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Preface
(-

This study was originally limited to di f ferent scans and the

resultant reordering of equations . This technique for changing con-

vergence rates had not been explored with the equations resulting

from finite element solutions . Scannings had been shown to accelerate

finite difference solutions and I planned to extend these results to

a finite element solution. The discovery of the coarse mesh rebal—

ancing n1ethod changed the direction of the study . The corase mesh

rebalancing promised an opportunity to accelerate the solutions with-

out finding the optimum overrelaxation factors . The number of scans

to be tested was reduced and coarse mesh rebalancing as function of

overrelaxation factor , rebalancing frequency, and coarse mesh size

became the bulk of the study.

I wish to thank Dr. Bernard Kaplan of the Physics Department of

the Air Force Institute of Technology for his constant guidance during

this study . I also wish to thank Dr. W. Kessler of the Air Force

Materials Laboratory for sponsoring this study.

Frederick J. Jaeger
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Abstract

The relative solution time is studied for two methods of accel-

erating successive overrelaxation. Reordering of equations by nodal

point scanning, and coarse mesh rebalancing are used. The finite

element solution of the steady-state two-dimensional heat transfer

equation is used to test these methods.

Scanning the boundary nodal points first was found to reduce

the number of iterations necessary for convergence by up to 13%, but

computer execution time was increased by up to 7%. Coarse mesh re—

balancing was found to speed the solution with arbitrary successive

overrelaxation factor by reducing the number of iterations to 15% of

that without rebalancing . The cou~ uter execution time required for

a well chosen coarse mesh was only reduced to 30% of that without

rebalancing . The successive overrelaxation factor was found to i.n-

fluence the optimum rebalancing frequency . Solutions as fast as the

solution with the optimum overrelaxation factor were obtained with

rebalancing and arbitrary overrelaxation factors . Rules for a proper

coarse mesh and rebalancing frequency are given.

vii



INVESTIGATION OF ACCELERATING THE

FINITE ELEMENT SOLUTION OF THE

TWO DIMENSIONAL STEADY STATE

HEAT TRANSFER EQUATION

I. Introduction

Background

Few mathematical problems have straightforward exact solutions in

analytical form. A good approximate solution must be used because the

exact solution is not available. The digital computer can find an

approximate but relatively accurate solution using numerical methods.

The sponsor of this thesis, the Air Force Materials Laboratory,

studies the thermal response and ablation characteristics of rocket

nozzles and re—entry vehicles. These problems require solution of

transient heat conduction equations. The transient heat conduction

equation can be approximated by a steady—state heat conduction problem

and numerical methods that assume steady-state conditions over certain

time intervals .

This thesis is an attempt to reduce the time necessary th obtain

one type of numerical solution to the steady-state heat conduction

equation .

There are two common approximation techniques : finite elements ,

and finite differences. The acceleration of the finite difference

( method of solving this type of problem has already been studied by

Pearson (Ref 1), Cudahy (Ref 2), and Wright (Ref 3). The finite ele—

1



— - •

ment method has been receiving more attention in recent years , but

acceleration of this method has not received the study that the finite

difference method had been given. This thesis will apply one of the

accelerating techniques of Pearson, Cudahy, and Wright.

The finite element method, like the finite difference method,

• - requires the solution of simultaneous equations. One equation is

written for each nodal point in the region over which a solution is

desired.

These simultaneous equations can be solved expediently by iter-

ation. The equations are solved repeatedly with trial solutions, which

are continually improved until two successive solutions are approxi-

mately equal. The iteration process is then said to have converged.

( Purpose

This study is en attempt to reduce the number of iterations and

the associated computer time to produce convergence . There are many

well known methods of increasing convergence rates. Successive over—

relaxation is , in general, the most successful and easiest to apply.

Different scannirkgs of the nodal points to reorder the set of equa-

tions can change the rate of convergence for successive overrelaxa-

tion. Another method that can change the rate of convergence for

successive overrelaxation is the coarse mesh rebalancing method used

by Nakamura (Ref 4 ) .

These methods will be used and compared in this study .

Scope

Successive overrelaxation is used to solve the finite element

approximation to the steady—state heat conduction equation in 

a2



( two—dimensional square. Three scanning schemes are used to compare

changes in the rate of convergence of successive overrelaxation.

Coarse mesh rebalancing is also used to accelerate the successive

overrelaxation iteration. Coarse mesh rebalancing is applied with

four different coarse mesh sizes, five different successive overrelax—

ation factors, and six different rebalancing frequencies. The rates

of convergence are compared for these solutions.

Plan of Development

The optimum overrelaxation factor is found for each scan experi-

mentally. This requires solving the problem many times with different

overrelaxation factors until the factor that required the fewest iter-

ations is determined.

• 
- 

The number of iterations for each scan to converge using the

optimum successive overrelaxation factors will be compared. The com-

puter execution time will also be compared for these solutions.

The coarse mesh rebalancing method will be applied with different

overrelaxation factors, different coarse mesh sizes, and different

rebalancing frequencies for a single scan. These solutions will be

- 
compared with each other and with the results from the different •

scannings.

_ _ _ _ _  
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(• II. Theory

The Partial Differential Equation

The governing partial differential equation for steady—state, two—

dimensional heat conduction for an isotropic homogeneous material is

• • 
- 

~~~~ 
(.
~4 . 

~~~~~~~~~~~~~ 
+ .

~~~~~~ 
~~~ (1)

or

i~2r ~r\
~~~~~~~~~~ 9. 0 

(lA)

where 7’ is the temperature in degrees Centigrade (°C)

( A is the conductivity of the material in calories/
• cm—sec—0C

r is the density of the material in grams/centimeter

C is the heat capacity of the material in calories/gm-°C

¶ is the heat generation rate in calories/cm—sec

The solution of this equation defines the temperature , under

steady-state conditions, at any point in the material.

The Finite Element Method

0 The finite element method uses numerical approximation methods

to solve an integral. The integral is divided over its domain into

subdomains which are called finite elements (Fig 1).

Each element consists of nodal points connected by line segments .

The elements are connected at nodal points and along the element

boundaries (Fig 2 ) .

The eluments usually have straight boundaries and if the problem

4 
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Figure 1. Domain Divided into Elements

/

I I
I I
I I I

I I

‘5

/
I

Figure 2. Typical Finite Element
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domain has curved boundaries , then the curve is easily represented

by a series of straight segments . This is an additional approxima-

tion that can be made with this method. -

The differential equation for heat conduction is in differential

form not in integral form . The integral form must be formulated before

the finite element method can oe applied (Ref 5) .

The integral form of a governing differential equation can some-

times be related to the physical principles of the problem. In this

case , it cannot be done readily , but variational calculus can provide

the desA red integral with or without a physical analog.

The problem can be cast as the minimization of an integral (Ref 5) .

That is , to find a function , u (z) , that minimizes the integral I

r~j  
,cr( 2 1 L((z) ,(,yz) ) di (2)

where Z is the independent variable

~j  is the function of z

~f is the derivative of u with respect to z

I’ is a functional of z , u (z ) , and u~~(z)

For I to be a minimum

~z I c) ii ’1 (3)

The boundary conditions for equation (3) are required to be the same

as for the original problem (Re f 5:280) .

The two—dimensional , steady—state heat conduction equation can

be formulated in the same manner as equation 
(2)6



I :~4r (; y,r 
~~~~~

) d~ d~ (4)

where T~ is the derivative of T with respect to x

is the derivative of T with respect to y

For the integral in equation (4) to be minimized , the following must

be true . -

5)
I

Equation CiA) can be compared to equation (5) and a functional F

determined by inspection . The function is composed of three parts .

~E .
9. (6)

- _  k~~~~(~~~) (7)

- 

* 4 ~~
= k~~~~(~~~) (8)

Equations (7) and (8) are integrated with respect to x and y re-

spectively to yield : -

- ~~~ _ - s ~
~~~~~~~~

- - k~~~~( )  ~~~
— (10)

1. 
_ _ _



( Equation (6) is integrated with respect to T , equation (9) is in-

tegrated with respect to x , and equation (10) is integrated with

respect to y . Each of these integratiocis yields an expression for

F .

F (11)

- k c ( r )  (12)

q T t ~ ~~ ‘1 (i ) 
(13)

( where cx , 
~~
, y, ~~, ~~, and ~ are functions to be determined.

Because the three expressions for F must be equal, the unknown

functions can be determined by comparison of equations (11) , (12) , and

(13) .

(14)

The functional F can now be substituted into equation (4) and (4)

differentiated with respect to T and set equal to zero to obtain a

minimum. -

• F [~4c-+t~t~ ~~ (4f)+~r)dx~ J (15)

Equation (15) can be separated into two integrals for convenience .

- — 

8 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(16)

where

_ _  ~ 1(i’r ic ~~T k ~r i 1
~~~~~~~ ~~~~~~ — ,~ ~~~~~~ j d~d~j (17)

~ 
4r d~~d~ ] (18)

These integrals will be evaluated numerically by dividing the

domain into many subdomains and approximating the integrals over each

subdomain or element and summing the individual results . This is the

( finite element method (Ref 6:85). The summations can also be made

for the derivatives of the integrals.

E ~~~~
(19)

~

— V L~i (20)

~~~~~~~ ~T

where there are B finite elements . -

For each element (Fig 2) with nodes , i , j , and k at (Xj~ Yj ) .

and (xk,yk ) ,  respectively , integral over that element will be

functions of the nodal temperatures , Ti Tj•, Tk , only (~ef 5 , 6) .

( 
___

~~ ~~~~~ 
(21)

ii . ~~ 
_ _ : _ .~~ - ~:. . . .  _ - - ~~~~~~~~~~~~



t
(e) is a vector of the nodal temperatures for element e

~

(
~)

t (22 )

D (e) is a matrix that locates the nodal points of element e
- 

0 0 0

1 0 0  i r~ w
(23)

— O i O i r o w
[ 0  0 1 k row

Within each element it is assumed that temperature varies linearly

in both x and y directions . This can be expressed as

(4t ~~~~~~~~ ~~~~~~~ (24)

or if

( 25)

and

C,

(26)

- • C3
• 

- 

t ~~ 
• (27)

Ce)If t is defined by equation (22) , then equation (24) cou~.d

be written for each component of These equations could be

- • •---- •- - -  • • • • - 
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formed into a matrix equation like

(e) f r )
t :P  C (28)

r
(e) is defined as the position matrix for element e

• 1 i~ ‘ii
p g 

~~
. (29)

I

I

The constants in equation (26) may be found by multiplying the

inverse of p (e) by t
(e) and substituting into equation (27) to find

the temperature within an element.

r (d~ (e)
T— ~~~ P ~ ( 30)

(
The derivatives of equation (30) with respect to both x and y

are needed to substitute into an elemental form of equation (17).

~~ ~~~ ~ 
(e) - 

(31)

1~ (er ’ (e) V
~~~~~~~ r~~t~e L’ - 

( 32)

~JJ [ T f i~~~~~ (/4~( d ) d  (33)

The derivative with respect to temperature is now taken and

because temperature in an element can be defined solely in terms of

- - - • -

~~

- - - - - - - - - - - -—— 

~ 1 

~~

_ 
-

~~~~~~~ ~~~~~



( the three nodal temperatures , the derivative can be taken with respect

to these temperatures .

(e)
~~~~~II( k

~ If [2  
((p

(ei
~t 

(ej ) (
~:~~

‘) 
r

- 

- 

~ 
a ~~ 

~~~ (e) 
) (~t~e~ 

~~

• 

) 
~ ~

ix d y 
(34)

I

I.
This assumes constant thermal’ conductivity over each element. This

is valid for elements of homogeneous materials and elements small

enough that any change in conductivity with temperature can be neg-

lected . -
Equation (34) can be rearranged by matrix algebra and by realizing(

that ~ (e)_ l  and +
(e) are independent of x and y , the following is

obtained.

(e)
T 

( \dx d~i (p
$eY’

t
(e) \

~ 
k(&(F

~ ) [[r~ t ‘~ L ~‘
— — )

(35)

The required differentiation is now carried out .

10
I~ ~~~o]  

(36 ) 

-

~1~• 
~ [o I

(

.4
12

I
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•1’ b o o
lilt [0 

1 0 (38)— — 

= 

~~O O  0

[ ô ô i
~~ 

(40 )

1- b o o
~~~~~ ~~~~ 0 0  (41)

- ( 

- 0 0 /

Equation (35) requires that equations (38) and (41) be added

together.

1~ 
b o o ]

1:~ 
Oj  (42)

Substituting into equation (35) , an integral that can be simply

evaluated is obtained . The result is a function of the area c~ the

element A Ce) .

I f io o ol (e ) f 0 0 0
1-
~’ I I 1 o ‘ 0 ~dx cI~j .~4 

~ ° ‘ ° (43)j j i o o ’ J  1 0 0 ,



The final resubstitution is made into equation (35).

(€) 0 0 0

~ .Lc ~~~ ( ,d~~ A [ 0  ‘ 

~ 1 ~ (4 4)

o o i

The elemental conduction matrix K (e) can be defined from equation

(44) such that:
(~e)

—

The total problem is formed by summing the elemental conduction

matrices for all elements into a global conduction matrix.

k ~~ (e) (~~~~(e) T 
(46)

C: I

The elemental heat generation vector is formed in a manner similar

to ~he formation of the elemental conduction matrix . Recalling equa-

tion (18) and rewriting for a single element

T7~ f f ( e t
i’e)

d J~ 
(47)

It is now assumed that heat generation is constant over each

element . This assumption is also valid for elements of such size that

temperature and distance effects can be neglected.

Equation (27) and (28) are rearranged and substituted into equa-

( tion (47) . The assumption that was just made allows the heat gener-

14



ation to be brought outside the integral .

dJ f 
~~

, r ~ (er ’ 
~~ 

d~ d~ 
(48)

X 9

The derivative with respect to t(e) ~.s taken as in equation (34).

~ii rrp
~
rd d~ 

(49)

Recalling that is independent of the variables x and y , it can

be factored out of the integral when the terms are rearranged .

Je) -

___  ~~
) ~~~~ 

r
( ~~~ (e) 

~ 
( P ) f f  jt~ ~~

(& ‘r ‘

= (p 1 x J d~d1~ (51)

The integral can be carried out as the sum of three integrals ,

which can be recognized as the area , the centroid about the x—axis ,

and the - centroid about the y-axis . After carrying out the integrations

the following results

( dt~ 
—

(52)

ii — 

• .  

:_
~ 

•



After the multiplication has been carried out, the elemental

heat generation vector can be defined.

dt~ _ _ _ _  
( (53)

d t ~ 3 L i

The global heat generation vector can be formed in the same way

that the global heat conduction matrix was formed.

£ (e) (e~
~~L 

0 (54)

— C.!

The total problem has now been formed and can be stated as

_ 
(55)

or

• k ’t  ~ 
(56)

Boundary Conditions

Generalized boundary conditions that specify a known temperature

on part of the boundary and a known heat flux on the remainder of the

boundary are easily hand1~d. The convection boundary condition can

also be handled but is not treated in this study .

After the finite mesh has been formulated , and the system of equa-

tions written , those nodal points that have known temperatures are

eliminated from the temperature vector (Re f 5) .  The elimination

16



requires the addition of the kr.own temperatures times the corres-

ponding elements in the conduction matrix to the known heat genera—

tion vector . For example, if T1 were known

1 2 3 4 T1 Ql

2 3 4 1 T~

3 4 1 2 T3 Q3 (57)

I 

:4 1 2 T4 Q4~

becomes

1 0 0  0 T~ T1

0 3 4 1 
= 

Q2 — 2 T 1

0 4 1 2 T3 Q3 — 3 T1
(58)

( 
0 1 2 3 T4 Q4 — 4T1

The first row and column of the matrix in equation (58) can now be

eliminated.

The heat flux boundary condition is included in the problem by

creating a vector of the specified heat fluxes and adding it to the

heat generation vector . For example , if - were specified

I I

4 C-

t 0

This sum is then used as in equation (56) .

Iteration Method

( ‘ The method of successive displacements (G~uss-seidel) replaces

j each component of the trial vector with a new value as soon as ~t can

_ _  

___ L



be calculated . If the matrix is

(60)

where A is a 11 x n matrix

x is the unknown vector

- is the known vector

The matrix can be divided into three matrices such that

A~ L~ D 4 U  (61)

where L has the same lower triangle as A but is otherwise zero

U has the same u~pper triangle as A but is otherwise zero

1) has the elements of the main diagonal of ~

The method of successive displaceraents can be written

- Lx” - Dx’’ -U x ” (62)

where the superscripts here indicate it3ration number.

Overrelaxation

If a multiplying factor is added to the successive displacement

equation, the rate of convergence can be changed .

(6 3)

The process is called underrelaxation or overrelaxation, depending on

whether the multiplying constant is less than one or greater than one ,

respectively . The multiplying factor can be chosen to increase the

• rate of convergence . Such a factor is , generally , greater than one ,

and equation (63) is commonly called successive overrelaxation , and

• ~~~~~~~ •~~~~~~~~~~ ___________ _________



the multiplying factor is called the overrelaxation factor.

There exists an overrelaxation factor that will give the highest

average rate of convergence. This factor is called the optimum over—

relaxation factor .- For the special case when the system of equations

is written for a constantly ordered scan , on a unit square , and with

uniform mesh spacings , the optimum overrelaxation factor can be pre—

dicted (Ref 7) .

W (64)
OPT 4.

where h is the spacing between nodes.

This equation can often be used to estimate the optimum over—

relaxation factor .

Scanning

The average rate of convergence can be different for different

ordering of equation (Ref 8:283) . This effect has been explored for

the equations resulting from the finite difference solutions to the

heat conduction equation by Pearson (Ref 1), and Cudahy (Ref 2).

Both Pearson and Cudahy ordered their equations so that the temper-

atures at points near the known boundaries were calculated early in

each iteration. The problem was then worked toward the center. This

- technique uses known information sooner than other possible equation

orderings . The scans may or may not be consistent and , therefore , the

optimum overrelaxation factor cannot always be predicted .

Some of the same orderings that Pearson and Cudahy used for

finite differences will be used for finite elements .

19



Coarse Mesh Rebalan~ ing

Coarse mesh rebalancing can increase the rate of convergence by

decaying the low frequency eigenvector components more efficiently

than the iteration scheme alone (Ref 4). Low frequency eigenvectors

are decayed most effectively , when the high frequency eigenvectors

are small in conçariscn to the low frequency eigenvectors.

Each value of the unknown vector is normally calculated from the

same equation in the iteration scheme . This requires that the compon-

ents surrounding a nodal value be changed before that nodal value can

be changed , one way of looking at coarse mesh rebalancing is the

application of a more general view of the problem to each node. This

can change a nodal value based on influential values that are some

distance away without working through the nodes surrounding the node

under consideration. -

In coarse mesh rebalancing, the fine mesh is divided into L

subregions (Fig 3) .. This is done and the trial vector is rebalanced

by multiplying the components of the trial vector, ~~ , in each sub-

region by a corresponding rebalancing coefficient. These coefficients ,

are determined by the coarse mesh procedure and their values

will approach one as the problem converges. The weighted residual

method is used to determine these coefficients (Ref 4 ) .  The rebalancing

is carried out according to

• - ~~~~~~~~~~~ (65)
.1./

( where /~ are partioning matrices that have only elements on the main

20
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Figure 3. Coarse and Fine Meshes

diagonal and are required to satisfy

L
(€6)

• ( -

where is the identity matrix.

Recalling the fine mesh matrix equation for the heat conduction

problem

k ’t  (56)

The exact solution will be approached after many iterations or

• 

~~~°°~~ /<‘

? 

(67)

The iterative solution is begun by considering a trial solution, t° ,

and then operating upon it to produce a new trial solution , •

(
t ~~~~~~~~ (68)

21



where B is a matrix independent of iteration number

Z is a vector independent of iteration number

Superscript denotes iteration number.

The error vector (Ref 7) is defined as

.~~~~~
= 

~~~~~~~~~~~ t~~ 

(69)

and it is required that

P1 flo J v n  e J r n  (
~

) !° (70)
- n _*-~~ —

- It is assumed that B has a complete set of eigenvectors 
~~ 

and

corresponding eigenvalues , . The error may be expanded in terms

( of the eigenvectors .

Z 
~~

( (71)

• where ~~~. are expansion coefficients.

If a second iteration is done , then

SE = Eo~A~e~ (72)

Further iterations produce

•1 ‘I A

(‘1 

~~~~ . °~ 
e (73)

— 
• Stability of the iteration method requires that all the eigen—

22
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values be less than one for the iteration process to converge.

E.

I z m  X .  • 
~ 0 (74)

n -,ao I

If the eigenvalues are ordered such that

I > ~, J > lX ai~
> 

. ‘ 
‘ k~ 1

then for a large number of iterations , the error is approximately (Re f 7)

P1
A ~~~ 

(76)

The coarse mesh rebalancing method attempts to remove , or at least

reduce , the effects of the second through the Lth eigenvalue , where

there are L subregions in the coarse mesh . This makes equation (76)

approximate (73) after fewer iterations . The coarse mesh solution has

up to L eigenvectors that can be related to the eigenvectors of the

fine mesh problem . The vector is defined by

• 
f ~~~~~~ L (77)

Because can be expended in terms of its eigenvectors , ~~ can

also be expanded in terms of these eigenvectors .

~~ ~~ (78)

( 
L

The eigenvectors are now classified as low or high eigenvectors .
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Low eigenvectors are 
~~ ‘ 

i=2 3 , . ..L where L is the number of sub-

regions in the coarse mesh . The high eigenvectors are , i>L .

The dominant eigenvector 
~~ 

is treated separately.

If the low eigenvectors were know~n arid used as weighting vectors

orthogonal to the error vector , then they would be eliminated when

• the rebalancing coefficients were determined (Ref 4 ) .

The low eigenvectors are not known , but weighting vectors from

the current iteration vector can -be determined. The current iteration
I

vector is an approximation for the solution, so eigenvectors from it

make a logical approximation for the desired low eigenvectors. The

use of this approximation can and does excite the high eigenvectors ,

while only suppressing the low eigenvectors .

The weighted residual method is used to obtain the arbitrary

rebalancing coefficients. This method makes the residual orthogonal

to independent weighting functions in an attempt to make the residual

go to zero. The residual, the difference between two iterations, is

used because the error is not known. The residual can be expressed as

When the residual is made orthogonal to the weighting vectors , the

coarse mesh equation is obtained.

E<”~~~�/ ~ 
to >j  (80)

61 — I — -
where ( > indicates a scalar product.
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This equation defines a set of L simultaneous equations that are

solved for the undetermined multiplying coefficients.

Partitioning. There is one partitioning matrix for each sub-

region in the coarse mesh . The partitioning matrices are of size

n x n, where n is the number of nodal points in the fine mesh . The

• • 
- 

partitioning matrices are limited by

~~p x I  (81)

where 4f is the identity matrix.

The simplest form of partitioning matrix, with~this constraint,

( • is either one or zero on the main diagonal depending upon whether the

corresponding fine mesh point is in the coarse mesh subregion associ-

ated with that partitioning matrix.

weighting Vectors •. There exist many possible weighting vectors .

The simplest to form and program is

‘.4, : Pj (82)

where is a vector with all elements equal to one.

(
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III . Procedure

Computer

The Control Data Company (CDC) Cyber 7400 of the Aeronautical

Systems Division, Wright—Patterson Air Force Base, Ohio was used ex-

clusively during this study . All programming was done in the Fortran

IV language .

Problem

The sample problem used to study acceleration , was a two—dimen-

sional one centimeter square with a constant thermal conductivity

of 1.0 calories/cm3_sec_0C. A uniform internal heat generation rate

of 144 calories/cm3—sec was specified. The left, top, bottom, and

right boundaries were 200, 300, 400, and 500°C, respectively .

A finite element grid as shown in Figure 4 was superimposed so

that after elimination of the known boundary node temperatures , 1600

nodal points remained. Each nodal point had a corresponding linear

simultaneous equation that was to be solved for the temperature at

that point . The finite element mesh shown in Figure 4 was used to

insure a coefficient matrix different from the r~oefficient matrix

for finite differences. The use of simpler finite elements, which

were isosceles right triangles (Fig 5), resulted in a set of equations

that were identical to those obtained for finite differences (Ref 6~

285), 
-

• Because the finite difference method has already been studied,

• the conditions that provided the same set of equations were avoided,

and a n~ore general finite element was used . Finite difference equa—

tions and isosceles right finite elements result in five non-zero

26
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Figure 4. Finite Element Grid

///•

Figure 5. Isosceles Right Elements
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elements in each row of the coefficient matrix. The more general

finite elements have up to seven non—zero elements in each row of

the coefficient matrix.

Programming

The solution of 1600 simultaneous equations, in general, requires

a 1600 x 1600 matrix to be stored and manipulated during iterations .

The matrix obtained for the finite element solution is a sparse matrix.

There are no more than seven non-zero elements on each row of the

matrix and with proper programming only non—zero elements need be

stored .

Normalizing all main diagonal elements eliminates the need to

store these values because the value one from the main diagonal can

be containad in the programming rather than in memory . Normalizing

is done by dividing all elements on a row arid the corresponding ele-

ment of the known vector, by the value that would occur on the main

diagonal for that raw. -

Because different scanning methods create coefficient matrices

of different bandwidths, a bookkeeping system was created. This sys-

tem stored the location and value of each of the non-zero off—diagonal

elements in an integer and a real array , respectively .  This resulted

in two 6 x 1600 arrays or a total of 12 x 1600 values to store.

Symmetry was not utilized to further reduce the storage required

because , although expected , symmetry could not be verified beforehand

for all scans . The use of symmetry would have halved the storage

required .

The reduction of the matrix to only non—zero elements also elim-

inates repeated mulUplication by zero. Although these multiplications
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would not affect the answer , they would require considerable computer

execution time . The failure to take advantage of symmetry did not

increase the number of multiplications . The symmetry occurs about

the main diagonal , placing corresponding identical elements in the

upper ana lower triangular matrix parts , and the upper and lower ma-

trices are treated differently by the iteration scheme (Equation 62).

Convergence Criteria

Iterations were continued until tl’e temperature values at all

nodal points had converged to within l0~~ percent of the values of

the last iteration . The convergence test is

1-” -7
I — L  

‘/ 0  (83)

where the superscript here denotes iteration number.

This test cannot be applied when one of the values is zero , be—

cause either a infinite or 100% value is obtained. When either the

newly calculated or the previously calculated value is zero, the dif-

ference between these values is required to be l0’~~.

1 t~” — t
n 

~~ / 0 (84)

Trial Vector

The initial trial vector for successive overrelaxation must be

supplied. The vector supplied had all elements equal to one . This

( vector , as well as other vectors with no zero elements, does not
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( require the use of the special convergence criteria unless the solu-

tion actually convergences to a value near zero. This has been iden-

tified because a vector with all elements set to zero is a common

choice for an initial trial vector (Ref 1, 4).

The initial trial vector also has an advantage when used with

coarse mesh rebalaricing. Because the rebalancing factors will

approach one as the proble--n converges and will be near one at all

times, starting at one can reduce convergence time.

Scanning

Three scans were used in this study . They are the same as scans

used by Pearson (Ref 1) and Cudahy (Ref 2 ) .

Serial Scan. The serial scan is shown in Figure 6. The associ—

ated matrix is shown in Figure 7. This scan does not take advantage

of working close to a known boundary early . This is a simple scan

and is probably the most common . Points are numbered from bottom to

top in columms from left to right. Serial scanning has the advan-

tages of simple computer programming arid the narrowest bandwidth.

The narrow bandwidth can save computer storage , if the entire matrix

were being used. Only the non—zero band would have to be stored .

The difference in bandwidth does not affect the program used for

these solutions because it was designed out of the program. Band-

width was designed out because scans with wide bandwidths were to

be utilized .

Modi fied Serial Scan . The modi fied serial scan is shown in

Figure 8. The associated matrix is shown in Figure 9. This scan

takes advantage of solving for values near both the left and right

30



r
.: t

I 

I 2. 3 4 5

Figure 6. Serial Scanning

( 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 
-

- .

~~x X
1 *

~~~~~~~~ x~~
X X

X X

~~X X~~-~~ X X

v X

*4  x s K

- Figure 7. Matrix for Serial Scan
(

31



U

I

s 3 r

Figure 8. Modified Serial Scanning

X x
$ 5

5 ( 5  x x
• V t  * 3

x x  V
s i x

x i x
* 5  i s

S * 5  V

x i x x i  *~~~
x x  $ *

V t  V t

~~~s

a~~ * 5 5
V N $ 5

Figure 9. Matrix for Mod—Serial Scan

32



boundaries early . The points are scanned from bottom to top, as in

the serial scan , but first on the left then the right and so on.

This scan requires programming logic that performs the necessa~~’

jumps from left to right and back again . The bandwidth of the matrix

for this scan is wider than for the serial scan .

• C~ tical Scan. The spiral scan is shown in Figure 10. The asso-

ciated matrix is shown in Figure 11. This scan has the broadest band-

width of the three scans . This scan also requires the most programming

to negotiate the corners to number the mesh points . This scan attempts

to take advantage of known values as soon as possible to speed conver-

gence .

Coarse Mesh Rebalancing

Coarse mesh rebalancing should have an accelerating effect depen-

dent upon the successive overrelaxation factor , the size of the coarse

mesh , and the frequency with which the iteration vector is rebalanced.

These parameters were varied to determine their effects upon conver-

gence rates. 
-

Tbe coarse mesh rebalancing method was applied only to the serial.

scan .

The 1600 (40 x 40) node points were divided into 25 (5 x 5) , 36

(6 x 6) ,  49 (7 x 7) ,  and 64 (8 x 8) coarse ~esh subregions . These

were selected to test the recommendation (Ref 9:275) that the number

of coarse mesh regions should be about the square ruot of the number

of node points .

The coarse mesh rebalancing method requires the solution of a

matrix equation of order equal to the number of subregions in the
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Figure 10. Spiral Scanning

(

x x  X ix x i  K g
x x x i  —

S i x
x i

* 5 *  *

* 5 *
x i s
i t s

N I

a x  g N u
• V x t t

‘ ( a
*~~~.

( Figure 1].. Matrix for Spiral Scan

34 
-

I 
- -• •.-—•~-~— —•- - -—— - -— — - - —— — - r -~ - - — — ________________



coarse mesh . The additional time to solve the larger matrix problems

for rebalancing can offset the reduction in the number of iterations

that may occur.

The coarse mesh rebalancing method consists of the following:

1. Dividing the region into subregions with the coarse mt~sh
- 

and assigning each nodal point ~~ the appropriate sub-

region .

2. Interrupt the iteration scheme after a set number f

iterations .

3. Create a matrix equation from equation (80) .

4 . Solve this matrix equation for -the rebalancing coefficients.

5. Multiply each term in the iteration vector by the appropriate

rebalancing factor .

6 • Use the rebalánced vector in the iteration scheme, returning

to step 2 until convergence occurs.

A simple example is - contained in Appendix A.

The iteration vector was rebalanced after 3, 4, 5, 8, 10, and 15

iterations to determine the effect of rebalancing frequency on the

number of iterations and computer execution time.

The successive overrelaxation factor was varied to determine its

effect on convergence rate . It was predicted (Ref 4) that the use

of the optimum overrelaxation factor would negate the effects of

rebalancing . The optimum and four other overrelaxation factors were

used to test this and determine othe’~ effects of varying this parameter.

• 
- 

The matrix equation for rebalancing coefficients was solved -

( using successive overrelaxation. The overrelaxation factor was fixed

at 1.50 and the same convergence criteria as applied to the total
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problem was used . This allowed the use of the same successive over-

relaxation subroutine , limiting the additional programming for

-
. coarse mesh rebalancing .
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• IV. Results

scanning

Table I contains the number of iterations and computer execu-

tion time required for the finite element solution of the test prob-

lem by the three scanning methods with the optimum overrelaxation

factors .
,1

Fewer iterations were required for the modified serial scan than

for the serial scan . Fewer iterations were required for the spiral

scan than for the modified serial scan Scanning near known bound-

aries early does reduce the number of iterations required for con-

vergence .

The computer execution time listed in Table- I is for execution

of the program only and does not include program compilation time ,

input , or output times . The computer execution times have exactly

the qposite trend that .the numbers of iterations have with scanning .

More execution time is required for the scans that scan near the

known boundaries early . This is believed to be due to the extra com-

puter programming needed to number the node points , and determine

which node points are vertices of each element . The scans which

scan the boundaries early , require logic that must r~egotiate jumps

and corners (Fig 8 and 10) . The difference in programming is also

reflected in the different program compilation times .

The optimum overrelaxation factors were determined by repeatedly

solving the problem with different overrelaxation factors arid corn-

paring the number of iterations . Figures 12 , 13, and 14 show the

number of iterations for convergence versus overrelaxation factor
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Table I

Scanning Results

Overrelaxation Number Computer Program -

Factor of Execution Compilation
Scan (Optimum) * Iterations Time (sec)** Time (sec)

Serial 1.84 167 17.80 0.98

Modified
• Serial 1.50 150 18.56 1.26

Spiral 1.52 146 18.96 1.46

* Determined experimentally

** Does not include compilation nor input and output: times .

near the optimum overrelaxation factors for the three scans tested.

The determination of optimum values was limited by the leveling off

of the rumber of iterations over a range of overrelaxation factors .

This was not considered to be a problem because the solution was ob-

tained in the same number of iterations for the specified convergence

criteria. ~ny value within this range could be considered optimum

for the sample solution.

These results for the finite element solution when compared to

the results of Pearson (Ref 1:29—33) for the finite difference solu-

tion show a number of similarities. Pearson had a similar reduction

in the number of iterations, about 15% for scanning near known bound-

aries rather than serial scanning. This study had 10% fewer itera-

- tions for the modified serial scan and 13% fewer iterations for the

spiral scan when compared to the serial scan • Pearson required
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fewer iterations for the modified serial scan than for the spiral

scan for three of his four problems. Pearson ’ s fourth problem re-

quired fewer iterations for the spiral scan than for the modified

serial scan . This study required fewer iterations for the spiral

scan than for the modified serial scan. The problems Pearson used

each had different boundary conditions ; this study had boundary con-

ditions different from any of those used by Pearson. The boundary

scan , that is faster for a particular problem, might be determined

by the type , magnitudes , and ratios of the boundary conditions.

Pearson experienced a 200% to 300% increase in computer execution

time for the boundary scans . This study had a slight increase in the

computer execution time for the boundary scans . The exact method of

storage and manipulation of the matrix equations used by Pearson is

not known , and no conclusions can be drawn except that he attributes

the increase to the same factors .

Coarse Mesh Results

(
~o~ ~~~ mesh rebalancing was applied to the serial scan solution

to t~ ’ ,~-z~blem and the results are presented in Table 2 through 6.

Tab.Le 2 contains the results from solutions using an overrelax-

ation factor of 1.50 . The solution without rebalancing required

many more iterations and more computer execution time than the re-

balanced solutions . In all cases with an overrelaxation factor of

1.50 , the coarse meshes with the most subregions (64) required fewer

iterations than any other coarse mesh solution with the same reba].-

ancing frequency . Those solutions with 36 subregions in the coarse

( required the least computer execution time for each rebalancing
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Table II

Coarse Mesh Results; Overrelaxation Factor = 1.50

Coarse mesh Iterations Number Number Total
Subregions Between of of Execution

Rebalancing Iterations Rebalancing Time ~sec)

—— NA 689 0 73.05
25 3 126 41 20 .56
36 3 111 36 19 .90
49 3 102 33 22.65
64 3 90 29 27.58
25 5 170 33 23.60
36 5 153 30 22.97
49 5 139 26 24.85
64 5 133 26 30.62
25 8 228 28 29 .52
36 8 206 25 28 .02
49 8 191 23 29.24
64 8 180 22 33.92
25 10 255 25 31.78
36 10 234 23 30 .66
49 10 - 219 21 31 87
64 

- 

10 206 20 35.65
25 15 319 21 38.51
36 15 293 19 35.78
49 15 275 18 37 .32
64 15 264 17 40 .63

frequency . Solutions with the same course mesh size required fewest

iterations and least computer execution time when rebalanced after

every three iterations . This was the highest rebalancing frequency

tested . The fastest solution with an overrelaxation factor of 1.50

was the solution with the coarse mesh of 36 subregions and rebalancing

after every three iterations . -

Table III contains the results for solutions using an overelaxa-

tion factor of 1.60. The same results that were observed for an
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Table III

Coarse Mesh Results ; Overrelaxation Factor 1.60

Coarse mesh Iterations Number Number Total
Subregions Between of of Execution

Rebalancing Iterations Rebalancing Time (sec)

NA NA 526 0 56 .80
25 3 114 37 18.63
36 3 102 33 18.66
49 3 99 32 21.99
64 3 84 27 26 .39
25 4 136 33 20.45
36 4 124 30 20 .34
49 4 111 27 21.94
64 -4 103 25 26 .99
25 5 154 30 21.79
36 5 139 27 21.29
49 5 133 26 23. 61
64 5 129 25 30.00
25 6 172 28 23.39
36 6 160 26 23.32
49 6 149 24 25.08
64 6 142 23 29. 89
25 8 204 25 25.81
36 8 188 23 25.32
49 8- 174 21 26.66
64 8 166 20 31.17
25 10 228 22 29 .01
36 10 214 21 28.69
49 10 197 19 29.22
64 10 189 18 33.14

overrelaxation factor of 1.50 were observed with one exception. The

solution with a rebalancing frequency of three iterations and the

coarse mesh with 25 subregions was the fastest . The solution with

the coarse mesh of 36 subregions was only 0.03 sec~onds slower , about

0 • 2%

( Table IV contains the results for solutions using an overrelax-
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Table IV - .

t
coarse Mesh Results; Overrelaxation Factor = 1.70

Coarse mesh Iterations Number Number Total
Subregions Between of of Execution

Rebalancings Iterations Rebalancirtg Time (sec)

NA NA 376 0 40.81
25 3 102 33 16.66
36 3 96 31 17 .30
49 3 98 32 21.25

• 64 3 83 27 24.68
25 4 123 30 18.57
36 4 111 27 18.18
49 4 103 25 19.90
64 4 95 23 24.63
25 5 134 26 18.85
36 5 123 24 19.06
49 5 123 24 22. 12
64 5 12-3 24 27.94
25 8 172 21 22.31
36 8 160 20 21.86

- - ( 49 8 151 18 23.31
64 8 150 18 28.33
25 10 194 19 24.47
36 10 184 18 24.08
49 10 175 17 25.27
64 10 166 16 28.72
25 15 - 231 ].5 27 .79
36 15 217 14 27.01
49 15 207 13 27. 69
64 15 202 13 31.06

ation factor of 1.70. Trends similar to those observed for overrelax-

ation factors of 1.50 and 1.60 were again obtained . The coarse mesh

with 25 subregions was faster than the other coarse meshes for rebal-

ancing frequencies of three and five iterations , but not four itera-

tions. The coarse mesh with 36 subregions was still the fastest of

( those solutions with a rebalancing frequency of 4 iterations . The 
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Table V

Coarse Mesh Results ; Overrelaxation Factor = 1.80

Coarse mesh Iterations Number Number Total
Subregions Between of of Execution

Rebalancings Iterations Rebalancing Time (sec)

NA NA 231 0 25.04
25 3 108 35 17.37
36 3 112 37 19.64
49 3 113 37 25.57
64 3 107 35 28.68
25 4 127 31 19.45
36 4 114 28 18.83
49 4 111 27 21.70
64 4 107 26 26 .43
25 5 125 24 17.67
36 5 119 23 17.83
49 5 122 24 21.11
64 5 128 25 27. 48
25 8 139 17 18.06

- 36 8 131 16 17.70
- (. 49 8 127 15 19.23

64 8 126 15 23.33
25 10 142 14 17.43
36 10 135 13 17.24
49 10 136 13 19.34
64 10 134 13 22 .58
25 15 - 165 10 19.55
36 15 156 10 19.00
49 15 156 10 20 .32
64 1! 147 9 21.67

fastest solution with an overrelaxation factor of 1.70 was the solution

with a rebalanc~ng frequency o~ three iterations and the coarse mesh

with 25 subregions .

The results of those solutions done with an overrelaxation factor

( of 1.80 are presented in Table V. The results with this overrelaxation
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factor differed from the previously discussed results in a number of

ways . The number of iterations required was not inversely propor-

tional to the number of subregions in the coarse mesh for all rebal—

ancing frequencies . The fastest solution was obtained with a rebal-

ancing frequency of 10 iterations , much lower than for the other over—

relaxation factors. One solution with the high rebalancing frequency

(3 iterations) was almost as fast as fastest. The occurrence of fast

solutions at lower rebalancing frequencies is believed due to the

proximity of the overrelaxation factor to the optimum of 1.84.

Table VI contains the results from solutions with an overrelaxa-

tion factor of 1.84, the optimum. The solution without rebalancing

required less time than all but four of the solutions with this over-

relaxation factor occur at the slower frequencies. The fastest solu-

tion occurred with a rebalancing frequency of ten iterations and the

second fastest at a frequency of eight iterations. The number of

iterations required did not drop as rapidly as with other overrelaxa-

tion factors when the coarse mesh had more subregions . -

Solutions faster than the unrebalanced solution with the optimum

overrelaxation factor occurred with overrelaxatic- factors of 1.70 ,

1.80 , and 1.84. A solution w3.th an overrelaxation factor of 1.50 was

within 11% of the unrebalanced solution with the optimum overrelaxation

factor . A solution with an overre].axation factor of 1.60 was within

5% of the time for solution with the optimum overrelaxation factor and

no rebalancing . These results indicate that a problem can be signifi-

cantly accelerated even if the optimum overrelaxation factor is not

known • These solution times also indicate that the time of solution
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Table VI

Coarse Mesh Results; Overrelaxation Factor = 1.84

Coarse mesh Iterations Number Number Total
Subregions Between- of of Execution

Rebalancings Iterations Rebalancing Time ‘sec)

NA 
- 

NA 164 0 17.80
25 3 134 44 - 21.44
36 3 122 40 21.38
49 3 132 43 27.27

• 64 3 - 125 41 33. 27
25 4 142 35 21.06
36 4 124 31 19.90
49 4 127 31 23.93
64 4 132 33 30.46
25 5 127 25 17.62
36 5 128 25 18.80
49 5 127 25 2l.30~
64 5 144 28 30.25
25 8 148 18 18.94
36 8 129 16 17.38( 49 8 - 126 15 18.71
64 - 8 123 15 21.92
25 10 133 13 16.73
36 10 133 13 17.45
49 10 131 13 18.71
64 10 137 13 23.07

can approach or surpass the unrebalanced solution w~ th the optimum

I 
- overrelaxation factor.

If the optimum overrelaxation factor is known , it will solve

the problem almost as quickly as the best rebalanced solution. The

best solution required 16.66 seconds . The unrebalanced solution

with the optimum overrelaxation factor took 17.80 seconds. This is

about a 7% increase. Because the rebalancing frequency and coarse
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mesh size which give the fastest solution cannot be predicted, solving

with the optimum overrelaxation factor, if knowh , is a good stratsgy .

In genera]., the suggestion of Wachspress (Ref 9:275), that the

number of subregions in the coarse mesh be about the square root of

the number of node points, is borne out. In this case, the coarse

• mesh with 36 subregions was closest to the square root of the number

of fine mesh points . This size coarse mesh usually provided the

fastest solution of all the different coarse meshes . This size coarse

mesh provided the second fastest solution if not the fastest . When

the optimum overrelaxation factor is not known , solving using rebal—

ancing and a coarse mesh with about as many subregions as the square

root of the number of mesh points would be part of a good strategy

for solution .

The rebalancing frequency which gave the fastest solution , varied

with overrelaxation factor . The frequency that gave the fastest re-

sults was three iterations , when not near the optimum overrelaxation

factor . As for those solutions , when near but not at the optimum

overrelaxation factor , three iterations still give fast solution. When

at the cptimuin overrelaxation factor , a lower rebalancing frequency

gives a faster solution than the three iteration frequency . Estimating

the optimum overrelaxation factor will make the choice of a rebal—

ancing frequency easier. When near the optimum overrelaxation factor ,

a frequency of eight or ten iterations would be a good strategy. When

a good estimate of the optimum overrelaxation factor cannot be made,

as in most cases , a high frequency , about three would be part of a

good strategy for a fast solution .

The time to solve the larger system of equations for the rebal—

ancing coefficients, when the coarse mesh has more subregions, must
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be weighed against the reduction in the number of iterations . The

effect of the size of the coarse mesh on the time needed to rebal—

ance can be seen in the solutions done with an overrelaxation factor

of 1.84 and a rebalancing frequency of 10 iterations . The same number

of rebalancings was done and nearly the same number of iterations was

done , but the time for solution increased with the size of the coarse

mesh .

- The maximum error vs the number of iterations was plotted for
•

all solutions using rebalancing . Selected plots are presented in

Figures 15 through 22; the remaining plots are in Appendix B. The

unrebalanced solution is plotted with each family of curves for com-

parison.

The unrebalanced solutions all approach a straight line on the

- - ( semi-logrithmic plots . The rebalanced solutions all show induced

errors each time a rebalancing is done. This induced error along with

the iteration scheme error are reduced quickly after rebalancing.

This effect gives the spikes , which are especially apparent in Figure

15. For those solutions with low rebalancing frequencies (Fig 15 and . 

-

17) , the maximum error approaches a straight line in between rebal-

ancing spikes . Those solutions which are rebalanced more frequently

(Fig 16 and 18) , do not show the straight line , and have smaller re-

balancing spikes .

These effects are due to excitation and suppression of the eigen—

vector components by rebalancing . When the system is rebalanced , high

- 
frequency eigenvector component are excited and low frequency eigen-

vector components are suppressed . The excitation causes the increase

in error , and the suppression of low frequency eigenvector components

-

~ 

~0 
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causes the rapid decrease in the error . The normal iteration process

allows the suppressed components to return after a number of itera-

tions . This causes the curves to approach a straight line again .

The rebalancing frequencies which are more successful are those

which rebalance before the straight line is apparent.

- - The error induced is lower when rebalancing is done more often .

This is due to lingering suppression of some of the eigenvectors that

might otherwise be excited .

An interesting effect occurs during the solution using the optimum

overrelaxation factor and no rebalancing (Fig 21) . The error in this

case reaches a point where it is not reduced by further iterations for

a period and then is redu”ed very rapidly . This also occurs with the

rebalanced solutions at the same point . A siiv -~.1ar effect occurs for

the rebalanced solutions with an overrelaxation factor of 1.80. This

behavior may be due to an eigenvector excitation and suppression due

to the optimum or near optimum overrelaxation factors. The use of the

optimum and near optimum reduces the accelerating effect of coarse

mesh rebalancing . This can be seen when comparing Figures 20-22 with

Figures 15—19 . The curves with the higher overrelaxation factors have

virtually no spikes in some cases and the curves are close together.

The solutions with nonoptimuin overrelaxation factors have distinct

spikes and show an effect from different coarse mesh sizes .

Nakamura (Re f 4) predicted that use of the optimum overrelaxation

factor would destroy the effects of rebalancing . This was found to be

true in part ; the accelerating effect was reduced but was still present

when the optimum overre laxation factor was used. tn addition, this

study showed a change in the best rebalancing frequency with overrelax-

ation factor.
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V. Conclusions and Recommendations

Conclusions

From the results of the three different scanning techniques, it

is concluded that the scanning of known boundaries first and the sub-

sequent ordering of the simultaneous equations does transfer boundary

effects into the mesh at a rapid rate. The scan which produced the

greatest reduction in the number of iterations was the spiral scan .

• The two boundary scans tested both required more computer execution

time than the classic serial scan , even though fewer iterations were

required. The number of iterations alone is not an accurate measure

of the efficiency of a solution method .

The solution of a problem using coarse mesh rebalancing and

( arbitrary overrelaxation factors can result in solutions that required

computer execution times similar to the solution with the optimum

overrelaxation factor. This precludes the necessity of finding or

approximating the optimum overrelaxation factor. If, however , the

optimum overrelaxation factor is known, it should be used for the solu-

tion and the iteration scheme not rebalanced . This conclusion is made

because little improvement is possible over the time with the optimum

overrelaxation factor , the factors which would improve the time fo~

solution cannot be predicted accurately , and negative effects are very

likely with rebalancing and the optimum overrelaxation factor.

The size of the coarse mesh , when coarse mesh rebalancing is

applied , should be sized to have about as many subregions as the

square root of the number of node points in the fine mesh .
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Recommendations

The plots of maximum error versus number of iterations show a

steep slope immediately after rebalancing , and a lesser slope as iter-

ations continue. Monitoring this slope might provide a method of

determining the best point to rebalance rather than the constant fre-

- - quency method used in this study. This would be most advantageous

when a large number of coarse mesh subregions were required.

This study was limited to one set of weighting vectors and one

set of partioning matrices. Many other combinations are possible,

and ~~uld be explored .

The convergence rates of the different scans varied from one scan

of the boundaries to another in Pearson’s study. This study showed

a convergence rate faster for the spiral scan rather than the modified

— serial scan . The determination that certain types , magnitudes , and

ratios of boundary conditions can cause one boundary scan to converge

faster than another could form an area of further study of the scanning

technique . 
- 

-

(
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Appendix A -

Sample Coarse Mesh Rebalancing

Given the region shown in Figure 5, a coarse mesh is imposed and

the points partitioned by four partitioning matrices.

P1 — diag { l l OO l l 0 0 0 0 0 0 0 0 0 0}  - (85)

P2 diag { O O l l O O l l 0 0 0 0 0 0 o o }  (86)

P3~~~diag { 0 00 0 0 0 0 0l 1 o o 1l o o }  (87)

P4 diag {0 0 0 0 0 0 0 00 0 l l o o l ] .} (88)

These satisfy the requirement that the partitioning matrices sum to

the identify matrix .

The weighting vectors are chosen as(

~~~~ 
(82)

—

The weighting vectors have the same elements as the main diagonals

of the corresponding partitioning matrices in this case .

A matrix for the fine mesh problem could be

4 — 1  —1
—l 4 — 1  —l

— 1- 4—1 —l
—l 4 —l

—1 4— 1 —l
—l —l 4 —l —l

— 1 —l 4 —l —l = A (90
—l . — 1 4  —l

—l 4— 1 —l
—l —l 4—1 —1

—3. —l 4— 1 —l
—l — 1 4  —l

—l 4—1
—1 —1 4—1

—1 —l 4— 1
—l —1 4
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The given m atrix A is multiplied by each partitioning matrix.

— 1 0  ~~~~~~~~ (9 1)

The four different matrix productes are each multiplied by the
.—

current iteration vector. For example ,. - 

-

( 4T1 -T2 -T5

— T 1 + 4 T2 -T6

- T 3
- 0

— T 1 + 4 T 5 — T 6 — T 9
- — T 2 — T 5 + 4 T 6 — T 10

F t - 
(92)

—

-T

0
- 

0

0
(-

pp

- 0

0
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The required scalar multiplication is then carried out with each

of the four vectors and each of the four weighting vectors .

(w ,, A P1 (4  t1 - - + (-  t, ~4t~ 
- t~ 

)

• ( t, •(*j~~
. 
t 6 

- i, ,) ê ( t ~g .tç t 4ç  ç)  ~~

This number forms one of the 16 elements of an 4 x 4 matrix

which will be used to determine the rebalancing factors. Each product

of and A P.1 T yields the element Bk l  of the new matrix

which will be called B.

Scalar multiplication is then carried out with the weighting

vectors and the known vector . These multiplications yield four ele-

ments for a new vector , ~~ , which will be the known vector in the

( coarse mesh equation .

A matrix equation has been formed . A 4 x 4 matrix and a vector

of length 4 have been formed. The solution of this matrix equation

provides another vector of length 4. This vector contains the rebal—

ancing coefficients , each of which corresponds to one subregion in the

coarse mesh . Each component of the iteration vector is multiplied by

the corresponding rebalancing factor and rebalancing is done . The

new iteration vector is returned to the iteration scheme and iteration

continued until convergence occurs or another rebalancing is done.

(

~
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~ 
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Appendix B

Plots of Maximum Error vs Number of Iterations
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