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PREFACE

And God said, “Let there be light . . . and le~ it be broadband.”

The desire to image distant objects illuminated by naturally occur-

ring (I.e., white) light provided a primary motivation for this work.

The analysis of a white—light shearing interferometer necessitated the

development of a coherence model whIch would adequately describe the

interference of this so—called “incoherent light.” Analysis of the

Interferometer is presented as an application of the broadband field

model developed in Chapter tI.

I would like to thank my sponsor Donald W. Hanson, Rome Air

Development Center (OCSE), for Initially providing me with this

interesting problem, and for continuing to support me throughout the

study. I also gratefully acknowledge Professors Donn Shankland and

Peter Maybeck for serving as readers, and for contributing their comments

and constructive criticism to the final draft.

I would like to especially thank Captain Stanley R. Robinson for

ably advising me on the thesis, and for providing much appreciated gui—

dance and motivation throughout the study. His interest in the problem,

as well as my personal development, had no small part in sustaining my

enthusiasm throughout these past months.

Paul S. Idell
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ABSTRACT

A free—space propagation model for broadband optical fields is

developed based on a Karhunen—Loéve (1(L) expansion of the time—varying

portion of a coherence separable broadband optical envelope. For long

characterization intervals it is found that the elgenfunctions of the KL

expansion are approximated by complex exponentials of a Fourier series

expansion; the corresponding elgenvalues are approximated by samples of

the temporal power spectrum, sampled at the harmonic frequencies of the

Fourier series expansion. The resulting modal expansion provides an

intuitively simple interpretation of the propagation of broadband fields

and allows the output f ield correlation to be easily calculated.

£ The propagation model is applied to the analysis of a lateral

shear AC interferometer, which has been used to measure the spatial phase

vaz~iations of a white—light optical field envelope located at its input

aperture. It is found that the interferometer’s operation for broadband

fields causes the phase which is measured by the interferometer to be

related to a spatially filtered version of the aperture field. The effect

of this spatial filtering on the phase measurement is studied for aperture

fields with arbitrary spatial coherence.

Finally, the propagation model is applied to the shearing interfero—

meter’s operation as a wavefront sensor in a phase—compensated imaging

system, where the phase of the aperture field envelope has been disrupted

by atmospheric turbulence. The turbulence—induced phase perturbation is

modeled as a unit—modulus phase screen introduced at the aperture plane

.1
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of the interferometer for each temporal mode of the field expansion. The

space—time separability of the source field allows the visibility effects

of extended source distributions on the interferometer ’s operation to be

analyzed separately from the spatial filtering effects of the measurement

process due to broadband source emission. The interference fringe visi—

bility is discussed for uniform and complex source radiance distributions,

and the interferometer phase measurement is evaluated for typical phase—

compensated imaging applications.
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COHERENCE PROPERTIES OF BROADB/ i’) OPTICAL FIELDS
WITH APPLICATIONS TO

WHITE-LIGHT SHEARING INTERFEROMETRY

I. Introduction

Atmospheric turbulence, caused by random fluctuations in the ref rac—

tive index of air, degrades the imaging capability of ground—based astro-

nomical telescopes. As light from the source propagates down through the

atmsophere, turbulence tends to distort the shape of the optical wave—

front as well as cause intensity variations across the wavefront (Ref

1:46—48). Intensity variations are caused by a random lensing action

and give rise to scintillation and the twinkling of stars. The major

effect on insage quality, however, is due to the random fluctuations of

the optical phasefront. In long—exposure telescopic photography the

attainable resolution is turbulence limited, rather than diffraction

limited, to about two seconds of arc (Refs 2 and 3).

Recently much interest has developed in the use of predetection

phase—compensation for improving the quality of images distorted by

atmospheric turbulence (Ref s 4, 5, 6, and 7). In the system described

by Hardy, et al. (Ref 7), real—time phase—compensation is accomplished

by correcting the optical wavefront at the imaging system’s input aperture

with a monolithic piezoelectric mirror. The wavefront deformation at the

input aperture is determined with the use of a lateral shear AC interfero—

meter (Ref 8) which measures the wavefront tilt of the field at several

locations in the aperture plane. The operation of this interferometer

as a vavefront sensor in atmospheric correction systems Is also discussed

in Refs 9 and lO.

1 -
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In addition to atmospheric compensation for imaging applications,

there exist other active optic systems for which real—time correction of

wavefront aberrations is required (Ref s 11, 12, and 13). As a part of

these systems, the lateral shear AC interferometer may be used to mea-

sure wavefront aberrations introduced by either surface deformations in

the optics or fluctuations in the transmission medium. A broad overview

of current active optic systems, including descriptions of various wave—

front sensors and wavef rant correction devices, can be found in Ref 10.

Several detailed articles on the current theory and application of active

optic systems also appear in the March 1977 issue of the Journal of the

Optical. Society of America.

At this time the operation of the shearing interferometer men—

tioued above has been analyzed with respect to its compensated imaging

applications and for limited classes of input fields. A description of

the interferometer’s operation for more general aperture fields is needed.

Furthermore, since sources of primary interest in astronomical imaging

applications are illuminated with naturally occuring light (e.g., sunlight),

the wavefront which must be measured by the interferometer is the wave—

front of a white—light (temporally broadband) aperture field. The opera-

tion of the shearing interferometer for extended, broadband sources is

not well understood .

Problem

The object of this study is to provide a clear and concise explana—

tion of how the lateral shear AC interferometer measures the wavefront

slope of a white—light aperture field. The effect of broadband light on

- í
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the interferometer phase measurement is to be determined. Of particular

interest to its application in compensated imaging systems, a unified,

wave—optics description of the interferometer with regard to broadband,

extended sources is to be given.

Approach

This paper presents a description of the lateral shear AC interfero—

meter based on a model developed for the free—space propagation of coherence

separable, temporally broadband optical fields. By definition, fields which -

are coherence separable are those whose space—time correlation factors into

a product of a spatial correlation and a time correlation. Coherence

separability allows the input f ields to be simply represented, and lends

tractability to the mathematics. However, because the spatial part of a

source field represented in this manner is independent of time, attention

is restricted to sources which do not move and whose illumination (or

luminance) is time—invariant. Sources must also be assumed to be perfectly

diffuse (i.e., Lambertian), so that their emission spectr~in is not a func-

tion of viewing angle.

By temporally broadband it is meant that the source emission spectrum

is broad with respect to its medians wavelength——for the white—light appli—

cations which are considered in this paper, the optical fields are assumed

to range over the entire visible range, nominally 0.4 to 0.7 i~m. The

specific functional form of the temporal power spectrum is not specified,

although the spectrum is assumed to be smoothly varying over the visible

range. The median wavelength of white—light is asst’~med to be 0.55 iim.

t
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In Chapter II a free—space propagation model for broadband optical

fields based on a modal expansion of the time—varying portion of the field

is developed. The temporal and spatial variations in the optical field

are modeled as complex random processes, where the bandwidth of the sta-

tionary time process corresponds to the bandwidth of the visible spectrum.

Spatial variations of the input field are assumed to be independent of

time so that the space—time field correlations are coherence separable.

Using the broadband propagation model , the output f ield correlation due to

broadband source fields is calculated and output field coherence is spe-

cialized for sources with special cases of spatial coherence.

The broadband propagation model is applied to the shearing inter—

ferometer optics train in Chapter III , and the interferometer output

signal for x—shear is determined. To simplify the analysis, diffra ction

effects due to f inite lens size are ignored , all optics are assumed to be

perfectly transmissive and aberration—free, and the lenses are assumed

to be apochromatic. The phase which is measured by the interferometer is

shown to be related to the phase of the spatial part of the complex aper-

ture field envelope. The effects of white—light on the aperture field

phase measurement, as derived from the interferometer output signal, are

shown for aperture fields with arbitrary spatial coherence.

Finally, in Chapter VI the shearing interferometer phase measurement

is determined for an aperture field due to an extended, white—light source

viewed through atmospheric turbulence. The source field is assumed to be

coherence separable, corresponding to that reflected by a perfectly diffuse,

stationary object illuminated by white light. The source is also assumed

to be distributed and spatially incoherent as well as being temporally

~~~~- ~~~~
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broadband. The optical phase distortion caused by atmospheric turbulence

is modeled as a multiplicative phase fac tor introduced at the aperture

plane of the interferometer for each wavelength. Validity of this model

is discussed in detail. Fundamental limitations on interference fringe

visibility and phase measurement, due to source radiance distribution and

emission spectrum, are discussed.

Functional No tat ion

This section introduces a standardized set of notation which is used

extensively throughout the paper.

Propagation Geometry. All optical fields are defined in planes P~

consisting of points — (xj,yi
) of a right—handed rectangular coor-

dinate system (x ,y,z). The propagation of fields is assumed to be in the

( positive z—direction. Planes and points on them are denoted by a sub-

script indicating the plane’s position on the z—axis. For example,

plane P 1 consists of points ~~ — (x1,yj) for which z — z1 . Fields

def ined in planes are denoted by the subscript identifying the plane,

e.g., optical f ield U 1 1 , t) is located at plane P 1 containing points

— (x1,y~)

Susm~ation. Unless specifically noted in the text , all sutmnations

range over all integers denoted by their index. For example;

~ 
X - (l l)

Integrals. All single dimensional integrals are denoted by an

integration symbol followed by the differential of the variable being

integrated. Two—dimensional integrals are denoted by two integration

C symbols followed by the differentials of the integration variables.- -j . p. __.__~ .-

~~~~~~ 
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Integration over a plane containing points (x~ ,y~) may be abbre-

viated by a single integral sign followed by the differential dr — dx dyI i
Unless the limits of integration are explicitly written, the range of

integration is doubly—infinite. For example

dr1gG~) . 1J d x i fdy ig ( x i , yl )  (1—2)

denotes the doubly—infinite, two—dimensional integral of the function g

over points 
~i — (x i ,y i) in plane P 1.

Fourier Transforms. Two—dimensional Fourier transforms are doubly—

infinite integrals defined in the following way :

F~~,{g(r)} — Jd~~gG~
) exp [_J2n(f

~ x+fyy) ]  (1—3)

where F ( •}  denotes the Fourier transform with respect to the variablesxy 
-

x and y , where ~ — (x,y) ; and 
~x 

and f~ are the transform varia-

bles associated with x and y , respectively. The inverse Fourier

transform is defined in a similar manner:

F~~f
{g(f)} — Jdi ~(i)exP[+i21r(f~x+f~Y)] (1—4)

where F~ ~ 
denotes the inverse Fourier transform with respect to

x y

variables and f~ , when f - ; and x and y are the

space variables associated with the transform variables and f y ~

respectively. One—dimensional Fourier and inverse Fourier transforms are

defined in a manner similar to that above:

F
~
{g(x)} — Jdx g(x) exp[—j 2irfx] (1—5)

F;~g(f) } - Jdf 
: i 2

~~~

] (1-6)

_______________ _____________ 
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II. COHERENCE PROPERTIES OF BROADBAND OPTICAL FIELDS

In this chapter the spatial coherence properties of broadband optical

fields are investigated based on a modal expansion of the time—varying

part of the field . Although results presented here are derived for spe-

cific application to white—light optical syatems in the visible (0.4 to

0.7 im), the models developed are sufficiently general and may be applied

to a wide class of broadband optical and infra—red systems. The input

fields are assumed to be coherence separable, and the power spectra of the

time—fluctuations are assumed to be smooth over all frequency ranges on

the order of f ’, where T is the characterization interval of the

temporal process.

Complex Field Envelope

Let Ui (ri,t) represent the complex field envelope of a temporally

broadband (white—light) optical field propagating along the positive

z—axis. The field is defined in a plane P1 located at z — z1 con-

taining points 
~~ 

— (xi,yi) . If the temporal fluctuations of the field

are centered at optical frequency f0 , the scalar electric field fluc-

tuations of the electro—ma gnetic field may be written (Refs 14: 494—499;

15:12)

E i (r i, t) Re{U j (r1, t )exp(—j 2ir f 0t]} (2—1)

where E i (r 1, t) is the normalized scalar electric field given in volts

per meter per ; Re ( •}  means “the real part of; ” and f 0 — c/A 0 ,

when c is the speed of light in vacuum, and A 0 is the median wave-

length of the light.

7
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For simplic~.ty of the model , the spatial variations of U1 (r 1, t)

are assumed to be independent of time, and the f ield is def ined to be

coherence separable:

Ui(ri,t) — ui(ri)w(t) (2—2)

where u1(~ 1) represents the spatial part of the input field and w(t)

is the broadband, time—varying portion of the field. Strictly speaking,

this coherence model is applicable to source fields whose spatial varia-

tions are constant for all time. This restriction can be loosened some-

what for the case where the spatial variations are constant over time

intervals comparable to the characterization time T of the temporal

process. As a convention ui(ri) is assigned units volts per meter

per I’I  ; v(t) is dimensionless.

The spatial and temporal parts of the optical field uj ri) and

w(t) are assumed to be complex, zero—mean random processes which may be

represented in terms of their real and imaginary quadratures as

— ulR(rI) + ju11(~ 1) 
- 

- 
- - (2—3)

and

w(t) — w
R
(t) + jw1

(t) (2—4)

where uiR
(rl) and ui1 i) are the real and imaginary parts, respec-

tively, of the complex random process uj(ri) ; and w
R
(t) and w

1
(t)

are the real and imaginary parts of w(t) . If ui ri) is assumed to have

identically distributed, but uncorrelated quadratures , the second moments

of u 1(~~1) may be written

- R1G~1,~ 1) (2-5)

_ _  -~~~~~~~~~ -~~~~- - - - - —  _ _ _ _ _ _ _ _
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and

— 0 (2—6)

where Ri (r 1,rI) is called the spatial correlation function, (.) denotes

an ensemble average, and * denotes the complex conjugate. Similarly,

if w
R
(t) and w

1
(t) are assumed to be identically distributed and

uncorrela ted, the second moments of the complex random process w( t) are

(v(t)w*(t~)) — R(t,t) (2—7)

(w( t)v(t~~ — 0 (2—8)

Since the exact form of the spatial or temporal parts of the input

field are not known, it is reasonable to model them as complex random

processes——if for no other reason than a lack of better information. Also,

since for any naturally occurring phenomenon it would seem unreasonable

t~ assume that one quadrature should take precidence over the other, the

random processes are assumed to have identically distributed quadratures.

Furthermore, if w(t) is assumed to be stationary, the correlation

of the temporal fluctuations of the field may be written

R
~

(t ,t )  — R
~

(t_t i — R
~
(r) (2—9)

R (-r) — F
f
1
-(S (f)} (2—10)

where t — t — t , F 1 {~~} denotes the inverse Fourier transform with

respect to f , and S (f) is twice the power spectrum of either w
R
(t)

or w1
(t) . Henceforth, the temporal correlation is assumed to be sta—

tionary as defined by Eq (2—9). The space—time correlation or mutual

9



correlation function of the broadband field (Ji(ri,t) is defined as

r1(~1,~f,t,t~) - ~~~~~~~~~~~~ (2-11)

-

— 
<Ul(~

l)u
~
G
~
f
~~ 
(w( t)w*(t)) (2-12)

— R1(r1,rf)R (r) (2—13)

Therefore, the space—time correlation of a coherence separable field

factors as the product of the spatial correlation function and the temporal

correlation of the field.

For typical white—light applications, the spectral content of w(t)

may be considered to range between 0.4 and 0.7 im, corresponding to a

temporal bandwidth ~f equal to 3 x l01~ Hertz. For convenience, the

power spectrum S (f) will be nornalized, so that

- 

fdfS
~
(f) — 1 (2—14)

Thus, all the power in the complex field is assigned to the spatial part

of the field envelope ui(ri) . A representative broadband power spectrum

S (f) and its corresponding correlation function R (-r) are sketched in

Figure 1, where B is the nominal temporal bandwidth defined by

B — 4~f (2—15)

the coherence time of the complex temporal process is approximately given

by

- ç
10



(a)

(b) 

.
_

R
w~~~~~~~~~~~ ~~~~~~~~~~~~

Figure 1. (a) A Typical Broadband Temporal Power Spectrum S (f) and
(b) Its Corresponding Correlation Function R

~
(r)

Modal Expansion of Complex Field Envelope

In this section a modal expansion of the time—varying portion of the

complex field envelope w(t) is developed . A Karhunen—Lodve (KL) expan-

sion is used so that the coeff icients of the expansion are uncorrelated 
-

over the characterization interval. For long characterization times, it

is shown that the basis functions of the KL expansion can be approximated

by complex exponentials, providing an intuitively simple interpretation

of the propagation of broadband fields.

C
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Modal Expansion of w(t) . Consider the following modal expansion

of the complex random process w( t) along a complete orthonormal(CON)

set of basis functions {+ (t)} over a finite time interval [— ~ ,

N
w(t) — l.i.m. ~ w~~~(t)N-’- ~ n~~N

T Tfor —~~~~< t < ~~ (2—16)

T

where wn — 4 J dt v(t)+~(t) (2—17)

“l.i.m.” denotes limit in the mean, implying a mean—square convergence

of the sum (2—16), and a is the integer index of the ~~~ temporal mode.

( Note that {~~(t)} is a set of complex functions yet to be specified.

Also, since v(t) is assumed to be a zero—mean , comp lex random process

( v }  are zero—mean , complex random variables .

By proper selection of basis functiot-m{~ (t) } - 
it is possible to

expand w(t) so that the coefficients of the expansion {W
n

} are pair—

wise uncorrelated :

<w
~v~t> - <w) (v) - 0 (2-18)

for n ~ n . The second equality comes about because the coeff icients

are zero—mean random variables.

A necessary and sufficient condition for the (w~} to be uncorre—

lated is that the basis functions (~~ (t)) are the solutions to the

Fredhoim equation (Ref 16:180) :

I 
-, - .-- -- .-

~~~

-

(

- 

12 
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T

T T 

~~ s~~(t) — J dt R
~
(t,t

~
) 
~n
(t
~~

for —~~ - < t < ~~- (2—19)

where 1 y }  are the real eigenvalues associated with the eigenfunctions

for all integers n —~~~n-< . The expansion of w(t) on a

CON set of eigenfunctions over an interval yielding uncorrelated coeffi-

cient is known as a Karhunen—Lo~ve (KL) expansion. If the basis functions

of (2—16) are solutions to (2—19) then the modal expansion of

v(t) is such an expansion.

Results from linear integral equation theory (Refs 17 :122—140;

18:242—246) state that any square integrable kernel R
~
(t,t ) of

(2—19) may be expanded in a series-

R
~
(t,t) — ~ y1~~~ (t)  +~~( t )

T Tfor — ~~
- - t,t <-1 (2—20)

where the convergence is uniform for — t ,t < . Eq (2—20) is

called Mercer ’s theorem. It can be shown (Ref 15:409) that if the

correlation function of a zero—mean, complex random process w(t) can be

expanded in a form (2—20), the modal expansion given in (2—16) will con-

verge in mean—square. Thus, for any correlation R
~
(t,t

~
) which is

continuous and bounded for — ~~~< t , t <-f , the modal expansion of v(t)

given in (2—16) will converge in mean—square to the process w(t)

Rigenfunctions and Eigenvalues for Long T. For stationary random

processes characterized over long time intervals [- f,
~ 

3, it can be

sham (Ref 16:205—207) that the eigenfunctions (+n(t)} and associated

13
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eigenvalues 
~~~~ 

which are solutions to the Fredholm equation (2—19)

can be approximated by

— exp[-i-j21T~~t]

T Tfor — -~~<t <-~ (2—21)

and .4 S ( ~~) (2—22)

where T is the characterization interval in seconds and S( -~~) is the

power spectrum of the complex random process w(t) , defined in Eq (2—10) ,

sampled at frequencies ~ Hertz.

The magnitude of T needed for the validity of the approximation

depends on how quickly S (f) changes near frequency f — . For

smooth spectra, long T means long compared to the reciprocal bandwidth of

the fluctuations of the optical envelope:

T >> -

~~~ (2—23)

For white—light applications the bandwidth B 1.5 x l0 1~ Hertz . There-

fore, for a characterization time T much greater than 6.67 x 10 13

seconds , the {$ (t)} of the expansion over time interval of length T

become the complex exponentials of a Fourier series expansion, and the

eigenvalues {y } corresponding to the eigenfunctions become samples of

the power spectrum S (f) evaluated at the harmonic frequencies of the

Fourier series expansion.

Thus, for long characterization time T , the eigenfunctions of the

KL (modal) expansion (2—16) may be approximated by complex e .ponentials,

(-
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and the expansion for w(t) becomes

+j2~~~t
w(t) .~~~w e

- T T
tor — -

~~- <  t <-~~ (2—24)

T
2 n

—j2~t—t
where w

n 
= 4 J d t  w(t)e 

T (2—25)

and the statistics of the process w(t) are such that the sum is assumed

to converge in mean—square as discussed earlier.

With regard to the above approximation, it may be noted that if the

random process is expanded in a Fourier series, it can be shown (Ref 19:94)

that the coeff icients of the expansion {w } become uncorrelated as the

expansion interval T gets long.

( Eigenvalue Statistics. The expected value of the energy of w(t)

in time interval [— 
~ , 

is def ined

ET 
— 
<j

dt w(t)w*(t~~ (2—26)

- T 
~ <w w*) 

(2-27)

where the modal expansion for w(t) has been used. Using Mercer’s

theorem (2—20), the mean energy of the process for long characterization

time T is

— 5
W~~~~T~~~ 

- (2—28)

Equating each term of sums (2—27) and (2—28) and using Eq (2— 18) yields

( , 
~~~~~~~~ 

- 4 S~(~~-) ~nn~ 
(2—29)
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where ,5 . is a Kronecker delta. Thus, for long characterization inter—
(_ tin

vals, the mean—square value of each expansion coefficient {w} is seen

to be just a sample of the temporal power spectrum evaluated at the

coefficient’s harmonic frequency.

Modal Expansion of the Optical Er.velope. From Eqs (2—2) and (2—24),

the complex field envelope of a coherence separable, temporarily broad-

band optical field In a plane z = z~ can be written

— —
Ui(ri,t) ~ u(rj) w e

T Tfor — t <-~~ 
- (2—30)

where the complex field envelope is taken with respect to a carrier at

optical frequency f0, as in (2—1). Furthermore, its mutual correlation

function can be written

= 
<U ~ i~t)u~~!~ti) (2-31)

- 
~ 
(ww

~> (
ui(~ i)u~Gi~~

exp[j 4~ (nt — nt )) (2—32)

for — f<T<~~ . Note that the modal expansion of w(t) allows the

ensemble average over time sample functions in the temporal correlation

to be replaced by a sum of expected values of random variables.

Since the modal expansion coeff icients have been chosen so as ~o be

pairwise uncorrelated (Ref Eq (2—29)), Eq (3—32) may be further simplified:

— 
~ 4 S ( ~~) RiGi,~ 1)exp[j2it~~(t — t)]

for — t . (2—33)
(
~

)
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The ~
th 

temporal mode of the optical envelope is defined by the ~
th

term in the series (2—30)

— — 
+j2ir~~t

Ui~ (ri~ t) u1(rl)w e

for — ~ < (2—34)

where Ul n (r 1, t) is the baseband representationof a monochromatic optical

field at frequency f = (fo — -~
) ; u~(~~) is the wavelength—independent

spatial part of the complex field; and {w
~
} is the ~th coeff icient of the

modal expansion for w(t) defined in Eq (2—25).

The importance of the modal expansion for the complex field envelope

given in Eq (2—30) is the following. Since Maxwell’s equations governing

propagation of electromagnetic waves for homogeneous, isotropic media are

linear in space and t ime, each ~th term in the expansion——or, ~th temporal

( mode——propagates individually. In terms of optical fields this means that

each temporal mode may be propagated as a monochromatic wave at frequency

f — f0— ~ . By superposition , the output broadband field is simply the

sum of all the individually propagated modes.

The free—space propagation of broadband optical fields using the modal

expansion developed above is discussed in the next section.

Free—Space Propagation Model for Broadband Optical Fields

Consider two parallel planes P1 and P2 separated by a free—space

propagation path of length Z as shown in Figure 2. The propagation of

monochromatic fields from input plane P1 at z — to output plane

at z z2 is governed by the Huygens—Fresnel integral (Ref 20:60)

which may be written

(: — 
jk0Z (2—35)

u2(r2) f ~~~~~~~~~~~~~~~~~~~~~~~~~~

17



Input Plane: P1

yl

~ / 
~‘ 

~ xl

— 

Output Pla:e: P2

Ui (ri,t) 
—

Input Fiel~~~~~~~~~~~~ 

~ 

~~~~~~~~ 

,

r2 

~ x2

. 4

Output Field

Figure 2. Free—Space Propagation Geometry

where ui(ri) is the complex field amplitude of the input field, u2(r2)

ii the field amplitude of the output field, xi — (x~,y~) is located in

. r2 — (x~,y2) is located in P2, k0 — , A 0 is the wavelength

of the light and Z — z2 — z1 is the distance from plane P1 to P2 in

meters.

18



In Eq (2—35) the paraxial (Fresnel) approximation has been used. For

many applications, the optical fields of interest are confined to a region

about the z—axis whose maximum linear dimension is small compared to the

propagation distance Z . For these situations, the Fresnel approximation

to the Huygens—Fresnel integral is very good. This form also allows the

computations associated with wave propagation and diffraction to be

greatly simplified, allowing a “systems” type representation of these

effects.

For a monochromatic field of wavelength A~ the Huygens—Fresnel

integral (2—35) can be rewritten -

jk~Z k— e 1 —  —
U2 (r2) 

~ jA~Z j dr1 U1 (ri)exp[j~~ -J r 2— r iJ 3

(2—36)

(
where k — .~1L (2 37)

and ui~~~ i) and u2
~
(r2) represent the complex input and output field

amplitudes at wavelength A

Using the modal expansion for a temporally broadband optical field

given in Eq (2—30), the output field mode U2~ (r2~t) due to a monochromatic

temporal mode at optical frequency f~ — ~~~~
- — f0 — at the input plane

can be written
jk~Z k

— 
J A Z  f dr1 U 1n (r 1, t)exp [j~j I r 2_ r 1I2 ]

for — t (2—38)

( — ;
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where A A 0 (‘(n) (2—39)

— — - F~(n) (2—40)

~(n) — 1 — -
~~~j  (2—41)

and Uln(rl,
t) is the ~

th 
temporal mode of broadband field envelope

U1Gi,t) located at plane P1 given previously in Eq (2—34) .

Note that both input and output field modes are baseband representa-

tions of the ~
th 

temporal mode at the input and output planes, respectively,

taken with respect to an optical carrier at center frequency f0 —

For broadband (white—light) fields, the output field U2(r2,t) can

be written as the sum of the individually propagated temporal modes:

~ U2~
(r~ ,t)

T Tfor ~~~ < t<j (2—42)

where U2 (r2,t) is given in Eq (2—38) and the sum converges in the mean.

For reference, Eq (2—42) is called the free—space propagation model for

temporally broadband optical fields.

Field Coherence Properties of Broadband Sources

The purpose of this section is to calculate the correlation of an

optical field at an output plane due to a temporally broadband source with

arbitrary spatial coherence. First, the output field correlation is cal-

culated using the broadband field propagation model developed in the

(
- 20



previous section. Using statistical models for the spatial coherence of

the source , results for the spatial correlation of the output field are

derived for spatially coherent and incoherent sources. Results for the

spatial correlation of broadband light, derived using the broadband field

propagation model, are compared to well—known results for quasi—monochromatic

fields.

Output Field Correlation. The source field, def ined in plane P1

is assumed to be coherence separable so that the input field envelope

may be written as in Eq (2—30):

U1G 1,t) ~ u1(r1)w e T 
(2—43)

where u1G1) represents the spatial part of the complex field and the

modal expansion for temporally broadband (white—light) fields has been

4 used.

Using the broadband field propagation results given in Eq (2—42), the

output field at plane P2 due to a temporally broadband optical field at

Pi is

jk Z
n

U2G2,t) — 
~ 

w~ exp[j24 t]

fdr1 u~(r~)exp[j -~J 
Ir2~~ 1 2] (2—44)

where Z is the distance between planes P1 and P2 in meters.

The correlation of the broadband output field can be written

- ( 
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r2G2,~~~,t,t-) = <J2(r2,t)U~
(
~~

,t
_

~~ 
(2—45)

— ~ (A ZY 24 S~(~~)exp[j27r~ (t—t )]

- Jd~ 1 Jdr I R1(r1,r~)

exp[j -~~~~~ ( I ~~2_ ~ 1I2 _ 
~~~~ 

2)] (2 46)

= ~ (A z) 2Jd~ l J d ~ f F 1 (~~1,~~~,t—t )

for — f < t < f  exp[j~~~ (l~ 2_~ 1J2 _ I~~~..~~I I 2 ) ] (2 47)

where

= 4 S (-~~)Ri( 1,~~)exp[j2ir -~ t] (2—48)

is the ~th temporal mode of the correlation of the source field given in

Eq (2—33). The output field correlation r2(r2,r~ ,t,t~) or the mutual

correlation function expresses the mutual coherence of light fluctuations

at points r2 and r~ in the output plane, where the fluctuations at

r~ are taken at time t , and those at r~ are taken at time t .

~patial Correlation of Output Field. The spatial correlation of the Out-

put field is calculated from Eq (2—47) when t — t —  -r — 0

- — — £ —

r2(r2,r2) 1 2(r2,r2,-r—0) (2—49)

— ~ (A~z)_2Jd~ l J d ~i r1~~G1,~~1)

k
exp(j~~~ (I~2_~1I2 _ I~~

_
~f I2 )]

for — <t cf (2 50)
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where 
-

— r1 (~1,~1) ~ r1 Gi,~f,t—o) (2—51)

— 4 Sw ( -
~

-)  R1(r1,rf) (2—52)

The output spatial correlation function r2G~2,~~) is also called mutual

intensity (Ref 14:508—510) of the output field. It expresses the spatial

coherence of light at two points r2 and r~ in the output plane when

both points are considere ’ at the same time. For white—light sources

Eq (2—50) is directly related to the fringe visibility of a Michelson

stellar interferometer (Ref 22:30) for extended, white—light sources with

arbitrary coherence properties.

Let the correlation of the spatial part of the source field be written

R1(ri,rI) ~~~~~~~~~~~~~~~~~~~ (2—53)

where j1 1G1,~~f) is defined to be the complex degree of coherence of the

source, such that spatiall y coherent sources are defined as those for

Pi i , I) — 1 (2—54)

spatially incoherent sources are defined so that

- 

- PiG1, I) — o G i — ~~1) (2—55)

Using Eq (2—53) for spatially coherent but temporally broadband sources ,

the spatial correlation of the output field may be written from Eq (2—50):

23
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r2(~2,~~) coherent
source

— ~ (A~z)~~~4 S~
(-
~~
)

J dr1 ~~~~~~~~~~~~~~~~~~~~~
J d~j ~~~~~~~~~~~~~~~~~~~~~~

for — f< t cf . (2—56)

For broadband,spatially incoherent sources Eq (2—50) becomes

r2(r2,r~) incoherent
source

( — (AnZY
~~4 S ( - ~~)

e~
”
~~fd~ i I1G1)exp[—j~~~ ~~i

-
~G~2—~~~)]

for _ f < t < f  (2—57)

k
where *..~ 

-
~~~~~ (I~ 2 I2 _ I~~I2) (2—58)

and I~(~~) = u1G1)u~(~ 1) (2—59)

is defined to be the intensity of the source in watts per meter squared.

Note that Eq (2—57) is an extension of the Van Cittert—Zernicke theorem

(Ref 14:508—511) for temporally broadband sources.

In particular , if the source is radiating quasi—monochromatic light -

at wavelength A 0 , the temporal power spectrum may be approximated by

- 
C- 

S( -~~) — T 6(n—0) (2—60)
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and Eq (2—57) yields the mutual intensity for an extended, incoherent,

quasi—monochromatic source derived by Born and Wolf (Ref 14:509) :

r2 (r2 ,r~) quasi—monochromatic,
incoherent source

— (A 0Z) 2 ei*0 Jd~ i iiGj)exp[—j~~ - ~1.(i 2—~~)]

(2—61)

where *0 — ( I ~~2 I 2 _ I ~~~~I 2 )

(2—62)

and A 0 is the median wavelength of the source radiation.

Note that for each temporal mode n the mutual intensity of the

light at the output plane is just as prescribed by the Van Cittert—Zernicke

( theorem. The spatial correlation for white—light, extended sources (2—57)

is, therefore, the sum of all the mutual intensities for each temporal

mode. Also, since the spatial variations of the source field are assumed

to be wavelength—independent, the contribution from each temporal mode is

weighted by the temporal power spectrum S
~
(f) evaluated at the appropriate

harmonic frequency.

Coherence Lenjth for Broadband Optical Fields 
-

Bringing the suin~ over temporal modes inside the integrals over ri

and writing

k — k 0 +~~~~ (2—63)
n f0T
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allows Eq (2—50) to be rewritten in the following form:

= (x0zY 2 
fd~

’
i fd~ I Ri (ri,rI)

1 2 - - 2R ~~~~ ( 1r 2—r l ( — 1r 2 —r 11  )

- exp[j 
~~ (I~ — ~ i I 2 _ ~~

_
~ I I 2 ) ]

T Tfor —~~~< t < ~~ (2—64)

where

Rw(t) = 4 ~~ ~2(n)S (~~)exp[_j2.irt(~~)]
n (2—65) 

-

For wide process bandwidth B and long characterization time T , the sum

over temporal modes may be approximated by an integral over v (Ref 16:207):

(
R (t) dv F 2(v) S

w(v)
exp[_j21rrv] (2—66)

— F ( ~ 2(v)S (v)} (2—67)

Vwhere F (v) — (1 — — ) and v has been substituted for — as the
0 T

integration variable.

Eq (2—64) indicates that the spatial correlation of a broadband field

can be calculated from a two—fold spatial integral over (1) the spatial

correlation of the source R i (r i, r!) and (2) the contribution from

differential path delays of all the temporal modes, written as R
~
( )

As shown in Eq (2—67) the differential path contribution to the spatial 
-

correlation can be approximated by the Fourier transform of a weighted

power spectrum. The relationship of the quadratic term F 2 (v) to a

typical power spectrum is shown in Figure 3.
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—B 
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B v (Hz)

Figure 3. Relationship Between Quadratic Term ~
2(v) and the Temporal

Power Spectrum S
~

(v)

Expanding

- 1 - + (1)2 (2-68)

and using the differentiation theorem for Fourier transforms (Ref 23:36) ,

R (r) may be written in terms of the first two derivatives of the temporal

correlation function R (-r)

- 

11
w(T) — R

~
(-r) — 

j2nf0 
• -

~~~~
- R

~
(-r) + 

(jwnf0)~~ ~~
2 Rw

(T) (2—69)

— R (t) + 
~
4— • ~~— R (r) — (2~f0)2 ~~7 R (-r ) (2 70)

where the correlation of the stationary, wideband process w( t) is given

by Eq (2—10). If the bandwidth B of S (f) is narrow enough so that

( c< f0 (2—71)
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for all temporal modes with significant energy, then ~
2(v) 1 , and

4

R ( T) R
w
(r) (2—72)

because the correlation functions considered here are even

F ( S (v) } — F ’{S (v) } — R (T) (2—73)

For any wideband power spectrum of practical interest R (t) tends

to drop off in magnitude for increasing argument (see Figure 1). This

tendency will cause a “windowing” effect in the integral (2—64). In

terms of spatial coherence, there exists regions in P1 (consisting of

points r 1 and rI ) and P2 (consisting of points r2 and r~ ) for

which the spatial correlation function r2(r2,r~) is negligible. If the

spatial correlation of the source is stationary for all separations

in the source plane, the output coherence F2(r2,r~) is also

stationary and may be written r2(I~2—~~I) . The separation PC 
= 1r2—r2 1

for which the output correlation function has significant value is called

the coherence distance.

Let the spatial correlation of the source be modeled as in Eq (2—53)

and assume the complex degree of coherence of the source P~ is stationary

in spatial coordinates (homogeneous)

R1(r1,r~) — Pi (pi)u1 (~ i)u~G1) (2—74)

where — r~i—~uI (2—75)

I
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The spatial correlation of the field U2 2 , t) can then be written

r2(r2,r2) = (A0Z) 2 I dr i j
dri ~

i i (pi)ui(ri)u~(r1)

1 2R [~~~— (1r 2—r lI _ Ir~~rII2)]

exp[j 
~

-
~

- 
~~~~~~~~~~~~~~~~~~~~

T Tfor — -~.<t < -i- . (2—76)

Special cases of the output spatial correlation function for source

fields having various combinations of emission spectra and spatial

coherence are given in Table I. Monochromatic fields are assumed to

have impu]slve emission spectra as given in Eq (2—60) . The spatial

coherence of coherent and incoherent sources are modeled by Eqs (2—54)

and (2—55), respectively.

In su~~ary , it must be noted that the output field correlations

listed in Table I are calculated for source fields which are assumed to

be coherence separable. Source fields which can be represented in this

manner are restricted to those emitted by a perfectly diffuse and sta-

tionary object whose spatial characteristics are independent of time .

Furthermore, since the output field correlation (Ref Eq (2—47)) cannot,

in general, be separated into a product of a spatial correlation and a

temporal correlation, the output f ield due to a coherence separable

source field is not coherence separable.

i
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III. APPLICATION OF BROADBAND FIELD MODEL TO THE
ANALYSIS OF A WHITE-LIGHT SHEARING INTERFEROMETER

A lateral shear AC interferoineter has been used in the measurement

of the phase—front of an optical wave. This chapter presents a descrip-

tion of , this interferometer ’s operation for broadband optical fields with

arbitrary spatial coherence based on the propagation models for broadband

optical fields developed in Chapter II. The study of the shearing inter—

ferometer is intended to demonstrate the use of the broadband coherence

model in the analyslé of a broadband optical system. The fundamental

limitations imposed on the wavefront measurement by the broadband nature

of the optical field are sought. As such, the analysis ignores -all dif-

fraction effects due to finite aperture size and all lenses are assumed to

be perfectly tranamissive and aberration—free.

The first section presents a general discussion of the interferometer

optics, summarizing results reported by Refs 7 and 10. The sections that

follow present the analysis of the interferometer using the broadband

coherence model. The phase which is measured by the interferometer is

shown to be related to the phase of the complex part of the aperture field

envelope. Results of this chapter show the effect of white—light optical

fields on the interferometer’s phase measurement. The median wavelength

of white—light A 0 is. assumed to be 0.55 pa.

Description of Interferoineter Optics

The lateral shear AC interferoineter has been used to measure the local

slope of an optical wavefront (Ref s 7, 8, 9, and 10). As shown in Figure 4,

the incoming wave is beamsplit into two similar channels, each consisting

- 
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Rotating
GratingInput Beam Detector

Field Splitter Lens Lens Array

:~ B
x channel

Measurement Output
Plane X—cHANNEL Signals

Rotating
Grating

Lens Lens
Mirror 

_____ _______ __________

y—channel

( Y—CHANNEL Output
Signals

Figure 4, Two—Channel AC (Heterodyne) Shearing Interferometer

of a pair of lenses, a rotating radial grating, and a detector array. The

purpose of each channel is to measure the wavefront slope along one of the

two coordinate axes of the measurement plane. Output signals from the

x— and y— channels can then be used to reconstruct a phase map of the two—

dimensional wavefront sensed by the interferometer.

The optics in each channel are configured as in Figure 5. The two—

dimensional optical field in the input aperture plane 
~a 

is denoted
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Li L2 Array, D

-
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-
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- I F~
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Figure 5. One—Channel Interferometer Optics -

(

U
a
(X•
~
t) , where r (x , y)  are points in plane P

5 
. The input aper-

ture of each channel coincides with the measurement plane shown in Figure 4,

so that the interferometer measures the phase of U
a
(r
a~
t)

The input field is focused onto a rotating radial grating C in

Plane P
g 

by a diffrac tion limited, chromatically compensated (apochromatic)

lens L1 having focal length Fi . By diffraction limited and apochromatic

it is meant that the lens will focus a plane wave located at P to a dif—• a
fraction limited spot at plane Pg for all wavelengths. The field at the

grating U ( r
8
,t) is chopped by the moving grating and focused onto a

detector array at plane 
~d by lens L2 . Lens L2 has focal length F2

and is assumed to be apochromatic and diffraction limited.
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The field chopped by the grating is diffracted , forming multiple

images of the input field U ( r ,t) on the detector plane. Each dif-

fracted image is shifted, or sheared, with respect to the next by an

amount

S 2 ? J Z  (3—1)

where s is the shear distance

P2 is the focal length of lens L2

d is the line spacing of grating (grating period)

A is the wavelength of light

The direction of shear depends on the coordinate direction the rotating

grading cuts the field in plane P
g

The radial grating is a circular glass disc with alternating clear

( and opaque radial lines extending from near the center of the disc to its

outer edge. If the grating has N opaque lines, the line spacing at a

distance R from the center of the disc d a 2irR/N . Since the grating

produces a square—wave transmittance at any radius it is also called a

radial Ronchi grating. For the x—channel of the interferoineter, the input

field is focused onto the grating so that the Ronchi rulings move across

the spot in the x—direction. The resulting diffraction causes the images

in the detector plane to shear along the x—axis. In the y—channel, the

radial lines cut the spot along the y—axis producing a y—shear in the

detector plane. Figure 6 gives a representation of the lateral—sheared

images of the input field for the x— and y—channels showing the zero , —1,

and +1 diffracted orders, Each. channel is constructed so that the focus

point on the grating is variable and the shear distances in the x and y

directions may be varied independently.
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Figure 6. Representation of Lateral Sheared Images in Detector Plane
for (a) x—shear and (b) y—shear Showing the +1, 0, and —l Diffracted

( Orders.

As the gratings rotate, the intensity pattern at each point in the

detector plane is modulated, producing an AC signal at the output of each

detector. The fundamental modulation frequency f 5 is given by

- f~~~~
_
d
& — (3—2)

where v
8 

is the linear speed of the radial grating at radius R in
centimeters per second

d is the grating period at radius R in centimeters

N is the number of opaque lines in the grating

is the angular speed of the grating in radians per second

As it is shown later , the fundamental frequency corresponds to the inter—

ference of the zero and +1, with the zero and —1 diffracted orders in the

i’
__ 

~~~~ 

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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t shaded region of the detector plane shown in Figure 6. If the square—wave

Ronchi grating is used, no other combination of diffraction orders produces

an interference pattern modulated at f5 . It is to be shown how the

detector plane interference pattern modulated at f relates to the phase

of a broadband input field U(r ,t)

Calculation of Detector Field

The propagation geometry for the x—channel of the lateral shear AC

interferometer is shown in Figure 7. The broadband field U(r ,t)

located in the input aperture (measurement plane) 
~a 

of the interfero—

meter can be expanded into temporal modes:

— — +j 2ir -~~tU (r ,t) = u Cr )w ea a an a n
n

T Tfor — t <-
~~ 

(3—3)

where ua n a) is the spatial part of the aperture field and the sum over

temporal modes n converges in the mean—square. Note that the aperture

field is decomposed such that the spatial variations of the field depend

on wavelength. As written in Eq (3—3) the aperture field is not coherence

separable. If for instance, the aperture field is due to a field which

had propagated some distance to the aperture plane, the output field

consists of a sum of individually propagated temporal modes (Ref (2—42)),

and the spatial part of aach mode is given by Eq (2—36) . To simplify

the analysis later in this chapter , it will be assumed at a later point

that the inpu t field is coherence separable , and as such, the spatial

variations of the aperture plane are the same for all temporal modes.

This assumption will allow the calculation of the phase of an aperture
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Figure 7. Propagation Geometry for X—Channel Interferometer Optics

field whose spatial content is independent of wavelength. If U
a
(r
a
,t)

were coherence separable, Eq (3—3) would be written

— — 
-

U
a
(ra,t) — u

a
(r
a
) 
~ 
wne

for — f < t < . ~ (3 4)

where u ( r ) is the wavelength—independent spatial part of the aperture

field. The discussion of phase measurement for a temporally broadband

field which is not coherence separable is presented in Chapter IV where

the interferometer is applied to the situation where the aperture field

has a phase which has been distorted by atmospheric turbulence.

Using the free—space propagation model for temporally broadband fields

expressed in Eq (2—38) , the ~~~ temporal mode of the optical field just

prior to lens L1 can be written
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• ik~Fi k

f U
~~~
(
~~~

,t) — A F  J dr U n(r ,t)exp[j
~J IrLj

_r
aI2)

T Tfor — ‘~~< t <~~- (3-5)

where 
-

— +j2ir~~t
Uan (r

a,
t) = uan(r

a
)w
n
e (3—6)

represents the ~th temporal mode of the aperture field, and U (~~ ,t)ti~ ti

is the nth mode of the field at lens plane 
~t 

j ust prior to thin lens L1

~pochromatic Lens Model. Following Goodman (Re f 20:81) , a lens per-

forms a quadratic phase transformation on the incident field. For a

white—light incident field U
L

(rL ,t) an apochromatic lens performs a

quadratic phase transformation on the broadband field in the following way:
(

u~~~ G1, t) — Ut ln
(rt l

$ t)exP [_i ):TF 1 
(x ,~ ’ +y~ 

) ]

T Tfor —~~~< t <~~ (3—7)

where U~ (r~ ,t) is the n
th temporal mode of the field just to the

1n 1

right of lens L1 . The nth field mode just prior to the grating in

plane Pg given by the U
gn

(T g i t) , is the result of propagating

U~ (r ,~ ,t) a d4stance F1 to the focal plane of the lens:
1n 1

UgnG~g~
t) — 

J A F 1 J d’
~t

Ut (~~~,t)exp[~~A
Ir
p i~~~~ I 2 ]

~~~~~~~~~~~~~~~~ (3—8)

j k~ 2P~ k
— exp(j 

~
-
~~

- 
~~~~ 

2]

J d~t1Ut1~
(r
~1~

t)exP E—J A~F 1 
rg
.r
L 1
] ~~—“
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By substituting Eq (3—5) into (3—9) and solving the integral over

assuming the lens is of infinite extent, yields

jk 2 F 1 k
U
gn

(r
g~
t) — 

J A F  Jdr Uan (r
a
,t)exp[_j5

~~ ~g ~~~

T Tfor — -~~-<  t • (3— 10)

Note that for each temporal mode, the spatial part of the grating field is

an exact two—dimensional Fourier transform of the input spatial field :

jk 2 F 1 —

U
g~
(T
g
) — 

J A F  Jdra 
uan a)ex

~~~
j 2w (-~-%).~~] (3—11)

— 
JA ~Fi 

exp [j k~2F i] Fx y {u an (r a)}

(3—12)

where uanGa) and U
gn

(T
g
) are the time—independent parts of the aper-

ture and grating fields, respectively; !xy~~~ 
denotes a two—

dimensional Fourier transform with respect to variables X and 
~a ~

and the transform is evaluated at spatial frequencies 
~~ 

— x
g

/ (AnFI)

and f
7 

— Yg/ (X nF1) . The broadband field at the grating is , therefore ,

the superposition of Fourier transforms defined for each temporal mode .

This result may be considered a white—light extension to the Fourier

transforming properties of F—F optical systems (Ref 20:86—87) where the

input field can be decomposed as in Eq (3—3). If the lens L1 were not

C apochromatic as defined, the t ransform results (3—li) and (3— 12) would not

hold for the field at grating plane Pg
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4. Rotating Grating Model. Since the radial grating is assumed to be

periodic in x
g 

for the x—channel of the interferometer, its transmission

function can be expanded in a Fourier series. The nth mode of the chopped

field just beyond the rotating grating U~~(Tg~
t) can then be written

U;(rg~t) = Ugn(rg,t) ~ 
GmexPEJ 21r

~~
(xg

_v
gt )]  (3—13)

where U
gn
(T
g~
t) is the n

th 
temporal mode of the optical field incident

on the rotating radial grating given in Eq (3—12)
if

j—in1 2 muC = 
~~

— e sin( y-) (3—14)

is the Ronchi (square—wave) grating coefficient of the mth diffrac ted
- order for all integers m ~ 0 , where G0 = ½

d — ~~~~ (3—15)

is the grat ing period of an N line radial gra ting at distance R from

the center of the disc, and

V
g 

— RO (3—16)

is the speed of the grating in the x
8

—di rection , 0 is the angular speed

of the grating in radians per second.

Note that the phase of the grating coefficients Cm given in Eq

(3—14) indicates an asymmetrical positioning of the grating with respect

to the x —axig at t — U . Specifically , a time reference may be defined

so that t — 0 whenever the position of the grating allows its Fourier coef—

ficients to be given by Eq (3—14) . This time reference is necessary for the

( extraction of the phase measurement from the interferometer output signal.

40



4. Detector Plane Field. Using the broadband propagation result for

apochromatic lens F—F optical systems similar to the one expressed in

Eq (3—10) , the ~~~ optical field mode at the detector plane U
d

(r d,t)

due to the broadband field U’(r ,t) is
g g

U
d
(.rd, t) = 

~~~~~ 
exp [.jk~2r2)

J dr
8 
U~~(r

g
,t)exp[—i .~~ r

d~
r
g
]

for — t . (3—17)

Combining Eqs (3— 10) , ( 3—13) , and (3—17) and carrying out the two—

dimensional integral over the grating plane Pg yields an expression

for the nth temporal mode of the detector field in terms of the aperture

field :
(

Udfl(1~d, t) = M C
m exp[j2k (F1+F2)]exp[—j2itmf t]

Uan[M(Xd
_ifl5O)

~
MYd t]

for —~~~< t <~~ (3—18)

where
M -

F2 (3—19)

is the magnification of the two lens, double F—F optical system, f5

is the fundamental modulation frequency of the detector field given pre-

viously in Eq (3—2)

— 
F~(n) — 

Aj~7i (‘(n) (3—20)

41



th
is the shear distance for the n temporal mode,and s~ is the shear

distance for the median wavelength A 0 , measured in the detector plane.

The expression for U ( r ,t) is given in Eq (3—6).

The detector field of the x—channel for each temporal mode a and

each diffrac ted order m is, therefore, a scaled and shif ted image of

the input f ield mode U ( r ,t) modulated at frequency mf
5 

. Note that

the modulation frequency and scaling of the field are independent of wave-

length. The location (or relative shear) of each diffracted order, however ,

depends on temporal mode——and therefore, on wavelength. The amount of

x—ahear for each diffracted order m is, from Eq (3—20)

A F 2
ms — m 

d 
(3—21)

The effect of this wavelength dependence on the interferometer ’s phase

measurement for aperture f ields with various states of spatial coherence

is shown in the last two sections of this chapter.

Following the propagation model for broadband fields (2—40) the

broadband detector field U ( r d, t) is written as the sum of all the

individually propagated modes:

ud
(r d,t) — 

~ 
u
~n

(r
~
,t) (3—22)

Analysis of Detector Plane Intensity Pattern

The light—intensity on the detector plane Id (rd, t) due to the

broadband field is given by

Id (r d, t) — <Ud (T dP t)Ud (r d, t)
> 

- (3—23)

— 
~ ~~~~~~~~~~~~~~~~~~ 

(3—24)



ç where n and n range over all significant temporal modes of the broad-

band process w(t) . Note that each field mode U
d

(rd,t) given in Eq

(3—18) is the sum of all the field orders in diffracted by the rotating

grating. The interference of all diffracted temporal modes must therefore

be written as a double sum over m . The detector plane intensity may

also be written

Id
(rd,t) = 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3—25)

where

Ud~~
(rd, t) = M G exp[j2k (F1+F2)]

• exp[—j 2 irmf t]

( 
Uan(MG~d

_ms
n
),t) (3—26)

th th
is the m diffracted order of the n temporal mode of the x—sheared

detector field. In (3—25) the indices m and m range over all integer

values for which the grating coefficients C
m 

and G~~ have significant

value. In Eq (3—26) the vector form of the shear is used so that

— (s ,O) indicates an x—shear of s for each temporal mode a

and no shear in the y—direction in the detector plane.

The ensemble field intensity can be greatly simplified. Note that

in the intensity calculation, the modal expansion of the broadband

process w(t) has reduced an ensemble average over the sample functions

to an expected value over a sum of random variables w~ and wn..

Using the fact that the modal expansion coefficients {w~ } are uncor—

related, as expressed in Eq (2—24), Eq (3—25) may be written:
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Id
(rd, t) — ~ M2 G

m
G~

_ expi_j2u1(m_m _)f
s
t]( m m

F
a

(M
ccmsn) ,

M(r
d
—In s

fl
))

(3—27)

where ~~~~~ ~ — 
~~~~~~~~~~~~~ 

,t~~ (3—28)

= 4 ~ ~~~ *a 
ra)

~1an~a )~ (3—29)

is the spatial correlation of the broadband aper ture field U ( r a~
t)

evaluated at points r and ra a

From Eq (3—27) it can be seen that the intensity pattern modulated

in time at frequency f results from the coherent addition of two

diffracted crders -m and m such that Im— m 1 = 1 . Using the Ronchi

grating coefficients {C} define’! in Eq (3—14), the intensity pattern

- ( modulated at f is calculated:
‘5 5

~d
(Td,t) — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
}

+
~~~

Re{exp[+j(2nfst_t)]ra
(M(r

d+3n
),Mr

d
)}

for — f< t <~ (3—30)

where .
~d(r d, t) is the intensity pattern at the detector plane at fre—

quency f 5 for x—shear , and the double sum over diffrac tion orders is

calculated such that I in—m ’I — 1 for all terms in the summation. The

intensity pattern 
~d
(Td,t) at each point (xd,yd) in the detector

plane is defined to be the x—channel output signal of the AC interfero—

meter.
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Each detected signal mode n is composed of two similar terms modu-

lated at frequency f . The first term is the result of the coherent

addition of the m = +1 and m = 0 field orders diffracted by the rotating

grating. This term will be called the “positive—shear” term because it

contains the correlation of the +1 diffracted order , sheared by distance

+5 in the detector plane, with the undiffracted field order. The second

term results from the interference of the m = —l and m = 0 diffracted

orders and is called the “negative—shear” term.

Since the spatial part of the aperture field mode is independent of

time, no additional frequency modulation is introduced into the detector

signal.

Phase Measurement for Coherence Separable Aperture Fields

In this section the interferometer phase measurement is derived for

aperture fields which may be assumed to be coherence separable. Such

fields which can be characterized by an expansion over its temporal modes

may be written as in Eq (3—4) . Following Eq (3—28) , the spatial correla-

tion of the coherence separable aperture field may be written

raG~~~
) - 4 ~~ S( -~~) 

~~ > (3—31)

— 4 ~ S~(~ .) R(r ,r ) (3 32)

where R(r ,r) is the correlation of the spatial part of the aperture

field defined in Eq (2—5). Allowing the spatial correlation R
a
(r
a,r;)

to be written in terms of its complex degree of coherence (Ref Eq (2—53))

• 

- 
R3(r8,r ) — 

~a~~a’~~ 
)u aG~a

) u (
~~ 
) (3-33)

(
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( where 
~ 
(~ ,~~~~

) is the complex degree of coherence of the aperture field,a a a

the detector signal for x—shear may be written

~d
(Td, t) =

~~~ 
Re{exp[—j(2irf t~~ ~~

) ]  u~ (Mr~ )

4 )‘ S ( -~~)ji (MG~ -s ),Mr )u (M(r -w T  a d a d a d nn

+ M
2 
Re{exp[+j(2-nf t —~~)]u~ (M~~)

i ~ S (-~~)P (MG + ),Mr )u (M I 
~~~~~~w T  a d n d a d nn

(
T T

for —~~-< t<~~ (3._34)

where all the mode—dependent terms have been grouped . together.

Let

isi (MG~—~~)) -4  ~ Sw(~~)Pa(M(td
_S
n
),MTd)a

a

• u (MG~ —s )) (3—35)a d n

and

ii (MG~ ~
o)) - 4 ~ Sw(~~)P (M(T

d
+Sn) ~~~~a d

(_  U (M(rd+s )) (3—36) J

‘1 _ _ _ _ _ _

~~

• _ _ _ _ _  _ _ _  _ _ _  
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• Furthermore, let all spatial fields be written in polar form:

ua
(M
~d

) — A(Mr
d
)exp[j+(Mr

d)]

u
a
(MG d

.
~~
O)) = A(MGd

_ 0 ) )exp[j +(MGd
_
~
o))] (3—38)

and -

u (MG
~d
+ o) )  — A(M(rd+so))exp[j+(M(rd+so))] (3—39)

In the neict section it will be shown that for white—light coherence

separable aperture field envelopes, the lateral shear AC interferometer

( causes the m = +1 and m — —l diffracted spatial field orders to be

spatially low—pass filtered . The “hats” over the amplitude and phase of

the diffracted orders indicate that they represent the amplitude and phase

of the spatially filtered field. The nature of this spatial filtering is

generally discussed for coherence separable broadband fields in the next

section, and discussed specifically for broadband, spatially incoherent

source fields in Chapter IV. Note that the spatially filtered, diffracted

field orders are defined with respect to the shear distance 
~o 

for the

median wavelength of white—light. Whereas the performance of the inter—

ferometer is analyzed with respect to s~ , it may be used as a design

parameter for a physically realizable -interferometer.

Note that the m — 0 , or undiffracted order, is not filtered. The

spatial filtering of the diffracted orders can be thought of as being
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( caused by differential path length effects associated with the diffrac-

tion of broadband light by the interferometer ’s rotating grating. If the

field is not diffracted, there are no differential paths and no spatial

filtering is introduced.

Using the expressions given above for the zero (3—37), m — +1,

(3—38), and m — —l (3—39) diffracted field orders, Eq (3—34) may be

rewritten

~d
(t
~d,
t) — 

~~ A(Mr
d
)A(M(r

d
_so))Re{exp [_j(2lTft_f )]

- + 
M2 A(Mr

d
)A(M(r

d
+so)Re{exp[+j (2uf t — -i- )]

exp[j $ (M(r
d
+ 0) ) —• (Mt~) ~

for — t . 
- 

- (3—40)

If the amplitudes of the spatially filtered orders are assumed to be

equal over the distance of the shear for each point in the detector plane

M
~~d

) A(M
d
_ o)) (3—41)

A(M(id4 o)) 
- 

(3—42)

where A(x
a~
ya) is the amplitude of both sheared field orders, the posi—

( tive and negative—shear terms may be combined and Eq (3—40) may be

simplified :
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• 4: — 2M2 — —
~d

(
~ d, t) — — A(Mr d)A(Mr d

)

cos[4 (+~ ++_ )—+]

sin[2wf t+4 ~~~~~~~~~~

for — ~- < t <~~~ - 
(3—43)

where — 
~~~~

— $(M(rd—80))

$ — $(M(rd+so)) 
(3—46)

Eq (3—43) represents the interferometer output signal for x—shear in terms

( of the amplitudes and phases of the sheared (end filtered) aperture field

orders. The aperture phase measurement made by the interferometer output

signal is 
-

— •— 
— •+

It is shown in later sections how the measured phase - ~$ relates to the

spatial part of the broadband aperture field for special cases of aperture

field coherence.

If the amplitudes of the spatially filtered orders are not equal over

the distance of shear as assumed in Eqs (3—41) and (3—42), the resulting

detector signal is rewritten



- -  I — M2 —

~d (T d, t) = — A(Mr d)

{A(MG
~d
_
o)) sin[2ufS

t_$(MG
d
_
~ o) “~~ d~~

+ A(M(r
d+so)) sin(2uf t

+

(3—48)

Eq (3—48) can be interpreted as a sum of two phasors with phases

— _$(MG
~d
_
o)) + +(M

~d
) (3—49)

due to the positive—shear term, and

— ++(M(r d+i~o)) — $(Mr
d
) (3—50)

due to the negative shear term as -indicated in Figure 8. The resulting

auplit ae AR and phase •R of the detector signal is the sum of the

positive— and negative—shear phasor terms as indicated in Figure 8.

Henceforth, it will be assumed that the amplitudes of the spatially fil-

tered diffracted fields are nearly equal so that Eq (3—43) adequately

represents the interferometer output signal for x—shear. It is shown in

Chapter IV that for the case of distant sources, this assumption is,

indeed, valid.

(

50

_



£
Cosine
Reference

i(M(
~d

_ o))

- 
Sine -

Reference

(1
Figure 8. Phasor Addition of Positive and Negative Shear Terms

The next section shows that the lateral shear AC interferometer causes

the diffracted orders of the coherence separable white—light aperture field

to be filtered, giving rise to a filtered phase &~ which is ultimately

measured.

Spatial Filtering Effects of White—Light Interferometer

Consider the following term defined in Eq (3—35) representing the

spatial part of the m — +1 diffracted order in the detector plane:

U 04(Vd
_sO)) — 4 ~ Sw(~~)iia(M(rd

_s
fl
) , Mrd)ua(M(rd

_8
fl
))

(5  
n
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f If 
~~~~~~~~ 

is homogeneous across the aperture of the interferometer,

the complex degree of coherence of the aperture field may be written

— 
~a~~a 

•;:; ) (3—52)

Assuming 
~a 

homogeneous allows (3—51) to be written

U
a

(M
~~d~~~~ 

- 4 ~ S ( - ~~)~ (Ms
n
)U
a
(MG•

d
_;
n)) (3—53)

Note that ji is evaluated for a separation of Ms in the x—directiona n
and no separation in the y—direction. Taking the spatial Fourier transform

of Eq (3—53) with respect to the aperture plane coor~dinates yields

Fx y (Ua(M(td
_S0)) } -

1 — 
—j2irf Ms0(

1 (n)
— I Sw(~~)Pa(M5n) V

a
(f
x~

fy
)e X 

(3—54)

where Va(fx~
fy) — Fx y {ua(xa~Ya

)} -

Using the binomial expansion for c’(n) and approximating the inf i—

nite sum by the first two terms

(1(n) — (l_j!~~Y’ 1 + (3—56)

which is a good approximation for cc 1 , allows (3—54) to- be

written in the following form: -

I

~ 
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ii

Fx y {U
a

(M(r
d
_sO))}I

~ 
Va

(f
x~
f
y
)exPf_i2uTf

xMso]

T~~ ~a
(M8O( ?~~~~ w~~~

exp[—j2ir~x
M
~° (-

~~
- ) ]  (3 57)

The approximation in (3—56) assumes that although the power spectrum

S
~
(f) is broad, its effective bandwidth B is still sufficiently small

that the higher order terms of (
1
(n) in the exponential of Eq (3—54)

can be neglected . The maximum index a in the sum (3—57) is limited by

the-effective bandwidth B so that Max(n) ± BT . Assuming that the

( power spectrum is still broadband enough that the sum over a may be

approximated by an integral over v

- 
Fx y {u

a
(M(r

d
_s0))} = V

a
(f
x~

fy)
exP[_i2urf

xMso]

J dv Pa(M5oa v )) 
~~~~

f~~is0
exp(—j2-vr( ~~— )v]

- 

(3—58)

To first order then, Eq (3—58) expresses the spatial filtering effect- of

the AC shearing interferometer on the in — +1. diffracted field order,

when the source field can be assumed to be coherence separable. Although

( 

Eq (3—58) indicates a doubly—infinite range of integration, the range of



- 
- v for which the integral has significant value is limited to the spectral

bandwidth of S (v) ——which is nominally —B < v < B . Definew

H~ (C) — Jdv~ (Ms 0(l —t~ 
S (v)exp[—j2ir~v] 

- 

(3—59)

where ~~ 
f,~Mso - (3—60)
fo

to be the spatial filter introduced by the interferometer’s diffraction

grating on the in +1 field order. Note that there is no spatial

filtering for spatial frequencies associated with the y—direction since

no y—shear was introduced in the x—channel. The corresponding filter

for the in = +1 order in the y—channel, therefore, does not affect

the x—direëtion spatial frequencies.

( The same analysis, when applied to the in = —1 diffracted order,

yields

F
x y

{u
a

(M(r
d+s0)) 

}

— V
a
(f
x~

f
y
)exPt+i2uffxMe0]H_(c) (3—61)

where

H (C) — f dv Pa(MS0(1+t)) S~(v)exp[+j-27rCv]0 (3—62)

ii the spatial filtering introduced into the in — —l diffracted field

order.
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j  The form of spatial filtering functions H+ and H is seen to

depend on three effects: (1) the complex degree of coherence of the

aperture field 
~~~~~~~~ 

, (2) the power spectrum of the wide—band

temporal process S (f) , and (3) the shear distance s~ for the median

light wavelength, def ined by

A gFp (3—63)

The shear distance is a design parameter which may be chosen to fit

a specific set of operating conditions. Since the coherence properties

of broadband light are relatively insensItive to the precise functional

form of the temporal proc2ss power spectrum, the ultimate forms of the

spatial filtering functions are also relatively insensitive to the precise
form of the broadband power spectrum S (f) . The dependence of the fil-

tering effect on the specific coherence properties of the aperture field

is, however, significant. In the next two sections, the effect of

aperture field coherence, given a particular temporal power spectrum,

are considered for special cases of the field’s degree of coherence

The filtering effects of a specific form of Pa
(r
a,

r )  are

considered in Chapter VI with the application of the shearing inter—

ferometer as a wavefront sensor in a phase—compensated imaging system.

Filtering Effec ts for Spatially Coherent Aperture Fields

For an aperture field which is spatially coherent, the complex degree

of coherence is equal to unity for all points of interest in the aperture

plane (Ref Eq (2—34)). Following Eq (3—59) the spatial filter H+ 
may

then be written 
-

- 
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t 
H~(~) fdv S (v)exp[-j2~~v] (3—64)

— F{S (v)} (3—65)

f Ms0
— R (C) = R( ) (3—66)

where F {-~} denotes the Fourier transform with respect to variable v
- f NSnand the transform is evaluated at x , and R ( .) is the corre—

f 
w

lation of the broadband time process w(t)  defined in Eq (2—9) . Note

that since the correlation functions considered here are stationary

and even

F { S (v ) }= F ’ {s
~
(v)} = R (C) (3—67)

Applying the same analysis to Eq (3—63) shows that the spatial

filtering introduced into the —l diffracted field order has the same

form:

R_~~) = R (C) (3—68)

— a~
(r )  — H(C) (3—69)

As discussed in Chapter II (Ref Eq (2—73)), the correlation function

R (r) will drop off with increasing argument so as to limit the high

spatial frequency content of V
a
(f
~~

f
y
) in Eq (3—58). Therefore, for

white—light, spatially coherent aperture fields, the AC shearing inter—

ferometer causes the sheared orders of the broadband detector field to

be spatially low—pass filtered. The form of this filtering has been

I
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shown to be, to first order , the correlation function of the broadband

temporal process w( t) evaluated at t =

fo

As an example calculation, consider the bandlimited power spectrum

s
b
(f) and its correlation function R

b
(r) = Ff

’{Sb(f)} . The correla-

tion function resembles a sin(x)/x function with the first zero—crossing

at

• f Ms0 1
C = f

~ 
2B T

b (3—70)

where B is the bandwidth of 
~~~~ 

‘ 
T
b 

is the argument of

for which R
b

(T)  0 , and the argument of the spatial filtering func-

tion H(C) has been equated with that of the correlation function R
b

(T)

Define the effective spatial bandwidth of the filtering function
- 

S f Ms0x ) for spatially coherent aperture fields to be

B = 
_____ — —~ — (Li ) (3—71)H 2Ms0B M s 0 ~f

For white—light applications, 0.275 and the effective spatial

bandwidth of the spatial low—pass filter li(
~

) is on the order of

3.636 
3—72)

or, in other words, the spatial frequency content of the sheared broad—

band fields ua(MG~d
_
~o)) 

and u (MG
~d
4 o)) is limited to 3.6 times

the reciprocal shear distance Ms0 measured in the aperture plane.

_



Since the spatial field u
aG~a

) is complex, H(
~) filters both

real and imaginary quadratures of the sheared fields. The phase measure-

ment derived from Eq (3—43) , however, is expressed in terms of the

magnitude A and phase • of the filtered spatial part of the aperture

field envelope. The specific form of the distortion introduced into

the measured aperture phase • by the filtering process cannot, in

general, be determined for arbitrary forms of 4(ra
) . At this point,

it will suffice to say that the phase of a white—light field measured by

the AC shearing interferometer is the phase of a filtered aperture field——

the filtering being introduced by diffraction of the white—light field

by the interferometer’s grating.

Monochromatic Field Phase Measurement. For spatially coherent aper—

- ture fields which are monochromatic, the correlation function R (r)

is flat so that H(C) is constant for all spatial frequencies. For the

monochromatic case, then, no spatial filtering is introduced for any

shear distance Ms0 . With no spatial filtering, the resulting inter—

ferometer output signal for x—shear is given by 
-

~d~~d, t) — ~ ~~~~~~ ~~~~~ c~~4 ~~~~~~~~~~~~~~~~~~ -

sin[2wf
5t— 4 s — .~

] (3—73)

where A(r ) is the amplitude of the aperture field at point —

— 

~~~ 
(3—74)

is the phase of the spatial part of the aperture field

()
• 

~~~~~~
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and

— 
~ a~~~

0) (3—76)

Note that for aperture phase functions 
~~~~ 

which change at

most linearly at each point in the aperture, the detector signal may

be simplified further:

— ~~~
- M2 [A(r )]2sin(2-iTf t _4~4)) (3—77)

where

= 

~~~~~~~ 
— $ (3—7 8)

is the linear change in phase over distance ~x = 2Ms0 measured in the

aperture plane for a monochromatic, spatially coherent, aperture field.

( Refering to Figure 9, the local wavefront slope at a point

= (x ,y) in the aperture plane is approximately given by

= 
— +(x~p

_Mso,y~p)
ax x ,y 

x —x 2Ms0
a ao (3 79)

— 
2Ms0 

- 

(3—80)

The validity of the approximation depends on how much the aperture phase

actually fluctuates within a distance t~x 2Ms o . A detailed study of

aperture phase fluctuations based on the phase statistics of turbulent

atmosphere can be found in Ref 24.
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~(x ,y )a a0

— I
- x

a0
_Mso x x +Ms0 a

Figure 9. Aperture Phase ~(x ,y ) for Fixed y Showing Calculation
of Local Wavefront Slope a a0 a

(

Therefore, for monochromatic light , the slope of the aperture field

wavefront is given by Eq (3—79). Implicit assumptions are that the aper-

ture field amplitude is constant, and the phase of the aperture field

varies at most linearly over a distance 2Ms0 in ~he aperture plane.

Phase Measurement for Small Shear. For spatially coherent, white—

light aperture fields where the shear Ms0 is small enough that

R
~
( f

~
Ms0 

~ encloses all the spatial frequency components of ua(ra)

B << B
~ 

(3—81)

where B is the bandlimiting spatial frequency of Va(fx~
fy) ~ the

spatial filtering effect of the shearing interferouteter is negligible.

For this case the filtered phases •+ and $ defined in (3—45) and

45 f 
- 

- 
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(3—46) very closely approximate the actual phases $4 and • of the

sheared images of the aperture field envelope . The detector signal,

then, is expressed by Eq (3—73) and the wavefront slope for x—shear is

expressed by (3—80).

Phase Measurement for Large Shear. For spatially coherent, white—

light aperture fields were the shear Ms0 is large so that R( f~
Ms0 

~fo

is much narrower than the spatial frequency content of u(r )

B >>B 
~~~~~~~~ (3—82)a H Ms0

the phase measurement &~ is lost completely. Using Eq (3—43) and

approximating R ( 
f xM50 

) by an impulse at f — 0 in Eq (3—66) yields
V X

~

d
It

~

d
,t) — 

ThH M2AoAGa
)cos(

~
_+Q)sin(21rf

s
t) (3—83)

where B
R = ~~~~~ (ft) (3—84)

A0 = Jdx5 u(x ,y) I 
- 

(3—85)

is the amplitude of the aperture field averaged over xa , and

- +o — arg[ fdxau(x ,Y5)] (3-86)

is the phase of the aperture field averaged over Xa

Filtering Effects for Aperture Fields with Arbitrary Spatial Coherence

For broadband aperture field envelopes with a complex degree of

coherence , the first—order spatial filter for the a — +1 diffracted

f field order is given by Eq (3—59):
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4. f Ma0
H~( 

~o ~ = J dvji (~~~~(f 0+V))S (v)

f Ms0
exp[—j2ir( ) v] (3—87)

Note that although 
~ 

has arbitrary form, it is assumed to be stationary

for all separations r—r in the interferometer aperture plane.

The spatial filtering function can be interpreted as a Fourier

transform of a “windowed” version of the temporal power spectrum:

f Ms0
H~( 

~~~ 
) — F { S (v) } (3—88)

where -

s~ (v) — P(~~~-(fo+v))S (v) (3—89)

is the windowed version of the power spectrum, and the transform is 
-

evaluated at f Ms0/f0 . The windowing effect can be better visualized

with the help of Figure 10, where the windowing is accomplished by a

shifted copy of the complex degree of coherence 
~a 

as prescribed by

Eq (3—87). The degree of coherence Ua sketched in Figure 10 is equal

to the modulus of the complex degree of coherence (Ref 14:510).

The spatial filtering function 1I
~ 
, then , is the Fourier transform

of the windowed, or filtered, power spectrum sketched in Figure 10(b).

Similarly following Eq (3—62), the spatial filter for the a — —l

diffracted order is the inverse Fourier transform of the windowed power

spectr um S
~
(v) defined by Eq (3—89)

fMs 0
( H_( 

~~ 
) 
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(a)

(~~ A (f 0+v))

f~~~~~~~~~~~~~- B B

(b)

S (v)

Figure 10. Windowing Effect of Degree of Coherence 
~~ 

on the
Temporal Power Spectrum S~ : (a) Power Spectrum and Degree of
Coherence, (b) Windowed Temporal Power Spectrum S

~
(v)

It can be seen from Eqs (3—88) and (3—90) that the specific form of

the filtering processes II
~ 

and H are highly dependent on the complex

degree of coherence of the aperture field. Whereas the spatial filtering

arises from the broadband temporal characteristics of the field, the

functional form of this filtering depends on the spatial coherence of the

field as well.

In the next chapter the lateral shear AC interferoaeter is applied

to the measurement of an aperture phase due to a broadband, incoherent

source. It is found that for specific source radiance distributions the

(
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( the complex degree of coherence of the aperture field can be calculated

explicitly, and the particular form of the spatial filtering functions ,

for aperture fields which are not assumed to be coherence separable can

be calculated.
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IV. WAVEFRONT MEASUREMENT FOR SPATIALLY INCOHERENT,
TEMPORALLY BROADBM~D SOURCES

The lateral shear AC interferometer described in Chapter III has been

used as a wavefront sensor in real—time atmospheric compensation systems

(Refs 7, 8, 9, and 10). In this application, the interferometer is required

to measure the phase of the optical field envelope in its input aperture

due to an extended, white—light source. This chapter describes the closed—

loop operation of the lateral shear AC interferometer as a wavefront sensor

for broadband, spatially incoherent, extended sources based on the free—

space propagation model introduced in Chapter III. The residual effects

of atmospheric turbu1~nce are modeled as a multiplicative phase factor intro-

duced at the aperture plane of the wavefront sensor for each temporal mode

of the field expansion for a frozen state of turbulence.

Wavefront Sensor Output Signal

Consider two parallel planes P
5 

and 
~
‘a 

separated by distance Z as

shown in Figure 11. Let P contain an immobile, diffuse source of finite

spatial extent reflecting white light. Let plane P represent the input

aperture and measurement plane of the interferometer wavefront sensor, so

that Z is the range of the source in meters. Allowing the source field

to be modeled as coherence separable, the white—light source field may be

characterized over a finite time interval T by a modal expansion as in

(2—30):
+j 2~-~ tU (r ,t) — u (r ) ~ w es a  n nl

( for —~~~< t <~ (4— 1)
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L
Source Plane: P

5

= x
Aperture Plane :

U( r ,t)

Sourc: Field 

/a 
- •

Z _ _X

U (r , t)

Aperture Field

Figure 11. Free—Space Propagation Geometry for Extended, White—Light
Source

where u(r5) is the spatial part of the source field envelope, the sum

over the tenporal modes converges in mean—square.

If the source is sufficiently diffuse, the light reflected by it can

be assumed to be spatially incoherent; the spatial correlation of the source

field may be written (Ref 24:126 and Eq (2—55))
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- * -R(r ,r ) — u(r )u G~ ) — I( r )~~(r —r ) (4—2)

where 15(r5) is defined to the radiant emittance (intensity) of the source

in watts per meter squared.

Aperture Field. Using the free—space propagation model for broadband

fields developed in Chapter II (Ref Eq (2—44)), the nth temporal mode of

the optical field U
p
(r
a~
t) just prior to the aperture plane is given

by

— — +j2w-~-t
- U (r ,t) — u (r )w e- pn a an a n

for —~~~< t <~~ (4_3)

where jk Z( 
- 

uan(~~
) = f d~ u

s
(
~s
)exp[j

~~~ F~a
_
~s

I2] (4.4)

Note that since the f ield U
p
(r
a~
t) is the output field due to a spatially

incoherent, coherence separable, broadband source field U8(r5,t) , the

spatial correlation of the field is given by Eq (2—57);

F
p

(r
a,r; 

) — 
~~~~~~~~~~~ 

,
t> 

- 

(4—5)

1 1
— ~2(n)S

w
(.

~~)e n

I 

~~~~~~~~~~~~~~~~~~~~~~~ ~‘ (46)

where — 
fj 

F
~
(n)(It a l2 _ I~ 12) (4_7)
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Turbulence—Induced Phase Model. The effects of the atmosphere
*

seriously degrade the imaging capability of optical systems in many

applications. The resolution which is attainable for imaging through

the earth’s atmosphere is limited by warping of the isophase surfaces

(phase distortion) and intensity variations across the vavefront caused

by random fluctuations in the refractive index of air. For broadband

optical fields, the phase distortion which is introduced can be thought

of as a differential path length distortion introduced for all wavelengths,

so that the phase distortion for each temporal mode measured in the aper—

ture plane of the interferometer •Tn(r
a
) is

Tn~~a~ 
— ~ 1L. 

~Z(r ) (4—8)

where ~Z(r ) is the differential path length distortion introduced by

a frozen atmospheric state for all temporalmodes measured at a point r
a

- in the aperture plane.

To the extent that the phase fluctuations $m
( r)  are correlated

over the entire wavelength range ~X of the broadband source, the phase

distortion for each temporal mode is approximately the same, and

Tn~~a~ 
— +To~~a

)

for —BT<n -< BT - 
(4—9)

where •T (r) is the turbulence—induced phase distortion for A — it0,

which is the same for all wavelengths of light. For arbitrary spectral

bandwidths, however, the phase distortion may not be assumed to be

correlated for ali modes of the field expansion (Ref 28:468).

(
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Suppose that the nth mode phase distortion is written as

— 
T0~

’
~a~ 

+ 
~Tn~~a~ 

(4—10)

where +~~
(r
a
) is the fluctuation of the turbulence—induced phase for

each temporal mode about a mean phase , which is arbitrarily chosen to

be that for A0. In general, +Tn(ta) will have values which differ

greatly from +T
(r
a
) . If gross differential path length differences

and wavefront tilt have been removed,as in the closed—loop operation of

a real—time atmospheric correction device (Ref 8 7 and 9), the variation of

the phase perturbation about • (~~ ) for each mode will be about zero—
T0 a

mean over the range of the modal expansion:

(~
Tn~~a> 

- 0

for —BT <r . < BT (4—11)

where the expected value may be taken for each turbulent state of the

atmosphere. Furthermore, if attention is restricted to points in the

aperture plane such that

Ma Ira
_ 

I ]  < P0 (4—12)

where P~ 
is the spherical—wave coherence length for the space—to—earth

propagation path (Refs 2:1376 and 26 :1678) , the correlation of the phase

distortion for each monochromatic mode of the field expansion may be

written (Refs 26:1683; 27:731; and 28:464—468)

~~~~~~~~~~~~~~~~ 42Tn
G:•
a~~ 

(4—13)

This result is useful in the evaluation of the interferometer phase

c - measurement for restricted operating conditions.
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( For real—world turbulence conditions, the random phase $T
( r )

fluctuates with time causing scintillation. In order for the phase corn—

penaation system to operate properly, the response time of the imaging

system, and so the wavefront sensor, must be short enough to respond to

significant temporal fluctuations in the phase distortion. This require-

ment limits the measurement interval of the interferometer——and also the

characterization interval of the broadband process T ——tc less than

about 10 milliseconds (Ref s 26:1680 and 29:392). Note that this require-

ment does not prohibit the use of the modal propagation model since any

practical measurement interval is still much greater than the reciprocal

bandwidth of the temporal fluctuations of the white—light envelope

(about 6.7 x l0
_ 13 

seconds).

Detector Plane Output Signal. Modeling the effects of atmospheric

( turbulence as a unit-modulus phase screen for each temporal mode, the

~th temporal mode of the field in the interferometer’s aperture plane

can be written

Uan(ra,t) — ~~~~~~~~~~~~~~~~~~ (4—14)

where Upn(~a~
t) is the ~th mode of the aperture field due to an

incoherent, broadband source given previously in Eq (4—3).

Writing the broadband aperture field as the superposition of all temporal

modes yields 
—

— — j2w~~t J$~~
(r

Uafta~t) — } U ( l )w e T e a

for — ct 4 (4—15)

Assuming that the random phase fluctuations 
- 

of the turbulent atmo—

sphere are independent of the source statistics, the spatial correlation

of the aperture field can be calculated as follows:
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( ~~~~~~ ) — ~~~~~~~~~~~~~ ,t~~ (4—16)

~~ 

—

— u (r )u (r )
n 

)])
for —~~~< t <~~ (4—17)

where 
~~~~~~~~~~~ ~:> - (J.... ) 2 

~~ 
S( -~ )

k
e n

Jdr5
I
5G9

)exp(_j~~~ rs
(r
a_c 

) ]  (4—18)

Note that for closed—loop operation of an atmospheric correction system,

the statistics of the phase fluctuations and the modal expansion coeff i—

cients {w~} may not be completely uncorrelated . It is assumed that, for

normal operation of the interferometer, the correlation of these two

quantities is small enough that the correlation of the aperture field can

be written as in Eq (4—17).

Without loss of generality, the turbulence—induced phase perturba-

tion for each temporal mode may be represented as in Eq (4—10), and

Eq (4—17) may be rewritten:

raG~a
,
~ 
) — exp[j+TO

G
~a
)_j$

TOGa
)]

~ *an~~
a
~~~

n
~~~ ~~

)])
for — f < t < ~~ • (4—19)

(
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C 
For the case where the phase fluctuations 

~Tn~~a~ 
are correlated over

the temporal bandwidth of the source, Tn~~a~ 
is identically zero and

the last expectation involving *Ta~~a
) and IP

~~~
( r )  will yield unity.

For a real—time atmospheric correction system operating in closed—loop,

+~~
(t
~a
) represents the residual phase error associated with tracking the

average phase •T
(r
a) of the aperture field.

As an example calculation, assume the closed—loop system is tracking

well so that 
~Tn~~a~ 

is zero—mean (Ref Eq (4—1].)). Furthermore, assume

*Tn~~a
) is normally distributed so that the last expectation in Eq (4—19)

can be written in terms of the characteristic function of a Gaussian ran—

dom variable (Ref 30:159—160):

<exp(J*ThG~a
)_i

~
Tfl(

~~ 
)]) — exp[— -~ a~] (4—20)

where a
. < Tn(ta

)_
Tn~~a~~~) 

(4—21)

If the statistics of 1
~~~~a

) are stationary in , the variance of

the residual phase fluctuations may be further simplified:

— 24 +~~
(r) ]2)t1_p (ka~~; I ) ]  - (4—22)

*sre

~~~~~ ~
) - (4-23)

P~~~ .ai~~re, if the phase measurement is restricted to regions in the

~~~~~~~~~~ ..tt.fyta £q (4—12), p (1r5—r 1) is nearly one for all points

• 
~~~~~~~~‘ 

c. the pmetatioe written in Eq (4—20) is nearly unity.

- 
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The above discussion has intended to demonstrate that for the

restricted cases discussed above, namely (1) the phase fluctuations

Tn~~a~ 
are correlated over the entire wavelength range of the source

emission and (2) the residual phase error in a closed—loop phase—compensation

system is small, the spatial correlation of the aperture field may be

writ ten

) - - ~~~~~~~~~~~~~~~~~~~~~~~ ~ < u (
~~
)u(

~ ~‘

(4—24)

Substituting-Eq (4—24) into the result for the interferometer output signal

derived in Chapter III (Ref Eq (3—30)), the x—channel output signal may be

calculated and is written on the next page in Eq (4—25) . Henceforth it

will be assumed that conditions are such that the phase which is measured

by the interferometer represents the wavelength—independent phase $T
(r
a
)

Eq (4—25) gives the x—channel output signal of the interferometer

wavefront sensor due to a broadband, incoherent source viewed through

atmospheric turbulence. Each temporal mode enclosed by ~he first real

operator is a result of the coherent addition of the zero and +1 dif-

fracted field orders, and represents the positive—shear term for each

temporal mode. The sum of these terms expresses the superposition of all

positive shear modes for the white—light interfetence pattern. Similarly,

each mode enclosed by the second real operator is the result of the zero

and —l field orders and is called the negative—shear mode.

A few general co ents can be made about the wavefront sensor output

signal at this time:
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(1) All modes of the detector signal are modulated at the

fundamental frequency f . If the wideband temporal process w(t) is

characterized over an interval T much shorter than the turbulence—

induced phase fluctuations, the phase—front across the aperture may be

considered frozen , and no additional frequency modulation is introduced.

(2) For each positive—shear term, the total spatial effect of

the source radiance is confined to an integral over the source intensity

distribution. For the negative—shear terms, the effect is represented

by a similar integral. The integrals are independent of temporal mode,

so that the spatial chracteristics of the source are entirely separate

from the broadband temporal effects of the source. This result is due

to the coherence separability of the source field. The detailed effects

of the source ’s spatial content are discussed at length later in this

( chapter.

(3) For positive and negative—shear modes, the total effect

of the broadband nature of the field is contained in a sum over all con-

tributing temporal modes . Each term in the sum is weighted by the power

spectrum of the broadband process w(t)

In the next section, the effects of the complex source radiance and

the broadband spectrum are separated, and the vavefront sensor’s phase

measurement is derived from the interferometer’s detector signal expressed
0 

in Eq (4—25). 
-

Derivation of the Wavefront Sensor Phase Measurement

The interferometer vavefront sensor’s phase measurement is contained

in the detector signal £
d
(r d, t) expressed in (4—25). To make the ana—

lysis more intuitive, the spatial and broadband effects of the source can
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be separated and written in more compact functional forms. Following

this separation, the derivation of the interferometer phase measurement

follows easily.

Contribution Due to Source Radiance Distributions. As pointed out

in the previous section, the total effect of the source’s spatial distri-

bution is contained in two similar integrals over the source radiance

(intensity) distribution. Define to be the spatial Fourier

transform of the source radiance distribution

— Fxy
{I
s(Xs~Ys

)} (4—26)

Note that the integral over the source distribution in the negative—shear

modes can be written

— f dx 1 dygls s )
exp(_j2wf

xxs) (4—27)

— 
~~ 

{I (x
5,y9

)} (4—28)
sys

where the Fourier transform is evaluated at spatial frequencies

f _ !!! Q and f 0.x A 0Z y

Let the transform of the source radiance distribution be written

in polar form so that

— J8(f~
,f
7
)exp[j*8(f~

,f
7
)] (4—29)

where — ‘~ s x ’~y~ 
(4—30)

is the magnitude and

*5
(f1,f7

) — ar8[J (f~~f~)] (4—31)

(
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~~~~

- is the phase of the transform of the sour c~e radiance distribution. Using

Eq (4—31), the integral (4—27) may be represented

— Js~~x
,0)ex j

~s x ,0
~~ (4—32)

where f —
x A 0Z

Since the intensity distribution of the source 1
5

( r )  is a real

function of the source coordinates, the inverse Fourier transform of

the source distribution is equal to the complex conjugate of the Fourier

transform of the source distribution (Ref 31:28):

F;~fy
{Is(rs)} — 

~s~~x’~y~ 
(4 33)

Using this notation, the i~’itegral over the positive—Rhear modes in

Eq (4—25) may be written

J*(f ,o) — J&51G)exp(J2irfx] (4—34)

— J8(f~
,0)exp[—j* (f ,0)] (4—35)

where f . i ~~~~

Contribution Due to Broadband Emission. Consider the sum over all

the positive—shear temporal modes defined below:

-

• Q(M(td_so)) — 4 ~ ~
2(n)S (-

~~
)exp[i1I- A Z ~ ( )  ]

(n)))]

for —~~~< t < f .  (4—36)

(-)  
-

-
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Using the binonial expansion for (
1(n) and approximating the sum by the

first two terms allows (4—36) to - be written

irM2s2
= exp[j 

~~~~
-] 4~ ~

2(n)S (-~~)

142g2
ez~[i2ir(—j-1) ~

] exp{j+T [MG~
_ o (l +

for — f < t < ~~ . (4—37)

Performing the same approximation on the negative—shear modes yields

- i~M
2a~Q(M(r

d
+so )) exp[j 

A 0z 
] 4 ~

4 ?f282
exp(j2ir( Zc ~~~

for — f < t < ~~ . (4—38)

Furthermore, let the positive— and negative—shear terms be written in

polar form so that

- M2ø2
— ____

exp(j
T(MG ~ — o))]d (4 39)
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78 - 

- -~~~~- -   
-
-~~ ~~~~~~~~- - - ~~~ - --- 

____________



c
and

- M2s2
Q(M d

4 0)) exp[j ir 
~~~~~ 

M( d+so))

exp [j$T (MG~d
-I
~ o)) ]

(4—40)

It is shown in a later section that for white—light, incoherent source fields,

the lateral shear AC interferometer causes the diffracted aperture field

orders to be spatially filtered. The amplitude and phase of the filtered

aperture field are identified by “hats.”

Interferometer Phase- Measurement. Substituting the defined relations

(4—32), (4—35) , (4—39), and (4—40) into the x—channel output signal given

in (4—25) yields

~d
(td,t) — ,r(A0Z)2 

J
s~~x

,0)
~ r

(M(r
d~~o
)) Re{exp[— j(21rf

5c_f))

ex [—j2w~~~~ (x
d
—.!
~
.)]expt_jxS(fX,0)]

exp[j T 
(M(r

d ~~~ ~ —j 
~~~ 

‘
~
‘
~d~~ ~

+ w(A0Z)~ 
Je(fx,0 ,r(M(r

d
4 o)) Re{exp [j(21rft—~~)]

exp[+j2ir ~~~~ (x
d
_
~~~

) ]exp [+J~i
8

(f~ ,0)]

eXP[i
~T

(M(r
d+8c) )—1 T0 ~~~~ ‘ ~

( for — C t (4—41)
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where f
f ‘C A 0Z
4

If the amplitudes of the spatially filtered orders are assumed to be

equal over the distance of shear for each point In the detector plane

- 
AT(Mrd) = A..

~
(MG

~d
_
o)) (4—42)

(4 43)

both positive- and negative—shear terms in Eq (4—41) may be combined:

~d~~d,
t) - 

~~~~ 
J (

~~~~
,0)&r

(M
~d
) cos[4(4+.p_$TO

_e
S]

sin[2,r~9t +4 (ç —

F.
s A 0Z d (4 44)

where — •T
(M(r

d
_8o)) (4—45)

— +T
(M
~~d~~0~~ 

- 

- 

(4—46)

+To 
— 

T0~~~d~ 
- 

(4—47)

— ~.Q. (Me0)2 (4—48)

8d 
— Z M

2sOxd (4—49)

If the amplitudes of the spatially filtered orders are not equal over

the distance of shear, the resulting detector signal is represented as the

sum of two phasors as discussed in Chapter III (see Figure 8). In Eqs
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(4—42) and (4—43), however, the filtered amplitudes A.
~
(M(r

d
_BO))

and A,
~
(MGd+so)) represent the amplitude of the diffracted and fil-

tered aperture phase exp[j~ Cr )] introduced by atmospheric turbulence.
T0 a

Since this phase term is assumed to have unit modulus for all points in

the aperture plane, any sheared and filtered version of this filter will

be equal to a~y other filtered version so long as the filtering effects

are identical. In a later section it is shown that the amplitude of the

filtered aperture field is in fact the same for either the m — 1 or

m — —l diffracted order.

Therefore, Eq (3—44) represents the interferometer output signal for

x—shear for spatially incoherent, white—light sources viewed through atmo-

spheric turbulence subject to the operating conditions discussed earlier.

Note that all effects of the source’s radiance distribution are contained

in a multiplicative attenuation term 
~~~~~~~ 

and an additive phase

term *5
(f
~
,O) . The effec t of the diffraction of broadband light affec ts

the phase measurement by filtering the measured phases 4 and

and attenuating the carrier by an amount A
T
(Mr

d
) . The effects of source

radiance distribution and broadband emission spectrum are discussed in

the next two sections.

As defined in Eq (4—31), ~~f ,O) is the phase of the spatial Fourier

transform of the source radiance distribution evaluated at spatial fre-

quencies 
~~ 

— and f~ 0 . Since the source distribution is always

positive and real, *,(f~,O) is an odd function of f and represents

a constant phase offset in Eq (4—44) for any non—zero shear value. The

siz* of this phase error depends on the specific radiance distribution

of the so~irce and the value of f —
. 
( x X0Z~
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In addition to the effects mentioned above, two additional phase terms

and 0
d appear. Whereas 4 , , and are representative of

the turbulence—induced phase—front introduced at the aperture plane, the

additional phase terms and 0d represent the quadratic phase of a

spherical wave eminating from a point source located at r — (0,0) in the

source plane.

Measurement of Turbulence—Induced Phase. The total phase of the

sinusoidal signal modulated at frequency f is the sum of three phases:

(1) the differential aperture phase due to atmospheric turbulence

, (2) the phase of spatial Fourier transform of the source radiance

distribution ~~(f ,0) , and (3) a quadratic phase 0
d 

If the interfero—

meter is set up to measure the slope of the turbulence—induced aperture

phase, the post—detection processing of the interferometer output signal

must be designed to extract the phase due to the first effect (q~—4) ,
alone. Assuming signal processing has extracted the differential phase

~~
- ~+— *T 

— 

~T 
(4—50)

the measured wavefront slope due to atmospheric turbulence for x—shear is

- 
+~ (x~~+Mso,y)~~~ — T(~

Cap
_Me0~7ap)

~x ~~~~ 

X ,y - 2Ms0a x — xa ao
(4—51)

— -
~j~

- -
~ 

(4—52)

where is the differential turbulence—induced phase measured by the

interferometer. The effect to which the actual wavefront phase A+T

( is spatially filtered to yield 
~~ 

is discussed in a later section.
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Visibility Limitations of Extended Source Distributions

In Eq (4—44) it is seen that the total effect of the source radiance

(intensity) distribution on the aperture phase measurement is contained

in the amplitude and phase of J
5
(f ,0) defined by Eq (4—27):

— Jdr515(r5)exp [_J 2ir fx] (4—53)

where fx 10Z

The integral over x represents the spatial Fourier transform of the

x—variations of the source intensity, evaluated at a spatial frequency

— ; the integral over y
8 gives the total intensity along the

y—direction for each

The result given in Eq (4—53) represents the mutual intensity

(Ref 14:508) of light at two points in the aperture plane due to a

quasi—monochromatic source emitting radiation near wavelength A 0 . The

points in the aperture are separated in the x—direction by distance

Ax — Ms0 , with no separation in the y—direction.

The magnitude of J(f ,O) corresponds to the degree of coherence

of the aperture field (Ref 14:510) which is defined to be the absolute

value of the normalized Fourier transform of the source intensity dis—

tribution:

— 
fd~5I5GT5)exp .-j- (x~x~+y~y5)

fdr I (r)

(4—54)

where / Pa(ra,r~) is the degree of coherence of the light at two points

and ~ in the aperture plane.( a a
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If the amplitudes of the two sheared field orders are equal——as

• expressed in Eqs (4—42) and (4—43)——the n J(f ,0) is related to the

fringe visibility (Ref 14:507—508) of the interference fringes at the

detector plane:

— 
J ( f ,0)

y(Ms0) — 
Jd~ is;)

(4—55)

- 
where y(Ms0) is the fringe visibility of the interference fringes for

two points in the aperture plane separated by distance Ms0 in the

x—direct ion with no separation in the y—direction, and 0 < y (Ns0) < 1

for any shear. Note that for the case of a point source, the fringe

visibility is unity for all shear values. For any extended source,

however, the fringe visibility depends on the specific source radiance

distribution and the shear distance chosen.

Clearly, J
5
(f ,0) is proportional to the amplitude of the

interferometer output signal for x—shear, and must be maintained at a

significant value for the interferometer signal to be detected and the

phase information to be extracted. The effects of shear distance 
~o

on the fringe visibility are considered below for the case of uniform and

complex extended source radiance distributions.

Uniform Source Distributions. The visibility of the interferometer

fringe pattern for x—shear is the normalized Fourier transform of the

source intensity distribution as expressed in Eq (4—55). As an example,

consider uniform source with a square intensity distribution with width

W meters and intensity I~ watts per meter squared. The interferometer

( fringe visibility can be calculated from Eq (4—55) :
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sinc[tr(
~~!t)W]0 (4—56)

where sinc(x) sin(x)/x . The fringe visibility y
~ 

of the square source

is plotted as a function of shear distance Ms0 in Figure 12.

For a uniform square source, then, the interference fringe visibility

-generally drops off as the shear distance increases. To guarantee that

significant fringe visibility is maintained, the shear is selected so that

- 
Iw
(M8 o) is evaluated within the main lobe of the sine ( )  function:

Mso < ( 4 5  7)

where a — W/Z is the angular subtense of the source.

For uniform, circular source distributions the fringe visibility is

( related to a first order Bessel function, and a result similar to Eq (4—57)

for circular sources can be shown to be

Ms0 < 1.22 ~~~ - (4—58)

where a — D/Z is the angular subtense of the circular source.

Therefore, the restriction placed on shear distance for circular

sources with angular subtense a — D/Z is on the same order as (4—57)

for a square target of equal angular subtense.

Complex Source Distributions. Sources of interest to imaging systems

generally contain some degree of fine structure. Sources with structure

contain more high spatial frequency information than uniform sources,

and cause the fringe visibility function y(H10) to have significant value
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Figure 12. Fringe Visibility y.~ as a Function of Shear Distance for
a Uniform Source of Width W

( for large shear values. Although the visibility effects of each complex

source must be considered separately, the general effect can be illustrated

by the following example.

Consider a square source of width W having a periodic intensity

distribution similar to a bar pattern with variations along the x—direction

as shown in Figure 13. Note that the visibility function YB(Mso) contains

weighted copies of the visibility function of a square source yw (Mso)

located at °o — m~~ , where m is an integer. It is seen that periodic

r source distributions have a “coherence modulation” effection, due to the

spatial frequency modulation properties of periodic source functions; and

the fringe visibility can have significant value for shear distances much

larger than those allowed by uniform sources.
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Figure 13. (a) Periodic Source Distribution and (b) Corresponding
Fringe Visibility Function y(Ms0) for x—shear of Ms0
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Since the total radiant power for any source is finite, the power is

distributed among the many lobes of the fringe visibility function, and

the magnitude of the fringe visibility at any shear may be neglibible.

In any practical sense, then, the measurable fringe visibility is greatly

dependent on total source radiance and the complexity of the source dis-

tribution.

Special Filtering Effects of Broadband Light

Consider the approximation to the sum of the positive—shear temporal

modes written previously in Eq (4-37):

M(rd -s0)) — exp[je ] i~ F;2(n) Sv(~~)exp[j2It(~~:0
).
~
.]

T Tfor — < t  . (4—59)

Taking the spatial Fourier transform of (4—59 ) with respect to the aper—

ture plane coordinates X
a 

— Mad and ‘~ 
— 

~~d yields

Fx Y {Q(M(
d O))}  — exp(jO S]$

TQ
(f X ,f

Y
)exp(_j 2ir fXMso]

f 1 10 M24+ ~
2 (n) S~

(
~~

)exp[_J2w( 
~o 

— 

Zc ~

for — t 
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where T0~~~ ’~7~ 
— Fxaya

{exP[J 4ITO
(ra)]} (4—61)

For broadband power spectra and long process characterization intervals

the sum over temporal modes may be approximated by an integral:

F
X Y

{Q(M
d
_sO))} — exp(j OB)$TO

(fx~
fy)CXP(_i211fxM80]

Jdv ~2 (v) Sw(V) exp[—j 21u+v]

(4—62)

where — 

~~~ 
(f~ —~~~~) (4—63)

and v has been substituted for as the integration variable. The

( integral over v in Eq (4—62) represents the first—order spatial filter

for the m — +1 diffracted aperture field order given by Eq (3—87)

where the complex degree of coherence of white—light aperture field has

been calculated explicitly.

Following Eq (3—88) the first—order spatial filter affecting the

m — +1 diffracted aperture phase exp[j $,~G~a)] is

— F { F ~2(v)S (v)} (4—64)

For typical compensated imaging applications, sources are distant

coi.pared to the shear distance Ma0 . Assuming is small compared

to the spatial bandwidth of

En (4—65)

I
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where B11 is the effective bandwidth of the spatial filter 11+ , the

first—order spatial filter can be written

— F {
~

2 (v)S~
(v) } (4—66)

f Ms0
where C — as defined in Eq (3—60) . Using results from Chapter II

(Ref Eq (2—71)), Eq (4—66) can be written in terms of the first two deri-

vatives of the temporal correlation function R
~
(r)

— R (c) + —i— ~~~~~ 
R (r )  — (2,r f 0)~ T~~t ‘~w~~ 

(4—67)

Similarly, the sum over the negative—shear temporal modes can be

approximated by an integral, and a filtering function for the m — —l

diffracted field order can be defined. Following Eqs (3—90) and (2—70),

H (c) — F l{~2(~)S (v)} (4—68)( - V

• R (~) — —~~-— --~~- R (c)
V ~~~~~ w

______ 
a 2 (4—69)

— (2irf 0)~ 
2j~~R(c)

— 4 c (4—70)

Therefore, Eq (4—67) and its conjugate (4—89) represent , at least to

first order, the form of the spatial filtering introduced into the inter—

feroiseter phase measurement due to the diffraction of broadband light for

the is — +1 and m — —1 diffracted orders. The spatial filtering func—

tion is similar to the “windowing” function R (’) discussed in Chapter II

with regard to coherence length (Ref Eq (2—70)).

Indeed , if the power spectrum S (f) ii sufficiently narrow so that

may be closely approximated by unity, the filtering functions
C ,
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and H_ take on the form of the temporal correlation function:

- H_ (c) Rw~~~ 
(4-71)

Consider , for example, a bandlimited power spectrum Sb(f) discussed in

Chapter III (Ref Eq (3—70)). The effective bandwidth of the resulting

spatial filter is on the order of

B11 ~~~~~
— (f~) (4—72)

as defined in Eq (3—71). If the bandwidth of the spatial Fourier transform

of the turbulence—induced aperture phase is much less than B
11

B~ <c BH iè~ 
(4 73)

where B is the spatial bandwidth of either real or imaginary quadrature

( of T~~a~~ 
, then the spatial filters introduce negligible filtering

of the aperture phase field orders contributing to the AC interferometer

pattern, and cause little distortion in the measured aperture phase.

In si~~ ary, then, for truly broadband optical fields with arbitrary

power spectra , the form of the spatial filtering must be calculated from

the discrete sum over temporal modes as in Eq (4—36) . To first order ,

however, the spatial filtering can be calculated from derivatives of the

broadband field correlation function as in Eqs (4—67) and (4—69) .
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V. CC~1CLUSI0N

Sumaary of Results

Coherence Model for Broadband Fields. A free—space propagation

model for broadband optical fields va~ developed based on a ICarhunen—

Loéve (KL) expansion of the time—varying portion of a coherence separable ,

broadband optical envelope. Due to the linearity of the free—space chan-

nel, each temporal mode of the field expansion could be propagated m di-

vidually, and the output broadband field could be computed as simply the

superposition of all the individually propagated field modes. It was

found that for broadband optical fields characterized over long time

intervals, the eigenfunctions of the KL expansion were approximated by

( the complex exponent ials of a Fourier series expansion over the same time

interval. The eigenvalues of the modal expansion were found to be samples

of the temporal power spectrum, sampled at the harmonic frequencies of

the Fourier series expansion. Since the expansion coefficients of a KL

expansion are uncorrelated , the calculation of output field correlation

was facilitated. The output field correlation for coherence separable

source fields was stated for special cases of source field coherence

in Table I. The output field correlation due to coherence separable

source fields was found to be , in general , not coherence separable

(Ref Eq (2—47)).

Analysis of White—Light Interferometer. Application of the broad-

band propagation model to the lateral shear heterodyne interferometer

shoved that the position of the interference fringes detected by the

interferometer was dependent on wavelength. This effect , caused by the
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diffraction of the white—light aperture field by the interferometer’s

rota t ing grating , was shown to spatially filter the m — 1 and m — —l

diffracted field orders contributing the interference pattern. To

first—order, the form of the spatial filter was shown to be given by a

Fourier transform of the product of the broadband temporal power spectrum

and a shifted version of the complex degree of coherence of the aperture

field (Ref Eqs (3—87) and (3—89)). The measurement made by the inter—

ferometer was found to be related to the phase of the spatially filtered

aperture field envelope. The interferometer wavefront measurement was

specialized f or spatially coherent aperture fields for large and small

shear (Ref Eqs (3—83) and (3—77)).

Measurement of Turbulence—Induced Phase. The broadband field coherence

model was applied to the application of the shearing interferometer as a

wavefront sensor in a phase—compensated imaging system. It was argued

that if the turbulence—induced phase fluctuations $
~~

(ra) were correlated

over the wavelength range of the source emission spectrum or the sensor

operated in a closed—loop mode where the residual phase tracking errors were

small, the turbulence—induced phase fluctuations could be modeled as a unit—

modulus phase screen for all wavelengths of interest (Ref Eq (4—24)).

If the source was iiiisobile and sufficiently diffuse, the source field

could be modeled as being coherence separable. This model allows the

visibility effects due to extended source radiance distribution and the

spatial filtering effects due to broadband emission to be separated in

th. analysis of the interferometer . The visibility of the interference

fringes was found to be proportional to the magnitude of the Fourier trans-

form of the source radiance distribution as prescribed by the Van Cittert—

Zernick. theorem (Ref 14:510) for quasi—monochromatic sources (Ref Eq (4—28)).
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It was found that the phase measured by the interferometer for this

application was due to the sum of three effects (Ref Eq (4—44) ) : (1)

the turbulence—induced aperture phase perturbation, (2) the phase of

the spatial Fourier transform of the source radiance distribution, and

(3) the quadratic phase due to a point source at the source plane mea-

sured in the aperture plane. In order to measure the aperture phase

due to atmospheric turbulence, signal processing must be designed to

extract the first phase effect from the interferometer output signal.

For typical compensated imaging situat ions it was found that to first

order, the spatial filtering could be expressed in terms of the first two

derivatives of the broadband temporal correlation function (Ref Eqs (4—67)

and (4—69)).

Discussion and Suggestions for Further Study

In Chapter II a coherence model for the propagation of broadband

optical fields was developed from a modal expansion of the time—varying

part of the complex field envelope. Although the model was specifically

applied to the analysis fo a white—light shearing interferometer in this

paper, the application of this model may be extended to many broadband

optical or infra—red systems for which the input fields can be assumed

to be coherence separable . For example, the free—space propagation

model (Eq (4—42)), the apochromatic lens result (Eq (3—7 )) , and the

rotating diffraction grating model (Eq (3—13)) are particularly appli-

cable to optical interferometrjc and measurement sy3tems. Indeed, a

broadband optical field can still be represented as a modal expansion

if it is due to a source which can be assumed to be coherence separable

(Ref Eq (2—42) ) and the effects of the propagation medium can be considered

to be frozen in time (Ref Eq (4—8)).
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In Chapter III the lateral shear AC interferometer was analyzed

for broadband aperture fields with arbitrary spatial coherence. Several

assumptions were made which may further qualify the application or degrade

the predicted performance of the wavefront sensor. First of all, all

diffraction effects due to finite lens apertures and field stops were

ignored. All optics were assumed to be perfectly transmissive for all

wavelengths of interest and the lenses were assumed to be aberration—free

and perfectly apochromatic. These effects must be studied in detail ,

or at least considered, for any practical application of a physically

realizable wavefront sensor.

The interferometer output signal 
~d

(rd,t) calculated in Chapters

III and IV (Ref Eqs (3—43) and (4—44)) represents the time—varying

interference pattern at each point in the detector plane modulated at

f Hertz. No model for the photon/electron conversion of this white—

li ght intensity pattern into an electrical signal was proposed, nor was

a signal processing scheme suggested for the extraction of the aperture

phase measurement 1~$ f rom the detector plane output signals. It is

recommended that a model for the detection of broadband radiation be

incorporated into the analysis of the interference pattern (Eq 3—34)

to determine what additional, if any, filtering effects are introduced

into the wavefront measurement. Once these detected interferometer

output signals are determined, several electronic processing schemes

can be considered to provide the best aperture phase measurement

(e.g. , Refs 32, 33, and 34).

It was found that the shearing interferometer’s operation for

broadband fields causes the m — +1 and m — —l diffracted aperture

field orders contributing the detector plane interference pattern to
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be spatially filtered. Whereas the filtering affects both real and

imaginary quadratures of the complex aperture field envelope, the phase

measurement , derived from the interferometer output signal (Eq (3—47 )) ,

represents the phase of a filtered complex field. Except for the

special filtering cases studied——extremely wide filter (Eq (3—73) and

extremely narrow filter (Eq (3—83))—-the effect of spatial filtering

on the detected aperture phase is extremely difficult to determine. The

effects of filtering on the measured phase of phase modulated systems have

been studied (e.g., Refs 35, 36, and 37), but are beyond the scope of this

paper.

For the analysis of shearing interferometer wavefront measurement

it was assumed that either the phase of the complex aperture field

envelope was the same for all wavelengths of light or the interferometer

was working in closed—loop with a real—time phase—correction system.

The end result was that the interferometer adequately measured a phase

which is casmon for all wavelengths when the residual phase errors are

small. These assumptions were motivated by the fact that for the compen-

sated imaging system considered in Chapter IV (Ref 7), atmospheric phase

correction is accomplished by a single corrector——thus introducing the

same compensation for all wavelengths. For more general active optic

applications in which the vavefront correction is wavelength—dependent

(e.g., Ref 12), the decomposition of the aperture phase into wavelength—

dependent temporal modes, and the effect of this decomposition on the

interferometer measurement, may be studied.
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