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PREFACE

And God said, "Let there be light . . . and let it be broadband."

The desire to image distant objects illuminated by naturally occur-
ring (i.e., white) light provided a primary motivation for this work.

The analysis of a white-light shearing interferometer necessitated the
development of a coherence model which would adequately describe the
interference of this so-called "incoherent light." Analysis of the
interferometer is presented as an application of the brcadband field
model developed in Chapter II.

I would 1like to thank my sponsor Donald W. Hanson, Rome Air
Development Center (OCSE), for initially providing me with this
interesting problem, and for continuing to support me throughout the
study. I also gratefully acknowledge Professors Donn Shankland and
Peter Maybeck for serving as readers, and for contributing their comments
and constructive criticism to the final draft.

I would like to especially thank Captain Stanley R. Robinson for
ably advising me on the thesis, and for providing much appreciated gui-
dance and motivation throughout the study. His interest in the problem,
as well as my personal development, had no small part in sustaining my

enthusiasm throughout these past months.

Paul S. Idell
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ABSTRACT

A free-space propagation model for broadband optical fields is
developed based on a Karhunen-Loéve (KL) expansion of the time-varying
portion of a coherence separable broadband optical envelope. For long
characterization intervals it is found that the eigenfunctions of the KL
expansion are approximated by complex exponentials of a Fourier series
expansion; the corresponding eigenvalues are approximated by samples of
the temporal power spectrum, sampled at the harmonic frequencies of the
Fourier series expansion. The resulting modal expansion provides an
intuitively simple interpretation of the propagation of broadband fields

and allows the output field correlation to be easily calculated.

The propagation model is applied to the analysis of a lateral ]
shear AC interferometer, which has been used to measure the spatial phase
variations of a white-light optical field envelope located at its input
aperture. It is found that the interferometer's operation for broadband
fields causes the phase which is measured by the interferometer to be
related to a spatially filtered version of the aperture field. The effect
of this spatial filtering on the phase measurement is studied for aperture
fields with arbitrary spatial coherence.

Finally, the propagation model is applied to the shearing interfero-
meter's operation as a wavefront sensor in a phase-compensated imaging
system, where the phase of the aperture field envelope has been disrupted
by atmospheric turbulence. The turbulence-induced phase perturbation is

modeled as a unit-modulus phase screen introduced at the aperture plane

viii




‘ of the interferometer for each temporal mode of the field expansion. The
space-time separability of the source field allows the visibility effects
of extended source distributions on the interferometer's operation to be
analyzed separately from the spatial filteriug effects of the measurement
process due to broadband source emission. The interference fringe visi-
bility is discussed for uniform and complex source radiance distributions,
and the interferometer phase measurement is evaluated for typical éhase-

compensated imaging applications.
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COHERENCE PROPERTIES OF BROADB/ ™ OPTICAL FIELDS
WITH APPLICATIONS TO
WHITE-LIGHT SHEARING INTERFEROMETRY
I. Introduction

Atmospheric turbulence, caused by random fluctuations in the refrac-
tive index of air, degrades the imaging capability of ground-based astro-
nomical telescopes. As light from the source propagates down through the
atmsophere, turbulence tends to distort the shape of the optical wave-
fronct as well as cause intensity variations across the wavefront (Ref
1:46-48). Intensity variations are caused by a random lensing action
and give rise to scintillation and the twinkling of stars. The major
effect on image quality, however, is due to the random fluctuations of
the optical phasefront. In long-exposure telescopic photography the
attainable resolution is turbulence limited, rather than diffraction
limited, to about two seconds of arc (Refs 2 and 3).

Recently much interest has developed in the use of predetection
phase-compensation for improving the quality of images distorted by
atmospheric turbulence (Refs 4, 5, 6, and 7). In the system described
by Hardy, et al. (Ref 7), real-time phase-compensation is accomplished
by correcting the optical wavefront at the imaging system's input aperture
with a monolithic piezoelectric mirror. The wavefront deformation at the
input aperture is determined with the use of a lateral shear AC interfero-
meter (Ref 8) which measures the wavefront tilt of the field at several
locations in the aperture plane. The operation of this interferometer
as a wavefront sensor in atmospheric correction systems is also discussed

in Refs 9 and 10.
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In addition to atmospheric compensation for imaging applications,
there exist other active optic systems for which real-time correction of
wavefront aberrations is required (Refs 11, 12, and 13). As a part of
these systems, the lateral shear AC interferometer may be used to mea-
sure wavefront aherrations introduced by either surface deformations in
the optics or fluctuations in the transmission medium. A broad overview
of current active optic systems, including descriptions of various wave-
front sensors and wavefront correction devices, can be found in Ref 10.
Several detailed articles on the current theory and zpplication of active

optic systems also appear in the March 1977 issue of the Journal of the

Optical Society of America.

At this time the operation of the shearing interferometer men-
tioned above has been analyzed with respect to its compensated imaging
applications and for limited classes of input fields. A description of
the interferometer's operation for more general aperture fields is needed.
Furthermore, since sources of primary interest in astronomical imaging
applications are illuminated with naturally occuring light (e.g., sunlight),
the wavefront which must be measured by the interferometer is the wave-
front of a white-light (temporally broadband) aperture field. The opera-
tion of the shearing interferometer for extended, broadband sources is

not well understood.

Problem

The object of this study is to provide a clear and concise explana-
tion of how the lateral shear AC interferometer measures the wavefront

slope of a white-light aperture field. The effect of broadband light on

il
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the interferometer phase measurement is to be determined. Of particular
interest to its application in compensated imaging systems, a unified,
wave-optics description of the interferometer with regard to broadband,

extended sources is to be given.

Approach

This paper presents a description of the lateral shear AC interfero-
meter based on a model developed for the free-space propagation of coherence
separable, temporally broadband optical fields. By definition, fields which

are coherence separable are those whose space-time correlation factors into

a product of a spatial correlation and a time correlation. Coherence
separability allows the input fields to be simply represented, and lends
tractability to the mathematics. However, because the spatial part of a
source field represented in this manner is independent of time, attention
is restricted to sources which do not move and whose illumination (or
luminance) is time-invariant. Sources must also be assumed to be perfectly
diffuse (i.e., Lambertian), so that their emission spectrum is not a func-
tion of viewing angle.

By temporally broadband it is meant that the source emission spectrum

is broad with respect to its mediam wavelength-~for the white-light appli-
cations which are considered in this paper, the optical fields are assumed
to range over the entire visible range, nominally 0.4 to 0.7 ym. The
specific functional form of the temporal power spectrum is not specified,
although the spectrum is assumed to be smoothly varying over the visible

range. The median wavelength of white-light is assvmed to be 0.55 um.

s~
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In Chapter II a free-space propagation model for broadband optical
fields based on a modal expansion of the time-varying portion of the field
is developed. The temporal and spatial variations in the optical field
are modeled as complex random processes, where the bandwidth of the sta-
tionary time process corresponds to the bandwidth of the visible spectrum.
Spatial variations of the input field are assumed to bé independent of
time so that the space-time field correlations are coherence separable.
Using the broadband propagation model, the output field correlation due to
broadband source fields is calculated and output field coherence is spe-
cialized for sources with special cases of spatial coherence.

The broadband propagation model is applied to the shearing inter-
ferometer optics train in Chapter III, and the interferometer output
signal for x-shear is determined. To simplify the analysis, diffraction
effects due to finite lens size are ignored, all optics are assumed to be
perfectly transmissive and aberration-free, and the lenses are assumed
to be apochromatic. The phase which is measured by the interferometer is
shown to be related to the phase of the spatialbpart of the complex aper-
ture field envelope. The effects of white-light on the aperture field
phase measurement, as derived from the interferometer output signal, are
shown for aperture fields with arbitrary spatial coherence.

Finally, in Chapter VI the shearing interferometer phase measurement
is determined for an aperture field due to ;n extended, white-light source

viewed through atmosphéric turbulence. The source field is assumed to be

coherence separable, corresponding to that reflected by a perfectly diffuse,

stationary object illuminated by white light. The source is also assumed

to be distributed and spatially incoherent as well as being temporally
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broadband. The optical phase distortion caused by atmospheric turbulence
is modeled as a multiplicative phase factor introduced at the aperture
plane of the interferometer for each wavelength. Validity of this model
is discussed in detail. Fundamental limitations on interference fringe
visibility and phase measurement, due to source radiance distribution and

emission spectrum, are discussed.

Functional Notation

This section introduces a standardized set of notation which is used

extensively throughout the paper.

Propagation Geometry. All optical fields are defined in planes Pi

consgisting of points T, = (x ) of a right-handed rectangular coor-

1 £*7¢
dinate system (x,y,z). The propagation of fields is assumed to be in the
positive z-direction. Planes and points on them are denoted by a sub-
script indicating the plane's position on the z-axis. TFor example,

plane P, consists of points r; = (x;,y;) for which z =z, . Fields
defined in planes are denoted by the subscript identifying the plane,
e.g., optical field Ul(;},t) is located at plane P; containing points
1 = (x1,y1) .

Summation. Unless specifically noted in the text, all summations

range over all integers denoted by their index. For example:

) *n " 2_ *n (1-1)
n n-@
Integrals. All single dimensional integrals are denoted by an
1ntegrhtion symbol followed by the differential of the variable being
integrated. Two-dimensional integrals are denoted by two integration

symbols followed by the differentials of the integration variables.




Integration over a plane containing points ;i = (xi,yi

) may be abbre-

viated by a single integral sign followed by the differential d;i = dxidyi -

Unless the limits of integration are explicitly written, the range of

integration is doubly-infinite. For example

drig(x) = de1fdy1g(>¢1,y1)

(1-2)

denotes the doubly-infinite, two-dimensional integral of the function g

over points r; = (x;,y;) in plane P;.

Fourier Transforms. Two-dimensional Fourier transforms are doubly-

infinite integrals defined in the following way:

ny{g(r)}= Jdr g(r)exp[-jZn(fxx+fyy)J

(1-3)

where ny{-} denotes the Fourier transform with respect to the variables

x and y , where r = (x,y) ; and fx and fy are the transform varia-

bles associated with x and y , respectively. The inverse Fourier

transform is defined in a similar manner:

F;;f){,g () = Id? g(f) exp[+121r(fxx+fyy)]

(1-4)

where lef ] denotes the inverse Fourier transform with respect to
Xy

variables fx and fy , when f = (fx,fy) s and x and y are the

space variables associated with the transform variables fx and fy >

respectively. One-dimensional Fourier and inverse Fourier transforms are

defined in a manner similar to that above:

Fx{g(x)} = Idx g(x)exp[-j2nfx]
and
F;is(f)} - Idf g(£)exp[+2mx£f]

6
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II. COHERENCE PROPERTIES OF BROADBAND OPTICAL FIELDS

In this chapter the spatial coherence properties of broadband optical
fields are investigated based on a modal expansion of the time-varying
part of the field. Although results presented here are derived for spe-
cific application to white-light optical systems in the visible (0.4 to
0.7 ym), the models developed are sufficiently general and may be applied
to a wide class of broadband optical and infra-red systems. The input
fields are assumed to be coherence separable, and the power spectra of the
time-fluctuations are aésymed to be smooth over all frequency ranges on
the order of T-l, whgre T 1is the characterization interval of the

temporal process.

Complex Field Envelope

Let Ul(;},t) represent the complex field envelope of a temporally
broadband (white-light) optical field propagating along the positive
z-axis. The field is defined in a plane P; located at z = z; con-
taining points r; = (x;,y1) . If the temporal fluctuations of the field
are centered at optical frequency f£fg , tﬁe scalar electric field fluc-
tuations of the electro-magnetic field may be written (Refs 1l4: 494-499;

15:12)
Ei(r1,t) = Re{U;(r;,t)exp[-j2nf,t]} (2-1)

where E;(r;,t) is the normalized scalar electric field given in volts
per meter per Yohm ; Re {*} means "the real part of;" and f£fo = ¢/}¢ ,
when c¢ 1s the speed of light in vacuum, and )y 1is the median wave-

length of the light.




For simplicity of the model, the spatial variations of Ul(;l,t)
are assumed to be independent of time, and the field is defined to be

coherence separable:

Uy (r1,t) = uy(rpdw(t) (2-2) |

where |JK;1) represents the spatial part of the input field and w(t)
is the broadband, time-varying portion of the field. Strictly speaking, «
this coherence model is applicable to source fields whose spatial varia-
tions are congtant for all time. This restriction can be loosened some-
what for the case where the spatial variations are constant over time
intervals comparable to the characterization time T of the temporal
process. As a convention u;(r;) is assigned units v#lts per meter
per Yohm ;3 w(t) is dimensionless.

The spatial and temporal parts of the optical field uj(r;) and
w(t) are assumed to be complex, zero-mean random processes which may be

represented in terms of their real and imaginary quadratures as

uy(ry) = ulRGl) + JU1IG1) ' = (2-3)

and

w(t) = wR(t) + Jup (t) (2-4)

where UIR(;I) and UII(;I) are the real and imaginary parts, respec-
tively, of the complex random process ui(ry) ; and wR(t) and wI(t)

are the real and imaginary parts of w(t) . If ui(r1) 1s assumed to have
identically distributed, but uncorrelated quadratures, the second moments

of u;(r;) may be written

él(;l)u*(;f> = R;(r1,r7) (2-5)
8
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and

él(;l)ul (;i> =0 (2-6)

where R, (;1 ,?i) is called the spatial correlation function, <-> denotes
an ensemble average, and * denotes the complex conjugate. Similarly,
if wR(t) and wI(t) are assumed to be identically distributed and

uncorrelated, the second moments of the complex random process w(t) are

<%(t)w*(t‘i> - R (t,t7) (2-7)

<w(t)w(t'> =0 (2-8)

Since the exact form of the spatial or temporal parts of the input
field are not known, it is reasonable to model them as complex random
processes--if for no other reason than a laék of better information. Also,
since for any naturally occurring phenomenon it would seem unreasonable
to assume that one quadrature should take precidence over the other, the
random processes are assumed to have identically distributed quadratures.

Furthermore, if w(t) 1is assumed to be statio;ary, the correlation

of the temporal fluctuations of the field may be written
R (t,t7) = R (t-t7) = R (1) . (2-9)

-1
Rw(r) = Ff {Sw(f)} (2-10)

where 1T =t -t , FEI {*} denotes the inverse Fourier transform with

respect to f , and Sw(f) is twice the power spectrum of either wR(t)
or wI(t) « Henceforth, the temporal correlation is assumed to be sta-

tionary as defined by Eq (2-9). The space-~time correlation or mutual

g —————
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correlation function of the broadband field U;(r;,t) 1is defined as

Fl(;l»;i’tat‘) - él(;l»t)u?(;ist‘> (2-11)
- 4’1(;1)“’1'(;{> <W(t)W*(t‘> (2-12)
= Ri(r1, 1R (1) (2-13)

Therefore, the space-time correlation of a coherence separable field
factors as the product of the spatial correlation function and the temporal
correlation of the field.

For typical white-light applications, the spectral content of w(t)
may be considered to range between 0.4 and 0.7 um, corresponding to a
temporal bandwidth Af equal to 3 x 10!“ Hertz. For convenience, the

power spectrum Sw(f) will be normalized, so that
© Jags (£) = 1 (2-14)

Thus, all the power in the complex field is assigned to the spatial part
of the field envelope glf;l) . A representative broadband power spectrum
Sw(f) and its corresponding correlation function Rw(T) are sketched in

Figure 1, where B 1is the nominal temporal bandwidth defined by
1
B = EA f (2-15)

the coherence time of the complex temporal process is approximately given

10
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Figure 1. (a) A Typical Broadband Temporal Power Spectrum S (f) and
(b) Its Corresponding Correlation Function R (1)

Modal Expansion of Complex Field Envelope

In this section a modal expansion of the time-varying portion of the
complex field envelope w(t) 1is developed. A Karhunen-Loéve (KL) expan-
sion is used so that the coefficients of the expansion are uncorrelated
over the characterization interval. For long characterization times, it
is shown that the basis functions of the KL expansion can be approximated
by complex exponentials, providing an intuitively simple interpretation

of the propagation of broadband fields.

11




et

-

Modal Expansion of w(t) . Consider the following modal expansion

of the complex random process w(t) along a complete orthonormal (CON)

set of basis functions {¢n(t)} over a finite time interval [- %-,'g :
N
w(t) = 1.i.m. z wn¢n(t)
N>
n="N
T T
for - <t <3 (2-16)
I
2
h o2 | dewinret o (2-17)
where w -3 w o —
-5
2

"l.i.m." denotes limit in the mean, implying a mean-square convergence
of the sum (2-16), and n is the integer index of the nth temporal mode.
Note that {¢n(t)} is a set of complex functions yet to be specified.
Also, since w(t) 1is assumed to be a zero-mean, complex random process
{wn} are zero-mean, complex random variables.

By proper selection of basis functions{¢n(t)} "it is possible to 1
expand ;(t) so that the coefficients of the expansion {wn} are pair-

wise uncorrelated:

énw:,> - <wn> <wn,> =0 (2-18)

for n # n” . The second equality comes about because the coefficients
are zero-mean random variables.

A necessary and sufficient condition for the {wn} to be uncorre-
lated is that the basis functions {¢n(t)} are the solutions to the

Fredholm equation (Ref 16:180):

12
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Yata® = [ de” R (e 860

=T

2

T T
for - 2<t<y (2-19)

where {Yn} are the real eigenvalues associated with the eigenfunctions
{¢n(t)} for all integers n : ~-=<n< « , The expansion of w(t) on a
CON set of eigenfunctions over an interval yielding uncorrelated coeffi-
cient is known as a Karhunen-Loéve (KL) expansion. If the basis functions
{¢n(t)} of (2-16) are solutions to (2-19) then the modal expansion of
w(t) 1is such an expansion.

Results from linear integral equation theory (Refs 17:122-140;
18:242-246) state that any square integrable kernel Rw(t,t‘) of

(2-19) may be expanded in a series
P Rl
R, (t,t7) = E Ypbn () ¢7(t7)

T W
for - Z<t,t <3 _ (2-20)

where the convergence is uniform for - %«=t,t‘< % . Eq (2-20) is

called Mercer's theorem. It can be shown (Ref 15:409) that if the
correlation function of a zero-mean, complex random process w(t) can be
expanded in a form (2-20), the modal expansion given in (2-16) will con-
verge in mean-square. Thus, for any correlation Rw(t,t’) which is
continuous and bounded for - %< t,t‘<% , the modal expansion of w(t)
given in (2-16) will converge in mean-square to the process w(t) .

Eigenfunctions and Eigenvalues for Long T. For stationary random

processes characterized over long time intervals [- %-,%-], it can be
shown (Ref 16:205-207) that the eigenfunctions {¢n(:)) and associated

13
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eigenvalues {Yn} which are solutions to the Fredholm equation (2-19)

can be approximated by
n
¢ (t) = exp[+12"ft]
T T
for - Z<t <3 (2-21)
1 n
and Yy ==8 (=) (2-22)

where T 1is the characterization interval in seconds and Sw(¥0 is the
power spectrum of the complex random process w(t) , defined in Eq (2-10),

sampled at frequencies %- Hertz.

The magnitude of T needed for the validity of the approximation
depends on how quickly Sw(f) changes near frequency f -~% . For
smooth spectra, long T means long compared to the reciprocal bandwidth of

the fluctuations of the optical envelope:

1
T g (2-23)

For white-light applications the bandwidth B = 1.5 x 10!" Hertz ; There-
fore, for a characterization time T much greater than 6.67 x 1019
seconds, the {¢n(t)} of the expansion over time interval of length T
become the complex exponentials of a Fourier series expansion, and the
eigenvalues {yn} corresponding to the eigenfunctions become samples of
the power spectrum Sw(f) evaluated at the harmonic frequencies of the
Fourier series expansion.

Thus, for long characterization time T , the eigenfunctions of the

KL (modal) expansion (2-16) may be approximated by complex exponentials,

14




and the expansion for w(t) becomes

n
+j2r <t
T
w(t) =) w e
n
s T T
for = 3¢ t < 2 (2-24)
I
1 2 -jZn%t
where w o= E-I dt w(t)e (2-25)
-T
2

and the statistics of the process w(t) are such that the sum is assumed
to converge in mean-square as discussed earlier.

With regard to the above approximation, it may be noted that if the
random process is expanded in a Fourier series, it can be shown (Ref 19:94)
that the coefficients of the expansion {wn} become uncorrelated as the
expansion interval T gets long.

Eigenvalue Statistics. The expected value of the energy of w(t)

] is defined
T

2

E. = <I dt w(t)w*(t> (2-26)

- TX < > (2-27)

where the modal expansion for w(t) has been used. Using Mercer's

in time interval [ 2 ' 3

theorem (2-20), the mean energy of the process for long characterization

time T 1is

= I8 . (2-28)
n

Equating each term of sums (2-27) and (2-28) and using Eq (2-18) yields

:> ) 6 " (2-29)




)

where ‘Snn‘ is a Kronecker delta. Thus, for long characterization inter-
vals, the mean-square value of each expansion coefficient {wn} is seen
to be just a sample of the temporal power spectrum evaluated at the
coefficient's harmonic frequency.

Modal Expansion of the Optical Envelope. From Eqs (2-2) and (2-24),

the complex field envelope of a coherence separable, temporarily broad-
band optical field in a plane 2z = z) can be written
o i +j2m e
Uj(ri,t) = 5 u(r;) w e

n

for - %< <= ~ (2-30)

where the complex field envelope is taken with respect to a carrier at
optical frequency f3, as in (2-1). Furthermore, its mutual correlation

function can be written

ry(ry,ri,t,t°) = <J (?l,t)U’{(?f,t')> (2-31)
* — . k=
= ‘zl E‘ <wnwn,> <u1(,r1)u1(r1>
exp[J 2—,;'- (nt - n°t”)] (2-32)

for - %<T<-§ . Note that the modal expansion of w(t) allows the
ensemble average over time sample functions in the témporal correlation
to be replaced by a sum of expected values of random variables.

Since the modal expansion coefficients have been chosen so as to be

pairwise uncorrelated (Ref Eq (2-29)), Eq (3-32) may be further simplified:
.-' oy » 1 n A »
Fi(ry,ri,t,t°) = ET s,(T) Rl(rl,rl)exp[jZ'n%(t -t9])

T T
for - 3<t<3 . (2-33)




The nth temporal mode of the optical envelope is defined by the nth

term in the series (2-30)

g _ e
Uln(rl,t) = ul(rl)wne

for - %< t<= (2-34)

where Uln(-;l ,t) is the baseband representation of a monochromatic optical
field at frequency fn = (fo --%) ; ui(r1) 1is the wavelength-independent
spatial part of the complex field; and {wn} is the nth coefficient of the
modal expansion for w(t) defined in Eq (2-25).

The importance of the modal expansion for the complex field envelope
given in Eq (2-30) is the following. Since Maxwell's equations governing
propagation of electromagnetic waves for homogeneous, isotropic media are
linear in space and time, each nth term in the expansion--or, nth temporal
mode--propagates individually. In terms of optical fields this means that
each temporal mode may be propagated as a monochromatic wave at frequency
fn = fo-'% . By superposition, the output broadband field is simply the
sum of all the individually propagated modes.

The free-space propagation of broadband optical fields using the modal

expansion developed above is discussed in the next section.

Free-Space Propagation Model for Broadband Optical Fields

Consider two parallel planes P, and P, separated by a free-space
propagation path of length Z as shown in Figure 2. The propagation of
monochromatic fields from input plane P, at 2z = z;, to output plane
P, at z = z, 1is governed by the Huygens-Fresnel integral (Ref 20:60)

which may be written

JkoZ

i r e & bk (2-35)
uz(ry) = -j_Xo? I drlul(rl)exp[j 27 |r2'r1| ]
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Figure 2. Free-Space Propagation Geometry

where uj(r)) 1is the complex field amplitude of the input field, wuy(r3)

1s the field amplitude of the output field, r; = (x1,y1) 1is located in

Pt » ;} = (x2,y2) 1s located in P,, ko = %% » A\g 1s the wavelength

of the light and Z = z; - z; is the distance from plane P, to' P; in

meters.
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In Eq (2-35) the paraxial (Fresnel) approximation has been used. For
many applications, the optical fields of interest are confined to a region
about the z-axis whose maximum linear dimension is small compared to the
propagation distance Z . For these situations, the Fresnel approximation
to the Huygens-Fresnel integral is very good. This form also allows the
computations associated with wave propagation and diffraction to be
greatly simplified, allowing a "systems" type representation of these
effects. .

For a monochromatic field of wavelength An the Huygens-Fresnel

integral (2-35) can be rewritten

jknZ k
= . i oy o i
uz (ra) = jA_Z—J dr) 01n(r1)exp[J2—;'|rz—r1|2]
n
(2-36)
2n
where kn = K; : (2-37)

and “ln(;l) and uzn(;z) represent the complex input and output field
amplitudes at wavelength An .

Using the modal expansion for a temporally broadband optical field
given in Eq (2-30), the output field mode Uzn(;z,t) due to a monochromatic

temporal mode at optical frequency fn - {L = fy --% at the input plane
n
can be written

L e . e
Uz, (£2,8) = S5 I dry Uy (ry,t)exp[y 55 [ro-r1|2]
n

T T
for - 2< t <3 (2-38)
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vhere A, = Ao £ () (2-39)
27 27
ke, 67 €(n) (2-40)
n
n
E(n) =1 - f_OT (2-41)

and U1n(;1,t) is the nth temporal mode of broadband field envelope
U;(r1,t) located at plane P; given previously in Eq (2-34).

Note that both input and output field modes are baseband representa-
tions of the nth temporal mode at the input and output planeé, respectively,
taken with respect to an optical carrier at center frequency f, = f% .

For broadband (white-light) fields, the output.field Uy(ry,t) can

be written as the sum of the individually propagatea temporal modes:
UZ(;Z)t) Ly 2 Uzn(;29t)
n

T T
for - F<t<y (2-42)

where Uzn(;é,t) is given in Eq (2-38) and the sum converges in the mean.
For reference, Eq (2-42) is called the free-space propagation model for

temporally broadband optical fields,

Field Coherence Properties of Broadband Sources

The purpose of this section is to calculate the correlation of an
optical field at an output plane due to a temporally broadband source with
arbitrary spatial coherence. First, the output field correlation is cal-

culated using the broadband field propagation model developed in the

20




previous section. Using statistical models for the spatial coherence of

the source, results for the spatial correlation of the output field are
derived for spatially coherent and incoherent sources. Results for the
spatial correlation of broadband light, derived using the broadband field
vpropagation model, are compared to well-known results for quasi-monochromatic
fields.

Output Field Correlation. The source field, defined in plane P, ,

is assumed to be coherence separable so that the input field envelope
may be written as in Eq (2-30):
+j2n ¢

Ul(;l,t) = ): ul(;l)wne I
n

(2-43)

where ul(;l) represents the spatial part of the complex field and the
modal expansion for temporally broadband (white-light) fields has been
used,

Using the broadband field propagation results given in Eq (2-42), the
output field at plane P2 due to a temporally broadband optical field at
P, 1is

2 jan
Uz(rz,t) = gl _eanz_ Wnexp[jZﬂ% t]

—_— — k — —
fdrluﬁr1)exp[j§%|r2—r112] (2-44)

where Z 1is the distance between planes P)1 and P2 in meters.

The correlation of the broadband output field can be written

21
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To(ry,r3,t,t°) = <U2(;2,t)U;(?2‘,t‘> (2-45)

-21 n n -
'g (an) T Sw(?)exP[jZni- (t-t )']

fd?l Jd;i Ry (r1,r1)

k — — —
expld 35 (|T2-r1|2- |T5-77|D)] (2-46)

=2 el ) T Ta -
= 2; (XnZ) Jdrljdrl Fln(l‘l,rl,t-t )

k
T T e e
for - 3<t<3 exp[j 37 (|r2-1y]2- |r3-r1|%] (2-47)

I‘ln(.l—'l sT1,T) = % Sw(%)Rl (r; ,_r_f)exp[jZﬂ% t] (2-48)

is the nth temporal mode of the correlation of the source field given in
Eq (2-33). The output field correlation Fz(;z,;i,t,t‘) or the mutual
correlation function expresses themutual coherence of light fluctuations
at points ;2 and ?5 in the output plane, where the fluctuations at
T, are taken at time t , and those at rj are taken at time t~.

Spatial Correlation of Output Field. The spatial correlation of the out-

put field is calculated from Eq (2-47) when t - t“=¢ =0 :

T5(r2,T3) = Tp(T2,75,1=0) (2-49)
= J O 2)~%[ar | a7 1o (F1LTD)
£ n 1 1 ln 1:T]
exp[:!ﬁ (|r2-1)| %~ [*3-r|?)]

for - 2<t<s (2-50)
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where

r (L 2y (71,71, t=0) (2-51)

= % Sw(%) Ri(r,r1) (2-52)

The output spatial correlation function I‘z(?z,?ﬁ) is also called mutual
intensity (Ref 14:508-510) of the output field. It expresses the gpatial
coherence of light at two points ?2 and ;5 in the output plane when
both points are considerecd at the same time. For white-light sources

Eq (2-50) is directly related to the fringe visibility of a Michelson
stellar interferometer (Ref 22:30) for extended, white-light sources with
arbitrary coherence properties.

Let the correlation of the spatial part of the source field be written
e o = - = * T
Ri(ry,ri) = fj(ry,r{)ui(r)u(ri) (2-53)

where {i;(r},r{) 1is defined to be the complex degree of coherence of the

source, such that spatially coherent sources are de.fined as those for
iy, =1 (2-54)
spatially incoherent sources are defined so that
fi1(ry,ri) = 8(r;-r1) (2-55)

Using Eq (2-53) for spatially coherent but temporally broadband sources,

the spatial correlation of the output field may be written from Eq (2-50):
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coherent
source

Ia(rp,r3)

02723 s ()
E T
k
I dry u)(r))explj o 27 |rp-r1]2]

k
drf u)(ri)expl-3 55 |T5-r1]?]

T T
for -§<t<f . (2-56)

For broadband,spatially incoherent sources Eq (2-50) becomes

incoherent
source

Fa(ra,r3)

21 n
'Z(AZ) T S,(7)

b S 3 B
. [dfl Li(r)expl-§ 57 T+ (x2-13)]
T T .
for - 7° t <3 (2-57)
B
where v “55 GARTHE) (2-58)
and LT = u G D (2-59)

1s defined to be tHe intensity of the source in watts per meter squared.
Note that Eq (2-57) is an extension of the Van Cittert-Zernicke theorem
(Ref 14:508-511) for temporally broadband sources.

In particular, if the source is radiating éuasi—monochromatic light

at wavelength 1, , the temporal power spectrum may be approximated by

sw(%) = T §(n-0) (2-60)
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and Eq (2-57) yields the mutual intensity for an extended, incoherent,

quasi-monochromatic source derived by Born and Wolf (Ref 14:509):

quasi-monochromatic,
incoherent source

I2(rs,13)

= (AOZ)-Z e:wo Jd;i 11(;1)exp[—j%°- ;1’(;2—;5)]
(2-61)

where Yo = i%f (|;é|2‘|;5|2)

(2-62)

and Ay 1is the median wavelength of the source radiation.
Note that for each temporal mode n the mutual intensity of the
light at the output plane is just as prescribed by the Van Cittert-Zernicke
theorem. The spatialcorrelationforwhite—light,extendgd sources (2-57)
is, therefore, the sum of all the mutual intensities for each temporal
mode. Also, since the spatial variations of the source field are assumed
to be wavelength-independent, the contribution from each temporal mode is
weighted by the temporal power spectrum Sw(f) evaluated at the appropriate

harmonic frequency.

Coherence Length for Broadband Optical Fields

Bringing the sum over temporal modes inside the integrals over I3

and writing

- kon ' -
kn ko + 0T (2-63)
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“allows Eq (2-50) to be rewritten in the following form:

sty - Oty [d;l f & 2D

R -

R, 37¢ C(Ir2-T1]2-[r3-v{[?)

k =t i _‘ —‘
exp[J 5—% (Irz- *1|2- T3-r|»]

N3

for - %< t < (2-64)

where
R ly .2 n 5 n
R (1) =3 [ €2(m)s (p)exp[-j2nt()]
" (2-65)
For wide process bandwidth B and long characterization time T , the sum

over temporal modes may be approximated by an integral over v (Ref 16:207):

1

ﬁw(r) I dv Ez(v)Sw(v);xp[-jZWTv] (2-66)

FV{EZ(V) s,(v)} (2-67)

where §&(v) = (1 - %b) and v has been substituted for as the

=
T
integration variable.

Eq (2-64) indicates that the spatial correlation of a broadband field
can be calculated from a two-fold spatial integralvover (1) the spatial
correlation of the source Rl(;},;f) and (2) the contribution from
differential path delays of all the temporal modes, written as Rw(-) .

As shown in Eq (2-67) the differential path contribution to the spatial‘
correlation can be approximated by the Fourier transform of a weighted

power spectrum, The relationship of the quadratic term £2(v) to a

typical power spectrum is shown in Figure 3.

26




£4 v (Hz)

Figure 3. Relationship Between Quadratic Term £2(v)

and the Temporal
Power Spectrum Sw(v)

Expanding
2w =1 - 4 ()2 (2-68)
0 0

and using the differentiation theorem for Fourier transforms (Ref 23:36),

Rw(r) may be written in terms of the first two derivatives of the temporal

correlation function Rw(t) :

2 2 d 1 32
RW(T) - Rw(r) T 27k, T3 Rw(r) £ (jwwfo)z. 32 Rw(T) (i
AN ._,1 32 2-70)
7 Rw(T) g nfq T3 Rw(r) T (2nfy) T Rw(r) e

where the correlation of the stationary, wideband process w(t) is given

by Eq (2-10). 1If the bandwidth B of Sw(f) is narrow enough so that

% << £ (2-71)

27




for all temporal modes with significant energy, then £2(v)
R"(T) = Rw(r)
because the correlation functions considered here are even

F {s (V)= F;l{sw(v)} = R (1)

For any wideband power spectrum of practical interest RW(T) tends
to drop off in magnitude for increasing argument (see Figure 1). This
tendency will cause a "windowing' effect in the integral (2-64). In
terms of spatial coherence, there exists regions in P; (consisting of
points r; and r{ ) and P, (consisting of points r, and ;Z ) for

which the spatial correlation function Fz(;},;f) is negligible. If the

=1, and

(2-72)

(2-73)

spatial correlation of the source is stationary for all separations

l;]-;fl in the source plane, the output coherence Tz(;é,;f)

stationary and may be written T,(|r,-r3|) . The separation

is also

|
4
:
4

p, = |r2-r3|

for which the output correlation function has significant value is called

the coherence distance,

Let the spatial correlation of the source be modeled as in Eq (2-53)

and assume the complex degree of coherence of the source {i;

in spatial coordinates (homogeneous)
— - g * —_
Ri(ry,ri) = ii(pp)ur(rdu(r))

where py = |T1-77|

28
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The spatial correlation of the field U,(r;,t) can then be written

To(ry,r3) = (AOZ)'ZJf dr, er;f al(pl)ul(?l)u’f(?f)

il A SR R B
R, [z Ure-r1|2-|r5-r1|2)]

exp[§ 52 (|77 |2- |57 )]

|3

for = §< fa (2-76)

Special cases of the output spatial correlation function for source
fields having various combinations of emission spectra and spatial
coherence are given in Table I. Monochromatic fields are assumed to
have impulsive emission spectra as given in Eq (2-60). The spatial
coherence of coherent and incoherent sources are modeled by Eqs (2-54)
and (2-55), respectively.

In summary, it must be noted that the output field correlations
listed in Table I avre calculated for source fields which are assumed to
be coherence separable. Source fields which can be represented in this
manner are restricted to those emitted by a perfectly diffuse and sta-
tionary object whose spatial characteristics are independent of time.
Furthermore, since the output field correlation (Ref Eq (2-47)) cannot,
in general, be separated into a product of a spatial correlation and a
temporal correlation, the output field due to a coherence separable

source field is not coherence separable.
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III. APPLICATION OF BROADBAND FIELD MODEL TO THE
ANALYSIS OF A WHITE~LIGHT SHEARING INTERFEROMETER

A lateral shear AC interferometer has been used in the measurement
of the phase-front of an optical wave. This chapter presents a descrip-
tion ?ffthis i;terferometer's operation for broadband optical fields with
arbitrary épatial coherence based on the propagation models for broadband
optical fields developed in Chapter II. The study of the shearing inter-
ferometer is intended to demonstrate the use of the broadband coherence
model in the analysis of a broadband optical system. The fundamental
limitations imposed on the wavefront measurement by the broadband nature
of the optical field ére sought. As such, the analysis ignores all dif-
fraction effects due to finite aperture size and all lenses are assumed to
be perfectly transmissive and aberration-free.

The first section presents a general discussion of the interferometer
optics, summarizing results reported by Refs 7 and 10. The sections that
follow present the analysis of the interferometer using the broadband
coherence model. The phase which is measured by the interferometer is
shown to be related to the phase of the complex part of the aperture field
envelope. Results of this chapter show the effect of white-light optical
fields on the interferometer's phase measurement. The median wavelength

of white-light A, 1is assumed to be 0.55 um.

Description of Interferometer Optics

The lateral shear AC interferometer has been used to measure the local
slope of an optical wavefront (Refs 7, 8, 9, and 10). As shown in Figure 4,

the incoming wave is beamsplit into two similar channels, each consisting
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Figure 4, Two-Channel AC (Heterodyne) Shearing Interferometer

of a pair of lenses, a rotating radial grating, and a detector array. The
purpose of each channel is to measure the wavefront slope along one of the
two coordinate axes of the measurement plane. Output signals from the
x- and y- channels can thén be used to reconstruct a phase map of the two-
dimensional wavefront sensed by the interferometer.

The optics in each channel are configured as in Figure 5. The two-

dimensional optical field in the input aperture plane Pa is denoted
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Figure 5. One-Channel Interferometer Optics

Ua(;,t) , where ;; = (xa,ya) are points in plane Pa . The input aper-
ture of each channel coincides with the measurement plane shown in Figure 4,
so that the interferometer measures the phase of Ua(;;,t) .

The input field is focused onto a rotating radial grating G in
Plane P8 by a diffraction limited, chromatically compensated (apochromatic)
lens L; having focal length F)} . By diffraction limited and apochromatic
it is meant that the lens will focus a plane wave located at Pa to a dif-
fraction limited spot at plane P8 for all wavelengths. The field at the
grating Ug(;g,t) is chopped by the moving grating and focused onto a

detector array at plane P, by lens L, . Lens L, has focal length Fp

d
and is assumed to be apochromatic and diffraction limited.
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The field chopped by the grating is diffracted, forming multiple
images of the input field Ua(;;’t) on the detector plane. Each dif-
fracted image is shifted, or sheared, with respect to the next by an

amount

) A

where s 1is the shear distance

F2 1is the focal length of lens L3

d 1is the line spacing of grating (grating period)

A 1is the wavelength of light
The direction of shear depends on the coordinate direction the rotating
grading cuts the field in plane Pé .

The radial grating is a circular glass disc with alternating clear
and opaque radial lines extending from near the center of the disc to its
outer edge. If the grating has N opaque lines, the line spacing at a
distance R from the center of the disc d = 27R/N . Since the grating
produces a square-wave transmittance at any radius it is also called a
radial Ronchi grating. For the x-channel of the interferometer, the input
field is focused onto the grating so that the Ronchi rulings move across
the spot in the x-direction. The resulting diffraction causes the images
in the detector plane to shear along the x-axis. In the y-channel, the
radial lines cut the spot along the y-axis producing a y-shear in the
detector plane. Figure § gives a representation of the lateral-sheared
images of the input field for the x- and y-channels showing the zero, -1,
and +1 diffracted orders, Each channel is constructed so that the focus
point on the grating is variable and the shear distances in the x and y

directions may be varied independently.
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Figure 6.

Representation of Lateral Sheared Images in Detector Plane

for (a) x-shear and (b) y-shear Showing the +1, 0, and -1 Diffracted

Orders.

As the gratings rotate, the intensity pattern at each point in the

detector plane is modulated, producing an AC signal at the output of each

detector. The fundamental modulation frequency fs is given by

where v
g

d
N

8

v [ ]
£ =5 - = (3-2)

is the linear speed of the radial grating at radius R in
centimeters per second

is the grating period at radius R 1in centimeters

is the number of opaque lines in the grating

is the angular speed of the grating in radians per second

As it is shown later, the fundamental frequency corresponds to the inter-

ference of the zero and +1, with the zero and -1 diffracted orders in the
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shaded region of the detector plane shown in Figure 6. If the square-wave
Ronchi grating is used, no other combination of diffraction orders produces
an interference pattern modulated at fs . It is to be shown how the

detector plane interference pattern modulated at fs relates to the phase

of a broadband input field Ua(?a,t) -

Calculation of Detector Field

g ———

The propagation geometry for the x-channel of the lateral shear AC
interferometer is shown in Figure 7. The broadband field Ua(?a,t)
located in the input aperture (measurement plane) Pa of the interfero-
meter can be expanded into temporal modes:

+j2r 2t
U (r,t) = z u (r)we T
aa’ L, an a’'m

for - %<t<-§ (3-3)

where uan(;;) is the spatial part of the aperture field and the sum over
temporal modes n converges in the mean-square. Note that the aperture
field is decomposed such that the spatial variations of the field depend
on wavelength. As written in Eq (3-3) the aperture field is not coherence
separable. If for instance, the aperture field is due to a field which
had propagated some distance tﬁ the aperture plane, the output field
congists of a sum of individually propagated temporai modes (Ref (2-42)),
and the spatial part of 2ach mode is given by Eq (2-36). To simplify

the analysis later in this chapter, it will be assumed at a later point
that the input field is coherence separable, and as such, the spatial
variations of the aperture plane are the same for all temporal modes.

This assumption will allow the calculation of the phase of an aperture
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Figure 7. Propagation Geometry for X-Channel Interferometer Optics

field whose spatial content is independent of wavelength. If Ua(;;,t)

were coherence separable, Eq (3-3) would be written
+:]2'rrE

t
e — AN
Ua(ra,t) ua(ra) tzlwne

T T
for - §<t<7 (3-4)

where ua(;;) is the wavelength-independent spatial part of the aperture
field. The discussion of phase measurement for a temporally broadband
field which is not coherence separagle is presented in Chapter IV where
the interferometer is applied to the situation where the aperture field
has a phase which has beeh distorted by atmospheric turbulence.

Using the free-space propagation model for temporally broadband fields
expressed in Eq (2-38), the nth temporal mode of the optical field just

prior to lens L; can be written
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dia

— o — v
2 ﬁjk'nFl ~ = kn .
Uzln(rtl,t) = iixgiq— I dr_ Uan(ra’t)exP[jEﬁﬁ !rzl-ral ]
T T
for - F<t<y (3~5)
where =
+j2rt

* (3-6)

Uan(ra t) = uan(ra)wne

represents the n*® temporal mode of the aperture field, and Uf,l (;ll’t)
n

is the nth mode of the field at lens plane le just prior to thin lens L;.

Apochromatic Lens Model. Following Goodman (Ref 20:81), a lens per-

forms a quadratic phase transformation on the incident field. For a
white-light incident field Uzl(;tl’t) an apochromatic lens performs a

quadratic phase transformation on the broadband field in the following way:

-

T - T i fad dul
U'Cln(t‘el't) Ulln(rll,t)exp[ jA“Fl (xl +y§ )]
for - %<t<— (3-7)

where U‘éln(;‘?—l’t) is the nth. temporal mode of the field just to the
right of lens L; . The nth field mode just prior to the grating in
plane P8 given by the Ugn(—r-g’t) , 1s the result of propagating
Uiln(;l_l,t) a distance F; to the focal plane of the lens:

Ik Fy

- o - = : X . |2
Ugn(rg,t) —_JADFI Jdrlxull (lrzl,l:)m:p[-‘hnl,1 Irlll ]

i
expls 77— 7,7 1] (3-8)
janFl

. I e
S el 5,1

— ' 2n
I drllulln(rll't)exp [-3 AnFI r8 r£1] (3-9)

38




By substituting Eq (3-5) into (3-9) and solving the integral over Ek -
1
assuming the lens is of infinite extent, yields

janFl

k
2 = 8, 2t TESINE
Ugn(rg,t) T dr_ Uan(ra,t)exp[-j e ra]

for -

T T
2<t<—2- . . (3"10)

Note that for each temporal mode, the spatial part of the grating field is

an exact two-dimensional Fourier transform of the input spatial field:

janFl =
oy & T i o=t B T =
Ugn(rg) JAnFl dra uan(ra)exp[ j 2"(AnFP ra] (3-11)
1 =
™ j)‘nFl exp[j anFl] anya{uan(ra)}
(3-12)

where uan(;;) and u n(;é) are the time-independent parts of the aper-

g

ture and grating fields, respectively; Fo y{
Ta’a

*} denotes a two-

dimensional Fourier transform with respect to variables X, and Yo §

and the transform is evaluated at spatial frequencies fx = xg/(AnFl)

and fy = yg/(lnFl) . The broadband field at the grating is, therefore,
the superposition of Fourier transforms defined for each temporal mode.
This result may be considered a white-light extgnsibn to the Fourier
transforming properties of F-F optical systems (Ref 20:86-87) where the
input field can be decomposed as in Eq (3-3). If the lens L; were not
apochromatic as defined, the transform results (3-11) and (3-12) would not

hold for the field at grating plane P8 .
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Rotating Grating Model. Since the radial grating is assumed to be

periodic in x8 for the x~channel of the interferometer, its transmission
function can be expanded in a Fourier series. The nth mode of the chopped

field just beyond the rotating grating U;n(;g’t) can then be written
- = g = E - e
Ugn(rg,t) = Ugn(rg,t) E Gmexp[j21rd (xg vgt)] (3-13)

where Ugn(;é,t) is the nth temporal mode of the optical field incident
on the rotating radial grating given in Eq (3-12)

™
1 jim mm
G =t sin(iy-) (3-14)

is the Ronchi (square-wave) grating coefficient of the mth diffracted

order for all integers m ¥ 0 , where Gy = %

2R
d = e . -(3-15)

is the grating period of an N 1line radial grating at distance R from

.

the center of the disc, and ¢

= RO 3-16
" ( )

is the speed of the grating in the xs-direction, 6 1is the angular speed
of the grating in radians per serond.
Note that the phase of the grating coefficients Gm giveﬁ in Eq
(3~14) indicates an asymmetrical positioning of the grating with respect
to the xg—axis at t =0 . Specifically, a time reference may be defined
so that t = 0 whenever the position of the grating allows its Fourier coef-
ficients to be given by Eq (3-14). This time reference is necessary for the

extraction of the phase measurement from the interferometer output signal.
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Detector Plane Field. Using the broadband propagation result for

apochromatic lens F-F optical systems similar to the one expressed in
Eq (3-10), the nth optical field mode at the detector plane Udn(;A’t)

due to the broadband field U;(;g’t) is

= 1
( e
UsnTqo®) ¥z exp [janFz]
I drg Ugn(rg,t)exp[—jii; rd'rg]

T T
for —E<t<§' (3-17)

Combining Eqs (3-10), (3-13), and (3-17) and carrying out the two-

dimensional integral over the grating plane P8 yields an expression

for the nth temporal mode of the detector field in terms cf the aperture

field:
Udn(;;,t) = E MG exp[j2kn(F1+F2)]exp[—janfst]
Uan[M(xd'mSO)’ M}’d ’ t]
T T
for - 7<t<y (3-18)
where
M="2l
F;

(3-19)

is the magnification of the two lens, double F-F optical system, fs
is the fundamental modulation frequency of the detector field given pre-

viously in Eq (3-2)
s, " T =22 ¢l (3-20)

n E(n)
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is the shear distance for the nth temporal mode,and sy 1is the shear
distance for the median wavelength )\, , measured in the detector plane.
The expression for Uan(;;’t) is given in Eq (3-6).

The detector field of the x-channel for each temporal mode n and
each diffracted order m is, therefore, a scaled and shifted image of
the input field mode Uan(;;,t) modulated at frequency mfs . Note that

the modulation frequency and scaling of the field are independent of wave-

length. The location (or relative shear) of each diffracted order, however,

depends on temporal mode--and therefore, on wavelength. The amount of

x-shear for each diffracted order m 1is, from Eq (3-20)

A_F,
o8 d

(3-21)

The effect of this wavelength dependence on the interferometer's phase
measurement for aperture fields with various states of spatial coherence
is shown in the last two sections of this chapter.

Following the propagation model for broadband fields (2-40) the
broadband detector field Ua(;a,t) is written as the sum of all the

individually propagated modes:
Uy(rget) = xz‘ Uyn (Fget) (3-22)

Analysis of Detector Plane Intensity Pattern

The light-intensity on the detector plane Id(;a,t) due to the

broadband field is given by

1,(r;,0) & <ud(?d,t)u:(?d,c> ©(3-23)
=] I udn(?d,c)u:n,(‘d,c> (3-24)
nn
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where n and n” range over all significant temporal modes of the broad-
band process w(t) . Note that each field mode Udn(;A’t) given in Eq
(3-18) is the sum of all the field orders m diffracted by the rotating
grating. The interference of all diffracted temporal modes must therefore
be written as a double sum over m . The detector plane intensity may

also be written

G0 <L L L QG @p) 029
m mnmn
where

Udmn(?d,t) = M G exp[j2k_(F1+Fy)]
exp[-jszsc]
uan(u(?d-msn) T B, (3-26)

is the mth diffracted order of the nth temporal mode of the x-sheared
detector field. In (3-25) the indices m and m”“ range over all integer
values for which the grating coefficients Gm and Gm, have significant

value. In Eq (3-26) the vector form of the shear is used so that

;; - (sn,O) indicates an x-shear of s, for each temporal mode n ,

and no shear in the y-direction in the detector plane.

The ensemble field intensity can be greatly simplified. Note that
in the intensity calculation, the modal expansion of the broadband
process w(t) has reduced an ensemble average over the sample functions
to an expected value over a sum of random variables . and LA
Using the fact that the modal expansion coefficients {wn} are uncor-

related, as expressed in Eq (2-24), Eq (3-25) may be written:
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4 *
Id(rd,t) = g g‘ MZGme,exp[—jZn(m—m‘)fst}

ra(u(? 4°8s,) M(T g m7s))

(3-27;

vhere r(r.c) = éa(?a,c)u:(?; ,t> (3-28)
1 n — & =

= T Z; Sw("f) <lan(ra)uan(ra )> (3-29)

is the spatial correiation of the broadband aperture field Ua(;;’t)
evaluated at points ;; and ;; 5

From Eq (3-27) it can be seen that the intensity pattern modulated
in time at frequency fs results from the coherent addition of two
diffracted crders m and m” such that |m-m”| =1 . Using the Ronchi
grating coefficients {Gm} defined in Eq (3-14), thé intensity pattern

modulated at f8 is calculated:

i 2 B ks ke
iy, =2 Relexp[-3(2nf _t- 1) Ir_(u(z,5 ), M)}
+ —“-zne{ex [+j(2nft-=)]r (M(T+3 ),Mr,)}
m P 8 2 a rd sn L4 rd
for = %< t <% (3-30)

where Ld(;a,t) is the intensity pattern at the detector plane at fre-
quency fs for x-shear, and the double sum over diffraction orders is
calculated such that !m—m‘l = 1 for all terms in the summation. The

intensity pattern id(;&'t) at each point (x ) in the detector

a*va
plane is defined to be the x-channel output signal of the AC interfero-

meter.
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Each detected signal mode n 1is composed of two similar terms modu-
lated at frequency fs . The first term is the result of the coherent
addition of the m=+1 and m =0 field oéders diffracted by the rotating
grating. This term will be called the "positive-shear" term because it
contains the correlation of the +1 diffracted order, sheared by distance
+sn in the detector plane, with the undiffracted field order. The second
term results from the interference of the m = -1 and m = 0 diffracted
orders and is called the "negative-shear" term.

Since the spatiai part of the aperture field mode is independent of
time, no additional frequency modulation is introduced into the detector

signal.

Phase Measurement for Coherence Separable Aperture Fields

In this section the interferometer phase measurement is derived for
aperture fields which may be assumed to be coherence separable. Such
fields which can be characterized by an expansion over its temporal modes
may be written as in Eq (3-4). Following Eq (3-28), the spatial correla-

tion of the coherence separable aperture field may be written

) Sw(-;-) éa(?a)u:(?; > £3=31)
n
)
n

1 n i o
7 T sw(_'f) Ra(ra’ra ) (3 32)

where Ra(;;,;;) is the correlation of the spatial part of the aperture
field defined in Eq (2-5). Allowing the spatial correlation Rh(;;’;;)

to be written in terms of its complex degree of coherence (Ref Eq (2-53))

RGELT) = 0, (L du (7 )u(E)) (3-33)
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where \”Aa(_fa,;;) is the complex degree of coherence of the aperture field,

the detector signal for x-shear may be written

D 2
id(rd,t) =% Re{exp[-j(anst— %)] u:(M d)
1 n = = = =
T ‘); Sw(f)ﬂa(M(rd-sn) ,Mrd)ua(M(rd-sn))}

2 —
+ % Re{exp[+j (wast - % )]u:(Mrd)

=

PN R i o
Z S, ()0, (M(r+s ) ,Mr Ju, (M(x +s ) Mr )}

T T
for - 2<t<3y (3-34)

where all the mode-dependent terms have been grouped.together.

Let
u, (M(T50)) = 1 L 5,(7)8,0i(zgms) iz

4 ua(M(;d:s-n)) (3-35)

and

,:‘a‘“(?d+;°)) --;- xz. 5, (2)0_(M(x +5 ) ,Mr )

cu (M(?d+§n)) (3-36)
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Furthermore, let all spatial fields be written in polar form:

ua(M; PR A(M?d)exp[n(u?d)] (3-37

u (M(z,750)) = AM(T,~50))exp[14(M(x,~50)) ] (3-38)

and

u (M(E #50)) = AT #50))exn[16MT #50)) ] (3-39)

In the next section it will be shown that for yhite-light coherence
separable aperture field envelopes, the lateral sheaf AC interferometer
causes the m=+1 and m= -1 diffracted spatial field orders to be
spatially low-pass filtered. The "hats" over the amplitude and phase of
the diffracted orders indicate that they represent the amplitude and phase
of the spatially filtered field. The nature of this spatial filtering is
generally discussed for coherence separable broadband fields in the next
section, and discussed specifically for broadband. spatially incoherent
source fields in Chapter IV. Note that the spatially filtered,&iffracted
field orders are defined with respect to the shear distance sy for the
median wavelength of white-light. Whereas the performance of the inter-
ferometer is analyzed with respect to 50 , it may be used as a design
parameter for a physically realizable interferometer.

Note that the m = 0, or undiffracted order, is not filtered. The

spatial filtering of the diffracted orders can be thought of as being
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caused by differential path length effects associated with the diffrac-
tion of broadband light by the interferometer's rotating grating. If the

field is not diffracted, there are no differential paths and no spatial

filtering is introduced.
Using the expressions given above for the zero (3-37), m = +1,

(3-38), and m = -1 (3-39) diffracted field orders, Eq (3-34) may be

rewritten

e 2 e et
Ld(rd,t) --% A(Mrd)A(M(rd-so))Re{exp[-j(anst-%-)]

expl 34T -50))-16 () 1)

2 L A i S ) |
+ 3 A )AM(r #50) Re{expl+1 (2nf £ -1 )]

exp[30(U(x #50)) -4 (M ) 1}

T T .
for -7<t<—2'. I. (3-40)

If the amplitudes of the spatially filtered orders are assumed to be

equal over the distance of the shear for each point in the detector plane

A(ME )

R

AMM(T ~50)) (3-41)

R

AMGT 500 C=AD)

where A(xa,ya) is the amplitude of both sheared field orders, the posi-
tive and negative-shear terms may be combined and Eq (3-40) may be
simplified:

48




= 2 P S s
L'd(rd,t) = 2% A(Mrd)A(Mrd)
cos [l ('i; +¢: )-¢]
B

g
sin[2nf_t+3 (¢_-¢)]

for -%<t<% \ (3-43)
where $ = (Mr) (3-44)
¢y = S(M(rg-s,)) (3-45)
. = SONGE F0)) (3-46)

Eq (3-43) represents the interferometer output signal for x-shear in terms
of the amplitudes and phases of the sheared (and filtered) aperture field
orders. The aperture phase measurement made by the interferometer output

signal is
A = ¢_ - ¢+ (3-47)

It is shown in later sections how the measured ph#se- A; relates to the
spatial part of the broadband aperture field for special cases of aperture
field coherence.

If the amplitudes of the spatially filtered orders are not equal over
the distance of shear as assumed in Eqs (3-41) and (3-42), the resulting

detector signal is rewritten
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— 2 =
id(rd,t) =% A(Mr )
(AM(r;-50)) sinl2nf_t-4(M(T,-50))+o QT ) ]

+ AQM(T +s0)) sinl2nf ¢

+ $(u(T ¥50)) - (¥r ) 1}

(3-48)
Eq (3-48) can be interpreted as a sum of two phasors with phases
bp = -:b(M(?d—Eo)) + ¢(Mr ) (3-49)
due to the positive;shear term, and
8y = +OM(T ¥50)) - (M) (3-50)

due to the negative shear term as indicated in Figure 8. The resulting
amplitude ;R and phase ;R of the degector signal is the sum of the
positive- and negative-shear phasor terms as indicated in Figure 8.
Henceforth, it will be assumed that the amplitudes of the spatially fil-
tered diffracted fields are nearly equal so that Eq (3-43) adequately
represents the interferometer output signal for x-shear. It is shown in
Chapter IV that for the case of distant sources, this assumption is,

indeed, valid.
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Figure 8. Phasor Addition of Positive and Negative Shear Terms

The next section shows that the lateral shear AC interferometer causes
the diffracted orders of the coherence separable white-light aperture field
to be filtered, giving rise to a filtered phase 4¢ which is ultimately

measured.

Spatial Filtering Effects of White-Light Interferometer

Consider the following term defined in Eq (3-35) representing the

spatial part of the m = +1 diffracted order in the detector plane:

FER e X ek AN
u (M -8)) = Z 8, (T, (M(x =8 ) M du (M(x s )

51 (3-51)
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e dp——y

If ﬂa(?;,?;) is homogeneous across the aperture of the interferometer,

the complex degree of coherence of the aperture field may be written
Ug(rgsrs ) = (r-r7) (3-52)

Assuming ﬁa homogeneous allows (3-51) to be written

u, (M(z,-50)) = 21 5, (2, (s Du_ (1(F,-5)) (3-53)
n

Note that ﬁa is evaluated for a separation of ME; in the x-direction
and noAseparation in the y-direction. Taking the spatial Fourier transform
of Eq (3-53) with respect to the aperture plane coordinates yields
F, , lu,((z-50)))
a’a
1 b ) —jZWfXMSOE-l(n)
=T E S, (T In,(Ms ) Va(fx’fy)e (3-54)

where (3-55)

va(fx’fy) = anya{ua(xa,ya)}

Using the binomial expansion for £~!(n) and approximating the infi-

nite sum by the first two terms

-1 41 a_ o
£ (n) (1-fOT) 1+ £oT (3-56)
which is a good approximation for ?%T << 1, allows (3-54) to be
written in the following form:
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anya{ua(n(?d-go))}= Va(fx,fy)exp[—jZ'rrfoso]

=

1 1, (eo (145 p)s, ()

exp[-j2n xS0 ()] (3-57)

£o

The approximation in (3-56) assumes that although the power spectrum
Sw(f) is broad, its effective bandwidth B is still sufficiently small
that the higher order terms of E-l(n) in the exponential of Eq (3-54)
can be neglected. The maximum index n in the sum (3-57) is limited by
the effective bandwidth B so that Max(n) = + BT . Assuming that the
power spectrum is still broadband enough that the sum over n may be

approximated by an integral over v

anya{ua(M(;a—;b))} ='Va(fx,fy)exp[—jZfoMso]

jdv n, (Msg (1 +f"—0)) 5, (V)

-

foso
exp[-j2n( £ ) v]

(3-58)

To first order then, Eq (3-58) expresses the spatial filtering effect of
the AC shearing interferometer on the m = +1 diffracted field order,
when the source field can be assumed to be coherence separable. Although

Eq (3-58) indicates a doubly-infinite range of integration, the range of
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{ v for which the integral has significant value is limited to the spectral

bandwidth of Sw(v) --which is nominally -B < v < B . Define

H (¢) = Idvﬁa(Mso(l - —f‘—%)) Sw(v)exp[-jZn;v] " (3-59)
where L= foso (3-60)
fo

to be the spatial filter introduced by the interferometer's diffraction
grating on the m = +1 field order. Note that there is no spatial
filtering for spatial frequencies associated with the y-direction since
no y-shear was introduced in the x-channel. The corresponding filter
for the m = +1 order in the y-channel, therefore, does not affect
the x-direction spatial frequencies.

The same analysis, when applied to the m = -1 diffracted order,
yields

anya{ua(M(rd+S°))}

- va(fx,fy)exp[+j 2nf MsoJH_(2) (3-61)

where

H_(¢) = Idv fi_(Msg(l+--)) S (v)exp[+j2ngv]
a : fo w (3-62)

is the spatial filtering introduced into the m = -1 diffracted field

order.
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The form of spatial filterirng functions H+ and H_ 1is seen to
depend on three effects: (1) the complex degree of coherence of the
aperture field ﬁa(;;;;;) , (2) the power spectrum of the wide-band
temporal process Sw(f) , and (3) the shear distance sg for the median

light wavelength, defined by

The shear distance is a design parameter which may be chosen to fit
a specific set of operating conditions. Since the coherence properties
of broadband light are relatively insensitive to the precise functional
form of the temporal process power spectrum, the ultimate forms of the
spatial filtering functions are also relatively insensitive to the precise
form of the broadband power spectrum Sw(f) . The dependence of the fil-
tering effect on the specific coherence properties of the aperture field
is, however, significant. In the next two sections, the effect of
aperture field coherence, given a particular temporal power spectrum,
are considered for special cases of the field's degree of coherence
ﬁa(;;,;;) . The filtering effects of a specific form of ﬁa(;;,;;) are

considered in Chapter VI with the application of the shearing inter-

ferometer as a wavefront sensor in a phase-compensated imaging system.

Filtering Effects for Spatially Coherent Aperture Fields

For an aperture field which is spatially coherent, the complex degree
of coherence is equal to unity for all points of interest in the aperture
plane (Ref Eq (2-34)). Following Eq (3-59) the spatial filter H_ may

then be written
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H+(C) = Idv Sw(v)exp[-j2ncv] (3-64)
= Fv{sw(V)} (3-65)

foSQ
=R (2) =R i ) (3-66)

where Fv{°} denotes the Fourier transform with respect to variable v ,
foSO
fo

and the transform is evaluated at , and Rw(-) is the corre-

lation of the broadband time process w(t) defined in Eq (2-9). Note
that since the correlation functions considered here are stationary

and even
F (S, (W}=F' (s (W)} = R (2) (3-67)

Applying the same analysis to Eq (3-63) shows that the spatial
filtering introduced into the -1 diffracted field order has the same

form:
H_(2) =R (2) (3-68)
= H+(c) = H(Z) (3-69)

As discussed in Chapter II (Ref Eq (2-73)), the correlation function
RW(T) will drop off with increasing argument so as to limit the high
spatial frequency content of Va(fx,fy) in Eq (3-58). Therefore, for
white-light, spatially coherent aperture fields, the AC shearing inter-
ferometer causes the sheared orders of the broadband detector field to

be spatially low-pass filtered. The form of this filtering has been
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shown to be, to first order, the correlation function of the broadband

- £ Msg
fo

temporal process w(t) evaluated at T

As an example calculation, consider the bandlimited power spectrum
-1
Sb(f) and its correlation function Rb(r) = Ff {Sb(f)} . The correla-
tion function resembles a sin(x)/x function with the first zero-crossing

at

foso
C = fo = -Z—B- = Tb (3—70)

where B is the bandwidth of Sb(f) s Ty is the argument of Rb(r)
for which Rb(r) = 0 , and the argument of the spatial filtering func-
tion H(Z) has been.equated with that of the correlation function Rb(r) .

Define the effective spatial bandwidth of the filtering function

H( foso ) for spatially coherent aperture fields to be
fo
P WL LY )
By = 2MsoB ~ Msg ¢ af) i
For white-light applications, %f-z 0.275 and the effective spatial

bandwidth of the spatial low-pass filter H(z) is on the order of

(3-72)

or, in other words, the spatial frequency content of the sheared broad-
band fields u (M(r;-sg)) and u, (M(r +s9)) 1is limited to 3.6 times

the reciprocal shear distance Ms;, measured in the aperture plane.




Since the spatial field ua(;;) is complex, H(z) filters both
real and imaginary quadratures of the sheared fields. The phase measure-
ment derived from Eq (3-43), however, is expressed in terms of the
magnitude ; and phase ; of the filtered spatial part of the aperture
field envelope. The specific form of the distortion introduced into
the measured aperture phase $ by the fiitering process cannot, in
general, be'determined for arbitrary forms of ¢(;;) . At this point,
it will suffice to say that the phase of a white-light field measured by
the AC shearing interferometer is the phase of a filtered aperture field--
the filtering being introduced by diffraction of the white-light field
by the interferometer's grating.

Monochromatic Field Phase Measurement. For ‘spatially coherent aper-

ture fields which are monochromatic, the correlation function Rw(r)

is flat so that H(z) 1is constant for all spatial frequencies. For the
monochromatic case, then, no spatial filtering is introduced for any
shear distance Ms; . With no spatial filtering, the resulting inter-

ferometer output signal for x-shear is given by

4Gyt = 2 W2[AG )12 cos[ (4, +)-4]

stnl2nf t -3 (6_-0,)] (3-73)

d

where A(;;) is the amplitude of the aperture field at point ;; = Mr
¢ = o(r)
is the phase of the spatial part of the aperture field

Pl ¢(ra-Mso)
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and

o_ = ¢(r_+Ms)) (3-76)

Note that for aperture phase functions ¢(;;) which change at
most linearly at each point in the aperture, the detector signal may

be simplified further:
i - 2 M2lA(T Y12 1 ¥
&d(rd,t) = M [A(ra)] sin(anst-2A¢) (3-77)
where
Ap = ¢(r +Msg) - ¢(r_-Mso) (3-78)

is the linear change in phase over distance bx, = 2Ms) measured in the
aperture plane for a monochromatic, spatially coﬁerent, aperture field.

Refering to Figure 9, the local wavefront slope at a point

rao = (xao,yag in the aperture plane is approximately given by

¢(xa0+Mso,yao) - ¢(xao-Mso,yao)
2Ms

)
 ¢(x_,y_) =
3xa OB e

(3-79)
- it : (3-80)

The validity of the approximation depends on how much the aperture phase
actually fluctuates within a distance Axa = 2Msg . A detailed study of

aperture phase fluctuations based on the phase statistics of turbulent

atmosphere can be found in Ref 24,
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A ¢(xa.yao)

Q(xa +M80,ya ) -

0Gx, Mooy, ) = —D

Figure 9. Aperture Phase ¢(x ¥, ) for Fixed y Showing Calculation
of Local Wavefront Slope

Therefore, for monochromatic light, the slope of the aperture field
wavefront is given by Eq (3-79). Implicit assumpfions are that the aper-
ture field amplitude is constant, and the phase of the aperture field
varies at most linearly over a distance 2Ms; in the aperture plane.

Phase Measurement for Small Shear. For spatially coherent, white-

light aperture fields where the shear Ms; 1is small enough that

R, ( 0 ) encloses all the spatial frequency components of ua(;;)
fo
e
Ba << B Mso (3-81)

where Ba is the bandlimiting spatial frequency of va(fx’fy) , the
spatial filtering effect of the shearing interferometer is negligible.

For this case the filtered phases ¢, and ;_ defined in (3-45) and
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(3-46) very closely approximate the actual phases and ¢_ of the

L
sheared images of the aperture field envelope. The detector signal,
then, is expressed by Eq (3-73) and the wavefront slope for x-shear is

expressed by (3-80).

Phage Measurement for Large Shear. For spatially coherent, white-

light aperture fields were the shear Ms, is large so that Rw( foSO )
fo
is much narrower than the spatial frequency content of ua(;;)
. 3.6
B, >> By = Ms, (3~-82)

the phase measurement A¢ 1is lost completely. Using Eq (3-43) and

approximating Rw( f%ffﬁ ) by an impulse at fx = 0 in Eq (3-66) yields
0 .
4430 = 2PH M2A0A(E, ) cos (¢-b9) sin(2nf t) (3-83)
m
vhere B, = ‘ﬁ:—o (£g) (3-84)
A = |[dxa ua(xa,ya)l o (3-85)

is the amplitude of the aperture field averaged over X, 0 and

¢o = arg[ deaua(xa,ya)] (3-86)
is the phase of the aperture field averaged over X, .

Filtering Effects for Aperture Fields with Arbitrary Spatial Coherence

I ——e o B = - e s e g — s e e e = —

For broadband apercure field envelopes with a complex degree of
coherence fig » the first-order spatial filter for the m = +1 diffracted

field order is given by Eq (3-59):
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B me B P O
+ £g vua fo 0 w'V
foSO
exp[-j2n( f ) v] (3-87)

Note that although ﬁa has arbitrary form, it is assumed to be stationary

-

for all separations ;;-;; in the interferometer aperture plane.
The spatial filtering function H+ can be interpreted as a Fourier

transform of a "windowed" version of the temporal power spectrum:

f_Msg

- a
H+( —fO_) = FV{SW(V) } (3-88)
where
S (v) = ii(M80 : "
5,00 = 1B (45, ) (3-89)

is the windowed version of the power spectrum, and the transform is
evaluated at foso/fo . The windowing effect can be better visualized
with the help of Figure 10, where the windowing is accomplished by a
shifted copy of the complex degree of coherence ﬁa as prescribed by
Eq (3-87). The degree of coherence H, sketched in Figure 10 is equal
to the modulus of the complex degree of coherence na (Ref 14:510).
The spatial filtering function H+ , then, is the Fourier transform
of the windowed, or filtered, power spectrum sketched in Figure 10(b).
Similarly following Eq (3-62), the spatial filter for the m = -1
diffracted order is the inverse Fourier transform of the windowed power
spectrum éw(V) defined by Eq (3-89)

f_Msg

X ot 0
H_( 7 ) = Fv {Sw(v)} (3-90)
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(a)

Msg
ua( %o (fo+v))

/\/\X\SWM
+ e

- | o :
fo -B B v
(b) A
§W(V)
— .
0
; v

Figure 10. Windowing Effect of Degree of Coherence u, on the
Temporal Power Spectrum Sy : (a) Power Spectrum and Degree of
Coherence, (b) Windowed Temporal Power Spectrum Sw(V)

It can be séen from Eqs (3-88) and (3-90) that the specific forh of
the filtering processes H+ and H_ are highly dependent on the complex
degree of coherence of the aperture field. Whereas fhe spatial filtering
arises from the broadband temporal characteristics of the field, the
functional form of this filtering depends on the spatial coherence of the
field as well.

In the next chapter the lateral shear AC interferometer is applied

to the measurement of an aperture phase due to a broadband, inccherent

source. It is found that for specific source radiance distributions the
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{ the complex degree of coherence of the aperture field can be calculated
explicitly, and the particular form of the spatial filtering functionms,
for aperture fields which are not assumed to be coherence separable can

be calculated.

v
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IV. WAVEFRONT MEASUREMENT FOR SPATIALLY INCOHERENT,
TEMPORALLY BROADBAND SOURCES

The lateral shear AC interferometer described in Chapter III has been

used as a wavefront sensor in real-time atmospheric compensation systems

(Refs 7, 8, 9, and 10). In this application, the interferometer is required

to measure the phase of the optical field envelope in its input aperture

due to an extended, white-light source. This chapter describes the closed-
loop operation of the lateral shear AC interferometer as a wavefront sensor
for broadband, spatially incoherent, extended sources based on the free-

space propagation model introduced in Chapter III. The residual effects

of atmospheric turbulence are modeled as a multiplicative phase factor intro-

duced at the aperture plane of the wavefront sensor for each temporal mode

of the field expansion for a frozen state of turbulence.

Wavefront Sensor Output Signal

Consider two parallel planes Ps and Pa sep;rated by distance Z as
shown in Figure 11. Let P8 contain an immobile, d{ffuse source of finite
spatial extent reflecting white light. Let plane %a represent the input
aperture and measurement plane of the interferometer wavefront sensor, so
that Z 1s the range of the source in meters. Allowing the source field
to be modeled as coherence separable, the white-light source field may be

characterized over a finite time interval T by a modal expansion as in

(2-30): o
g X +j ZTIT t

Us(rs,t) = u'(r.) E v.e
<t<

for - (4-1)

(S
N
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Source Plane: Ps

Aperture Plane: P

a
= ~
Us(rs’t) ~ _ *
Source Field \\\\\\~ T
TR a
N
~N
3 Z e xa
~
~N
U (r ,t)

Aperture Field

Figure 11. Free-Space Propagation Geometry for Extended, White-Light
Source

where us(;;) is the spatial part of the source field envelope, the sum
over the temporal modes converges in mean-square.

If the source is sufficiently diffuse, the light reflected by it can
be assumed to be spatially incoherent; the spatial correlation of the source
field may be written (Ref 24:126 and Eq (2-55))
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4 o M e 2 e
R (T, ) = w (Fu (F]) = I (T)8T,-T.)  (4-2)
where Is(;;) is defined to the radiant emittance (intensity) of the source
in watts per meter squared.
Aperture Field. Ucing the free-space propagation model for broadband
fields developed in Chapter II (Ref Eq (2-44)), the nth temporal mode of
the optical field Up(;;,t) just priof to the aperture plane Pa is given
by
o & #iinZt
Upn(ra,t) = uan(ra)wne
1
for --g-<t<-'2£ (4-3) {
where J
28 ejknz oy i kn = e
\ : uan(ra) 3 'EX;ET f drs us(rs)exp[jiﬁzlra-rsl ] (4-4)

Note that since the field Up(;;,t) is the output field due to a spatially
incoherent, coherence separable, broadband source field Us(;;,t) , the

spatial correlation of the field is given by Eq (2-57):

e o aaks

I‘p(ra,ra ) = <EJP(ra,t)Up(ra ,t;> (4-5)

v

1 1 n n

= (-);o—i) Z:l-.f. £2(n)s (7 )e
hx()&iﬂfﬁﬂ

) s s e P J Z "s'‘Ta ta (4-6)
where v - 7:—2 gyl |2- T | (4-7)
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Turbulence-Induced Phase Model. The effects of the atmosphere

seriously degrade the imaging capability of optical systems in many
applications. The resolution which is attainable for imaging through

the earth's atmosphere is limited by warping of the isophase surfaces
(phase distortion) and intensity variations across the wavefront caused

by random fluctuations in the refractive index of air. For broadband
optical fields, the phase distortion which is introduced can be thought

of as a differential path length distortion introduced for all wavelengths,

so that the phase distortion for each temporal mode measured in the aper-

ture plane of the interferometer ¢Tn(ra) is
b (£) = 2. p2(r) (4-8)
Tn " "a An a

where AZ(;;) is the differential path length distortion introduced by
a frozen atmospheric state for all temporal modes measured at a point ;;
. in the aperture plane.

To the extent that the phase fluctuations ¢Tn(;;) are correlated

over the entire wavelength range A)A of the broadband source, the phase

distortion for each temporal mode is approximately the same, and

dpn(Ty) = ¢T0(r )

a
for -BT <n <BT ' (4-9)

where ¢To(;;) is the turbulence-induced phase distortion for X = ),
which is the same for all wavelengths of light. For arbitrary spectral
bandwidths, however, the phase distortion may not be assumed to be

correlated for all modes of the field expansion (Ref 28:468).
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Suppose that the nth mode phase distortion is written as

(r) = ¢T0(ra) + ?Tn(ra) (4-10)

Tn a

where ¢Tn

each temporal mode about a mean phase, which is arbitrarily chosen to

(;;) is the fluctuation of the turbulence-induced phase for

be that for 1;. In general, ?Tn(;;) will have values which differ
greatly from ¢T0(;;) . If gross differential path length differences

and wavefront tilt have been removed,as in the closed-loop operation of

a real-time atmospheric correction device (Refs 7 and 9), the variation of

the phase perturbation about ¢TO(;;) for each mode will be about zero-

mean over the range of the modal expansion:

<:?Tn(;;;>

for -BT <n <BT (4-11)

where the expected value may be taken for each turbulent state of the
atmosphere. Furthermore, if attention is restricted to points in the

aperture plane such that
Max[|r -r |1 < pg (4-12)

where pg 1is tﬁe spherical-wave coherence length for the space-to-earth
propagation path (Refs 2:1376 and 26:1678), the correlation of the phase
distortion for each monochromatic mode of the field expansion may be

written (Refs 26:1683; 27:731; and 28:464-468)

<¢m<r TN a> 62 (r> (4-13)

This result is useful in the evaluation of the interferometer phase

measurement for restricted operating conditions.
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For real-world turbulence conditions, the random phase ¢Tn(;;)
fluctuates with time causing scintillation. In order for the phase com-
pensation system to operate properly, the response time of the imaging
system, and so the wavefront sensor, must be short enough to respond to
significant temporal fluctuations in the phase distortion. This require-
ment limits the measurement interval of the interferometer--and also the
characterization interval of the broadband process T --tc less than
about 10 milliseconds (Refs 26:1680 and 29:392). Note that this require-
ment does not prohibit the use of the modal propagation model since any
practical measurement interval is still much greater than the reciprocal
bandwidth of the temporal fluctuations of the white-light envelope

-13
(about 6.7 x 10 seconds).

Detector Plane Output Signal. Modeling the effects of atmospheric

turbulence as a unit-modulus phase screen for each temporal mode, the
nth temporal mode of the field in the interferometer's aperture plane

can be written
Upn(Tar®) = U (x s explioy, (7 ))] (4-14)

where Upn(;;’t) is the n':h mode of the aperture field due to an
incoherent, broadband source given previously in Eq (4-3).
Writing the broadband aperture field as the superposition of all temporal

modes yields - Ed

J2n Tt e:l ¢.m(ra)

U‘(;;,t) = E “an<;;)"he
T T
for -5 <t <3 * (4-15)

Assuming that the random phase fluctuations'of the turbulent atmo-
sphere are independent of the source statistics, the spatial correlation

of the aperture field can be calculated as follows:
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ra(rasra ) - éa(;a,t)u*(;; ’t> (4-16)

z <an(ra)uan a>

<exP[J¢Tn(r T INC )]>
T

for - -§—< <3 (4-17)

where < & u. (F )> - (3235 (2

an a an a
n

3v, k
e Idr I (r )exp[ j-—— . (r -r )] (4-18)

Note that for closed-loop operation of an atmospheric correction system,

the statistics of the phase fluctuations and the modal expansion coeffi-

clents {wn} may not be completely uncorrelated. It is assumed that, for

normal operation of the interferometer, the correlation of these two
quantities is small enough that the correlation of the aperture field can
be written as in Eq (4-17).

Without loss of generality, the turbulence-induced phase perturba-
tion for each temporal mode may be represented as in Eq (4-10), and

Eq (4-17) may be rewritten:

Ta(rgsty ) = explioy (r)-3op (x,1)]

Z <an(ra)uan(ra >
n
<EXP[J?Tn(r e j¢Tn(r )i>

for -§< t <-§- ' (4-19)
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. For the case where the phase fluctuations (an(?a) are correlated over
{ the temporal bandwidth of the source, ?Tn(;a) is identically zero and
the last expectation involving ?Tn(;a) and ?Tn(;;) will yield unity.
For a real-time atmospheric correction system operating in closed-loop,
?Tn(;a) represents the residual phase error associated with tracking the
average phase ¢T0(;a) of the arerture field.
As an example calculation, assume the closed-loop system is tracking
well so that ?’I‘n(;a) is zero-mean (Ref Eq (4-11)). Furthermore, assume
?’rn(;a) is normally distributed so that the last expectation in Eq (4-19)

can be written in terms of the characteristic function of a Gaussian ran-

dom variable (Ref 30:159-160):

<axp[j ?Tn(?a) L (;; )]> = exp[—%o;] (4-20)
= = - A " 2 pas
where oi <[?Tn(ra) ?Tn(ra )] > (4-21)

If the statistics of ¢'1‘n(;a) are stationary in P_, the variance of

the residual phase fluctuations oi may be further simplified:

oz = 2¢ dpn(r) ]">[1—p(|ra-r; By (4-22)
where

<!"I.‘n( a)?Tn(r; )

(4-23)

Purthersore, if the phase measurement is restricted to regions in the

s ture satisfying Eq (4-12), o(|;.-?;|) is nearly one for all points

S sawrturs aod the expectation written in Eq (4-20) is nearly unity.




-~

The above discussion has intended to demonstrate that for the
restricted cases discussed above, namely (1) the phase fluctuations
OTn(;;) are correlated over the entire wavelength range of the source
emission and (2) the residual phase error in a closed-loop phase-crompensation
system is small, the spatial correlation of the aperture field may be

written

s e = — = LA
P e )= eXP[J¢TO(ra)-j¢TO(ra )] g <uan(ra)uan(ra >

(4-24)

Substituting Eq (4-24) into the result for the interferometer output signal
derived in Chapter III (Ref Eq (3-30)); the x-channel output signal may be
calculated and is written on the next page in Eq {4-25). Henceforth it
will be assumed that conditions are such that the phase which is measured
by the interferometer represents the wavelength-independent phase ¢To(;;) &

Eq (4-25) gives the x-channel output signal of the interferometer
wavefront sensor due to a broadband, incoherent source viewed through
atmospheric turbulence. Each temporal mode enclosed by the first real
operator is a result of the coherent addition of the zero and +1 dif-
fracted field orders, and represents the positive-shear term for each
temporal mode. The sum of these terms expresses the superposition of all
positive shear modes for the white-light interference pattern. Similarly,
each mode enclosed by the second real operator is the result of the zero
and -1 field orders and is called the negative-shear mode.

A few general comments can be made about the wavefront sensor output

signal at this time:
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(1) All modes of the detector signal are modulated at the
fundamental frequency fs . If the wideband temporal process w(t) 1is
characterized over an interval T much shorter than the turbulence-
induced phase fluctuations, the phase-front across the aperture may be
considered frozen, and no additional frequency modulation is introduced.

(2) For each positive-shear term, the total spatial effect of
the source radiance is confined to an integral over the source intensity
distribution. For the negative-shear terms, the'effect is represented
by a similar integral. The integrals are independent of temporal mode,
so that the spatial chracteristics of the source are entirely separate
from the broadband temporal effects of the source. This result is due
to the coherence separability of the source field. The detailed effects
of the source's spatial content are discussed at length later in this
chapter.

(3) For positive and negative-shear modes, the total effect
of the broadband nature of the field is contained in a sum over all con-
tributing temporal modes. Each term in the sum is weighted by the power
spectrum of the broadband process w(t) .

In the next section, the effects of the complex source radiance and
the broadband spectrum are separated, and the wavefront sensor's phase
measurement is derived from the interferometer's detector signal expressed

Derivation of the Wavefront Sensor Phase Measurement

The interferometer wavefront sensor's phase measurement is contained
in the detector signal id(?a,:) expressed in (4-25). To make the ana-

lysis more intuitive, the spatial and broadband effects of the source can
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be separated and written in more compact functional forms. Following !
this separation, the derivation of the interferometer phase measurement
follows easily.

Contribution Due to Source Radiance Distributions. As pointed out

in the previous section, the total effect of the source's spatial distri-
bution is contained in two similar integrals over the source radiance
(intensity) distribution. Define 3s(fx,fy) to be the spatial Fourier
transform of the source radiance distribution
T (808D = By AT (x,,y)) (4-26)
s’s
Note that the integral over the source distribution in the negative-shear

modes can be written
3s(fx,0) = I dx_ desls(;;)exp(-janxxs] (4-27)

- Fxsys{ls(xs,ys)} (4-28)

where the Fourier transform is evaluated at spatial frequencies

--M£Q =
£ =%z and f£,70.

Let the transform of the source radiance distribution be written

in polar form so that
Ig(Eof) = I (£,,€ dexplIv (£,,6)] (4-29)
where T (Et) = |3 (£_,£)| (4-30)

8 x’y

is the magnitude and

w.(fx,fy) - arg[Js(fx,fy)] (4-31)
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p

is the phase of the transform of the source radiance distribution. Using

Eq (4-31), the integral (4-27) may be represented
Js(fx’o) » Js(fx,o)exp[jws(fx,o)] (4"32)
vhere f =150 |

AoZ
Since the intensity distribution of the source Is(;s) is a real
function of the source coordinates, the inverse Fourier transform of
the source distribution is equal to the complex conjugate of the Fourier
transform of the source distribution (Ref 31:28):

-1 _ ~%
fofy{ls(‘rs) } = Js\fx,fy) (4-33)

Using this notation, the integral over the positive-shear modes in

Eq (4-25) may be written
3:(fx,0) = Id-r-sls(;s)exp[jhfxxs] (4-34)
= J (£ .00 exp[-fu_(£ ,0)] (4-35)
where fx - 280

Contribution Due to Broadband Emission. Consider the sum over all

the positive-shear temporal modes defined below:

5 M2g2
- = 1 _—
O_(H(rd-ﬂo)) -3 Z Ez(n)sw(%)exp[jﬂ NoZE(m) ]

exp[j¢T0(M(;d-;oE-l mN]
for -%<t<-§. =
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Using the binonial expansion for £ (n) and approximating the sum by the
first two terms allows (4-36) to be written

m™M2s2

QG 5) = exls ] 1l s,

Mzs%
n - = n
Zc ) T] exP{J¢TO[H(1‘d’So(1 + m‘))]}

exp[j2n(

€4-37)

Performing the same approximation on the negative-~shear modes yields

.,,MZSOZ
1 n
oz ) ;121 £2(n)s_(7)

6(H(_1‘-d+;0)) = exp[j

Mzsg G
expl32n(57) 71 explyoy DG tso (145050 1)

for - <t<3. (4-38)

Furthermore, let the positive- and negative-shear terms be written in

polar form so that

e bt M2 .
QM(ry=80)) = explim—5—= A (M(r;~s0))

exp[} ;r (M(x 4-50))] (4-39)

ST
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and

e el
QM(rgtso)) = exp[in—=1 A OM(x +50))

exp[§6, (M(F ;#50)) ]

(4-40) :

It is shown in a later section that for white-light, incoherent source fields,
the lateral shear AC interfe_rometer causes the diffracted aperture field i
orders to be spatially filtered. The amplitude and phése of the filtered
aperture field are identified by "hats." {

Interferometer Phase Measurement. Substituting the defined relations

(4-32), (4-35), (4-39), and (4-40) into the x-channel output signal given
in (4-25) yields

o 2 e e
GG 8 = Sy I E DA MG 5)) Relexpl-3(2nf - 3)]

2 .
exp[-jZnMA—osZQ- (xd—%o-)]cxp[-jws(fx,O)] 1

expl 107 (M(T,-50)) -4 O]

- i — e »
+ 1[(;402)2 Js(fx;O)AT(M(rd+80)) Re{exp[j(z-"fst__;_)]
M?sg .8 ; .
m["’JZ‘II’ AoZ (xd —ZQ)]exp[.g.jws(fx,o)]

expl 10, (M #3616, (Mr) 1)

T T
for - 2 <t <3 (4-41)
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where fx - ¥op

If the amplitudes of the spatially filtered orders are assumed to be

equal over the distance of shear for each point In the detector plane

AL(Mz) = AL(M(E,~50)) (4-42)
= A (M(T +50)) (4-43)

both positive- and negative-shear terms in Eq (4-41) may be combined:

ey 2
Ld(rd,t) = "(?:Z) Js A > ,O)AT(Mr ) cos[ (¢ +¢ )= ¢ ]

sin[21rf t+ (¢ —¢ )

+ Vg ( 0)+9
(4-44)
where by = 6o (M(z,-50)) (4-45)
br = 4 (M(T +50)) | (4-46)
by, = ¢To(n? & ‘ (4-47)
o, = 3L (sg)2 (4-48)
0, = S Maox, (4=49)

If the amplitudes of the spatially filtered orders are not equal over
the distance of shear, the resulting detector signal is represented as the

sum of two phasors as discussed in Chapter III (see Figure 8). In Egs
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(4-42) and (4-43), however, the filtered amplitudes AT(M(;A;;O))

and ;T(M(;A¥;0)) represent the amplitude of the diffracted and fil-
tered aperture phase exp[j¢To(;;)] introduced by atmospheric turbulence.
Since this phase term is assumed to have unit modulus for all points in
the aperture plane, any sheared and filtered version of this filter will
be equal to ary other filtered version sc long as the filtering effects
are identical. In a later section it is shown that the amplitude of the
filtered aperture field is in fact the same for either the m =1 or

m = -1 diffracted order.

Therefore, Eq (3-44) represents the interferometer output signal for
x-ghear for spatially incoherent, white-light sources viewed through atmo-
spheric turbulence subject to the operating conditions discussed earlier.
Note that all effects of the source's radiance distribution are contained
in a multiplicative attenuation term Js(fx.O) and an additive phase
term ws(fx,O) . The effect of the diffraction of broadband light affects
the phase measurement by filtering the measured phases &; and ;; s
and attenuating the carrier by an amount ;T(M;A) . The effects of source
radiance distribution and broadband emission spectrum are discussed in
the next two sections.

As defined in Eq (4-31), w(fx.O) is the phase of the spatial Fourier
transform of the source radiance distribution evaluated at spatial fre-
quencies fx -'%i% and fy = 0 . Since the soumce‘distribution is always
positive and real, w'(fx,O) is an odd function of f and represents

a constant phase offset in Eq (4-44) for any non-zero shear value. The

size of this phase error depends on the specific radiance distribution

Mso

of the source and the value of f =
b 4 on *
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In addition to the effects mentioned above, two additional phase terms
Sh .
Os and Od appear. Whereas ¢T . ¢T , and ¢To are representative of 1
the turbulence-induced phase-front introduced at the aperture plane, the
additional phase terms 68 and ed represent the quadratic phase of a
spherical wave eminating from a point source located at ;; = (0,0) in the

source plane.

Measurement of Turbulence-Induced Phase. The total phase of the

sinusoidal signal modulated at frequency fs is the sum of three phases:
(1) the differential aperture phase due to atmospheric turbulence
%(¢;4¢;) s (2) the phase of spatial Fourier transform of the source radiance

distribution ws(fx,O) , and (3) a quadratic phase 6 If the interfero-

q°
meter is set up to measure the slope of the turbulence-induced aperture
phase, the post-detection processing of the interferometer output signal

must be designed to extract the phase due to the first effect (;;-—¢;) s
alone. Assuming signal processing has extracted the differential phase
86, = o - oF (4-50)
T T T

the measured wavefront slope due to atmospheric turbulence for x-shear is

bp(x, #Ms0,y, ) - ¢p(x  -Mso,y, )

3
. — ¢T(xa.yao)

3xa - 2Ms
a “ag
(4-51)
A¢
T
2Msg ( )

where A¢T is the differential turbulence-induced phase measured by the
interferometer. The effect to which the actual wavefront phase A¢T°

is spatially filtered to yield A¢T is discussed in a later section.
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Visibility Limitations of Extended Source Distributions

In Eq (4-44) it is seen that the total effect of the source radiance
(intensity) distribution on the aperture phase measurement is contained

in the amplitude and phase of 38(fx,0) defined by Eq (4-27):
J (£.,0) = Idrsls(rs)exp[—jZ'rrfsxs] (4-53)

where fx = 5g

The integral over X, represents the spatial Fourier transform of the
x-variations of the source intensity, evaluated at a spatial frequency
fx = %%% ;s the integral over R gives the total intensity along the
y-direction for each X -

The result given in Eq (4-53) represents the mutual intensity
(Ref 14:508) of light at two points in the aperture plane due to a
quasi-monochromatic source emitting radiation near wavelength A, . The
points in the aperture are separated in the x-direction by distance
Axa = Msg , with no separation in the y-direction.

The magnitude of Es(fx,O) corresponds to the degree of coherence
of the aperture field (Ref 14:510) which is defined to be the absolute
value of the normalized Fourier transform of the source intensity dis-
tribution:

[dT T.(F)exp ~§ 2% (x.x +y.y.)
s 8 8 Ao2 as ‘a’s

fd;;ls(rs)

ua(;a ’;; ) =
(4-54)

where .ua(;;,;:) is the degree of coherence of the light at two points

;; and ;: in the aperture plane.
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If the amplitudes of the two sheared field orders are equal--as
expressed in Eqs (4-42) and (4-43)--then Js(fx’o) is related to the
fringe visibility (Ref 14:507-508) of the interference fringes at the

detector plane:

I (£,,0)

]drs Is(fé)

y(Msg) =

(4-55)

where Y(ﬁ;b) is the fringe visibility of the interference fringes for
two points in the aperture plane separated by distance Ms; in the
x-direction with no separation in the y-direction, and 0 < y(Msg) <1
for any shear. Note that for the case of a point source, the fringe
visibility is unity for all shear values. For any extended source,
however, the fringe visibility depends on the specific source radiance
distribution and the shear distance chosen.

Clearly, Js(fx,O) is proportional to the amplitude of the
interferometer output signal for x-shear, and must be maintained at a
significant value for the interferometer signal to be detected and the
phase information to be extracted. The effects of shear distance s
on the fringe visibility are considered below for the case of uniform and
complex extended source radiance distributions.

Uniform Source Distributions. The visibility of the interferometer

fringe pattern for x-shear is the normalized Fourier transform of the
source intensity distribution as expressed in Eq (4-55). As an example,
consider uniform source with a square intensity distribution with width
W meters and intensity I; watts per meter squared. The interferometer

fringe visibility can be calculated from Eq (4-55):
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Yw(ﬁgo) = sinc[ﬂ(%%%)w]
(4-56)
where sinc(x) = sin(x)/x . The fringe visibility Yy of the square source
is plotted as a function of shear distance Ms, in Figure 12.
For a uniform square source, then, the interference fringe visibility
-generally drops off as the shear distance increases. To guarantee that
significant fringe visibility is maintained, the shear is selected so that

yw(ﬁ;b) is evaluated within the main lobe of the sinc (°+) function:
Ao
Msy < - (4-57)

where o = W/Z is the angular subtense of the source.
For uniform, circular source distributions the fringe visibility is
related to a first order Bessel function, and a result similar to Eq (4-57)

for circular sources can be shown to be
Msy < 1.22 3&‘1 (4-58)

where «a = D/Z 1is the angular subtense of the circular source.

Therefore, the restriction placed on shear distance for circular
sources with angular subtense o = D/Z is on the same order as (4-57)
for a square target of equal angular subtense.

Complex Source Distributions. Sources of interest to imaging systems

generally contain some degree of fine structure. Sources with structure
contain more high spatial frequency information than uniform sources,

and cause the fringe visibility function y(Ms;) to have significant value
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Figure 12. Fringe Visibility YW a8 8 Function of Shear Distance for
a Uniform Source of Width W

for large shear values. Although the visibility effects of each complex
source must be considered separately, the general effect can be illustrated
by the following example.

Consider a square source of width W having a periodic intensity
distribution similar to a bar pattern with variations aiong the x-direction
as shown in Figure 13. Note that the visibility function yB(MEO) contains
weighted copies of the visibility function of a square source yw(ﬁso)
located at sj = m%%% s where m 1is an integer. It is seen that periodic
source distributions have a "coherence modulation" effection, due to the
spatial frequency modulation properties of periodic source functions; and
the fringe visibility can have significant value for shear distances much

larger than those allowed by uniform sources.
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Figure 13. (a) Periodic Source Distribution and (b) Corresponding
Fringe Visibility Function y(Msg) for x-shear of Msg
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Since the total radiant power for any source is finite, the power is
distributed among the many lobes of the fringe visibility function, and
the magnitude of the fringe visibility at any shear may be neglibible.

In any practical sense, then, the measurable fringe visibility is greatly
dependent on total source radiance and the complexity of the source dis-

tribution.

Special Filtering Effects of Broadband Light

Consider the approximation to the sum of the positive-shear temporal

modes written previously in Eq (4-37):

S M2g2
Q(T,~50)) = expl30,] %Z e2(ms (Pexpls2n(5—) ]

exp(idy M 801+ 5]}

ol .
for -i<t<2' (4-59)

Taking the spatial Fourier transform of (4-59) with respect to the aper-

ture plane coordinates - de and e My d yields

rx'ya{a(u(?d-Fo))} = exply6 Jo, (£,,£ Yexp[-32n¢ Mso]

£ Msg M2s}

‘Z‘ez(n)sw(%)exp[-m( et el £

=

-

|




where OTo(fx,fy) - anya{exp[j¢T0(ra)]} (4-61)

For broadband power spectra and long process characterization intervals

the sum over temporal modes may be approximated by an integral:

anya{Q(M(;ﬁ'gb))} = exp[jOB]QTo(fx,fy)exp[-jwastO]

Idv Ez(v)Sw(v)exp[-j2nc+y]

(4-62)

vhere « B0 g0 -0 n) (4-63)

;+ b4 on

and v has been substituted for %- as the integration variable. The
integral over v 1in Eq (4-62) represents the first-order spatial filter
for the m = +1 diffracted aperture field order given by Eq (3-87)
where the complex degree of coherence of white-light aperture field has
been calculated explicitly.

Following Eq (3-88) the first-order spatial filter affecting the

m = +1 diffracted aperture phase exp[j¢ ?;)] is

1l
B (c) = F {£2W)s ()} (4-64)

For typical compensated imaging applications, sources are distant

compared to the shear distance . Assuming Hey is small compared
Y

to the spatial bandwidth of H+

Msg
s s v (4-65)
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where BH is the effective bandwidth of the spatial filter H+ , the

first-order spatial filter can be written

B (%) = F_{£2(v)S (V)} (4-66)

f Msg
:0 as defined in Eq (3-60). Using results from Chapter II

where T =

(Ref Eq (2-71)), Eq (4-66) can be written in terms of the first two deri-

vatives of the temporal correlation function Rv(r) .
4 B e L i R ¥
H (2) =R (0) + wEg 32 R (%) (ontg)? 32 R (%) (4-67)

Similarly, the sum over the negative-shear temporal modes can be
approximated by an integral, and a filtering function for the m = -1

diffracted field order can be defined. Following Eqs (3-90) and (2-70),

H_(2) = F,'{£2(v)s ()} (4-68)
- - g &
Rw(c) T Rw(c)
1 32 (4-69)
= g ? 2352 R(®
- B;(c) (4-70)

Therefore, Eq (4-67) and its conjugate (4-89) represent, at least to
first order, the form of the spatial filtering introduced into the inter-
ferometer phase measurement due to the diffraction of broadband light for
the m=+1 and m = -1 diffracted orders. The spatial filtering func-
tion is similar to the "windowing" function Ri(.) discussed in Chapter II
with regard to coherence length (Ref Eq (2-70)).

Indeed, if the power spectrum s'(f) is sufficiently narrow so that

£€2(n) may be closely approximated by unity, the filtering functions H+
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and H_ take on the form of the temporal correlation function:
H (g) = H (3) =R (2) (4-71)

Consider, for example, a bandlimited power spectrum Sb(f) discussed in
Chapter III (Ref Eq (3-70)). The effective bandwidth of the resulting

spatial filter is on the order of

ok ek -
By ® Ms, (Af) (4-72)

as defined in Eq (3-71). If the bandwidth of the spatial Fourier transform

of the turbulence-induced aperture phase ¢ (fx’fy) is much less than B

Ty

f
=) (4-73)

H

o
B¢ «BH'MBO(

wvhere B is the spatial bandwidth of either real or imaginary quadrature
of exp[j¢T§;;)] , then the spatial filters introduce negligible filtering
of the aperture phase field orders contributing to the AC interferometer
pattern, and cause little distortion in the measured aperture phase.

In summary, then, for truly broadband optical fields with arbitrary
power spectra, the form of the spatial filtering must be calculated from
the discrete sum over temporal modes as in Eq (4-36). To first order,
however, the spatial filtering can be calculated from derivatives of the

broadband field correlation function as in Eqs (4-67) and (4-69).
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V. CONCLUSION

Summary of Results

Coherence Model for Broadband Fields. A free-space propagation

model for broadband optical fields was developed based on a Karhunen-
Loéve (KL) expansion of the time-varying portion of a coherence separable,
broadband optical envelope. Due to the linearity of the free-space chan-
nel, each temporal mode of the field expansion could be propagated indi-
vidually, and the output broadband field could be computed as simply the
superposition of all the individually propagated field modes. It was
found that for broadband opticél fields characterized over long time
intervals, the eigenfunctions of the KL expansion were approximated by
the complex exponentials of a Fourier series expansion over the same time
interval. The eigenvalues of the modal expansion were found to be samples
of the temporal power spectrum, sampled zt the harmonic frequencies of
the Fourier series expansion. Since the expansion coefficients of a KL
expansion are uncorrelated, the calculation of output £ield correlation
was facilitated. The output field correlation for coherence separable
source fields was stated for special cases of source field coherence

in Table I. The output field correlation due to coherence separable
source fields was found to be, in general, not coherence separabla

(Ref Eq (2-47)).

Analysis of White-Light Interferometer. Application of the broad-

band propagation model to the lateral shear heterodyne interferometer
showed that the position of the interference fringes detected by the

interferometer was dependent on wavelength. This effect, caused by the
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diffraction of the white-light aperture field by the interferometer's
rotating grating, was shown to spatially filter the m =1 and m = -1
diffracted field orders contributing the interference pattern. To
first-order, the form of the spatial filter was shown to be given by a
Fourier transform of the product of the broadband temporal power spectrum
and a shifted version of the complex degree of coherence of the aperture
field (Ref Eqs (3-87) and (3-89)). The measurement made by the inter-
ferometer was found to be related to the phase of the spatially filtered
aperture field envelope. The interferometer wavefront measurement was
specialized for spatially coherent aperture fields for large and small
shear (Ref Eqs (3-83) and (3-77)).

Measurement of Turbulence-Induced Phase. The broadband field coherence

model was applied to the application of the shearing interferometer as a
wavefront sensor in a phase-compensated imaging system. It was argued

that if the turbulence-induced phase fluctuations ¢Tn(;;) were correlated
over the wavelength range of the source emission spectrum or the sensor
operated in a closed-loop mode where the residual phase tracking errors were
small, the turbulence-induced phase fluctuations could be modeled as a unit-
modulus phase screen for all wavelengths of interest (Ref Eq (4-24)).

If the source was immobile and sufficiently diffuse, the source field
could be modeled as being coherence separable. This model allows the
visibility effects due to extended source radiance distribution and the
spatial filtering effects due to broadband emission to be separated in
the analysis of the interferometer. The visibility of the interference
fringes was found to be proportional to the magnitude of the Fourier trans-

form of the source radiance distribution as prescribed by the Van Cittert-

Zernicke theorem (Ref 14:510) for quasi-monochromatic sources (Ref Eq (4-28)).
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It was found that the phase measured by the interferometer for this
application was due to the sum of three effects (Ref Eq (4-44)): (1)
the turbulence-induced aperture phase perturbation, (2) the phase of

~ the spatial Fourier transform of the source radiance distribution, and
(3) the quadratic phase due to a point source at the source plane mea-
sured in the aperture plane. In order to measure the aperture phase
due to atmospheric turbulence, signal processing must be designed to
extract the first phase effect from the interferometer output signal.
For typical compensated imaging situations it was found that to first
order, the spatial filtering could be expressed in terms of the first two

derivatives of the broadband temporal correlation function (Ref Eqs (4-67)
and (4-69)).

Discussion and Suggestions for Further Study

In Chapter II a coherence model for the propagation of broadband
optical fields was develoﬁed from a modal expansion of the time-varying
part of the complex field envelope. Although the model was specifically
applied to the analysis fo a white-light shearing interferometer in this
paper, the application of this model may be extended to many broadband
optical or infra-red systems for which the 1input fields can be assumed
to be coherence separable. For example, the free-space propagation
model (Eq (4-42)), the apochromatic lens result (Eq (3-7)), and the
rotating diffraction grating model (Eq (3-13)) are particularly appli-
cable to optical interferometric and measurement systems. Indeed, a
broadband optical field can still be represented as a modal expansion
if it is due to a source which can be assumed to be coherence separable

(Ref Eq (2-42)) and the effects of the propagation medium can be considered
to be frozen in time (Ref Eq (4-8)).
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In Chapter III the lateral shear AC interferometer was analyzed ;
for broadband aperture fields with arbitrary spatial coherence. Several 1
assumptions were made which may further qualify the application or degrade
the predicted performance of the wavefront sensor. First of all, all
diffraction effects due to finite lens apertures and field stops were

ignored. All optics were assumed to be perfectly transmissive for all

wavelengths of interest and the lenses were assumed to be aberration-free
and perfectly apochromatic. These effects must be studied in detail,

or at least considered, for any practical application of a physically

e vy

realizable wavefront sensor.

The interferometer output signal Ld(;a,t) calculated in Chapters

III and IV (Ref Eqs (3-43) and (4-44)) represents the time-varying
interference pattern at each point in the detector plane modulated at

i fa Hertz. No model for the photon/electron conversion of this white-
light intensity pattern into an electrical signal was proposed, nor was
a signal processing scheme suggested for the extraction of the aperture |
phase measurement A¢ from the detector plane output signals. It is 4
recommended that a model for the detection of broadband radiation be |
incorporated into the analysis of the interference pattern (Eq 3-34)
to determine what additional, if any, filtering effects are introduced
into the wavefront measurement. Once these detected interferometer
output signals are determined, several electronic processing schemes
can be considered to provide the best aperture phase measurement
(e.g., Refs 32, 33, and 34).

It was found that the shearing interferometer's operation for

broadband fields causes the m = +1 and m = -1 diffracted aperture

field orders contributing the detector plane interference pattern to
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be spatially filtered. Whereas the filtering affects both real and
imaginary quadratures of the complex aperture field envelope, the phase
measurement, derived from the interferometer output signal (Eq (3-47)),
represents the phase of a filtered complex field. Except for the
special filtering cases studied--extremely wide filter (Eq (3-73) and
extremely narrow filter (Eq (3-83))--the effect of spatial filtering
on the detected aperture phase is extremely difficult to determine. The
effects of filtering on the measured phase of phase modulated systems have
been studied (e.g., Refs 35, 36, and 37), but are beyond the scope of this
paper.

For the analysis of shearing interferometer wavefront measurement
it was assumed that either the phase of the complex aperture field

envelope was the same for all wavelengths of light or the interferometer

'~ was working in closed-loop with a real-time phase-correction system.

The end result was that the interferometer adequately measured a phase
which is common for all wavelengths when the residual phase errors are
small. These assumptions were motivated by the fact that for the compen-
sated imaging system considered in Chapter IV (Ref 7), atmospheric phase
correction is accomplished by a single corrector--thus introducing the
same compensation for all wavelengths. For more general active optic
applications in which the wavefront correction is wavelength-dependent
(e.g., Ref 12), the decomposition of the aperture phase into wavelength-
dependent temporal modes, and the effect of this decomposition on the

interferometer measurement, may be studied.
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the aperture field. The propagation model is applied to the shearing inter-
ferometer's operation as a wavefront sensor in a phase-compensated imaging sys-
tem, where the phase of the aperture field envelope has been disrupted by atmo-
spheric turbulence. The turbulence-induced phase perturbation is modeled as

a unit-modulus phase screen introduced at the aperture plane of the interfero-
meter for each temporal mode of the field expansion.
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