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INTRODUCTION

This report discusses the design and implementation of the adaptive

three dimensional maneuvering target tracking filter in spherical coor-

dinates developed at Virginia Polytechnic Institute and State University

over the past two years.

~. All filter performance statistics concerning intercept range,

probability of kill , cumulative probability of kill, S1C3D , etc. were

obtained from the statistical analysis program called GUSS.. This program,

supplied by the Naval Surface Weapons Center , Dahlgren , was installed

on the VPI&SU computing system for this purpose.

‘Since CUSS performs its analysis in rectangular coordinates while

the filter filters in spherical coordinates, two additional sets of

subroutines were required to act as buffers between GUSS and the filter.

The first of these sets converted the CUSS supplied three dimensional

target position data from rectangular to spherical coordinates. The

second set, which was much larger than the first, converted the filtered

estimates of target position and velocity in each of the 3 spherical

coordinate directions into their equivalent values in rectangular coor-

dinates for subsequent processing by CUSS.

Unless otherwise specif ied , reference in this report to a predictor

refers to the predictor used for fire control purposes and not to the

one step ahead prediction process of the Kalnian filter algorithm. This

predictor takes the updated estimate of the target states at time k

appearing at the output of each filter channel and predicts ahead an

amount TP seconds (determined by GUSS) to yield an estimate Gf the future

target position. This predicted position is then used by GUSS as an

29
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“aim point ” at which to shoot a shell. By comparing the actual target

position TP seconds later with this “aim point”, CUSS can compute miss

distances in three dimensional space as well, as the probability of

destroying the target. A constant velocity spherical predictor was

used in this report.

Over the past two years, two versions of this filter were used,

the second being an improved design of the first. The performance of

both designs using CUSS output will be analyzed with respect to each

other and also with respect to the GIP rectangular filter.

The values of all filter parameters used in the various runs will

be stipulated as also will be whether these values were arbitrarily

arrived at or derived.

- .  - - - - - ~~~~~~~ -~~-— ~- -.~—- -
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DERIVATION OF THE THREE DIMENSIONAL LINEARIZED

SPHERICAL MODEL FOR A MANEUVER ING TARGET

Exact modeling of target motion in spherical coordinates (r, e, B)

usually involves the simultaneous solution of three very complex coupled

nonlinear differential equations. The solution becomes even more difficult

when forcing functions are used to model target maneuvers.

There are, nevertheless, several advantages which make filtering

in spherical coordinates in conjunction with air target radar data,

highly desirable. Chief amongst these is that the radar data itself

is already in spherical coordinates and consequently the observations

are linear functions of the target state variables. Therefore, if an

approximate linearized spherical model for the maneuvering target could

be obtained , then the need to use a nonlinear filter such as the Extended

Kalman filter would have been obviated.

To derive the linearized spherical model, consider a target whose

motion in rectangular coordinates is described by

i~~.’-a*+u~ +w ’
A x

~~—aw ‘ + w  (1)
x x x

where

a is a drag coefficient

is the deterministic input in the x direction

is the Singer (LI correlated acceleration process acting in the x

direction with a time constant tc — . 

~~~~~~~~~~~~~~~~~~~~
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is a white Gaussian random process acting in the x direction.

A similar set of equations exists for the y and z directions.

The significance of w
~
’ in relation to the final form of the filter to

be derived, will be discussed in detail later.

Defining

x
l. 

— x

x2 • i

x3 —

the following continuous time state variable model is obtained for

equation (1)

0 1 0 x1 0 0

— —a 2 + ~ U + 0 V (2)

0 0 — a  x3 0 1

Discretizlng (2) in time yields

x1 ~
1 A B x1 C

a O  E F x2 + A u + C  w (3)

0 O e 8t x3 
0 J

Ic+l k

where
-aTA — (1 — e )/ ct

B — E l + (~~ .0T 
— ae~~

T)f(a — a) ]/(aa)

C - (aT - 1 + e T)1a2

D — (T + (aA — a.J)/ (cs — a) J/ (a a)
- iTE —  a
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~ ,—aT -aTr te — e ) / (c i  — a)
G • (J—A)/(a — a)

-aTJ (l—e )/a

A similar state variable model is assumed to exist for the y and z

directions.

With the development of the above state model complete, the derivation

of the linearized spherical model is given next.

If (x, y, a) represents the position coordinates of a maneuvering

target in rectangular coordinates, then the corresponding position of the

target in spherical coordinates is, from figure 1

r — (x 2 
+ y2 + a 2) ½ (4)

e — sin~~’(zfr) (5)

8 tan~~’(y / x)  (6)

where r , e and ~ represent range , elevation and bearing angles respectively .

The linearized spherical model is derived by using the following

expansion (2]

+ i~f k(x~~l 
- La) ~~ ~~~~~~~~ 

- + ~~ I k (z
~.,.l 

- 2k) (7a)

+ ~~I k (xk+l - xk
) + .~!f1 (y~ .1 

- + PI k (z
~.l - zk) (7b)

and

8k+1 ~~ 
+ 

~~
(
~~+i 

- “h) + 
~j’k~’k+l — 

~~ 
+ ~~Ik(2k+1 

— 2k) (7c) 

~~~~~ _
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r CHANNEL

calculation:

— F~
2 + ~2 + z2)~~ (2x) - 2 2 -

Z (x +y + Z )½

~y r az r

(8)3z r

Substituting these relations into 7(a)

- rk + 
~~~~~~~ 

- x.~
) + 

~~~~~~~ 
- 

~~ 
+ ~~k (2

~~l - Zk)

From (3)

- x.
k
) - A~~ + B~~ ’ + Cu + D~

(y - y ) - A ~ + B v ’ +Cu + Dw- (9)k+l k k 
~
‘k 3Tk

(z — z ) A1 +Bv ’ +Cu +Dwk+l k k 2k 2k 2k

r~ ,1 - rk + 
~ I k(AX.K + By ’ + C

\ 
+ Dw~~] +

~I k Ayk + Bw~ ’ + Cuy + 

~k 
+

+ Bw~~ + CU
~ 

+

— rk + A(~~ 
+ + z11 ‘k + B(w ’(—~+ w ’(~~+ W

’(’~ ) i  ¼

+ c(u
~
(
~~
+ U~~(~~)+ uz(~))l k + D(w (~ )+ w ( ~ )+ W 4)] k

From Figure 1, ~~~, ~~~ and ‘~~
. are the direction cosines between the x,

! and Z axes, respectively, and the r direction. Therefore

~ A.
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~~~~~~~~~~~~~ 
w ’~~~)+ v ’~~ )~ W ’ (10)

is the sum of the projections of w ’, w ’ and w~ ’ onto the r direction.

This sum acting in the r direction can be replaced by an equivalent

single term denoted by w ’. In a similar manner the coefficients of C

and D are called u and V
r 
respectively. Using (8)

r r~~+ A ~ + B w  ‘ + C u + D w r 
(11)

k+1 ¼ t k rk k

calculation :

(8)
r

In equation (8) the derivatives of ~ with respect to x, ~ and i yield

the linear terms in the following expansion of

~ 
rk + - + 

~~~ k (
~~~ l 

- 

~~ 
+ 

~~~ k~~k+1 
-

xF ~~~~~~~~~~~~~~~ ‘~~T~~~

From (3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~

~~1c+l 
— 

~~ 
E
~k 

+ + 
~k 

+ - 

~k 
(12)

- 

~~) - EL~ + Fw
zi:r. 

+ 
~~ 

2¼ 
+ 

Z
k 

- 

~k

a tk+l - ~k 
+_ f

k(E*~a 
+ Fw ’ +A u + Gw-

+ r ’k~~~k 
+ Fw’ + 

~
‘k 
+ Gw - 

~‘
k3



+~~~~~~ [El + F w  ‘ + A u  + G w  -
~~~~~~~~ ]r k  ¼ 2¼ 2k ¼

- + ~~~~ + ~t + zl~ + F[v ’(~ ) + w ’( X) +

+ A(u (~’) + u ( ~ ) + u ( !.)]
k 

+ G[w (!.) + w (X) +

_ 1 X X + Y Y + Z Z
1r k

From equation (8) the first and last terms on the right side of the

above equality cancel. The other terms involve the sum of projections

of rectangular quantities onto the radial direction. Treating these as

single terms acting in the r direction we end up with

- Et~ + 
~~r 

+ Au + Gw (13)
¼ 

r
k 

r
k

It remains to obtain a state variable model for w ’. Since w ’ is a zeror r

mean correlated Gaussian process acting in the r direction, a convenient

continuous time model is given by

4’ — —aw’ + u (14)r r r

where w is a white Gaussian random process acting in the r direction.

Discretized in time (14) becomes

—aT , 1 —aTw — e w + —(1 — e )w (15)r~~1 rk a rk

Equations (ll),(13) and (15) collectively form the following state

model for the r channel of the linearized spherical model:
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r l A B  r C D

- 0 B F + A u + G w (16)

O 0 e~~
T 

~~
‘ 

¼ 
0

e CHANNEL

calculation

—1 1 du
e — sin’~ {~ } ~~

— [sin u] 
(1 — 

2

1 
r (O) — z (~~)

2 ½  pr 2
(1 2~r

2 2 ½
where p — (x + y )

Similarly r’ — 2

and 

y

e ’ ~~~~X ~~~ 3z pr 2 pr r

_ _ _ _ _ _ _ _
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— 
— (~k + yS’)z 

— 
(x2 + y2)i — (xi + y~r ) z

e 

~r
2 (x 2 + y

2
)½ (x2 + y

2 
+ 22) (17)

Substituting these derivatives into 7(b and making use of (9)

ek+l - e.
~ 

+ (XZ
)~~~ (~~~~ + Bw ’ + Cu +

+ (
~~) I k (A~k + Bw ‘ + Cu + ~~j
p 

~
“k ~k

+ (~~ ) 
k~~~k 

+ By ‘ + Cu + Dw
r 2

¼ 
2k 2¼

- + A (~~°~ 
+ Y-~~ Z + P

2Z~ + B[~~~ w ‘ + . X!. ~ek pr k pr x p r y

+~~~ w ‘
~~ 

(1)
r z k r k

+ C ( ~~~~u 
_
~~~~u ~~a~~~ 1 (!) + u~~~-~~w -~~~~wpr x pr y r z k r k  ,,r x pr y

+ 2~~~ ] (!)r z k r k

From f igure 2 , the projection of the unit vector in the direction

of increasing e, 
~e’ ~

ntothe X axis is given by

—sin e con B — (
Z) ( X) — XZ (l8a)

Similarly , the projection of 
~e 

onto the Y axis is given by

—sin e sin ~ ~~~~~~~~~~~~~~~~ 
— zZ~. (18b)

The projection of ie 
onto the Z axis is given by

con e p/r (1k)

In view of equation (18), the coefficient of B in the above expansion

of e~~1, namely

(~~
) w ‘ + (~~~ ) w ‘ + (2.) w

or x pr y r a

is the sum of the proj ections of w ’ , v
i
’, and w ’ acting in the direction

of i ; denoting this sum as 
~e

’ we have that

( . ) w ’ +~~~~!.)w ’ + ( 2.)w ’~~~w ’ (].9a)
pr x pr y r a e



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -• w-~~
--
~
—-

— 12—

a,
0

U
a)

-.4

a)

a,
“.4

o a,

>
N

I.,

N

a) ~
.
‘

* >4
4)

a) ~
-

I
, ‘a,a, 

I 

_

~,,:~
,1,T1:1

N4  

---.~~



_ _ _  

~~~~~~~
—1 3—

Similarly

~~~~~~~ 

+ (~~~ ) U + (~ ) U — U (19b)

and

+ (zx ) w + (~ ) w~ - ‘
~e 

(19c)

Taking note of equation (17), the expansion for e~~1 can now be

written

+ Aé~ + B(w ’/r)
k 

+ C( u / r)
k + D(w /r) k (20)

calculation:

In equation (17) , the derivatives with respect to x, ~~, and I are

the only ones which lead to linear terms in the expansion of Thus,

+ ~~~~~~~~~~~~ - xk ) + 
~~~k~~’k+l - 

~
‘k~ 

+ ~j I~ (1~~1 - 1¼)

—xz —vz 3é p
— 

~~~~ 
r — 

~~~~ 
— —r

~x pr 3y pr ~z r

Using equation (12) we get

- + (Z!
~) I k ~kk + F~i + Au + Gw - Xk ]

+ ( 1~ I~ t E
~k + Fw + Au + Gw -

+ (
~~Ik (El

k + ~~ + Au + - &
k1

— + E [(XZ). + (
~~~~~

.);, + (~~ ) l  1k

+ F 
~~~~~~~ 

+ (~~~~ )Wy
’ + (

~
)wZ’] k/r k

+ A 
~~~~~

‘
~x 

+ (~~~)u +

+ G 

~1~
) + (. .L ) W

Y 
+ ~~~~ “i ~ k’ 

r
k

— (xi + Y~ )Z
1— 

pr’ ¼

_ _ _ _
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From equation (17), the first and last terms on the right side of the

above equality cancel. Hence using (19)

— E&~ + F(W ’/r)
k 

+ A(u /r)
k 

+ G(w fr)
k 

(21)

A discrete time model similar to equation (15) is used to describe we
’:

—at , 1 —atw — e w + —(1 — e )w (22)
e
k+l 

e
k 

a

Equations (20) , (2 1), and (22~ collectively fo rm the following state

variable model in the elevation plane:

e 1 A (B/rk) e C/rk
é 

— 
0 E (F/r

k
) é 

+ A/rk ~ + G/r k w (23)
O O e ~~

t 
~~~

‘ a 
ek 

~e k

B CHANNEL

calculation:

B — tan~~ (~~) ~ — ~an~~ u] -

1 1
- 1 + 

(;) - 
~~~ y’ 

-

(24)

Substituting these derivatives into equation 7(c) and making use of (9) 
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- + 

~~~~~ ~~~~ 
+ By ’ + Cu + D w ]

+ B y ’ + C u  + D w  Ip 
~
‘k ~

‘k

- 8¼ + A 
k 

+ B ~9) 
~~~

‘ + ~~ w~. ’1 k”~k

+ C ~—~ )u + (
~
)u]

k/Pk + D [(
~~ )w + (

~
)w1 k/P k

From figure 3, the projection of the unit vector in the direction of

increasing B, 1.~~, onto the X axis is given by

—sin 8 — — (25a)

Similarly, the projection of i
8 
onto the Y axis is given by

cos B — (25b)

In view of equation (25), the coeff icient of B, namely

~~
— 

~~~
)“‘

X

’ + (~ )w ’ “B (26a)

is the sum of the projections of w~’ and w ’ onto the i
8 
direction.

Denote this sum by w
8
’.

Similarly

(— ~)u + (~ )u u~ (26b)

and

(— Z)y + (!)w (26c)

Taking note of equation (24 ) ,  the expansion of B
~~i 

can now be written

— 8k + A
~k 

+ B(w
B

’/ P)
k + C(u

B
/p ) k + D(w

B
/P) k (27 )

calculation:

In equation (24), the derivatives with respect to x and ~- are the

only ones which lead to linear terms in the expansion of 
~k+l~ 

Thus ,

8k+l 
— 8k + I~~k~~k+l ~~~k~~’k+1 

- 

~
‘k~
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Using (12)

- + (
~~

)Ik [ E*.~ + Fw ’ + Au + Cv -

+ (!~.) f [ E
~k + Fw ‘ + Au + Gw - ~‘p 

~
‘k ~

‘k

- 8¼ + E 
~(Y’X~~ 

~
1k 

+ F 
~~~~~~~~~ 

+ (!) w~~] k/p k

+ A K~~
)u
~ 

+ (
~
)U
y]k/Pk 

+ G E(—~
)w

~ +

- I p~ ~k

From equation (24) , the f i rs t  and last terms on the right side of the

above equality cancel . Hence using equation (26)

— E
~k + F(w

B
’/o)

k 
+ A(u $/p ) k + G(w $/p ) k 

(28 )

A discrete—time model similar to equation (15) is used to describe

w8 .
—at , 1 -aT

— e w
8 
+ —(1 — e )v

8 
(29)

k+l ¼ a ¼

Equations (27), (28), and (29) collectively form the following state

variable model in the bearing plane:

B ~ A (B/ok
) $ (C/p

k
) (D/ Pk)

8 
— 0 B + (A/P k) 

U
B 

+ 
~~“°k~ 

8¼ 
(30)

0 0 e
at

k+l

where

p — (x2 + ~ 2)
1/2

Equations (16) , (23) , and (30) constitute the range, elevation and

bearing channels respectively, of the linearized spherical model for a

maneuvering target. It is observed that there is slight coupling between

the 3 channels insofar as the elevation channel requires the range esti-

mate and the bearing channel the range and elevation estimate to compute p.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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It should be noted here that the three state variable models (16),

(23) and (30) are the result of incorporating the Singer correlated

acceleration process into the linearized spherical model disclosed in (21.

Su~~ary of (16), (23) and (30):

- 
; + U

r 
+ 

~~r 
(16)

o a e~~
T 

~~‘ 0
r k+l

e 1 A (B/r
k
) e C/r

k 
Dir

— 0 E (F/r k) ~ 
+ A/r

k 
U + G/r

k 
W (2 3)

w’ 0 0 e
_aT 

~~‘ 0 .~e k+1 e
k

B 1 A (B/ o k
) B (C/p k

) (D/p k
)

— : : ~~~~~ 

~ k 

+ (A/o k
) U

3 
+ (G/Qk

) W
8 

(30)

With the development of the spherical model now complete, attention

will next be directed to the adaptive tracking filter .
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ADAPTIVE TRACKING FILTER IN SPHERICAL COORDINATES

The adaptive portion of the tracking filter is concerned with

modeling the unknown control input to the target. However , a brief

case study is f irst required since the f ilter proposed here is an

outgrowth of that disclosed by Moose/Gholson (2].

In the tracking filter reported by Moose/Gholson the input is

viewed as coming from a set of N discrete levels ~~~~ i — 1, 2, . . . , N.

The maneuvering target is then represented as a “random switch” which

arbitrarily selects the target input from among this set. By utilizing

the semi—Markov (3] properties of this random switching, a set of N

probabilities W 1~, 1. — 1, 2, . . . , N is computed , where is the

probability that the current input being selected is ~~~~~ Next a

weighted sum of these input~.

]
~~~~ uU) w~ (3].)

i—i

is computed and this quantity ü forms the “deterministic input” to the

Kalman filter. However, in order for this method to work effectively,

many levels must be utilized . If an input is chosen which is not exactly

“matched” to one of the discrete levels, a bias develops in the f ilter

estimates. This bias can only be reduced at the expense of increasing

the number of discrete levels to such an extent as to insure that a

given input to the target will not be distant from one of these levels.

In an attempt to eliminate the bias problem arising from mismatched

inputs the correlated Gaussian random process disclosed by Singer [1]

was incorporated into the Moose/Gholson filter, as disclosed in the

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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previous section. The resulting estimator consisted of three Kalman

filter algorithms based on equations (16), (23) and (30) for the r, e

and B channels , respectively , with Ur~ Ue 
and u

8 
being replaced by

weighted estimates (31) of these inputs, namely ‘1r’ ~e 
and using

the semi—Markov statistics. Figure 4 is a block diagram of the elevation

channel of this modified filter. Figure 5 shows the results obtained

from the r(radial) channel of this filter on the following target

trajectory.

Using a sampling period T — 0.3 sec, a drag coefficient ~ — 0.4 and

a correlated process with a standard deviation 30 ft/sac2 and

correlated time constant r — 10 secs, the modified filter was exercised

using synthetic data on a target initially retreating at a radial velocity

of MACH 15  which subsequently turns around and approaches at a radial

velocity of —MACH 15.

The insert below the graph in Figure 5 clearly shows the extent of

the mismatch which exists between the levels of the applied control

sequence (dashed lines) and the discretized levels used in the filter

(solid lines).

The estimated target radial velocity (dashed lines) is seen to

have large oscillations about the true radial velocity (solid line).

The oscillations result from the “states” not being adequately separated

in the state space for consistent convergence of the probabilities W~, to

the correct level. This point will be expanded on in the next section ;

suff ice it to say here that this inconsistency in the probabilities

causes the estimate (1 to be biased off a substantial amount from ther

actual target input. This alternate biasing to the right and then to

the left of the actual target input causes the estimates to alternate

from being too large to being too small. 

-~~~~—-- -~~~~ -- - -~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _
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In the following solution to this problem, explicit reference is

made to the radial channel , for convenience; however, it should be

understood that a similar analysis holds true for both the elevation

and bearing channels.

The heart of the adaptive filter proposed in this report is in

the for ming of the estimate of the target states (in each channel)

from a weighted SWf l of eatimate8 conditioned on the N individua l discrete

levels, ra ther than by fo rming a weighted sum of the N discre te levels

f i rs t and then conrputing the estimate. This difference can easil y be

seen by comparing Fi gures 4 and 7.

To this end consider the state model (16). This state model views

the target input acting in the radial direction as being derived from a

correlated Gaussian density having a mean value u
~
. Next consider a

series of N such Gaussian curves with displaced mean values 
~~~~~

I — 1, 2, . . ., N and partially overlapping “tails” as shown in

Figure 6. If a bank of N Kalman filters is formed, each filter based

on (16) with the deterministic input U being a different one of these

N mean values, then a series of N estimates is obtained , each conditioned

on a different Gaussian curve of Figure 6. Next a weighted sum of these

estimates is obtained in a manner to be disclosed below, and this weighted

sum is taken to be the unconditioned estimate of the target states .



—--
~~~~~~~~~~~~~~

-
~~~~

--- -— -----‘. -
~~

-
~~
-

~ 
-
~~  - - - —~———-- ‘——

— 24—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i -



— 25—

Calculation of weighting coefficients:

As has been disclosed , the target input is viewed as coming from

one of N possible overlapping Gaussian curves each of which has a predeter-

mined mean value. As the target executes a series of evasive maneuvers

in the radial channel , for example , the changing input to produce these

maneuvers is now viewed as randomly switching among these N curves. By

applying the semi—Markov statistics to this switching process a series of

N probabilities W~, i — 1, 2, . . . , N is generated where

W~ Pr {target input is being derived fro~i the Gaussian

curve whose mean value is

These W
1 
are then used to form the weighted estimate.

Before deriving the recursive fotm for W~, i = 1, 2 , . . . , N

it should first be pointed out again that each of the separate signal channels

is Independent in the sense that the processing of a given channel depends

only on past estimates in a parameterized manner. For instance, the

elevation channel carries on its processing of the elevation measurements

dependent on the other channels only to the extent that the previous range

estimate is required as a parameter in the elevation channel transition

matrices. Because of this decoupled property of the algorithm, the

estimation algorithm f or a single (elevation) channel need only be

described , the other channels (range and bearing) being similar.

We begin with the well—known relation that the optimal estimate

of the elevation signal can be written as a weighted sum of the input—

conditioned estimates. Thus, if~~~~~(k + 1) represents the optimal

estimate of e(k + 1) given that the ith input force is present



- -~~~~~~ — -- -- - -

—26 --

(the ith—input force being one of the previously described mean values),

then based on the data sequence

z(k + 1) — {z(l), z(2) , . . . , z (k) , z(k + 1)) ,

we define

ê(k + 1) — ~ eW (k + 1) W~ (k + 1) (32)
i—i

where

W~ (k + 1) — Pr {u(k) a u~~~IZ(k + 1)) (33)

and

+ 1) a E{e(k + 1)Iu (k ) — 
~~~~ z( k + 1)).

Equation (32) is a total probability expression developed from the

basic relation that

ê(k + 1) — E{e(k + l)Iz(k + l)}

is the optimal mean—squared estimate. It is well known that the optimal

input—conditioned estimates are provided by suitably matched Kalman

filters. In particular ,

+ 1) •(k) e~~~ (k) + ~(k) u W + K(k + 1) [z(k + 1)

— H~(k) ê~
t
~ (k) — Hr(k) (i) ) (34)

where

M(k + 1) — •(k) P(k) ,T(k) + ‘v(k) QWT(k) (35)

-,
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-

K(k + 1) - l4(k + 1) HTIHM(k + 1) HT + R] 1
, (36)

• and

P(k + 1) — [I — K(k + l)HJ M(k + 1). (37)

The matrices •, I’ and ~‘ are used to denote the respective coefficient

matrices in (23) ; in addition, due to the spherical approximation the

measurement matrix assumes the simple form (for each channel)

H — E l  0 0].

The following is an outline of the analysis given in [3] to

calculate the recursive weighting coefficients W~ , I — 1, 2, . . . , N.

Def ining Z(k + 1) — (Z(k) , z(k + l)},  apply Bayes Theorem to (33) and

obtain

Pr (u(k) — ~~~~fZ(k)} p{z(k + l)(u(k) — R
U)

, Z(k) }
W~ (k + 1) — p {z (k  + l) IZ(k) } (38)

The denominator is independent of I and is therefore co~~on to each

W
1
(k + 1) as a normalizing constant. The first numerator factor of

(38) is determined from the semi—Markov input process. Expanding this

factor in a total probability expression

Pr{u (k) - U~~~~f Z(k) } - ~ Pr(u(k) u~ju(k - 1) - uj~ 
Z(k) }W

1
(k).

j —l

And since Z(k) has no influence on the Markov state transitions,

Pr{u (k) u
~
1
~ tZ(k)} - Z 

~~i 
W~ (k) (39)

i—i

where

— Pr {u(k) — u ~~I u ( k  — 1)

~ 

~~~~ - -—
.
~~~—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~
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Combining (38) and (39)

N
W1(k + 1) — C

1 
p {z(k + l )Iu ( k )  — ~~~~~ Z(k) } ~ e w (k) (40)

1—1 ~

is the desired recursive relation for W
1. The required density p is

approximately normally distributed and has distribution

P{z(k + l)Iu(k) - ~~~~~ Z (k) } ‘
~~ N {m 1(k + 1), C~(k + 1)) , (41)

where

mi
(k + 1) - H(~ (k) e~

1
~ (k) + V(k) UW (k) j (42)

and

C1(k + 1) — (RM(k + 1) HT + R] (43)

The final estimation algorithm consists of the calculations H

implied by (34), (41) , (42) , (43) , (39) , (40) and (32) .

With the derivation of the adaptive estimator now complete, several

coimnents are i~n order.

The use of the word “optimal” in the previous analysis needs to be

qualified for the following two reasons:

(1) Since the target input is usually unknown when using actual

radar data , the above modeling of this unknown input is at

best approximate and generally does not match the true target

input from iteration to iteration. Indeed , being cognizant

of this mismatch , the Singer process was incorporated to raise



the estimator uncertainty concerning the input and in this

manner to produce improved estimates. In reference [4] it is

shown that one additional covariance term is also needed to

• account for this mismatch.

(ii) When a target maneuver occurs , the weighting coefficients do

not respond iimnediately but rather have a finite learning time.

• Consequently, during this learning period the incorrect filter

is being weighted the most while the filter closest to the new

target configuration is being weighted by a small amount causing

the estimates to lag the true target states.

Because of (i) and (ii) the adaptive estimator developed here must be

considered sub—optimal.

Consider the measurement density conditioned on the ith mean value

as given in (41). This density has covariance

C1(k + 1) — [HM(k + 1) HT + RJ (43)

where M(k + 1) is given by (35). What characterizes the different

target “states” is the set of Gaussian curves used to model the switching

input. However, the target dynamics remain the same for all the “states” .

Consequently , if the process and measurement noise covariances Q(k + 1)

and R(k + 1), respectively , are assumed to remain constant as the target

switches from one “state” to another , then none of the quantities on

the right of (43) is conditioned on i. Under these conditions , for a

given value of (k + 1), C1(k + 1) has the same value for all values of

I — 1, 2, . . . , N. Indeed it is clear that for each value of (k + 1),
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the entire covariance analysis is identical for each f i l ter  in the

previously mentioned f i l ter  “bank” . Therefore , the bank of filters may

be reduced to a single filter for this segment of the algorithm.

Consider next augmenting both the state predict and state update

estimate vectors of this single filter to form two N column matrices, the

ith coltimu of each matrix being the estimate conditioned on the ith

mean value. If the scalar measurement residual is augmented to form

an N element measurement residual vector , then this single “augmented”

filter now produces a set of N conditioned estimates of the target

states as if an entire bank of N filters had been executed . These N

estimates are then weighted by the weighting coefficients (40) to yield

an unconditioned estimate. A block diagram of this “augmented” filter

is given in Figure 7.

The underlying causes of the oscillations in Figure 5 can now be

explained . In equation (42) , at t ime (k + 1) the mean value of the

measurement conditioned on is seen to be a function of the quantities

e~
1
~ (k) and u W (k) . Both of these quantities have different  values

for each I and lead to a good discr lmination among the m~(k). In the

Moose/Gholson fil ter , the corresponding mi(k) has the value

m
1(k) 

• H[s(k) ê(k) + ~(k) ~~~~(k) ] (44)

In (44) ~(k) has the same value for each i and only the quantity u~~~ (k)

is used to differentiate among the different m~(k). The improved filter

performance resulting from the better discrimination afforded by (42)

can be seen from Figure 8. The trajectory in this Figure is identical

in every respect to that of Figure 5. As can be seen from the insert in

_  - - ~~~~~~~~~~
-- - •

~~~
— - ••

~~~~~~~
-
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Figure 8, the mean values used in the augmented filter are also identical

to those used in Figure 5; in addition process and measurement noise

covariances were the same in both runs. The oscillations experienced in

Figure 5 are seen to be absent in Figure 8. Maneuvers are detected

sooner and the filter settling time is much shorter.

In the next section the design process used In assigning values

to the various parameters in the augmented filter will be discussed.

Following that the filter performance against actual air target radar

data will be illustrated graphically from the point of view of the GUSS

supplied SIG3D parameter.

PARANETER SELECTION PROCESS FOR THE AUGMENTED FILTER

The parameter selection process concerns itself with the following

parameter set

{ci, a , N, V , a)
C max

where

~ is the assumed drag coefficient

a is the standard deviation of the correlated process

N is the number of levels (mean values)

Vmax is the assumed maximum possible speed of the target set to

be tracked.

a l/r

The design process is given fo~ the r channel. The parameter

values calculated for the r channel are then used in the e and B channels.
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Consider the state model (16). A continuous time differential equa-

tion for this model is given by

r - — a r + u  +wr r

w ‘ — —aw ‘ + wr r r

Concentrating on the deterministic part of this differential equation

for the moment, and defining

V~~~~r

we have that

V - -aV + ur r r

In the steady state, when — 0, the following relationship exists between

U and Vr rss

U — c~Vr r
Os

where V is the steady state value of Vr~rss

Therefore a bound on the maximum target velocity establishes a

bound on the maximum value of u
r

In the first version of the filter developed here, a bound of ±1,200

ft/sec was assumed for * (both signs are used to account for either a

retreating or approaching target). In addition a value of a - 0.4 was

selected because this value produced a quick transient response

indicative of a high speed air target dynamics.

With both of these parameters defined , the resulting bound on u
r is

—480.0 < u < + 480.0
— r —

_ 
- ~~~~~~~~~~~ - .



The remaining parameters o
~ 

and N are then chosen in such a way as to

embrace the continuum of possible Ur values lying within this bound.

For example, in the first version of the filter, a set of N — S Gaussian

curves was chosen, with the following mean values

—480.0, —240.0, 0.0, 240.0, 480.0

each curve having a standard deviation of

— 30 (ft/sec
2).

These values for N, a and the discrete levels were arrived at
c

empirically by exercising the filter against a variety of target trajectories

and observing the overall quality of filter estimates.

The parameter a — Ei!.jf — where is the correlation time constant of the

Gaussian process had the value

a — 0.1

in both filter versions. This value was suggested by Singer (1] for a

maneuvering air target.

To summarize, the following set of parameters was used in the first

version
T — 0.25 seconds (sampling interval)

a — 0.4

— 30 (ft/sec2)

N 5  (45)

Vmax ± 1,200 (ft/sec)

a 0.l

mean values: —480, —240, 0, 240, 480

An identical set of parameters was used in the elevation and bearing

channels. Incidentally the above values were also used in obtaining the

results of Figure 8. 

~~~-•~~ - . •• •-~~ -•
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The choice of the parameter subset

(N , a )

is essentially a tradeoff of one parameter against the other. For example,

in the second version of the augmented filter the number of means values

was increased to N — 17. This permitted a reduction of a to 15 (ft/sec
2
)

in the r channel and to 25 (ft/sec
2
) in the e and B channels. The smaller

°c 
in the r channel from that used in the e and B channels was possible

by recognizing that the target radial velocity is generally less than zero

and consequently only non—positive mean values were necessary in this

channel. The entire parameter set used in the modified augmented filter

~1is summarized in (46) for convenience.

T = 0.25 seconds (sampling interval)

a 0.4

a = 15 (ft/sec2) r channel

- 
= 25 (ft/sec2) e and ~ channels (46)

N 1 7

v = —1,200 (ft/sec)max

a= 0.l

Means values: 0, —30, —6’~, —90, —120, . . . , —480 (r channel)

—480, —420, —360, —300, . . . , 480 (e and B channels)

The above analysis shows that the parameter selection process is

essentially trial and error and consequently no claim is being made con—

cerning optimality.

L~. - ~~~~~~~~~~~~~~~~~~~~~~~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ . ~~~ ••~~~~
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COMPARISON OF THE GIP AND AUGUNENTED FILTER
USING ACTUAL RADAR TRAJECTORY DATA

The remaining part of this report is devoted to a comparison of

the augmented filter and the three—dimensional rectangular GIP filter.

This comparison takes the form of a series of graphs, one for each

trajectory , each graph having three superimposed plots. Two of these

plots refer to the augmented filter and the third to the GIP filter.

The plots labeled “5 levels” and “17 levels” refer to the augmented

filters having the parameter sets (45) and (46), respectively.

Each plot shows the variation of the GUSS supplied SIG3D parameter

versus range for the associated filter; by superimposing three plots a

convenient visual comparison of the relative filter performance is

produced for each trajectory run. Since this SIG3D parameter represents

an index of the standard deviation of the three—dimensional error in the

aim point for a shell fired at the target, any decrease in this parameter ’s

value is highly desirable.

The graphs show a consistently smaller value for SIG3D produced by

the “17 level” filter as compared to that produced by the “5 level” filter ,

for all values of range. The difference between both of these values

and the corresponding SIG3D produced by the GIP filter is quite large,

the latter at times being several orders of magnitude larger for targets

at distant ranges.

In an attempt to evaluate the relative reduction in the SIG3D para-

meter individually contributed by the spherical filter and the spherical

predictor, the following series of tests were performed . The set of

trajectories in Figures 9 thru 15 were run again, this time using the

rectangular GIP predictor in conjunction with the spherical filter.

_ _  .
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Overall, these tests indicated that the relative importance of

filter and predictor is trajectory dependent. Several trajectories

showed only a slight deterioration in the SIG3D parameter using the

rectangular predictor while in others the deterioration was quite

significant.

One of the latter cases——trajectory #119—— is shown in Figure 16.

In this figure, the SIG3D parameter using the rectangular predictor is

considerably larger than the corresponding values for the spherical

predictor, for ranges in excess of 2.0 K yards. In view of these

results, therefore, it appears that for fire control purposes the

spherical predictor is the preferred one since it yields consistently

better results over a broad spectrum of trajectories. 

—
• ~~~~~~~~-~~~~~ •
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Figure 9. SIG3D versus range for trajectory #1. 
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4 1
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- Trajectory #8
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0 17 levels

400 . . •
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Figure 10. SIG3D versus range for trajectory #8. 
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Figure 11. SIG3D versus range for trajectory #10. 
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Figure 12. SIG3D vers us range for trajectory #119.



—43—
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Figure 13. SIG3D versus range for trajectory #122. 
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Figure 14. SIG3D versus range for trajectory #134.
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Figure 15. SIG3D versus range for trajectory #1138.
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Figure 16. Comparison of rectangular and spherical fire control predictors.
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CONCLUSION

By modeling a maneuvering air target in spherical coordinates, a

simplified three dimensional “augmented” tracking f ilter algorithm has

been developed. This filter when combined with a spherical constant

velocity fire control predictor yields, for all target ranges, both a

consistently higher probability of kill together with a smaller value

for the SIG3D parameter than those produced by the GIP filter. These

results were obtained on a variety of air target trajectories.

The simplification in the filter was made possible by the linear

constant coefficient measurement matrix H which not only has obviated

the use of the Extended Kalman filter , but also has permitted to a

great degree the decoupling of the range, elevation and bearing channels.

In a separate series of tests on these trajectories to determine the

relative merits of the rectangular GIP predictor versus the spherical

predictor, it was found that the spherical predictor generally yielded

better results and is to be preferred.

While the results of this report indicate an improvement by

increasing from S to 17 the number of levels of the augmented filter,

such an increase cannot be carried out indefinitely. As the number of

levels increase, the process noise variance becomes vanishingly small

and the filter becomes less able to respond to a change in maneuver

level. Of course this increase also imposes a higher computational

load. 
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