AD-AOG4 396 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2
DESIGN OF A SEL 86/LSI-11 INTERFACE MONITOR.(U)
DEC 78 J E BARALLI

UNCLASSIFIED AFIT/GCS/EE/78-9

|2 I o
! TADB4306
=]




|0 %02 2

"“ =/
< Hf 20

||||| T
= |z
22 s ne

MICROCOPY RESOLUTION TEST CHART




| SEE e, |

AFIT/GCS/EE/78- 9 |
¢ -
oy nrvaql
| ; s =)
, ¥

-

oo |
(A |
< |
N
=2
<
s'l>'2.
IR
| O
L
F
[l
| e DESIGN OF A SEL 86/LSI-11
c> INTERFACE MONITOR
=D
=3 THESIS r
AFIT/GCS/EE/78-9 Janet E. Baralli E [
Capt USAF ﬁ
) 188 G
i :
/ ol
’ . Approved for public release; distribution unlimited.




e e Bl G Bt s e o
R

G‘F/@Iwccs/zx/n- 9

DESIGN OF A SEL 86/LSI-11
2’ —_— ; q
;NTERFACE y_,gNITOR »

s |

Q/']ms Yo s Thesiss (

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Training Command
in Partial Fulfillment of the
. Requirements for the Degree of ]

Master of Science ;

by
@met E.IBaralliMz‘ i
Capt USAF

Graduate Computer Systems

@DecMM t

. Approved for public release; distribution unlimited

0:1_.2, 535 , pisfh J




Preface

My experience with "programming'' has shown me that I
have wasted valuable time debugging inefficient code
because I have not spent enough time defining the require-
ments and considering a well-structured design. The formal
tools becoming available to software engineers is helping
to alleviate this problem. No one tool is the answer, but
by blending these tools one can make considerable headway
in tackling the problem.

The design I am presenting in this thesis is a result
of devoting considerable time to the analysis and design
phases of the software life cycle. In attempting to
define requirements I stumbled through SofTech's SADT and
Tom De Marco's Structured Analysis and found that drafting
a user's manual best served as my analysis phase product.
I had exceptionally good luck with Yourdon and Constantine's
transform and transaction analyses. I also used Parna's
and Jackson's methods in developing the design. Use of
these tools, with sound structured design heuristics, led
me to the development of a well-structured design. Coding
and debugging this design should be much easier. Even
errors will be more easily correctable due to the cohesive

modularity of the design. I feel the resulting product is

indeed a good omne.

.




I must extend my thanks and appreciation to my sponsors
at the Air Force Materials Laboratory, Mike Dennis and Frank
Beitel, and also to Lt Dave Summer at AFML for his assis-
tance. I must give special thanks to my thesis advisor,
Capt Peter Miller. I am not sure how he survived being my
advisor. But miraculously, the thesis is completed. I
must also thank Maj Alan Ross. He put up with a lot of
my struggling during this thesis project. And I cannot
forget to thank Rusti Gaudreau. She had so little time to

do a splendid job in typing this report.

Janet E. Baralli




- ‘-—w!ﬂ‘h,r-'a“,vm v

J§ Contents
Page
PrefaCe . £ . o . . . . L] . . L] Ll . . . L] L] . . . . . . ii

vi

List of Figures

List of Tables- Svii

AbstraCt . . . . L] ° L] . . . . . L] . . . . . . . . . Viii

IO IntrOduccion . . . L] . . . . . L] . . . . . . . .

Problem . . . -
Constraints and Considerations 4
APDPYGHCHE . o o« » 5 » % % & » % o
OUELERE. i s le s w e e e e

II. Analysis of Existing System . . . . . . . . . .

Introduction . . .
Overview . . . . .
ESE=LL o o 5 » & .«
SEL 86 . « + « s & %
Current Procedure for Operating an LSI-11
b in a Data Collecting Experiment . . .
Weaknesses of the Current System . . . . . . .
SUMMAYY & « o v o o o & @ o & s » a6 & &

L]
.
L] .
.

QW ~NoOuLiLt UK pwhE »

-

111 Techniques Employed in Developing the
Interface Design « « + + o« &« s s o o o+ 4 o « » 11

1 s i IS 5 e el P PN

INtroduction . « 5 v » « « s v 5 & » % & ¢ &« » 41
Software Engineering . . . « & v s 33
Tools for the Requirements Analysis v & o« L&
Tools for the Structural Design . . . . . . . 14
SUBMMATY « ¢ s o o o« o & ¢ o & s « & o o 18

Iv. The Interface Design . . « « « ¢ ¢ ¢ ¢ o &« o o « 19

Introduction . . . . . L] L] . . . . . . L] . . . 19

Design Structure . « « « ¢ o« ¢ « « & « ¢« &« u 49

Design Decisions . . « « « « .+ &« R TR S |

Sumary . . . . . L ] L] . . . . . . - . . . . 2 6

Vo Conclusions and Recommendations . . « . « « « . 27
Introduction . . Y . . R e (g

Conclusions . . . e HCE R I R e

% Implementation « o« « ¢ « ¢« ¢ ¢ s ¢ ¢ o o ¢ o« o+ 28
Recommendations . . . g o A

Final Summary .




C LT T S RS S e R R e -

G Appendix A: SEL 86/LSI-11 Interface Monitor
DR S MaBRE i i e ¥ e s ke s o B
Appendix B: Bubble Charts for SEL 86/LSI-11
Intarface MOBILOT « + s o + & s« s s 0 » o 9B
Appendix C: Structure Charts for SEL 86/LSI-11 ‘
Intertace Monltor . « o + « s &« & s« » s » 80 i
vita . . . . . . . Ll . . . Ll . L . L . . . L] . . . . 101 ?
&




Figure

O 00 N O LN

P
w N = O

List of Figures

LSI-11 Interface Monitor Bubble Chart . .
LOAD Bubble Chart . . o« « « s o o o « o »
SEND Bubble Chart . . « ¢ s ¢ ¢ ¢ o o o
TRANS Bubble Chart . . « ¢« ¢ ¢ ¢ o ¢ o &
SEL 86 LSINTR Bubble Chart . . . . . . .
LSI-11 Interface Monitor Structure Chart
LOAD Structure Chart . . « . ¢« ¢ ¢ « o &
FILE/SEND Structure Chart . « & « ¢ o o »
RUN Structure Chart . . « « ¢« ¢ ¢ ¢ & ¢ &
TRANS Structure Chart . « ¢« ¢ ¢ ¢ o ¢ ¢ @
IMCHAR Structure Chart . . . . ¢« « . « &
IMEXIT Structure Chart . . ¢ ¢« « « « « &

SEL 86 LSINTR Structure Chart . « . « . .

Page
55
56
57
58
59
61
70
78
82
83
86
88
89




T

I LSI-11 Interface Monitor Data and
[ 370Y 3 15 o U 0 i o) Pyl S N e SO S R e S

II LOAD Data and Control Flow Table . . .
III FILE/SEND Data and Control Flow Table
Iv RUN Data and Control Flow Table . . .
\Y TRANS Data and Control Flow Table . .
VI IMCHAR Data and Control Flow Table . .
VII IMEXIT Data and Control Flow Table . .

VIII SEL 86 LSINTR Data and Control Flow .

vii

66
73
79
82
84
87
88
95




Abstract

The Air Force Materials Laboratory (AFML) uses LSI-11
microcomputers as one of several computer systems available
for collecting test data. For conducting these tests,
LSI-11 programs must be loaded into and data collected from
the LSI-11 using paper tapes. Data is later stored on a
larger computer system at AFML, the SEL 86.

The purpose of this investigation has been to design a
SEL 86/LSI-11 interface that will automate manual procedures.
The interface design enhances the current LSI-11 system by
providing the following capabilities: load binary programs
and data residing on a SEL 86 file into LSI-11 memory;
transmit data stored in LSI-11 memory to one or more SEL 86
files; and place the LSI-11 memory into a transparency
mode such that it is a peripheral as viewed by the SEL 86.

The principles of software engineering have been applied
in both the analysis and design phases. Formal tools have
been used in defining the requirements and developing the

structured design. The resulting design is an interface

monitor with software residing on both the LSI-11 and the

SEL 86. The added capabilities are provided using either
a series of commands entered at the LSI-11 console or as

call statements in LSI-11 FORTRAN compiled programs.




DESIGN OF A SEL 86/LSI-11
INTERFACE MONITOR

I. Introduction

Problem

The Air Force Materials Laboratory (AFML) is involved

in experimental research. Testing is conducted in a variety

of areas within the field of materials including research
in such areas as corrosion crack growth, electronics, and
lasers. In support of this research, laboratory personnel
use Digital Equipment Corporation LSI-11 microcomputers for
some data acquisition testing. The data collected on the
LSI-11 is stored on the Systems Engineering Laboratories 86
computer (SEL 86). The data is then analyzed on the SEL 86
or the data is transferred to the Control Data Corporation
6600 computer (CDC 6600) for analyses.

The purpose of this investigation is to design a
general-purpose SEL 86/LSI-11 interface. At present all
communication between the SEL 86 and any LSI-11 is limited
to paper tape inputs/outputs and associated manual opera-
tions. The proposed SEL 86/LSI-11 interface enubles
laboratory personnel to transmit data to and from an LSI-11
automatically using keyboard inputs at the LSI-11. The
modification of both SEL 86 and LSI-11 software also




provides added capabilities in designing and performing
laboratory experiments. The purpose of the new software
design is to meet the needs of the personnel performing
the experiments by adding an automated LSI-11 interface to

the SEL 86.

Constraints and Considerations

There are several limitations imposed upon the system
design. A major constraint is the memory space availiable
on the LSI-11 for the modified software. The maximum
memory size is 8192 (8K) words. In an effort to stay
within these boundaries, LSI-11 software must be useful,
but short and straightforward in keeping memory overhead
to a minimal.

Any modifications must remain within the present
framework of existing hardware. No hardware changes are
permitted on the SEL 86. Available equipment must be used.
The only hardware change allowed on the LSI-11 is the
addition of a read-only memory (ROM) to store the LSI-11
software modifications.

Modification to existing LSI-11 software is required
in the FORTRAN library and the FORTRAN compiler in recog-
nizing and interpretting new FORTRAN callable routines.

The communication support available is the SEL 86
Terminal Support Subsystem (TSS) (Ref6:2-1). This system
imposes some restrictions since it is constrainted to

operate at the slow rate of 300 baud and transmits ASCII




characters only. This latter restriction requires encode/
decode procedures into both SEL 86 and LSI-11 software.

The limited computer background of laboratory personnel
using the new software must be considered in determining
trade-offs in system complexity and user input requirements.
The system must be easy to use for those unfamiliar with
any computer interface, yet allow enough flexibility to
provide powerful capabilities for those experienced in

SEL 86 interface procedures.

Approach
The goal of this investigation is to design a well-

structured interface system to automate the current LSI-11
procedures. The approach consists of two major stages: an
analysis of the interface system requirements and the
design of the.system using the requirements obtained by the
analysis. In analyzing the requirements it is necessary
to have a clear understanding of the current operating
procedures and environment. Once this is achieved, a
definition of requirements for the new system is made.
This involves continued interviews with personnel at the
Materials Laboratory to gain a concise requirements
definition. A draft user's manual is then prepared.

A design can be developed once requirements have been
clearly defined. This design is based upon various

structured design techniques used to produce a ''good"

bTE——




design (Ref 4). The finished design incorporates the

expanded capabilities without degrading present capabilities

by using the '"best' possible design structure.

Outline
Chapter II presents an analysis of the existing system. %
It includes a description of the SEL 86 and the LSI-11s
used in AFML. Chapter II describes techniques used in
developing the design through both the analysis and design
phases. Chapter IV deals with the design of the actual
interface, considering the overall design structure and
specific design decisions that have been made in creating i
the design. Chapter V sites conclusions in examining fi
the design product, specifies particular implementation
requirements, and presents recommendations to enhance the
capabilities acquired with the SEL 86/LSI-11 interface.

Three appendices are also included. Appendix A is

the draft user's manual for operating the SEL 86/LSI-11
interface. Appendix B is a series of bubble charts (see
Chapter III) representing output of the analysis phase.
Appendix C is the actual software designs of the interface
needed for both the SEL 86 and the LSI-11.




II. Analysis of Existing System

Introduction

This chapter deals with the znalysis of the system as
it is presently operating at AFML. It presents a descrip-
tion of how the SEL 86 and the LSI-11 operate in data
collecting experiments and summarizes the current procedure
for collecting and storing data generated during execution

of an LSI-11 data-collecting program.

Overview

AFML personnel make use of three computer systems in
conducting their research. Many test computations are
performed using the ASD CDC computer system. This computer
system can be viewed as a host computer. The laboratory
operates and maintains a SEL 86 computer which, when inter-
faced with the CDC system, serves as a satellite computer
to the CDC 6600. The laboratory also owns eleven LSI-11
microcomputers located in several building on the base.
By using the SEL 86/LSI-11 interface as presented in this

thesis, these micricomputers become satellites to their

host, the SEL 86 computer.




LSI-11

The LSI-11 is a 16-bit, byte addressable microcomputer.
AFML operates eleven such computers: one dedicated solely
for program testing, assembling, and compiling purposes;
and ten employed for data-gathering while conducting
experimental research.

The LSI-11 system, dedicated to program testing and
development, is the largest of the eleven systems. All
testing, debugging and compiling of LSI-11 programs is
done on this computer system. Its operating system, RT-11,
includes a PDP-11 assembler, a FORTRAN compiler and the
FORTRAN library (Ref 3:681-693). Memory size is 32768
words (32K). Floppy disks are used to augment memory
storage. Both inputs and outputs are handled through
either a keyboard and printer or a paper tape reader/punch.
All I/O processing is interrupt-driven.

The other ten LSI-11 computer systems are uniquely
configured system designed to meet the needs of individual
experiments. Currently, six LSI-11ls are being used in
data-collecting procedures. These computers all have
limited memories ranging from 8K to 28K words. The com-
puters have only a few standard features: keyboard with
CRT scope or printer, fast or slow paper tape reader, a
line to the SEL, and a modem. Other features are available
to some of the LSI-11s, but not standard to all ten of

them: real-time clock; X-Y recorder, and paper tape punch.

R




%
%
3;
;

(at present all six LSI-11s being used for collecting data

have paper tape punches available.)

SEL 86
The SEL 86 is a 32 bit, general purpose computer. It
is used extensively by AFML personnel for local processing.
It also serves as an input device to the ASD CDC system,
like the 1700 used in building 640. Job processing is
handled in a real-time operating environment. The system
is essentially time-shared in an interactive mode. Batch
jobs are processed on a priority basis (Ref 5:1-6).
Memory consists of 96K words. Two 100-megabyte disks are
also available. Over 75% of space on the disks is
available to the user since less than one-fourth of the
space for the operating system is reserved. The operating
system, Real-Time Monitor, (Ref 8:1-1) includes a compiler
for FORTRAN and a basic interpreter. Cross-compilers
are available for the INTEL 8080 system and two less
sophisticated SEL computer systems. The systems 85186
Macro Assembler processes assembly language into object
programs. There are two pre-processors for structured
FORTRAN. The SEL library includes the standard FORTRAN
and CALCOMP routines. Devices available for I/0 handling
include: two magnetic tape drives, one each for 7-track
and 9-track tapes; one fast paper tape reader and punch;
and two 600 wpm printers. There are sixteen communications

lines available for interfacing with terminals. These




lines operate under 110, 300, or 9600 baud rate. Presently
thirteen lines are being used: three 110 baud lines, three
300 baud lines, and seven 9600 baud lines. Future plans
include converting two 110 baud lines to 300 baud lines

and chnaging several 9600 baud lines to 300 baud lines.
Easy terminal access to SEL functions is available through
use of the SEL 86 interface package, the SEL Terminal
Support Subsystem (TSS), residing in the SEL operating

system.

Current Procedure for Operating an LSI-11 in a Data

Collecting Experiment

Using an LSI-11 in data collection to support research
is, at presetn, a manual process. Generating a data-
collecting program, loading it into LSI-11 memory, and
later collecting the test data for transfer to SEL 86 file
storage are a series of paper tape actioms.

An LSI-11 program is designed and tested on the large
LSI-11 system. Once the program has been debugged, it
is compiled or assembled. The absolute binary version
of the program is punched out on paper tape. Storing this
binary program into the appropriate LSI-11 consists of
reading in two paper tapes: a ''bootstrap' loader that
enables the LSI-11 to read in an absolute load followed
by the absolute binary load tape. This procedure varies
in length from five minutes to one and one half hours,

depending upon the length of the absolute binary load




module. The entire effort fails if, sometime during the
load, a checksum error is detected. The absolute binary
program must be reloaded into LSI-11 memory.

Experimental data is collected by the executing LSI-11
program while an experiment is being conducted. The program
may collect raw data or process a string of raw data and
store only refined data points. In either case the data
is stored in LSI-11 memory.

The data collected during the experiment is later
analyzed on the ASD CDC system. Since an interface exists
between the CDC 6600 and SEL 86 systems, all data stored
in LSI-11 memory must be transferred to the SEL 86 for
later transmission to the CDC 6600 system. This procedure
also requires paper tape handling. The data stored in
LSI-11 memory is punched out on paper tape. That tape is
loaded into the SEL 86 and the data is stored on a SEL 86
file. This file is later checked for errors by SEL 86
software before transfer to the CDC 6600 system. Analysis

is then done using CDC resident software.

Weaknesses of the Current System

The ma jor weakness of the current system is the use
of paper tapes for program loading and all data collection
and transfer. Paper tape processing has inherent problems.
It is a manual, time-consuming, and unreliable procedure.
Reading and punching paper tapes is slow. The current

loading procedure can take large amount of time especially




TR PR S -

when errors in the load are detected. Simple program

changes are major modifications since the program must be
recompiled and punched out on a new paper tape. As paper
tapes age due to handling, paper tape read errors become

more common. All these problems are costly shortcomings

of the paper tape-based system.

The intent of this investigation is to overcome these
shortcomings by designing an interface between the SEL 86
and an LSI-11. The interface will provide a much more
efficient handling of program loading and data transfers

by eliminating the use of paper tape.

Summary

This chapter has described the current procedure for
using an LSI-11 system in data collection experiments. In
doing so, the chapter has presented a general description
of the LSI-11 and the SEL 86 in determining interface
capabilities. Finally, this chapter has covered the weak-
nesses of the current LSI-11 procedures. The following
chapter will describe the various tools used in developing

the interface design.

10




ITII. Techniques Employed in Developing

the Interface Design

Introduction

This chapter presents the basic concepts of software
engineering. It includes a description of specific tools
used in analyzing the requirements and designing the

capabilities of the LSI-11 system under investigation.

Software Engineering

As software continues to be more and more costly in
svstem developments the application of sound software
engineering principles plays a more critical role. Software
engineering is concerned with the design and construction
of software programs and their related documentation. By
making use of various disciplines available, software
engineering concerns itself with the development, operation,

and maintenance of software packages (Ref 2:3).

Goals. Software engineering has seven goals: efficiency,
reliability, understandability, generality, maintainability,
modifiabilityv, and utility (ease of use) (Ref &4 and 9:9-12).
In any product of software engineering, as well as all
engineering in general, it will not be possible to success-
fullv attain all these goals. For example, efficiency

constraints and reliability criteria may greatly impair




efforts for generality and modifiability. However, the
test software product results from a successful combination
of several software engineering disciplines. Trade-offs
are made in an attempt to meet all the goals of software
engineering.

Life-cycle. An important concept of software engineering
is that it covers the entire software life-cycle. It does
not end with a tested software package, but continues on
through redesign and modification of that software. Any
software package goes through five stages in its life-
cvcle: analysis of requirements; design; coding and debug-
gin; testing and integration; and operations and maintenance
(which includes modification). This thesis is concerned
with the first two states in the life-cycle, analvsis and
design. These are critical phases in any software develop-
ment. Well defined requirements followed by a highly
structured, well-developed design are major contributions
to a useful software product. The goals of software
engineering cannot be met without a structured, disciplined

approach in software analysis and design stages.

Tools for the Requirements Analysis

A software system designed using the techniques of
software engineering must carefully examine and define the
requirements of that system before attempting to actually
create a system design. A clear representation of what the

specifications are is essential before a good design can

12




Bl OBl SOl S, - C

be developed. For this thesis, two techniques have been
used in performing this analysis phase: Structured Analysis
and Design Techniques (SADT) and Structured Analysis.

SADT. SADT is a comprehensive methodology designed by
SofTech, Inc. for analyzing the requirements of a system.
The language of SADT is a diagramming technique. A model
of the problem is built using a precise set of rules.

The model consists of a structured decomposition, using
these rules to introduce new levels of detail. This tech-
nique shows component parts of the problem, the interrela-
tionships between these parts, and their place in the
hierarchical structure. The finished model has several
characteristics: it is top-down, hierarchical, structured,
modular, and functional.

It defines the '"what" of the problem without intro-
ducing the design "how'" (Ref 1:1-1-2-1 and 7:2-1-2-3).

Structured Analysis. Structured Analysis is a techni-

que described by D~Marco that can be applied in specifying
the requirements of a r~~blem. This approach uses several
tools: the Data Flow Diagram (commonly known as a bubble
chart), the Data Dictionary and the Transform Descriptions.
A bubble chart is a network representation of a system,
showing ma jor decomposition of functions and all interfaces
among the pieces. A bubble chart portrays data and the
processes which act upon the data. Like an SADT model, a

bubble chart is decomposed into several levels of detail.

13




A e AN 0 ke

The Data Dictionary and the Transform Descriptions clearly
define the data and the processes presented in the blbble
charts. Techniques of structured English, decision tables,
and decision trees are employed to make the definitions
clear and concise, avoiding ambiguities and inconsistencies
often found in written English. By using these tools of
structured analysis, a concise specification of what the

system must do can be achieved (Ref 4).

Tools for the Structured Design

Structured design is a technique employed to assist
the designer in determining the modules and their inter-
connections which best solve a well-stated problem. Once
analysis has successfully been accomplished, the design
phase begins. Like SADT and Structured Analysis, Structured
Design produces a top-down, hierarchical, modular design.
Tools available for developing the ''best'" structured design
include design heuristics and design techniques. This
thesis employs the following techniques: transform analysis,
transaction analysis, Jackson's method, and Parnas' method
of structured design. Both transform and transaction
analyses are techniques developed by Yourdon and Constan-
tine; the latter two techniques are not.

Heuristics. There are five guidelines to be emploved
in any good structured design. Cohesion between modules
should be maximized while coupling should be minimized.

This means that a good design has a strong degree of

14




G S i i s i et

4 relatedness among the elements of each module while ﬁhere
are minimal coupling among the modules. Trade-offs often
must be made in the design in following this guideline. A
module should be sized such that it processes a complete
function, but maintains a high degree of understandability
and modifiability. The number of immediate subordinates
to a module, called fan-out or span of control, should

generally be from 1 to 10. Fan-in, the number of subor-

dinate modules which call a specific module should be
maximized. Multiple fan-in means that some duplicate code
has been avoided. Lastly, the scope of effect should be

a subset of the scope of control of the module in which
the decision is located. This means that all of the
modules that are affected, or influenced, by a decision.

The scope of effect should be subordinate to the module

that makes the decision. (Scope of control of a module
consists of the module itself and all its subordinates
(Ref 4 and 9:76-125, 148,169).

Transform Analysis. Transform analysis is a particular

structured design technique based on the analysis of data
flow. The system being designed is viewed as central
transforms which digest and create major system inputs

and outputs. This technique takes advantage of the overall

perspective of the problem and leads to a fully, or almost

fully, factored structure in which the lowest level modules

perform the "work'" while intermediate levels control and




i : | »_

coordinate the work of their subordinates. Transform
analysis uses the data flow diagrams created during the
analysis phase in generating a "'first-cut'" design model.

A "first-cut'" design generally consists of an input module
and its hierarchical decomposition, followed by central
transform modules, and lastly a factored output module. By
using the previously described heuristics of structured

and making design trade-offs where necessary, the initial
design is refined to develop a final design model (Ref 4
and 9:171-185).

Transaction Analvsis. Like transform analysis, trans-

action analysis is based upon the analysis of data flow.

A supplementary strategy to transform analysis, this
technique handles processes suggested by data flow diagrams
in which one of several possible outputs occur as a result
of a process (transaction). The transaction center functions
consist of: getting the transaction in raw form, analyzing
the transaction to determine its type, dispatching the
transaction, and completing the processing.of each trans-
action. Common use of transaction centers might include
conversion of input or output to its appropriate formatted
version or validation of an input transaction (Ref &4

and 9:202-221).

Jackson's Method. Unlike both transform and trans-

action analyses, Jackson's method of structured design is

based on the analysis of data structure rather than data

16




flow. The structures of the data to be processed are
defined. A program structure based on these data structures

is then formed. In essence this approach develops a

hierarchy of modules that is a minor image of the hierarchy
of the data associated with the problem. When this one-to-
one mapping cannot be made between the structure of the
program and the structure of the data, a '"structure clash"
exists. If this occurs, multiple hierarchies of modules,
known as program inversion, must be established to handle
the clash. Additional programs are created to work around
the structure clash (Ref 4 and 9:223-227).

Parnas' Method. Parnas' method of structured design

is often referred to as the "information hiding" technique.
Parnas' principle is that each module is to have as little
information as possible to define its interface. Details
are hidden to the lowest levels of decomposition of the
model. This improves maintainability and modifiability
since details that are likely to change are "hidden" at

the lowest levels of the design model. This eliminates

the need to filter changes through the entire hierarchy.

Modifications are made at the low levels of detail. Such
design decisions which are good candidates for Parnas'

method include: formatting, linking, storing, and modifying

data structures; formatting control blocks; and the

sequencing of item processing (Ref 4 and 9:228-230).

17

__—




s DA S G s 1 b o e s

e

Summary i

This chapter has presented a short description of the
formal analysis and design tools used in creating the
SEL 86/LSI-11 interface. In addition, the chapter has
introduced the basic concepts and goals in developing a
'""good" software system. The following chapter will

describe the overall design of the interface monitor along

with a discussion of various design decisions that were

made in developing the final design structure.

18




IV. The Interface Design

Introduction

In analyzing the requirements of the SEL 86/LSI-11
interface, the design phase has determined a need for a
multicomputer interface monitor. This chapter describes
the structure of the interface monitor, how it is used,

and decisions made in designing it.

Design Structure

The purpose of the SEL 86/LSI-11 interface is to pro-
vide the LSI-11 user with some powerful, yet simple tools
to improve utilization of the LSI-11 as part of a network
of computers designed for collecting and analyzing test
data. The interface enables the user to: load data stored
in absolute binary format on a SEL 86 file into LSI-11
memory; transmit data from LSI-11 memory onto SEL 86 files;
and use interactive functions available on the SEL 86.

The interface design is constrained by LSI-11 memory size.
It must be general purpose and must require no additional
equipment.

The resulting design uses: the modems and 300-baud
communication lines between the SEL 86 and the LSI-11 and
the SEL 86's software for terminal support, TSS. The

capabilities are realized by either keyboard entries at

19




the LSI-11 or FORTRAN CALL statements in the user's LSI-11
program. Software support for the interface design consists
of two programs: one residing on the LSI-11, the other
residing on the SEL 86.

The LSI-11 support software is the LSI-11 Interface
Monitor (LSI-11 IM). This program must interpret a user's
keyboard command and dispatch it to the appropriate routine
for processing. In executing the user's input command,
the LSI-11 controls all interaction between the LSI-11 and
the SEL. The SEL program is executed and terminated through
LSI-11 control.

The SEL 86 resident interface monitor software, LSI
NTR, is initialized for those LSI-11 commands that call for
a transfer of data between the LSI-11 and the SEL 86. This
program must access SEL 86 files for both transmitting
data to the LSI-11 and receiving data from the LSI-11.

Five LSI-11 keyboard commands have been designed for
providing the user with control of the desired capabilities.
These commands are also callable by LSI-11 FORTRAN conven-
tions. A detailed description of their use is provided in
the User's Manual, Appendix A. In summary the commands
are:

LOAD - load data in absolute binary format from a
SEL file into LSI-11 memoryv;
FILE - used in conjunction with the SEND command.

Specifies SEL 86 files for storing data from

20




s 50 Tt e AL b s BT U ST =

LS S SRS L TR e

LSI-11 memory. Data is stored in binary or
absolute binary format. (See Appendix A of
the User's Manual.)

SEND - used in conjunction with the FILE command.
Transmits a block of LSI-11 data to a SEL 86
file;

TRANS - put LSI-11 in a transparency mode such that
the SEL 86 views it as a terminal; and

RUN - execute a program stored in LSI-11 memory.

In addition two FORTRAN callable routines have been

designed:

IMCHAR - transmit a string of ASC11 characters; and

IMEXIT - return control to LSI-11 IM.

Two design models, one each for the LSI-11 and the

SEL 86 software, have been created using the design tech- |
niques described in the previous chapter. Their detailed
design structures are specified in Appendix C. Also
included are the appropriate bubble charts used in
generating the "first cut'" of the designs. These can be

found in Appendix B.

Design Decisions

No design can be successfully accomplished without

making many trade-offs in attempting to produce the ''best"

design. A dominating factor influencing the interface
design is the need to keep the use of the interface simple

while still providing the user with some powerful tools.

21

P e ey




& 4

i e A S A e et i i e S e

In keeping with this goal, the design decisions fall into
two broad areas: data transmission and receipt and error
processing.

Data Transmission/Receipt. In addition to the need

for simplicity, LSI-11 memory constraints force the
selection of simpler, less sophisticated, and normally
slower, approaches in dealing with data handling decisions.

Use of TSS at 300-baud rate. The SEL 86 Terminal

Support Subsystem (TSS) has been selected to use as the
terminal system driving the SEL 86/LSI-11 interface. Since
it is available and easily accessible, this choice greatly
simplifies the interface communication. The slow baud rate
is forced upon the design because the 9600 baud rate is
unavailalbe for LSI-11 use.

Encode/decode procedure. TSS limits all data

transmission to ASC11l characters. This does not in itself
cause problems since the bits of data to be sent across TSS
can be released in groups of eight bits and thus be inter-
pretted as ASC1l1l characters. A problem arises when a group
of bits is interpretted by TSS as a carriage return or a

line feed. These two characters serve as control characters
and are not considered part of the transmission itself,

thus data bits would be lost using this approach. An encode/
decode procedure appears to be the simplest solution. All
data is encoded into ASCl11 alphanumeric characters prior

to transmission and then decoded before it is stored at

22




the receiving end of the transmission. This occurs for
both data being sent to the SEL 86 from an LSI-11 and

data being received by an LSI-11 from the SEL 86. Since
the LSI-11 has 16 bits per word and 8 bits per byte, a
simple 4-bit encode/decode procedure can be used. All
ASC11 transmissions will consist of one of sixteen possible
characters. This procedure has the advantage of enabling
the user to '"'tap'" the data transfer line to verify that

the transmission appears to be working successfully.

Use of data buffer on LSI-11. No data buffer

is used to store encoded data on the LSI-11 before the data
is transmitted to the SEL 86. Using a buffer to hold
encoded data before the communication line is available

can be of significant value when transmitting data to the
SEL as it is being collected on the LSI-11; however,
drawbacks of a single buffer outweigh its advantages. Data
is expected to be collected much faster than it is released.
Unless the data is collected in bursts, once the buffer is
full it will remain full until there is no new data to
buffer. Double-buffering can alleviate this problem, but
its memory overhead is too costly to implement. Another
problem of a single buffer is that there is no fixed
addressable location in LSI-11 memory to use as a buffer
area. Absolute binary programs are not loaded in sequential
addresses of LSI-11 memory; It will require overhead to

keep track of available memory and this can only be done

23




ol et A e 1 M e

program has been loaded through the LSI-11 IM. If the
program has been loaded from paper tape, no automated
record is kept of available memory space. Overhead for
both types of bookkeeping could be kept at the SEL end of
the interface, but the problem of buffer size still exists.
No fixed buffer size can be used since the LSI-11s do not
have a standard memory size. Thus, buffer size must
become an input parameter or an algorithm must be used to
automatically set its size. The problem becomes more and
more complex. This buffer, would be a significant factor
if it affected all data transmission; however, it only
poses a problem when data is being released as it is
collected. In actuality, the slow 300-baud rate makes
release of data as it is collected most unlikely. Though
the capability exists, it will rarely be used with the
present slow transmission lines. The design structure

of the LSI-11 IM, though, makes it easy to modify if a
buffer is later desired.

Data transmission format. All data transmitted

by the LSI-11 or received by the LSI-11 is in an absolute
load format. (See Appendix A of the User's Manual.) This
requires an additional overhead in data processing for
both sending and receiving data; however, it is a powerful
tool. By using this format for storing data on SEL 86
files, the user can store an image copy (i.e. a dump) of

LSI-11 memory and, more importantly, the user can store




an LSI-11 program on a SEL 86 file for later reloading
into LSI-11 memory.

Error Processing. Error processing has been kept as

simple as possible to minimize overhead while still pro-
viding the user with control of processing after errors
occur.

Format errors. Input LSI-11 keyboard commands

are validated by the LSI-11 IM. A simple error message is
printed for any input error. The user if required to re-
enter the command correctly.

Checksum errors. The trailer of a block of data

in absolute load format (See Appendix A of the User's

Manual) is the checksum for that block. Both the LST-11 and

the SEL 86 programs use the checksum to validate the data
transmission. For data being loaded into the LSI-11 in
several blocks, the user has the option to continue or
terminate the load once a checksum has been detected.

Time out warnings. As a check to ensure that

data is being transmitted across the communication line,
both the SEL 86 and the LSI-11 have a time-out warning
message printed out to the user's console at the LSI-11.
The time out message specifies that no data has been sent
across the communications line in a specified period of
time. At this point, the user may want to terminate the

transmission.

25




SEL messages. Whenever the SEL 86 LSINTR program
is in a mode to receive data from an LSI-11, any messages
generated by the SEL 86 operating system, such as file
error messages, will be printed at the user's LSI-11

console.

Summary

This chapter has described the overall structure of
the SEL 86/LSI-11 interface monitor. It has also presented
a discussion of the various design decisions that needed to
be made in developing the current design. The next chapter
will present conclusions and recommendations from the
investigation of an interface. It will also discuss several

implementation requirements for the interface monitor

design.




V. Conclusions and Recommendations

Introduction

This chapter presents final conclusions and recommen-
dations for the SEL 86/LSI-11 interface system. It also
discusses various steps that must be taken to successfully

implement the interface design.

Conclusions

In examining the design product, conclusions can be

made regarding the use of the analysis tools, the use of

the design tools, and the wusability of the current design.

Usability of the Analysis Tools. In using a structured

approach for the analysis phase of the interface develop-
ment, both SADT and Structured Analysis were applied.
Though several SADT models were attempted, none seemed to
satisfactorily state the exact problem and define actual
requirements. SADT could not successfully handle a top-
level transaction-centered process. Bubble charts were
then generated. These were more helpful, but only at the
highest levels in separating input, output, and transform
modules. Again, a top-level transaction limited the
success of this technique. The best tool, though not

formally regarded as a structured analysis technique, was

the development of the user’'s manual. In defining specific

27

ST




commands and parameters, precise capabilities were clearly
documented. In its final form, the user's manual covers
all aspects of the interface's capabilities.

Usability of the Design Tools. Once the top level

modules of both the LSI-11 IM and the SEL 86 LSINTR were
modeled using a transaction-centered design approach,
transform analysis was extremely useful in designing the
processing of each transaction. All first cut designs were
based upon the bubble charts for the transactions. In
developing the final designs, the heuristics of structured
design, along with both Jackson's and Parnas' methods, were
applied and successfully accomplished. Jackson's method
of data structure was useful in processing the data blocks
transmitted across the communication lines. In all models
Parnas' method of "information hiding' was applied in an
attempt to keep all changeable detail at the lowest level,
wherever possible. Parnas' theory seemed to '"fall out" in
applying good structured design principles. In short, each
of these design tools was extremely useful in building
the final design models.

Usability of the Design. The design satisfies all

the requirements defined during the analysis phase. In
addition to implementing the desired capabilities into an
interface, the design has remained general purpose so that
the interface can be used on any of the eleven AFML's

LSI-11s. Use of the keyboard commands and FORTRAN callable

28




routines is straightforward and simple while still providing
the user with useful and powerful tools. Since the prin-
ciples of structured design have been applied in creating
the interface design, the system, once operational, can be
maintained and modified with relative ease. Additioms,
deletions, and modifications to the LSI-11 IM and the

SEL 86 LSINTR software can be accomplished with minimal

effort.

Implementation

Before the interface is permanently added to the
SEL 86 and the LSI-11 systems and actively used by AFML
personnel, several steps need to be taken: code, debug, and
test the interface design; modify the user's programs where
desired; modify the LSI-11 linker utility and FORTRAN
library on the development LSI-11; and store the user's
absolute binary programs on SEL 86 files.

Code, Debug, and Test. Prior to full implementation

of the interface, it must be coded, debugged, and fully
tested. The SEL 86 routine can be written in standard

SEL 86 FORTRAN. Dynamic allocation of new files in the

SEL 86 program must be written in assembly language.

Most of the LSI-11 IM can also be developed in FORTRAN.
Several command routines which allow a variable number of
parameters must be written in assembly language. Once the
system is found to work satisfactorily, it may be desirable

to recode the LSI-11 IM in assembly language in an effort

28

\ s e




to decrease memory requirements. Use of FORTRAN is highly
preferred at the AFML, since most programmers, particularly
contractor personnel, do most of their work in that higher
order language. The use of FORTRAN will greatly increase
understandability of the documentation, particularly for
the SEL 86 program. For the LSI-11 program, the PDP-11
assembler has some useful tools for documenting LSI-11
assembly language programs.

Modify Users' Programs. All LSI-11 programs as

currently written will execute using the SEL 86/LSI-11
interface. For programs that require the release of data
during program execution, a call to the SEND routine will
be required. If the user wants control returned to the
LSI-11 IM upon completion of the program, it will be
necessary to call the IMEXIT routine.

Modify LSI Linker Utility and FORTRAN Library. In

linking the various routines during the generation of an
absolute binary load program, the development LSI-11 linker
utility must be able to recognize any call statements
designed by this interface. The linker utility must recog-
nize that either the call to the routine is an external in
the FORTRAN library or that the linker is to access a table
that specifies the address of the particular memory loca-
tion in the LSI-11 that stores the called routine. In

either case, the RT-11 operating system must be modified.

29




Store Users' Absolute Binary Program§. Before any
loads of binary programs into LSI-11 memofy can be attemptéd,
it will be necessary to store some absolute binary programs
on SEL 86 files. This can be easily accomplished on the
development LSI-11 system by accessing the LSI-11 IM and

using the FILE and SEND commands.

Recommendations

The following recommendations are presented as possible
improvements that can greatly enhance the capabilities
available using the SEL/LSI-11 interface.

1. Add a PDP-11 cross-compiler on the SEL 86. By
adding a PDP-11 cross-compiler on the SEL 86 sys-
tem, a user is not restricted to use only the one
development LSI-11 for the céding and debugging
of LSI-11 programs. Any AFML LSI-11 that has the
SEL 86/LSI-11 interface can access this compiler
through use of the interface's transparency mode.

2. Increase the baud rate. Even though the interface
design has not been implemented, it is fairly
easy to foresee problems in transmitting data over
a 300 baud line when data is being sent as it is
collected. Increasing the baud rate would greatly
facilitate the data transfer. This improvement
would also make it feasible to add a buffer area
for encoded data since the option of sending data

as it is collected would be more regularly used.

30

Ceait o




Final Summary
The SEL 86/LSI-11 interface has been designed using

the principles of software engineering. After carefully
analyzing the current LSI-11 system and establishing
baseline requirements, structured design techniques were ;
easily employed in developing a good structured interface
monitor design. The resulting design is a good, modular,
structured design. The coding and testing phases of

the development of the interface will be relatively straight-
forward since carefully executed analysis and design phases
have been accomplished. Once the SEL 86/LSI-11 interface

is integrated into the SEL 86 and LSI-11 systems, it will

be a useful tool in more efficiently collecting experimental

data at AFML.




Bibliography

"An Introduction to SADT Structured Analysis and Design
Technique,'" 9022-78R. Waltham, Mass: SofTech, Inc.,
November 1976.

Boehm, B. W. '"Software Engineering,'" TRW-55-76-08.
Redondo Beach, California: TRW Defense and Space
Group, October 1976.

gigital Microcomputer Handbook (1977-78, Second Edition)
aynard, Mass.: Digital Equipment Corporation, 1976.
Miller, Peter E. Lecture Materials distributed in
EE6.93 Software Engineering. School of Engineering,
Air Force Institute of Technology, Wright-Patterson
Air Force Base, Ohio, Summer 1978.

Reference Manual SYSTEMS 86 Computer. Ft. Lauderdale:
S ngineering Laboratories, February 1976.

SEL Terminal Support Subsystem Reference Manual. Ft.
Lauderdale: SYSTEMS Engineering Laboratories,
August 1977.

""Structured Analysis Reader Guide,'" 9022-73.2.
Waltham, Mass,: SofTech, Inc., May 1 .

SYSTEMS 85186 Real-Time Monitor Reference Manual. Ft.
TauderdaTe: SYSTEMS Engineering Laboratories,
October 1974.

Yourdon, Edward and Larry L. Constantine. Structured
Design (Second edition). New York: Yourdon Press, 1978.




Appendix A

SEL 86/LSI-11

Interface Monitor User's Manual




_ Contents
I . OverView L] . L] . E2 L] . . . L] © L] . L] . . . e =
PUrPOSE . &« o« ¢ o o o o o o o o o o o o o =
Capabilities . . . . L] Ll L ) © . . . . . . L] .
COMMARNAS: & 5 o o ol e e e e w E e e
Rout ines . . L) . . L] L] Ll . . . L] . . kS . L] .
Outline L L ] L] L] L] . . . L] . . . . Ll . Ea L] .
II. Command Specifications . . . « « « « « ¢ ¢ + &
IntrOdUCtion . . a . . . . . . . . . . o . s
The Comands . . . . . . L . . . . . » .
The Additional Routines e o e T T e
Slmnary . . . . . . . . L] L . . . - L] . . L]

EEL. Operating Procedures . . « « ¢ « « ¢ « &« ¢ o &
Introduction . . .
Procedure for Using "SEL 86/LSI 11 Interface.
Considerations in Using the Interface . . .

Bibliography . . . . . L] . . . . L] . . . . L] . . . .

AppendiX A . . ¢ ¢ 4 e 4 e e e e e e e e e e e e e

Page




SEL 86/LSI-11

Interface Monitor User's Manual 5

I. Overview

Purpose

The purpose of this manual is to provide user guide-
lines for a SEL 86/LSI-11 interface. This document
specifies the LSI-11 commands that are available to the
user, the constraints in using these commands, and the

procedure for using these commands in the interface.

Capabilities

The SEL 86/LSI-11 interface software consists of two
program packages: Interface Monitor (IM) resides on the
LSI-11 system; and LSINTR resides on the SEL file of the
same name for use by the SEL system. The interface
package provides options to implement each of the following
capabilities:

1. the LSI-11 can be treated as a terminal by the

SEL 86, thus enabling the LSI-~11 user to access
interactive functions on the SEL 86;
2. an LSI-11 program stored on a SEL 86 file in an

absolute binary format (see Appendix A of this

manual for the format) can be transmitted and

35




3 loaded into LSI-11 memory; (NOTE: Data can also

be loaded into LSI-11 memory as long as it has

been stored on the SEL 86 file in the absolute
load format specified in Appendix A.) and

3. data can be transmitted from LSI-11 memory to a %
SEL 86 file in one of two ways:

a. send data as it is acquired during execution

of a data-generating program on the LSI-11; or
b. send a block of data stored in LSI-11 memory.

Data is stored on the SEL 86 file in either

an absolute load format or a binary format,

i.e. exact binary duplication of LSI-11

memory without header or trailer information.

Storing the data in an absolute load format

allows the user to store any data in LSI-11

memory onto a SEL 86 file for later re-loading
into LSI-11 memory. This format also enables
the user to perform a selective dump by
storing a block of LSI-11 memory on a SEL 86
file and later routine that file to a SEL 86
peripheral printer. Binary format is speci-
fically designed for use in storing the data
collected during execution of an LSI-11 data-

generating program.

36




¢

Commands

There are five keyboard commands available to the user

in implementing the capabilities defined above:

1. FILE -
20 LOAD -
3- RUN -
4, SEND -
5. TRANS -
Routines

open or close the SEL 86 file(s) to be used
in storing data transmitted from the LSI-11;
(NOTE: This command is used in conjunction
with the SEND command.)

perform an absolute load from a SEL 86

file into LSI-11 memory;

executive a program in LSI-11 memory;
transmit a block of data stored in LSI-11
memory to SEL 86 file(s); (NOTE; This
command is used in conjunction with the
FILE command.) and

allow the LSI-11 to function as a terminal

for the SEL 86.

Also available to the user are the following FORTRAN

callable routines that may be used in LSI-11 programs:

1.

three of the five above commands: FILE, LOAD, and

SEND;
IMCHAR

IMEXIT

- transmit a string of ASCii characters
to the SEL 86; and
- return control to IM on the LSI-11 upon

exiting a user's program.




Vi A A

G N

e

Out}ine

Chapter II specifies command formats for both the
keyboard input and the FORTRAN call statement where applic-
able. It also explains constraints in using the command.
The additional FORTRAN callable routines, IMCHAR and IMEXIT
are also clearly defined. Chapter III covers specific
operating procedures in using the SEL 86/LSI-11 interface,
i.e. initializing and terminating the interface. It also

lists several points to be remembered in using the inter-

face.

38




II. Command Specifications

Introduction

This chapter explains in detail the use of the five
commands and two FORTRAN callable routines in providing the
user with the capabilities as defined in Chapter I. In-~
cluded for each command/routine is: keyboard format,
FORTRAN format, expected output, termination procedures,
expected error messages, and additional comments when

necessary.

The Commands

(NOTE: Interpretting command format specifications:

1. Imbedded blanks are permitted.

2. <CR> denotes a carriage return.

3. A set of parentheses denotes optional parameter(s).
The parentheses are NOT part of the command format. If
the parameter is being omitted, all format specificatioms
within the parentheses are omitted.)

FILE. This command initializes or terminates SEL 86
interaction in storing data on SEL 86 file(s). The command
is used to specify the SEL 86 file(s) where LSI-11 data is
to be stored and the format in which the data is to be
stored, i.e. absolute load or binary format. It is used

in conjunction with the SEND command.




. Keyboard format.

FILE(,};, file,, filey, ... , file ) <CR>

L or B - optional parameter. Specifies format in
which data is to be stored: L for absolute
load format, B for binary format.

file, - optional parameter. O > n > 8. !
Name of SEL 86 file(s) where data is to be
stored. A file command specifying at least
one SEL 86 file must be input in order to
initialize SEL 86 actions in storing LSI-11
data on SEL 86 file(s). An existing file

will automatically be allocated. If the
file does not exist, a new file will be
dynamically created and allocated. In this
case, standard SEL conventions must be used
in naming the file. A maximum of eight files
may be designated. This command must be
used without designating any files in order
to terminate SEL 86 actions. It can be used
in this form as a keyboard input to override
a FILE call in the user's program and thus
disable any automatic data transmission from
the program. In this form, the command can
be input anytime during program execution

to terminate data transmission. Entry of the




g

e

e

FILE keyboard command with different file
specifications will NOT override those
designated in a FILE call from the user's

program.

FORTRAN format.

CALL IMFILE (f, file,, filey, ..., filey)

The parameters are the same as the keyboard format.
OQutput. none.

Termination. FILE command/call must be used to

terminate SEL 86 actions.

Error messages. none.

Additional comments. For examples of the use of

the FILE command, see SEND command specificatioms.

LOAD. This command loads data stored in absolute
load format on a SEL 86 file into LSI-11 memory. The
command is designed to serve as a loader of absolute
binary programs; however, any type of data can be trans-
mitted and stored in LSI-11 memory as long as the data is
in absolute load format.

Keyboard format.

LOAD, file (, offset) <CR>
file - name of file on SEL 86 where data to be
transmitted is stored. The file must be an
existing SEL 86 file.

offset - optional parameter. Signed/unsigned positive

41




oS Y B T S S i LB M 1. = 1 S A

or signed negative octal integer. This value

is added to the load address passed in the
data transmission. This sum becomes the
absolute load address. When this parameter
is omitted, its default value is zero.

FORTRAN format.

CALL IMLOAD (file, offset)
Parameters are the same as the keyboard format.
Output .
1. Start address is printed at the user's
console. If the load address was not completed, the start
address value is invalid. (See Error messages below.)

2. Error messages are printed at the user's

console.
Terminator.
1. If no errors occur during the load, termi-
nation is automatic.
2. When load error occurs, user decides if
load is to continue or be terminated. (See Error messages

below.)

Error messages. When an error is detected in

loading a block of data into LSI-11 memory, a message is
printed specifying which block has an error. The block
of data in error has been loaded into LSI-11 memory;
however, the user has an option to continue with the load
or abort it by answering the following message printed

at the user's console: CONTINUE LOAD? ENTER Y OR N.

42




If the load is to continue, Y is entered via the keyboard.
If the load is to be terminated, N is entered.

RUN. This command causes the execution of a program
stored in LSI-11 memory.

Keyboard format.

RUN (, start address) <CR>

start address - optional parameter. Signed/unsigned
positive integer. This parameter
specifies the memory address where
execution is to begin. When this
parameter is omitted, the start
address defaults to the start address
obtained from the most recent LOAD
command.

FORTRAN format. mnot applicable.

Output. none.
i

Termination. automatic. Control will NOT be

returned to the IM unless the executed program ends with a

-

call to IMEXIT. (See IMEXIT below.)

Error messages. none.

SEND. This command sends a block of data stored in
the LSI-11 to the SEL 86 and stores the data on SEL 86
file(s). This command, in conjunction with the FILE
command, is designed to transmit and store data on SEL 86
file(s) in one of two ways: as a single datum is being

collected during execution of an LSI-11 program or as a




block of data. (For specific details, see Additional com- 13
ments below.) A FILE command initializing SEL actions must |
precede a SEND command and a FILE command terminating SEL 86

actions must follow that SEND command.

Keyboard format.

SEND, data address, data length (, file number) <CR>
data address - unsigned/signed positive octal integer.

address of first byte of data.

data length - unsigned/signed positive octal integer.
number of bytes of data.

file number - optional parameter. Unsigned/signed
positive octal integer ranging from 1
to 10g. This number specifies on
which SEL 86 file the data is to be
stored. The number corresponds to
that file parameter of the FILE command,
i.e. a file number of 3 in the SEND
command corresponds to fileq of the

FILE command. When the file number is

omitted, the value defaults to 1 and
all data is stored on f11e1 as desig-
nated by the FILE command.

FORTRAN format.

CALL IMSEND (data name, data length, file number)
data name - name of the data item being transmitted.

The data name must follow SEL 86




FORTRAN conventions.
All other parameters are the same as the command
format.
Output.
1. Data is stored on SEL file(s) in format

specified by the FILE command.

2. Error messages are printed at the user's

console.

Termination.

1. A FILE command may be used to abort data

transmission.

2. A FILE command must be used to terminate
SEL 86 actions in storing LSI-11 data on SEL 86 file(s).

Error messages. SEL 86 messages (i.e. file full,

etc.) are output to the user's console.

Additional comments.

1. Examples on how to use this command
a. As a keyboard input:
Enter: FILE,B,BILL
Enter: SEND,723,100
This stores 100g bytes of LSI-11 data, beginning at memory
location 7238, on the SEL 86 file, BILL, in binary format.
b. As part of a FORTRAN program:

CALL IMFILE (B,BILL,JAN)

45




e et e

T APPSR iy

CALL IMSEND (BUF(1),2,1)

CALL IMSEND (BUF(3),4,2)

.
.

This program stores two bytes of data on the SEL 86 file,
BILL and stores four bytes of data on the SEL 86 file, JAN.
c. As a combination of keyboard input and
a FORTRAN program:
Program:
CALL IMSEND (BUF(1),6,1)

Enter: FILE,L,BILL,JAN,PETE
This program stores six bytes of data on the SEL file, BILL.
The program will not transmit the data as specified on the
IMSEND call unless the keyboard FILE command has been
entered prior to the execution of the program.

2. The SEND command does not store data in
LSI-11 memory. In order to ensure that no data is lost
if transmission fails, the user's program should store the
data in LSI-11 memory prior to any call to SEND in the
user's program.

3. It should be noted that since a 300-baud
rate line is being used, this FILE/SEND routine is slow
when transmitting data as it is being collected.

4. Sending data as it is acquired requires
that the user's program make a call to SEND each time a

piece of data is collected.

46




AR SNy o) o

™

5. In order to transmit a block of data after
execution of an LSI-11 data-generating program, that LSI-11
program must print the data address and data length of
that data block to the user's console.

TRANS. This command allows the user to access SEL 86
interactive functions by making the LSI-11 appear to be an
interactive terminal to the SEL 86.

Keyboard format.

TRANS <CR>
FORTRAN format. not applicable.

Output. Keyboard input and SEL 86 responses are
printed at the user's console.

Termination. User keyboard entry: Control/D <CR>

Error messages. none.

The Additional Routines

IMCHAR. This routine transmits an ASC1l1l character
string to the SEL 86. The characters to be transmitted
must be stored in an array.

FORTRAN format.

CALL IMCHAR (name of character array, size of array)
Name of character array - name of first word of the
array storing the characters.
Size of array - number of words in the array.
Output. none.

Termination.

1. automatic.

Badiaat mp o o e e e et 2L

e da e o ot o

O P Ry —— gy




2. User has option to abort transmission if
time-out has occurred. (See Error messages below.)

Error messages. If waiting for clear line to

release data exceeds 3 minutes, warning message requiring
user's response is printed at the user's console:

TIME-OUT WAITING TO SEND. CONTINUE? ENTER Y OR N
If user wishes to continue waiting for the clear line, Y
is entered. If not, N is entered and the routine is ter-
minated.

IMEXIT. This routine is used to return control to the
IM residing on the LSI-11.

FORTRAN format.

CALL IMEXIT
Qutput. Prompting message '"--" is printed when
control is returned to the IM.

Termination. not applicable.

Error message. none.

Additional comments. This routine is most

commonly used at the end of a user's LSI-11 program:

CALL IMEXIT
STOP
END

Summary
This chapter has detailed the use of the five commands

and two routines available using the SEL 86/LSI-11 interface.

48




" NI ol .
e, B Ll et et et

III. Operating Procedures

Introduction

The SEL 86/LSI~11 interface is designed to require
minimum effort on the part of the user. The user interacts
directly with the LSI-11. With the exception of login
requirements, all interface activitives between the SEL 86
and the LSI-11 are automatically monitored by the LSI-11
IM software. This allows a user unfamiliar with SEL
interactive procedures to successfully use the SEL 86/LSI-11
interface.

This chapter specifies the procedures for accessing
the SEL 86/LSI-11 interface. It consists of activating
the LSI-11, getting into a transparency mode with the
SEL 86, and logging in. At this point the user is free to

use any of the functions available to the interface.

Procedure for Using SEL 86/LSI-11 Interface

1. Ensure that all needed equipment is available:
LSI-11
Keyboard
Printer or CRT
Modem
Telephone
Operational SEL




2. Turn on the LSI-11. The LSI-11 automatically
jumps to the IM.
Response (from LSI-11): - -
3. Get into transparency mode in order to log in on
the SEL 86:
Enter: TRANS <CR>
4. Dial the appropriate number to access a 300-baud
rate line on the SEL 86.
Response (from SEL 86): - SEL TERMINAL SUPPORT
SYSTEM, TERMINAL xx-
ENTER USER NAME:
5. Enter an approved, validated name for the SEL 86
interactive mode.
Response (from SEL 86): ENTER USER KEY:
6. Enter: <CR>
Response (from SEL 86): ENTER FUNCTION CODE, 7,
OR OR TO TERMINATER
7. At this point, log in is complete on the SEL 86.
The LSI-11 is still in a transparency mode. The user may
continue in this mode or exit the transparency mode. To
exit,
Enter: Control/D <CR>
Response (from LSI-11): - -
The user may now use any of the available commands of the

SEL 86/LSI-11 interface.

50




Considerations in Using the Interface

Whenever the LSI-11 IM is awaiting keyboard input, it

notifies the user with the prompting message:

The SEL 86 will automatically log out the LSI-11 if
the user or the LSI-11 IM does not interact with the SEL 86

for 30 minutes.

No specific keyboard input is required to terminate
the LSI-11 IM. The LSI-11 IM is automatically terminated
when the LSI-11 is turned off.

Summary
This chapter has specified the required steps in

initializing the SEL 86/LSI-11 interface. The procedure is
simply the standard procedure for logging onto the SEL 86
from a terminal once the LSI-11 has been placed into a
transparency mode. This chapter does not go into any
detail in accessing and using the SEL 86 interactive
functions and procedures. The SEL Terminal Support Sub-
system Reference Manual should be referenced for further

detail in operating under the SEL 86 interactive mode.

51




rw-v»-vnww—.mq—q—-- e

&4

T R T e .'!’-rw

Bibliography

1. Digital Microcomputer Handbook. 1977-78 Second edition.
Maynard, Mass.: Digital Equipment Corporation, 1976.

2. SEL Terminal Support Subsystem Reference Manual. Ft.
Eagderaafe: Systems Engineering Laboratories, August
1977.




s Aol el - St s . i

Appendix A

Absolute Load Format

A block consists of:

byte value
1 001
2 000
3 XXX
4 XXX
5 YYY
6 Yry
n 222

Notes:

start byte

null byte

byte count (low 8 bits)
byte count (high 8 bits)
load address (low 8 bits)
load address (high 8 bits)

block checksum

1. The byte count is the total number of bytes in the

block, excluding the checksum.

2. A byte count of six has specific implications:

a. data transfer is complete; and

b. the load address specifies the transfer address.

53




—

Appendix B

Bubble Charts for SEL 86/LSI-11

Interface Monitor

Five bubble charts are included in this appendix. They
are: LSI-11 IM, LOAD, SEND, TRANS, and SEL 86 LSINTR. The
bubble charts for FILE, RUN, IMCHAR, and IMEXIT have been
excluded since these charts are trivial by the nature of

what the modules must do. It should be noted before reading

h these charts that each chart represents data flow of a
particular function. Control flow is intentionally omitted.
The chart represents a series of data transformations from
one form to another form as viewed by the data. This means

that iterative loops and initialization procedures are not

included in the charts.

The charts included here are only high level bubble
charts. Each process, i.e. '"bubble'", could be decomposed
into a lower level bubble chart to include more detail.
The intent of these charts is simply to provide the reader

with an overall concept of what is being done in each module

before examining how the module is being implemented in the

structure charts.

54




B e e

EIPETpRTIY WA

e

Keyboard-character

Printed-
character

barameter

arameter

Input-1li

Format
command

Parameter

list Command

falidat
2mm:ide Valid-command and

Valid-parameter-

See appropriate
Error- bubble charts,
message i.e. LOAD, SEND,
and TRANS

Figure 1., LSI-11 Interface Monitor Bubble Chart

55




ncoded-load-data

oad-parameters
Load-data

Checksum

Start-
address-

Stored-data message

LSI-11
"Block"-message

Error-measage

Figure 2, LOAD Bubble Chart

56




Parameters

LSI-~-11

Encode
data

Encoded-data

Transmit

Transmitted-

SEL 86~
files

Figure 3. SE.D Bubble Chart




LSI-11l-keyboard-characters

keyboard
dharactey's

Verified-keyboard-characters

Printed-
characters|

Response-
characters

Keyboard-characters

Figure 4, TRANS Bubble Chart

58




SI-ll-characters

Get
command

ommand

Dispatch
command

Send-data-
SEL 8§
file parameters
Encode
data
Encoded-~data

LSI-11

Receive-data-parameters

Encoded-data

Decede
data

Decoded-
data

Store
data

Stored-data

SEL 86-files

Figure 5. SEL 86 LSINTR Bubble

59

Chart




B

Appendix C

Structure Charts for SEL 86/LSI-11

Interface Monitor

A series of eight structure charts represent the design

of the SEL 86/LSI-11 Interface Monitor: LSI-IM Interface
Monitor, LOAD, FILE/SEND, RUN, TRANS, IMCHAR, IMEXIT, and
SEL 86 LSINTR. Each structure chart is followed by a table
which specifies data and control flow parameters to (INPUT)
and from (OUTPUT) the subroutines activated by the calling
routine. Data and control flow are differentiated by
underlining control flow parameters. Following this table
is a description of all the modules specified in the

structure chart.

60

o DRI




A U 5 I o o oA R s 4

Get
formatted
valid
command

See page 62.

LSI-11
Interface
Monitor

Dispatch
command

See nge 65.

Figure 6.

LSI-11 Interface Monitor Structure Chart




e

e

Get
formatted
valid
command
3 4
Get
formatted V:i;gatg
command .
A\
See page 63. See ;!ée 64.

Figure 6. (cont'd)

62




(p,3uo0d) *9 2an3 14

J93 0eJdeyd
jutJad
*2aay sj)ueIlq
93eUuTwTTH [
\ ctl
ISTT J93893UT J230eaeyd
J93 sweaed Axeuilq 03 1sJat1Jy ncuwﬂwmmn houmwmaco
pIIng 300 3Jd8AU0) 9zATeuy p
LT 91 ST
J93swedaed J93oweaed 1ST1 J9j3aweaed POREEIN
yozeds 1d 109 anduf . gutgdwoad
piIng jutJdd
6 8 L
puwwWod NMMMa
wa
e 399
puBwWWoO
pe3jewao’

18)

63




(p,3uod) °9 aansdT4g

o8essauw
J0JdJd9
jutad

pueuWOD
o3epTTEA

i B . o T e T S




R e m oo o aa s oo ke ad Al S e Ll pas

(py3uod) 9 suan31J

ssaJappe
jae3s ,

‘01 2an381yg 9988 6 aJan8TJ 999 °g 2an8 T4 89S *,L @2an38F4 99§

65

SNVYL NNy aNdgs CHER avol

ve € € 1€ o€

puewwod
yojzedstq




Table I

LSI-11 Interface Monitor
Data and Control Flow

INPUT

OUTPUT

O 00 N & N B WN =

e i o e
N o L W N P O

18-23
24-29
30-34

command, parameter list

commnad, parameter list

input list

parameter

character

character

input list

parameter type
parameter

numeric parameter
parameter

command, parameter list

parameter list

command, parameter list
command, parameter list
command type

input list

command, parameter list
parameter

input list

character

parameter

parameter type
parameter list
parameter type

integer parameter
parameter list

command type

66




g

Description of LSI-11 Interface Monitor

LSI-11 IM - controls procedure of getting a valid

command and then dispatching the command for processing.

Get formatted valid command - gets a command and a 5
parameter list (FORTRAN format) and then validates them.
When deciding on validity of command and list, determines
command type (i.e. FILE command, LOAD command, etc). If
command is not valid, gets another command.

Dispatch command - transfers the parameter list to
the appropriate routine to process the command.

Get formatted command - gets a command and its param-
eters and builds a parameter list in FORTRAN format.

Validate command - reads first ASCl1l1l character of the

command parameter to dispatch the command and parameter
list to determine their validity. If character is not one
of five valid characters. Prints error message and returns
invalid command type.

Get input list - prints a prompting message to the
user and builds an input list from keyboard input. Key-
board entry is complete when no parameter is found.

Format command - converts input list to command and
parameter list.

Print prompting message - prints '--" at the user's
terminal.

Get parameter - reads ASC11 characters from keyboard
input and builds parameters. A parameter is built when the

ASC11 character read is a comma or carriage return.

67




A s AT T N BN O T <

Build input list - adds parameter to the input list.

Get character - reads ASC11 character from keyboard
input and prints the character to the LSI-11 user's console.

Build parameter - builds an ASC11 character string
of the parameter. Blanks input as ASC11 characters are
deleted from the ASC11 parameter string.

Print character - echo print user's keyboard character
entry at the user's LSI-11 console.

Get parameter -~ reads the next parameter in the input
list. Determines parameter type by reading first ASC11
character of the parameter and noting if it is an alpha-
numeric or a numeric.

Dispatch parameter - converts numeric parameter to
binary integer if necessary. Adds parameter to FORTRAN
formatted parameter list.

Analyze first character - determine if first character
of the parameter is an alphanumeric or a numeric.

Convert octal to binary integer - converts input octal
integer parameter to binary integer parameter.

Build parameter list - adds parameter to FORTRAN for-
matted parameter list.

F,L,R,S,T - validates the command and parameter list as
either FILE, LOAD, RUN, SEND, or TRANS command. Determines
If an error in command or parameters, prints

command type.

an error message and returns invalid command type.




Pring error message -~ prints error message to user's
LSI-11 console that error in input command.

LOAD, FILE/SEND, RUN, TRANS- see individual structure
charts.

Start address-only contents of this module is the
start address. LOAD, FILE/SEND, RUN, and TRANS all have

access to this common data element.




jJey) aan3onazs gvol L 9Jandi1d

‘11 8uan814 83§

YVHOWT
82
*g 9andT4 993
98 73S SBe o aNds/a1I4 pue avol| . | 98 13s
sjeUTWISY ik y30q 03 pJepue3s A3130N i
~
2 2 _ v
*1. 9oded aeg
avot eqep avort
s3eUTWIS JaJsueay, 9ZTTeTaTUI
3 e

aveal

e ————— — P




(Pys3uod) 4L 2andT4d

1T 2an8T1Jg 88g

YVHOWI

peot
doas

anutjauo0)

ve

9dessau
J0JdJ9
Ao0o1d

J999eaeyo
paeoqAay

*2. 98ed aag

eaep

PeoT
papooap

313D

ejep
peo]

sJd9j3aweaed
peot
39D

peay
cc Ic
98 TdS
03 a3essau suns3oayod
WA00Tq 3xau, aaedwo)
pusag

elep Jo
3001q
peoT]

A

ejep
Jajsueday,




i

13

Get
decoded

load

data

15

Get

load
data

Data
availab
check

le

Read
keyboar
charact

18

d
er

encoded

Decode
load
data

Time out
message

Continue

Standard to both
LOAD and IMCHAR

Get
character

Stop
load

Figure 7.

(cont'd)




:
§
2
i

LS s dit.on . .

Table II

LOAD Data and

Control Flow Table

INPUT

OUTPUT

wm W

o 00 N o

10
11

12

13

14
15
16
17
18
19

parameter list
load of set
start address

SEL 86 mode, file name

checksum

block number

load address, number of
bytes, decoded data

encoded load data

73

load offset

checksum, block number
stop flag

checksum flag, stop flag

stop flag

load address, number of
bytes, stop flag

decoded data, stop flag

updated load address,
updated number of bytes

decoded load parameter,
stop flag

encoded load data, stop
flag

decoded load data

stop flag

encoded character

keyboard ASC11 character




l'

Table II (continued).

20
21
22

INPUT

character string, number -

of characters

start address

character string, number -

of characters

e e P S

OUTPUT

stop flag
load checksum, stop flag

keyboard ASC11 character

stop flag

74




Ry e 3 LD T e e -

;
!
]

Description of LOAD

LOAD - controls load of data from SEL 86 file to LSI-11
memory.

Initialize load - determines parameters for notifying
SEL 86. Determines load offset. If not specified, defaults
to zero.

Notify SEL 86 - control initialization of SEL 86 LSINTR
and specification of SEL 86 parameters, i.e. mode and file
name.

Initialize SEL 86 LSINTR - initialize SEL 86 LSINTR by
putting SEL 86 in Program Monitor and executing LSINTR.
Notifies SEL 86 that it is in sending mode.

IMCHAR - see IMCHAR structure chart.

Transfer data - controls receipt of load data from
SEL 86 and transfer of the data into LSI-11 memory. Monitors
two control flags: stop flag and checksum flag. If stop
flag is set, load is terminated. If checksum flag is set,
block error message must be printed.

Load block of data - controls receipt of load data from
SEL 86 and transfer of the data into LSI-11 memory. Keeps
track of block number of the load. Keeps running tally of
checksum. Monitors stop flag. If set, terminates load.

Get load parameters - determines load address and
number of bytes as specified in load parameters of the block
being transmitted.

Get decoded load data - controls receipt of decoded load

data. Monitors stop flag.

75




—_—

Get encoded load data - controls receipt of encoded
load data from the SEL 86. Monitors stop flag.

Decode load data - decodes ASC11 characters (encoded
load data) into binary data.

Data available check - loop of executing statements
to count length of time waiting for data from SEL 86.

Time-out message - prints message specifying allotted

time for waiting for data from SEL 86 has run out. Controls

option to continue waiting for data ¢r to terminate load.

Get character - reads ASC11l character from SEL 86.

Read keyboard character - reads LSI-11 keyboard input
character specifying continue waiting or terminate load.

Continue - continue waiting.

Stop load - sets stop flag.

Load data - controls load address to store data into
LSI-11 memory. Decrements byte count. Loads data into
LSI-11 memory.

Compare checksums - gets checksum as transmitted in
load block and compares it to the calculated checksum.

If a discrepancy, checksum flag is set.

Send ''mext block' message to SEL 86 - sends notifica-

tion to SEL 86 to start transmission of next block of data.

Block error message - prints block error message (i.e.

checksum error). Gives user option to continue or terminate

load as in "Time-out message'.

Print address information - prints start address as

specified by the load.

{
!
|




Terminate SEL 86 - terminates data receipt from SEL 86 il
by stopping execution of SEL 86 LSINTR. Terminates Program

Monitor mode on SEL 86. :
IMCHAR - see IMCHAR structure chart.




3Jaeyd aJan3onJals ANAS/IATId

*g aanB 14

apoouy

°11T 2an3Td 98§

YVHOWI

p

(s)sweu LNIST 98 T3¢
9113 puss 9ZTTeI3 TUI
ST 91 €T €
sadoj3oureaed S9TT1J
ums 303yod ejep pPeoT 98 TJIS 98 TdS 98 TdS
puas pusg papoous P9ZTTeT3TUT 23eUTWID], KITION
pusg Jo aaquny
6 8

/
avo1 pue aNIS/ITII
yzoq cj3 pJaepuelg

78

|




Table III

FILE/SEND Data and
Control Flow Table

IN

OouT

& W N e

5-7

10
11
12

13
14

13
16

SEL 86 mode, file name(s)

SEL 86 mode
file name(s)

character string, number
of characters

parameter list

data address, number of
bytes, checksum

checksum
load parameters

encoded load parameters,
number of characters

data

encoded data, number of
characters

checksum

encoded checksum,
number of characters

data address, number of
bytes, checksum, stop

flag
checksum, stop flag

stop flag

encoded load parameters

stop flag

encoded data

stop flag

encoded, checksum

stop flag

79




e

Description of FILE/SEND

FILE - controls notification of SEL 86 to initialize
its program, LSINTR, or to terminate it. If parameter list
has zero entries, SEL 86 LSINTR is terminated, otherwise,
the SEL 86 program is initialized. Also specifies that
SEL 86 will be receiving data. Controls sending of file
names to SEL 86. SEL 86 traffic to LSI-11 can interrupt
routine. SEL 86 messages will be printed to LSI-11 user's
console.

Notify SEL 86 - see LOAD structure chart and descrip-
tion.

Terminate SEL 86 LSINTR - terminates data transmission
by stopping execution of SEL 86 LSINTR. Terminates Program
Monitor mode on SEL 86.

IMCHAR - see IMCHAR structure chart

Process SEL 86 - see TRANS structure chart and
description.

SEND - controls transmission of data in absolute load
block format. Monitors number of files initialized on
SEL 86. 1If this number is zero, transmission of data is
zero. SEL 86 traffic to LSI-11 can interrupt routine. SEL
86 messages will be printed to LSI-11 user's console.

Send encoded load parameters - controls transmission
of load parameters, i.e. file number, start address, and
byte count. File number is sent using the state byte

(high 8 bits) and null byte (low 8 bits) to specify file on

80




e ———

=
A RS A i SIS N WSS B S 2353 4

the SEL 86. Specifies number of ASC11 characters to be
transmitted for each parameter. Keeps running tally of
checksum count for encoded data transmitted to the SEL 86.
Monitors stop flag (terminate transmission). If stop flag
is set, number of initialized files is changed to zero.
Send data - controls transmission of the data. Speci-
fies number of ASC11 characters to be transmitted for each
data byte transmission. Keeps running tally of the checksum
Monitors stop flag as does ''Send encoded load parameters".
Send checksum - controls transmission of checksum.
Specifies number of ASC11 characters to be transmitted.
Monitors stop flag as does ''Send encoded load parameters',
Encode - encodes each four bits of data into an ASC11

rvrumeric character.

IMCHAR - see IMCHAR structure chart.




RU

nconditiona

jump to
tart addres

Figure 9. RUN Structure Chart

Table IV

RUN Data and
Control Flow Table

INPUT OUTPUT

1 start address -

Description of RUN

RUN - reads parameter list for start address. If none
specified uses the start address data element common to all

commands. Unconditionally jumps to that address.




TRANS
\
1
Process e
keyboard g
input
N3
g 4 14 15
A
Analyze
Get
first Dispatch
character character
5 6 7 8
Control/D
_/\
9 10
Terminate Sk
shog input
mode P
1 12 13
Read
Print
keyboard IMCHAR
character character
See Figure 11.

Figure 10. TRANS Structure Chart

83




e S i 5 i IR

AR 2 e A NSR>S

T D s e

s A s s NS Y s
= b ST s it

Table V

TRANS Data and
Control Flow Table

INPUT OUTPUT
1 - a2
p. - =
3 - character
4 character -
5 - character
6 character -
7 - =
8 - =
9 - <
10 - -
11 - character
12 character -
13 character string, =
number of characters
14 - character
15 character -

84




¥ Description of TRANS

TRANS -~ controls processing of keyboard input or SEL 86
response. Determination is interrupt-driven.

Process keyboard input - monitors keyboard input to
determine whether to remain in transparency mode or terminate
transparency. Echo prints 21l keyboard input.

Process SEL 86 - echo prints SEL 86 ASC11 character
response.

Analyze first character - reads and prints first LSI-il
keyboard character.

’ Dispatch - determines if valid transparency keyboard
input and processes it or if termination of transparency
mode request and processes request.

Control/D - if first keyboard character is control/D,
verifies if transparency keyboard input or termination of

transparency mode request verification is made by second

ASC11 character, i.e. <CR>.
g Terminate TRANS mode - return control to LSI-11 IM.
E Process input - controls processing of keyboard input,
: i.e. echo prints and transmits to SEL 86. Terminates on
| <CR>.
Read keyboard character -~ reads character from LSI-11
keyboard.
Print character - echo print ASC1l1l character read.
IMCHAR - see IMCHAR structure chart.

Get character - read ASCl1l1 character sent from SEL 86.

)




e m——

AD=-AOG4 396 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OWIO SCH=--ETC

DESIGN OF A SEL 86/LSI-11 INTERFACE MONITOR.(U)
DEC 78 J E BARALLI
UNCLASSIFIED AFIT/GCS/EE/78-9
2or 2

ADB43

F/6 972




l"" |0 & me 2

el &

£ e Jj20
e flee
1.6

L2s flie e

Db




as

IMCHAR
1
Check for
dlear channel Transmit
3 4
Line Standard to
available Ti:“:s;’:t . f-{potn LoD
check g and IMCHAR
See Figure 7.
Figure 11, IMCHAR Structure Chart

86




|
s
|
|

Table VI

IMCHAR Data and
Control Flow Table

INPUT OUTPUT
1 - stop flag
2 character -
3 - e
4 - stop flag

Description of IMCHAR

IMCHAR - controls transmission of ASC11 characters
from LSI-11 to SEL 86. Monitors for clear channel. Termi-
nates transmission if stop flag is set. Keeps track of
number of characters being transmitted.

Check for clear channel - monitors for a clear channel
to transmit ASC11 characters to the SEL 86.

Time-out message - see LOAD '"Time-out message'.

Transmit - releases ASC1l1 character across communica-

tions line.

87




IMEXIT

‘N nconditiona

Jump to
LSI-11 IM

Gl

Figure 12. IMEXIT Structure Chart

A 1 s B £ A I

Table VII

IMEXIT Data and
Control Flow Table

e i T AR IS v i B s S 7 5 e

INPUT OUTPUT

Description of IMEXIT

IMEXIT - unconditiomnally jumps to the LSI-11 IM

88




3Jey) 9an3ona3s YINIST 98 TIS °E£T 2and 14

*26 9ded oaag ‘06 28ed 2aag
T1-1S51 TT1-1IS1
woaJy 03
elep ejep
bl I i (puewwod ITIJ) B3EP SATS8DaJ

J0 (puewuwod dvo1) eiep puss
Jayz e st adAj3 spou

N
adA3 spou
450 apouw avay J9330g Aeaay
yojeds 1d 39d pa3jjeuwJoy ejedq 91Td
o
[ <}
v €

aﬁﬂwmm sJajawedaed
99BJa93UT 9ZTTeT3Tul

HINIST
98 TdS

et S

e




i::g Specified by
s - = LSI-11 LOAD
command
Array
7 8
Standard to]
both "Send
data to Transmit
LSI-11" and}-- ‘;ﬁ:‘(":*;' block of
"Receive data
data from
LSI-11" J9 See page 91.

Data
Buffer

Allocate

file(s)

\

\
‘Jdynamically creates new
file(s) as necessary

Figure 12. (cont'd)

90




Y T N T T N R T Y T N Y T Y T

(P,3u0d) ‘g1 @andT4

arTum] __ | ejep ejep
pejjewao] oseapay spooujy
2z uu
s |¥yadang
e —
o
wosb] e || Swews 5o Ly
po3jewtoy IxeN 3 usURJaY, it S peoy
S v1 €1 2t 1 :
Ja3jng
eled
ejep :
Jo o019 :
3 Tusuedy],

S e -




(p,3u0d) ‘@I amI14g

JLIHM
/|p@33euaoy

adessau
JOJJId
wnsx3o3yd

23304
ejed

134 et

suns}oayd
aaedwo)

-

‘6 28ed a9g

ums 3o9Yo
aa03s

eaep
24038

3}o01q ®B3Ep
Jo uotjaod
elep aaojls

dwmu
JO >00T1q
2a03s

yjoq o3 pdJaepuejzs
ILMHNIIIIWMIIlﬂuﬂﬂi u\\\\\\“ﬂ\\\ S

‘€6 90ed 88g

ejep
pPapooap
38D
Keaay
9TTd

sJdaj3aweaed

peot
210138

*06~98ed 3ag

=157 woa¥
elep 9AT209Y,, i JeWJIO]
pue rr-151f-4 $2251F oBed03s
03 e3Ep puss, 399

T1-1IS1
woaJ
ejep

aAT809Y

92




Get

decoded
data
35 6
Get
encoded Dgggge
data
37 38 39
Data Time out Read
available message to encoded
check LSZX-11 data
7 N

'

7
formatted WRI Ta’

\
\[%ormatted READ

Figure 13.

93

(cont'd)




S PO P 5 T 1.5 0 07 15 ot = o 6

Store
data \

Data
Buffer

-{BuFFER OUT

Figure 13. (cont'd)




Table VIII
SEL 86 LSINTR Data

and Control Flow

INPUT

OUTPUT

O 0 N N W NN e

[ I S T
» O VW 0 N O wn & W NN = O

22

command type

file name

data from file

Load parameter

encoded load parameter
data

encoded data

checksum

encoded checksum

command type

file name

number of bytes

stop flag
block length

encoded load parameter

encoded data

encoded checksum




I e T

AT —

e A i A At

Table VIII (continued).

23
24
25
26

&7

28
29
30

31
32
33

34
35
36
37
38
i
40
41
42
43

INPUT

file name, number of bytes
computed checksum, block
number

checksum, file name

decoded load parameter,
file name

decoded data, file name

computed checksum, block
number

checksum, file name

encoded data

decoded data

file name

block number

OUTPUT

file name, number of bytes,
computed checksum

decoded load parameter

decoded data

encoded data

decoded data

encoded data

checksum

96




Description of SEL 86 LSINTR

SEL 86 LSINTR - c.atrols all SEL 86 functions cf the
SEL 86/LSI-11 Interface Monitor. Controls initialization
of needed work area and all interface operations with the
LSI-11.

Initialize parameters - sets up two arrays as part of
working area.

Data Buffer -~ only contents of this moduel is a buffer
area to store data before it is processed.

File Array - only contents of this modeul is a work
area array for storing names of SEL 86 files to be accessed.

Interface with LSI-11 - controls interface with LSI-11.
Determines SEL 86 mode, i.e. send or receive data, and
performs its functions accordingly.

Get mode - gets SEL 86 type, i.e. send or receive data
from LSI-11 using formatted READ.

Dispatch on mode type - dispatches the mode type for
processing as either send or receive data.

Send data to LSI-11 - controls transmission of data
from a SEL 86 file.

Process file(s) - controls allocating and blocking
SEL 86 files that are to be accessed. Dynamically creates
new files as necessary.

Get file name(s) - gets SEL 86 file name(s) from LSI-11
using formatted READ.

Allocate file(s) - allocates and blocks SEL 86 file(s)

being accessed. Dynamically creates new files as necessary.

97




fa "

Transmit block of data - controls transmission of all

data on the file, a block at a time. Controls filling of
storage buffer with data from file. Monitors stop flag to
control transmission of each block of data.

Read file into buffer - read data from file into data
buffer using BUFFER IN.

Transmit load parameters - controls release of encoded
load parameters. Determines number of bytes to be trans-
mitted.

Transmit data - controls transmission of encoded data.

Transmit checksum - controls transmission of encoded
checksum.

Next block - determines if next block of data is to be
transmitted by reading notification from LSI-11 in formatted
READ.

Read block length - determines number of bytes to be
transmitted by reading the number of bytes parameter
specified in the load block.

Encode data - encodes each four bits of data into
an ASC11 numeric character.

Release data - send encoded data to LSI-11 using for-
matted WRITE.

Receive data from LSI-11 - controls receipt of data
from an LSI-11.

Get storage format - determines how data is to be stored,
i.e. binary format or absolute binary load format, using a

formatted READ.

98




» Store data flag - only contents of this module is a j
: flag specifying how the data is to be stored.

Process files - see '""Process files' above.

Store block of data - controls storage of data block.

Notifies LSI-11 of checksum errors specifying block number.

Store load parameters - controls determining values of
load parameters and their storage on SEL 86 file if appro-
priate. Keeps running tally of the checksum.

Store data portion of data block - controls storage of
actual data block 9 no load parameters or checksum) on
SEL 86 file. Keeps a running tally of the checksum. Moni-
tors checksum errors.

Store checksum - controls storage of checksum on SEL 86
file if appropriate.

Get decoded data - controls receiving and decoding data
from LSI-11.

Decode data -~ decodes ASC1l characters (encoded data)
into binary data.

Data available check - loop of executing statements to
count length of time waiting for data from LSI-11.

Time-out message -~ prints warning message at LSI-11
user's console (using a formatted WRITE) that no data has
been received at the SEL 86 in a specified time.

Read data - receives encoded data using formatted READ.

Store data - controls storage of data into buffer and

then onto SEL 86 file.




A eIBwEs

Data into buffer - reads decoded data into Data Buffer.

Data to file - writes decoded data onto SEL 86 file
using BUFFER OUT.

Compare checksums - tests for checksum error.

Checksum error message - prints checksum error message
(specifying block number) at LSI-11 user's console using a

formatted WRITE.

M e i Ko e i




Vita

Capt Janet E. Baralli was born on 4 January 1950 in
Hammond, Indiana. She graduated from high school in
Lansing, Illinois in 1968. In 1972 she graduated magna
cum laude from Saint Mary's College in Notre Dame, Indiana
where she received a Bachelor of Science degree in
Chemistry. Upon graduation she entered Officer Training
School at Lackland AFB and was commissioned a 2nd Lieutenant
in the U. S. Air Force on 28 August 1972. Before entering
AFIT, her Air Force career was spent in ADCOM as a
space systems analyst. She worked in the NORAD Cheyenne
Mountain Complex in addition to spending a year remote at
a radar site in Turkey. Seh entered the School of Engi-
neering, Air Force Institute of Technology, in June 1977.

Permanent address: 3604 Adams Street
Lansing, IL 60438

101




WAV O A d b il
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entere

REPORT DOCUMENTATION PAGE R e T o
ORT NUM / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER |
CS/EE/78-9
4. TITLE (and Subdtitle) S. TYPE OF REPORT & PERIOD COVERED }
DESIGN OF A SFI 86/1.SI-11 INTERFACE
MONITOR MS Thesis
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACTY OR GRANT NUMBER(s)
Janet E. Baralli
Capt i
(3. PERZORMING ORGANIZATION NAME AND AGORESS _ T0. PROGRAM ELEMENT. PROJECT, TASK |
Air Force Institute of Techriolcgy (AFIT-EN)  AREA & WORKUNIT NUMBERS
Wright-Patcterson AFB, OH 45433 —
1. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT DATE
Computer Activities Office (AFML/DOC) December 1978 o
13. NUMBER OF PAGES
103

T3, MONITORING AGENCY NAME & ADORESS(I! different from Controlling Office) | 'S. SECURITY CLASS. (of this report)

18a. DECLASSIFICATION DOWNGRADING
SCHEDULE

oy e
16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

: ‘7. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

'8. SUPPLEMENTARY NOTES Anproved for public release; IAW AFR 190-17

JOSEPH A/PH jor, USAF

Dir tion /2279 i

19. KEY WORDS (Continue on reverse side if necessary and identify by block numbder)

Software Engineering LSI-11
Structured Design Minicomputer Network

Igifgface Monitor
S 6
20. AORWACT (Continue on reverse side If necessary and identify by block number)

The Air Force Materials Laboratory (AFML) uses LSI-11 micro-
computers as one of several computer systems available for
collecting test data. For conducting these tests, LSI-11 programs
must be loaded into and data collected from the LSI-11 using
paper tapes. Data is later stored on a larger computer system at
AFML, the SEL 86. —>,..?

/

DD ':2:"” 1473 eoiTiON OF 1 NOV 68 18 CBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




g AN S BTl 52 M s’ 75 AN v b 55

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

-
\\
3

The purpose of this 1nvest1§ation has been to design a
SEL 86/LS?-1 interface that will automate manual procedures.
The interface design enhances the current LSI-11 system by
providing the following capabilities: load binary programs

and data residing on a SEL 86 file into LSI-11 memory; transmit
data stored in LSI-11 memory to one or more SEL 86 files, and
place the LSI-11 memory into a transparency mode such that it is
a peripheral as viewed by the SEL 86.

The principles of software engineering have been apglied in
both the analysis and design phases. Formal tools have been used
in defining the requirements and developing the structured design.
The resulting design is an interface monitor with software residing
on both the LSI-11 and the SEL 86. The added capabilities are
provided using either a series of commands entered at the LSI-11
console or as call statements in LSI-11 FORTRAN compiled programs.

UNCLASSIFIED

BEME, B A L RRIELA LS IAL AR SR AR L. N P




