
AD-AOfl 388 AIR FORCE INST OF TECH WRIGHT—PATTERSON AFO OHIO SCH~~ETC F/g t7/2.t
* BURST ERROR MODQ. USING INTERLEAVED BERNOULLI PROCESSES WITH ——E TCfU )
DCC 78 R P DAVIS

UNCLASSIF lED AFIT/SC/CC178 ’fl NI.

1
k 

~~ __

Pt1~lIfl i______ 



‘i i o r~~~III • L

III ______ 

L~ ~ 32 IIVI~
2

136L •

L.~ 11111 2.011111 I • I.~ ~~~~~ 

ll~l~~liii! IIIII=!~111111 25 IIllI=~= iIto~
MICROCOPY RESOLUIION TEST CHART

N~ lK)NAL BUREAU Of SfA NDA ROS - I9f,~ -A



a .

~~ ~~~ ~

I 

L~~~~
j j

A BURST ERROR MODEL
USING INTERLEAVED BERNOCLLI PROCESSES

WITH A MARKOV PROPERTY fl~ ; 
~~

THESIS 1

AFIT/GE/EE/78_2L1. ft ~

Approved for public release; distribution unlimited .

_ ~~ 4



‘1~F~~/GE/EE/78-2~J

USING INTERLEAVED ~~RNCULLI PROCESSES

WITH A MARKOV PROPERTY ,

THESIS

~ ~~~~~ L
Presented to the Faculty of the School of ~ igtheering

of the Air Force Institute of Technology

Air Training Command

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(J
~~~I~~ L

by

~~~~~obert_P.

Capt USAF

Graduate Electrical Engineering

(~Ii~~ec?b.r_~?8

I Approved for public release ; distribution unlimited .

* _ _  

Cl ~~ 
_ _ _  _ _ _  _ _ _ _ _



Preface

S
I would like to express sincere app reciation to my thesis

advisor , Major Joser*1 Carl , for his many hours of advice , encouragement ,

and support . I also thank Captain Stan Robinson, Captain Greg Vaughn ,

and Captain Tom Settece rri for their assistan ce • A special thanks to

my wife , Nancy, for her constant love and supp ort , and for typing thi s

thesis. All of the ir efforts have been an inval uable help in the

development of thi s thesis.

~~
W~fl% SediN

~~~ .:~:...!i

ii A
~r~H

________ - .. —.—-—- -- .— —. —.-—-- -—-——-~ .— - —-—- — - ----—



Contents
4

Page

Preface • . . • . • . . . . • • . . . • . • . . . • • • . • • • • ii

List of Figures • . . . . . . . • • • • . • . . • . . . . . . . . v

List of Tables • . . . • . • . • • . . • • . • . . . . • . . . • vi

Abstract . . . • . . • • • • • • • • • • • , • • • • • • • • • vii

I • Introduction . • . • • • • , . . • • . . • • • . . • • • • 1

Background • • • • , • • • . , • , , • , , • • • •
The Problem • . . • . • • . . • . . . • • . • . • . . 2
!4odel Seleotion . .• . .. .• . .• • •. • •. . .

Content . . . . . • • . . . . • • . . • . . • . . • • 6

II. Modeling Atmospheric Noise • . • • . . . . • • . . . . • . 7

Atmospheric N o lse . • • •. . .. .• •. .• . . .•  7
Modei Requirements • • • • . . • • . . • • • . . • • . 9
Why Use the Poirit Process • . • • • . • . • • •. • •  1].
The Marked Point Pro c e s s . ... . . . . . .. . . . .  1].
Selecting a Suitable Point Process . • • • • . . . • . 13
Conclusion • • • • • • . • • . • • , • • • • • • • • • 13

III. Channel Model Selection • . . . .. , .. . . . . .. ..  15

Nth 
~~der Markov • . . • • • . . • . • . . . • . . , .

The Two—State M a r k o v M o d e l . . . . . . . . . . . . . .  17
The Generalized Gilbert Model . . • • . . . . • • . . 20

IV. Estimation of Model Parameters . . . • . • . • • • • • . . 23

Estimation Proced u r e . . . . , , . . , , . , . , . . .  23
Probability Equation Development • • . . . . • • • • • 24
Proof of Dependence . . . . . . . . . .•  • . • . •  • 33
DevelopmentofP (N n) . • . • . .• . • . • . • • •  34

-4

V. Test Results • • . . . • • • . . . • . • . • • . . . . • . 36

Model Test • • . . • . . , . . . . • • . . . , • . . . 36
Relative F re q u en cy . . .. . .. . . .. .. .. . . .  40
Successive Approximation . • • • • • . • . . . • • • • 41

VI. Conclusions and Recommendations . • . • • • . . . . . • . 45

Conclusions • . • . . . . . . . • . • • • • . • • • 45
Recommendations . . . . . • • • • • . • • . . • • • . 48

Bibliography . . . . • • . . . • . . • • . . . . . . . . . • • 5].

iii

_ _  - - — -. ~~~-..~~~~~-- - - —— • — -

~~~~~
:-- -

~~~~
--

~~~4..
-



Appendix A : Program to Simulate an E~ror Bit Stream . . • . . . 53
Appendix B: Program to Test Relative Frequency Estimation

Convergence 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6].

Appendix C: Program of Successive Approximation . . . . . . . . 65
Vita . . • . • • • . • . . . . . . . . . . . • . . . . • • . . . 68

f.

I

I

iv

j .. ~~
-. 

~~~ 
— - — - - — . 

~~~

.. . - —.- . — —  - - - - - _____________________________



‘ 

List of Figures

Figure Page

1 Two—State First—Order Markov Model . . . • . • • . . . . . 5
2 Measured Electric Field from a Lightning Discharge

at 20 1Cm • . . . • . • . . . • • • • • . . . . . . . • • . 8

3 Current Waveform of a Typical Multiple Discharge . . . . . 10

4 Simplified Partitioned Markov Chain • . . . . . . . • . . 18

5 Generalized Gilbert Model in Partitioned Markov Chain Form 19

6 Overlapping Pair Relative Frequency . . . . . • • . . • . 26

7 Anticumulative Gap Distributions . • • • • . . • . . . . . 39
8 Example Circuits for Relative Frequency Counters • • • . . ~4.6

9 Bit Stream Produced by Base Test Data . . . . • . • . . . 56

10 Bit Stream Produced with Parameter PE1 Changed . . • . • . 57

11 Bit Stream Produced with Parameter A Changed • . • . • . . 58

t 12 Bit Stream Produced with Parameter B Changed . • • • • • . 59

13 Bit Stream Produced with Parameter PE2 Changed • • . • . . 60

V

_ _  —-.~~~~~~ -.-—— -~ ---



List of Tables

Table 
____

I Relative Frequency Test . . . . . . . . . . . .. . . . .  Li.].

I

vi

. . - - .  _ _ _ _ _



Abstract

A model of burst errors from a real—time error bit stream of

up to 20 million bite per second is sought. Noise models and channel

acdi~ls are considered. The choice is a two—state Markov channel model

in which the states each generated independent Bernoulli random

~~cc~eaes. One Bernoulli process produces ones (errors) at a high

r.~.te, !tmulating burst errors. The other process produces ones at a

low rate , simulating random errors due to background noise • The

tr~.nsitton probabilities determine the average length of the bursts

and of the gaps. Relative frequency estimates of the probabilities

of certain sequences of one-bits from real data are related to

estimates of the model psrameters, so relative frequencies provide

a basis for fitting this model to real channels using observed error

t sequences. An equation for the number of errors in a block of bits

is developed in terms of the model psrameters. Burst probabilities

can be predicted based on this equation . The model was tested

using computer simulation . Some discussion is devoted to how this

burst-error model can be implemented in an actual device to provide

real—time channel characterizations. This model aids in the selection

of an error correction code.
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1
A BURST ERR OR MODEL

USING INTERLEAVED BERNOULLI PROCESSES

WITH A MAEKOV PROPERTY

I Introduction

Background

A significant problem in digital communications is the selection

of an error correction code . The type of code to use depends on the

bit error rate and on the distribution of errors • The distribution

Is important because errors often occur in groups (burst errors) .

There are many causes of burst errors in digital communications.

Generally, these causes are some form of impulsive noise . On wire
4

lines and telephone networks most Impulsive noise is man—made .

Some examples are external noise sources such as construction and

maintenance work , or internal network noise such as switching

(Ref 3:356) . Radio communications have some internal noise which

can be minimized with design techniques, but the most common cause

of impulsive radio noise is lightning (Ref 3,356) . The duration of

a single lightning strike can affect from a few bits to thousands of

consecutive bits, depending on the bit rate of the channel. The

intense electrical charge and resulting magnetic fields affect the

voltage levels of the received signal , and cause a high error rate

in the receiver output. Between lightning strikes, the error rate

is very low and is generally caused by Gaussian background noise • If

the past several bits are known to be correct or incorrect, the next

. -- .~~~~~--.- - .



bi t’s probability of being correct could be predicted . This uses

the fact that error—free bite come in groups ; so if the past several

bits are error-free , then the next bit has a high probability of

being error-free also. Similarly, if the past bits have a high rate

of error , then the next bit has a high probability of being in error .

Since the probability of error for the next bit is dependent on the

previous bit ’s correctness , then the error bit stream is said to be

dependent .

For uncoded transmissions, the consecutive bits affected by a

lightning discharge will not all be processed into error decisions

by the receiver . An example would be a receiver using a threshold.

The additive noise of the lightning discharge could increase the

amplitude of the received signal so that all decisions will be above

4 the threshold • Then , the only errors would be those bits that should
4

have been chosen as below the threshold.

When the burst error characteristics exceed the capability of

the error correction code, the decoded data output becomes completely

unidentifiable • Thus, the number of bits in a burst error , and the

number of error-free bits between bursts , are important distribution

parameters. They are needed to implement effective error correction

codes (Ref 1:1).

The Problem

The Air Force Communications Service wants a device to monitor

an active communication channel and determine its burst error

characteristics . Some of these characteristics are the number of

bursts per unit time or per interval, the average number of bits per

2
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burst , the maximum rnimber of bits in a burst , the average number of

bits between bursts , and minimum number of bits between bursts . The

Input to this device wil]. be the digital error sequen .~e output of the

Hewlett-Packard. model HP3761A Error Detector (a stream of bits where

a one signifies a bit in error and a zero signifies a correct bit)

Two types of output are needed. The first is panel displays of the

characteristics that are to be u~~ated at some preset rate determined

by the operator . The second type of output would be the characteristics

of the entire testing period , usually 2L1. hours (Ref 1:2).

A capability of testing systems with bit rates up to 20 million

bits per second (1(BPS) is desired by AFCS . Data reduction is the

problem that leads to the choice of these five characteristics by

AFCS • However , fully characterizing the burst errors for the entire

testing period requires more than the five characteristics discussed

above . The most efficient data reduction method would be to represent

the stream of error pulses with a mathematical model. This model

will completely characterize the error distribution and can be used

to determine the higher-order statistics. Defining P(N = n) for a].].

values of n possible will enable the calculation of the desired

- statistics • The discrete random variable N is the number of errors

in a block of k bits, and can be any integer , n , from 0 to k.

P(N = n) will be expressed in terms of the model parameters, and

thus the higher-order statistics can be determined based on the model.

Such a model will define the device desired by AFCS by determining

how to use the HP3761A Error Detector output to calculate P(N = n).

The purpose of this paper will be only the development of the model .

I The building of an actual device will be left as a follow—on project .
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Model Selection

A well designed model will characterize the desired process,

enabling prediction of future performance , and ideally, it will

model closely the physical nature of the process • The next chapter

references the physical nature of burst errors , and discusses an

attempt to use a marked point process as a noise model that generates

burst errors (Ref 20:128).

n(t) =~~~W m ô(t  - sm) (1)

Eq (i) is a series of impulses with Wm, a random weight factor , and

Tm the random arrival time of the impulses . This noise model

represents additive atmospheric noise where Wm and Tm can be selected

to produce any pattern of burst error output decisions in a correlation

type receiver • The point process model is not mathematically tractable

for the application outlined , as will be shown in Chapter II.

The second option abandons the ideal-model concept . Thus ,

there is only a limited attempt to model the physical nature of

the atmospheric noise • The need for simplified math led to the

use of a channel model. The channel model characterizes the error

bit stream directly , rather than modeling the noise that causes the

errors . The selection process, discussed in Chapter III , leads to

the two—state first-order Markov model (see Fig 1). The two states

are labeled NP1 and NP2 • One state , NP2 , produces errors at a high

rate , simulating burst errors; and the other state, NP1, produces

very few errors , simulating the relatively error-free segments

between bursts . The transition probabilities from one state to the

other are A and B respectively . The terms (1 - A) and. (1 - B) are



1 -

I

_A~~~~~~~~~~~~~~~~~~~~~~~~
’
~~~P 2 I  - B

Figure 1 • Two-State First-~~der Markov Model

the probabilities of staying in a given state from one bit to the next.

The error rates of the two states are FE]. for NFl and PE2 for NP2 .

It will be shown that the four model parameters A B , PE1, and

PE2 can be estimated using p(i), P(i ,1), P(l ,l,l), and P(l ,l,l,l),

where P(l) is the probability of an error bit, P(l,l) is the joint

probability of two successive error bits, P(l,l,l) is the joint

probability of three successive error bits, and P(l,l,l,l) is the

joint probability of four successive error bits • These four error

probabilities are estimated from the error sequence computed by the

HP detector during the test. A computer program is used to demonstrate

the validity of the estimation procedure and the identification of

the model parameters A, B, FE]., and PE2.

5
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Content

The purpose of this paper is to develop a workable model

that can be used in the calculation of high-order error statistics

during channel tests at high bit rates. Atmospheric noise models

are considered first , but the discussion will point out weaknesses

that eliminate various noise models • The channel model approach is

evaluated , and a two— state first—order Markov model is selected.

The main portion of this paper involves details on how the model

works, how it fits the proposed application, how to estimate its

parameters, evaluating the estimation , and recommendations .

I
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II Modeling Atmospheric Noise

In developing an impulsive noise model, the approach was

selected to develop an atmospheric noise model based on lightning.

This decision is based on the availability of literature on lightning

discharges and the number of models based on lightning. The purpose

of this section is to discuss lightning itself to understand what is

to be modeled , and then to evaluate the various lightning models.

Evaluation will be restricted to comments on strengths and weaknesses ,

not on proving a model valid or invalid.

Atmospheric Noise

Cloud-to—ground lightning discharges are a primary source of

atmospheric radio noise (Ref l~i:3). References to lightning in this

T paper will mean cloud-to-ground discharges . A potential difference

between the cloud and ground causes the lightning discharge . The

discharge can be broken into two steps : the streamer-leader predis-

charge and the return discharge . The predischarge is a series of

discrete leaders, each covering a short distance (several meters)

until a path from the cloud to the ground is formed. Each leader is

about one microsecond in duration • The return stroke lasts about

100 microseconds, and goes from the ground back up an ionized path

formed by the predischarge (Ref lL4. :14. ,5). The field intensity of

Fig 2 shows the sequence of leaders followed by the return stroke

The return stroke radiates 95% of the energy of the lightning

discharge process • It is the predominate atmospheric noise at

very low frequency (VLF) and. low frequency (LF),  and the leader

stroke affects noise In the high frequency (HP) region (Ref 13:3,1i) .
I?
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The 100 microsecond duration of the powerful return stroke can affect
4-

4 a large number of consecutive bits: 1000 bits at a transmission rate

of 10 million bits per second. There are many leaders per return

stroke, meaning that their effect is shorter, but much more repetitive.

Thousands of storms, creating lightning, exist at any one time

all over the earth • Due to its power , duration of discharge , and

high occurence rate , lightning is the primary, but not the only, cause

of burst errors • The current produced by multiple lightning discharges

shown in Fig 3 demonstrates a randomness in the arrival times and the

amplitude of the discharges. For the purpose of this paper,

atmospheric noise will be considered additive. Several authors give

expanded discussions on the physical nature of the lightning

discharge (Refs 6;l3;].LI.;24;26).

Model Requirements

The intended use of the model places certain restrictions on it.

The goal is to produce higher-order statistics to characterize the

error distribution. Thus, the first restriction is the ability to

calculat. higher—order statistics. The second is model simplicity and

tractability. This is due to the. high bit rates and the need to

estimate model parameters from the error bit stream. A complicated

model whose parameters can ‘t be estimated is of no value • The third

goal is to have the model fit the physical nature of impulsive noise .

This last goal is flexible, but is the reason for exploring atmosp heric

noise models first . Since the atmospheric noise is added to the

transmitted signal and then processed by the receiver, simplicity is

even more important with noise models • What appears as a tractable

9
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3 

model can lose much of its simplicity after the mathematical

operations needed to convert it to a receiver output are performed.

Why Use the Point Process Model

There are so many noise models in existence that it is difficult

to choose one • The three criteria that have been discussed eliminate

many of the existing noi4e processes. Convenient models , such as

Gaussian noise, fit the first two criteria , but must be eliminated

because they fail to model the impulsive physical nature of lightning

discharges.

Empirical models of lightning discharges (Ref s 13; ] J4 .;1 5)  are

designed to fit data compiled on lightning—induced noise • Since these

models are based on a tractable matching of first-order statistics,

such as APD curves (Ref 5 2; 21), they generally fail at producing
* higher—order statistics. In addition , most of these curve—fitting

models do not model the physical nature of the noise (Ref s 13; lLl.) .

This leaves the point process, which has the impulses needed,

in addition to meeting the first two criteria . The question is , can

its impulseness be modified to fit the physical nature of lightning

and still meet the first two criteria given above?

The Marked Point Process

The main point of choosing the atmospheric noise approach over

channel modeling is to closely model the physical nature of lightning,

a major cause of burst errors . The marked point process of Eq (1) is

developed by D. L. Snyder (Ref 20) . The steps he used to transform a

homogenous Poisson process into the marked point process are reviewed

here .
11
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The Poisson process can be associated with counting points or

impulses, ~ a (t - Tm). The number of impulees occurring in a time

interval (a , b) is Poisson distributed. The number of points in the

interval is a random variable , N , with a probability defined as

P(N = n) = ~~~ (2)

where

= J’~ ~(t) dt

for all b ~ a. The process is homogenous if ~~t) is a constant ,

indep endent of time • It is an inhomogenous process if ~ (t) varies

with time • A. is the avera ge rate or intensity over the time period

(Ref 20: 53—5~4 ) .  Snyder defines a compound Poisson process as an

inhomogenous Poisson process with indep endent , identically distributed

(iid) marks . This is in the form of Eq. (1) with W m as the iid marks .

The marks are also independent of the counting process arrival

times , Tm. -
Next , the unmarked Poisson point process is expanded where

x(t ) depends not only on time , but also on the previous points. This

is termed the self-exciting counting process because A. is now a

random process that depends on the number of points that have occur red ,

and can also depend on one or more of the occurence times of ~he

point s . The point process is further extended to the doubl y stochastic

Poisson process where x(t) is a function of ~t, where ~~ an external

information process, is either a vector-valued Gaussian process or a

vector-valued Markovian process. These point processes are in the

I form of Eq (1) without the mark s, Wa.

12



The marked point process, as defined by Snyder, is a doubly

stochastic point process with doubly stochastic marks • This is in

the form of Eq. (1) (Ref 20).

Selecting the Suitable Point Process

The question is, which of these point processes, if any, meets

the three criteria established earlier? To model lightning , as

depicted in Fig 1, for bit rates up to 20 MBPS , each return stroke

must be broken into a series of amplitude-varying impulses with one

in each bit signal duration • This will enable evaluation of the noise

effect on each bit . Thus, for a given return stroke , there will be

dependence between arrival times and between amplitudes of the points

that make up the stroke • This fits the definition of the marked

point process. A marked point process model accurately characterizes

the physical nature of the noise process, but does not meet the other

criteria. The higher-order statistics must be estimated , and Snyder

says these calculations can become intractable (Ref 20:Ll.60).

Hettinger (Ref lLl.) suggests using a simpler Poisson point

process. He uses two homogenous Poisson point processes, each with

iid Gaussian marks • C~ie process has a low rate to simulate lightning

pu].ses, and the other has a high rate to simulate the background noise .

His model is tractable , but lacks the dependence between the marks and

the dependence of the arrival times on previous points. Thus , its

value is limited in the proposed application.

Conclusion

The quick search of atmospheric noise models was desinged to

show that the Poisson point process is the best noise model for the

13



use discussed . However , it has several weaknesses. When the

dependence between arrival times and between marks is put into the

process, the model appears to be intractable for calculating

higher-order statistics • The model proposed by Hettinger is tractable,

but in ignoring the dependence in the lightning stroke , the model does

not completely model the physical nature of lightning. The physical

nature goal is flexible; however , if it is to be relaxed as a

criterion, the channel model approach becomes the better choice .

The noise model form at the receiver output will be different for

each modulation technique and for each receiver type . Thus, the

estimation procedure of the model parameters will be different in

each case , complicating the problem. The only advantage of the

noise model approach was to model the physical nature of lightning .

The other criteria have necessitated easing the physical nature

goal , so the channel model becomes more practical . It models the

error stream directly, and will be in the same form for all noise

sources and for all modulation techniques and receiver types

lLi.



III Channel Model Selection
S.

There are several terms used in channel model discussions of

burst errors • As noted earlier , impulsive noise , such as lightning,

does not cause an error in every bit it affects • A definition of

what constitutes a burst error is needed. Other terms that must be

defined include clusters , gaps, renewal process, and random process.

Several different definitions of burst error s can be found in

the literature • Here , a burst is defined as beginning and ending

with an error bit • Each error is included in one and. only one burst •

Each burst is preceded by, and also followed by, a stream of at least

L consecutive error—free bits. Thus, bursts are separated by at

least , L consecutive error-free bits, and no burst can contain a

stream of more that (L — 1) consecutive error—free bits . This yields

a burst error density , y,  that will be greater than i/L (Ref 12:1092).

Other burst definitions can be found (see Ref 8;ll;22;23). This

definition was chosen because it allows for error-free bits in the

burst . It also appears to be the best definition of this type for

implementation in hardware to count bursts and burst lengths.

A cluster is defined 1~o be a run of successive error bits , and

does not have any error-free bits . A gap is the run of consecutive

error-free bits between error bits . By definition , two consecutive

errors have a gap length zero between them (Ref 12:1189) . Using this

definition, the total number of gaps equals the total number of

error oits. Also, gape can be divided into two groups • The first

group consists of the short gape that exist in bursts • The second

( group consists of the long gape that exist in the relatively error-free

1$
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bits between bursts. The second group will be called the between

burst gaps.

The process definitions relate to the characteristics of the

model • A random process is defined as producing independent random

errors; thus, it does not produce bursts of dependent error bits. A

renewal process is defined as a process where the transition

probability to state j of the model, after an error has occurred, is

independent of the state in which the error occurred • Therefore, the

gape between errors are independent random variables with the same

probability distribution (Ref 17:1713,1715). The errors in a renewal

process are dependent • Then a non-renewal process has dependent

gaps and dependent errors.

Nth Order Markov Models

The dependence between error bits and between error-free bits

in the error bit stream has been discussed. Nth order means that the

probability of error of the next bit depends only on the correctness

of the previous N bits. Knowledge of the correctness of bits prior

to the previous N bits does not change the error prediction of the

next bit. Thus, the probability of an error in the jth bit , given the

previous bits, yields

F P(Xj /X j_j . . . .X0) = P(xjJxj...l’•..xj_N) (3)

where Xj is the ith bit in the error stream.

Haddad, et al. propose using a Markov gap model (Ref 12). ThIs

model assumes that the gap sequence length is a discrete—time,

( integer-valued Markov process of the first order • The range of

16



possible gap lengths is divided into sub—ranges so that the sub—ranges

are approximately equiprobable . Thus , an infinite dimensional

process is reduced to a finite number of states equal to the number

of sub—ranges. Hanual curve—fitting is required to determine the

coefficients of the conditioned gap distributions of the model

(Ref 12:1191) . This removes the gap model from further consideration .

Another Nth order model , the partitioned Markov chain, is

proposed by Fritchman (Ref 10). He proposes an N state model

partitioned into two types of states. There axe M states that

produce only error-free bits (gaps) and (N - M) states that produce

only error bits (clusters) . There are transition probabilities between

all states including continuation in the current state • This model

has a maximum of 2M(N - N) model parameters (Ref 10:221-225) .

Frltchman then simplifies his model to allow it to be specified

by the gap distributions • He restricts the model to one error state

and (N — 1) error—free states. In additon , he eliminates the

transitions between error-free states • The simplified partitioned

Markov chain model is depicted in Fig 4 and has a maximum of 2(N - 1)

model parameters . Fritchman ’s models are feasible , if N is small

enough to keep the number of parameters reasonable , and will be

discussed later.

The Two-State Markov Model

Gilbert (Ref 11) suggested the first model with memory. His

two—state Markov model (see Fig 1) has a good state and a bad state.

The good state produces only error-free bits, and the bad state yields

( error bits with a probability P(e) = 1 - h • The good state produces

17



error-free states error state

Figure 4 .  Simplified Partitioned Markov Chain (Ref 10)

C

the gaps and the bad state produces bursts of density (1 — h).  Elliott

(Ref 9) generalized Gilbert ‘s model so that each state produces error

bits . Using Fig 1 again , the state labeled noise process one (NP1)

yields a few random errors at rate PEl << 1 • The second state, noise

process two (NP2), produces many errors , and can be viewed as a burst

of density PE2. The Fritchman models are extensions of these two models.

The Gilbert bad state can be broken into two states: one that produces

c1i~sters, and one that produces gaps, with h and (1 - h) as the

transition probabilities. Then , the Gilbert model looks like the

original Fritchman model with two error-free states and one error state .

If , in addition, restrictions are included where transitions from the

( bad state to the good state only occur immediately after an error , and

j 18
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Figure 5. Generalized Gilbert Model in Partitioned Markov Chain form.

transitions from the good state to the bad state only occur immediately

before an error , then the Gilbert model becomes a simplified Fritchman

model with only one error state . Similarly, if the states of the

Elliott model are divided into cluster and gap states , the model looks

like the original one proposed by Fritchman with two error states and

two error—free states (Fig 5). The states do not generate Bernou lli

processes in Fig 5. The top two states only produce zeros and the lower

two states only produce ones. Note that the transition probabilities

( of this model reflect both the tra nsition probabilities and the error

19
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rates of the generalized Gilbert model • The left two states combine

to form state NP1 of the generalized Gilbert model, and the right two

states combine to form state NP2 • There are many models that are

variations of Gilbert and generalized Gilbert (Elliott) models

(Refs 8;17) .

There are several drawbacks to the Gilbert model • Since it has

only one error producing state , it is a renewal process; therefore,

the gaps are independent. Secondly, it produces only bursts, and does

not allow for single , random errors due to background noise • The

generalized Gilbert model corrects these flaws. The generalized

Gilbert model has two error producing states, and becomes a renewal

process only on the conditions that either the transition proba-

bilities 1 - A = B and 1 - B = A both have equality, or if either

error rate is zero . Then , the restrictions that A + B ~ 1 ,

PB]. / 0 , and PE2 ~ 0 make the gaps dependent random variables with

probability distributions that depend on the last gap (Ref 17:1713).

Of course , the restrictions PB ~ PE2 , A ~ 0 , and B ~ 0 must

be imposed or the model becomes a random process.

The Generalized Gilbert Model

The generalized Gilbert model of Fig 1 satisfies the model

requirements outlined earl ier • A detailed discussion of how this

model works will illustrate that it meets these requirements. The

two states of the model are Bernoulli events • State NP]. produces a

sequence of indep endent bits with P(x = 1) = PB]. and

P(x 0) = 1 — PB]. • State NP2 similarly yields a sequence with

ç P(x = 1) = ff2 and P(x = 0) = 1 - ff2 • The transition probabilities

20
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are stationary, thus the two—state Markov chain is completely

specified by the single step transition matrix P

r l - A  A l
I (4)

L B  1 — B ]

The key to the generalized Gilbert model is the Bernoulli random

variables produced by the two states. This allows the use of a two—

state first-order Markov model to simulate an Nth order Markov process.

Thus, state NP1, which has a very small probability of error , simu-

lates the relatively error-free bits between error bursts , and state

NP2 , which has a large probability of error , simulates the burst

errors • The transition probability (1 - A) of staying in state NP1

determines the approximate number of bits between the bursts, The

probability (1 - B) determines the average length of the burst . The

states simulate the dependence between error bits , and the transition

probabilities determine the Markovian order of the dependence.

The generalized Gilbert model is very flexible • It is a

non-renewal model as defined with the restriction s ff1 ~ ff2

A + B ~ 1 , and with none of the parameters zero . However , by

allowing A + B = 1 or by ’ setting one of the error rates to zero ,

the model can be converted into a renewal model • The model can also

simulate a Bernoulli random process • This can be done by setting

PEa = 1 and ff2 = 0 and A + B = 1 • Then this random process

has a probability of error P(e) = B and a probability of being

correct of 1 - P(e) = A = 1 - B • These simple conversions mean

this model can simulate random , renewal , and non-renewal channels.

C The generalized Gilbert model can also be related to the
21
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physical nature of the burst error process • The small probability of

error of state NP1 can be translated into errors induced by white

Gaussian background noise • The error sequence determined at the

receiver output can not differentiate between sources of errors. Thus,

errors produced in NP2 can be translated into errors produced by a

short duration , intense white Gaussian noise process • Such a simulation

of lightning by Gaussian noise is unthinkable in an atmos~~eric noise

model, but here the channel error sequence can not tell the difference.

The relationship between probability of error and Gaussian noise is

addressed by Van Trees (Ref 25). Thus , the states NP1 and NP2 can be

thought of as states of atmospheric noise having the app ropriate

Gaussian noise parameters associated with them. Being able to view

the noise as being created by two Gaussian processes further enhances

( the simplicity and tractability of the generalized Gilbert model .

Another property of this model is that the two states are

first-order Markov. Thus, the probability of any sequence of states

occurring can be broken into a product of conditional probabilities by

using the Markov property that P(SilSk...l,Sk_2) = P(SkjSk...l) . Then ,

a state sequence SkSk .1. . .S1 has probability

P(SkSk_l...SZSl) = P( Sk/ Sk.... l) P (sk_] J sk_2) . . .p (s2/S1) P (s l)  (5)

where Sk is the kth state in the sequence . These conditional state

probabilities are the transition probabilities of Fig 1. However , the

bit sequence produced by the model is not first-order !4arkov. The

model produces a dependent bit stream where P(o/o ,o) ~ P(0/o)
This property of the bit stream will be proven in the next chapter .

( ‘
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From the above discussion of Markov channel models it becomes

apparent that the generalized Gilbert model is the logical choice .

It has great flexibility, and yet is relatively simple. It can

simulate non-renewal , renewal , and random channels with only f our

variable parameters. The next chapter proposes a procedure to

estimate the model parameters from the bit stream , and develops

an equation for P(N = n) .

C

I
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IV Estimation of Model Parameters
4
4

There are several approaches that can be used as estimation

procedures. The one proposed here is relative frequency . The

probability of an event can be approximated by the event • a relative

frequency . The law of large numbers states that the relative

frequency of an event can be within any desired accuracy of that

event ’s probability, if the number of trials is made large enough

(Ref 18:70—71) . The high bit rates and the long testing periods

indicate that relative frequency estimation should be well within

reasonable limits of accuracy for the stated application. The proposed

generalized Gilbert model is defined as stationary, thus the transition

probabilities are constant for all time , In addition , the error rates

of the two states are independent random variables with fixed

probabilities for all time , The model does not change with time , so

relative frequency can be used. These are reasonable assumptions for

time periods on the order of tens-of-minutes or hours during which

millions of samples are available

Since there are four model parameters, four independent

quantities must be estimated from the bit stream. These estimated

quantities must be capable of being expressed as equations in terms of

the model parameters . The model parameters can then be estimated by

solving the four independent equations.

Estimation Procedure

The probability of a correct bit , p (o), and the probability of

an error bit , P(i) , can be easily estimated from the error sequence

using relative frequency. Summing the error-free bl.ts and error bits

• 2~
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respectively and dividing by the total number of bits yields the

relative frequency approximation for these probabilities. The joint

probability of two successive bits can also be approximated from the

error bit sequence . The notation used here for the jo int probability

of a zero followed by a one in the error stream is P(i ,o) . This is

consistent with the notation used in Eq (3) and Eq (5) .  The pairwise

joint probability estimates are the sum of the overlapping pair

combinations in the sequence . For example , 0100..’ has 01, 10, 00 , O ’ ’•

e~s the overlapping pairs of successive bits • The four possible joint

distributions are summed separately and divided by the total number of

overlapping pairs (the total number of bits minus one) . This yields

the relative frequency of the joint probability distributions . Fig 6
illustrates the use of overlapping pair relative frequency . Similarly,

the probabilities P(l ,l,l) and P(l ,l,l,l) could be estimated using

overlapping groups of three and four bits respectively.

Probability Equation Deve1opa~ent

In developing the equations for these probabilities in terms of

the model parameters , several properties used in the model will b~
needed . First , the two states , NP1 and NP2 , are disjoint and th.r.f or. ,

mutually exclusive • Thus, the model can only be in one state at a

time, and the transitions between states are considered instantaneous .

Second , the model is stationary, arid the state transition matrix of

Eq (2) defines the model for all time • These tico properties mean the

probability of beginning in a particular state can be determined from

the equations

P(NP1 U NP2) = P(NPI ) + P(NP2) = 1 (6)
25
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Total number of bits = 14.

Total number of pairs = 13

Relative Frequencies

~(l ,0)~~~~~~E l 0’s~~~~~

p(i) ~~ ~ l’s = P(O ,l) = E 01’s =

~‘(o ,o) = E 00’s = ~(l ,l) = E il’s

Figure 6. Overlapping Pair Relative Frequency

(I
and

p(Np 1) = (1 - A) P(NP1) + B P(NP2 ) (7)

Solving for P(NP1) and P(NP2 ) yields the steady state probabilities

B
— 

A + 3

(9)

These are used as the initial condition probabilities for the starting

state .

f The notation 0 Il NP1 means an error-free bit occurring in

state NP).. Similarly, 1 fl NP2 means an error bit in state NP2

~ 
( - The joint probability can be expressed as

26
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P(o 1) NP1) = P(o/NPl ) P(NPl ) (10)r
The occurrence of an error—free bit can be in state NP1 or NP2 and is

expressed with the notation (0 fl NP1) U (0 fl NP2) . The probability

of an error-free bit is

p (o) = P[(o n NP1) U (0 ii NP2)]

= P(o n NP1) + p (o ii NP2)

= P(o/NPl)p(Npl ) + P(o/NP2)p(Np2)

Substituting the model parameters into this equation using

P(O/NP1) (1 - PE1) and P(0/NP2) = (1 - PE2) yields

p(o) = (1 - ff1) B/(A + B) + (1 - pE2)A/(p . + B) (U)

A similar procedure using P(l/NP1) = PE1 and P(1/NP2) PE2 leads to

P(l) = (pEa ) B/(A + B) + (PE2) A/(A + B) (12)

Development of the joint probabilities is more involved , but uses

the same properties.

P(o ,o) = ~~(o fl NPl) U (0 fl NP2) ,(o fl Rl) U (0~ NP2)J

= P[(o n NP).) U (0 n Np2) , (o ii NP].)]

+ p[(o n NP).) U (0 ri NP2) , (o 11 NP2)J

= ~[(o ii NP1) U (o n NP2)/(o fl NP 1)JP(0 11 NP).)

+ ~~(o r~ Np).) U (0 n Np2)/(o n NPz)]p(o n Np2)
C

p 
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= [p(o n Npl/0 fl NFl) + P(o fl NP2/O fl NP 1)]p(0 n NFl)
4

+ [p(o (1 NP1/0 Ii NP2) + P(o fl NP2/0 (1 NP2)]P(0 fl NP2)

Since the transition between states is dependent only on the previous

state and not on the correctness of the previous bit , then

P(o fl NP1/0 fl NFl) = P(o fl NFl/NFl) = P(0/NP1)P(NP 1/NP1) . This yields

P(o ,o) = [P(o/Np 1)P(Npl/Np 1) + P(0/NP2)P(NP2/NP1)]P(0/NP1)P(NP1)

+ [P(o/NPl)P(NPl/NP2) + P(o/NP2)P(NP2/NP2)]P(o/NP2)P(NP2 )

Substituting the model parameters yields

P(o ,o) = [(1 — A) (1 - Pn) + A(l — PE2)J(l - PE1)B/(A + B)

+ [B(l - PE1) + (1 - B) (l - PE2)](l - PE2)A/(A + B) (13)

C

Similarly, the other joint probabilities are

P(o ,i) = [(1 - A)(l - FE].) + A(l - p~2)](PEl)B/(A + B)

+ [B(l - Pn) + (1 - B) (l - PE2)](PE2)A/(A + B) (14.)

p(l ,o) = [(1 - A)PE1 + APE2J (l - PE1)B/(A + B)

+ ,[BPE]. +(l - B)PE2J(]. - PE2)A/(A + B) (15)

P(l ,l) = [(1 - A)PE1 + APE2](PE )B/(A + B)

- + [BPE]. + (1 - B)PE2] (PE2)A/(A + B) (16)

These joint probabilities and P(o) and P(l) give six equations, all

in terms of the four model parameters • However , they yield only two

28

I

S . :., ,. - — . - —.- — ‘—————— — - — — ~— ‘ —.——‘. — —— .—‘ ‘ —— .—‘ — -———-— ———— ~~~~‘- - ——--——— -—- _______________



independent equations in the four parameters. Since P(i) = 1 — P(o)

C

these two unconditional probabilities yield only one independent

equation to solve for the model parameters . The four joint proba-

bilities sum to one, also. In addition, P(o,i) = P(l,0) and

P(o,i) + P(o ,o) = P(o) and P(i ,o) + P(l ,i) = P(l) ; and combining

these with either P(l) or p(o) means that only one of the joint

probabilities can be used as an independent equation. P(1) and P(l ,l)

are chosen because they contain PEa and PE2 rather than 1 - PEa and

1 - ff2 • A set of similar identities show that only one of the

three—bit joint probability equations is independent when given P(l)

and P(l ,l). The identities for the eight three—bit joint probabilities

are

E of all eight probabilities = 1

P(l ,l,l) + P(l ,l,o) = P(i ,i)

P(l ,o ,l) + P(l ,o ,o) = P(l ,o)

P(o ,i,o) + P(o ,l,l) = P(o ,o)

P(o ,o ,l) + P(o ,o ,o) = P(o,o)

P(l ,l,o) = P(o ,l ,l)

P(o,o,l) = P(l,o,o) (17)

These last two identities and P(o,l) = P~L,0) are as expected. When

looking at only two bits , the probability that one of them is an error ,

and one is not , is the same whether the error occurred first or last .

( Similarly, when looking at three bits, the probability of two

29
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successive errors and one error—free bit is the same whether the

error—free bit occurred before or after the two successive errors .

These similar events must not be confused with the dependence that

exists in the error stream, P(l/1) ~ P(l/1,l)

The equations for P(i ,i,i) and the fourth independent equation ,

P(l ,l,1,l), are developed in the same manner as P(l ,l) and yield

P(l ,l ,l) = ((1 - A)PE3J (l — A)PE1 + APE2] + APE2[BPE1 + (1 - B)PE2)J}

BPE1/(A + B)

+ {BPEaI (l - A)PE1 + APE2] + (1 - B)PE2[BPE1 + (1 - B)PE2] }

APE2/(A + B) (18)

and

P(l ,1,l,l)

= {(l - A)PE1[(l - A)PE1((1 - A)PE] . + APE2) + APE2(BPE + (1 - B)PE2)J

+ APE2[BPE1((l - A)PE]. + APE2) + (1 - B)PE2(BPE1 + (1 - B)PE2)]}

BPE1/(A + B)

+ {BPE C(l - A)PE1((l - A)PE1 + Ap~~ ) + APE2(BPE + (1 - B)PE2)]

+ (1 — B)PE2[BPE1((l - A)PE1 + A1E2) + (1 - B)P~~(BPE1 + (1 - B)PE2)]}

APE2/(A + B) (19)

Each of the four independent equations has a different order of

magnitude in the model parameters . Solving these equations for the

30



model parameters will yield some high-order polynomials. The problem

could be reduced by assuming PE2 to be a constant . For non-renewal

channels , PE2 = .5 is the best approximation (Refa 4.:627;ll:l260;l6:60).

This assumes that a one and a zero are equiprobable in the message , and

the receiver uses some sort of threshold technique . The impulsive

noise that causes burst errors would cause the entire received message

to be above the receiver threshold during the burst . The receiver

output data would be correct approximately half the time (the bits

that should have been above threshold) , and in error approximately

half the time (the bits that should have been below threshold) .

Solving Eq (12) for A yields

A - B(PE1 — p(l)) 20- (P(l) - PE2)

Substituting this into Eq (16) and solving for B yields

B - 1.~~~~’E2 - pEa) + pn2 (p~l) - PE2) + PE22 (PE1 - ~() . )) 21(PE2 - PEa) (PE - p(l)) (

Substitution of these values into Eq (17) to solve for PEa led to a

ninth degree polynomial in PE1. Attempts, so far , to reduce this

polynomial have failed. It seems reasonable that most of the roots

of this polynomial could be eliminated by the restrictions that

exist on PEa • First , PEa must be real and in the range (0 ,1). In

addition , PE2 (assumed to be .5) must be greater than PB). by several

orders of magnitude because the random errors have a much lower density

than burst errors . Third , PB]. must be greater than zero or the model

becomes a renewal process.

The ninth order equation only arises for non-renewal channels.

( For random channels PE2 = 0 and. PB). = 1 , so only A and B must be
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f ound . For renewal channels only one error producing state is needed,

so PE2 = 0 can be used. PEa would then simulate the burst errors in

the model . Eqs (12) — (17) become simplified . The relative frequency

suggested by Gilbert (for his model with only one error state) .~an be

used. With PE2 = 0 the equations for A and B become

A - B(PE1 - P(l))
- P(l)

- P(l)PE - P(l ,1)B -  PE1-P(l )

Gilbert uses c = 

~~~ 
to reduce the order of

magnitude of the model parameters in his third independent equation .

Converting his notation and equation to the form used here yields an

equation for PB]. (Ref ll~l260) .

— ~(l,l)[2P(l)2C — p(l .].)~ p(].) + ci]PB). — P(l))c — p(i ,i) (22)

Thus , the generalized Gilbert model can produce the correct results for

renewal processes and random processes as special cases of the parameter

values .

An iterative procedure to solve for the model parameters in

the general case is discussed in the next chapter.

Two more equations must be developed. First , it should be

shown that this model does in fact produce a dependent error bit

stream. Second, the goal of this paper is to develop an equation

for P (N n)

(-
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Proof of Dependence

The proof of dependence in the error bit stream requires two

inequalities. P(l) ~ P(l/l) shows dependence , but the two—state

model for the state sequence is first-order • Therefore ,

P(1/l,l) ~ P(l/l) is needed to prove that the bit sequence

dependency goes beyond first-order . Using Bayes rule , these two

inequalities can be converted to P~ .)2 ~ P(i ,l) and

P(1,l,l) ~1 P(l ,l)2/P(l) . Multiplying both sides by a constant

doesn ‘t change the inequality, but does eliminate the denominator .

(A + B) 2P(l) 2 = (A + B) (BPE12 + ABPEJ.PE2 - ABPE12 + APE22

+ ABPflPE2 - A.3PE22)

Combining and factoring yields

(t  + B)2(P~].,l) - P(i) 2) = (ff2 - PE1)(A) (B)(1 - (A + B)) ~ 0

This inequality holds if PE1 ~ PE2 , A ~ 0 , B ~ 0 and

A + B ~ 1 • These are the same restrictions imposed to prevent the

model from becoming a Bernoulli random process. P(l/l ,l) ~ P(l/1)

becomes

(A + B)(APE2 + BPE1)P(l ,l,l) ~ (A + B)(APE2 + BPEa)P(l ,l)2
/P(l)

Multiplying these out , combining and factoring yields

(PEa -PEZ )2[l-  (A + B)]2
~~~o

This inequality holds if PB). ~ ff2 and A + B ~ 1 , and both

restrictions are already imposed. These inequa lities hold for any

C 
sequence of bits put into the probability equations. Thus, even
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though the state sequence is first—order Markov , the bit sequence has

higher-order dependencies - it is not first-order Markov .

Development of P(N = n)

A pattern can be seen in the equations developed for the various

joint probabilities, but it isn ’t a form convenient for notations .

Comparing Eqs (U) and (12) to Eqs (13) — (16), and then to Eqs (18)

and (19) , shows that the addition of a bit adds new terms to the inner-

most product of the equation . For a given block length , k , P(N = n)

would be the sum of those joint probability equations for k bits that

contain n errors . A more convenient notation can be developed.

Using Bayes rule

P(N = n) = E P(N = n/SkSk...l...S1)P(SkSk....1...S1)

C where the summation is over all the 2k state sequences , Sk’ • .Sl.

Using the Markov property of the state sequence (see Eq ( 5) )  yields

P(N = n) = E P(N = n/SkSk_l •Sl)P(S~./Sk_ 1)..’p(S~/Sl)p( Sl) (23)

~eq~~~~~s

A convenient notation can be developed for P(N = n/Sk ...Sl) . The

sum of independent Bernoulli events has a binomial distribution • The

two interleaved Bernoulli processes of the model can then be expressed

as the product of the two binomial distributions. This is done by

dividing the k states into two groups and the n errors into two

groups using the following notations.

k = the length of the block of bits

n = the number of errors in the block
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k1 = the number of times state NFl occurs in a given set of k states

k2 = the number of times state NP2 occurs in a given set of k states

n1 = the number of errors that occur in state NFl in a given set

of k states

= the number of errors that occur in state NP2 in a given set

of k states

where

k k1 + k2

n = n1 +

Thus , with this notation, a single summation is used on this product of

binomial distributions.

( min(n,k1) n1P(N = n/Sk...Sl) = E (kl)pEa (1 - PB).)
n~~~~0 1

. (k2)ff ~n2() . — p~~)k2 5n2 (24.)

Thus, for a given sequence of states P(N = n/Sk. . 51) is the average of

a].]. the possible ways n errors could occur in the state sequence .

The unconditional probability of n errors , P(N = n),  is the conditional

probability averaged over all possible state sequences.

This concludes the development of the model and of the estimation

procedures. The testing of the model and the relative frequency

estimation with computer simulation are discussed in the next chapter.

C
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V Test Results

I

This chapter discusses the results of three computer programs

used to test the model . A computer program has been designed to

generate an error stream based on the model parameters. Ckie purpose

of this program was to determine if the model would produce a “bursty”

error stream. Also , each of the model parameters are varied , one at

a time, to show their effect on the bit stream. Second, the program

is modified to test the convergence of the relative frequency estimates

of P(l), P(l ,l) ,  and P(l ,l,l). A third program was created to test a

simple iterative procedure using successive approximation to estimate

the model parameters from the independent equations.

Model Test

The simulation program used to generate an error sequence uses a

random number generator function (RANF ) that is unif orm over the range

(0 ,1). The generated random number is tested against the transition

probabilities to determine which state the model is in • If the random

number generated is less than or equal to B/(A + B), the initial state

is NP)., otherwise it is NP2 . Then , a second random number is generated.

Based on the state , th. random number is tested against the error rate .

If the random number is less than the error rate , the bit is a one ;

if not , it is a zero. Af ter the initial condition , all state

transitions are based on the current state • For example , if currently

in state NP] , the state will be changed to Nfl if the random number

generated is less than or equal to transition probability A; otherwise

the state remains NP]. • Random numbers are generated to test the state

( transition and the error rate for every bit in the error stream
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simulation . The program, its flow chart , and the error streams it

generated can be found in appendix A.

A short test of 2000 bits was used . This was a compromise to

have enough bits to detect the burst tendency, and still have a small

enough sample to manually analyze the gap distributions • The model

parameters were selected to show burst errors and gape in a small

sample , rather than to fit any known channel characteristics. The

parameters were A = .01 , B = .1 , PB]. = .001 , and PE2 = .5

The values of B and PE2 mean the average burst will be about ten bits

long and have a density of about .5. The values of A and PB]. mean

the average gap between bursts will be about 100 bits long , and about

every tenth between-bursts gap has a random error splitting it into

two smaller gaps • The generated error stream would average out to

these values if the test sample were large enough (relative frequency) .

The test data produced very well defined bursts with a density of about

.5 and an average length of 9.25 bits. The relatively error-free bits

between bursts were well defined also, and averaged 2]J.i. bits (due to

two gaps of over 4.00 bits) . There were a total of two random errors .

The model parameters values tested above will be referred to as the

base data test.

To test the model ’s flexibility, PB). was increased to .01 and

a).]. the other parameters remained the same as in the base data test .

The number of random errors increased to eleven. Thus, the error

stream was affected as predicted by the change in the model parameter .

The average burst length increased to 18 bits , but this was due to one

very long burst of 100 bits. The average number of bits between

bursts was 125, closer to the expected value with A = .02.
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In the next test A = .001 , and the other three parameters ~rere

set to the values of the base data test e The average burst length

remained the same , the number of random errors went back down to two ,

but the average number of bits between bursts increased to 400 . Again ,

the bit stream reacted to the parameter change as predicted by the model.

The third test used B = .01 with the other three parameters set

to the values of the base data test . As expected , the only signif i-

cant change in the error stream was that the average length of a burst

had increased to 110 bits. The fourth test used PE2 = .9 as the

only change from the base data test • Here , the only significant change

was the density of the error burst .

These tests have shown that the model can produce burst errors .

In addition , it has shown that each of the model parameters does

affect the bit stream as predicted. Thus , by varying the model

parameters , any desired distribution of errors can be simulated by the

generalized Gilbert model.

The gap distribution is often used to analyze a channel

(Ref s 9;lO; ll ;12) . These tests of the model parameters can be

analyzed from that viewpoint . Each test was ~~oken into twenty

100—bit blocks . Thus, the longest possible gap is 100 bits. This

was done so that a scale could be used to show the changes in

probability for small gap lengths.. p(om) is the probability of m

consecutive error—free bits . P(m) is defined as the probability that

the gap length is greater than or equal to a bits . Thus, P(m) is the

anticumulative first-order probability distribution (Ref 12~1189-90) .

(
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m-l
P(m) = 1 - ~ p(0n) m 1

3 n 0

P(m) l m 0  (25)

Fig 7 is a plot of P(m) versus gap length. Note how the changes

in the model parameters change the distribution of the gap lengths.

If P(m) were plotted on a log scale , it would have an exponential

decay si~i1ar to the VW channel plot in Haddad., et al. (Ref 12 :1191).

This seems to establish that the model has face validity, but further

testing should be done .

Relative Frequency

The same computer simulation was used to generate the error

stream based on the model parameters . However , in this program

relative frequency was tested for accuracy in estimating P(l), P(l,l).

and P(l ,l,1). The program and its flow chart can be found in

appendix B.

Each bit in the error stream that is a one increments the P(l)

counter . The P(1,1) counter is incremented if the current bit and the

previous bit are both ones. The P(1,l,l) counter is incremented if

the current bit and the two previous bits are ones • These counter

values are then divided by the total number of bits , total minus one ,

and total minus two respectively to get the relative frequency

estimates of the probabilities. Table I contains the results of

these tests . Note the percent error at 2000 bits is 10 — l~~ , but for

a one-million bit sample the percent error is reduced to 1 - 2%.

Relative frequency should converge much faster than this for a

Bernoulli random process. The rather slow convergence indicates the

4.0
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TABLE I

1

RELATIVE FREQUENCY TEST

number of bits p(i) P(l ,1) P(l ,l,l)in sample run

.01+15 .0165082541 .00750750752 ,000 (10.11.9%) (19.3:3%) (18.47%)

.04.768 .0216601+332 .009960398450,000 (2.84%) (5.84% ) (8.16%)

.014434 .0197720791 .0092360739250,000 (4.36%) (3.38%) (0.3%)

.0468911. .0207420207 .00937001871,000,000 (1.1414%) (1,356%) (1.752%)

calculated .01463636364 .0201+645364 .0092086694
values Eq(l2) Eq.(16) Eq(l8)

NOTES:

(1) Values in Parentheses are the percent error , using the

— C — Elformula error % x 100 where C is the calculated— C
value and E is the experimental value

(2) These tests used a computer-simulated error bit stream

based on model parameters A = .01 , B = .1

ff1 = .001 , and ff2 = .5

4.1

I
- 

~~1~~~~-~~~- 
- - -  --5 - ~~ - - - - - — - .— -- - - - - -- - -  -..—.— --~~.----—~~SS - - - - --- - - --- -~~~~~~~-- - -- - - - - -



‘ 

memory of the model , ie. the dependency in the bit stream . However ,

relative frequency is a valid estimation procedure for the generalized

Gilbert model . Sampling over intervals of several hundred-million bits

or more should yield probability estimates with less than 1% error .

This seems reasonable for the bit rates and testing periods outlined

by AFCS ..

The tests conducted to this point indicate that the model

perf orms as predicted, and has the flexibility needed . In addition ,

the bit stream estimation procedure converges toward the actual

probability values, and the sampling intervals should be long enough

to insure sufficient accuracy.

The only shortcoming of the model at this point is solving PE1

for non-renewal channels • The next test involves the use of a

simple successive approximation routine to solve for PE1.

Successive Ap~~oximation

Since PE1 was not readily solvable, this section uses a simple

iterative procedure in an attempt to solve the three independent

equations for the three unknowns A , B , and PE1 (PE2 = .5) .  However ,

since PE1 is a polynomial, there m ay be several values of PB]. that

will solve the equations . Thus , there is some concern that the

solution attained here will not be unique .

An equation in the form f(x) = 0 can be rewritten as x = F( x)

To eolve for the roots of f(x) put an initial approximation , x1, into

F(x) and solve for x2, the second approximation . x2 is then put into

F(x) which yields the third approximation, X3.

XJ +l = F(xj ) (26)
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This successive approximation will converge if IF’(x)(< 1 (Ref 5:1 68).

The equations for P(l) , P(1,l),  and P(l,l,l) can be put in the

f orm f 1(A ,B ,PE1) = 0 , f 2(A ,B ,PE1) = 0 and f3(A ,B ,PE1) = 0 and

then rewritten as

A = F1(A,B,PE1)

B = F2(A ,B ,PE1)

PE1 = F3(A ,B,PE1)

For the non-renewal case, these three model parameters must be less

than one and greater than zero . Thus, bounds can be placed on the

approximations to aid convergence • These procedures were implemented

with a computer program, but it failed to converge .

Eq (26) can be rewritten as

= (1 - H)xj + HF (xj ) (27)

where the convergence could be enhanced by the choice of H (Ref 5~l68).

In addition , tighter bounds can be placed on the model parameters. It

is reasonable to assume that PE1, the random error rate , will be at

least two orders of magnitude less than PE2, the burst error rate or

density. Also, A should be at least one order of magnitude less than

B, meaning the gape between bursts will be at least ten times longer

than the bursts . These changes are incorporated in the computer

program in appendix C. AHAT , BHAT , and E1HAT are the symbols used

for F1(A ,B ,PE].), F2(A ,B,PE1) , and F3(A ,B,PE1) respectively . The

program is a simple loop computing new approximations for the parameters ,

( and substituting them back into the equations. This program uses the

11.3



. calculated values for P(i), P(l,l), and P(1,l,l) in the iteration

equations. These values are the same ones used in the base data test

and the relative frequency test , except A = .007 .
Fifty iterations were used to determine if the approximations

were converging or diverging. Various initial approximations within

the parameter bounds were tested . Various values of H were also

tested. It was found that H < l0~~ kept the parameter approximations

within the bounds • However, only two of the three parameters would

converge at the same time to the known model parameter values. It

appears that the existence of more than one solution to PB]. is

responsible for the failure of this iteration procedure. There are

a multitude of iteration procedures that could be attempted. However,

there is insufficient time to search for one that will work.

The model testing and re1at~ve frequency testing indicate that

the generalized Gilbert model can be used for real-time burst error

modeling. The iteration procedure did not succeed, but there are other

iterative routines that should be attempted. They will be discussed

in the conclusions and recommendations that follow.

(
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VI Conclusions and Recommendations
I

The discussions in this paper lead to several conclusions

concerning real-time burst error modeling. Based on these conclusions,

some recommendations are made for continued study on this topic.

Conclusions are discussed first, covering what has been accomplished.

Recommendations are in the last section. They suggest possible

approaches for further work .

Conclusions

One of the main thrusts of this paper was to find a suitable

model for burst error analysis on a real-time basis. The intended

use of the model created restrictions on the model choice . The best

choice, based on the criteria, is the generalized Gilbert model. This

is a rather uncomplicated model that produces the dependency that

exists in the bursts and the dependency that exists in the gaps. Yet,

the model is flexible and can model renewal channels and random

channels as special cases of the general model .

There is another advantage of this model • Because it d.oesn ‘t

vary with time , relative frequency can be used to estimate probabilities

from the real-time bit stream. The probabilities chosen can be easily

obtained from bit streams at bit rates up to 20 MBPS • The simple

logic circuits needed to increment the counters are shown in Fig 8.

Since reliable estimates can be formed in a time period on the order

of a minute or less, the stationaxity assumption seems justifiable.

The next step was to define these probabilities in terms of the

model parameters. This was accomplished, and it was determined that

ff2 must be fixed to retain tractability. For many non-renewal
11.5
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channels, it appears that PE2 = .5 is the logical choice . For

renewal and randc.a chann.’~s PE2 = 0 can be used. The one flaw at

this point was solving for the three model parameters from the

probability equations for non-renewal channels • No suitable method

of reduci ng the polynomial in PB] was found . The iterative solut ion

attemp ted in Chap ter V failed also.

Recent developeents indicate twn iteration procedures that may

solve the problem of estimating the model parameters A , B , and PB].

from the three indep endent equations . One app roach would be to use

the Newton-Ra phson iteration . This requires solving the inverse

Jacobian of the three equation s to be used in the iteration equation

(Ref 5:319). The second approach uses a subrout ine in the AFIT library .

The subroutine MINUM is part of the BINDECK libr ary of subroutines ,

and is based on a Sperry Rand Report (Ref 19) . It uses a combination

of random steps , gradient steps , averaging steps, and jump steps.

This procedure was tested once using the same model parameter values

of the previous iteration technique in Chapter V.  The results

converged to within 0.1% of the actual parameter value s using

2000 iterations .

The other goal was to define P(N = n) in terms of the model

parameters. This probability equation allows calculation of all the

burst statistics . P(N = n) is an important statistic in selecting

an error correcting code (Ref s 4 i9) . The equation developed , for

P(N n) in Eq (23) and Eq (21+) appears f ormidable for large block

lengths , Ic. The summation over 2k state sequences doubles for each

bit added to the block length. But th is is misleading . I~ ny of

these 2k state sequences are equivalent . The joint probabilities

11.7

E’.



developed earlier are a good example . The probability of one error

in a two bit block is P(o ,l) + P(l ,0) ,  However , as shown earlier ,

P(o ,l) = P(i ,o) . Thus , only one event need be calculated.

Similarly, P(]., o ,o) = P(o ,o ,i) , so the probability of one error

in a three bit block would require the calculation of only two

separate events , 2P(l ,0,0) and P(o ,i,o). Thus, an algorithm could

be developed to take advantage of this property and reduce the

calculations considerably . Time is a factor in the relative frequency

estimates, but not much of a factor here . P(N n) would, only be

computed periodically during the test period , allowing at least five

or ten minutes for its calculation. Specialized hardware could

further speed up the process. In fact , the relative frequency

estimates compiled during each five to ten minute segment could be

L 
stored in memory. Thus, there need not be any time constraint on

calculating P(N = n) for each five or ten minute update period.

The final conclusion is that the generalized Gilbert model seems

capable of modeling all types of channels on a real-time basis • It

has the potential of becoming a valuable asset in channel analysis.

Recommendations

There are several areas that merit further study. First ,

additional investigation into reducing the polynomial in PB] should

be made • Once this is done , the model should be tested with a real

data stream. The development of an algorithm to calculate P(N = n)

would be the next step, followed by the building of an actual device .

The relationship used by Gilbert to reduce the polynomial in

PB]. for his renewal model (ff2 = 0) leads to the belief that some

48
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such relationship exists that would reduce the polynomial in PB].

for the non-renewal model. Even the reduction of this polynomial to

a cubic or quadratic would make the problem workable .

The testing done on the model in this paper was all computer

simulation . Thus , the second step of the continuation should be to

determine the model parameters from the error stream of an actual

communications channel. The model parameters generated by the test

could then be used in the simulation program. The relative frequency

estimates from the actual channel could be compared to those of the

simulation • They would determine if the estimated model parameters

generate an error stream similar to the actual error stream.

The third step would be to develop an algorithm for computing

p(N = n) for any desired block length, k. The algorithm would be

based on Eqs (23) and (24) , and could incorporate some of the

properties of the joint probabilities that were discussed earlier .

This algorithm should be designed for use in an existing micro-

processor, or perhaps for compatability with some special purp ose

hardware .

The iteration procedures discussed in the conclusions as

potential solutions should be investigated further • It appears

that they could be implemented easily in the microprocessor needed

to compute P(N = n) .  An iteration procedure should be used if the

PB]. polynomial can ’t be reduced to a lower-order.

The last step in completing the research would be the construction

of an actual device • This device would use the error bit stream as

an input . The bit stream would use logic circuits of the type shown

I
’ 

in Fig 8 to estimate the probabilities P(l), P(i,i), and P(l ,l,l)

11.9
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by relative frequency. From these estimates, A , B , and PB]. will be

estimated based on the equations developed here , and the reduced

polynomial of PB]. recommended in step one • The algorithm of step

three will then calculate the P(N = n) for a specified block length

(determined by an external switch or dial) . This device should not

be overly expensive because of its simplicity, and could be of great

value to AFCS during their channel tests.

f
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Appendix A

Program to Simulate an Error Bit Stream

The program contained in this appendix uses given values for

the model parameters to generate a bit stream based on the model • A

simplified flow chart is presented also. Figures (9) through (13)

are the actual bit streams generated. The symbols used in the program

are defined.

GA = model parameter A , obtained from the data card

GB = model parameter B , obtained from the data card

PE1 = model parameter PE1, obtained from the data card

PE2 = model parameter PE2, obtained from the data card

RVN = randomly generated number to determine the state of the model

RVE = randomly generated number to determine the bit errors for
the given state

c (J )  = array of’ 100 bits generated by the program

M = the number of 100 bit blocks generated

T~~AL = the total number of bits generated

.
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Flow Chart for Burst and Gap Pattern Test Program

ISEED RANF 1

TEST RANF AGAINST INITIAL CONDITION
PROBABILITIES TO DETERMINE THE STARTING STATE

TEST RANF AGAINST THE ERROR RATE FOR
THE GIVEN STATE TO DETERMINE IF THE

BIT WILL BE SET TO ZERO OR ONE

TEST RANF AGAINST THE TRANSITION
PROBABILITIES BASED ON THE CURRENT

STATE TO DETERMINE THE NEXT STATE

I _ _ _ _

IPRINT BIT STREAM]

HAVE
THE DESIRED

NO
NUMSER ~P BITS

BEEN
GENERAT

YES

PRINT GIVEN MODEL PARA1~ TER S
T~~AL NU!’~ ER OR BITS
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PROG RA M THESIS (H°JT=/80,OUTPUT :/132)
I INTE GER C (100)

READ~ ,GA,G q,P~ i,~~~2
CALL TIME (C)
CALL RANSET ( C )
RVN = RANF (DUMMY )
IF (RVN.LE.GA / (G4 4~~ )) JO= 2
IF (RVN.G T .GA/ (GA +GB)) ~1P=i
M 20
DO 10 Lzl ,M
00 20 Jzi,j0 D
IF (NP .EQ .2) GO T~ i~~
PVN ZRANF (DUMMY )
IF (RVN .LE .GA ) NR 2
RVE *RAN F (DUM MY )
IF (RVE.LE .PEI) G3 10 30
C(J )  = 0
GO TO 2O

30 C (J)= I
G O T 0 Z O

40 PVN ZRANF (DUMM Y )
IF (RVN .LE .GB ) N P I
RV E=R AP4F (DUMMY )
IF (RVE.LE.PE2) GD TO 4r
C (J)= 0
GO To 20

t. 45 C (J)= I
20 CONTINUE

WRITE 100, C
100 FORMA T(IX,5 OI jftX ,5f)Il)
10 CONTINUE

TOTAL= M~ 100
PR IN T~~,~PRINTS ,’
PRIN 1~~,”GIVEN M~ D ’L PA PAMET ERS ”
PRINT’,”
PRINT’,”GA= “,GA
PRINT’,”GB= “,G5
PRINT ’,”PEI= “,PEI
PRINT ’,”PE2= ‘ ,PE2
PRINT’,”
PRINT’,”NUMBER OP BITS IN THE T~~ T: “,TOt~ L
PRINT’,”
END

C
55

~~~~~~~~~~~~~~ 
__



0ooO000OO Q oo0DOO0O1O0o10O o OOO111111 OO O OOO 0 OO ~ O 0C0O
00000 0000 U 0000000000000000000000000000000 C 000 3OCOO
ooo0000ooe0000000000000000lolOIIllOOIl0 00000cJ00 000
00000000000000000000000000000000000000000000 000000
000000 0000O 0000000000000000O00000O0000000000 ~ 300000000000 00000 000000 00000000000000000000000G0 0000 000
0000 00000 000000 0000 000 00 0000000 000000 0000000000000
OiI000l jllll00000000000 0000000000000000 00000000000
0000000000 000000000000000000000 00000000000 0 0000000
0000000000000 000000000000000 00000000000000000000 00
00000000 0000000000000000000000000000000 00000000000
000000000000000.00000000 000000000000000000300000 000
000000000 0 0000000 0000000000 0 1 00000000 000000000
0 0 0 0 0 0 0 0 000000000000000000000000000000000 000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t O l O O i l 0 0 0 0 0
0000000000000 00000000000000 00 600000000000000000000
000000 000000000000 0 00000 000000000 0000030000 0000000
oooo o o oo oo oo oe oo oo o o o oooooooo o oo o oo o oo ooo o o o oo ooo o
000 00 000 0000 00000 00 00000 00 000 0 00000 0000 0000 0000 000
000000 000000000000000000000 00000000000000000000000
000 000000000 00000 00 000 000 000000 0000 00 00 0000 0000 000
00000000000000000000000000000000000000000000 ~0 0000
00000000000000000 00000 0000000000000 000000000 300000
000000000000000000000000000000000000000 00000l)00000
0000000000000001. 01000000000000 000000 00000 00 0000000
0 O 0 0 0 0 O 0 0 0 0 O 0 0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 i 0 0 1 0 0 0 i 0t 0 1t 0
o o o o o o o o a a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
0000000 000000000 00000000 000000000000 0000000000 0000
00000000000000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000000000000 0000000 0000000000 0000000 000000 0000000
o o ooooo o ooo oo o o ooo oo o oooo oo o o c oo o 0000 o o o oooooo0 00a
00000000000000000000000000000000000000 000000000000
0000000000000 00000000000 0000000 00000 00000 000000110
0 0000 00 00000 00000  00 000000  0000 0 0 0 0 0 0  00 00 0000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0
0000000 0000000000000000 0000000000 0000000 i00t 10I 000
00000 00000000000 000000 000000 000000000 00 00000000f ,00
00000000000000000000000000000000000000000 00 0000000

GIVEN MODEL PA RAMET ERS

GA : .Ot
GB: .1
PEI= .001
PU , .5

NUMBE R OF BITS I’~ THE TESTS 2000.

( Figure 9, BIt Stream Produced by Base Test Ihta

56
-j



. 00 000 0000000 0 00000010 0 00000 00 0 00 0 00 0 0 0300C- )000000 0
0000 0 0000 00 0 00000  00 0000 0 0 0000  0 0 0 0 0 0  0000 00 )0 00 0 0 0 0 0
000000000010110000 0C 000001I00 00 00000000000 00000 (’OO
00000000000000000 0000000000000 00000 000000000000’!OO
000000010000000000000000000000000000000 00000300 ~ 00
OOI Ill iOIOlOOl000000000000000000000000000000tJ00000
ooooo oo o o oooo o oo o o o o o o ooo o oo o oo o o ooooo oo o q oooo o oo a
0000000 0000 00000 000000 0000 0000000 000 000003001 10 100
000000 00000000000 0000000000 000000 000000 000300 )0000
00000000000000000000000000000 c000 00000000 00 0000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 ) 0 ) 3 0 0 0 0
01I100010I 00t1011I100000 0000000 00i00000000 00000000
0000010000 00 00000 0000 0000000000 00 000000 00000000000
0000000000 0000000 000000 0000 00c 0000 0000000030 ,0000 0
00000000000 0000000 0000 00000 0000 00000000 000000 00001
00000 000 0000 00000 00 000000 0000 0000 00 00 00 00 00 0000 000
000000000000 i ooiolIlI o ol o llOlOololololiOl J OO t l lOo t
00000000000 0000000000000000000000000 000 00000 000000
0000000 000 00000 000 0000000 000000000 0000000000J 000 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0000000000 000 00000000lOOIOOl00000000000000001 i 0000
O O I l I I 0 0 0 0 I O I O l I I 0 0 0 t O l I O O j j j O Qj t j O i j O O l O o j l ’ J j j I Q Q
0000 00000000  00 000 00 000 000 0 0 0 0 0  0 0 0 0 0  00 00 00 00 0 0 0 0  000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
o o o 0 0 o 0 o 0 o 0 0 0 0 0 0 0 o 0 o ° 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 ~~0o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3  0 0 0 0 0 0 0 0 0 0 0
o 0 0 o 0 0 0 0 0 0 0 o 0 o 0 I 0 l 0 o 0 o 0 0 0 0 0 0 0 0 o 0 o 0 o 0 0 0 1 o 0 0 0 0 0 0 0 ~~i1o o i t o o t I Q o o o o o o o o o o o o o o o o o o o o o o o o o o o ~~~~o o o o o ~~o o r ’ oo
0 0 0 0 0  000 00 00 00 000  00 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0  0000 00 00 0 0 0 0  000
000000000000000000000000000000 000000000 0000000 0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 1 0 0 r ’ 0 0
O O I i O i I O I 0 0 0 I I I O l O i i i O i O i I 0 0 0 0 0 0 0 0 0 0 0 i i O i i 0 0 3 0 0 PO O
000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000000000000000000000000000 0 00000 0 0000000000000

GIVE N MODEL PA RA M ET ERS

GA’ .01.
GB’ .1
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NU M~E R OF BITS !~‘1 TI~E r~ST~ 2000.

( FIgure 10. Bit Stream Produced with Parameter PB]. Changed__ I 
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GIVEN MODEL PARA’ 1ETERS

GA ’ .001
GB’ .1
PEt ’ .001.
PE2’ .5

NUMBER OF BITS IN T~’E TESTs 2000.

Figure 1]. Bit Stream Produced with Parameter A Changed 
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GIVEN MODEL D A R A M E T ERS

GA ’ .01.
GB : .01
PE1s .001
PU : .5

NUM RER OF qITS IN T)’E TEST: 2000 .
(~ Figure 12, Bit Stream Produced with Parameter B Changed
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G IVEN MODEL PA RA METERS

GA’ .01
GB. .1
PEI = .001
PE2 = .9

NUMPER OW BITS IN TI-E T~’S?: 2 0 0 0 .
(, Figure 13. Bit Stream Produced with Parameter PE2 Changed
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- Ap~*ndix B

Program to Test Relative Frequency Estimation Convergence

This program uses the same technique to generate an error bit

stream as used in appendix A. It also tests successive bits to count

errors , overlapping pairs of errors , and overlapping triple errors.

14 was varied to test bit streams of 2000 to one—million bits . This

program contains symbols defined in appendix A , plus these symbols.

P1 = counter of’ error bits , then divided by the total number of’
bits to yield p(i) 

-

PR11 = counter of overlapping pairs of consecutive errors, divided
by total — 1 to yield P(l ,i)

PR111 = counter of overlapping triple consecutive error , divided
by total - 2 to yield P(l ,i,i)

Ti = temporary storage for the 99th bit in the array so it can
be tested with the first bits of the next - array

T = temporary storage for the 100th bit in the array so it can
be tested with the first bits of’ the next array

W = used as default so the first time through the loop T & Ti
won ’t be tested against the first array

- 
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Flow Chart for Relative Frequency Program

ISEED RANFI

I TEST RANF AGAINST INITIAL CONDITION
I PR OBABILITIES TO DE’rERI1INE THE STARTING STATE

4
TEST RANF AGAINST THE ERROR RATE FOR
THE GIVEN STATE TO DETERIffNE IF THE

BIT WILL BE SET TO ZERO OR ONE
4

TEST RANF AGAINST THE TRANSITION
PROBABILITIES BASED ON THE CURRENT

STATE TO DETERMINE THE NEXT STATE

INCREMENT C~ JNTER S FOR p(i), P(i ,].
~i~] P(l ,l ,l) WHEN APPLICABLE

HAVE THE
DESIRED NUIGER

4N0 - 

OR BITS :~~~

DIVIDE COUNTERS BY THE APPROPRIATE
NUMEER TO YIELD RELATIVE FREQ.

ESTIMA-rES OR p(i), P(1,l), & p(i,i,i

CALCULATE THE EXACT VALUES OR
P(l) , P(1,l), & P(l ,l,l) FOR THE GIVENI

MODEL PARAMETERS J

‘4
Ii~INT GIVEN MODEL PARAMETERS

TOTAL NUMEER OR BITS
ESTIMATED PROBABILITIES

CALCULATED PROBABILITIES

C
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I
PROGRA M THESIS (INP1T /80,OIJTPUT:/132)
INTEGER C (100)
READ ,GA,GB,~ Ej, ~E2
-CALL TIME (C)
CALL RANSET (C)
RVNZ PANF (DUMMY )
I F ( RVN.LE .GA/ ( GA + G9 ) )  NP=2
IF(RVN .GT .GA ,( GA +~~ ) )  N P I
P1= 0 .0
PRII O . 0
PR11I 0.0
T 0.0
T1= 0.0
w=0.0
P’ 20
DO 10 Lzi,M
DO 20 J 1,100
IF(NP.ED .2) GO 13 ~0
R V N= PA NF C 0 UN MY )
IF (RVN.LE .GA ) N’:2
RVE= PANF (DUMMY )
IF (RV€.LE.PEI) GO 1~) 30C ( J ) s O
GO TC 2O

30 C (J) = ±
P1= P1 4. 1.0
GO TO 20

~e0 RVN=RANF (OUMMY )
IF ’RVN.LE.G~~ N’:lRVEZ PANF (DUMMY )
IF (RVE.LE.PE2) ~O TO 4F
C (J) 0
GO TO 2O

45 C(j) I
P1= P1 • 1.0

20 CONTINUE
IF (W .ED.0.0) GO 13 50
IF (C (1 ).EQ.0) GO 10 50
IF(T.EO .0.O) ~O 13 SO
IF (C (1 ).EO.i.0) P~~1t: PR1I + 1.0
IF(TI.EQ .1) PRIII . ~R 11i + 1.0
IF(C(2).E0.1) PRIII’ PRIII + 1.0

50 CONTINUE
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•
1

00 60 ~~1,99
IF(C (K).EO.0.0) ~O TO co
IF(C (K+1).ED.l.O) ~~t1 PR11 4 1.3
IF(C (X +i).E0.0) 3 TO c-0
IF(K.EO.99) G3 13 5)
IF ( C ( K + 2 ) . E O . i )  ~~ it1= PRIII. + 1.3

60 CONTINUE
IF (M .GT.t) W 1.0
TI: C (99)
1= C( 100 )

10 CONTINUE
TOTAL ’ M* I0O
P1= P1/ (TOTAL )
PR1I PRI1/ (TOT A ...- 1)
PRIII= PRIII/(TOTAL—2)
CAL P I (GB’PEI + ~~~~~~~~~~~~~~
CAL1I : ( (P Et  + G~~~(’E2 — PE1)) C,B’~~~1

?. (PE2 + GB’ (~~~Ei — PE2)) ’ GA ’ PE2) ’
‘i~ (GA +GB)
CALI 1I: ((G9’O I~~(PE1 +GA ’ (PE2— PEt))+ (i— GB )’PE2 - (

Z ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Z PE2—PEI ) ).GA’P~ 2~~(PE2+G ~’(PE i— ’E2)) )*C~B~ PE 1)F(GA +GR) -

PRINT’,”
PR INt4 ,”P(t) “,‘l,” P(i,1) “,‘~~11, ’ ~ (1,i,1): “ ,PRIIl
PRINT’,”CALC P(j ) :  “ ,CALP I, ” CAL ~ ~ ( j~~j): 

‘
,

‘/~ CAL11 ,~ CALC ~(t,i,i) “ ,CALlII
PRINT’,”
PRINT’,”GIVE N MO 3EL PARAMETERS ”
PRINT’,”
PR IN T + ,”GA “,GA
PRINT’ ,“G8= “, GB
PRINT’,”PEt= “ ,PEI
PRINT ’,”PE2= “,P~ 2
PRINT’,~ 

“

PRINT’,”NUMB E~ o: BITS IN THE T~ ;r: “,ror~ L
PRINT’,”
END

- — — - — - — — — .- - —— - .~~~~ -— ——
~~~~~~~~~

--- 
_

_r _ _ — _ -  • - -  — 
- - -

~~~~~~~~~~~~~~~ I



4,

Appendix C

Program of Successive Approximation

This program uses a loop of successive approximations of

the model parameters based on Eqs (26) and (27) and the independent

equations P(l) , P(l ,l), and P(i ,l,i) . Symbols are the same as those

found in appendix A plus these symbols ,

AHAT = equation of P(l) in the form of Eq (26)

BHAT = equation of P(i ,l) in the f orm of Eq (26 )

E].HAT = equation of P(l ,l,].) in the form of Eq (26)

A = the successive approximation of parameter A using Eq (27)

~ B = the successive approximation of parameter B using Eq (27)

El = the successive approximation of parameter PE1 using Eq (27)
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Flow Chart for Successive Approximation Program

cIsTAn’r)• 1
CALCULATE P(i), P(1 l) , & P(1,l,l)

BASED ON GIVEN MODEL PARAMETERS

I
PRINT CALCULATED P(l), P(l ,i), P(l ,l,l) -

AND MODEL PARAMETERS

4
INSERT INITIAL APPROXIMATIONS

-& SET H & PE2

‘4 ___________________________________

APPROXIMATE MODEL PARAMETERS

USING SUCCESSIVE APPROX. EQ’S.

1~I PRINT NEW APPROXIMATIONS I

HAVE

50 SUCCESSIVE 



PROG RAM THESIS (I~ P~JT /80,OUTPUT :~ t32 )
READ ’ ,GA ,GB, PEI,’E2
CALPI’ (GB’PEI + 5A’PE2)/ (GA+GB)
CALI 1’ ((PEI + G ( ~ E2 — PEt))’ ~‘PE1 +

Z (PE2 • G8’(PEI — PE2) ) ’ GA ’ PE2~~) (GA +G8)
CALIII ’  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Z PE2+Gq’-(PE1—PE2)))4GA’PE2+ ((I—G~ )’pEi’ (PEi+GA ’ (
Z ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~• PRINT’,”
PRINT’,”CALC P(j): “,CALPI,” CAL~ P(j ~~j )=  “,

Z CALII,” CALO P(1,i,i): “,CALLIi
PRINT’,”
PRINT’,”GIVEN MO DEL PARAMETERS ”
PRINT’,”
PRINT’,”GA’ “,GA
PRINT’,”GB “,GB
PRIN1’,”PEI “,PEI
PRINT’,”PE2= “,2E2
PRINT’,”
E2 0.5
Ha IF—4
Az 0.009
8. 0.125 - 

-

El’ 0 .00125
no ito I. 1,50

t AHAT= (B’Ei + A’E2 )~ CALP 1 — B
Az (I—H) -’A + I4*A.4~~T
IF (A .GT.8/10.0) ~~

z 3/10.0
IF(A.LT .1E— 6) A . IE— 6
BHAT= ((El + A’ (E2 — EI))’(9’Ei) 4 (U

— E2))’(A’E2))~~~AL 1I — A
B’ (l—H )’9 + Il’B~~ T
IF (B .GT.0.5) B. 0.5
IF (B .LT.IE—3) B’ t E- 3 -

EIHAT’(CALlII’(A +B) — (B’Ei’(E1+~’(E2—Ei)) +(I—R)’V. E2*(E2+B+ (Et_E2)))IA*E2)/ (((i_~~~ Ei e (E1+A~~tE2_Et
,C ))+A’E2’(E2+B’(Ei—E2)))-’8)
Ei’(l—H)’E± + H’EIH*T
IF (El .GT.E2/i00.0) El’ £2/100.0
IF(E1.LT.IE—6) El’ tE — 6
PRINT’ ,” AHAT ’ “ ,A ,” BNA T. “ ,B, EII4AT ’ “ ,El, ” H’ ‘ ,H

11.0 CONTINUE
END 
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A model of burst errors from a real-time error bit stream of up to
20 million bits per second is sought. Noise models and channel models are
considered . The choice is a two-state Markov channel model in which the
states each generate indep endent Bernoulli random processes. One Bernoulli

( process produces ones (errors) at a high rate , simulating burst errors.
The other process produces ones at a low rate , simulating random errors
due to background noise • The transition probabilities determine the
avera ge length of the bur sts and of the gape. Relative frequency estimates —)
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~~ of the probabilities of certain sequences of one-bits fr om real data
are related to estimates of the model parameters, so relative frequencies
provide a basis for fitting this model to real channels using observed
error sequences. An equation for the number of errors in a block of bits
is developed in terms of the model parameters. Burst probabilities
can be predicted based on this equation • The model was tested using
computer simulation • Some discussion is devoted to how this burst—error
model can be implemented in an actual device to provide real-time channel
characterizations • This model aids in the selection of an error
correction code .
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