefining all estimates Py -f f(x)dx, n = 0,1,...




59

This analytic result was suggested by Halachmi and Franta [10] as an
approximation for GI/M/C queues when Py is very small. An adjustment to
4, to reflect slower service due to failures, will be provided later.

Case 5. M/G/x :
e-AE[S]

P (3.145)
where E[S] is the expected service time. This equation is a result of
Palm's Theorem [8] and is useful when the number of servers is greater
than two. Here we assume that when a channel fails, the unit being
repaired does not change channels. Evaluation of E[S] requires some
analysis which will be provided later.

Case 6. M/G/1:

Py = 1 - AE[S], (3.146)
where E[S] is the expected service time. This is the analytical solu-
tion for the M/G/1l queue, proven in reference 6. No analytic results
exist for the M/G/C queue. For a multi-channel queue, we will assume
that all units are served by a single server which works as a '"super

server" at a rate Cu , where C is the expected number of operational

channels.

Cases 1, 2, and 3 are analytical results and can be directly
applied to solve for sb. Cases 1, 2, 4, 5, and 6 are analytic results
for specific systems which can be adapted to provide reasonable approxi-
mations. Finding a way to adjust the service rate (i) is the key to
altering the equations (3.143) through (3.146) to suit our needs. This

will be done by assuming that all channels are occupied and finding the

expected service rate when servers are subject to breakdown.
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The total time a typical unit occupies a channel can be expressed

= +
T S + Dl + Dz o oin (3.147)

* Dyesye
where S is the service time, Di is the delay caused by a server failure
and N(S) is the number of channel failures encountered in a time S,
Given all channels are occupied and no other channels fail while the
inoperative channel is being replaced, then we can find the conditional

expectation

c-1
(,Z ?E:%:ITE , when k other channels were oper-
i=k

ating just prior to che failure,

E[D,] K = k] =< B0, Lyvsu, Bod

0 , otherwise.
(3.148)
Then using the results of Corollary 3.1 and assuming all delays, Di’ are

independent

O
E[D] = q,,, F(D|] K = k],
kZo ketl (3.149)

where q; is the conditional probability that k servers are operating
just prior to a failure.

We now need an expression for N(S), the expected number of failures
in a time S, which has an exponential distribution with rate Y . Since

failures occur as a Poisson process having rate & ,

R
Pr {N(S) = k} =| upe ™™t 9——1—‘—!(55) de. (3.150)

0

Then

E[N(S)] = § k Pr{N(S) = k}
k=0
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© =ft k
X rue'ut [Z L L2 2 kfgt)] dt
0 k=0

= {:ue'“tdt = E/u. (3.151)
0

Reference 28 provides the result

E[Dl +D, + ...+ DN(S)]-E[N(S)] *E[D]. (3.152)
So, assuming independence for all random variables,

E[T] = E[S] + E[N(S)] -E[D]

adis =1
T+ E[D] u[].-{-é;E[D]]

U
(3.153)
Therefore we can define the adjusted service rate as
'
PR e, i o
M 1+ EE[D] (3.154)

We will apply u' in cases 1 and 2 to approximate po for systems
with one or two channels and spare servers. The modified service rate
will be employed in Case 4 for all systems with over two channels. For
Case 5 we can use llu' as an estimate for E[S]. Case 5 will be used for
systems with over two channels and Case 6 will be used for all systems
with spare servers.

Some empirical results are compared to values for Py estimated by

simulations in Table 1. In all cases, P, was overestimated. Thus a

reasonable approximation would be to select the smallest value.

3.3.3.5 Comparative Analysis

The diffusion approximation derived in the preceding sections was

tested against analytic and simulation results. The actual stationary




Comparison of Estimates

TABLE 1

e B
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Case

L p* SIMULATION il 2 4 5 6
1 .75 .231%%* .244 .250
1 .95 .023%** .043 .050
2 .75 .159 .181 .204 .250
2 .95 .026 .056 .083 .050
0 15 .108 .183 .150 .250
0 <95 .034 .126 .098 .050
3 19 .083 .153 121 .250
3 «95 .023 .076 .069 .050
0 .75 .051 .126 .064 .250
0 <95 .008 .095 .031 .005
3 .75 .030 .098 .034 .250
3 «95 .005 .062 .014 .050
*p %ﬁ **Analytic Result

for Py
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probability distributions were derived from the results of Theorems 3.2,
3.3 and 3.4. The simulated distributions were developed using a simu-
lation routine involving at least 20,000 state changes. The results are
graphically displayed in the figures that follow. Each figure is
labeled using the following nomenclature:

C = the number of channels,

L = the number of spare servers provided,

p = the traffic intensity = A/Cu .
Each graph includes information on the ratios, A/ and u/n .

We know from Section 3.3.3.2 that the accuracy of the approximation
Pr {k |n} = Pr {k} improves as £ and n get large; therefore, we
should expect the size of £ and n to affect our diffusion approxi-
mation. As the relative size of the rate of repair for servers (n )
decreases, the ratio u/n gets large. Examining the data, we see, the
approximation suffers as the ratio p/n increases above the proposed
bound of one. On the other hand, the approximation is relatively
insensitive to the ratio )/fZ . Thus, this diffusion approximation is
most sensitive to changes in the server repair rate (n ) and improves as
the rate increases relative to all other parameters.

Some simulation results show a slight perturbation due to auto
correlation effects. Regardless, it appears the exponential tail of the
diffusion approximation matches the true shape of the distribution in
all cases. When the approximation is inaccurate, the tail of the

approximate distribution is slightly low,
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CHAPTER IV

AN OPTIMIZATION METHOD

This chapter will derive a method to find the optimal allocation of
resources for the inventory system we have modeled. We will first ex-
amine the backorder function given the diffusion approximation developed
in the previous chapter for the stationary distribution. Since the dis-
tribution is for the total number of units in the system, it will be
modified to describe a multi-item system. Then using the exponential
tail of this distribution, we develop sufficient conditions for convexity
of the backorder function. Finally, a simple marginal analysis technique
is given to find the solution to the optimization problem, P.

The optimization problem, P, we wish to solve is:

m
minimize P B, ] (@=~u)pm|i nEmneL), (4.1)
i i 1
i=1 u>s:L
subject to
m
€C, + LoG, + ) c;sy < B, (4.2)
i=1
and
A < UG, (4.3)

Here C, L, and Sy» i=1, ...,m, are the decision variables. Because of
the high setup costs for service channels, it is ‘reasonable to assume C

is small. We shall show later that, for fixed values of C, P is relative-
ly easy to solve; thus, we shall enumerate solutions for small values of
C. For notational simplicity in the following developments, the vari-

able C and parameters U, &, and n will be suppressed.
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4.1 Approximating The Backorder Function

After examining the objective function, we can see that P is not
separable. In fact, it is difficult to explicitly express p(n I Xi,L),
the distribution of the number of units of type i in the system, as a
function of L. An expression for the expected backorders of item i,
Bi(si’L)’ will be created that will assist in the analysis.

Define
B, (sy, L) -nzs (@ -s) pla | A,L). (4.4)

We now develop an expression for an approximation to p(n | Xi,L).
Since the influx of each type unit is an independent Poisson process,
the entire input process is Poisson. The conditional distribution for

the number of uunits of type i in the system is binomial, i.e.,

Pr {k units of type i in system | n total units in system}

0 s <k

X k n-k
n)(ﬁ_} (X-Ai) » n>k. (4.5)
kj\A A

Using the law of total probability gives

k n-k
® In\|A A=\
i i (4.6)
P(klki,L) = nzk(k‘(iq (jr-) Pno

where P, is the stationary probability of n total units in the system.
For n > ¢, the diffusion approximation, %n, for Pn given in the
previous chapter is
n+.5 n+.5

Py = f(x) dx = H | exp(Kx) dx
n"os n—'s




..g.{exp [K(n + .5)] - exp [K(n - .5)]}

- % [exp (.5K) - exp (-.5K)] exp (Kn)

|
= H rn, n>C,
where

= ng" Ha’
A+ uC

and r = exp (K).

H -4% [exp (.5K) - exp (-.5K)],

(4.7)

(4.8)

(4.9)

(4.10)

Recall that the average number of operating channels, C, is a function

of the number of spares provided, L, so that K = K(L) and r = r(L).

N
Unfortunately, the expression for the few values of P, where n < C is

not as concise.

Applying equation (4.7) to equation (4.5) for k > C, we get

k
(x-xi

Under the assumption that )\ < u C, we have K < 0 and thus r < Il.

the factor being raised to a power in the summand is less than unity and

we can apply the binomial expansion

q Air)k

A

p(k|A L) = o
[1 > (A-xi)r]
A

n-k A&

(4.11)

Then

to get
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' k+1
) [Xi’ ]

Air A(l-r) + Ai{
k-1
ko s
A.r
. B iy e L oS
where M1 T A@ ¥ A
]
and H Abi
A, =
i Xir

(4.12)

(4.13)

(4.14)

Equation (4.12) shows the similarity to the geometric distribution.

1]

Generalizing for all k > 0 gives
e
Rk T g
p(k[ki,L) i) P,

LG e

5 ) ) () e

n=max(C+1,k)

LR

n=k

C
where z

and Ai and bi are defined in (4.13) and (4.14).

(4.15)

(4.16)

We can now solve for a general approximation of Bi(si’ L), the

expected backorders for item i. Since'bi < 1, we have
o

By(s;sL) = [ (n-sy) p(afA;,L)
n-ai
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C @
) (n-s,) P(nl}\i,L) + ) (n-s,) p(nlki,L)
n=s n=C+1
i
g 1 - n-1
=} (-s)@bBTT +d, )+ § (n-s,) Ab"
i IR TR e T
n=s
i
© See C
= Z (n-si) Ab, T+ nzs(n--si) di,n
n=s, -
s
i C
A.b
» _E_i-_2 3 nzs (sl dy o
(l-bi) i
(4.17)

We expect Bi(s T L) to be a monotonically decreasing function of

s In fact,

o
A_B,(s,L) = B (s + 1,L) - B,(s,L)

C
A s+l g
- It e nd - Z nd
'(1—b1)2 |:"1 bi} gegkl @ TR gy et
S
&b
| 5 (bi,l) L Sdi s <0
(1-b,) ,

since b, < 1 and d > 0., It is not clear that d is decreasing in
i i,s ~ i,s

s for 0 < s < C; however, since d = (0 for s > C, the function

i,s
ASB(S,L) is increasing in s for all s > C. Therefore,..Bi(si,L) is
convex in h alone, for Sy > C.

The parameter b 4> @s a function of L, has some properties which

will be useful later. These are easiest to display after first ex~
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ploring'a, K and r as functions of L. The expected number of operative

channels,'a, is a bounded, strictly increasing function of L. Further-

more, lim C(L) = C. For feasibility we assume there is an L such that
Lo

XA < uC(L). As a result, K is a bounded, monotonically decreasing

function of L. Specifically,

Zlk-uE(Lzla 2(A-pC)
K, = lim R(L) = lim A + uc (L) A+ uCc < 0,

L Lo
since A < y C. To show monotonicity, we note that
AK(L) = K(L + 1) - K(1)
2 2[A-uC@ +1)] -2[A -uc(L)]
A+ T (L + 1) W_HF('E)L

_ =4 [Ca+) - T@))
[A+uT(L+1) 1 [A+uT(L) ]

< 0,

since C(L + 1) > C(L). Since C(L) increases towards its upper bound C,
we expect AC(L) to be a decreasing function of L. Then AK(L) would be
increasing (becoming less negative), and therefore K(L) is a convex func-
tion of L.

The parameter r = exp(K) is a convex function of a convex variable;

thus, r is convex in L. It is bounded below by r, = exp (K, ) which is
& Xir

1 , that L is
X(l—r)+Xir

in the interval (0,1). If we assume, for b

a continuous variable we have

! L} L3
dB, _ Xir [A(1-x) + kir] - Xir(-kr + kir )

i
dL [A(1-r) + A r)?
L}
A AT
i 5 < 0’
(A(l-r) + Xir]
'
since r = %% < 0. Thus b1 is strictly decreasing in L. Additionally,
b, = limb, = *ife

¥owe T Y@




lies in the interval (0,1) and is the lower bound for bi'
The above analysis is displayed graphically in Figures 4.1 and 4.2.

Figure 4.1 displays parameters for a system which is saturated when no

spares are provided. In Figure 4.2, the system is never saturated. The

variable L is considered a continuous variable for purposes of illus-

tration.
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4.2 An Algorithm For Determining Unit Stocklevels And Service System
Design

The steps for a generalized algorithm will be presented with an

explanation and justification of each given afterwards. The algorithm
is given in the context of solving the problem graphically:
A
0. Set Cmin -ljﬁ] , where [*] is the greatest integer function.

1. Determine lower and upper bounds for L, Lmin and Lmax' by
L, =inf {L >02<C@W))} and L _ = taflL > L_._|C@) > .95}
min - - max <~ “min =

2. Solve for the optimal allocation of spares, S* = (s;,...,s:),
for a given budget in item spares and a mid-range L, using marginal
analysis.

3. Compute B(S*,L) for each value of L with S* found in step 2.

4. Select a new investment level for item spares and go to step 2.

5. Increment C by one and go to step 1.

6. Plot fixed total investment curves and select the optimal
solution.

The selection of Cmin and Lmin in the first two steps provide the
lowest feasible investment in service facilities. In a very congested

system, it is possible that Lmin =L

— since Lmin would have to be large

enough to provide a very high level of service reliability.
Steps 2 and 3 fix the investment in unit spares and compute the
expected backorders over a range of server spares. Since Bi(si’L)’

i=1,...,m, are convex for s, > C, then the total backorder function,

i
n
B(S,L) = 2 Bi(si’L)’ is convex for sy > C. 1In practice, inventory
i=1

systems are often budgeted so that all items are stocked with at least
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the mean number of units expected in the system (commonly called the
"expected pipeline inventory"). Generally, the mean of the distribution
p(n] Xi ,L) is greater than C; so, we should be outside the region

sy E_C, i=1,...,m, provided the investment budget is sufficiently
large. Under these conditions, the optimal values s, *, i = 1,...,m, can
be found by marginal analysis due to the decreasing incremental returns
to scale. We shall start with all sy set to some minimum value and then

successively increment the level of item i* where

* * ]
BB *(s *,L) _ . JAB, (s,,L)|.
C * <i<n)™ C,

That is, we increase the spare level of the item which provides the
greatest improvement in the objective per dollar invested. This allo-
cation can be followed until the entire budget is used since the
objective function B(S,L) is strictly decreasing in Sy = T.cce,m.
Notice this procedure would not be altered if essentialities, Ei’ were
assigned to each item and our objective function becomes

B(s,L) = g EiBi(si’L)'

i=1
We assume that for a given level of investment in unit spares, the

optimal values si*, i=1,...,m, do not change for different investments
in server spares. Figures 4.1 and especially 4.2 show that for small

changes in L, b, does not change significantly. Moreover, we can

expect the same relative changes in bi for all { = 1,...,m. We should,
therefore, not expect great changes in the backorder functioms for
various values of L. The only area in which the backorder function

changes significantly is in the range 0 f_si < C. This is most easily
¢
explained by the presence of the nuisance parameter Z (n ~ si)di'n' in

n=si
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equation (4.17) for the expected backorders when si‘i C. As previously
mentioned, we should expect a budget large enough to prevent this from
becoming a factor.

An illustration of the performance curves obtained for a fixed
value of C is given in Figure 4.3. The solid curves represent fixed
investments.in spare servers. As increased investments are made in
spare items, the objective function decreases. The dotted line repre-

sents the trade-off curve for a fixed net investment in item spares and

spare servers.

Expected 4
System
Backorders
154
i
loun
5+
+ —r e — >
200 300 400 500

Allocation to Unit Spares ($K)

Figure 4.3: Performance and Tradeoff Curves (C Fixed)
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Note that we must include the cost of establishing C service channels to

this to get the gross investment. The lowest point on the trade off

curve represents the optimal mix of investments for this budget. In
this {llustration, it is best to purchase one spare server (at $100,000)
and allocate $400,000 to unit spares when the investment that can be made

is $500,000. With all the data displayed in this fashion, a manager can

plot several trade-off curves and observe how expected backorders vary

with changes in total investment.




CHAPTER V

NON-~-STATIONARY ANALYSIS

5.1 Introduction and Motivation

Inventory systems must often operate in dynamic environments which

preclude the use of stationary planning models. For example, demand rates

may cycle much like traffic during the day on a city street; surges in

demand can occur when a military environment goes from peacetime to
wartime; or, expected demands could steadily increase as a new aircraft
system is being purchased. Sometimes inventory problems require a model
for short horizon planning only, such as, equipping an aircraft carrier
for a four month cruise. In all cases, the objective is to describe the
system's ability to provide support through time. This chapter is
devoted to modeling the changes through time of a recoverable item
inventory system, with servers subject to faillure, where the unit
demands may be non-stationary.

In general, we are considering a system whose input and output
processes are both non-stationary. As will be shown, it is extremely
difficult to describe a multi-server system's transient behavior for the
case when both processes are stationary. We can remove one element of
non-gtationarity by considering the service facility as operating in
different "service states" through time. Each state would represent a
period when the output process is stationary. The length of this period
can be a random variable.

We will define the service state as the number of servers requiring

repair. Thus, the state space is {0,1,...,L,L + 1,..., L + C}. For

each service state, we want the transient distribution of the number of

87
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units in the system. For example, let G represent the state set when
all service channels are operating, G = {0,1,...,L}, and B represent the

state when one service channel is inoperative, B = {L + 1}. The length

of time the system is in each state will be represented by TG and TB.
Figure 5.1 shows how the system behaves through time.
Number of |
Units in ; }
the System | ;
N(t) | |
SERVICE : SERVICE - SERVICE
STATE B ; STATE G ; STATE B
o L |
o L b H T | L
eI S e ok RN ey
apb ; '—'-'f___-"' 5
| c}
ps— ‘I'B = TG *TB

Figure 5.1: System Performance for Different Service States

Notice, while the system is in state B, the service facility is not as
efficient and the number of units in the system drifts up. Let N(t) be
the number of units in the system at time t. Define the time dependent
transition probability,

Pa(a,b,t) = Pr{N(0) = a, N(t) = b |service state B}.
The time period we are concerned with, TB’ is a random variable. Then
the transition probability for this period is

Pn(a,b) = Pr{N(0) = a, N(TB) = b}

PP R & e
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Py(a,b) = /7 Pyla,b,b) sp(e)de, (5.1)
where SB(t) is the probability density function for the variable TB'
Using the same notation, we can express the transition probability of
going from b units at the beginning of service state G to c units at the
end of this service state as

Pc(b,C) - Pt{N(TB) = b, N(TB + TG) = c}.
This analysis can be carried further to describe the transition from a

to ¢ through service states B and G:

Pgelasc) = bzoPB(a,b)PG(b,c). (5.2)

It is apparent that in order to model the system in this manner, we
must know two different probability functions: (1) the time dependent
transition distribution for the number of units in the system given a
particular service state, and (2) the density for the length of time
each service state exists. The latter density is frequently referred to
as the "passage time' density. We will explore each probability f. ction

in the context of the inventory system we are modeling.

5.2 Time Dependent Distribution Analysis

The recoverable item inventory system will be modeled as a queueing
system, as discussed in Chapter 3. In this case, we are not concerned
with server failures since we need the line length distribution when the
system is in a particular service state (i.e., a fixed number of opera-
tive channels). Thus, we want to describe the time dependent behavior
of an M(t)/M/k queue, where M(t) is the shorthand notation for a non-

stationary Poisson input process and k = 0,1,...,C. This section will
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provide the closed form solutions available for some special cases and

then review some approximation procedures that are in the literature.

5.2.1 Closed Form Solutions

Consider a system for the period when exactly k service channels
are operatiomal, k = 0,1,...,C. Without loss of generality, we will
assume the period starts at t = 0. To describe the system's time
dependent behavior during this period, we need the transition proba-
bility

P, (a,b,t) = Pr{N(t) = b]
N(0) = a and exactly k service channels operationall.
For the case k = 0, we have a counting process with Poissén arrivals.
Thus given a time dependent arrival rate of A(t), then
Po(a,b,t) = Pr{b - a arrivals in time t}

« Mt s B w85
= (b -a) ! =

where
m(t) = [CA(e)de.

Closed form expressionsofor Pk(a,b,t) for k<z 1 are very complex.
Saaty [31] provides a general procedure to find these distributions for
queues with stationary Poisson arrivals. The procedure involves establish-
ing the balance equations, obtaining a partial differential equation for
a probability generating function, and using iategral transforms to
arrive at a transform representation of the distribution. To get the
distribution from its transform requires a lengthy inversion process.

For the case k = 1, we have

(a-b) /2
P1<3’b, L) = Q-(x-’. We ﬁ% T-b_a(2v’(\1 t)




i (a=b+1)/2
+() 2V t)

X L)

b ©/, \n/2
S AR s (u
P (1 U)(u) n.z.a( e t] b>1, (5.4)

® n+2k
S In(y) = 2 (y/2) is the modified Bessel function of the

k! (ntk):

first kind. Obtaining solutions for k > 2 is extremely arduous. The
resulting solutions are not easy to apply and are too complex to be
useful for simple comparisons. Thus, we will consider approximation

methods to arrive at these distributionms.

5.2.2 Approximation Methods

The application and accuracy of approximations proposed in the
literature depend upon the stationarity of the arrival process and the
traffic intensity. Unfortunately, there is a paucity of computational
comparisons among methods. We will review the results for multi-server
queues with (1) stationary Poisson arrivals (M/M/k) and (2) non-statiom-
ary Poisson arrivals (M(t)/M/k).

Kotiah [19] uses an approximate transform inversion method to
arrive at an approximate distribution for the line length. He uses the
integral transform given by Saaty [31] to arrive at some numerical
results for the case M/M/1. His numerical examples are accurate for
.5 <p< 4 and, in some cases, provide bounds for the actual distri-
bution. He describes a method for generating a distribution for the
M/M/2 queue, but does not provide any numerical results.

For congestion cases, Newell's diffusion approximation

(given in Chapter 3, equation (3.108) ) is very accurate, especially as
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p exceeds unity. Equation (3.108) can be applied to cases where k > 2;
however, when p < 1, the accuracy suffers since the infinitesimal
moments are not functions of the system size. This approximation has
computational advantages over Kotiah's method.

For the M(t)/M/1 queue, Moore [21] provides the most general re-
sults for a single server queue. He uses an interactive procedure on an
imbedded Markov chain to find the line length distribution. His model
allows for bulk arrivals and Erlang distributed service times as well (so
called, Mx(t)/EY/I queue), and his numerical examples are accurate for
<3 < p(e) < .9,

A computationally simpler approximation is given by Pokress [29].
He compares the finite server queue (k > 1) to the M(t)/M/® queue and
gets very accurate results when the range of p(t) is less than .8. The
probability distribution for the number of customers in an infinite

server system, which is empty at time zero, is Poisson with mean

:
a(e) = f M) (x) ax,
0

where A(t) is the time dependent arrival rate.

Finally, Newell [25,26] proposes a diffusion approximation for the
M(t)/M/k queue which is similar in form to equation (3.108).
Define Fk(x,t) = Pr{number of units in the system at time t is < x}

X
= J Pk(o’Y:t) dy.

Then Y
0, aCe,
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where x~-m(t
o(t z
x-m(t)} _ 1 -y /2
0(0(:)) = e dy
t
m(t) = A - [ [ku - A()] dy,
0
and
2 t
o°(t) =B + J [ku + A (y)] dy. (5.5)
0

Newell [26] claims that for t "large enough', the constants, A and B,
are negligible. He suggests that for k > 1, the accuracy improves when
p(t) < 1 and as t gets large. The approximations of Newell and Pokress

have computational advantages over Moore's method.

5.3 Passage Time Distributions

The distribution of transition times from one service state to
another is developed in this section. The flows in the system are

displayed in Figure 5.2.

@ o g SR S SR Te S0
: 0!0 QX@ "

]

\ M+l Mieo r«g
o A A e W . 1l

Figure 5.2: Transition Flows for Number of Inoperative Servers

Since the state transitions are only to adjacent states, we have a
birth-death process. The states {0,1,...,L} are outlined because all
channels are in operating order whem the system is in these service

states. The work of Keilson, et. al., [7,13,14] assume that the birth
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and death processes are Poisson. This section will discuss their work
and provide extensions for Erlang and deterministic death (server

repalr) processes.

5.3.1 Previous Results

If we assume the birth and death processes are Poisson, then the

birth and death times are exponentially distributed. Define Sk(t) as

the probability density for the time in service state k. Then we have
- t
s (8) = O+ w)e” MMt ka0, L, (5.6)

where M = AL+c = 0, In addition, the probability of a transition from

service state i to state j is

Ay §=1i+1
& e ’
ki+ ui
My
Pij- TFu—i ’ j'i-l
0 ’ otherwise. (5.7)

To best describe the service system, we need the passage time
densities for transitions in the number of operational channels. For
the service state set {D,l,...,L} we have C operational channels and for
service states k > L we have C + L - k operational channels. Keilson,

et. al., describe the passage time from a "good" state to a "bad" state.

In our case, the GOOD state is defined as the service state {b,l,...,L}
and the BAD state is defined as the remaining state set L + 1,...,
L+ C}). This is illustrated in Figure 5.3. The server system can

wander through the GOOD state for some time before going to service
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Service State, N(t)
: A
L+Cw“
BAD
State S
L+l + =
e—— L < —— ——% (— 2 Som—
GOOD ey l
State ﬁ —_— - f
—Q : >t
‘ e
< TP S TB ><— TG 'I‘B

Figure 5.3: Transitions from GOOD to BAD States

state L + 1 and thus enter the BAD state. For this reason, the dis-
tribution of the passage time from the GOOD to the BAD state is not as
simple in form as the distributions previously described.

Define the time from the perfect state, TP’ to be the passage time

from service state 0 to L + 1 and the post recovery failure time, T

G,

to be the passage time from first entering service state L to first
entering state L + 1. The time TP can be useful when observing a system
which starts in perfect operating condition (e.g., an aircraft carrier

starting a cruise). Let

SP(:) = the probability density function for TP’

w
Q
~
(aJ
~
L}

the probability demnsity function for TG’

?}(:) = the survival function of T

r Sp(y)dy,

?é(t) = the survival function of T

r sc(y)dy. and

P

G
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*

Si(:) = the proba’ i{lity density function of the first passage time from

service state k to k + 1.
Then we have

+ +
SP(:) = s0 * S

LI s:(t), (5.8)

and

+
56(t) = sy (e, it

where "*" denotes convolution. Using equations (5.6) and (5.7), we have

A

s;(:) =g & ot, (5.10)

and
t
Feoy oy o= ) SO ML) kgt +
Sk(t) Xke k "k + uke k "k *Sk_l(t)*sk(t), k> 1.
(5.11)
Graves and Keilson [7] take advantage of the convolution properties

of Laplace transforms to arrive at the desired demsities. Define

0:(3) = Laplace transform of s:(t) = r e 5:

0

() dt.
Then we get the relatioms

+ AO

O, = —— ,
0 S+AO

Ae
S+ N+l = W ()

+
Uk(S) = s k=l1,2,...,

Akpk(s)
Pk+1(s) (5.12)

and L 3
oP(S) = 1 M (s), (5.13)

k=0
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where Po(s) =1

Pl(s) =g + Ao

P41 () = (S HL) P (S) = A P (S) , k=2,3... BER
14

Examining the polynomials Pk(s) we get the following properties:

Theorem 5.1. (Graves and Keilson)

(1) Pk(s) has k simple roots, Qyseeesys

(ii) Pk+l(s) has k + 1 simple roots, TiseeesTyygs such that

- < rk+1< 9 < LN G e 8 q < r, < 0.

Since Pk(s) is a polynomial of degree k, Theorem 5.1 provides the com-
plete factorization of Pk(s). Property (ii) of the theorem proves that
the roots of each polynomial provide upper and lower bounds for all but
one of the roots of the succeeding polynomial. Thus, the roots for each
polynomial can be determined using a recursive algorithm. From equation

(5.13) we have

e
= k=0 & k=0 Per1 S Prn (8
Apleen ke
oM
g Sia (5.15)
M (8-1)
k=1

where Ty i=1,..., L+1, are the distinct negative roots of P_, . (s).

L+l
Using partial fractions and the fact that S-i is the transform of
k

.t
e , we get the following result:
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Theorem 5.2.

The probability density function of the passage time from the

perfect state, T , is

L+l rkt.
sp<c) - kzl B, e i B0, (5.16)
ANA ...XL
071
where T < 0 and Bk Ny ey e , kml,...,L+1
Tr (ep=x.)
=1 k 1
ifk
L+1
Notice z R, = 1; however Bk < 0 is possible for some k. In a similar
k=1

fashion we get:

Theorem 5.3.

The probability density function of the post recovery failure time,

T is

L+1 rkt
sg(t) = kzl @ e ; (5.17)

where Q> k=1,...,L, are the distinct negative roots of PL(s),

G'

Tyo k=1,..., L + 1 are the distinct negative roots of PL+1(s),
L
and AL+lfIi(rk-qi)
% =T
T (r, -r.)
=1 k 1
L+1 idk
In this case, z % = ] and % 2_0 due to property (ii) of Theorem 5.1.
i=1

Notice both distributions are mixed exponential distributions. This

leads to some interesting properties of these distributions. Below are

some useful properties given by Keilson [13].
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Definition

A function f is log concave (convex) if 1n(f) is a concave (convex)

function.

Theorem 5.4.

1f Sl(t) and Sz(t) are log convex probability densities defined on
some connected interval T, with means My and variances oi, then
(1) Xlsl(t) + \zsz(t) is log convex on T where \l + Az = 1 and
Kl,kz >0,
(ii) Fl(t) = ft Sl(y)dy is log convex,
2
u

2

(111)

-

<1, and

Y

re is a distribution function G such that

s,(6) = rye_yth(y).
0

(iv) ¢

Theorem 5.5

1f Sl(t) and Sz(t) are log concave probability denséties defined on
some connected interval T, with means Ui and variances Oi‘ then

(1) Sl(t) * Sz(t) is log concave on T,

(i1) Fl(t) = Sl(y)dy is log concave,

(111) ‘-‘-i— > 1, and

(iv) 11:1§§é§)a 0 for some u >0.

to® e

These theorems have obvious extensions to include discrete distribu-
tions. The exponential distribution is the only function which is log
concave and log convex. Most probability densities which are unimodal

are log concave, such as: the normal, binomial, Poiscun, geometric,

negative binomial, beta and Erlang distributions. The gamma density
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r -x
X e £
TT_~T)with 1< r< 0, however, is log convex.

Theorem 5.4 proves that SG(t) and'?c(t) are log convex and Theorem

5.5 proves that Sp(t) and FP(c) are log concave. Moreover, from prop-

erty (iv) of both theorems, we can expect the tails of Sp(t) and Sc(t) |
to be bounded by negative exponential curves. Since both SG(t) and f
SP(t) are mixed exponentials, we expect Fh(t) and F;(t) to have expon-
ential tails. The numerical examples of Graves and Keilson [7] verify
this. A pair of typical survival functions are illustrated in Figure

5.4,

il sl S i s i st et

0-

=4k

Figure 5.4: Log Survival Function Comparison (7]

5.3.2 Extension to Erlang Distributed Repair Times

We now consider a system with a Poisson failure process and Erlang
distributed repair times. A failed server will require k "phases'" of
repair, each exponentially distributed in length. For this case, the
service state space must be modified so that the arrival and departure
processes can be accurately expressed as functions of the state of the

system. We will use the method of phases and will assume that the

server repair facility has only one repairman whose repair rate is

proportional to the number of units in the system. It is sufficient to
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expand the service state space to the number of phases in the system,
{0,1,..0,k,k+1,...,2k,...,k(L+C)}. Now the GOOD state is the set G =
{0,1,...,kL}and the BAD state is the set B = (kL+l,...,k(L+C)}. The BAD
3tate can only be entered upon the arrival of a failed server so we will
examine the state of the system at each arrival. After describing the
state changes between arrivals, we will construct a transition matrix.
Using the structure of this matrix, we can derive the passage time
distribution.

The service state changes at each arrival epoch, X,, are 1llus-

3

trated in Figure 5.5. Let N(t) be the service state at time t. Notice

that N(X,) >k, for all X,, since the state is examined just after the

3 3
arrival of k phases. We know the interarrival times, Xj - xj—l’ are
independent and exponentially distributed, with rate C&, while the

system is in the GOOD state. The number of phase completions in an

interarrival period is dependent upon the initial service state. The

N(e) A
k(L+C) +
B s =
l KL+1 e Lk -t
| i —_ L - |
e g £ o it
: s 4 S
G . - ‘ |

kKt —_ - |
e -
o + 4 [\ ! I
T W R X X i
ke N Tlh Bl S Pl s

Figure 5.5: Service State Changes Between Arrival Epochs
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interdeparture time for a system in service state i is exponentially

distributed with rate [i/k]*n, where [i/k] represents the number of

servers being repaired. Thus, the next service state transition is

governed by the following probabilities:

dn = Pr{a phase completion is the next event |in service

[n/k]n »
C&+[n/k]In ’ - -

[n/k]n
(CH-laE R *+ B 2w < ke,

and

Un = Pr{ a server failure is the next eventl in service

=1 -~ dn'

Each service state transition is independent of the previous
of the memoryless property of the exponential distribution.
arrival epoch, we add k phases to the current service state.
have the following transition probabilities:
P,, = Pr{in service state j at an arrival epoch [ in service

1]

at the previous epoch}

state n}

(5.18)

state n}
(5.19)
one because

At an

Thus we

state 1

= Pr {1 + k - j phase completions in an interarrival period,

1 +k-3 >0 | start in service state 1}

=dgdygeendy U

i
T dnt_k,
n=j-k+1

1>4 -k

(5.20)
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The transition probability matrix is:

s . — |
| PRy s S pOk 0 0. <. D '0 PSTaE, | |
, | ‘

G . s <0 Plk Pl,k+1 (37 ) |0 0
l .
|
| i
| d
Y ; ' b
l |
|
o Paa ol Fiyy e Bg o P amat ¢ Baeaeo)
_____________________ e e i i e e e
|
3 IR S50 [ -
RL+Lk .o e Prrg p :PkL+1,kL+1 o Prpel, k(1+C)
A : - :
’ .
i ; e
|
; e |
I
0 . 0 Pk(L+C),k i ‘Pk(L+c),kL;Pk(L+c),kL+1' 'Pk(L+c).k(L+c)
ol | o
KL+1 kC
r—Pe A I
A : B ka+l
= r...._._-.._‘ _____ -
c : D }m
‘ H
Let
ai represent the 1th row of A“; g ® Gulivens

h

bi represent the it row of B, 1 = 0,1,...,kL, and

1 represent the kC ~ dimension column vector (l.l,....l)T.
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Notice that submatrix A represents transitions from the GOOD state to
the GOOD state and submatrix B represents transitions from the GOOD

state to the BAD state. If we define Np to be the number of arrivals
required to enter the BAD state from the perfect state (e.g. NP = 4

in Figure 5.5), then

k (L+C)
Pri{N, = 1} = ng Poy i Poy = byl (5.21)
kL k (L+C)
e S 1§c jzs Fot P -izo POijZkL+1 P13
kL
- L 70D = sgrL,
Peify=3l=}] } ] %, Py Py

1€G J<G keB

«] 2. ¢} P P,.) = 1 P, (a *B1)
te¢ U yec 1 yep 3K 4 O0TL S

and, in general,

(n-1) p. -
PriNp = n} = ap" "TeBel,  n= 23,0000 (g 99

Similarly, defining Nb as the number of arrivals required to enter the

BAD state just after entering the GOOD state, we get:

PriN, = 1} = 1P

8 - T (O
sep Mo T S (5.23)
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and, in general

Pr{Nb =n} = aén_l)-B'

L 1, m=2,3...,

(5.24)

The distribution for Tp and TG can be derived from the above work.
For example, if Np = n, then the time from the perfect state, Tp, is the
sum of n identically distributed exponential random variables, i.e., Tp

is Erlang distributed with mean n/CE and shape parameter n. Thus, we

get

?é(c) = Pr{Tp > ¢}

i




v

B

=1-) Y (t) Pr{N_ = n}, t >0, (5.25)
n=1 P
where t
¥ (6 = | @D 1 02,0 )d
2 =Dt © epl-nt/Cl)de. (5.26)
Similarly, 0
?é(c) =1 -nzl Yn(t) Pr{NG = n}, t>0 (5.27)

where Yn(t) is defined above.

5.3.3 Extension To Deterministic Repair Times

If we assume the repair times are fixed in length, the queueing
process becomes non-Markovian; thus, describing the service state of the
system through time is an arduous task. The problem can be simplified
by considering the state of the system at certain lattice points in
time - specifically, at integer multiples of the repair time, R. In
this case the GOOD state is the set G = {0,1,...,L} and the BAD state is
the set B= {L + 1,..., L + C}. The state transitions and passage times
are illustrated in Figure 5.6. We will assume that repair is only
initiated on the failed servers present at the beginning of the repair
period. This could be viewed as a periodic review inventory model where
orders are placed for new servers every R days and the lead time is R
days. Notice the BAD state can be entered during a repair period and
exited at the completion of the period. As a result, we will have to
examine the state of the system just prior to the end of a repair period.

We will use a method similar to the one used for Erlang distributed
repairs. A transition probability matrix, P, will be created, in order

to find a distribution for the number of service periods in a passage

time. Then the results will be refined to allow for transitions into
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Figure 5.6: Service State Changes Between Service Epochs
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the BAD state at non-lattice times. Define

Pij ={Pr in service state j just prior tc completion of

repair period[ in service state i at beginning

of repair period}

= Pr {(j~1i) servers fail in time R|in service state i

A R A D N A N 53,5t s N

at beginning of service period .
As long as the system remains in the GOOD state, the servers will fail
as Poisson events with rate CZ, Thus, . .2 number of failures in time R,

given j ilq is Poisson distributed, i.e.,

o 2
P e (CER) Dei<yL

iy - G-i)! ’
(5.28)

Since the server failure rate is constant when j above is in the GOOD
state, equation (5.28) is the probability of (j-1i) server failures in
time R. Thus, we have the following important property:

Pij = PO,(j-i) whenever j = 0,1,...,L and {< j. (5.29)
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The remaining probabilities, however, are not as simple because while the
system is in the BAD state the server failure rates are dependent on the
service state.
The interarrival times are independent; therefore the number of
server failures, N(t), is a renewal process. Define the distributiomns
Fin(t) = Pr{the nth failure occurs at time f_tl

i servers are being repaired at time t = 0},

and
F}(t) = Pr{the interarrival time between failure j and
failure (j+1) is < tl, o T L R A
Then
+ , o+ +
Foo(8)=F *F % ... *F (), (5.30)

where * denotes convolution.

For the one-step transition distributions, we know

T R TR

Frt) =

J _ e(eHL-EE

1 L+l < j < LC (5.31)

Using the Laplace transforms of equations (5.30) and (5.31) we can find

the distributions F,, (t), j =L,L + 1,..., L + C.

1]

From renewal theory [28] we now have the remaining probabilities

Pij = Pr{(j-1) server failures in time R|

i servers are being repaired at the beginning
of the service period}

- Fij(R) - By a5 3 = L, L#L,..., 041,

Fi,L+C(R)’ j=L+C. £{5.32)




Now a transition probability matrix, P, can be established:

. i | m—y
; POO POl - PO,L | PO,L+1 e Lo PO,L+C :
g |
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\; 1L 1,L ; 1,1+1 . Pl,L+C {
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Q 3 By : Py 141 e |
P = e P S S o [y s i e i s k| (e ’~
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' I
9 oy s : ¢ PLac,L+c |
. |
s | Ly
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|
r— A J B —_] 1L+1
: f
i ! ————— ——————
' 0 1 D c
| |
th
Let ay represent the 1 row of the submatrix A,
b, represent the ith row of the submatrix B, and

i
1 represent the C-dimensional column vector (1,1,...,1)T.

Let NP be the number of repair periods prior to entering the BAD state
given the initial service state was zero (the "perfect' state). For

example NP = k in Figure 5.6.
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where v, is the ith row of W. Then using the property (5.29), we have
; il
Pr{N_ = 0} = P, = P..=h *1 (5.33)
¥ fen B e % £
. A
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and by an inductive argument, we have
Pr{N) = i} = a i Lopey, R N (5.34)
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Let NG be the number of repair periods from the time the system
"recovers'" from a BAD service state, to just prior to re-entry into the
BAD state. For example, in Figure 5.6, NG = n-m. The service state at
the beginning of our cbservation is unknown; it is the number of server
failures during the last repair period which contained a BAD service

state. This situation is expanded in Figure 5.7.

N(t)
L
- i+l
L+l Aok B
LT S—
G g o
peien M e
L. —+ > t
fm-l)R mR
.= T T b T e

Figure 5.7: GOOD to BAD to GOOD State Transition

Since the server failure rate is dependent, the state j depends upon the
previous state 1. (Notice, service state i need not be in G.) We are
assuming that the number of servers in repair at time (m-1)R does not
depend on any initial conditions (i.e., we assume steady state condi-
tion). Then{Pr N[(m-1)R] = i} =M where M, is the stationary proba-
bility of being in service state i. We want the probability

v, =Pr {N(@mR) = j, jeG, N[(@m~1)R] = 1, i + jeB}

]
= Z Pr{j server failures in time R| N[(m~1)R] = i}.ﬂi
i+jeB
L+C~]
= Pi,i+jﬂ1’ q i e T

i=L-j (5.35)
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Let v = (vl,...,vL)T. Then in a manner similar to that used for Np, we

have ( ) % LEC
PriN, = 0} = o S S
e or, BT G R
Peif.~2kes Y o) om BB
¥ 1€G j€G keB 171y )k i
Iy O
= v P P i
20 L gue B peigp ke |
L Lii L4Z-c
= v B P ‘
oo = qa0 O jmieg A9E |
= !cw.Bol’ %
-
]i
and, in general, |
PriNg = k} = v eweeBel, R T D (5.36) I i

We now have distributions on the number of whole repair periods in (
the times Tp and TG. It remains to find the distribution for the time
within a period until the BAD state is entered. This time 1is repre-

sented in Figure 5.7 as T This passage time is dependent upon the

GB*
service state, i, at the beginning of the period, where 1€ G. We have

the stationary probability u = Pr{N[(m-l)R] - 1| 16} | ]

i SRR T . TG (5.37)
L
L 4

i=0
The times in each state i, 1 + 1,..., L are independent and exponen-

tially distributed with mean 1/CE. Thus the passage time distribution
is

Pr {Tog< t| N[(@1R] =1} =¥ (t), 4 = 0,1,.44,L,

L-i+l
(5.38)
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where Yk(t) is the Erlang distribution with mean k/CZ and shape para-
meter k. Combining (5.37) and (5.38) yields

L
< t}

Pr { TGB = - ionriYL-i*'l(t)'

(5.39)
Combining equations (5.34), (5.36) and (5.39) gives us the desired
distributions (for k = 0,1,...)
Pr (T, <t }=Pr {N =k}oPr {Tgg £t} KR <t < (K+D)R,
(5.40)

and

Pr { To <t} = Pr {N.= k}e Pr {T; <t} kR <t < (kHl)R.

(5.41)

It may be more realistic to allow repair to be initiated on a
server as soon as it fails as opposed to waiting until the end of the
repair period. Then conceptually, if we consider the system at lattice
points only (every R time units), the analysis could be very simple.
Suppose PG is the probability of being in the GOOD state at the end of a
repair period, independent of the starting service state. Then the
distribution for NGB’ the number of repair periods in the GOOD state
before reentering the BAD state, would be

Pr {Ng = k}=Pg (1-P),  k=0,1,.... (5.42)
Unfortunately, PG is dependent upon the starting state which complicates
the analysis considerably.

In the previous analysis, the service state transitions could only
be in one direction between lattice points. If repair on a failed
server begins immediately and not at lattice points, then the service
state can wander in either direction. Figure 5.8 shows how the system

can conceivably enter and exit the BAD state during a period of length

R. This transition would change the server failure rate and thus affect
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Figure 5.8: Transitions When Repairs Initiated Immediately
the number of server failures in the period R. Since the repair time is
R, the number of servers in repair at the end of the period is precisely
the number that failed during the period. To find the distribution for
this number, we need to know (1) how many servers are being repaired at
the beginning of the period and (2) how much repair remains to be done
on each server. Given certain considerations, these problems may not be
significant factors.
Suppose that the service channel failure rate is small compared to
the repair rate and the chance of entering and exiting the BAD state in
a single period is negligible. Define PG as the propability of staying

in the GOOD state in a time interval R. If N(t) is the number of server

failures in time t while in the GOOD state, then

L
P = Pr {N(R) <L} =) Pr {N(R) =i} (5.43)
. = 1m0

Since we remain in the GOOD state for the entire period, them N(R) is

Poisson distributed (equation (5.28)) and we can apply equation (5.42)
to get a simple result.

We have now completely described the passage time distributions for
the service states given exponential, Erlang, and deterministic distrib-

uted repair times. These distributions can be integrated with actual or

e — .




approximate time dependent line length distributions to describe the

inventory system's time dependent behavior.
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CHAPTER VI

CONCLUDING REMARKS

This thesis presented stationary and non-stationary (time depend-
ent) analyses for a recoverable item inventory system. It differs from
the previous work done in this area because the capacity of the service
facility was limited and variable due to server breakdowns.

The mathematical modeling of the system in Chapter II demonstrated
the need to derive a representation for the distribution of the number
of units in the system. In Chapter III we showed that analytic attempts
to find this distribution yield neither comprehensible closed form
solutions nor a means for comparison between systems. The development
of a diffusion approximation, however, did give us some insight into the
nature of the system's performance. The approximate distribution was
found to have a geometric tail which led to a simple way to obtain a
solution to an optimization problem. The solution of this problem can
be used by managers to allocate limited resources optimally among item
spares and repair facilities.

The time dependent analysis of Chapter V provides a basis for
examining the short term or non-stationary behavior of the recoverable
item inventory system. A study of the distribution for the times be-
tween service channel failures gives a technique to analyze the effects
of different service facility designs. For example, the frequency and
duration of changes in the service facility's performance can be cal-
culated. This information can also be integrated with transient line
length distributions to provide a measure of overall system performance

through time.
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There are several different areas where this work can be extended.
One obvious extension would be to consider multi-echelon systems. The
result would be a modification of Sherbrooke's METRIC model [32] to
include a finite number of servers. In the same manner, items which
require service could be composed of sub-units which need to be re-
placed, repaired, and stocked. This multi-indentured concept is con-
sidered for the adequate server case in Muckstadt's MOD-METRIC model
[23].

Another possible extension is to model the service channel failures
as partial breakdowns due to sub-unit failures. Typically, the service
channel sub-units can be removed and the service station's ability to
perform is only partially affected. An example of this is an electron-
ics test station which can independently repair radio and radar units.
Failure of the radio section may not affect the ability to service
radars. Thus an investment in service channel spares should be con-
sidered for sub-components and not for entire servers.

This situation requires a complex reliability analysis. Spare sub-
units can be considered as elements in parallel with the installed sub-
unit. Consequently, the entire repair station could be modeled as a
system composed of sub-components linked in series and parallel. The
purchase of an additional sub-unit would provide a certain marginal
improvement of the service channel's reliability. If this phenomenon
can be quantified, then performance curves could be derived for fixed
levels of investment in server sub-units and the remaining analysis
should be similar to that performed in Chapter IV,

Chapter V suggests one final area for future research with its

discussion of the dearth of comparisons between the different time-
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dependent distributions for queues found in the literature. It would be

instructive to have a standard set of common time-dependent problems
(including non-stationary inputs to the queue) to provide a means for

comparing the various proposed approximation methods.
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