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Abstract

A model of burst errors from a real-time error bit stream of
up to 20 million bits per second is sought. Noise models and channel
medels are considered. The choice is a two-state Markov channel model
in wiich the states each generated independent Bernoulli random
mrccesses. One Bernoulli process produces ones (errors) at a high
ri:te, sinulating burst errors. The other process produces ones at a
low rate, simulating random errors due to background ncise. The
trunsition probabilities determine the average length of the bursts
and of the gaps. Relative frequency estimates of the probabpilities
of certain sequences of cne-bits from real data are related to
estimates of the model parameters, so relative frequencies provide
a basis for fitting this model to real channels using observed error
sequences. An equation for the number of errors in a block of bits
is developed in terms of the model parameters. Burst probabilities
can be predicted based on this equation. The model was tested
using computer simulation. Some discussion is devoted to how this
burst-errcr model can be implemented in an actual device to provide
real-time channel characterizations. This model aids in the selection

of an error correction code.
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A BURST ERROR MODEL
USING INTERLEAVED BERNOULLI PROCESSES

WITH A MARKOV PROPERTY

I Introduction

Ba ound

A significant problem in digital communications is the selection
of an error correction code. The type of code to use depends on the
bit error rate and on the distribution of errors. The distribution
is important because errors often occur in groups (burst errors).
There are many causes of burst errors in digital communications.
Generally, these causes are some form of impulsive noise. On wire
lines and telephone networks most impulsive noise is man-made.
Some examples are external noise sources such as construction and
maintenance work, or internal network noise such as switching
(Ref 3:356). Radio communications have some internal noise which
can be minimized with design techniques, but the most common cause
of impulsive radio noise is lightning (Ref 3:356). The duration of
a single lightning strike can affect from a few bits to thousands of
consecutive bits, depending on the bit rate of the channel. The
intense electrical charge and resulting magnetic fields affect the
voltage levels of the received signal, and cause a high error rate
in the receiver output. Between lightning strikes, the error rate
is very low and is generally caused by Gaussian background noise. If

the past several bits are known to be correct or incorrect, the next
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bit's probability of being correct could be predicted. This uses
the fact that error-free bits come in groups; so if the past several
bits are error-free, then the next bit has a high probability of
being error-free also. Similarly, if the past bits have a high rate
of error, then the next bit has a high probability of being in error.
Since the probability of error for the next bit is dependent on the
previous bit's correctness, then the error bit stream is said to be
dependent.

For uncoded transmissions, the consecutive bits affected by a
lightning discharge will not all be processed into error decisions
by the receiver. An example would be a receiver using a threshold.
The additive noise of the lightning discharge could increase the
amplitude of the received signal so that all decisions will be above
the threshold. Then, the only errors would be those bits that should
have been chosen as below the threshold.

When the burst error characteristics exceed the capability of
the error correction code, the decoded data output becomes completely
unidentifiable. Thus, the number of bits in a burst error, and the
number of error-free bits between bursts, are important distribution
parameters, They are needed to implement effective error correction

codes (Ref 1:1).

The Problem

The Air Force Communications Service wants a device to monitor
an active communication channel and determine its burst error
characteristics. Some of these characteristics are the number of

bursts per unit time or per interval, the average number of bits per
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burst, the maximum number of bits in a burst, the average number of
bits between bursts, and minimum number of bits between bursts. The
input to this device will be the digital error sequen:ce output of the
Hewlett-Packard model HP3761A Error Detector (a stream of bits where

a one signifies a bit in error and a zero signifies a correct bit).

Two types of output are needed. The first is panel displays of the
characteristics that are to be updated at some preset rate determined
by the operator. The second type of output would be the characteristics
of the entire testing period, usually 24 hours (Ref 1:2).

A capability of testing systems with bit rates up to 20 million
bits per second (MBPS) is desired by AFCS. Data reduction is the
problem that leads to the choice of these five characteristics by
AFCS. However, fully characterizing the burst errors for the entire
testing period requires more than the five characteristics discussed
above. The most efficient data reduction method would be to represent
the stream of error pulses with a mathematical model. This model
will completely characterize the error distribution and can be used
to determine the higher-order statistics. Defining P(E = n) for all

values of n possible will enable the calculation of the desired

~statistics. The discrete random variable N is the number of errors

in a block of k bits, and can be any integer, n, from 0 to k.

P(E = n) will be expressed in terms of the model parameters, and

thus the higher-order statistics can be determined based on the model.
Such a model will define the device desired by AFCS by determining

how to use the HP3761A Error Detector output to calculate P(N = n).

The purpose of this paper will be only the development of the model.

The building of an actual device will be left as a follow-on project.
3
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Model Selection

.

A well designed model will characterize the desired process,
enabling prediction of future performance, and ideally, it will
model closely the physical nature of the process. The next chapter
references the physical nature of burst errors, and discusses an
attempt to use a marked point process as a noise model that generates

burst errors (Ref 20:128).

n(t) = § ¥n 8(t - Tn) (1)

Eq (1) is a series of impulses with Wn, a random weight factor, and
Em the random arrival time of the impulses. This noise model
represents additive atmospheric noise where Em and Im can be selected
to produce any pattern of burst error output decisions in a correlation
type receiver, The point process model is not mathematically tractable
for the application outlined, as will be shown in Chapter II.

The second option abandons the ideal-model concept. Thus,
there is only a limited attempt to model the physical nature of
the atmospheric noise. The need for simplified math led to the
use of a channel model. The channel model characterizes the error
bit stream directly, rather than modeling the noise that causes the
errors. The selection process, discussed in Chapter III, leads to
the two-state first-order Markov model (see Fig 1). The two states
are labeled NP1 and NP2, One state, NP2, produces errors at a high
rate, simulating burst errors; and the other state, NP1, produces
very few errors, simulating the relatively error-free segments
between bursté. The transition probabilities from one state to the

other are A and B respectively. The terms (1 - A) and (1 - B) are
4
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Figure 1. Two-State First-Order Markov MNodel

{ the probabilities of staying in a given state from one bit to the next.

The error rates of the two states are PEl for NP1l and PE2 for NP2,
It will be shown that the four model parameters A, B, PEl, and

PE2 can be estimated using P(1), P(1,1), P(1,1,1), and P(1,1,1,1),
where P(1) is the probability of an error bit, P(1,1) is the joint
probability of two successive error bits, P(1,1,1) is the joint
probability of three successive error bits, and P(1,1,1,1) is the
joint probability of four successive error bits, These four error
probabilities are estimated from the error sequence computed by the
HP detector during the test. A computer program is used to demonstrate
the validity of the estimation procedure and the identification of

the model parameters A, B, PEl, and PE2,
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Content

The purpose of this paper is to develop a workable model

that can be used in the calculation of high-order error statistics
during channel tests at high bit rates. Atmospheric noise models
are considered first, but the discussion will point out weaknesses
that eliminate various noise models. The channel model approach is
evaluated, and a two-state _first-order Markov model is selected.
The main portion of this paper involves details on how the model
works, how it fits the proposed application, how to estimate its

parameters, evaluating the estimation, and recommendations.
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ITI Modeling Atmospheric Noise

In developing an impulsive noise model, the approach was
selected to develop an atmospheric noise model based on lightning.
This decision is based on the availability of literature on lightning
discharges and the number of models based on lightning. The purpose
of this section is to discuss lighthing itself to understand what is

to be modeled, and then to evaluate the various lightning models.

Evaluation will be restricted to comments on strengths and weaknesses,

not on proving a model valid or invalid.,

Atmospheric Noise

Cloud-to-ground lightning discharges are a primary source of
atmospheric radio noise (Ref 14:3). References to lightning in this
paper will mean cloud-to-ground discharges. A potential difference
between the cloud and ground causes the lightning discharge. The
discharge can be btroken into two steps: the streamer-leader predis-
charge and the return discharge. The predischarge is a series of
discrete leaders, each covering a short distance (several meters)
until a path from the cloud to the ground is formed. Each leader is
about one microsecond in duration. The return stroke lasts about
100 microseconds, and goes from the ground back up an ionized path
formed by the predischarge (Ref 14:4,5). The field intensity of
Fig 2 shows the sequence of leaders followed by the return stroke.
The return stroke radiates 95% of the energy of the lightning
discharge process, It is the predominate atmospheric noise at
very low frequency (VIF) and low frequency (LF), and the leader

stroke affects noise in the high frequency (HF) region (Ref 13:3,4).
7
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The 100 microsecond duration of the powerful return stroke can affect
a large number of consecutive bits: 1000 bits at a transmission rate
of 10 million bits per second. There are many leaders per return
stroke, meaning that their effect is shorter, but much more repetitive.
Thousands of storms, creating lightning, exist at any one time
all over the earth. Due to its power, duration of discharge, and
high occurence rate, lightning is the primary, but not the only, cause
of burst errors. The current produced by multiple lightning discharges
shown in Fig 3 demonstrates a randomness in the arrival times and the
amplitude of the discharges. For the purpose of this paper,
atmospheric noise will be considered additive. Several authors give
expanded discussions on the physical nature of the lightning

discharge (Refs 6313;14;24;26).

Model Regquirements
The intended use of the model places certain restrictions on it.

The goal is to produce higher-order statistics to characterize the
error distribution. Thus, the first restriction is the ability to
calculate higher-order statistics. The second is model simplicity and
tractability. This is due to the. high bit rates and the need to
estimate model parameters from the error bit stream. A complicated
model whose parameters can't be estimated is of no value. The third
éoal is to have the model fit the physical nature of impulsive noise.
This last goal is flexible, but is the reason for exploring atmospheric
noise models first., Since the atmospheric noise is added to the
transmitted signal and then processed by the receiver, simplicity is

even more important with noise models. What appears as a tractable
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model can lose much of its simplicity after the mathematical

operations needed to convert it to a receiver output are performed.

Why Use the Point Process Model

‘The Marked Point Process

There are so many noise models in existence that it is‘difficult
to choose one, The three criteria that have been discussed eliminate
many of the existing nolse processes. Convenient models, such as
Gaussian noise, fit the first two criteria, but must be eliminated
because they fail to model the impulsive physical nature of lightning
disgharges. ’

Empirical models of lightning discharges (Refs 13;14;15) are
designed to fit data compiled on lightning-induced noise., Since these ’
models are based on a tractable matching of first-order statistics,
such as APD curves (Refs 2;21), they generally fail at producing
higher-order statistics. In addition, most of these curve-fitting
models do not model the physical nature of the noise (Refs 13;14).

This leaves the point process, which has the impulses needed,
in addition to meeting the first two criteria. The question is, can
its impulseness be modified to fit the physical nature of lightning

and still meet the first two criteria given above?

The main point of choosing the atmospheric noise approach over
channel modeling is to closely model the physical nature of lightning,
a major cause of burst errors. The marked point process of Eq (1) is
developed by D. L. Snyder (Ref 20). The steps he used to transform a
homogenous Poisson process into the marked point process are reviewed

here,
11
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The Poisson process can be associated with counting points or
impulses, & 6(t = Tp). The number of impulses occurring in a time
interval (a, b) is Poisson distributed. The number of points in the

interval is a random variable, N, with a probability defined as

P(N = n) = AR exp(\) (2)

n!

where
A= SDAGL) at

for all b2 a., The process is homogenous if A(t) is a constant,
independent of time. It is an inhomogenous process if A(t) varies
with time., A is the average rate or intensity over the time period
(Ref 20:53-54). Snyder defines a compound Poisson process as an
inhomogenous Poisson process with independent, 1de;rtically distributed
(11d) marks. This is in the form of Eq (1) with Wn as the 11d marks.
The marks are also independent of the counting process arrival
times, Sm.

Next, the unmarked Poisson point process is expanded where
A(t) depends not only on time, but also on the previous points. This
is termed the self-exciting counting process because A is now a
random process that depends on the number of points that have occurred,
and can also depend on one or more of the occurence times of che
points., The point process is further extended to the doubly stochastic
Poisson process where A(t) is a function of Xt, where Xi, an external
information process, is either a vector-valued Gaussian process or a
vector-valued Markovian process. These point processes are in the
form of Eq (1) without the marks, Wme

12




The marked point process, as defined by Snyder, is a doubly
stochastic point process with doubly stochastic marks. This is in

the form of Eq (1) (Ref 20).

Selecting the Suitable Point Process

The question is, which of these point processes, if any, meets
the three criteria established earlier? To model lightning, as
depicted in Fig 1, for bit rates up to 20 MBPS, each return stroke
must be broken into a series of amplitude-varying impulses with one
in each bit signal duration. This will enable evaluation of the noise
effect on each bit. Thus, for a given return stroke, there will be
dependence between arrival times and between amplitudes of the points
that make up the stroke., This fits the definition of the marked
point process. A marked point process model accurately characterizes
the physical nature of the noise process, but does not meet the other
criteria., The higher-order statistics must be estimated, and Snyder
says these calculations can become intractable (Ref 20:460).

Hettinger (Ref 14) suggests using a simpler Poisson point
process. He uses two homogenous Poisson point processes, each with
iid Gaussian marks. One process has a low rate to simulate lightning
pulses, and the other has a high rate to simulate the background noise.
His model is tractable, but lacks the dependence between the marks and
the dependence of the arrival times on previous points. Thus, its
value is limited in the proposed application.

Conclusion
The quick search of atmospheric noise models was desinged to

show that the Poisson point process is the best noise model for the
13
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use discussed. However, it has several weaknesses. When the
dependence between arrival times and between marks is put into the
process, the model appears to be intractable for calculating
higher-order statistics, The model proposed by Hettinger is tractable,
but in ignoring the dependence in the lightning stroke, the model does
not completely model the physical nature of lightning. The physical
nature goal is flexible; however, if it is to be relaxed as a
criterion, the channel model approach becomes the better choice.

The noise model form at the rereiver output will be different for
each modulation technique and for each receiver type. Thus, the
estimation procedure of the model parameters will be different in

each case, complicating the problem. The only advantage of the

noise model approach was to model the physical nature of lightning.
The other criteria have necessitated easing the physical nature

goal, so the channel model becomes more practical. It models the
error stream directly, and will be in the same form for all noise

sources and for all modulation techniques and receiver types.

L




o

g——

§ -

IITI Channel Model Selection

There are several terms used in channel model discussions of
burst errors. As noted earlier, impulsive noise, such as lightning,
does not cause an error in every bit it affects. A definition of
what constitutes a burst error is needed. Other terms that must be
defined include clusters, gaps, renewal process, and random process.

Several different definitions of burst errors can be found in
the literature., Here, a burst is defined as beginning and ending
with an error bit. Each error is included in one and only one burst.
Each burst is preceded by, and also followed by, a stream of at least
L consecutive error-free bits. Thus, bursts are separated by at
least L consecutive error-free bits, and no burst can contain a
stream of more that (L - 1) consecutive error-free bits. This yields
a burst error density, y, that will be greater than 1/L (Ref 12:1092).
Other burst definitions can be found (see Ref 8;11;22;23). This
definition was chosen because it allows for error-free bits in the
burst. It also appears to be the best definition of this type for
implementation in hardware to count bursts and burst lengths.

A cluster is defined to be a run of successive error bits, and
does not have any error-free bits. A gap is the run of consecutive
error-free bits between error bits. By definition, two consecutive
errors have a gap length zero between them (Ref 12:1189). Using this
definition, the total number of gaps equals the total number of
error oits. Also, gaps can be divided into two groups. The first
group consists of the short gaps that exist in bursts. The second

group consists of the long gaps that exist in the relatively error-free

15
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bits between bursts. The second group will be called the between
burst gaps.

The process definitions relate to the characteristics of the
model, A random process is defined as producing independent random
errors; thus, it does not produce bursts of dependent error bits. A
renewal process is defined as a process where the transition
probability to state j of the model, after an error has occurred, is
independent of the state in which the error occurred. Therefore, the
gaps between errors are independent random variables with the same
probability distribution (Ref 17:1713,1715). The errors in a renewal
Irocess are dependent. Then a non-renewal process has dependent

gaps and dependent errors.

Nth Order Markov Models

The dependence between error bits and between error-free bits
in the error bit stream has been discussed. N'h order means that the
probability of error of the next bit depends only on the correctness
of the previous N bits. Knowledge of the correctness of bits prior
to the previous N bits does not change the error prediction of the
next bit. Thus, the probability of an error in the 1'h bit, given the

mrevious bits, yields

P(X1/Xg-1°***Xo) = P(X3/Xg-1°°**X1-N) (3)

where Xy 1s the 1%h vit in the error stream.

Haddad, et al. propose using a Markov gap model (Ref 12). This
model assumes that the gap sequence length is a discrete-time,
integer-valued Markov process of the first order. The range of

16
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possible gap lengths is divided into sub-ranges so that the sub-ranges
are approximately equiprobable. Thus, an infinite dimensional
process is reduced to a finite number of states equal to the number
of sub-ranges. Manual curve-fitting is required to determine the
coefficients of the conditioned gap distributions of the model
(Ref 12:1191). This removes the gap model from further consideration.
Another Nth order model, the partitioned Markov chain, is
proposed by Fritchman (Ref 10). He proposes an N state model
partitioned into two types of states. There are M states that
produce only error-free bits (gaps) and (N - M) states that produce
only error bits (clusters). There are transition probabilities between
all states including continuation in the current state. This model
has a maximum of 2M(N - M) model parameters (Ref 10:221-225).
Fritchman then simplifies his model to allow it to be specified
by the gap distributions. He restricts the model to one error state
and (N - 1) error-free states. In additon, he eliminates the
transitions between error-free states. The simplified partitioned
Markov chain model is depicted in Fig 4 and has a maximum of 2(N - 1)
model parameters., Fritchman's models are feasible, if N is small
enough to keep the number of parameters reasonable, and will be

discussed later,

The Two-State Markov Model

Gilbert (Ref 11) suggested the first model with memory. His
two-state Markov model (see Fig 1) has a good state and a bad state.
The good state produces only error-free bits, and the bad state yields

error bits with a probability P(e) =1 - h . The good state produces

17
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error-free states error state

Figure 4, Simplified Partitioned Markov Chain (Ref 10)

the gaps and the bad state produces bursts of density (1 - h). Elliott
(Ref 9) generalized Gilbert's model so that each state produces error
bits. Using Fig 1 again, the state labeled noise process one (NP1)
Iyields a few random errors at rate PEl << 1. The second state, noise
process two (NP2), produces many errors, and can be viewed as a burst
of density PE2, The Fritchman models are extensions of these two models.
The Gilbert bad state can be broken into two states: one that produces
clusters, and one that produces gaps, with h and (1 - h) as the
transition probabilities. Then, the Gilbert model looks like the
original Fritchman model with two error-free states and one error state.
If, in addition, restrictions are included where transitions from the

bad state to the good state only occur immediately after an error, and

18
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Figure 5. Generalized Gilbert Model in Partitioned Markov Chain form.

transitions from the good state to the bad state only occur immediately
before an error, then the Gilbert model becomes a s.implified Fritchman
model with only one error state. Similarly, if the states of the
Elliott model are divided into cluster and gap states, the model loocks
like the original one proposed by Fritchman with two error states and
two error-free states (Fig 5). The states do not generate Bernoulli
processes in Fig 5. The top two states only produce zeros and the lower
two states only produce ones. Note that the transition probabilities
of this model reflect both the transition probabilities and the error
19
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rates of the generalized Gilbert model. The left two states combine
to form state NP1 of the generalized Gilbert model, and the right two
states combine to form state NP2. There are many models that are
variations of Gilbert and generalized Gilbert (Elliott) models

(Refs 8;17).

There are several drawbacks to the Gilbert model. Since it has
only one error producing state, it is a renewal process; therefore,
the gaps are independent. Secondly, it produces only bursts, and does
not allow for single, random errors due to background noise. The
generalized Gilbert model corrects these flaws. The generalized
Gilbert model has two error producing states, and becomes a renewal
process only on the conditions that either the transition proba-
bilities 1 - A =B and 1 - B = A both have equality, or if either
error rate is zerb. Then, the restrictions that A + B f 7 e
PE1 # 0 , and PE2 # 0 make the gaps dependent random variables with
probability distributions that depend on the last gap (Ref 17:1713).
Of course, the restrictions PE# PE2 , A#0 , and B # 0 must

be imposed or the model becomes a random process.

The Generalized Gilbert Modei

The generalized Gilbert model of Fig 1 satisfies the model
requirements outlined earlier., A detailed discussion of how this
model works will illustrate that it meets these requirements., The
two states of the model are Bernoulli events. State NP1 produces a

sequence of independent bits with P(x = 1) = PEl and

P(x =0) =1 - PEl , State NP2 similarly ylelds a sequence with

P(x =1) =PE2 and P(x =0) =1 - PE2 ., The transition probabilities
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are stationary, thus the two-state Markov chain is completely

specified by the single step transition matrix P

l1-A A
it g

The key to the generalized Gilbert model is the Bernoulli random
variables produced by the two states., This allows the use of a two-
state first-order Markov model to simulate an N'P order Markov process.,
Thus, state NP1, which has a very small probability of error, simu-
lates the relatively error-free bits between error bursts, and state
NP2, which has a large probability of error, simulates the burst
errors. The transition probability (1 - A) of staying in state NP1l
determines the approximate number of bits between the bursts, The
probability (1 - B) determines the average length of the burst. The
states simulate the dependence between error bits, and the transition
probabilities determine the Markovian order of the dependence.

The generalized Gilbert model is very flexible. It is a
non-renewal model as defined with the restrictions PEl f PE2 ,
A+B#1 , and with none of the parameters zero. However, by
allowing A + B =1 or by setting one of the error rates to zero,
the model can be converted into a renewal model. The model can also
simulate a Bernoulli random process., This can be done by setting
PEl1 =1 and PE2=0 and A+B=1 ., Then this random process
has a probability of error P(e) = B and.a probability of being
correct of 1 - P(e) =A=1-B ., These simple conversions mean
this model can simulate random, renewal, and non-renewal channels.

The generalized Gilbert model can also be related to the
' 21
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physical nature of the burst error process., The small probability of
error of state NPl can be translated into errors induced by white
Gaussian background noise. The error sequence determined at the
receiver output can not differentiate between sources of errors. Thus,
errors produced in NP2 can be translated into errors produced by a
short duration, intense white Gaussian noise process. Such a simulation
of lightning by Gaussian noise is unthinkable in an atmospheric noise
model, but here the channel error sequence can not tell the difference.
The relationship between probability of error and Gaussian noise is
addressed by Van Trees (Ref 25). Thus, the states NP1 and NP2 can be
thought of as states of atmospheric noise having the appropriate
Gaussian noise parameters assocliated with them. Being able to view
the noise as being created by two Gaussian processes further enhances
the simplicity and tractability of the generalized Gilbert model.
Another property of this model is that the two states are
first-order Markov. Thus, the probability of any sequence of states
occurring can be broken into a product of conditional probabilities by
using the Markov property that P(Sk/Sk.1,Sk-2) = P(Sk/Sk-1) . Then,

a state sequence SySy_j°+++Sy; has probability

P(SKSk-1+++5281) = P(Si/Sk-1)P(k-1/Sk-2) - R(S2/SL0R(51)  (5)

where Sk is the kth state in the sequence. These conditional state
probabilities are the transition probabilities of Fig 1. However, the
bit sequence produced by the model is not first-order Markov. The
model produces a dependent bit stream where P(0/0,0) # P(0/0) .

This property of the bit stream will be proven in the next chapter.

22
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From the above discussion of Markov channel models it becomes
apparent that the generalized Gilbert model is the logical choice.
It has great flexibility, and yet is relatively simple. It can
simulate non-renewal, renewal, and random channels with only four
variable parameters. The next chapter proposes a procedure to
estimate the model parameters from the bit stream, and develops

an equation for P(N = n).
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IV Estimation of Model Parameters

There are several approaches that can be used as estimation
procedures. The one proposed here is relative frequency. The
probability of an event can be gpproximated by the event's relative
frequency. The law of large numbers states that the relative
frequency of an event can be within any desired accuracy of that
event's probability, if the number of trials is made large enough
(Ref 18:70-71). The high bit rates and the long testing periods
indicate that relative frequency estimation should be well within
reasonable limits of accuracy for the stated application. The proposed
generalized Gilbert model is defined as stationary, thus the transition
probabilities are constant for all time. In addition, the error rates
of the two states are independent random variables with fixed
probabilities for all time. The model does not change with time, so
relative frequency can be used. These are reasonable assumptions for
time periods on the order of tens-of-minutes or hours during which
millions of samples are avallable.

Since there are four model parameters, four independent
quantities must be estimated from the bit stream. These estimated
quantities must be capable of being expressed as equations in terms of
the model parameters. The model parameters can then be estimated by

solving the four independent equations.

Estinition Procedure

The probability of a correct bit, P(0), and the probability of
an error bit, P(1), can be easily estimated from the error sequence
using relative frequency. Summing the error-free bits and error bits
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respectively and dividing by the total number of bits yields the
relative frequency approximation for these probabilities. The joint
probability of two successive bits can also be approximated from the
error bit sequence. The notation used here for the joint probability
of a zero followed by a one in the error stream is P(1,0). This is
consistent with the notation used in Eq (3) and Eq (5). The pairwise
joint probability estimates are the sum of the overlapping pair
combinations in the sequen;;. For example, 010Qe++ has 01, 10, 00, Occ-
&s the overlapping pairs of successive bits. The four possible joint
distributions are summed separately and divided by the total number of
overlapping pairs (the total number of bits minus one). This yields
the relative frequency of the joint probability distributions. Fig 6
illustrates the use of overlapping pair relative frequency. Similarly,
the probabilities P(1,1,1) and P(1,1,1,1) could be estimated using

overlapping groups of three and four bits respectively.

Probability Equation Development

In developing the equations for these probabilities in terms of
the model parameters, several properties used in the model will be
needed. First, the two states, NP1l and NP2, are disjoint and therefore,
mutually exclusive. Thus, the model can only be in one state at a
time, and the transitions between states are considered instantaneous.
Second, the model is stationary, and the state transition matrix of
Eq (2) defines the model for all time. These two properties mean the
probability of beginning in a particular state can be determined from

the equations

P(NP1 U NP2) = P(NP1) + P(NP2) =1 (6)
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o0 00
o] 10 10 o0 Ol 00
Total number of bits = 14
Total number of pairs = 13
Relative Frequencies
P(0) = 35 T 0's = P(1,0) =%z 1o's=-133-
~ u -~ l .’
P(1)=51581's=ﬂ; P(O,l)=-]3201$=%
(0,0) = %3— £00's = % B(1,1) = % Lll's = T1'3'
Figure 6. Overlapping Pair Relative Frequency
and
P(NP1) = (1 - A) P(NPL) + B P(NP2) (7)

Solving for P(NP1) and P(NP2) yields the steady state probabilities

P(NPL) = ;= (8)
P(NP2) =+ (9)

These are used as the initial condition probabilities for the starting
state,
The notation 0 N NP1 means an error-free bit occurring in
state NP1, Similarly, 1 N NP2 means an error bit in state NP2.
The joint probability can be expressed as
26
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P(0 N NP1) = P(0/NP1) P(NP1) (10)

The occurrence of an error-free bit can be in state NP1l or NP2 and is

expressed with the notation (0N NP1) U (0O N NP2) . The probability

of an error-free bit is

P(0) = B{(0 n NP1) U (0 N NP2)]

P(0 N NP1) + P(0 N NP2)

P(0/NP1)P(NP1) + P(0/NP2)P(NP2)

Substituting the model parameters into this equation using
P(0/NP1) = (1 - PEl) and P(0/NP2) = (1 - PE2) yields

P(0) = (1 - PE1) B/(A + B) + (1 - PE2)A/(A + B) (11)
A similar procedure using P(1/NPl) = PEl and P(1/NP2) = PE2 leads to
P(1) = (PE1) B/(A + B) + (PE2) A/(A + B) : (12)

Development of the joint probabilities is more involved, but uses

the same properties.
P(0,0) = B (0N NP1) U (O N NP2),(0 N NP1) U (0 N NP2)]
=P (0N NP1) U (0 N NP2),(0 N NP1)]
+PL(0n NPL) U (O N NP2),(0 N NP2)]
= B (0 n NP1) U (0 N NP2)/(0 N NP1)]P(0 N NP1)

+ B (0 n NP1) U (0 N NP2)/(0 N NP2)]P(0 N NP2)

27




= [P(0 n NP1L/O N NF1) + P(0 N NP2/0 N NP1)JP(0 N NP1)

4
+ [P(0 n NP1/0 N NP2) + P(0 n NP2/0 N NP2)]P(0 N NP2)
Since the transition between states is dependent only on the previous
state and not on the correctness of the previous bit, then
P(0 n NP1/0 N NP1) = P(O N NPL/NP1) = P(0/NP1)P(NP1/NPl) . This yields
P(0,0) = [P(0/NP1)P(NP1/NP1) + P(0/NP2)P(NP2/NP1)]P(0/NP1)P(NPL) ‘
+ [P(0/NP1)P(NP1/NP2) + P(0/NP2)P(NP2/NP2)]P(0/NP2)P(NP2)
Substituting the model parameters yields *
P(0,0) = [(1 - A)(1 - PE1) + A(1 - PE2)](1 - PE1)B/(A + B) *
i +[B(1 - PE1) + (1 - B)(1 - PE2)]J(1 - PE2)A/(A +B)  (13) ‘
{
Similarly, the other joint probabilities are
, P(0,1) =[(1 - A)(@ - PE1) + AQ1 - PE2)](PE1)B/(A + B)
+[B(1 - PE1) + (1 - B)(1 - PE2)J(PE2)A/(A + B)  (14)
P(1,0) = [(1 - A)PE1 + APE2](1 - PE1)B/(A + B)
+,[BPE1 +(1 - B)PE2](1 - PE2)A/(A +B) (15)
. P(1,1) = [(1 - A)PEL + APE2](PE1)B/(A + B)
+ [BPE1 + (1 - B)PE2](PE2)A/(A + B) (16)
These joint probabilities and P(0) and P(1) give six equations, all
L ( in terms of the four model parameters, However, they yield only two
28
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independent equations in the four parameters. Since P(1) = 1 - P(0)
these two unconditional probabilities yield only one independent
equation to solve for the model parameters. The four joint proba-
bilities sum to one, also. In addition, P(0,1) = P(1,0) and

p(0,1) + P(0,0) = P(0) and P(1,0) + P(1,1) = P(1) ; and combining
these with either P(1) or P(0) means that only one of the joint
probabilities can be used as an independent equation. P(1) and P(1,1)
are chosen because they contain PEl and PE2 rather than 1 - PEl and

l - PE2, A set of similar identities show that only one of the
three-bit joint probability equations is independent when given P(1)
and P(1,1). The identities for the eight three-bit joint probabilities

are

T of all eight probabilities = 1
P(1,1,1) + P(1,1,0) = P(1,1)
P(1,0,1) + P(1,0,0) = P(1,0)
p(0,1,0) + P(0,1,1) = P(0,0)
P(0,0,1) + P(0,0,0) = P(0,0)
P(1,1,0) = P(0,1,1)
p(0,0,1) = P(1,0,0) (1?)

These last two identities and P(0,1) = P(1,0) are as expected. When
looking at only two bits, the probability that one of them is an error,

‘and one is not, is the same whether the error occurred first or last.

Similarly, when looking at three bits, the probability of two
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successive errors and one error-free bit is the same whether the
error-free bit occurred before or after the two successive errors.
These similar events must not be confused with the dependence that
exists in the error stream, P(1/1) # P(1/1,1) .

The equations for P(1,1,1) and the fourth independent equation,

P(1,1,1,1), are developed in the same manner as P(1,1) and yield
P(1,1,1) = {(1 - A)PEI[(1 - A)PE1 + APE2] + APE2[BPEl + (1 - B)PE2)]}
« BPE1l/(A + B)
+ {BPEL[ (1 - A)PE1 + APE2] + (1 - B)PE2[BPEL + (1 - B)PE2]}
« APE2/(A + B) (18)
and
2(1,3,1,3)
= {(1 - A)PE1[(1 - A)PEL((1 - A)PEl + APE2) + APE2(BPEl + (1 - B)PE2)]
+ APE2(BPE1((1 - A)PE1 + APE2) + (1 - B)PE2(BPEl + (1 - B)PE2)]}
« BPE1/(A + B)
+ {BPEL[(1 - A)PEL((1 - A)PEL + APE2) + APE2(BPEL + (1 - B)PE2)]
+ (1 - B)PE[BPEL((1 - A)PE1 + APE2) + (1 - B)PE2(BPEL + (1 - B)PE2)]}
. APE2/(A +B)  (19)

Each of the four independent equations has a different order of

magnitude in the model parameters, Solving these equations for the
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model parameters will yield some high-order polynomials. The problem
could be reduced by assuming PE2 to be a constant. For non-renewal
channels, PE2 = ,5 1is the best approximation (Refs 4:627;11:1260;16:60).
This assumes that a one and a zero are equiprobable in the message, and
the receiver uses some sort of threshold technique. The impulsive

noise that causes burst errors would cause the entire received message

to be above the receiver threshold during the burst. The receiver

output data would be correct approximately half the time (the bits

that should have been above threshold), and in error approximately

half the time (the bits that should have been below threshold).

Solving Eq (12) for A yields

B(PEl - P(1

A= -2

(20)

Substituting this into Eq (16) and solving for B yields

5 = P(L,1)(PE2 - PE1) + PRI®(P(1) - PE2) + PE2?(PE1 - P(1 (21)
PEZ - PE1)%(PEL - P(1

Substitution of these values into Eq (17) to solve for PEl led to a
ninth degree polynomial in PEl. Attempts, so far, to reduce this
polynomial have failed. It seems reasonable that most of the roots
of this polynomial could be eliminated by the restrictions that
exist on PEl. First, PEl must be real and in the range (0,1). In
addition, PE2 (assumed to be .5) must be greater than PEl by several
orders of magnitude because the random errors have a much lower density
than burst errors. Third, PEl must be greater than zero or the model
becomes a renewal process.

The ninth order equation only arises for non-renewal channels.
For random channels PE2 = 0 and PEl =1 , so only A and B must be

JiL
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found. For renewal channels only one error producing state is needed,
so PE2 = 0 can be used. PEl would then simulate the burst errors in
the model. Eqs (12) - (17) become simplified. The relative frequency
suggested by Gilbert (for his model with only one error state) can be

used, With PE2 = 0 the equations for A and B become

e B(PE1 - P(1))
P(1)

p = BQL)PEL - P(1,1
PEL - P(1

= P(1.1.1)
Gilbert uses C = P(l,l,l) = P(l.O:ij' to reduce the order of

magnitude of the model parameters in his third independent equation.

Converting his notation and equation to the form used hére yields an
equation for PEl (Ref 11:1260).

2
" P(1,1)|2P§1g C - Pél,lglP(l) +Cc]l
PEl = P(1)°C - P(1,1 (22)

Thus, thé generalized Gilbert model can produce the correct results for
renewal procegses and random processes as specilal cases of the parameter
values.,

An iterative procedure to solve for the model parameters in
the general case is discussed in the next chapter.

Two more equations must be developed. First, it should be
shown that this model does in fact produce a dependent error bit
stream. Second, the goal of this paper is to develop an equation

for P(g =n) .
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Proof of Dependence

The proof of dependence in the error bit stream requires two
inequalities. P(1) # P(1/1) shows dependence, but the two-state
model for the state sequence is first-order. Therefore,

P(1/1,1) # P(1/1) 4is needed to prove that the bit sequence
dependency goes beyond first-order. Using Bayes rule, these two
inequalities can be converted to P(1)2 # P(1,1) and

P(1,1,1) # P(1,1)2/P(1). Multiplying both sides by a constant

doesn't change the inequality, but does eliminate the denominator.

(A + B)2P(1)% = (A + B)(BPE1® + ABPELPE2 - ABPE12 + APE2?
+ ABPE1PE2 - ABPE2?)

Combining and factoring ylelds
(A + B)2(P(1,1) - P(1)?) = (PE2 - PEL)(A)(B)(2 - (A + B)) # 0

This inequality holds if PEl1 # PE2 , A#0 , B#0 and
A+B#1 . These are the same restrictions imposed to prevent the
model from becoming a Bernoulli random process. P(1/1,1) # P(1/1)

becomes
(A + B)(APE2 + BPE1)P(1,1,1) # (A + B)(APE2 + BPEL)P(1,1)%/P(1)
Multiplying these out, combining and factoring yields

(PEL - PE2)%1 - (A +B)]? #0

This inequality holds if PEl1 # PE2 and A+ B # 1 , and both
restrictions are already imposed. These inequalities hold for any

sequence of bits put into the probability equations. Thus, even
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though the state sequence is first-order Markov, the bit sequence has

higher-order dependencies - it is not first-order Markov,

Development of P(N = n)

A pattern can be seen in the equations developed for the various
Jjoint probabilities, but it isn't a form convenient for notations.
Comparing Eqs (11) and (12) to Egs (13) - (16), and then to Eqs (18)
and (19), shows that the addition of a bit adds new terms to the inner-
most product of the equation., For a given block length, k, P(N = n)
would be the sum of those joint probability equations for k bits that
contain n errors. A more convenient notation can be developed.

Using Bayes rule
P(N = n) = T B(N = n/SSjc-1+++51) P(SkcSic-1++51)

where the summation is over all the 2k state sequences, Sy*++S;.

Using the Markov property of the state sequence (see Eq (5)) yields

}%ﬂwaMWM&JWWMM)w
eqichégs

A convenient notation can be developed for P(N = n/Sk**+S;) . The

P(Y = n)

sum of independent Bernoulli events has a binomial distribution. The
two interleaved Bernoulli processes of the model can then be expressed
as the product of the two binomial distributions. This is done by
dividing the k states into two groups and the n errors into two

groups using the following notationms.

k

the length of the block of bits

n = the number of errors in the block

H
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where

-
=
]

= the number of times state NPl occurs in a given set of k states

k2 = the number of times state NP2 occurs in a given set of k states

ny = the number of errors that occur in state NPl in a given set
of k states
n, = the number of errors that occur in state NP2 in a given set

of k states

'
u

ky +ko

o
i

ny +np

Thus, with this notation, a single summation is used on this product of

binomial distributions.

Thus,

BN = n/sers) = Y (™ - )
i ng =0 1

kl-nl
. (kZ)PEznZ(l PE2)k2'“2 (24)
ns 5

for a glven sequence of states P(N = n/Sie++Sy) is the average of

all the possible ways n errors could occur in fhe state sequence.

The unconditional probability of n errors, P(N = n), is the conditional

probablility averaged over all possible state sequences.

This concludes the development of the model and of the estimation

procedures., The testing of the model and the relative frequency

estimation with computer simulation are discussed in the next chapter.
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V Test Results

This chapter discusses the results of three computer programs
used to test the model. A computer program has been designed to
generate an error stream based on the model parameters. One purpose
of this program was to determine if the model would produce a "bursty”
error stream. Also, each of the model parameters are varied, one at
a time, to show their effect on the bit stream. Second, the program
is modified to test thg convergence of the relative frequency estimates
of P(1), P(1,1), and P(1,1,1). A third program was created to test a
simple iterative procedure using successive approximation to estimate

the model parameters from the independent equations.

Model Test

The simulation program used to generate an error sequence uses a
random number generator function (RANF) that is uniform over the range
(0,1). The generated random number is tested against the transition
probabilities to determine which state the model is in., If the random
number generated is less than or equal to B/(A + B), the initial state
is NP1, otherwise it is NP2, Then, a second random number is generated.
Based on the state, the random number is tested against the error rate.
If the random number is less than the error rate, the bit is a one;
if not, it is a zero., After the initial condition, all state
transitions are based on the current state. For example, if currently
in state NP1, the state will be changed to NP2 if the random number
generated is less than or equal to transition probability A; otherwise
the state remains NP1, Random numbers are generated to test the state
transition and the error rate for every bit in the error stream
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simulation. The program, its flow chart, and the error streams it
generated can be found in appendix A.

A short test of 2000 bits was used. This was a compromise to
have enough bits to detect the burst tendency, and still have a small
enough sample to manually analyze the gap distributions. The model
parameters were selected to show burst errors and gaps in a small
sample, rather than to fit any known channel characteristics. The
parameters were A= ,01 , B=,1 , PEl = ,001 , and PE2 = .5 .,
The values of B and PE2 mean the average burst will be about ten bits
long and have a density of about .5. The values of A and PE1l mean
the average gap between bursts will be about 100 bits long, and about
every tenth between-bursts gap has a random error splitting it into
two smaller gaps. The generated error stream would average out to
these values if the test sample were large enough (relative frequency).
The test data produced very well defined bursts with a density of about
«5 and an average length of 9.25 bits. The relatively error-free bits
between bursts were well defined also, and averaged 214 bits (due to
two gaps of over 400 bits). There were a total of two random errors.
The model parameters values tested above will be referred to as the
base data test. ‘

To test the model's flexibility, PEl was increased to .0l and
all the other parameters remained the same as in the base data test.
The number of random errors increased to eleven. Thus, the error
stream was affected as predicted by the change in the model parameter.
The average burst length increased to 18 bits, but this was due to one
very long burst of 100 bits. The average number of bits between

bursts was 125, closer to the expected value with A = .01 .
37
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In the next test A = ,001 , and the other three parameters were
set to the values of the base data test. The average burst length
remained the same, the number of random errors went back down to two,

but the average number of bits between bursts increased to 400. Again,

the bit stream reacted to the parameter change as predicted by the model.

The third test used B = .01 with the other three parameters set
to the values of the base data test. As expected, the only signifi-
cant change in the error stream was that the average length of a burst
had increased to 110 bits. The fourth test used PE2 = ,9 as the
only change from the base data test. Here, the only significant change
was the density of the error burst.

These tests have shown that the model can produce burst errors.
In addition, it has shown that each of the model parameters does
affect the bit stream as predicted. Thus, by varying the model
parameters, any desired distribution of errors can be simulated by the
generalized Gilbert model.

The gap distribution is often used to analyze a channel
(Refs 9;10;11;12). These tests of the model parameters can be
analyzed from that viewpoint. Each test was broken into twenty
100-bit blocks. Thus, the longest possible gap is 100 bits. This
was done so that a scale could be used to show the changes in
probability for small gap lengths. P(O™) is the probability of m
consecutive error-free bits. P(m) is defined as the probability that
the gap length is greater than or equal to m bits. Thus, P(m) is the

anticumulative first-order probability distribution (Ref 12:1189-90).
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P(m)
P(m) =1 m=0 (25)

Fig 7 is a plot of P(m) versus gap length. Note how the changes
in the model parameters change the distribution of the gap lengths.
If P(m) were plotted on a log scale, it would have an exponential
decay similar to the VHF channel plot in Haddad, et al. (Ref 12:1191).
This seems to establish that the mode; has face validity, but further

testing should be done.

Relative Frequency

The same computer simulation was used to generate the error
stream based on the model parameters. However, in this program
relative frequency was tested for accuracy in estimating P(1), P(1,1).
and P(1,1,1). The program and its flow chart can be found in
appendix B.

Each bit in the error stream that is a one increments the P(1)
counter. The P(1,1) counter is incremented if the current bit and the
previous bit are both ones. The P(1,1,1) counter is incremented if
the current bit and the two previous bits are ones. These counter
values are then divided by the total number of bits, total minus one,
and total minus two respectively to get the relative frequency
estimates of the probabilifiee. Table I contains the results of
these tests. Note the percent error at 2000 bits is 10 - 19%, but for
a one-million bit sﬁmple the percent error is reduced to 1 - 2%.
Relative frequency should converge much faster than this for a

Bernoulli random process. The rather slow convergence indicates the
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TABLE I

RELATIVE FREQUENCY TEST

number of bits
progein. Sgpetion P(1) P(1,1) P(1,1,1)
2.000 JO415 .0165082541 .0075075075
2 (10.49%) (19.33%) (18.47%)
50,000 04768 .0216604332 .0099603984
; (2.84%) (5.84%) (8.16%)
JOH4 34 .0197720791 .0092360739
i (4. 36%) (3.30%) (0.3%)
046894 .0207420207 .0093700187
i i (1.144%) (1,356%) (1.752%)
calculated 0463636364 «020464 5364 0092086694
values Eq(12) Eq(16) Eq(18)
NOTES:

(1) Values in Parentheses are the percent error, using the
formula error % = _Q_E_EL_ x 100 where C is the calculated
value and E is the experimental value.

(2) These tests used a computer-simulated error bit stream
based on model parameters A= .01 , B= .l ,

PEl = ,001 , and PE2 = .5 .
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memory of the model, ie. the dependency in the bit stream. However,
relative frequency is a valid estimation procedure for the generalized
Gilbert model. Sampling over intervals of several hundred-million bits
or more should yield probability estimates with less than 1% error.
This seems reasonable for the bit rates and testing periods outlined
by AFCS.

The tests conducted to this point indicate that the model
performs as predicted, and has the flexibility needed. In addition,
the bit stream estimation procedure converges toward the actual
probability values, and the sampling intervals should be long enough
to insure sufficient accuracy.

The only shortcoming of the model at this point is solving PEl
for non-renewal channels. The next test involves the use of a

simple successive approximation routine to solve for PEl.

Successive Approximation
Since PEl was not readily solvable, this section uses a simple

iterative procedure in an attempt to solve the three independent
equations for the three unknowns A, B, and PE1 (PE2 = .5). However,
since PEl is a polynomial, there may be several values of PEl that
will solve the equations. Thus, there is some concern that the
solution attained here will not be unique.

An equation in the form f(x) = O can be rewritten as x = F(x)
To solve for the roots of f(x) put an initial approximation, x;, into
F(x) and solve for x2, the second approximation. x2 is then put into
F(x) which ylelds the third approximation, x3.

X341 = F(xy) (26)
42
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This successive approximation will converge if |F'(x)|< 1 (Ref 5:168).
The equations for P(1), P(1,1), and P(1,1,1) can be put in the
form f,(A,B,PEl) =0 , f2(A,B,PEl) =0 and f3(A,B,PEl) = 0 and

then rewritten as

A = F1(A,B,PE1)
B = F2(A,B,PE1)
PE1 = F3(A,B,PEl)

For the non-renewal case, these three model parameters must be less
than one and greater than zero. Thus, bounds can be placed on the
approximations to aid convergence., These procedures were implemented
with a computer program, but it failed to converge.

Eq (26) can be rewritten as
x541 = (1 - H)xj + HF(x3) (27)

where the convergence could be enhanced by the choice of H (Ref 5:168).
In addition, tighter bounds can be placed on the model parameters. It
is reasonable to assume that PEl, the random error rate, will be at
least two orders of magnitude less than PE2, the burst error rate or
density. Also, A should be at least one order of magnitude less than
B, meaning the gaps between bursts will be at least ten times longer
than the bursts. These changes are incorporated in the computer
program in appendix C. AHAT, BHAT, and E1HAT are the symbols used
for F(A,B,PEl), F2(A,B,PE1l), and F3(A,B,PEl) respectively. The
program is a simple loop computing new approximations for the parameters,
and substituting them back into the equations. This program uses the
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calculated values for P(1), P(1,1), and P(1,1,1) in the iteration
equations. These values are the same ones used in the base data test
and the relative frequency test, except A = .007.

Fifty iterations were used to determine if the approximations
were converging or diverging. Various initial approximations within
the parameter bounds were tested. Various values of H were also
tested, It was found that H < 10J+ kept the parameter approximations
within the bounds. However, only two of the three parameters would
converge at the same time to the known model parameter values. It
appears that the existence of more than one solution to PEl is
responsible for the fallure of this iteration procedure. There are
a multitude of iteration procedures that could be attempted. However,
there 1is insufficient time to search for one that will work,

The model testing and relative frequency testing indicate that
the generalized Gilbert model can be used for real-time burst error
modeling. The iteration procedure did not succeed, but there are other
iterative routines that should be attempted. They will be discussed

in the conclusions and recommendations that follow.
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VI Conclusions and Recommendations

The discussions in this paper lead to several conclusions
concerning real-time burst error modeling. Based on these conclusions,
some recommendations are made for continued study on this topic.
Conclusions are discussed first, covering what has been accomplished.
Recommendations are in the last section. They suggest possible

approaches for further work.

Conclusions

One of the main thrusts of this paper was to find a suitable
model for burst error analysis on a real-time basis. The intended
use of the model created restrictions on the model choice. The best
choice, based on the criteria, is the generalized Gilbert model. This
is a rather uncomplicated model that produces the dependency that
exists in the bursts and the dependency that exists in the gaps. Yet,
the model is flexible and can model renewal channels and random
channels as special cases of the general model.

There is another advantage of this model. Because it doesn't
vary with time, relative frequency can be used to estimate probabilities
from the real-time bit stream. The probabilities chosen can be easily
obtained from bit streams at bit rates up to 20 MBPS. The simple
logic circuits needed to increment the counters are shown in Fig 8.
Since reliable estimates can be formed in a time period on the order
of a minute or less, the stationarity assumption seems justifiable.

The next step was to define these probabllities in terms of the
model parameters. This was accomplished, and it was determined that

PE2 must be fixed to retain tractability.
L5
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channels, it appears that PE2 = ,5 4is the logical choice. For
renewal and randcm channe’'s PE2 = C can be used. The one flaw at
this point was solving for the three model parameters from the
probability equations for non-renewal channels. No suitable method
of reducing the polynomial in PEl was found. The iterative solution
attempted in Chapter V failed also.

Recent developments indicate two iteration procedures that may
solve the problem of estimating the model parameters A, B, and PEl
from the three independent equations. One approach would be to use
the Newton-Raphson iteration. This requires solving the inverse
Jacoblan of the three equations to be used in the iteration equation
(Ref 51319). The second approach uses a subroutine in the AFIT library.
The subroutine MINUM is part of the BINDECK libtrary of subroutines,
and is based on a Sperry Rand Report (Ref 19). It uses a combination
of random steps, gradient steps, averaging steps, and jump steps.
This procedure was tested once using the same model parameter values
of the previous iteration technique in Chapter V. The results
converged to within 0.1% of the actual parameter values using
2000 iterations.

The other goal was to define P(E = n) in terms of the model
parameters, This probability equation allows calculation of all the
burst statistics. P(E = n) is an important statistic in selecting
an error correcting code (Refs 4;9). The equation developed for
P(N = n) in Eq (23) and Eq (24) appears formidable for large block
lengths, k. The summation over 2k state sequences doubles for each
bit added to the block length. But this is misleading. Many of
2k

these state sequences are equivalent. The joint probabilities
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developed earlier are a good example. The probability of one error
in a two bit block is P(0,1) + P(1,0). However, as shown earlier,
P(0,1) = P(1,0) . Thus, only one event need be calculated.
Similarly, P(1,0,0) = P(0,0,1) , so the probability of one error
in a three bit block would require the calculation of only two
separate events, 2P(1,0,0) and P(0,1,0). Thus, an algorithm could
be developed to take advantage of this property and reduce the
calculations considerably., Time is a factor in the relative frequency
estimates, but not much of a factor here. P(§ = n) would only be
computed periodically during the test period, allowing at least five
or ten minutes for its calculation., Specialized hardware could
further speed up the process. In fact, the relative frequency
estimates compiled during each five to ten minute segment could be
stored in memory. Thus, there need not be any time constraint on
caiculating P(E = n) for each five or ten minute update period.

The final conclusion is that the generalized Gilbert model seems
capable of modeling all types of channels on a real-time basis. It

has the potential of becoming a valuable asset in channel analysis.

Recommendations

There are several areas that merit further study. First,
additional investigation into reducing the polinomial in PEl should
be made, Once this is done, the model should be tested with a real
data stream. The development of an algorithm to calculate P(E = n)
would be the next step, followed by the building of Qn actual device.

The relationship used by Gilbert to reduce the polynomial in
PE1l for his renewal model (PE2 = 0) leads to the belief that some

L8
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such relationship exists that would reduce the polynomial in PEl
for the non-renewal model. Even the reduction of this polynomial to
a cubic or quadratic would make the problem workable.

The testing done on the model in this paper was all computer
simulation. Thus, the second step of the continuation should be to
determine the model parameters from the error stream of an actual
communications channel. The model parameters generated by the test
could then be used in the simulation program. The relative frequency
estimates from the actual channel could be compared to those of the
simulation. They would determine if the estimated model parameters
generate an error stream similar to the actual error streanm.

The third step would be to develop an algorithm for computing
P(E = n) for any desired block length, k. The algorithm would be
based on Eqs (23) and (24), and could incorporate some of the
properties of the joint probabilities that were discussed earlier.
This algorithm should be designed for use in an existing micro-
processor, or perhaps for compatability with some special purpose
hardware.

The iteration procedures discussed in the conclusions as
potential solutions should be investigated further. It appears
that they could be implemented easily in the microprocessor needed
to compute P(N = n). An iteration procedure should be used if the

PE1l polynomial can't be reduced to a lower-order.

The last step in completing the research would be the construction

of an actual device. This device would use the error bit stream as

an input., The bit stream would use logic circults of the type shown

in Fig 8 to estimate the probabilities P(1), P(1,1), and P(1,1,1)
49
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by relative frequency. From these estimates, A, B, and PEl will be
estimated based on the equations developed here, and the reduced
polynomial of PEl recommended in step one. The algorithm of step
three will then calculate the P(g = n) for a specified block length
(determined by an external switch or dial), This device should not
be overly expensive because of its simplicity, and could be of great
value to AFCS during their channel tests.,
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Appendix A

Program to Simulate an Error Bit Stream

The program contained in this appendix uses given values for
the model parameters to generate a bit stream based on the model. A
simplified flow chart is presented also. Figures (9) through (13)
are the actual bit streams generated. The symbols used in the program

are defined.

GA = model parameter A, obtained from the data card

GB = model parameter B, obtained from the data card

PEl1 = model parameter PEl, obtained from the data card

PE2 = model parameter PE2, obtained from the data card
B RVN = randomly generated number to determine the state of the model

RVE = randomly generated number to determine the bit errors for
the given state

C(J) = array of 100 bits generated by the program
M = the number of 100 bit blocks generated

TOTAL = the total number of bits generated
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Flow Chart for Burst and Gap Pattern Test Program

(START)

SEED RANF

TEST RANF AGAINST INITIAL CONDITION
PROBABILITIES TO DETERMINE THE STARTING STATE

TEST RANF AGAINST THE ERRCR RATE FOR
THE GIVEN STATE TO DETERMINE IF THE

BIT WILL BE SET TO ZERO OR ONE

TEST RANF AGAINST THE TRANSITION
PROBABILITIES BASED ON THE CURRENT
STATE TO DETERMINE THE NEXT STATE

[PRINT BIT STREAM|

THE DESIRED
NO

NUMBER QF BITS

PRINT GIVEN MODEL PARAMETERS
TOTAL NUMBER OF BITS
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30

40

- 45

20

100
10

PROGRAM THESIS (INPyT=/80,0UTPUT=/132)
INTEGER C(100)
READ*,GA,G9,PE1,PE?2

CALL TIME (C)

CALL RANSET (C)

RVN=RANF (DUMMY)
IF(RVN.LE.GAZ(GA+5R)) NP=2
IF(RVN.GT.GA/(GA+GRB)) NP=1
M= 20

00 10 L=1,M

DO 20 J=1,100

IF(NP.EQ.2) GO TI 40
RVN=RANF (DUMMY )
IF(RVN.LE.GA) NP=2
RVE=RANF (DUMMY)
IF(RVE.LE.PE1) GI TO 30
C(J) =0

GO TOo 20

CtN= 1

Go To 20

RVN=RANF (DUMMY)
IF(RVN.LE.GB) NP=1
RVE=RANF (DUMMY )
IF(RVELLELPE2) GO TO 4F
C(i= 0

Go To 20

ctH= 1

CONTINUE

WRITE 100, C

FORMAT (1X,50I1/1%,59T1)
CONTINUE

TOTAL= M*100

PRINT® ,* =

PRINT® >

PRINT#,“GIVEN MJ)J)ZL PARAMETERS"
PRINT®,* *

PRINT#*,“GA= *, GA
PRINT#*,"GB= *,68
PRINT®*,“PEL1= “,PE1
PRINT#*,"PE2= ",PE2
PRINT® o =

PRINT#,*“NUMBER OF BITS IN THE TEST= “,TOTAL
PRINT. ,u ]

END
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00000000000000000000000000000000000000000000000000
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00000000000000000000000000000000000000000000900000
00000000060000000000000000000000000000000000300C00
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00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
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00000000000000000000000000000000000000000000000110

00000000000000000000000000000000000000000000300000
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00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000

GIVEN MODEL PARAMETERS

GA= .01
GB= ,1

PEi= ,001
PE2= .5

NUMBER OF BITS IN THE TEST= 2000,

Figure 9, Bit Stream Produced by Base Test Data
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00000000000000000000000000000000000000300C20270000
0111000101001101111€000000000000010000000700090C00
00000100000000000000000000000C00000000009000000C00
0000000000000000000C000000000CC0000000000030700000
0000000000000000000C000000000000000000000000700001
00000000000000000000000000000C00000000000G00000000
00000000000010010111100101101001010101101000111001
00000000000000000000000000000000000000000C00700000
00000000000000000000000000000C0000000300000003001700
00000000000000000000000000000000000000000000300000
00000000000000000000000000000C00000000002000700000
00000000000000000000000001000C00900C00000000200000
00000000000000000000010010040000000000000000710300
00111100001010111000101100111001110110010011711100
00000000000000000000000000000000000000000C00000000
00000000000000000000000000000000000000300000930000
000000007200000000000000000000000000000000000000700
00000000000000000000000000000C00000000307000700000
00000000000000010100000000000000000000100000000"11
00110011600000000000000000000C00000000000000700"00
00000000000000000000000000000C000000000037000030000
0000000000000000000000000000000C00000000000007290009
00000000000000000000000000000000040000000000070000
00000000000000000000000000000000000001009C00N00N00
00110110100011101014101011000000000002101100300M00
00000000000000000000000000000000000000000000000400
00000000000000000000000000000600000000000C600000000
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00001000000000000000111011111000100000000000000000
00000000000000000000000000000000000000000C00000000

GIVEN MODEL PARAMETERS

GA= ,01

GB= .1
PE1= ,01

PE2= .5
NUMBER OF BITS 1IN TPE'TESTS 2000,

Figure 10, Bit Stream Produced with Parameter PE1 Changed
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GIVEN MODEL PARAMETERS
GA= ,001

GB= .1

PEi= ,001

PE2= .5

NUMBER OF BITS IN THE TEST= 2C00.

Figure 11, Bit Stream Produced with Parameter A Changed
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GIVEN MONEL PARAMETERS
GA= ,01

GB= .01

PE1= ,001

PE2= 5

NUMRER OF 8ITS IN THE TEST= 20GC.

Figure 12, Bit Stream Produced with Parameter B Changed
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0000000000000000001141114141411440000000000G00000C00
0000000000000000000G0O00000000OCO000000GQ00C00000000

0000000000000000000€0N0000000C00000000060G00000"00

GIVEN MONEL PARAMETERS

GA= .01

GB’ o1

PEi= ,001

PE2= .9

NUMRER OF 8ITS IN TkE TEST= 2¢00.

( Figure 13, Bit Stream Produced with Parameter PE2 Changed
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Appendix B

Program to Test Relative Frequency Estimation Convergence

This program uses the same technique to generate an error bit
stream as used in appendix A. It also tests successive bits to count
errors, overlapping pairs of errors, and overlapping triple errors.
M was varied to test bit streams of 2000 to one-million bits. This

program contains symbols defined in appendix A, plus these symbols.

Pl = counter of error bits, then divided by the total number of
bits to yield P(1)

PR1l

= counter of overlapping pairs of consecutive errors, divided
by total - 1 to yield P(1,1)
PR111 = counter of overlapping triple consecutive error, divided
by total - 2 to yield P(1,1,1)
Tl = temporary storage for the 99th bit in the array so it can

be tested with the first bits of the next array

T = temporary storage for the 100tP bit in the array so it can
be tested with the first bits of the next array

W = used as default so the first time through the loop T & Tl
won't be tested against the first array
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Flow Chart for Relative Frequency Program

(START)
SEED RANF'

' TEST RANF AGAINST INITIAL CONDITION
PROBABILITIES TO DETERMINE THE STARTING STATE

~r

TEST RANF AGAINST THE ERROR RATE FOR
THE GIVEN STATE TO DETERMINE IF THE]
BIT WILL BE SET TO ZERO OR ONE

TEST RANF AGAINST THE TRANSITION

PROBABILITIES BASED ON THE CURRENT

STATE TO DETERMINE THE NEXT STATE |
)

INCREMENT COUNTERS FCR P(1), P(1,1)
AND P(1,1,1) WHEN APPLICABLE

_NO

DIVIDE COUNTERS BY THE APPROPRIATE
NUMBER TO YIELD RELATIVE FREQ.
ESTIMATES COF P(1), P(1,1), & P(1,1,1
)

CALCULATE THE EXACT VALUES OF
p(1), P(1,1), & P(1,1,1) FOR THE GIVEN
MODEL PARAMETERS

PRINT GIVEN MODEL PARAMETERS
TOTAL NUMBER OF BITS
ESTIMATED PROBABILITIES
CALCULATED PROBABILITIES

o
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PROGRAM THESIS (INPIT=/80,0UTPUT=/132)
4 INTEGER C(100)
READ® yGA ,GB,PE1,PE2
' : CALL TIME (C)
) CALL RANSET (C)
: RVN=RANF (DUMMY)
IF(RVN.LE.GA/(GA+GB)) NP=2
IF(RVN.GT.GA/(GA+38)) NP=1
P1= (.0
PR11=0.0
PR111= 0,0
T= 0.0
T1i= 0.0
W=0,0
M= 20
DO 10 L=1,M
D0 20 J=1,100
IF(NP.EN.2) GO TI 4O
4 RVN=RANF (DUMMY )
E IF(RVN.LE.GA) N3=2
; RVE=RANF (DUMMY)
IF(RVE.LE.PEL) GO TO 30
: CtJy) =0
60 To 20
30 C(U= 1
Pi= P1 + 1,0
GO TOo 20
40 RVN=RANF (DUMMY)
IF(‘RVN.LE.GB) N2=1
RVE=RANF (DUMMY )
IF(RVE.LE.PE2) 50 TN 4F
cC(d= ¢
GO TO 20
45 C(I= 1
Pi= P1 + 1,0
20 CONTINUE
IF(W.EQ.N,0) GO TD 50
IF(C(1).EN.0) GO TO 50
b | : IF(T.EQ.0.0) 30 T) 350
‘ IF(C(1).EQ.1.0) P11= PR11 ¢ 1,0
IF(T1.,EQ.1) PR111= 2R111 + 1.0
IF(C(2).EQ.1) PR111= PR111 + 1,0
50 CONTINUE
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€0

10

00 60 K=1,99

IF(C(K).EQ.0.,0) 50 TO fO

IF(C(K+1) .,EQ.1.0) PA11= PR11 + 1.9

IF(C(K+1) 4EQ.0) 50 TO €0

IF(K.EQ.,99) GI TO B

IF(C(K+2) .EN.1) 2111= PR1i11 + 1.0

CONTINUE

IF(M.GTs1) W= 1.0

T1= C(99)

T= C(100)

CONTINUE

TOTAL= M*100

Pi1= P1/(TOTAL)

PR11= PR11/(TOTA.~- 1)

PR111= PR111/(TOTAL=2)

CALP1= (GB*PEL + 5A*PE2)/(GA+GR)

CAL11= ((PE1 ¢ GA* (PE2 - PE1))*G3*PE1 +
(PE2 + GB* (PEL - PE2))*GA*PE2)/

(GA +GB)

CAL111= ((GB*PEL*(PE1+GA®* (PE2-PE1)) ¢+(1-G3)"PE2*(
PE2+GB* (PE1=-PE2))) *GA®PE2+ ((1~54)*PE1* (221+GA*(
PE2=-PE1) ) +GA®PE2* (PE24GR®* (PE1~-252)) ) *CGB*PEL) /7 (GA+GR)

PRINT®," *

PRINT®,"P(1)= *"y231," P(1,4)= ™,311,*" P(1,1,1)= “,PR111

PRINT#*,*“CALC P(1)= ",CALP1,* CAL> 2(1,1)= ",
CAL11,"™ CALC 2(1,1,1)= *,CAL111

PRINT®,"

PRINT*,“GIVEN MDOEL PARAMETERS"™

PRINT.," e

PRINT*,"“GA= *“,GA

PRINT#*,*G8= *,(GB

pRINT.,"pE1= “’Pgi

PRINT®*,“PE2= " ,PE2

PRINT® % *

PRINT#,"NUMBER 027 B8ITS IN THE TEST= ",TOTAL

PRINT®,=

END

YA
%

%
%

%
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Appendix C

' Program of Successive Approximation

This program uses a loop of successive approximations of
the model parameters based on Eqs (26) and (27) and the independent
equations P(1), P(1,1), and P(1,1,1). Symbols are the same as those

found in appendix A plus these symbols.

]

AHAT = equation of P(1) in the form of Eq (26)
BHAT = equation of P(1,1) in the form of Eq (26)
E1HAT = equation of P(1,1,1) in the form of Egq (26)
A = the successive approximation of parameter A using Eq (27)
g B = the successive approximation of parameter B using Eq (27)
{ El = the successive aprroximation of parameter PEl using Eq (27)

O T
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Flow Chart for Successive Approximation Program

START

CALCULATE P(1), P(1,1), & P(1,1,1)

BASED ON GIVEN MODEL PARAMETERS

l

PRINT CALCULATED P(1), P(1,1), P(1,1,1)

AND MODEL PARAMETERS

y

INSERT INITIAL APPROXIMATIONS

& SET H & PE2

E—

4
APPROXIMATE MODEL PARAMETERS

USING SUCCESSIVE APPROX. EQ'S.

L

PRINT NEW APPROXIMATIONS

50 SUCCESSIVE
APPROX. BEEN

Lo s -




>y

110

A
%

%

P4

IF(ALT.1E=-6) A= 1E-6

4

4
%

PROGFAM THESIS (INPUT=/80,0UTPUT=/132)

READ” yGA +GB,yPE1,2E?2

CALP1= (GB*PE1 #+ SA®PE2)/(GA+GB)
CAL11= ((PE1 ¢ GA® (PE2 - PE1))*53¢PZ1 +

(PE2 + GB®*(PEL ~ PE2)

(GA +GB)

)*GA*PE2YF

CAL111= ((GB®*PELF(PEL+GA*(PE2=PEL)) +(1=-G3)*PE2*(
PE2¢GR* (PE1-PE2))) *GA*PE2+ ((1-GA)*PE1* (PE1+GA™ (
% PE2-PE1))+GA*PE2*(PE2+GB* (PE1-222)) )*GB*PE1) /(5A+GB)

PRINT®,~ =

PRINT#,"“CALC P(1)= *“,CALPL,"™ CAL> P(1,1)=
CAL11,"™ CALC P(1,1,1)= *,CAL11Y

PRINT®,™ =

PRINT#,“GIVEN MODEL PARAMETERS"™

PRINT®,* *
PRINT®*,“GA= *,GA
PRINT#*,“GB= *,68
PRINT®*,“PEi= *,PEl
PRINT*,*“PE2= ",PE2
PRINT®,% *

E2= 0.5

He 1F=4

Az 0.009

B= 0,125

€1= 0.,00125

00 110 I= 1,50

AHAT= (B*E1 ¢ A®*E2)/CALP1L - B

A= (1-H)*A + H®A4AT

IF(A.GT.B8/10.,0) A= 3/10,.0

BHAT= ((E1 ¢ A®*(E2 - E1))*(8%E1) ¢+ (E2 * B*(EL
- E2))*(A®E2))/CAL1L - A

B= (1-H)*B + H*B4AT
IF(B.GT.0.5) B= 0,5

IF(BeLTe1E-3) B= {E-3

E1HAT=(CAL111" (A+B)

(B*EL1® (E1+A

*(E2-E1)) ¢ (1-B)"*

E2% (E2+8* (EL1-E2) ))*A*E2)/7(((1-A)*EL* (EL1+A" (E2-EL

)) +A®E2*% (E2+B* (E1-E2))) *B)
E1=(1-H)*E1 + H®ELHAT
IF(E1.GT.E2/7100.,0) Ei= E2/100.0
IF(E1.LT.1€E-6) Ei1= LE-6

PRINT® ,"AHAT= *,8,"

CONTINUE
END

BHAT= "93,.

67

E1HAT= “,Ei)"

H= *“yH

o
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