—

()i l .299-,%,{

R s {

e '
PROCEEDINGS OF LOW-SPEED BOUNDARY-LAYER TRANSITION WORKSHOP. II !
L4 i = = = = .

v i
1 1
-\“-—- -
i
N\

e B AT R

AMAQGC4372

o

£ William S. King /
Marif’ Yokota /

3
-

FILE COPY.

Ty~ A v

DDC

@7’¢¢¢{/¢ v Rt ¢Yefi}””

RRROVED FOR PUBLIC RELEASE DISTRISUTION UNLIMITED

o \ V : . ;
@{\;{D’R- P-6119 (
1 o

oL 600 ,Z/W "N ’

L)




The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff.
Their purpose is to facilitate the exchange of ideas among those who share the
author’s research interests; Papers are not reports prepared in fulfillment of
Rand’s contracts or grants. Views expressed in a Paper are the author’s own, and
are not necessarily shared by Rand or its research sponsors.

/ The Rand Corporation
Santa Monica, California 90406




A

-iii-
PREFACE

This paper contains the proceedings of the Low-Speed Boundary-

Layer Transition Workshop: II, held at the offices of The Rand Cor-
poration, Santa Monica, California, September 13-15, 1976. The Work-
shop was jointly sponsored by the Defense Advanced Research Projects
Agency and the Office of Naval Research, and organized by The Rand
Corporation. The proceedings, which have been given a limited circu-
lation to ARPA and ONR, are here reproduced in Rand's Paper series
for worldwide distribution.

The primary goal of the Workshop was to provide a forum to exchange
current research results, to assess recent progress in laminar-flow
technology, and to establish new, viable research goals. Consistent with
this principal theme was the desire to provide an opportunity for
researchers and engineering designers to interact and to develoﬁ a
mutual appreciation of their respective efforts in improving the knowl-
edge of transition. This paper was prepared from the camera-ready
abstracts provided by the authors, and should be useful to hydrodynamicists,
designers of submersibles, and others engaged in fluid mechanics research.

Other related Rand publications include:

R-1752-ARPA/ONR, Low-Speed Boundary-Layer Transition Workshop,
June 1975.

R-1789-ARPA, Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suction, September 1975.

R-1863-ARPA, The Effects of Wall Temperature and Suction on
Laminar Boundary-Layer Stability, April 1976.

R-1898-ARPA, "eg": Stability Theory and Boundary-Layer Tran-
gition, February 1977.

R-1966-ARPA, The Buoyancy and Variable Viscosity Effects on a
Water Laminar Boundary Layer Along a Heated Longitudinal
Horizontal Cylinder, February 1977.

R-2111-ARPA, Entry Flow in a Heated Tube, June 1977.

R-2165-ARPA, Approximate Methods for Calculating the Properties
of Laminar Boundary Layers in Water (to be published).
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INTRODUCTION 1

The Low-Speed Boundary-Layer Transition Workshop was held on Sep- ‘
tember 13 to September 15, 1976 at the Rand Corporation, Santa Monica. : ]
The purpose of the Workshop was to provide a forum to exchange current
research results, to assess recent progress in laminar-flow technology
and to establish viable new research goals. In support of these goals,
one specific aim was to provide an opportunity for researchers and en-
gineering designers to interact and to develop a mutual appreciation
of their respective efforts in improving our knowledge of tramsition. i

Research into the fundamental aspects of boundary-layer transition
has advanced relatively rapidly during recent years. Improved experi-
mental protocol is providing a wealth of data that both substantiates i
and even surpasses available theory. The catalyst for the rapid devel-
opment in theoretical research has been improved analytical techniques
and faster, larger computers. The large number of research papers pre-
sented at the Workshop attest to the vigor of the current revival in
transition research.

Concurrent with advances in research have been advances in the en-
gineering art of applied laminar-flow technology. A principal reason 4
for this renewed interest is the reduced availability of energy. Con-
sequently the desire to improve performance and reduce energy consump-
tion for both civilian and military applications has inspired design and
development studies of long-range aircraft, high speed ground transpor-
tation, and high performance underwater vehicles. Designs are available
that would exploit laminar flow technology, and performance estimates
have been made. However, this still appears to be an area of highly
specialized expertise and intuition. What is needed is a routine pro-
cedure for designing laminar-flow vehicles and estimating their perfor-

mance. Several such procedures were introduced at the Workshop.

The Workshop was the second low-speed boundary-layer transition
workshop with joint sponsorship of ARPA and ONR and organized by Rand.
Attendance was by invitation, and there were 110 participants and 32




invited papers were presented in the six sessions.

The papers were

divided according to subject matter and this resulted in the follow-

ing sessions:

I.

II.

ITII.

IV.

VI.

Numerical Investigations of Navier~Stokes Equation
Transition and Stability Theory
Predictions of Transition by Model Equations

The Effects of Free Stream Disturbances and
Surface Roughness on Transition

Experimental Investigations of Transition

The Design and Parametric Studies of Laminar Flow
Bodies

This proceedings volume includes the meeting program, list of attendees,

and abstracts of the papers.

i e




Program

LOW-SPEED BOUNDARY-LAYER TRANSITION WORKSHOP: II

Monday, September 13, 1976

8:30 a.m. WELCOME: Dr., E. C. Gritton, Head, Physical Sciences Department,
The Rand Corporation

Laminar-Flow Research
Dr. G. L. Donohue, Defense Advanced Research Projects Agency

9:00 a.m. KEYNOTE SPEAKER: Dr. E. Reshotko, Case Western Reserve University

Morning Section: I. NUMERICAL INVESTIGATIONS OF NAVIER-STOKES EQUATIONS
Chairman: W. S. King, The Rand Corporation

1-1 Numerical Investigation of Nonlinear Wave Interaction in a Two-Dimen-
8ional Boundary Layer, J. W. Murdock and T. D. Taylor, The Aero-
space Corporation

I-2 Numerical Simulation of Transition Phenomena in Incompregsible Flows,
H, Fasel, Institut A fiir Mechanik, Universitdt Stuttgart

1-3 Fundamental Dynamical Aspects of Indeterminacy and Incompleteness of
the Navier-Stokes Equations Bearing on Transition, P. Lieber,
K. S. Wen, and J. S. Marks, University of California, Berkeley

Afternoon Section: 1II. TRANSITION AND STABILITY THEORY
Chairman: L. M., Mack, Jet Propulsion Laboratory

1I-1 Numerical Simulation of Transition, S. A. Orszag, Massachusetts
Institute of Technology

11-2 The Effects of Acceleration on the Growth Rate of Small Disturbances
in a Laminar Boundary Layer, C. von Kerczek, Naval Ship Research
and Development Center

11-3 On Boundary-Layer Transition Studies, S. I. Cheng, Princeton University
11-4 Transition, Pressure Gradient, Suction, Separation, and Stability

Theory, J. L. van Ingen, Delft University of Technology,
The Netherlands

11-5 Nomparallel Stability of Boundary Layers, W. S. Saric and A. H. Nayfeh,
Virginia Polytechnic Institute and State University

11-6 Wave Mechanical Aepecte of Transition, M. T. Landahl, Massachusetts
Institute of Technology
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Tuesday, September 14, 1976

Morning Section: III., PREDICTIONS OF TRANSITION BY MODEL EQUATIONS
Chairman: M. V. Morkovin, Illinois Institute of Technology

111-1 Theoretical and Experimental Transition Studies at ONERA/CERT,
R. Michel, ONERA-CERT-DERAT

III-2 Turbulence-Model Predicted Effects of Surface Heat Transfer on
Boundary-Layer Transition, D. C. Wilcox and T. L. Chambers, DCW
Industries, Inc.

11I-3 On the Application of Second-Order Closure Models to Boundary-Layer
Transition, M. L. Finson, Physical Sciences, Inc.

IV. THE EFFECTS OF FREESTREAM DISTURBANCES AND SURFACE ROUGHNESS ON TRANSITION
Chairman: M. V. Morkovin, Illinois Institute of Technology

IV-1 An Analytical Study of the Effect of Surface Roughness on the Sta-
bility of a Heated Water Boundary Layer, D. R. S. Ko and M. Kosecoff,
Physical Dynamics, Inc.

IV-2 On the Effect of Freestream Turbulence on Boundary-Layer Transition,
L. M. Mack, Jet Propulsion Laboratory

IV-3 The Effects of Finite-Amplitude Disturbances on the Mean Flow Pro-
files in a Laminar Boundary Layer, C. L. Merkle, D. R. S. Ko, and
T. Kubota, Flow Research, Inc.

IV-4 Fluctuations in a Boundary Layer Introduced by Traveling-Wave Irro-
tational Freestream Disturbances, H. L. Rogler, Case Western Re-
serve University

Afternoon Section: V. EXPERIMENTAL INVESTIGATIONS OF TRANSITION
Chairman: A. M. O. Smith, University of California, Los Angeles

V-1 Stability of a Heated Water Boundary Layer for Non-Uniform Wall
Temperature Distributions, A. Strazisar and E. Reshotko, Case
Western Reserve University

V-2 Transition in an Axisymmetric Boundary Layer with Wall Heating,

S. J. Barker, Poseidon Research and University of California,
Los Angeles

V-3 Presgsure Fluctuations in the Transition Regions of Forebodies of Revo-
lution, T. T. Huang, Naval Ship Research and Development Center

V~4 A Comparison between Measured and Computed Locations of Transition on

Nine Forebodies of Revolution, J. L. Power, Naval Ship Reezarch
and Development Center
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Wednesday, September 15, 1976

VI. THE DESIGN AND PARAMETRIC STUDIES OF LAMINAR FLOW BODIES
Chairman: J. Aroesty, ‘The Rand Corporation

VI-1 The Combined Effects of Pressure Gradient and Heating on Boundary-
Layer Stability and Transition, A. R. Wazzan and . Gazley, Jr.,
The Rand Corporation

VI-2 Laminarization of Water Boundary Layers over Bodies of Revolution,
A. M. O. Smith and A. R. Wazzan, University of California, Los Angeles

VI-3 A Study of Heat Addition Effects on Laminar, Water Boundary Layers
of Axisymmetric Bodies, J. J. Eisenhuth, Pennsylvania State University

VI-4 Design of a Laminar, Low-Drag Research Vehicle, R. S. Scotti,
B. H. Carmichael, and D. A. King, Rockwell International

VI-5 Axisymmetric Vehicle System Design for Total Propulsion Power Optimi-
zation, F. R. Goldschmied, Westinghouse Research Laboratories

INFORMAL PRESENTATIONS

"Simple Relations for the Stability of Heated Laminar Boundary Layers in
Water: Modified Dunn-Lin Method,'" J. Aroesty, et al., The Rand Corporation.

"Primary and Secondary Instabilities in Unstably Stratified Shear Flows,"
R. E. Kelly and R. M. Clever, University of California, Los Angeles.

""September 1976 Status Report on BLCS Research," T. G. Lang, Naval Undersea
Center.

"Roughness Effects on Transition on an Ellipsoid," M. M. Reischman and
G. L. Donohue, Naval Undersea Center.
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I-1 Numerical Investigation of Nonlinear Wave Interaction

in a Two-Dimensional Boundary Layer

John W. Murdock and Thomas D. Taylor
The Aerospace Corporation
P. O. Box 92957
Los Angeles, California 90009

The present work is the initial phase of a study whose purpose is to
develop a computer code to solve the Navier-Stokes equations (or an appropriate
simplified version of same) in the Reynolds number range of transition and to
study the various stages of boundary layer transition. The unsteady, two-dimensional,
Navier-Stokes equations as well as parabolized vorticity equations have heen
solved for flow over a flat plate. (The parabolized vorticity equations were obtained
from the Navier-Stokes equations by neglecting the fourth order streamwise
derivative of the stream function.) The physical problem considered is equivalent
to that frequently used in wind tunnel investigations of linear stability and transition
in which a two-dimensional, time-periodic, disturbance is introduced with a
vibrating ribbon in the boundary layer. This situation is achieved numerically by
imposing an upstream boundary condition, at a fixed location on a plate, which

consists of the sum of the Blasius solution and a time-periodic solution to the Orr-

Sommerfeld equation.

The dependent variables in the study were the strcam function and vorticity;
the independent variables were orthogonal parabolic coordinates. The ‘equations
w ere solved with a so-called spectral scheme which was selected because it can
be more accurate for comparabl'e machine storage than a finite difference method.
The spectral scheme was implemented by expanding the dependent variables in
Chebyshev polynomials in both space dimensions. The solution was developed by
substituting the cxpansion into the flow equations and equating the coefficients of
equal order polynomials. Since the coefficients are a function of time the result
is a set of coupled ordinary differential equations. These equations have been
solved by both implicit and explicit integration schemes for the complete equations
and the parabolfzed equations. : :

There are four main results or conclusions which have been achieved

to date. The first is that it is possible to solve the two-dimensional Navier -

. Stokes equations with non-trivial boundary conditions using an orthogonal function
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expansion in both space dimensions. (A c'mplete description of the numerics

will be contained in a forthcoming paper.)

The second conclusion reached in this study is that for the type of
flows considered the parabolized vorticity equations are an adequate model of
the flow. This conclusion is substantiated by the fact that these equations were
used to derive a modified Orr-Sommerfeld equation, the solution of which agreed
with the solution of the usual Orr-Sommerfeld equation to 4 significant figures for
a typical test case. This is not surprising if the order of magnitude of the various
terms in the Orr-Sommerfeld equation is considered. (See for example Gaster (1).)
Figure 1 shows a comparison of the Navier-Stokes calculations of Fasel (2) with the
present parabolized vorticity computations. The agreement is excellent; similar
agreement has been found between the present Navier-Stokes and parabolized
vorticity solutions. This result is important since it has been possible to generate
solutions to the parabolized vorticity equations in as much as one-twentieth the time
required to solve the same physical problem with the Navier-Stokes equations.
The saving arises because the additional boundary condition which must be imposed on
the Navier-Stokes equations in general creates a thin boundary region at the down-
stream boundary of the computation. For numerical stability this boundary region
must be resolved; this requires a fine spatial resolution and an associated decrease

in the time step which, in general, substantially increases running time.

The third result of this work is that the nonlinear effects are initially
destabilizing relative to the linear effects. That is to say that the boundary
layer is more unstable to large disturbances than to small ones. This is an
important result since previous analytic nonlinear stability analyses apply only
to parallel flow and, in addition, are series expansions about the critical point.
The present results are for a non-parallel boundary layer and may be obtained

for arbitrary Reynolds number and disturbance wave form.

The nonlinear stability effects have been investigated by inputing Orr-
Sommerfeld disturbances of an amplit..ae of about five percent of the mean flow
at Rx = 105 and solving for the steady state disturbance downstream. In Figure
2 the computed linear (A = 0. 001) and non linear (A = 0, 08) wave forms are compared.
Although the terrr;s "linear'" and ''non linear'" are used to distinguish between the
two computations described herein, both results are solutions of the non linear
parabolized vorticity equations. Figure 2 shows significant distortion from a
modulated sinusoidial wave form by nonlinear effects as the wave propagates from

R, = 10° to 2. 2 x 10°,
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Inspection of Figure 2 demonstrates that it is difficult to physically inter-
pret the no‘nlincar effect by simply inspeciing the variation of velocity as a
function of Rx' (Note, however, that the broadened positive peaks and large
narrow negative peaks are qualitatively similar to the hot wire measurements
of Klebanoff and Tidstrom (3) taken in a boundary layer excited with a large
amplitude Tollmien-Schlicting wave.) Because the boundary layer is being
excited at a fixed dimensionless frequency, w = 13.19, it may be Fourier transformed
in time once all transient effects are washed downstream. The Fourier amplitude
of the perturbation velocity is illustrated in Figure 3 at the same station in the
boundary layer as Figure 2. Figures 2 and 3 are at a station well down in the
shear layer (1) = 0. 2); the Fourier amplitude at a station near the maximum of the
input Orr-Sommerfeld solution is shown in Figure 4. The nonlinear curves
(A = 0.08) in Figures 3 and 4 show that up to Rx =1.3 x 105 the primary mode
is changed only slightly from the linear behavior while the second mode grows
dramatically. Thus, in this rang e the nonlinear effects are destabilizing. Beyond

this point the relative stability become s to some extent a matter of definition.

The magnitude of the mean perturbation from the Blasius is also shown
at selected points in Figures 3 and 4. It is clearly less important than the

second harmonic. Higher harmonics are smaller than the mean and are therefore
not shown.

Figures 3 and 4 show the Fourier amplitude of the perturbation as a
function ofo; it is also of interest to consider the variation across the boundary
layer. As a point of reference consider first the linear behavior. Figure 5
shows the disturbance ampiitude as input at Rx = 10-5; the corresponding curve
at Rx =2.2x 10|5 shows the peak is shifted in T|-space as the wave propagates
downstream and is amplified. The Fourier amplitudes of the various nonlinear
modes at Rx =1l3x 105 are shown in Figure 6. The primary mode shape is
changed only slightly from the linear one. The general shape of the secondary is
similar to the primary but the peak and phase reversal point are closer to the
wall, The amplitude of the mean is positive near the wall with a smaller negative
region adjacent. (Only absolute values are shown in '+e figure,) Figure 7 shows
a similar result at Rx =2.2x 105. In this case the normalized amplitude of the
nonlinear primary is changed somewhat from the linear curve. The mean
contribution again has a positive region near the wall followed by a now
significant negative region,

Up to this point the results have emphasized the Fourier amplitude; it

is also of interest to look at the phase relationship between the primary and
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secondary disturbance. The usual analytic studies of nonlinear stability theory

assume that the secaudary is a harmonic in space as well as in time. Figure 8

shows a typical phase relationship between the two disturbances (where for convenience
both amplitudes are normalized to unity). The results show that the secondary is
very nearly a spatial harmonic of the primary. However, a particularly interesting
feature of this curve is the rather abrupt change in the relative phase at ahout

R = L7x 105 which is about the location of the change in shape of the secondary
disturbance.
work is that small changes in the relative phase appear to be associated with

significant changes in the growth/decay behavior of the secondary wave.

Although this point needs further study, a tentative finding of this

ey P P
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Sine of the Phase Angle of the Primary

and Secondary Wave at 1| = 0, 2

Fig. &.
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Section I

NUMERICAL SIMULATION OF TRANSITION PHENOMENA
IN INCOMPRESSIBLE FLOWS
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I-2 NUMERICAL SIMULATION OF TRANSITION PHENOMENA
IN INCOMPRESSIBLE FLOWS

H. Fasel
Institut A fir Mechanik
Universitdt Stuttgart
Stuttgart, Germany

For the investigation of stability and phenomena of initial
transition in incompressible, two-dimensional flows an im-
plicit finite difference method for the solution of the
complete Navier-Stokes equations was developed (1). The
applicability of the numerical method for such investiga-
tions was demonstrated by simulations of Tollmien-Schlichting
waves in boundary layer flows on a flat plate. In the numeri-
cal model these waves were produced by introducing periodic
disturbances at the upstream boundary A-D of a rectangular
integration domain (Figure 1). The reaction of the flow to
such disturbances was then directly determined by solving the
Navier-Stokes equations within the rectangular domain using
appropriate boundary conditions.

For perturbations of very small amplitudes (maximum disturb-
ance amplitude of stream-wise velocity component 0.05 per-
cent of free stream velocity) extensive comparative calcula-
tions showed good agreement with linear stability theory and
experimental measurements (2,3). Amplification of the dis-
turbances occurred approximately in the same region of
Reynolds number and disturbance frequency as in the experi-
ments and in linear stability theory, particularly when non-
parallel flow effects were taken into account in the linear
stability theory analysis (4). A comparison of the numeri-
cally determined amplification rates and amplitude distribu-
tions of the disturbances with linear stability theory and
experimental measurements was equally satisfactory.

- - - —— » - . N EE——
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The usefulness of the numerical model for stability and
transition studies has been further tested by applying

it to another type of flow, i.e. the plane Poiseuille

flow between two parallel plates. It was possible to
demonstrate that for small sinusoidal disturbances, which
were introduced at a fixed downstream location, space-wise
(in downstream direction) amplification of the disturbances
can occur within a certain Reynolds number - frequency
region. In Figure 2, for example, amplification curves

for two typical test cases are shown, one for a stable

and the other for an unstable disturbance. This evidence
of spatially growing disturbances in plane Poiseuille flow
was also verified experimentally by Nishioka et al. (5).

In the development of the numerical method it was possible
to avoid any restrictions with regard to amplitude or form
of the perturbations. Thus, the numeriéal model lends it-
self for the investigation of a number of other aspects

of stability and transition for which treatment with other
theoretical models becomes extremely difficult. One of the
main points of interest in this field is focused on the
investigation of later stages of the transition process
which follow the amplification of unstable Tollmien-Schlich-
ting waves.

For an investigation of the two-dimensional non-linear
development in the transition process, numerical experiments
are performed in which the boundary layer flow is disturbed
at the upstream boundary A-D of the rectangular integra-
tion domain (Figure 1) with periodic perturbations of larger
amplitudes. In these experiments, disturbance amplitudes of
the stream-wise velocity component are increased up to 5 per-
cent of the free stream velocity. In Figure 3 typical results
are shown for calculations with a Reynolds number (based on
displacement thickness) of 635 and a frequency parameter

(F = Bv/q:) of 1.32¢10" . In these calculations the loca-
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tion of the upstream boundary corresponds to a point on the
lower branch of the neutral curve of linear stability theory.
The amplification curves for.different disturbance amplitudes
which are plotted in Figure 3 clearly indicate a dependency

of the amplification rate on the amplitude of the disturbances.
As expected, the influence of the magnitude of the disturbance
amplitude for amplitudes below one percent is practically
negligible. However, for larger amplitudes an increase in
disturbance amplitude has considerable influerice on the ampli-
fication rate of the disturbances.

In these investigations strong emphasis is also placed on a
thorough study of the role of other harmonic disturbance wave
components in the transition process. The numerical results
indicate the existence of other harmonic wave components super-
imposed on the primary disturbance wave. The influence of these
wave components seems to become more and more dominant when
disturbance amplitudes are increased.

Another effort involves a detailed study of the influence

of a single roughness element on the transition process in

a flat plate boundary layer flow, corresponding to the exper-
imental work of Klebanoff and Tidstrom (6). Because of the
simpler geometry, however, a backward facing step was chosen
as roughness element, as shbwn in Figuré 4, In this study the
step heights are ranging from one half to two displacement
thicknesses. By means of comparative calculations with iden-
tical flow conditions for a flat plate with the step and with-
out the step the effects of the roughness element on the tran-
sition processes can be clearly observed. For example, when
random disturbances are introduced at a fixed downstream
station, a certain selection process takes place for both
cases where disturbances,that are, according to linear stabil-
ity theory, most unstable for the particular Reynolds numbers,
are singled out. However, the selection process is much more
pronounced when the roughness element is present.
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I-3  FUNDAMENTAL DYNAMICAL ASPECTS OF INDLTERMINACY AND INCOMPLETEMESS
OF THE NAVIER-STOKES EQUATIONS BEARING ON TRANSITION

by
Paul Lieber, K. S. Wen and J. S. Marks

The application of the Navier-Stokes equations to the calculation of actual
flows and in particular transition, by analytical and numerical procedures, is
predicated on the supposition that they are in fact complete in specifying the
dynamical constraints necessary for so obtaining this information. lYe demonstrate
on the basis of the first principles of mechanics which circumscribe and thus
1imit the dynamical information content of the Navier-Stokes eauations, that this
basic presupposition must be fundamentally questioned. This is done by demonstrat-
ing the primacy and autonomy of force relative to the principles of mechanics and
that this important fact carries over into the Navier-Stokes theory as well and
accounts for the most fundamental dynamical aspect of indeterminacy and incom-
pleteness of this theory. This fundamental aspect of indeterminacy which is
predicated on the primacy of the forces, allows and calls for the specifications
of additional dynamical contraints which augment and complete the Navier-Stokes
theory for the purpose of calculating actual realizable flows. We present in
outline analytical and numerical results obtained by the application of hydro-
namical variational principles that were conceived and designed for this purpose.

Certain experimental results which bear both directly and indirectly on
transition and which experimentally display other significant aspects of incom-
pleteness and indeterminacy of the Navier-Stokes equations are described as well
as the experimental arrangements that producedlthem. The theoretical consider-
ations that led to the conception of these unconventional hydrodynamical experi-
ments and to the expectations that led to the identification of the results
obtained are outlined.

e ————
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Section II

NUMERICAL SIMULATION OF TRANSITION
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II-1 Numerical Simulation of Transition

Steven A. Orszag

Department of Mathenatics
M.I.T.
Cambridge, Mass. 02139

In this paper we shall summarize and compare results
obtained from two distinct theoretical approaches to the
transition problem. In the first, the three-dimensional
time-decpendent Navier-Stokes equations are solved in & plane
channel with appropriate boundary conditions. The evolution
of three-dimensional disturbances is studied with regerd to
cross-stream wavelength selection, spanwise and boundary-layer-
wise flow variations, etc. The effects of surface curvature
will also be discussed. 1In the second study, a highly
simplified set of Galerkin equations was used to predict
transition. Comparisons with the direct numerical simulations
will be reported.
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Section II

THE EFFECTS OF ACCELERATION ON THE GROWTH RATE OF SMALL
DISTURBANCES IN A LAMINAR BOUNDARY LAYER
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I1-2 THE EFFECTS OF ACCELERATION ON THE GROWTH RATE OF SMALL
DISTURBANCES IN A LAMINAR BOUNDARY LAYER
by

C. von Kerczek
David W. Taylor Naval Ship Research and Development Center

The effect of small acceleration on the amplification of disturbances in a
laminar boundary layer, as might occur in the latter stages of the flight of a
buoyancy propelled body, is considered.

Consider, for example, a circular cylinder whose radius is 15 feet and
terminal velocity is 40 knots (i.e., Reynolds number = 67 x 106). We suppose
-0.11?) where

UfT) is the dimensionless velocity of the cylinder at an instant of dimension-

that it accelerates according to-'the following law U(T) =(1 -e

less time ¥ . The velocity scale used is the terminal velocity 40 knots and the
time scale is the radius of the body divided by the terminal velocity. The above
acceleration is a guess of what might be required in order to be near the terminal
velocity after a distance of about 1000 feet.

The instantaneous inviscid velocity distribution on the surface of the
cylinder is then U(x,T) = 2(1 - -8
the circumference of the cylinder measured from the front stagnation point. If

) sin x where x is the arclength along

one considers the temporal growth of small disturbances in the boundary layer,
the analysis of [1] justifies the use of quasi-steady stability theory to deter-
mine growth rates. We assume that validity of the quasi-steady assumption to
compute temporal growth rates allows the same approximation for computation of
spatial growth rates. Thus, we assume that the amplitude A of a disturbance

in this accelerating boundary layer is given by

/a X
L«, X /x“ Udx )

where -cKi is the instantaneous growth rate, Rp; is the instantaneous length

..atiﬁig-
%

Reynolds number, R‘ *1 is the instantaneous displacement thickness Reynolds
number and X is the instantaneous point of neutral stability. The amplification
(1) must be calculated following the disturbance with its group velocity, see [2].
However, this second requirement may be relaxed in this case because the group
velocity scales on U (e.g., calculations typically show group velocity near
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0.2 U) and hence, the disturbances traverse the girth of the cylinder before the
boundary layer changes appreciably.

As a sample calculation, Figure 1 shows the results of the unsteady boundary
layer calculation (by the time-dependent Pohlhausen momentum integral method)
on a sector ahead of but near the top (x = 0.5) of the cylinder. The quantity'JAL
is the Pohlhausen parameter defined in unsteady flow as _/\__-_(-b' ?_,% + %s;{)_g
where S is a boundary layer thickness and ¥ is the kinematic viscosity. The
various curves give A at different instants of time. The amplification (1) was
computed at the instant T = 12 which is when the body has reached about 70 per-
cent of its terminal velocity. At this instant the disturbance with nondimen-
sional frequency 0.7 x 10-6 traverses the arc (moving with its group velocity)
from x = 0.4 to 0.5 in AT <0.5. In this increment of time, the boundary
layer has little perceptible change as can be inferred from Figure 1. This gives
an a posteriori justification of the quasi-steady assumption. Figure 2 shows
,Qn A/A,as a function of x at © = 12. The curve marked (a) is what is obtained
in a steady flow having the terminal velocity. The curve marked (b) is what is
obtained when the flow is steady at 70 percent of terminal velocity (i.e., effect
of acceleration of the flow on A is neglected). The curve marked (c) is what is
obtained when boundary layer acceleration is taken into account. The conclus-
ion is that the acceleration mainly affects boundary layer profile shape (i.e., A ).
Even though this effect on /A is fairly small, it can have a large effect on the
amplification in the region of the body where /A would be near zero in a steady

flow (i.e., near x = 0.5).
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[2] Loehrke, R.I., Morkovin, M.V. and Fejer, A.A., "Transition in Nonreversing
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Vol. 97, pp. 534-549 (1975).
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II-3 ON BOUNDARY LAYER TRANSITION STUDIES
Sin-I Cheng
Princeton University

The development of turbulent spots in the late stages of transition is as
important as spot generation in transition studies. Laminar instability is
important but not all encompassing even in the early stages of burst formation.

A turbulent boundary layer is visualized as an aggregate of distinct and
overlapping turbulent spots convecting downstream in their asymptotic states.
The turbulent front of each asymptotic spot develops in its local laminar environ-
ment independently of its neighbors until overlaps occur, where upon nonadditive
union of spots and annihilation of fronts result. Incipient transition is reached
when sufficient number of bursts and turbulent spots are present so that the- sum
of the transit times of all these spots under asymptotic development will exceed
unity (intermittency factor = 1) somewhere downstream. The resulting outgoing
turbulent front (mean) will eventually redch its equilibrium position about half
way toward the outer edge of the turbulent boundary layer under the large con-
vective effects there. The ingoing front propagates into the thin wall layer
where it is promptly dissipated. A fully turbulent boundary layer then results.
As such, the mean turbulent properties within a developing spot are those in the
fully turbulent boundary layer further downstream.

Kinematics, dynamic and energy considerations of the asymptotic development
of a spot and its interaction with the "mean flow" permit an estimate of the
asymptotic states and of the transit time of a spot. Such estimates are in sub-
stantial agreement with observations. A criterion of incipient transition is
then formulated in terms of the transit times of all the asymptotic spots resulting
from the population of bursts and spots at a given station. A burst is presumed
to be generated when the disturbance amplitude exceeds what is needed t» extract
sufficient energy from the mean flow for establishing a self-sustaining turbulent
front of an asymptotic spot. This cut off amplitude increases with the scale and
frequency of the disturbance to enhance such selectivity in burst formation.

If external disturbances are sufficiently large and numerous, the proposed
transition criterion provides specific functional relations between transition
Reynolds number and the external disturbances that describe adequately the obser-
vational data. If insufficient, transition will require additional spots from
growing laminar disturbances with sufficiently large amplification rate. The
many faces of transition can then be put in proper perspective to further better
understanding and the construction of some practically useful transition criterion.
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II-4

TRANSITION, PRESSURE GRADIENT, SUCTION, SEPARATION AND
STABILITY THEORY.

J.L. van Ingen

Department of Aerospace Engineering, Delft University of Technology,

Kluyverweg 1, Delft, The Netherlands.

SUMMARY .

A semi-empirical method is presented for the prediction of transition
in two-dimensional incompressible flows with pressure gradient and
suction. Included is the case of the laminar separation bubble, where
transition is preceded by laminar separation.

The method employs linear stability theory to calculate the amplification
factor o for unstable disturbances in the laminar boundary layer.

(0 is defined as the natural logarithm of the ratio between the
amplitude of a disturbance at a given instant or position to the
amplitude at neutral stability). It is found that at the experimentally
determined transition position the calculated amplification factor

for the critical disturbances attains nearly the same value (about

10) in many different cases for flows with low free stream turbulence
levels. An attempt is made to include the effects of higher free
stream turbulence levels by allowing the critical amplification factor

to decrease with increasing free stream turbulence.

NOTATION.

The symbols used are the conventional ones for boundary layer and
stability theory. To avoid confusion a few of them are mentioned
specifically below.
¢ reference length

62 qu

v dx

U velocity at edge of boundary layer
U, reference velocity

J U=u/u




A

x or s distance along contour of body

X, distance along chord
- X
x—
c
s s/c

subscript sep refers to conditions at separation.

LINEAR STABILITY THEORY.

In linear stability theory a given two-dimensional laminar main
flow is subjected to sinusoidal disturbances with a disturbance

stream function:

v = o(y) el (@xuE) 1
For the spatial mode w is real and a is complex o = o * i Q.
Tnis leads to a factor e “i* in the disturbance amplitude and o
follows from: -
x U.c S e i
0={ -odx=—10"/ T.U dx (2)
o) 1 v X
%
where x is the streamwise position where the disturbance with
frequency w is neutrally stable.
T is defined as: PR | ’
T = 10 (3)
(]

In the temporalmode the same expression (2) for o is found with

a different definition for T.

It is clear that ¢ is a function of x and w for a given boundary
layer; o can be calculated as soon as stability diagrams are
available for the velocity profiles for successive streamwise
positions x.

For a long time Pretsch'stability diagrams for the temporal stability
of the Hartree similar velocity profiles, have been the only source
of detailed stability data for flows with non-zero pressure gradient[ﬁ].
Results for the spatial stability of the Hartree flows have been
given by Wazzan, Okamura and Smith [7] and Kummerer [8] , stability
diagrams for the reversed flow solutions of the Falkner-Skan equation
have been obtained by Taghavi and wgzzan[ilj.




' beginning and end of transition equal to 2.8 x 106 and 3.9 x 10
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STABILITY AND TRANSITION OF THE FLAT PLATE BOUNDARY LAYER.

Fig. la shows 0 for the flat plate according to Pretsch for

: ; : Y]
different non-dimensional frequencies EE

curves gives the maximum value of 0 for each streamwise position.

. The envelope of these

In what follows we will in general mean this maximum value when
we mention 0. The curve labelled 3 in fig. lb is the envelope
according to [7] and [8]; the curve labelled 2 will be discussed
later. A well known result for the experimentally determined
transition region is due to Schubauer and Skramstad [12]. They
find for low free stream turbulence levels Reynoldsnumbers at :
respectively. To these Reynolds numbers correspond certain
vélues 9, and 9, for o which are indicated in table 1.

FIRST VERSION OF THE PREDICTION METHOD (1956).

- The present author used Pretsch charts in [1] to calculate

amplification factors for an airfoil section (EC 1440) at different
values of angle of attack and Reynolds number.

It was shown that cl=7.6 and 02-9.7 gave a reasonably accurate
prediction of the transition region. Smith and Gamberoni [3],

defining a transition point rather than a transition region found

that 0=9 would correlate different transition experiments reasonably
well.

Although it is clear that a transition criterion should be based on
the actual amplitude of the disturbance, rather than on an amplification
ratio, the method has been used extensively. Its success may have been
due to the fact that the initial disturbances - due to free stream
turbulence for instance - have been about the same for the cases
investigated.

Another way to explain the success of the method may be that o is

a suitable factor in which different factors, known to influence

transition, may be correlated.

SECOND VERSION, ALSO APPLICABLE TO FLOWS WITH SUCTION.
In 1965 the present author extended the method to the case of two-

dimensional incompressible boundary layers with suction [2].
Since at that time the Pretsch charts were still the only source

of detailed information on amplification rates, some drastic
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simplifying assumptions had to be made. First it was assumed that
all possible stability diagrams, including those for suction
boundary layers, formed a one-parameter family with the critical
Reynolds number as parameter. Furthermore, it was assumed that the
critical Reynolds number could be determined from an approximation
formula due to Lin. The suction boundary layer was calculated using
a two-parameter method of integral relations. This necessitated a
new "calibration" of the transition prediction method against the
flat plate without suction, leading to curve 2 ir fig. lbwith
2=ll.2.

To facilitate the amplification calculations using a computer

01=9.2 and O

Pretsch' charts have been brought in a tabular form. Fig. 2 shows

an application to the EC 1440 airfoil; some results for an airfoil
with suction through a porous surface are shown in figs 3 and 4.

In view of the many simplifying assumptions which had to be made the
correspondence between theory and experiment may be considered to be
good.

Since 1965 this version of the method has been included in a computer
program for the analysis and design of airfoil sections [13]. The
streamwise position for the end of the transition region (determined
by 0,) has been used as the starting point for the turbulent boundary
layer calculation.

It has been found that an improved transition prediction could be
made by allowing the value for g, to vary from 11.2 for favourable
and zero pressure gradient to about 20 for'boundary layers near
separation. (In the last version o, is again more nearly constant).
In general the position of transition was predicted within a few
percent of the chord. An example of application of this airfoil
analysis program taken from [14] is shown in fig. 5 . The airfoil
investigated is that of the horizontal tailplane of the Italian sail-
plane M300 "Aliante'". The airfoil ﬁas designed by cambering the

NACA 633

process which caused appreciable surface waviness. An actual specimen

-018 section. The tailplane is produced through an extrusion

of this tailplane was tested as a two-dimensional model in the low
speed wind tunnel of the Department of Aerospace Engineering at Delft.
It was found that the surface waves caused early transition in a

certain angle of attack range; this could be remedied by smoothing
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the forward part of the surface. The calculation, starting from

the airfoil coordinates for both conditions, predicted this change
quite well.

It should be stressed again that the present method may be considered
as a method to correlate different transition experiments. The
calculated amplification factors need not have a precise physical
meaning. It is however a definite advantage of the method that linear
stability theory is used which has proved to be a valuable tool to
describe the early phases of the transition.process. It should also
be observed that inaccuracies in one of the elements of the method
(viz. boundary layer calculation; calculation of the critical
Reynolds number using Lin's formula; the stability diagrams used)
may have been neutralized by inaccuracies in another element. Hence
if any element is changed, a new calibration is necessary.

An important imperfection in the second version of the method was
that the stability characteristics in laminar separation bubbles
were obtained by extrapolation from the attached flow. This may

have been the cause of the high values of 9, required to predict
accurately the end of the transition region in boundary layers near

to or after separation.

A SHORT CUT METHOD TO PREDICT TRANSITION IN SEPARATION BUBBLES.
In [5] the present author published a short-cut method to predict

transition in separated flow. The method is based on the stability
diagrams for reversed flows due to Taghavi and Wazzan [ll] and
some additional calculations by the present author for the limiting
stability characteristics when Re*@, using the inviscid stability
equation (Rayleigh equation). The following assumptions are made
1) U, 6 and Ry in the separation bubble are independent of x and
equal to their values at separation. Then a constant value of
w also means a constant value of Qg.
2) The separation streamline is straight, and leaves the wall at

an angle Yy determined by:

tg(y) = -ﬁgz—-—' (4)

Vv’sep

where B is a constant equal to 17.5.

- g - L — - " - -
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3) The Reynolds number is so high with respect to the (very low)
critical Reynolds number that the stability characteristics
are given with sufficient accuracy by the limiting values
determined from the inviscid stability equation.

Then -aie only depends on the value of 9% and the velocity

profile shape parameter.

Finally we introduce the shape parameter z=g x m___, where g is the

sep
height of the separation streamline above the wall devided by 6 and
2
du , : : .
msep e at separation. Then the integration w.r.t. x in (2)

can be replaced by an integration w.r.t. to z leading to:
(Re)seg
o=3 J (-a.68)dz (5)
‘Byep i

(a similar result may be obtained for a small region upstream of

T
separation when integration w.r.t. £ = Egﬁ is used).

The inviscid instability for different values of the Hartree parameter
B is shown in figs 6 and 7. Values of IOA dj (-uie)dz are shown in
wl

1]
the maximum value I of the integral as a function of Z. (See also

fig. 8 for different values of together with the envelope giving

table 2). Hence in the separation bubbie we have:

0% yy 1
- 0'sep (6)

B.m
sep

Using this short-cut method it was found in [5] that o, for
separation bubbles on an airfoil in a small "noisy" tunnel was
about 12.5 (fig. 9). For separation bubbles on a circular cylinder
with a tapered tail in the large low turbulence wind tunnel, values
of 0y between 13.2 and 15.7 weré found, depending on the wind speed.
Using the same .short-cut method Van der Meulen [15] obtained 0,=7

for a body of revolution in a small high speed water tunnel.

PRESENT STATUS OF THE TRANSITION PREDICTION METHOD.
All stability data obtained from [7,8,1!] and the inviscid stability

calculations mentioned in the preceding section, have been reduced
to a table containing about 300 numbers.
Using this table, the amplification rate T can easily be obtained for

any velocity profile, as soon as the critical Reynolds number is known.
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The present author employs a boundary layer calculation method [5]
which for attached flow is similar to Thwaites' method. It contains
an extra parameter however, which makes the prediction of the
separation position as accurate as for Stratford's two-layer method.
In separated flows an integral method is used in which the shape of
the separation streamline is prescribed. Both for attached and
separated flow the primary profile shape parameter is m/mse . The
gritical Reynolds number is a function of m/msep; this function is
assumed to be equal to that obtained for the Falkner-Skan solutions.
From calculations with the full method it has been found that the
short-cut method, described in the preceding section, gives a very
good approximation in separation bubbles. Furthermore it has been
found that the values of o1 and 02, when transition occurs near
separation are much nearer to the flat plate values than for the

second version. It can now be expected that o, and o, will be more

or less constant for flows with the same init;al disturbances.
However, oh and 0, may have to vary with the level of initial
disturbances due to free stream turbulence and noise.

From curve 3 in fig. 1 and table 1 it follows that o, = 8.3 and
oy = 10.4 if Schubauer and Skramstad's transition results for the
flat plate are used. From Spangler and Wells' experiment on a flat
plate in a tunnel with reduced background noise [}G.Ii] and from
the authors own experiments somewhat larger values for o, C12")
and o, (14.5 ) would be obtained. Jaffe, Okamura and Smith [9]
applied their solution technique for the Orr-Sommerfeld equation
to velocity profiles that had been obtained numerically for two-
dimensional and axi-symmetric flows. They find 01-8.3 for the
Schubauer and Skramstad results and 01-11.8 for Well's results;
for a large number of flows with pressure gradient o, values ranging
from 6.8 to 12.1 were obtained. A good overall correlation of

transition position was obtained using ol-lo.

RELATION BETWEEN 0,29, AND FREE STREAM TURBULENCE.

Although it is clear that the initial disturbances cannot be sufficiently

characterised by the r.m.s. value of free stream turbulence alone, it
will be attempted in the present section to find a relation between

Oys O, and the r.m.s. free stream turbulence Tu (in X).
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In many different papers relations between Tu, Re or Rx at transition
have been given for the flat plate. The measured transition positions
may be converted to o-values using curve 3 from fig. l1b. Then o will
decrease when Tu increases; fig. 10 shows a collection of these data;
for Tu > 0.1% the relation used by Mack in fig. 3 of [18] can be

approximated by:

o, =2.13 -6.18"0 10¢ T (7
while for o, a reasonable approximation is:
gy ® 5 -6.18'° log Tu (8)

For values of Tu < 0.1%Z there is much more scatter because in this
région sound disturbances may become the factor controlling transition
rather than turbulence. We may also use the relations (7) and (8)

for Tu < 0.1%Z; but then we should define an "effective" value for Tu.
Of course this does not solve the problem because we can only define
an "effective Tu" for a wind tunnel after transition experiments

have been made in that same tunnel.

At the time of writing this abstract some additional measurements in
the low speed low turbulence wind tunnel of the Department of Aerospace
Engineering are being evaluated. Some preliminary results show that

the "effective Tu" even may increase at the lower windspeeds where Tu
decreases. It is thought that this is due to the fact that the critical
frequencies in the boundary layer may better be matched to the wind
tunnel noise spectrum at lower speeds.

For the time being it is suggested to use (7) and (8), assuming an
effective Tu equal to 0.1% for modern wind tunnels, resulting in

o, = 8.3 and 02 = 11.2.
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curve no R :
in fig. 1b 9, 9, stability diagram used

| 7.6 9.7 | Pretsch, flat plate (B=0); version 1.

2 9.2 | 11.2| Pretsch, stability diagram for lolog(y-g-)
which according to Lin's ‘ormula would
apply to the flat plate velocity profile in
version 2.

3 8.3 | 10.4 | from [7] and [8]

Table 1: Critical values for o at beginning (cl) and end of the

transition region (02) on a flat plate according to different

stability calculations. Transition Reynolds numbers 2.8 and 3.9 x 10

according to [1%].

(] z-gxmsep I
-.198838 0 127
-.198 042 145
-.197 .061 154
-.195 .088 167
-.190 134 190
-.180 .199 225
-.160 .307 285
-.150 .360 315
~.140 420 348
-.120 . 556 422
-.100 .682 483
-.075 1.107 659
-.050 1.864 883
-.025 4.249 1331

Table 2: z and I as a function of the Hartree
for reversed flows.

shape parameter B8
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factor for the upper surface of the suction

model, a=0°, Rc=3.37x100. (cq
flow coefficient for the uppe¥ surface;

c
q

U“c

span).

is the suction

- —g—; Q is volume flow of sucked air per unit
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[~ Schubauer and Skramstad, [12] A e
Hall and Gibbings, [19] - -
o, for Spangler and Wells, |-16,17]
o, = 2.13 - 6.18]010g Tu; coincides with
Mack's curve [18] for Tu > .1
o, =5 - 6.18'1og Tu.
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Section II

NONPARALLEL STABILITY OF BOUNDARY LAYERS
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II-5 Nonparallel Stability of Boundary Layers

William S. Saric and Ali Hasan Nayfeh
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061 U.S.A

This paper investigates the stability of flows that are not parallel.
That is to say, the mean-flow velocity is a function of two dimensions
and thus, it has a streanwise as well as a transverse component. In this
work, we confine our attention to the following class of flows: boundary
layers with variable pressure gradients and blowing or suction. A common
feature of these flows is that they are weakly nonparallel and thus many
previous stability analyses have assumed the primary flow to be parallel
that is, the flow is one-dimensional and identical at every streamwise
location.

Recently, considerable attention has been given to linear stability
theories of shear flows that account for nonparallel flow effects (Bouthier
1973, Nayfeh, Saric & Mook 1974, Gaster 1975, Saric & Nayfeh 1975) because
classical linear stability theories which treat the:primany flows as quasi-
parallel flows have not produced satisfactory results. For a flow past a
flat plate (Blasius flow), the critical Reynolds number predicted by parallel
stability theories is about 30% above the experimental results of Schubauer &
Skramstad (1947), Ross, Barnes, Burns, & Ross (1970), Wortman (1955), and
Strazisar, Prahl, & Reshotko (1975), as shown in figufe 1. A survey of
stability analyses and their application to transition is given by Reshotko
(1976).

For a parallel mean flow, the spatially varying disturbance stream-
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function can be expressed as

¥ = g(y)exp{i(kgx - wt)} (1)

where ¢ is the mode shape, w is the disturbance frequency, and ky is a
complex constant. Since the mode shape ¢ is assumed to be independent of
X, the streanwise behavior of any disturbance quantity, such as the velo-
city, the pressure, and the kinetic energy, is governed by the exponent
ko. In particular, the amplification and attenuation rates of any dis-
turbance are given uniquely by the imaginary part of kg. On the other
hand, for a near parallel flow, the disturbance stream function has the
form

¥ = Apz(ysxy)exp{i x (kg + eky)dx - iwt} (2)

Thus, the effects of nonparallelism are to make ko be a function of the
long scale x; = ex, where ¢ is a small parameter characterizing the non-
parallelism of the mean flow, to produce a correction ek,(x;) to ko, and
to make the mode shape ¢ vary in the streamwise direction. Hence, the
streanwise variation of each flow quantity depends on its distance from
the wall. Moreover, at each distance from the wall, the different flow
quantities vary differently in the streamwise direction. Thus, unless
these factors are taken into account, meaningful comparisons cannot be
made between theoretical and experimental results. Figure 1 shows good
agreement between the nonparallel neutral stability curve calculated by
Saric & Nayfeh (1975) and the results of various experiments.

Recent experiments by Strazisar, Prahl & Reshotko (1975) in a water
tunnel and by Kachanov, Kozlov & Levchenko (1975) in a wind tunnel have
provided additional data which can be used-for comparison. Figure 2 shows

a comparison of the maximum amplification rates calculated by using parallel




-65-

and nonparallel theories and those determined experimentally by Strazisar,
Prahl & Reshotko. We note that the maximum amplification rates calculated
by using the nonparallel theory is approximately 1% times those calculated
by using the parallel theory for low Reynolds numbers. Figures 3 and 4
show good agreement between the amplitude histories calculated by using the
nonparallel theory and those determined experimentally by Kachanov, Koslov
& Levchenko. Thus the theory is in good agreement with available experi-
ments for neutral stability, amplification rate, and amplitude history.
Comparison between other nonparallel theories are made in the paper.

Our nonparallel stability model has been extended to include the
effects of pressure gradients, suction or blowing, and higher-order boun-

dary-layer terms.
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1975.
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Section II

WAVE MECHANICAL ASPECTS OF TRANSITION
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II-6 Wave Mechanical Aspects of Transition

M. T. Landahl
Mass. Inst. Technology

Synopsis

The final stage of transition of wall bounded shear flows is usu-
ally characterized by a sudden, almost explosive onset of a short-wave
secondary instability with a characteristic scale much smaller than
that typical of the unstable Tollmien-Schlichting waves. Such onset
is found, for example, in turbulent spots (see e.g. picture by Elder,
J.F.M. 9, 35), and in the formation of low-speed '"spikes," (Klebanoff,
et al., J. Fluid M. 12, 1). The propagation of such disturbances, con-
sidered as wave packets, can be analyzed by aid of kinematical wave
theory applied to propagation in a slowly varying nonhomogeneous medium.
This theory may be considered as an asymptotic one to first order in a
small parameter measuring the ratio of secondary wave length to the char-
acteristic scale of the primary inhomogeneity. For the case when the
large-scale in homogeneity is a travelling wave of permanent shape, a
critical condition for strong secondary instability was found to arise
(Landahl, J. Fluid M. 56, 775) when the group velocity of the secondary,
locally unstable wave is equal to the phase Qelocity of the large-scale
(primafy) wave. When this condition is met, space-time focusing of the
small-scale disturbance on the large-scale wave will take place. The
simple theory was found to give results in good agreement with measure-
ments for the prediction of the location of the first appearing spike,
as well as for the frequency of the secondary instability (Landahl, loc.
cit.). Some new results are presented from breakdown calculations for
a simple stratified shear flow model (Fig. 1). Breakdown can occur for
both stable and unstable primary waves. The maximum wave slope attain-
able for the most unstable pure shear wave (zero Richardson number) be-
fore bfeakdown is found to be about 30°. The simple breakdown condition
can be generalized to hold for arbitrary time-dependent three-dimensional

primary flows.
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Its implication for dispersive and nondispersive systems is discus-
sed and a comparison made with ordinary ray (space-) focusing (Fig. 2).

New developments in kinematical wave theory for general classes
nearly conservative fluid-flow systems (W. Chin, M.I.T. Ph.D. Thesis,
1975) show that shock-like transition giving discontinuities on the
scale of large-scale flow are possible for systems that are supercriti-~
cal in the sense of the breakdown condition. The discontinuities arise
both in the large-scale flow and in the amplitude of the wave train
(Fig. 3). Such a transition could be regarded as a generalization of
the classical hydraulic pump or gas dynamic shock wave, and is proposed

as a unified mechanism for fluid-flow transition phenomena.




Tk

Largest attainable wave slope for most
amplified primary wave: (J=0,ky=0.4)

kS=062 (~30°)
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Section III

THEORETICAL AND EXPERIMENTAL TRANSITION
STUDIES AT ONERA / CERT
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ITI-1 THEORETICAL AND EXPERIMENTAL TRANSITION

STUDIES AT ONERA / CERT

R. MICHEL

Département d'Aérothermodyanmique, ONERA / CERT, Toulouse, FRANCE

o s o e e e

In the beginning, the study has been undertaken essentially with the
aim of defining means of calculation less empirical and more coherent than the
available criterions, for predicting the onset and development of transition,
under the complex influence of the various factors which can appear in prac-
tical problems.

For controlling the hypotheses and results of such a calculation method,
it was felt necessary to carry out an experimental investigation giving suffi-
ciently detailed informations about the development of mean and fluctuating
characteristics of the boundary layer from the laminar to the turbulent regime ;
this study led in fact to observations obviously concerned with the fundamentals
of the transition process, and involved as a logical consequence, special and
we hope, interesting developments.

PREDICTION OF TRANSITION BY MODEL EQUATIONS.

On the theoretical side, the technique makes use of transport equations
for different_turbulent quantities, like turpbulence intemsity K, turbulent
shear-stress u'v', and the dissipation of turbulence €.

A two equations model (K, €) was more intensively developed; the mode-~
lization is based in a first stage on the structure of established turbulent
shear flows ; empirical functions using essentially the properties of the vis-
cous wall region of a turbulent boundary layer, are introduced after that for
taking account of the effects of viscosity upon turbulence.

Very encouraging results were obtained by showing at first that the metho
is actually able to predict a damping for a given perturbation if it is intro-
duced at a sufficiently low Reynolds number, and after that amplification at a
Reynolds number corresponding to the experimental transition Re-number (fig. 1).

Different applications have been made, which led to a good agreement
with experiments for the onset of transition as well as for its development up
to the turbulent regime for problems like :
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- transition as function of external turbulence on a flat plate in incom-
pressible flow (fig. 2),

- combined effects of pressure gradient and external turbulence,

-~ combined effects of pressure gradient, turbulence and wall heat transfer
(calculation of tramsitional boundary Layers on the upper and lower sur-—
faces of turbine blades, fig. 3).

2 - FUNDAMENTAL EXPERIMENTAL STUDY OF TRANSITION.

On the experimental side, the transition on a cylinder aligned along the
axis of an axisymmetric channel has been studied (Velocity : 33 m/s ; zero pres-
sure gradient ; external turbulence : 0,25 %), involving at first a detailed
determination of the mean velocity and fluctuations profiles in the transition
region.

A good agreement with a calculation by the two equations model was obtai-
ned for the velocity profiles and mean flow characteristics of the boundary

.layer (fig. 4). A general coherence was observed also as concerns the develop-

ment of turbulence, but the experiments revealed complex phenomena, especially
related with a marked intermittency that the present calculation model is ob-
viously unable to represent.

A careful investigation could show in evidence Tollmien-Schlichting waves
and their amplification ; a spectral analyzis of the fluctuation led to interes-
ting observations, by showing notably the coherence between the properties of
the waves observed and the results of instability theory (fig. 5).

A specially significant aspect of the study is concerned with the forma-~
tion of turbulent spots and with intermittency. A systematic conditional sampling
of the signal delivered by the hot wire (fig. 6) was performed, and led to de-
tailed informations for :

~ the distribution of the intermittency factor (fig. 7),
~ the passage velocities of successive laminar and turbulent flows,

~ the classification of turbulent spots and the establishment of well
defined characteristics for the formed spots,

~ the determination of a statistical type-picture for the sequence of
laminar and turbulent flows which could lead to a modelization of the
intermittency phenomenon for future analytical developments.
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FIG. 1 - Damping and amplification of turbulent kinetic energy in a
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Section III

TURBULENCE-MODEL PREDICTED EFFECTS OF SURFACE HEAT TRANSFER
ON BOUNDARY-LAYER TRANSITION
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III-2 TURBULENCE-MODEL PREDICTED EFFECTS
OF SURFACE HEAT TRANSFER ON
BOUNDARY-LAYER TRANSITION

by

D. C. Wilcox and T. L. Chambers
DCW Industries, Inc.
Sherman Oaks, California

Effects of surface heat transfer on boundary-layer transition have
been analyzed using a second-order closure turbulence model. The
primary objective of the program has been to use the model to
analyze effects of surface heating on hydrodynamic boundary-layer
transition. As a secondary objective, the model has been used to
study transition sensitivity to suction, surface roughness and
freestream turbulence.

With no transition-specific modifications, the turbulence model
predicts salient features of incompressible boundary-layer transi-
tion including sensitivity to freestream turbulence and surface
roughness. As shown in Figures 1 and 2, in addition to accurately
predicting effects of freestream turbulence, the model accurately
simulates transition width, skin friction overshoot and transi-
tional velocity profiles.

With transition modifications based on linear stability theory,
the model accurately predicts transition sensitivity to surface
heat transfer, pressure gradient and suction. Figure 3 compares
predicted and measured transition Reynolds numbers for surface
roughness effects and for the latter three effects on aerodynamic
boundary layers. Of particular interest to the main project
objective, consistent with measurements, the model predicts that
heating destabllizes an aerodynamic boundary layer.

Figure U4 presents results of computations for four hydrodynamic
bodies with and without surface heating. Again consistent with
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measurements, the model indicates that small heating rates have a
strong stabilizing effect on hydrodynamic boundary layers.

In summary, the model accurately simulates the various effects
pertinent to hydrodynamic boundary-laysr transition. The primary
unresolved question is the model's sc: 3itivity to freestream turbu-
lence and the model's inability to 4’ :tly account for Tollmien-
Schlichting waves. These problems a: undoubtedly tied to the
masking of spectral information atte:r iir., long-time (Reynolds)
averaging. While the method's utility for many engineering appli-
cations does not appear to be significantly hindered by these
unresolved issues, a hybrid linear-stability/turbulence-model (in
contrast to linear-stability/e’) simulation of transition may pro-
vide a more physically sound method than is currently provided
elther by the model or by linear-stability methods.
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Section III

ON THE APPLICATION OF SECOND-ORDER CLOSURE
MODELS TO BOUNDARY LAYER TRANSITION
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ITI-3 ON THE APPLICATION OF SECOND-ORDER CLOSURE
MODELS TO BOUNDARY LAYER TRANSITION

Michael L, Finson

Physical Sciences Inc,
Woburn, MA 01801

Second-order closure models have been applied to a wide variety
of turbulent flows in recent years. There are several advantages in
applying such methods to transition problems. One obvious advantage is
that second-order models are non-linear, and may provide useful results
in the later stages of the transition process as the flow becomes fully
turbulent. Also, the governing equations can be solved with straightforward
numerical techniques, even in rather complicated situations. However,
it has yet to be demonstrated that the required closure approximaticns
can be made in a manner that is physically sound for transition regimes,
For example, the second-order models cannot be expected to reproduce .
linear stability theory. It might be anticipated that second-order models
would have greatest applicability in '"by-pass'' situations, where transition
is triggered by relatively high levels of initial fluctuations, introduced by
free-stream turbulence or surface roughness,

Our studies have utilized a ''five equation' model; the dependent
fluctuating quantities are the three components of the fluctuating kinetic

energy u'z, vlz, w

, the Reynolds stress u'v , and either the dissipation
rate § or the length scale A\. A typical equation, for the kinetic energy

qz = (u'2+ v'2+ W'z)jz, is

2 2 2 2
Pg_.-_- —U'V' ..é_g. = % _.é.. (V+CSL—-V—- a_q_..) (1)
Dt Ay 3% ¥ oy

where the terms represent convection, production, dissipation, and molecular

and turbulent diffusion. The required closure approximations for turbalent

it 21
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flows have been developed from basic laboratory turbulence measure -
ments, wherever possible.

A carcful examination of the adequacy of the various closure
requirements for the transition regime has been performed, The
production terms are treated exactly in our formulation (such is not the
case with "2 -¢quation' models), and so are the molecular diffusion
termms., Concerning the dissipation, we claim (without proof, here) that
adequate treatments can be developed, since cxact solutions are known

in the limit Re - 0.

—— e

1 1
The difficult terms are the ""redistribution' terrns (ui ?—S—-) that
O,

appear in the equations for the individual components of the Reynolds
stress tensor, Turbulent closure approximations have been developed

by Rottal and Hanjalic and Launderz, but these approximations become
suspect necar solid walls, for length scales that are not small compared to
mean flow dimensions, or for non-turbulent spectra. Such terms play an

important role in the production of fluctuating energy. With the direct

e

' 1 1 U 1 f
production terms, u " is produced by u v —g—;— and u v 1is produced by
—
v . %U- but (under the boundary layer approximations) there are no terms

1 1
to produce v~ or w s directly, The direct production terms will not yi d

1
transition since v 2

is not produced and the production of u' v will hence be

1
small. However the turbulent closure for the p terms introduces additional
1
el
1 oY
process, and cause an extremely rapid amplification in a transition calculation.

terms of the form u . These terms tend to isqtropize the production
In reality, the pressure-strain terms must be considerably smaller in the
transition regime. .

Several potential modifications to the pressure-strain terms have
been investigated., First there are wall effects, which are important in a
transitional boundary layer or in the viscous sublayer. If A/y is not small,
the normal fluctuations v' are reduced by the presence of the wall. To

obtain the proper behavior as y -» 0, the turbulent closure terms for

e o
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; 3 ek
pressure-strain should be reduced by (1 4 A /ly ) . Second, the

pressure-strain terms are generally the first terms in a series expansion

in A/§. Additional terms such as

2% b 22
2
oy

oy

become important in transitional situations where A/® is not necessarily

small. Notec that this term-introduces a dependence on - . The net result

2
of these modifications is a more reasonable production cycle in the transi-
tion regime. However, it should be emphasized that the present treatment

is rather tentative and cannot yet be considered adequate.

Figure 1 compares the results of the present model for the effect
of free-stream turbulence on flat plate transition with the data of various
investigators. In the calculations the level of the free-stream turbulence
(assumed isotropic) was specified as a boundary condition.at y -, and the
length scale in the free-stream was taken to be sufficiently large that the
turbulence there would not decay over the distances considered. The results
implicate a somewhat more rapid transition than observed, but the
comparison should be qualified by the uncertain nature of the free-stream
turbulence in most tests (probably acoustic rather than vortical).

Spangler and Wells3 observed a smaller transition Reynolds number,
for a given rms fluctuation level, when the free-stream turbulence was
generated by a grid, consistent with our results.

The effect of distributed surface roughness on transition has also
been examined. In so doing, we modeled the manncr by which roughness
elements introduce disturbances into the flow by assurning that the flow
around individual elements is attached. A distributed sink term (for y <k)

is included in the mean momentum equation to account for the drag of the

elements, and a distributed source term in the kinetic energy equation describes

the introduction of fluctualtions downstream of each element. The details

P

oy
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may be found in Ref. 4. Figure 2 shows the resulting computations

: 5
for transition, compared with Feindt's™ data on [lat plates roughened
with sandpaper. At roughness Reynolds numbers below about 250, frece-

stream turbulence appears to be responsible for transition.

The model described here shows promise for predicting transition,
at least for some conditions such as those wherc there are relatively high
levels of initial disturbances. As indicated above, the closure approxi-
mations required for the pressure-strain terms are critical in the
transition region. Our current treatment can only be considered to be
an initial attempt, and further work is required to assure a physically

sound closure.

DU
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Section IV

AN ANALYTICAL STUDY OF THE EFFECT OF SURFACE ROUGHNESS ON
THE STABILITY OF A HEATED WATER BOUNDARY LAYER
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IV-1 AN ANALYTICAL STUDY OF THE EFFECT
OF SURFACE ROUGHNESS ON THE STABILITY
OF A YEATED WATER BOUNDARY LAYER*

By

Denny R. S. Ko and M. Kosecoff

Physical Dynamics, Inc.
Torrance, Calif.

This study analyzes the effects of surface roughness on low speed boundary
layer stability and transition in a liquid environment. An analytical model
for distributed surface roughness elements, spaced clusely compared to the
characteristic wavelength of the boundary layer disturbances, is presented.
The model postulates an enhanced momentum and heat exchange near the wall
induced by the presence of these roughness elements. A "turbulent roughness
layer" with a thickness of the order of the mean roughness height is assumed
to be imbedded within the ordinary laminar boundary layer. Enhanced momentum
and energy exchange within this layer is modeled by an effective eddy diffu-
sity. The presence of the turbulent roughness layer modifies the mean flow
(velocity and temperature) profiles which, in turn, alter the stability
characteristics. The effect on boundary layer transition is then inferred
by adopting a semi-empirical e" criterion.

To demonstrate the effect of the distributed surface roughness on a

heated water boundary layer, the model is incorporated into a set of similarity
equations for estimating the mean flow profiles. These profiles are then

used in linear’stability calculation, which, when coupled with the e" criteria,
gives the transition location. The linearized stability equations use a
parallel flow assumption and incorporate the variation of viscosity and con-
ductivity with temperature. These equations are solved using a code developed
by Lowell and Reshotko. Amplification rates are calculated as functions of
k/e and ATw for fixed values of Ree and dp/dx;where k is the roughness height,
8 is the momentum thickness, and ATw is the difference between the wall and
ambient temperatures.

* This work is supported by the DARPA under ONR Contract Number N00014-76-C-0967.
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For a given dp/dx, it is found that there exists a range of values of k/e
for which the wall may be considered essentially smooth. However, the more
favorable the pressure gradient, the narrower this range is. As anticipated,
heating and/or a favorable pressure gradient tend to stabilize the boundary
layer for small roughness, and these effects are reduced for moderate
roughness. However, when k/6 is sufficiently large, heating tends to de-
stabilize the boundary layer. Furthermore, as the pressure gradient becomes
more favorable, the criteria for "large k/6" reduces significantly. Finally,
roughness substantially increases the range of frequencies which are unstable
at a given Ree. A semi-quantitative summary of these results is given in
Table 1.




Table 1:

Effect of Roughness on Amplification Rates

Falkner-Skan e AT= O°F AT= 30°F
parameter,8
0 < /25 negligible negligible
.5 small moderate
.75 drastic drastic
-0.05 < 5 negligible negligible
.75 moderate drastic
1.0 drastic drastic
0.2 < .15 negligible negligible
.25 moderate drastic
.4 drastic drastic




-104-

Section IV

ON THE EFFECT OF FREESTREAM TURBULENCE ON
BOUNDARY-LAYER TRANSITION
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IV-2 On the Effect of Freestream Turbulence on Boundary-Layer Transition

Leslie M. Mack

Jet Propulsion Laboratory

The results of several experiments are summarized in figure 1 and show
a strong influence of freestream turbulence on the transition of a flat-plate
laminar boundary layer. Most of the data in figure 1 are from the Schubauer-
Skramstad experiment, where tunnel noise dominated transition below ui'/U1 of
about 0.1%. (u’ and U are the rms and mean x-velocity components; the subscript
1 refers to freestream conditions.) Only the data for w ‘/U; > 0.1% represent
the effect of freestream turbulence. Figure 2 interprets these data in terms
of linear stability theory to emphasize just how strongly turbulence affects
transition. The maximum amplitude ratio of linear stability theory, In (A/Ao)max,
decreases from a value of 8.1 at the transition Reynolds number, Ret = le/v,
for u, /U, = 0.1%, to 2.6 at u, '/U; = 1%. Consequently, if A at transition is
a constant, Ao must at the same time increase by a factor of 245. The power-law
relation Ao ~ (ul'/UI)a'4 accounts quite well for ghis behavior of Ao.

The most straiéhtforward way of using linear stability theory as a means
of transition prediction is the so-called e® method of Smith-Gamberoni and Van
Ingen. A value of n = {n (A/Ao) is chosen, and transition is considered to occur
whenever the maximum of Ln (A/Ao) at some Reynolds number equals n. Obviously
a fixed value of n is incompatible with figure 1. The easiest way to incorporate
the effect of turbulence into the e® method is to let n be a function of u, ‘/U,.

The data of figure 1 are fitted closely by

n=-8.43-2.4 2n (u'N,) .
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As the above relation is based solely on flat-plate data, another
method has been developed which is intended to have wider application.
This method, which can be referred toc as an amplitude method to distinguish
it from the amplitude-density e’ or modified e® methods, is based on the
following ideas:
a) it uses the actual disturbance amplitude which is made up of harmonic
components of all frequencies and orientations:
b) the initial amplitude density Ao(w, B), where w is the frequency and B
the transverse wave number, is related to the corresponding component of
the freestream turbulence by an interaction relation;
c¢) isotropic turbulence theory is used to characterize the freestream
turbulence.

With the individual harmonic components of the boundary-layer disturbance
assumed to have random phase relations, the disturbance amplitude is given

as a function of Reynolds number by

AR / f [ . 3] a? (1% s) ap

where L is an integral length scale of the turbulence. If advantage is taken
of the sharp tuning of the boundary-layer response, this expression can be

simplified to

® - 2
wL A
Adz (R) = Aoa(wm.ax’ Prnax) [ d(ﬁ)-./; [ZOG;%:' B)] o
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Because the function A/Ao always has roughly the same shape, a further

simplification can be made to

U.L
Ada (®) = ¢,%A;° (Wax> Brax) (L)

A [wv . wv
X|x T2 %ﬂ A (—')AB .
[AO(UI .4 Ul *

max

The two factors A (wv/U,2) and AB are consistently defined response band-

widths, and along with (A/Ao) and (wv/U,3) are obtained from stability

max max

theory with little more computational effort than is required for the e®
method. For a two-dimensional incompressible boundary layer, the maximum
response is ‘always at B = 0. Since it has been observed for these same
boundary layers that AB is only slightly dependent on the Reynolds number,
this factor will be absorbed into the constant C;. The scale Reynolds
number U;L/v is set by the freestream turbulence, and Aoa is to be found
from an interaction model.

In the absence of compelling theoretical or experimental arguments
as to the mechanism by which freestream turbulence produces laminar insta-
bility waves, the following arbitrary assumptions are made:

a) instability waves originate near the solid boundary;

b) their amplitude is proportional to the normal viscous velocity of the
forced response in the viscous sublayer of the freestream turbulence;

c¢) the forced response is given by Prandtl's model of the sublayer (boundary-

layer equations with U = 0).

B S R
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The result of the analysis for the rms normal viscous velocity vv' of

component w, B is given by

Uy U, 2cos®

B

where § is the angle between the wave-number vector in the plane of the
surface and the freestream direction. The component rms pressure fluc-
tuation p’(w, B) is represented by a two-dimensional power-spectrum function

Fz(w» B)=
[P'(w, 8) ]= 4 (p_j)?[wa(w, a)]
01112 pula 12 3

The wide-band pressure fluctuation p’ is taken to be that of isotropic

turbulence, and is thus related to the velocity fluctuation by

g (:'_)
LY

With Ao assumed proportional to vv','the interaction relation is

w ) (u, '\ | U Fo(w, B)
Ao 8 = oa® () (3) [—r‘* ;

The final expression for the disturbance amplitude is, with B = 0 and

Cc =(C,Cg,
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2 Al U,L U1Fa(“D] (31:> y
e Ca(_v;—) [ 12 U,

(o) ) o )

The only remaining task is to develop an expression for the spectrum
function Fy(w). The two-dimensional wave number spectrum is given in terms

of the three-dimensional spectrum by
-4
Fga(k, ,3) =f Fa(k) dkg ,
-0

where k2 = k;2 + kg + kg, and k; 3® = k;® + k. The one-dimensional

spectrum is

-4
Fy (ky) =2n/ k Fy(k) dk .
k1
Consequently,
z 1
g | o S
Falky,e) = - n/ (2 - ky g2)F  dk
ky,2 4

The normalized one-dimensional pressure spectrum which corresponds to the

von Karman interpolation formula for the one-dimensional velocity spectrum

-7/e
5 3
Fy(ky) = 4 [1 + (g k,) ] :

is

e e ——————————— o A
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Use of this expression leads to the following interpolation formula for
Fa(ky a):

-6/a
Fa(kl,ﬂ) =1.78 [1 + (0.82 kl’a)z]

Both F, and F, are shown in figure 3. For the B = 0 component, which is
the only one used in the present calculations, k, 3 can be replaced by
WL /U, .

Calculations have been made on the basis of the amplitude and modified
e® methods for Falkner-Skan boundary layers with the pressure-gradient parameter
B equal to 0 (flat plate) and 0.1. All of the numerical results were obtained
from the newly developed JPL stability and transition computer program BLSTR.
This program starts with a single damped eigenvalue, and first locates the
unstable region. Then, as it advances dowvnstream, it adds and subtracts
frequencies as needed to cover only the unstable region and keep the number
of damped frequencies to a minimum. After the eigenvalues have been computed
at each Reynolds number, least-squares fits to Ln.(A/Ao) are used to evaluate
in (A/Ao)max’ the corresponding dimensionless frequency F = (wv/Ulz)max,
and the bandwidth AF defined as the difference in F in the dirgction of de-
creasing F such that £n (A/Ao)max - 4n (A/Ao) = 1. The interaction relation
is evaluatéd for Fmax and the disturbance amplitude computed. If the transition
criterion of Ad = 0.04 is not satisfied, the program advances to the next
Reynolds number. Typical execution times on the medium-speed UNIVAC 1108
computer are about 1% sec for each eigenvalue, and also a total of 1% sec to
do all of the transition-prediction calculations (neutral points, A/Ao, (A/Ao)max'

Ao’ Ad) for a dozen Reynolds numbers.
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The numerical results from stability theory for the two boundary layers
are given in figure 4. It is to be noted how close to a straight line are
the two envelope curves f(n (A/Ao)max for the larger amplifications. Figure 5

shows the disturbance amplitude A

%

d for the flat-plate boundary layer as a

function of Re® for several turbulence levels and U,L/v = 4 X 10*. The constant

C in the relation for Ad was evaluated once and for all by requiring that Ad =
0.04 at Re = 2.8 x 10° with u1'IU1 = 0.001. Finally, figure 6 gives Ret as a
function of ul'/U1 for B = 0 and 0.1 according to the two prediction methods.
For the amplitude method, U,L/v = 4 X 10* as in figure 5. Further comparisons
with experiment are needed to evaluate the worth of the two methods.

This paper presents the results of one phase of research carried out at

the Jet Propulsion Laboratory, California Institute of Technology, under Contract

No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

Jet Propulsion Laboratory
Pasadena, California 91103

September 10, 1976
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FIG. 2

STABILITY THEORY AND FLAT-~PLATE TRANSITION FXPERIMENTS
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DISTURBANCE AMPLITUDE GROWTH
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Section IV

THE EFFECTS OF FINITE-AMPLITUDE DISTURBANCES
ON THE MEAN FLOW PROFILES IN A LAMINAR BOUNDARY LAYER
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-3 THE EFFecTs OF FINITE-AMPLITUDE DISTURBANCES

OoN THE liEaN FLow PROFILES IN A LAMINAR BounDARY LAYER

BY

C. L. Merkle

D. R. S. Ko
and
T. Kubota
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The use of the lincar stability characteristics of boundary layers to
indicate the location of transition from leminar to turbulent flow has
proven to be one of the best available methods for predicting transition
on bodies of general engineering interest. The underlying reason for
this success is almost certainly related to the superior theoretical
foundation of the stability approach as compared to that of other exist-
ing methods. Despite the relative success of the method, the actual
relationship between stability and transition is poorly understood, and
is generally incorporated in the predictions in an empirical manner in
conjunction with an implicit assumption that the ensuing nonlinear ampli-
fication region which follows the linear growth region is very brief
and leads quickly to transition. The most stringent limitation on this
approach arises because there is no mechanism in the linear theory for
deducing when the disturbances become large enough that nonlinear
effects begin to be important. The present approach is directed towards
including the appropriate additional terms in the stability analysis

so that the effects of the disturbances and their growth can be deduced
directly from the stability analysis itself without recourse to addi-
tional considerations. Since only the leading-order finite-amplitude
effects are included, the analysis.still requires an empirical calibra-
tion to relate the finite-amplitude effects to the observed location

of transition. The present approach also reguires & knowledge of the
characteristics of the initial disturbance levels inside the boundary

layer, but their origin and character are not addressed in the current
study.

The extension of stability theory to include finite-amplitude disturbances
starts from a formal perturbation expansion which includes the complete
nonlinear stability characteristics of the boundary layer. This expan-
sion procedure demonstrates that, for a single-frequency disturbance,

the leading-order effects of a finite-amplitude wave result in a distortion
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of the mean flow profile. In particular, the distortion of the mean
flow profile is a phenomenon which.is of second order, 0 (39, in the
disturbance amplitude, whereas, the nonlinear disturbance-disturbance
interaction is of third order, 0(A2). These observations suggest

that the distortion of the mean flow profile can be accurately computed
while still retaining a linear equation system for the disturbances.
Extension of the analysis to more realistic multi-frequency and three-
dimensional disturbance environments shows that although the nonlinear
disturbance-disturbance interactions now become of the same order as
the mean flow distortion (namely, order A2), the second-order accurate
description of the mean flow can still be obtained from a first-order
accurate (linear) representation of the disturbances (i.e., second-
order changes in the disturbance growth rate cause third-order changes

in the mean flow profiles). Such a simplification to a linear wave
system is, of course, fundamental to the analysis from the viewpoint

of computational economy. Further, the concept that the mean flow profile
distortions can be accurately computed from a Tinear disturbance analysis
is in general agreement with experimental evidence which has indicated
that the generation of harmonic disturbances is of only minor signifi-
cance in the transition process.

In contrast to these results for boundary layers, the analogous deduc-
tions for the more intensively-studied Poiseuille-flow case appear to

be consi@erab?y different. Although an identical expansion scheme has
béen used for most nonlinear stability studies in Poiseuille flows,

the attention in this latter family of flows has been almost unanimously
focused on predicting the changes in the growth rate, and has required

a knowledge of both the mean flow. distortion and the wave-wave interaction.
Specifically, these analyses have been carried to third order, 0 (A3),
accuracy. The differences in the emphasis of the nonlinear approach in
these two situations comes not from the theory itself, but from the
comparison of the theory with experiment. In boundary layers, the pre-
dicted region in which disturbances are amplified is in very good agree-
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ment with extensive experimental evidence. For Poiseuille flow, transitipn
to turbulence occurs below the critical Reynolds number at which distur-
bances first begin to be amplified, implying that amplification can take
place in this low Reynolds number regime. As a result of this discre-
pancy, the major impetus of nonlinear stability studies in Poiseuille

flows has been towards modifying the qualitative results of linear
stability theory and using the nonlinear terms to show that regions which
are stable to infintesimal linear waves are unstable to finite-amplitude
waves. Such a qualitative change in the stability properties of boundary
layers is not needed, and would disagree with experiment if.found.

Some initial numerical results which are based on single two-dimensional
disturbances in boundary layers are presented to demonstrate the types

of mean flow distortions which can be generated by finite-amplitude
disturbances. The curvatures of the velocity profiles have been used

as particularly sensitive indices of the cumulative effects of the inter-
action between the disturbance and the mean flow. In the presence of
finite-amplitude disturbances, the curvature near the wall decreases
while that farther from the wall increases, eventually leading to a

point of inflection. Comparisons of zero-pressure-gradient boundary
layers with favorable and unfavorable pressure gradienf cases indicates
that significant distortion begins at lower values of the disturbance
amplitude when the pressure gradient is favorable as compared to when

it is unfavorable; however, at all times, substantial interaction occurs
while the disturbance is very small (typically u'v' less than 10°° times
the free-stream velocity squared). The current results suggest that either
the velocity profile curvature or the ratio of the disturbance-generated
Reynolds stresses to the local shear stress could serve as effective
practical indicators of transition. Finally, we note that the use of

a transition indicator which is based on the distortion of the mean
profiles by the disturbances in the laminar boundary iayer seems par-
ticularly attractive for applications such as advanced laminar flow
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vehicles where extrapoﬁation of the current transition data base to
higher Reynolds numbers, through the use of pressure gradient, heating
and suction is required. The reduced degree of reliance on the empirical
information in the transition analysis should increase the reliability
of this extrapolation.
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Section IV

FLUCTUATIONS IN A BOUNDARY LAYER INTRODUCED BY
TRAVELING-WAVE IRROTATIONAL FREESTREAM DISTURBANCES
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IV-4 FLUCTUATIONS IN A BOUNDARY LAYER INTRODUCED BY
TRAVELING-WAVE IRROTATIONAL FREESTREAM DISTURBANCES*

Harold L. Rogler
Department of Mechanical and Aerospace Engineering
Case Western Reserve University; Cleveland, Ohio 44106

INTRODUCTION TO IRROTATIONAL DISTURBANCES

If you wave your hand above your desk, the fluctuations which are
generated arise from the bound circulation associated with any lift produced
by your hand (which might be represented as a sheet of vorticity or a
potential vortex), from the thickness of your hand (which might be represented
as a distribution of sources and sinks), and from the trailing wake of
vorticity shed behind your hand as you unsteadily wave and alter that 1lift
(which might be modeled as a vortex sheet of varying strength or a set of
free vortices). The disturbances introduced by the thickness and bound
circulation effects are everywhere irrotational, while those introduced by
the trailing vorticity are effectively irrotational at some distance away
from the patches or layers of vorticity. ‘

Irrotational fluctuations are also generated by a rotor blade translating
past a stator blade in a jet engine, by wavy walls, or by the small amplitude
waves at the surface of the ocean. A fish swimming through rapids is
subjected to irrotational fluctuations as it swims through water which is:

(1) flowing around rocks, (2) influenced by standing vortices or eddies
behind those rocks, or (3) influenced by eddies which are being convected
downstream. Of course it is possible that the fish swim (or airplanes fly)
through a patch of vorticity, but we are not concerned in this study with the
special effects arising from rotational disturbances.

In all these cases, the disturbances are induced by some surface or body
in the flow, by some arrangement of sources, sinks, doublets, monopoles, etc.,
by interfaces between stratified fluids, by bound circulations, and by
patches, sheets, rings, or layers of vorticity. If a plate is inserted into

a flow with freestream vorticity fluctuations and if these vorticity

*This work was supported by the Air Force Office of Scientific Research under
Grants AFOSR-74-2577A&B. The support and encouragement by Dr. E. Reshotko
are gratefully acknowledged. The author thanks Dr. J. Paul for the use of
his streamline plotting program.
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fluctuations are sufficiently far away from the plate such that the vorticity
does not convect into or diffuse into the boundary layer, then as far as the

boundary layer is concerned, these disturbances are irrotational.

HOW FAST DO IRROTATIONAL DISTURBANCES PROPAGATE?

The phase speeds of irrotational fluctuations are intimately connected to

the propagation speed of the source. If that source is the traveling, wavy-

wall of a wind tunnel, then the fluctuation propagates at that speed also.

In turbomachinery, the relative motion between blades would be important as
well as the convection of vortex sheets downstream. If the source is a set
of low-intensity vortices being convected with the mean flow, then the
propagation speed is the local mean velocity at the vortex centers. If the
source is a vortex street downstream of a bluff body, then the nonlinear
interactions between the vortices cause the vortices to propagate at a speed
either slower or faster than the freestream, depending on the case considered.
It is possible that the disturbances propagate upstream as well as downstream,
or they can be standing waves and not propagate at all. The response in the
boundary layer is very sensitive to the phase speed, at least for some wave-

numbers and Reynolds numbers.

INVISCID INTERACTION OF AN IRROTATIONAL DISTURBANCE WITH A SEMI-INFINITE PLATE

If the freestream disturbance has the normal velocity

v(a) kyeik(x-ct)

(x,y,t;k,c) = V(k,c)e (1)

with (real and positive) wavenumber k and phase speed c, and a semi-infinite
plate is inserted into the flow along the x-axis with leading edge at the
origin, then by conformal mapping the inviscid, irrotational solution for all
amplitudes can be found which satisfies impermeability along the plate. The
streamline pattern for this flowfield is shown in Figure 1. This pattern
reflects only the disturbance flow; the uniform mean flow from left to right
is not included.

Two features are important here. First note that the fluctuations
vanish beneath the plate. As far as the boundary layer developing on the
bottom side of the plate is concerned, any influence of the irrotational

ky+ik(x-ct)

fluctuation generated above the plate of the form e very probably

arises near the leading edge. Far-downstream of the leading edge on the

S gl
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