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PREFAC E

This paper contains the proceedings of the Low—Speed Boundary—
Layer Transition Workshop: II, held at the offices of The Rand Cor-
poration, Santa Monica, California, September 13—15 , 1976. The Work-
shop was jointly sponsored by the Defense Advanced Research Projects
Agency and the Office of Naval Research, and organized by The Rand

Corporation. The proceedings, which have been given a limited circu-

lation to ARI’A and ONR, are here reproduced in Rand’s Paper series

for worldwide distribution.

The primary goal of the Workshop was to provide a forum to exchange

current research results, to assess recent progress in laminar—flow

technology, and to establish new, viable research goals. Consistent with

this principal theme was the desire to provide an opportunity for

researchers and engineering designers to interact and to develop a

mutual appreciation of their respective efforts in improving the knowl-

edge of transition. This paper was prepared from the camera—ready

abstracts provided by the authors, and should be useful to hydrodynamicists,

designers of submersibles, and others engaged in fluid mechanics research.

Other related Rand publications include:

R-l752-ARPA/ONR, Low-Speed Boundary-Layer Transition Workshop,
June 1975.

R—l789-ARPA , Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suction, September 1975.

R-1863-ARPA , The Effects of Wall Tenrperature and Suction on
Laminar Boundary-Layer Stability , April 1976.

R-1898-ABPA , “e9”: Stability Theory and Boundary-Layer Tran-
sition, February 1977.

R-1966-ARPA , The Buoyancy and Variable Viscosity Effects on a
Water Laminar Boundary Layer Along a Heated Longi tudina l
Horizonta l Cy linder , February 1977.

R-2111-ARPA , Entry Flow in a Heated ~~be , June 1977.

R-2165-ARPA , App roxirrh2te Methode for Calcuiating the Propertie s
of Laminar Boundary Layers in Water (to be published).
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INTRODUCTION

The Low—Speed Boundary—Layer Transition Workshop was held on Sep—

tember 13 to September 15, 1976 at the Rand Corporation , Santa Monica.

The purpose of the Workshop was to provide a forum to exchange current

research results, to assess recent progress in laminar—flow technology

and to establish viable new research goals. In support of these goals,

one specific aim was to provide an opportunity for researchers and en-

gineering designers to interact and to develop a mutual appreciation

of their respective efforts in improving our knowledge of transition.

Research into the fundamental aspects of boundary—layer transition

has advanced relatively rapidly during recent years. Improved experi—

mental protocol is providing a wealth of data that both substantiates

and even surpasses available theory. The catalyst for the rapid devel-

opment in theoretical research has been improved analytical techniques

and faster, larger computers. The large number of research papers pre-

sented at the Workshop attest to the vigor of the current revival in

transition research.

Concurrent with advances in research have been advances in the en— *

gineering art of applied laminar—flow technology. A principal reason

for this renewed interest is the reduced availability of energy. Con-

sequently the desire to improve performance and reduce energy consump-

tion for both civilian and military applications has inspired design and

development studies of long—range aircraft , high speed ground transpor-

tation, and high performance underwater vehicles. Designs are available

that would exploit laminar flow technology , and performance estimates

have been made. However, this still appears to be an area of highly

specialized expertise and intuition. What is needed is a routine pro—

cedure for designing laminar—flow vehicles and estimating their perf or-

mance. Several such procedures were introduced at the Workshop.

The Workshop was the second low—speed boundary—layer transition

workshop with joint sponsorship of ARPA and ONR and organized by Rand .

Attendance was by invitation, and there were 110 participants and 32
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invited papers were presented in the six sessions. The papers were

divided according to subject matter and this resulted in the follow-

ing sessions:

I. Numerical Investigations of Navier—Stokes Equation

II. Transition and Stability Theory

III. Predictions of Transition by Model Equations

IV. The Effects of Free Stream Disturbances and
Surface Roughness on Transition

V. Experimental Investigations of Transition

VI. The Design and Parametric Studies of Laminar Flow
Bodies

This proceedings volume includes the meeting program, list of attendees,

and abstracts of the papers.
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Program

LOW—SPEED BOUNDARY-LAYER TRANSITION WORKSHOP: II

Monday, September 13, 1976

8:30 a.m. WELCOME: Dr. E. C. Gritton, Head , Physical Sciences Department,
The Rand Corporation

Lam inar-Flow Research
Dr. C. L. Donohue, Defense Advanced Research Projects Agency

9:00 a.m. KEYNOTE SPEAKER: Dr. E. Reshotko, Case Western Reserve University

Morning Section: I. NUMERICAL INVESTIGATIONS OF NAVIER—STOKES EQUATIONS
Chairman: W. S. King, The Rand Corporation

1-1 Nwnerical. Inve8tigation of Nonlinear Wave Interaction in a 1~ o-Dimen-
siona l Boundary Layer, J. W. Murdock and T. D. Taylor, The Aero-
space Corporation

1-2 Nwnerical Simulation of Transition Phenomena in Incompressible Flows,
H. Fasel , Institut A filr Mechanik, Universitàt Stuttgart

1-3 h~ndonental Dynamical Aspects of Indeterminacy and Incompleteness of
the Navier-Stokee Equations Bearing on Transition , P. Lieber ,
K. S. Wen , and J. S. Marks, University of California, Berkeley

Afternoon Section: II. TRANSITION AND STABILITY THEORY
Chairman: L. M. Mack, Jet Propulsion Laboratory

11—1 Numerical Simulation of Transition, S. A. Or azag, Massachusetts
Institute of Technology

11-2 The Effects of Acceleration on the Growth Rate of S)nall Disturbances
in a Laminar Boundary Layer, C. von Kerczek, Naval Ship Research
and Development Center

11—3 On Boundary—Layer Transition Studies, S. I . Cheng, Princeton University

11-4 Transition, Pressure Gradient, Suction, Separation, and Stability
Theory , 3. L. van Ingen , Deift University of Technology ,
The Netherland s

11—5 Nonparallel Stability of Boundary Layer., W. S. Saric and A. H. Nayfeh ,
Virginia Polytechnic Institute and State University

11—6 Wave Mechanical Aapaota of T’i’ansition , 14. T. Landah i , Massachusetts
Institute of Technology
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S. J. Barker, Poseidon Research and University of California,
Los Angeles

V-3 Pressure Fluctuations in the Transition Regions of Fore bodies of Revo-
lution, T. T. Huang, Naval Ship Research and Development Center

V-4 A Comparison be1~een Measured and Computed Locations of Transition onNine Forebodies of Revolution, J. L. Power, Naval Ship Re~~arch
and Developmen t Center
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Wedne sday, September 15, 1976

VI. THE DESIGN AND PAPAMETRIC STUDIES OF LAMINAR FLOW BODIES
Chairman: J. Aroesty, The Rand Corporation

VI-l The Combined Effect8 of Pressure Gradient and Heating on Boundary-
Layer Stability and Transition, A. R. Wazzan and ~~. Gazley , Jr . ,
The Rand Corporation

VI-2 Laminarization of Water Boundary Layers over Bodies of Revolution,
A. M. 0. Smith and A. R. Wazzan, University of California, Los Angeles

VI-3 A Study of Heat Addition Effects on Laminar, Water Boundary Layers
of Azisynvnetric Bodies, J. J. Eisenhuth , Pennsylvania State University

VI—4 Design of a Laminar, Low-Drag Research Vehicle , R. S. Scotti ,
B. H. Carmichael, and D. A. King, Rockwell International

VI -5 Axisymmetr ic Vehicle System Design for  Total Propuls ion Power (Yptimi-
zation, F. R. Goldschinied, Westinghouse Research Laboratories

INFORMAL PRESENTATI ONS

“Simple Relations for the Stability of Heated Laminar Boundary Layers in
Water: Modified Dunn—Lin Method ,” J. Aroesty, et al., The Rand Corporation.

“Primary and Secondary Instabilities in Unstably Stratified Shear Flows,”
R. E. Kelly and R. M. Clever, University of California, Los Angeles.

“September 1976 Status Report on BLCS Research,” T. C. Lang, Naval Undersea
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“Roughness Effects on Transition on an Ellipsoid ,” M. M. Reischman and
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Section I

NUMERICAL INVESTIGATION OF NONLINEAR WAVE INTERACTION
IN A TWO-DIMENSIONAL BOUNDARY LAYER
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I—i Numer ica l  Inve sti gation of Nonlinear Wave Interaction
in a Two-Dimensional Boundary Layer

John W. Murdoc k and Thomas D. Tay lor
The Aerospace Corporation

P. 0. Box 92957
Los Angeles, California 90009

The present  work is the init ial  phase of a stud y whose purpose is to
develop a computer code to solve the Navier-Stokes equations (or an appropriate
simplified version of same) in the Reynolds number range of transition and to
study the various stages of boundary laye r transition. The unstead y, two-dimensional,
Navier-Stokes equa tions as well as parabolized vorticity equations have been
solved for  flow ove r a fla t plate . (The parabolized vorticity equations were obtained
from the Navier-Stoke s equations by neg lecting the fourth  order streamwise
der ivat i ve of the stream function.)  The physical problem considered is equivalent
to that frequently u sed in wind tunnel investigat ion s of linear sta bil i ty and transit ion
in which  a two-dimensional, t ime-periodic , dis turbance is introduced with a
vibrating ribbon in the boundary layer. This situation is achieved numerically by
imposing an upstream boundary condition , at a fixed location on a plate , which
consists  of the sum of the Blasius solution and a time-periodic solution to the Orr -
Sommerfeld  equation.

The dependent variable s in the stud y were the stream function and vort ic i ty;
the independent variable s were orthogonal - parabolic coordinate s. The equation s
w ere solved wi th  a so-called spectral scheme which was selected because it can
be more accurate  for  comparable machine storage than a f in i t e  diffe rence method.
The spec t ra l  scheme was implemented by expanding the dcpcndcnt variable s in
Cheb yshev pol ynomials in 1)0th space dimensions.  The solution was developed by
subst i tu t ing the expansion into the flow equations and equating the coeff ic ients  of
equal order polynomials.  Since the coefficients are a function of time the resul t
is a set of coup led ordinary differential  equations. The se equations have been
solved b y both imp l ic i t  and explicit integration schemes for the complete equations
and the parabolized equations.

There  are four  main  r e su l t s  or conclusions which have been achieved
to date. The f i r,t  is that  it is possible to solve the two-d imens iona l  N avier-
Stoke s equations with non-trivial boundary conditions using an orthogonal function

________________________________________ 41
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expans ion  in both space d i m e n s i o n s .  (A c ~m pletc desc r iption of the n u m e r i c s
will be contained in a for thcoming paper . )

The second conclusion reached in thi s study is that for  the type of

flow s considered the parabolized vort ici ty equations are an adequate model of

the flow . Thi s conclus ion is  substantiated by the fact  that these equa t ions  were

used to der ive a modif ied Orr-Sorn rnerfcld  equation , the solution of whic h agreed

with  the solution of the usua l Or r -Somrner f e ld  equat ion to 4 significant fi gure s for

a typical  te st case. This  is not su rpr i s ing  if the order  of magnitude of the var ious

te rm s in t he Orr-Soni rnerfeld equation is considered.  (See for  example Gaste r ( 1 ) . )

Fi gure  1 show s a comparison of the Navier-Stoke s calculat ions  of Fascl (2 )  w i t h  the

present  parabolized vort ic ity  computations.  The agreemcn t is excellent ;  simila r

a g r e e m ent  has been fo und between the present  Navier-Stokes and pa raholized

vor t ic i ty  solutions. Th i s  result  is impor tan t  since it has been possible to gene rate

so lution s to the parabolized vor tici ty equations in as much  as one-twent ie th  the time

requi red  to solve the same physical problem with the Navier-Stoke s equations.

The  saving a r i ses  because the additiona l bounda ry condition which m u s t  be imposed on
the Navier-Stok e s equat ions  in gene ral create s a thi n boundary  reg ion at the down-
s t ream boundary of the com putation. For numerical  stabil i ty thi s bo~nd a iy reg ion

m u s t  be resolved;  this requi res  a fine spatial resolution a n d  an associated decrease
in the t ime ste p which , in general , substantially inc reases running t ime.

The thi rd  resul t  of thi s work  is that  the nonlinear e f f ec t s  are  ini t ial l y
desta bilizing relative to the l inear  effects.  That is to say tha t the b~~i ndary

layer  is more  unsta ble to large d i s tu rbances  than to small ones .  Thi s is an
impo r t a n t  resu l t  since previous analytic nonlinear stabil i ty anal yses  apply onl y
to parallel flow and , in addition , a re  series expansions about the cr i t ica l  point.

The present  resu l t s  are for  a non-pa rallel boundary  laye r and may be obta ined

for a r b i t r a r y  Reynolds numbe r and dis turbance wave f o r m .

The nonlinear stanility effects have been investigated by inputing Orr-

Sommerfeld d is turbances  of an arn plit. ~e of abou t five percent of the mean flow

at R 10~ and solving for the steady state disturbance downstream . In Figure
2 the computed l inear  (A = 0. 001) and non linear (A = 0. 08) wave fo rms  are compared.

Althoug h the t e rms  “linea r ” and “non l inear ” are used to d i s t ingu i sh  between the

two computations described here in , both re sults are solutions of the non linear

pa rabolized vort ici ty equations. Figure  2 show s signif icant  dis tor t ion f rom a
mod ulated sinusoidial wave form by nonlinear effects as the wave propagates from

= l0~ to z. 2 io 5.

-‘1
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Inspec t ion  of Fi gure  2 de m o n s ti ,t t e s  that  it is d i f f icu l t  to ph ysically inte r-
pret  the nonlinea r e f fec t  by simply inspeci in g the variation of velocity as a
func t ion  of R .  (Note , however , that the broadened positive peaks and large
nar row negative peaks are qualitatively similar to the hot wire  measurements
of Klebanoff and Tidstron i (3) taken in a boundary layer excited with a large
amplitude Tolh-nien-Sc hlict ing wave. ) Because the boundary laye r is being
excited at a f ixed d imensionless  f requency,  w = 13. 19, it may be Fourier  t r ans fo rmed
in t ime once all t rans ien t  effects  are wa shed downstream . The Fourie r amp litude
of the per tu rba t ion  velocity is i l lustrated in Figure 3 at the same station in the
b o u n d a r y  laye r as Figure 2. Fi gures  2 and 3 are at a station well down in the
shear laye r (T~ 0. 2); the Fourie r amplitude at a station near  the m a x i m u m  of the
input  Orr-Son-i tner fe ld  solution is shown in Fi gure 4. The nonlinea r curve s
(A 0. 08) in Figures  3 and 4 show that up to R

~ 
= 1. 3 x l0~ the p r i m a r y  mode

is chan ged only sli ghtl y f r o m  the linear behavior while the second mode grow s
dramatical ly. Thu s , in this rarg e the nonlinear effects are des tab i l i z ing .  J~ey ond

thi s point the relative stability become s to som e extent a ma t t e r  of de f in i t i on .

The magni tude of the mean per turbat ion f rom the Blasius is also shown

at selected po ints in Figures  3 and 4. It is clearly less im portant tha n the
sec ond harmonic .  Hi gher harmonics  are smalle r than the mean and are therefore
not shown. -

Figures  3 and 4 show the Fourie r amplitude of the pe r turba t ion  as a
func t ion  of R ;  it is also of inte rest  to conside r the variat ion across  the boundary

layer As  a p oint of reference consider f i r s t  the linear behavior. Fi gure 5
shows the d i s tu rbance  amplitude as input at R

~ 
= i0~~; the corresponding curve

at R = 2. 2 x 1O~ show s the peak is shifted in T~-space as the wave propagates
downs tream and is amplified. The Fourie r amp litudes of the various nonlinear
modes at R

~ 
= 1. 3 x 1O 5 are shown in Fi gure 6. The p r i m a r y  mode shape is

changed only slig htl y f rom the linear one . The gene ral shape of the secondary is
similar to the p r imary  but the peak and phase reversal  point are closer to the
wall . The amplitude of the mean is positive near the wall w i t h  a smalle r negative
reg ion adjacent. (Onl y absolute values are shown in ‘-e f i g u r e .)  Fi gure 7 shows
a simila r result at R 2. 2 x 10~~. In thi s case the n or i i ,a l i zed  ampl i tude  of the
nonlinear pr imary  is changed somewhat f r o m  the linea r curve.  The m ean
contribution again has a positive reg ion nea r the wall followed by a now
significant negative region.

Up to this point the results have emphasized the Fourie r amp litude ; it

is also of interest to look at the phase relationship betweo~ the p r imary  and

- - -
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seconda ry disturbance. The usual anal ytic studie s of nonlinear stability theory

assume that the secci idary  is a harmonic it1 space as well as in time. Fi gure 8

shows a typical phase relationship between the two disturbances (where for  c onvenience

both amplitudes are normalized to uni ty) . The re sults show that the secondary is

very nea rly a spatial harmonic of the primary . However, a particularly interesting

feature of thi s curve is the rather abrupt  change in the relative phase at about

R 1. 7 x 10~ which is about the location of the change in shape of the secondary
disturbance. Althoug h this point needs fu r the r  stud y, a tentative finding of this

work is that small changes in the relativ e phase appear to be associated with

significant changes in the growth/decay behavior of the secondary wave.
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IN INCOMPRESSI BLE FLOWS
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1-2 NUMERICAL SIMULATION OF TRANSITION PHENOMENA

IN INCOMPRESSIBLE FLOWS

H. Fasel
Institut A fUr Mechanik
Universitât Stuttgart
Stuttgart, Germany

For the investigation of stability and phenomena of initial
transition in incompressible, two-dimensional flows an im-
plicit finite difference method for the solution of the
complete Navier—Stokes equations was developed (1). The
applicability of the numerical method for such investiga-
tions was demonstrated by simulations of Tollmien-Schlichting
waves in boundary layer flows on a flat plate. In the numeri-
cal model these waves were produced by introducing periodic
disturbances at the upstream boundary A-D of a rect1ngular
integration domain (Figure 1). The reaction of the flow to
such disturbances was then directly determined by solving the
Navier-Stokes equations within the rectangular domain using
appropriate boundary conditions.

For perturbations of very small amplitudes (maximum disturb-
ance amplitude of stream-wise velocity component 0.05 per-
cent of free stream velocity) extensive comparative calcula-
tions showed good agreement with linear stability theory and
experimental measurements (2,3). Amplification of the dis-
turbances occurred approximately in the same region of’
Reynolds number and disturbance frequency as in the experi-
ments and in linear stability theory, particularly when non-
parallel flow effects were taken into account in the linear
stability theory analysis (ii). A comparison of the numeri-
cally determined amplification rates and amplitude distribu-
tions of the disturbances with linear stability theory and
experimental measurements was equally satisfactory.

- -~~~
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The usefulness of the numerical model for stability and
transition studies has been further tested by applying
it to another type of flow, i.e. the plane Poiseuille

flow between two parallel plates. It was possible to
demonstrate that for small sinusoidal disturbances, which
were introduced at a fixed downstream location , space-wise
(in downstream direction) amplification of the disturbances
can occur within a certain Reynolds number - frequency
region. In Figure 2, for example, amplification curves
for two typical test cases are shown, one for a stable
and the other for an unstable disturbance. This evidence
of spatially growing disturbances in plane Poiseuille flow
was also verified experimentally by Nishioka et al. (5).

In the development of the numerical method it was possible
to avoid any restrictions with regard to amplitude or form
of the perturbations. Thus, the numerical model lends it-
self for the investigation of a number of’ other aspects
of stability and transition for which treatment with other
theoretical models becomes extremely difficult. One of the
main points of interest in this field is focused on the
investigation of later stages of the transition process
which follow the amplification of’ unstable Tollmien-Schlich-
ting waves.

For an investigation of the two-dimensional non-linear
development in the transition- process, numerical experiments
are performed in which the boundary layer flow is disturbed
at the upstream boundary A-D of’ the rectangular integra-
tion domain (Figure 1) with periodic perturbations of larger
amplitudes. In these experiments, disturbance amplitudes of
the stream-wise velocity component are increased up to 5 per-
cent of the free stream velocity. In Figure 3 typical results
are shown for calculations with a Reynolds number (based on
displacement thickness) of 635 and a frequency parameter
(F = By/U2) of 1.32’1O~ . In these calculations the loca—

_ _ _
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tion of the upstream boundary corresponds to a point on the
lower branch of the neutral curve of linear stability theory .
The amplification curves for.different disturbance amplitudes
which are plotted in Figure 3 clearly indicate a dependency
of the amplification rate on the amplitude of the disturbances.
As expected , the influence of the magnitude of the disturbance
amplitude for amplitudes below one percent is practically
negligible . However, for larger amplitudes an increase in
disturbance amplitude has considerable influence on the ampli-
fication rate of the disturbances.

In these investigations strong emphasis is also placed on a
thorough study of the role of other harmonic disturbance wave
components in the transition process. The numerical results
indicate the existence of other harmonic wave components super-
imposed on the primary disturbanee wave. The influence of these
wave components seems to become more and more dominant when
disturbance amplitudes are increased .

Another effort involves a detailed study of the influence
of a single roughness element on the transition process in
a flat plate boundary layer flow, corresponding to the exper-
imental work of Klebanoff and Tidstrom (6). Because of the
simpler geometry , however, a backward facing step was chosen
as roughness element, as shown in Figure i~• In this study the
step heights are ranging from one half to two displacement
thicknesses. By means of comparative calculations with iden-
tical flow conditions for a flat plate with the step and with-
out the step the effects of the roughness element on the tran-
sition processes can be clearly observed . For example, when
random disturbances are introduced at a fixed downstream
station, a certain selection process takes place for both
cases where disturbances, that are, according to linear stabil-
ity theory, most unstable for the particular Reynolds numbers,
are singled out. However, the selection process is much more
pronounced when the roughness element is present.
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Figure 2. Amplif icat ion curves for spatially growing
disturbances in plane Poiseuille flow
(Disturbance amplitude for maximum of stream-
wise velocity component 0.05% of center-
line velocity Uc ) .
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Figure 3. Amplification curves for different disturbance
amplitudes (maximum of stream-wise velocity
component in relation to free stream velocity).
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Figure 1L Integration domain for flow over a backward
facing step (single roughness element).
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1—3 FUNDAMENTAL DYNAN CA L ASPECTS OF INDETERMINACY AND INCOMPLETENESS

OF THE NAV IER-STOKES EQUATIONS BEARING ON TRANSITI ON

by

Paul Liebcr , K. S. Wen and J. S. Marks

The application of the Navier-Stokes equations to the calculation of actua l
flows and in partic ular tra nsit ion , by analyt ica l and numerical procedures, is
predicat ed on the supposition that they are in fact complete in specifying the
dynamical constraints necessary for so obtaining this information. We demonstrate
on the basis of the fi rst principles of mechani cs which circumscribe and thus
limi t the dyn~~ical information content of the Navier—Stokes equations , that this
basic presupposition must be fundamentally questioned. This is done by demonstrat-
ing the primacy and autonomy of force relative to the principles of mechanics and
that this important fact carries over into the Navier—Stokes theory as well and~
accounts for the most fundamenta l dynamical aspect of indeterminacy and incom-
pleteness of this theory . This fundamenta.l aspect of indeterminacy which is
predicated on the primacy of the forces, allows and calls for the specifications
of additional dynami cal contraints which augment and complete the Navier-Stokes
theory for the purpose of calculating actua l realizable flows . We present in
outline analytical and numerica l results obtai ned by the application of hydra-
nami cal variational principles that were conceived and designed for this purpose.

Certain experimental results whi ch bear both directly and indirectly on
transition and which experimentally display other signifi cant aspects of Incom-
pleteness and indeterminacy of the Navier-Stokes equations are descri bed as well
as the experimental arrangements that produced them . The theoreticai consider-
ations that led to the conception of these unconventional hydrodynamical experi-
ments and to the expectations that led to the identi f i cat i on of the resul ts
obtained are outlined.

~~~~ ~ - -
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Section II
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11—1 Numerical Simulation oC Tran~;it ion

Steven l~. Orszag

Department of Mathuriatics
M.I.T.

Cambridge , Mass. 02139

In this paper we shall summarize and compare results
obtained from two distinct theoretical approaches to the
transition problem. In the first, the three-dimensional

time-dependent Navier—Stokes equations are solved in a plane

channel  with appropriate boundary conditions. The evolution
of three—dimensional disturbances is studied with reg2rd to

cross-stream wavelength selection, spanwise and boundary-layer-

wise flow variations, etc. The effects of surface curvature

will also be discussed. In the second study, a highly
- 

simplified set of Galerkin equations was used to predict
transition. Comparisons with the direct numerical simulations
will be reported.
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Section II

THE EFFECTS OF ACCELERATION ON THE GROWTH RATE OF SMALL
DISTURBANCES IN A LAMINAR BOUNDARY LAYER

-- _ _ _ _ _
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11—2 THE EFFECTS OF ACCELERATION ON THE GROWTH RATE OF SMALL
DISTURBANCES IN A LAMINAR BOUNDARY LAYER

by
C. von Kerczek

David W. Taylor Naval Ship Research and Development Center

The effect of small acceleration on the amplification of disturbances in a
laminar boundary layer, as might occur in the latter stages of the flight of a

buoyancy propelled body, is considered.

Consider, for example, a circular cylinder whose radius is 15 feet and
terminal velocity is 40 knots (i.e., Reynolds number ~ 67 x 10

6). We suppose

that it accelerates according -to ‘the following law UJ’~) =(i - e
_
~~
l’r) where

UJt) is the dimensionless velocity of the cylinder at an instant of dimension-

less time j~ . The velocity scale used is the terminal velocity 40 knots and the

time scale is the radius of the body divided by the terminal velocity. The above

acceleration is a guess of what might be required in order to be near the terminal

velocity after a distance of about 1000 feet.

The instantaneous inviscid velocity distribution on the surface of the

cylinder is then U(x,’t) = 2(1 - e~°~~~~) sin x where x is the arclength along

the circumference of the cylinder measured from the front stagnation point. If

one considers the temporal growth of small disturbances in the boundary layer,

the analysis of (1] Justifies the use of quasi-steady stability theory to deter-

mine growth rates. We assume that validity of the quasi-steady assumption to

compute temporal growth rates allows the same approximation for computation of

spatial growth rates. Thus, we assume that the amplitude A of a disturbance
in this accelerating boundary layer is given by-

‘IxA 1 _
~~~‘ RL .I — 1)0 01 x - (1)

~~~ A. 
— i/x~, ~~ Rç*.

where -oC~ is the instantaneous growth
’rate, RLj is the instantaneous length

Reynolds number , R g  
~ 

is the instantaneous displacement thickness Reynolds

number and xh is the instantaneous point of neutral stability. The amplification

(1) must be calculated following the disturbance with its group velocity, see (2].

However , this second requirement may be relaxed in this case because the group

velocity scales on U (e.g., calculations typically show group velocity near

-
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0.2 U) and hence, the disturbances traverse the girth of the cylinder before the
boundary layer changes appreciably.

As a sample calculation, Figure 1 shows the results of the unsteady boundary
layer calculation (by the time-dependent Pohihausen momentum integral method)

on a sector ahead of but near the top Cx = 0.5) of the cylinder. The quantity .A..

is the Pohlhausen parameter defined in unsteady flow as ~~~~~~~ +~ ) 4~where ~ is a boundary layer thickness and V is tht kinematic viscosity. The
various curves givej\. at different instants of time. The amplification (1) was
computed at the instant t = 12 which is when the body has reached about 70 per-
cent of its terminal velocity. At this instant the disturbance with nondimen-

sional frequency 0.7 x 10 6 
traverses the arc (moving with its group velocity)

from x = 0.4 to 0.5 in A#V<O .5. In this increment of time, the boundary
layer has little perceptible change as can be inferred from Figure 1. This gives

an a posteriori justification of the quasi-steady assumption. Figure 2 shows

,lii A/A0as a function of x at ‘V = 12. The curve marked (a) is what is obtained
in a steady flow having the terminal velocity. The curve marked (b) is what is
obtained when the flow is steady at 70 percent of terminal velocity (i.e., effect

of acceleration of the flow onfl is neglected). The curve marked (c) is what is
obtained when boundary layer acceleration is taken into account. The conclus-
ion is that the acceleration mainly affects boundary layer profile shape (i.e.,A).

Even though this effect on .A.is fairly small , it can have a large effect on the

amplification in the region of the body where.A. would be near zero in a steady

flow (i.e., near x = 0.5).

References :

(1] Hall , P. and Parker , K.H., ttStability of the Decaying Flow in a Suddenly
Blocked Channel,” J. Fluid Mechs., Vol. 75, Part 2, pp. 305-314 (1976).

(2] Loehrke, R.I., Morkovin, M.V. and Fejer, A .A., “Transition in Nonreversing
Oscillating Boundary Layers ,” Trans. ASME , J. Fluids Eng., Series i,
Vol. 97, pp. 534-549 (1975).
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Section II

ON BOUNDARY LAYER TRANSITION STUDIES



11—3 ON BOUNDARY LAYER TRANSITION STUDIES
Sin-I Cheng

Princeton University

The development of turbulent spots in the late stages of transition is as
important as spot generation in transition studies. Laminar instability is
important but not all encompassing even in the early stages of burst formation .

A turbulent boundary layer is visualized as an aggregate of distinct and
overlapping turbulent spots convecting downstream in their asymptotic states.
The turbu l ent front of each asymptotic spot develops In its local laminar environ-
ment independently of its neighbors until overlaps occur, where upon nonadditive
un ion of spots and annihilation of fronts result. Incipient transition is reached
when sufficient number of bursts and turbulent spots are present so that the’ sum
of the transit times of all these spots under asymptotic development will exceed
unity (intermi ttency factor = 1) somewhere downstream. The resulting outgoing
turbulent front (mean) will eventually reach its equilibrium position about half
way toward the outer edge of the turbulent boundary layer under the large con-
vective effects there. The ingoing front propagates into the thin wall layer
where it is promptly dissipated . A fully turbulent boundary layer then results.
As such, the mean turbulent properties within a developing spot are those in the
fully turbulent boundary layer further downstream.

Kinema tics, dynamic and energy considerations of the asymptotic development 0

of a spot and i ts interac tion wi th the “mean flow ” permit an estimate of the 0

asymptotic states and of the transit time of a spot. Such estimates are in sub-
stantial agreement with observations. A criterion of incipient transition is
then formulated in terms of the transit times of all the asymptotic spots resulting
from the population of bursts and spots at a given station. A burst is presumed
to be generated - when the disturbance amplitude exceeds what Is needed t’ extract
sufficient energy from the mean flow for establishing a self-sustaining turbulent
front of an asymptotic spot. This cut off ampl itude increases with the scale and
frequency of the disturbance to enhance such selectivity in burst formation.

If external disturbances are sufficiently large and numerous , the proposed
transition criterion provides specific functional relations between transition
Reynolds number and the external disturbances that describe adequately the obser-
vational data. If Insufficient , transition will require additional spots from
growing laminar disturbances wi th sufficiently large amplification rate. The
many faces of transition can then be put in proper perspective to further better
understanding and tne construction of some practically useful transition criterion.
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11— 4

TR ANSITION , PRESSURE GRAD IENT, SUCTION , SEPARATION AND

STABILITY THEORY.

J.L. van Ingen

Department of Aerospace Eng ineering , Deif t  University of Technology ,

Kluyverweg 1, Delf t, The Netherlands.

SUMMARY.

A semi—empirical method is presented for the prediction of transition

in two—dimensional incompressible flows with pressure gradient and

suction. Included is the case of the laminar separation bubble, where

transition is preceded by laminar separation.

The method employs linear stability theory to calculate the amplification
factor a for unstable disturbances in the laminar boundary layer.

(a is defined as the natural logarithm of the ratio between the

amplitude of a disturbance at a given instant or position to the

amplitude at neutral stability). It is found that at the experimentally

determined transition position the calculated amplification factor

for the critical disturbances attains nearly the same value (about

10) in many different cases for flows with low free stream turbulence

levels. An attempt is made to include the effects of higher free

stream turbulence levels by allowing the critical amplification factor

to decrease with increasing free stream turbulence.

NOTATION.

The symbols used are the conventional ones for boundary layer and

stability theory. To avoid confusion a few of them are mentioned

specifically below.

c reference length

in -

V dx
U c

R - —C V
U0R —8

U velocity at edge of boundary layer

0 

U reference velocity

u - u/u



—46—

x or s distance- -along contour of body

x distance along chord
- xx —

C

; 
~~~

subscript sep refers to conditions at separation .

LINE AR STABILITY THEORY.

In linear stability theory a given two—dimensional laminar main

flow is subjected to sinusoidal disturbances with a disturbance

stream function :
= ~~y) e~~~~

Wt) (1)

For the spatial mode w is real and a is complex a = ar + i a . .

This leads to a factor e aix in the disturbance amplitude and a’

follows from: —U c  _6 x
a - -a.dx = — 10 1 T.U dx (2)

o 2. V

where x is the streamwise position where the disturbance with0
frequency w is neutrally stable.

T is defined as: —a. 0 
io6 (3)R~

In the temporalniode the same expression (2) for a is found with
a different definition for T.

It is clear that a’ is a func tion of x and w for a given boundary

layer; a can be calculated as soon as stability diagrams are

available for the velocity profiles for successive streaniwise

positions x.

For a long time Pretsch’ stability diagrams for the tempora l s tabi l i ty

of the Hartree similar velocity profiles , have been the only source

of detailed stability data for flows with non—zero pressure gradient [6~ .
Results for the spatial stability of the Hartree flows have been

given by Wazza n, Okaniura and Smith [7] and K~immerer [8] , stability
diagrams for the reversed flow solutions of the Palkner—Skan equation

tiave been obtained by Taghavi and Wazzan[llJ .

:~~~::~~~
_ 

0~~~~~~~~~~ 0~~0 :_ ~
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STABILITY AND TRANSITION OF THE FLAT PLATE BOUN DARY LAYER.

Fig. la shows a for the flat plate according to Pretsch for
different  non—dimensional frequencies ~~ . The envelope of these
curves gives the maximum value of a for each streamwise posi t ion .

In what follow s we will  In general mean this maximum value when
we mention a. The curve labelled 3 in fig. lb is the envelope

according to [7] and [8]; the curve labelled 2 will be discussed

later. A well known result for the experimentally determined

transition region is due to Schubauer and Skrarnstad [12]. They

find for low free stream turbulence levels Reynoldsnumbers at

beginning and end of transition equal to 2.8 x 106 and 3.9 x

respectively. To these Reynolds numbers correspond certain

values a1 and a
2 for a which are indicated in table 1.

FiRST VE RSION OF THE PREDICTION METHOD (1956).
- 
The present author used Pretsch charts in [i] to calculate
amplification factors for an airfoil section (EC 1440) at different

values of angle of attack and Reynolds number.

It was showü that a
1~
.7.6 and a

2
—9.7 gave a reasonably accurate

prediction of the transition region. Smith and Gamberoni [3],
defining a transition -point rather than a transition region found

that cr—9 would correlate different transition experiments reasonably

well.

Although it is clear that a transition criterion should be based on

the actual amplitude of the disturbance, rather than on an amplification

ratio, the method has been used extensively. Its success may have been

due to t he fact that the initial disturbances — due to free stream

turbulence for instance — have been about the same for the cases

investigated.

Another way to explain the success of the method may be that a is

a suitable factor in which different factors, known to influence

transition, may be correlated.

SECON D VERSION, ALSO APPLICABLE TO FLOWS WITH SUCTION.

In 1965 the present author extended the method to the case of two—

dimensional incompressible boundary layers with suction [2].
Since at that time the Pretsch charts were still the only source

of detailed information on amplification rates, some drastic
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s imp l i fy ing  assumptions had to be made. Firs t i t  was assumed that

all possible s tabi l i ty  diagrams , including those for suction

bounda ry layers , formed a one—parameter family with  the c r i t i ca l

Reynolds number as parameter.  Furthermore , it was assumed that the
cr i t ica l  Reynolds number could be determined from an approximation

formula due to Lin . The suction boundary layer was calculated using

a two—parameter method of integral relations . This necessitated a
new “calibration” of the transition prediction method against the
f l a t  plate without  suction , leading to curve 2 ir~ f ig .  lb with

o~
=9 .2 and a2= 1 1 .2 .

To fac i l i ta te  the amplification calculations using a computer

Pretsch’ charts have been brought in a tabular form . Fig. 2 shows
an application to the EC 1440 a i r fo i l ;  some results for an a i r fo i l

with suction through a porous surface are shown in figs 3 and 4.

In view of the many s implifying assumptions which had to be made the

correspondence between theory and experiment may be considered to be

good.
Since 1965 this version of the method has been included in a computer

program for the analysis and design of airfoil sections [13]. The

streamwise position for the end of the transition region (determined

by a2) has been used as the starting point for the turbulent boundary

layer calculation .

It has been found that an improved transition prediction could be

made by allowing the value for a2 to vary from 1 1 . 2  for favourable

and zero pressure gradient to about 20 for boundary layers near

separation. (In the last version a’2 is again more nearly constant).

In general the position of transition was predicted within a few

percent of the chord . An example of application of this airfoil

analysis program taken from [14] is shown in fig. 5 . The a i r fo i l

investigated is that of the horizontal tailplane of the Italian sail-
plane M300 “Aliant-e”. The airfoil was designed by cambering the
NACA 63

3~
O18 section. The tailpiane is produced through an extrusion

process which caused appreciable surface waviness. An actual specimen
of this tailpiane was tested as a two—dimensional model in the low

speed wind tunnel of the Department of Aerospace Engineering at Deift.

It was found that the surface waves caused early transition in a

certain angle of attack range; this could be remedied by smoothing
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the fo rwa rd part of the surface. The calculation , starting from
the a i r foi l  coordinates for both conditions , predicted this change

qui te  wel l .

It should be stressed again that the present method may be considered
as a method to correlate different transition experiments. The

calculated amplif ication factors need not have a precise physical

meaning . It is however a defini te  advantage of the method that linear

sSabi l i ty  theory is used which has proved to be a valuable tool to

describe the early phases of the transition process. It should also

be observed that inaccuracies in one of the elements of the method
(viz ,  boundary layer calculation ; calculation of the critical

Reynolds number using Lin’s formula; the stability diagrams used)

may have been neutralized by inaccuracies in another element. Hence

if any element is changed, a new calibration is necessary.

An important imperfection in the second version of the method was

that the stability characteristics in laminar separation bubbles

were obtained by extrapolation from the attached flow. This may

have been the cause of the high values of a~ required to predict

accurately the end of the transition region in boundary layers near

to or after separation.

A SHORT CUT METHOD TO PREDICT TRANSITION IN SEPARATION BUBBLES.

In [s] the present author published a short—cut method to predict
transition in separated flow . The method is based on the stabili ty

diagrams for reversed flows due to Taghavi and Wazzan {11} and

some additional calculations by the present author for the limiting
stability characteristics when R0-~ , using the inviscid stability
equation (Rayleigh equation). The following assumptions are made

1) U, 0 and R0 in the separation bubble are independent of x and

equal to their values at separation. Then a constant value of

w also means a constant value of
2) The separation streamline is straight, and leaves the wall at

an angle ‘y determined by:

tg(y) (4)

V sap

where B is a constant equal to 17.5.
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3) The Reynolds number is so high wi th respect to the (very low)
critical Reynolds number that the stability characteristics
are given with sufficient accuracy by the limiting values

determined from the inviscid stability equation.
wOThen —a

~
O only depends on the value of —jy and the velocity

profile shape parameter.

Finally we introduce the shape parameter z—g x nisep~ 
where g is the

heigh t of the separation streamline above the wall devided by 0 and

e2 d
51 — — — i.— at separation. Then the integration w.r.t. x in (2)
can be replaced by an integration v.r.t. to z leading to:

(R0)a — sep 
~ (—cz.0)dz (5)B.m isep

(a similar result may be obtained for a small region upstream of
- T00separation when integration w.r.t. L — is used).

The inviscid instability for different values of the Hartree parameter

B is shown in figs 6 and 7. Values of 1O4 I (—cz10)dz are shown in

fig. 8 for differen t values of together with the envelope giving

the maximum value I of the integral as a function of Z. (See also
table 2). Hence in the separation bubble we have:

10 4 ( R )  I
a —  B .m (6)

sep

Using this short—cut method it was found in [sJ that a~ for
separation bubbles on an airfoil in a small “noisy” tunnel was

about 12.5 (fig. 9). For separation bubbles on a circular cylinder
with a tapered tail in the large low turbulence wind tunnel, values

of a2 between 13.2 and 15.7 were found, depending on the wind speed.

Using the same Short—cut method Van der Meulen [15] obtained a2.7

for a body of revolution in a small high speed water tunnel.

PRESENT STATUS OF THE TRANSITION PREDICT ION METHOD.

All stability data obtained from [7,8,11] and the inviscid stability

calcula tions mentioned in the preceding section , have been reduced

to a table containing about 300 numbers.

Using this table , the amplification rate T can easily be obtained for

any velocity profile , as soon as the critical Reynolds number is known.
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The present author employs a boundary layer calculation method
which for attached flow is similar to Thwaites ’ method. It contains

an extra parameter however , which makes the prediction of the

separation position as accurate as for Stratford ’s two—layer method.

In separated flows an integral method is used in which the shape of

the separation streamline is prescribed. Both for attached and
separated flow the primary profile shape parameter is m/m~~~. The

critical Reynolds number is a function of 
~
1
~sep~ 

this function is

assumed to be equal to that obtained for the Falkner—Skan solutions .

rrom calculations with the full method it has been found that the

short—cut method, described in the preceding section, gives a very

good approximation in separation bubbles. Furthermore it has been

found that the values of a
1 
and a2, when transi tion occurs near

separation are much nearer to the flat plate values than for the

second version. It can now be expected that a1 and a2 will be more

or less constant for flows with the same initial disturbances.

However , a 1 
and a2 may have to vary with the leve l of initial

disturbances due to free stream turbulence and noise.

From curve 3 in fig.  1 and table 1 it follows that a1 — 8.3 and

a2 — 10.4 if Schubauer and Skramstad’s transition results for the

flat plate are used. From Spangler and Wells’ experiment on a flat

plate in a tunnel with reduced background noise L16,17] and from
the authors own experiments somewhat larger values for a1 C 12 )

and a
2 

(14 .5  )  would be obtained. Jaffe, 0ka~ ira and Smith [9]
applied their solution technique for the Orr—Sonmierfeld equation

to velocity profiles that had been obtained numerically for two—

dimensional and axi—sysmle tric flows . They find a 1 —8 .3 for the

Schubauer and Skramstad results and a~”II .8 for Well ’s results;

for a large number of flows with pressure gradient a1 values ranging

from 6.8 to 12.1 were obtained. A good overall correlation of
transition position was obtained using a

1
—1 0.

RELATION BETWEEN a
1 ~~

O2 
AND FREE STREAM TURBULENCE.

Although it is clear that the initial disturbances cannot be sufficiently

characterised by the r.m.s. value of free stream turbulence alone , it

will be attempted in the present section to find a relation between

o~, 02 and the r.m.s. free stream turbulence Tu ,(in X).
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In many different papers relations between Tu, R0 
or R

~ 
at transition

have been given for the flat plate. The measured transition positions

may be converted to a—values using curve 3 from fig. lb. Then a will

decrease when Tu increases; fig. 10 shows a collection of these data;

for Tu > 0.1% the relation used by Mack in fig. 3 of [18] can be

approximated by:

10
— 2~~3 —6.18 log Tu (7)

while for 0
2 

a reasonable app roxima t ion is:

a2 5 _6.l810 log Tu (8)

For values of Tu < 0 1 %  there is much more scatter because in this

region sound disturbances may become the factor controlling transition
rather than turbulence. We may also use the relations (7) and (8)

for Tu < 0. 1%; but then we should define an “effec tive” value for Tu.
Of course this does not solve the prob lem because we can only define

an “effect ive Tu” for a wind tunne l after transition experiments

have been made in that same tunnel.

At the time of writing this abstract some additional measurements in

the low speed low turbulence wind tunnel of the Department of Aerospace

Engineering are being evaluated. Some preliminary results show that

the “effec tive Tu” even may increase at the lower windspeeds where Tu
decreases. It is thought that this is due to the fact that the critical

frequencies in the boundary layer may better be matched to the wind

tunnel noise spectrum at lover speeds.

For the time being it is suggested to use (7) and (8), assuming an

effective Tu equal to 0.1% for modern wind tunnels , resulting in
— 8.3 and 02 — 11.2.
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in f ig lb 02 

- 
stabili ty diagram used

1 7.6 9.7 Pretsch, flat plate (8—0); version 1.

2 9.2 11.2 Pretsch, stability diagram for 101og(!~.) .,—2 .345
which according to Lin ’s -~ormula wouldU cra.
apply to the flat plate velocity profile in
version 2.

3 8.3 10.4 from [7] and ~8]

Table 1: Critical values for a at beginning (a
1
) and end of the

transition region (0
2
) on a flat plate according to different

stability calculations. Transition Reynolds numbers 2.8 and 3.9 x ioó

according to [12].

8 z—gxm I
__________ sep 

______

— .198838 0 127
— .198 .042 145
— .197 .061 154
— .195 .088 167
— .190 .134 190
— .180 .199 225
— .160 .307 285
— .150 .360 315
— .140 .420 348
— .120 .556 422
— .100 .682 483
— .075 1.107 659
— .050 1.864 883
— .025 4 .249 1331 -

Table 2: z and I as a function of the Hartree shape parameter B
for reversed flows.
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Section II 

NONPARALLEL STABILITY OF BOUNDARY LAYERS 
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11—5 Nonparallel Stability of Boundary Layers

William S. Saric and All Hasan Nayfeh
Department of Engineeri ng Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg , Virginia 24061 U.S.A

This paper i nvestigates the stability of flows that are not parallel .

That is to say, the mean-flow veloci ty is a function of two dimensions

and thus , it has a strea,mtiise as well as a transverse component. In this

work , we confine our attention to the following class of flows: boundary

layers with variable pressure gradients and blowing or suction. A comon

feature of these flows is that they are weakly nonparallel and thus many

previous stability analyses have assumed the primary flow to be parallel

that is , the flow is one-dimensional and i dentical at every streanwise

location.

Recently, considerabl e attention has been given to linear stability

theories of shear flows that account for nonparallel flow effects (Bouthier

1973, Mayfeh, Saric & Mook 1974, Gaster 1975, Saric & Nayfeh 1975) because
classical linear stability theories which treat the primary flows as quasi-

parallel flows have not produced satisfactory results. For a flow past a

flat plate (Blasius flow), the critical Reynolds nunter predicted by parallel

stability theories is about 30% above the experimental results of Schubauer &

Skramstad (1947), Ross , Barnes , Burns , & Ross (1970), Wortman (1955), and

Stra z isar , Prahl , & Reshotko (1975), as shown In fIgure 1. A survey of

stability analyses and their application to transition Is given by Reshotko

(1976).

For a parallel mean flow, the spatially varying disturbance stream-
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function can be expressed as

‘p = ~(y)exp{i(k0x — ut)) (1)

where ~ is the mode shape , w is the disturbance frequency, and k0 is a

complex constant. Since the mode shape ~ is assumed to be i ndependent of

x , the streanivise behavior of any disturbance quanti ty , such as the velo-

city , the pressure, and the kineti c energy , is governed by the exponent

k0. In particular , the amplifi cation and attenuati on rates of any dis-
* turbance are gi ven uniquely by the imaginary part of k0. On the other

hand, for a near parallel flow , the disturbance stream functi on has the

fo rm

A0~ (y ;x 1)exp{i (k0 + ek1)dx - i~t} (2)

Thus , the effects of nonparallel ism are to make k0 be a function of the

long scale x 1 = cx , where c is a small parameter characterizing the non-

paralle lism of the mean flow , to produce a correction ek1(x1) to k0, and

to make the mode shape c vary in the streanwise-di rection. Hence, the

streanwise variati on of each flow quanti ty depends on its distance from

the wall. Moreover , at each distance from the wall, the di fferent flow
quantities vary differently in the streanwise direction. Thus , unless
these factors are taken into account , meaningful con~ar1sons cannot be
made between theoretical and experimental results . Figure 1 shows good
agreement between the nonparallel neutral stability curve calculated by

Saric & Nayfeh (1975 ) and the results of various experiments.
Recent experiments by Strazisar, Prahl & Reshotko (1975) in a water

tunnel and by Kachanov , Kozlov & Levchenko (1975) in a wind tunnel have
provided additional data which can be used.for comparison. Figure 2 shows

a comparison of the maximum amplifi cation rates calculated by using parallel
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and nonparallel theories and those determined experimentally by Strazisar,

Prahi & Reshotko. We note that the maximum amplification rates calculated

by using the nonparallel theory is approximately 1½ times those calculated

by using the parallel theory for low Reynolds numbers. Figures 3 and 4

show good agreement between the amplitude histories calculated by using the

nonpara llel theory and those determined exper imentally by Kachanov , KosIov

& Levchenko. Thus the theory is in good agreement with available experi-

ments for neutral stability, amplif ication rate, and ampl i tude history .

Comparison between other nonparallel theories are made in the paper.

Our nonparallel stability model has been extended to incl ude the

effects of pressure gradients, suction or blow ing, and higher-order boun-

dary-layer terms.

H .L~. -
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WAVE MECHANICAL ASPECTS OF TRANSITION 
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11—6 Wave Mechanical Aspects of Transition

M. I . Landahl

Mass. Inst. Technology

Synopsis

The final stage of transition of wall bounded shear flows is usu-

ally characterized by a sudden, almost explosive onset of a short—wave

secondary instability with a characteristic scale much smaller than

that typical of the unstable Tollmien—Schlichting waves. Such onset
is found, for example, in turbulent spots (see e.g. picture by Elder,
J.F.M. 9, 35), and in the formation of low—speed “spikes ,” (Kiebanof f ,
et al., J. Fluid M. 12 , 1). The propagation of such disturbances, con-

sidered as wave packets, can be analyzed by aid of kinematical wave

theory applied to propagation in a slowly varying nonhomogeneous medium.

This theory may be considered as an asymptotic one to first order in a

small parameter measuring the ratio of secondary wave length to the char—

acteristic scale of the primary inhomogeneity. For the case when the

large—scale in homogeneity is a travelling wave-of permanent shape, a

critical condition for strong secondary instability was found to arise

(Landahl , J. Fluid M. 56 , 775) when the group velocity of the secondary ,
locally unstable wave is equal to the phase velocity of the large—scale
(primary) wave. When this condition is met, space—time focusing of the

small—scale disturbance on the large—scale wave will take place. The

simple theory was found to give results in good agreement with measure-
ments for the prediction of the location of the first appearing spike,

as well as for the frequency of the secondary instability (Landahi, b c .

cit.). Some new results are presented from breakdown calculations for

a simple stratified shear flow model (Fig. 1). Breakdown can occur for

both stable and unstable primary waves. The maximum wave slope attain-

able for the most ursa table pure shear wave (zero Richardson number) be-

fore breakdown is found to be about 30°. The simple breakdown condition

can be generalized to hold for arbitrary time—dependent three—dimensional -

primary flows.

-- - — - -  - - ------‘-——— ‘ .  —
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Its implication for dispersive and nondispersive systems is discus-

sed and a comparison made with ordinary ray (space—) focusing (Fig. 2).

New developments in kinematical wave theory for general classes

nearly conservative fluid—flow systems (W. Chin, M.I.T. Ph.D. Thesis,

1975) show that shock—like transition giving discontinuities on the

scale of large—scale flow are possible for systems that are supercrlti—

cal in the sense of the breakdown condition. The discontinuities arise

both in the large—scale flow and in the amplitude of the wave train

(Fig. 3). Such a transition could be regarded as a generalization of

the classical hydraulic pump or gas dynamic shock wave, and is proposed
as a unified mechanism for fluid—flow transition phenomena. 

-—_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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111-1 THEORETICAL AND EXPERIMENT AL TRANSITION

STUDIES AT ONERA / CERT

R. MICHEL

Département d’Aérothermodyanmique, ONERA / CERT , Toulouse, FRANCE

In the beginning , the study has been undertaken essentially with the
aim of defining means of calculation less empirical and more coherent than the
available criterions, for predicting the onset and development of transition,
under the complex influence of the various factors which can appear in prac—
ti.cal problems .

For controlling the hypotheses and results of such a calculation method,
it was fel t necessary to carry out an experimental investigation giving suff i—
ciently detailed informations about the development of mean and fluctuating
characteristics of the boundary layer from the laminar to the turbulent regime
this study led in fact to observations obviously concerned with the fundamentals
of the transition process, and involved as a logical consequence , special and
we hope, interesting developments.

I — PREDICTION OF TRANSITION BY MODEL EQUATIONS.

On the theoretical side, the technique makes use of transport equations
for different turbulent quantities , like turoulence intensity K, turbulent
shear—stress u’v’, and the dissipation of turbulence c.

A two equations model (K, c) was more intensively developed; the mode—
lization is based in a first stage on the structure of established turbulent
shear flows ; empirical functions using essentially the properties of the via—
cous wall region of a turbulent boundary layer , are introduced af ter that for
taking account of the effects of viscosity upon turbulence.

Very encouraging resul ts were obtained by showing at first that the metho~
is actually able to predict a damping for a given perturbation if it is intro-
duced at a sufficiently low Reynolds number, and after that amplification at a
Reynolds number corresponding to the experimental transition Re—number (fig. I).

Different applications have been made, which led to a good agreement
with experiments for the onset of transition as well as for its development up
to the turbulent regime for problems like
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— transition as function of external turbulence on a flat plate in incom-
pressible flow (fig. 2),

— combined effects of pressure gradient and external turbulence,
— combined effects of pressure gradient , turbulence and wall heat transfer

(calculation of transitional boundary Layers on the upper and lower sur-
faces of turbine blades, fig. 3).

2 - FUNDAMENTAL EXPERIMENTAL STUDY OF TRANSITION.

On the experimental side , the transition on a cylinder aligned along the
axis of an axisymmetric channel has been studied (Velocity : 33 rn/s ; zero pres-
sure gradient ; external turbulence : 0,25 Z), involving at first a detailed
determination of the mean velocity and fluctuations profiles in the transition
region.

A good agreement with a calculation by the two equations model was obtai—
ned for the velocity profiles and mean flow characteristics of the boundary
.layer (fig. 4). A general coherence was observed also as concerns the develop-
ment of turbulence, but the experiments revealed complex phenomena, especially
related with a marked intermittency that the present calculation model is ob-
viously unable to represent.

A careful investigation could show in evidence Tollmien—Schlichting waves
and their amplification ; a spectral analyzis of the fluctuation led to interes-
ting observations, by showing notably the coherence between the properties of
the waves observed and the results of instability theory (fig. 5).

A specially significant aspect of the study is concerned with the forma —
don of turbulent spots and with intermittency. A systematic conditional sampling
of the signal delivered by the hot wire (fig. 6) was performed, and led to de-
tailed informations for

— the distribution of the intermittency factor (fig. 7),
— the passage velocities of successive laminar and turbulent flows,

— the classification of turbulent spots and the establishment of well
defined characteristics for the formed spots,

— the determination of a statistical type—picture for the sequence of
laminar and turbulent flows which could lead to a modelization of the
intermittency phenomenon for future analytical developments .
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Section III

TURBULENCE-MODEL PREDICTED EFFECTS OF SURFACE HEAT TRANSFER
ON BOUNDARY-LAYER TRANSITION -

_____
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111-2 TURBULENCE-MODEL PREDICTED EFFECTS
OF SURFACE HEAT TRANSFER ON

BOUNDARY-LAYER TRAN S ITION

by

D. C. Wilcoi and T. L. Chambers
DCW Industries, Inc.

Sherman Oaks, California

Effects of surface heat transfer on boundary—layer transition have
been analyzed using a second—order closure turbulence model. The
primary objective of the program has been to use the model to

analyze effects of surface heating on hydrodynamic boundary-layer

transition. As a secondary objective, the model has been used to
study transition sensitivity to suction, surface roughness and
frees tream turbulence.

With no transition—specific modifications, the turbulence model
predicts salient features of incompressible boundary—layer transi-
tion including sensitivity to freestream turbulence and surface
roughiiess. As shown in Figures 1 and 2, in addition to accurately
predicting effects of freestream turbulence , the model accurately
simulates transition width, skin friction overshoot and transi-
tional velocity profiles.

With transition modifications based on linear stability theory ,
the model accurately predicts transition sensitivity to surface
heat transfer, pressure gradient and suction . Figure 3 compares
predicted and measured transition Reynolds numbers for surface

roughness effects and for the latter three effects on aerodynamic

boundary layers. Of particular interest to the main project
objective, consistent with measurements , the model predicts that
heating destabilizes an aerodynamic boundary layer.

Figure lj presents results of computations for four hydrodynamic
bodies with and without äurface heating. Again consistent with
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measurements, the model Indicates that small heating rates have a
strong stablllzlng effect on hydrodynamic boundary layers .

In summary, the model accurately simulates the various effects
pertinent to hydrodynainic boundary—layer transition. The primary
unresolved question is the model’s s~- - itivity to freestream turbu-
lence and the model’s inability to d~ ~tly account for Tollm.len—
Schllchtlng waves. These problems a~ undoubtedly tied to the
masking of spectral Information atter i1r~, long—time (Reynolds)

averaging. Whi le the method ’s utility for many engineering appli-
cations does not appear to be significantly hindered by these

unresolved issues, a hybrid linear—stability/turbulence—model (in

contrast to llnear—stabi].ity/e9) simulation of transition may pro-
vide a more physically sound method than Is currently provided
either by the model or by linear—stability methods.

- -  -- -- - - - -- -.--- -- —- - _- - 1’~~~~~~ 
- - - _-.- - --—-— —----_— _ -——--_

I. - -
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Section III

ON THE APPLICATION OF SECOND-ORDER CLOSURE

MODELS TO BOUNDARY LAYER TRANSITION
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111-3 ON TIlE APPLICATION OF SECOND-ORDER CLOSURE
MODELS TO BOUNDARY LAYER TRANSITION

Michael L.Finson

Physical  Sciences Inc.
Woburn , MA 01801

Second-order  closure models have been applied to a wide variety

of tu rbu len t  flows in recent years .  There are several advantages in

applying such methods to t rans i t ion  problems. One obvious advantage is

that secoiid-order models are  non- l inear, and may provide useful  results

in the late r stages of the t ransi t ion process as the flow becomes full y

turbulent .  Also , the governing equations can be solved with s t r a igh t fo rward

numerical  techniques, even in rathe r complicated situations. 1-lowever,

it has yet to be demonstrated tha t the required closure approximations

can be made in a manner that is physically sound for  transition regimes.

For example , the second-order  models cannot be expected to reproduce .

linear stabil i ty theory. It mig ht be anticipated tha t second-order models

would have greatest  applicability in “by _pass ” situations , where t ransi t ion

is t r iggered  by relatively high levels of initial fluctuations, introduced by

f ree  -stream turbulence or su r face  roughness.

Our studies have utilized a “five equation ” model.; the dependent

f luc tua t ing  quantities are the three  components of the fluctuating kinetic

ene rgy u~~ , ;‘Z , ;~~~, the Reynolds stress ~~1 r ,  and ei ther the dissipation

rate ~ or the length scale A. A typical equation , for the ki’ietic energy

q2 = ( u ’Z + v ’2+ w’Z ) / Z , is

~~~~~~~~ I3-1~ ~ —~~- ~~~~~~~~~~~ ~ q_ (1)D t  ~ y ?y

wIicr ~ the t~~rm~i r ep resen t  conve ct ion , product ion , d i ss i pation , and molecular

n zid tu r b u l e i & t  d i f f u s i o n .  The r e q u i r e d  c b s  ure  ~i pprox imat ions  for t u r b u l e n t

j  
_ _  _ _ _ _ _ _ _— - — — _________________________________________ _ ,

— . - - - --- -~~~ — -
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f lows  have b eeu develope(l  f r on i  has i c laborat .ory t u r b u len c e  r i icasur .  —

r n r n t s , w h e r e v e r  possible .

A c a r e f u l  examinat ion  of th e- adequacy of the variou: ;  c lo s u r e

r c ’j u i  r e-mer it s  f o r  the tr~a n s i t i o n  r eg ime  has been p e r f o r m e d.  The

p r o d u c t i on  t e r m s  are  t r eat ed  exactl y in our  f o r m u l a t i o n  ( s u c h  is not the

case wi th  “2 —e qua t ion ” models ) ,  and so a r e  the m o le c u lar  d i f f u s i o n

t e rm s .  Conce rn ing  the d i s s i p a t i on , we claim ( wi t h o u t  proof , h e r e )  tha t

adequa te  t rea tments  can be developed , since cx~~ct solu t i ons a re  kno~’;n

in the limit Re ~ 0.
II - - I,rhe  d i f f i cu l t  t e rms  are  the red is t r ibu tion  t e rms  (ii . v—— ) that

i ox .
-J

appear  in the equat ions for  the individual components of thc- Reynolds

s t re i~s ten sor . Thrbulent  c losure  approximations have been develope d

by Rot ta ’ and I l a nj a l i c  and Launder 2
, but these approximat ions  become

suspect  near  solid walls , for  length scales that are not small  com pared to

mean flow dimensions , or for non -turbulent  spectra.  Such terms play an

impor tant  role in the production of f luctuat ing energy .__With the d i rec t
2 . ‘ ‘ ~~Uproduc tion  term s, u is produced by u v i— and ii v is produced by

‘2  ~ Uv - ---— but (unde r the boundary laye r appro :~imat ions)  there  are  no terms
‘2 ‘2to produce v or w direct l y. The direct  product ion te rms  ~vill  not yi d

t rans i t ion  since v ’2 is not produced and the production of u ’ v ’ will hence be

small. However the turbulent  closure for the p ’ terms introduces additional

terms of the form U1 U ’. ~.31.• These terms tend to isotrop ize the product ion

process , and cause art extremely rapi d amplification in a t rans i t ion  calcu’ation .

In real i ty ,  the p r e s su re- s t r a in  terms must be considerably smaller in the

t rans i t ion  regime .

Several potentia l modificat ions to the p r e s s u r e - s t r a i n  terms have

been invest igated . F i r s t  there  a re  wall effects , which are important  in a

t rans i t iona l  bounda ry layer or in the viscous sublayer.  If A/y  is not small ,

the normal fl uc tua t ions  v’ arc  reduced by the presence of the wall.  To

obt ain  the prope r behavior as y -~ 0 , the tu rbulent c l o s u r e  te rms for
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pres~;u r C  — s t r a i n  should be reduc ccl by ( 1 -h A /y ) . Second, the

p r es su r e  -~;t ra in  terin s arc  gen e r a l l y t h e  f i r s t  terms in  a ser ies  expansion

in AIô .  Addi t iona l  te rms such as

~ A
2

~ y
2

he-conic impor tant  in t rans i t ional  si tuations where  Ä/ô is not necessar i ly

smal l .  Note that  this t e rm-in t roduces  a dependence on -~~~~~~~~~~ - The net resul t

~y 2
of the-se  modi f ica t ions  is a more reasonable production cycle in the transi-

tion reg ime.  However , it sho ul d be emphasized  that the present treatment

is rathe r tentative and cannot yet be considered adequate.

F igure  1 compares the resul ts  of the present  model for the effect

of f r e e - s t r e a m  turbulence on flat  plate t ransi t ion with the data of various

investiga tors .  In the calculations the level of the f r ee - s t r eam turbulence

(assumed isotrop ic)  was specified as a boundary condition, at y ~~~~~ and the

length scale in the f r ee - s t r eam was taken to be suff ic ient ly large tha t the

turbulence there  would not decay over the distances conside red. The resul t s

implicate a somewhat more rapid t rans ition tha n observed, but the

comparison should be qualified by the uncer ta in  na ture  of the f r e e - s t r e a m

turbulence in mos t tests (probably acoustic rather  tha n vortical).

Spa ng ler and Wells 3 observed a smaller t ransi t ion Reyziolds number ,

for a g iven rms fluctuation level , when the f r ee- s t r eam turbulence was

generated by a grid , consistent with our resul ts .

The effect  of distr ibuted surface roug hness on t rans i t ion  has also

been examined. In so doing, we modeled the inannor by which roug hness

elements introduce dis turbances into the flow by assuming  that the flow

a round individual  elements is attached. A distr ibuted sink term (for  y �k)

is included in the mcan momentum equat ion to account  f o r  the drag of the

elements , and a dis t r ibuted source term in the k ine t i c  ene rgy  equation descr ibe s 
-

the i n t roduc t ion  of f luc tua tions  downst ream of each  clement .  The de t a i l s

‘I.-
-
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may be fo und in Ref .  4. F igure  2 show.9 the resul t ing  computations

for  tr ans i tion , compared with Feindt ’s 5 data on f l a t  plates roug hened

with sand paper. At  roughness  Reynolds numbers  below about 250 , f ree~
s t ream turbulence appears to be responsible for  t r ans i t ion .

The model described here shows promise for  p red ic t ing  t ransi t ion,

at least for  some conditions such as those where  there  a r e  relatively high

levels of initial d i s tu rbances .  As indicated above , the closure approxi-

mations requi red  for  the p r e s s u r e - s tr a i n  terms are cr i t ical  j r-i the

t ransi t ion reg ion. Our cu r r en t  t reatment can only be considered to be

an in i t ia l  attempt , and f u r t h e r  wo rk is required to a s su re  a physically

sound closure.

-

~~ 

I_ .. _______
~

_ 
-- - - - ——~~~ - - —~~~~~~~~ - - - - -—:-
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Section IV

AN ANALYTICAL STUDY OF THE EFFECT OF SURFACE ROUGHNESS ON

THE STABILITY OF A HEATED WATER BOUNDARY LAYER
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IV—l AN ANALYTICAL STUDY OF THE EFFECT
OF SURFACE ROUGHNESS ON THE STABILITY

OF A ‘-lEATED WATER BOUNDARY LAYER*

By

Denny R. S. Ko and M. Kosecoff
Physical Dynamics , Inc.

Torranc e, Calif.

This study analyzes the effects of surface roughness on low speed boundary
layer stability and transition in a liquid environment. An analytical model
for distributed surface roughness elements , spaced closely compared to the
characteristic wavelength of the boundary layer disturbances , is presented.
The model postulates an enhanced momentum and heat exchange near the wall
induced by the presence of these roughness elements. A “turbulent roughness
layer” with a thickness of the order of the mean roughness height is assumed
to be imbedded wi thin the ordinary lami nar boundary layer. Enhanced momentum
and energy exchange wi thin this layer is modeled by an effective eddy diffu-
sity . The presence of the turbul ent roughness layer modifies the mean flow
(velocity and temperature) profiles which , in turn , alter the stability
characteristics. The effect on boundary l ayer transition is then inferred
by adopting a semi-empirical en cri terion.

To demonstrate the effect of the distributed surface roughness on a
heated water boundary l ayer, the model is i ncorporated into a set of similari ty
equations for estimating the mean flow profiles. These profiles are then
used in linear stability calculation , which , when coupled with the e’~ criteria ,
gives the transition location. The linearized stability equations use a
parallel flow assumption and incorporate the variation of viscos i ty and con-
ductivity with temperature. These equations are solved using a code developed
by Lowell and Reshotko . Ampl i fication rates are calculated as functions of
kb and 

~
Tw for fixed values of Re0 and dp/dx, where k is the roughness height ,

O -is the momentum thickness , and 
~~ 

is the difference between the wall and
ambient temperatures.

* This work is supported by the DARPA under ONR Contract Number N00014-76-C-0967.
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For a given dp/dx , it is found that there exists a range of values of kb
for which the wall may be considered essentially smooth. However, the more
favorable the pressure gradient, the narrower this range is. As anticipated ,
heating and/or a favorable pressure gradient tend to stabilize the boundary
layer for sma l l rou ghness , and these effects are reduced for moderate
roughness. However , when kb is sufficiently large , heating tends to de-
stabilize the boundary layer. Furthermore, as the pressure gradient becomes
more favora b le , the criteria for “large kb ” reduces signifi cantly. Finally,
roughness su bstantial l y in creases the ran ge of frequenc ies which are uns table
at a given Re0. A semi-quantitative sumary of these results is given in
Table 1.

S I
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Ta ble 1: Ef fect of Rou ghness on Ampl i f ication Rates

Falkner-Skan k 
~r= O~F T— 30°Fparameter,8 6 -

O < .25 negligible negligible
.5 small moderate S

____________________ 

.75 drastic drastic

-0.05 < .5 neglig ibl e negligible
.75 moderate drastic
1.0 drastic drastic

0.2 < .15 negligibl e negligible
.25 moderate drastic
.4 drastic drastic

-1 
- --- -~~~~~ ~~- -

~~~~
.-- - - S-

~~~~-
.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Section IV

ON THE EFFECT OF FREESTREAM TURBULENCE ON
BOUNDARY-LAYER TRANSITION

I
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IV—2 On the Effect of Freestream Turbulence on Boundary-Layer Transition

Leslie M. Mack

Jet Propulsion Laboratory

The results of several experiments are summarized in figure 1 and show

a strong influence of freestream turbulence on the transition of a flat-p late

laminar boundary layer. Most of the data in figure 1 are from the Schubauer-

Skramstad experiment , where tunne l noise dominated transition below u1 ‘/U1 of

about 0.17.. (u’ and U are the rms and mean x-velocity components; the subscript

1 refers to freestream conditions.) Only the data for u1 ’/U1 >0.17. represent

the effect of freestream turbulence , Figure 2 interprets these data in terms

of linear stability theory to emphasize just how strong ly turbulence affects

trans ition. The maximum amplitude ratio of linear stability theory , Zn (A/A0) ,

decreases from a value of 8.1 at the transition Reynolds number , Re~ 
= U 1x/v ,

for u1 ‘/U1 = 0.17., to 2.6 at u1 ‘/U~ = 17.. Consequently, if A at transition is

a constant , A0 must at the same time increase by a factor of 245. The power-law

S ,. 2.4
relation A0 — (u1 ILl1) accounts quite well for this behavior of A0.

The most straightforward way of using linear stability theory as a means

of transition prediction is the so-called e9 method of Smith-Gamberoni and Van

Ingen. A value of n = Zn (A/A ) is chosen , and transition is considered to occur

whenever the maximum of Zn (A/A ) at some Reynolds number equals n. Obviously

a fixed value of n is incompatible with figure 1. The easiest way to incorporate

the effect of turbulence into the e9 method is to let n be a function of u1

The data of figure 1 are fitted closely by

n — - 8.43 - 2.4 £n (u 1 ’/U1)

5~~~
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As the above relation is based solely on flat-p late data , another

method has been developed which is intended to have wider app lication .

This method , which can be referred to as an amplitude method to distinguish

it from the amplitude-dens ity e9 or modified e9 methods, is based on the

following ideas :

a) it uses the actual disturbance amp litude which is made up of harmonic

component s of all frequencies and orientations:

b) the initial amplitude density A0(w , 
~~
) ,  where w is the frequency and ~

the transverse wave number, is related to the corresponding component of

the freestream turbulence by an interaction relation ;

c) isotrop ic turbulence theory is used to characterize the freestream

turbulence .

With the individual harmonic components of the bou ndary-layer disturbance

assumed to have random phase relations , the disturbance amplitude is given

as a function of Reynolds number by

Ad
2(R) =J d(~~)f [

~ ~ ~
)] A0

2 (
~
, 
~
) d~

where L is an integral length scale of the turbulence . If advantage is taken

of the sharp tuning of the boundary-layer response , this expression can be

simplified to

Ad
2(R) — A

0
2 ( w ,  

~~~~ 
f  d(~~)f [~~~(~~~2. e)}

2

d~.
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Because the function A/A0 always has roughly the same shape , a further

simp lification can be made to

Ad
2 (R) = C1 ~A

2 

~~inax ’ 
8max) (!~i~)

~ [~(~c, ~)1 . A ~~ .
The two factors A (wv/U 12) and AB are consistently defined response band-

widths , and along with (A/Ao)max and ~~~~~~~~~~~~~~~ are obtained from stability

theory with little more computationa l effort than is required for the e9

method. For a two-dimensiona l incompressible boundary layer , the maximum

response is always at ~ = 0. Since it has been observed for these same

boundary layers that A~ is only slightly dependent on the Reynolds number ,

this factor will be absorbed into the constant C1. The scale Reynolds

number U1L/v is set by the freestream turbulence , and A0
2 is to be found

from an interaction model.

In the absence of compelling theoretical or experimental arguments

as to the mechanism by which freestream turbu lence produces laminar insta-

bility waves , the following arbitrary assumptions are made:

a) instability waves orig inate near the solid boundary;

b) their amplitude is proportiona l to the norma l viscous velocity of the

forced response in the viscous sublayer of the freestream turbulence ; S

c) the forced response is given by Prandtl’s model of the sublayer (boundary-

layer equations with U — 0).
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The result of the analys is for the rms normal viscous velocity v~ ’ of

component co, $ is given by

1’v ’
~°” ~ 12 

= /JJLV\ [p ’(w, B)
~ U 1 I ~Il~2) 1 ~U 12 cos2 it4

where $ is the angle between the wave-number vector in the plane of the

surface and the freestream direction. The component rms pressure fluc-

tuat ion p ’(w , B) is represented by a two-dimens ional power-spectrum function

F2(w , B):

{p ’(w, B) 12 = ( E~~\21u lp2( w, B)
~ ~ 3 2  j  \pu12J I L2

The wide-band pressure fluctuation p ’ is taken to be that of isotrop ic

turbulence , and is thus related to the velocity fluctuation by

,

( U 1
,.1T 2

With A0 assumed proportional to v
’, the interaction relation is

A0
2(w, B) c5

3 (~) (!~L. )4 [U 1F~ (w~ B) ]

The final expression for the disturbance amplitude is , wi th ~ 0 and

C — C1C5,

S S S - _ _ _ _ _ _ _
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A
d
2 (R) = C2(!!L!~) 

[U 1Fa(w)
J (
~

_
~
) ‘

/ wv \ [A /wv \ A /WVX 
kU 1

2
)max 1A o~IJ i2J max ~U 12

The only remaining task is to develop an expression for the spectrum

function F3(w). The two-dimensional wave number spectrum is given in terms

of the three-dimensional spectrum by

P5(k1 ,3) F3 (k) dk3 , 
S

where k2 = k12 + k2
2 + k,2, and k1 ,2

2 k1
2 + k22 . The one-dimensional

spect rum is

F1(k1) = 2 TI] k F3(k) dk

Consequently,

- 
F2(k1,5) = - (lc~ _ k 1 ,22)~ ~~~ 

dk

The normalized one-dimensional pressure spectrum which correspond s to the

von Karman interpolation formula for the one-dimensional velocity spectrum
is S —, /5

F1(k1) — 4 [i + (
~ 

k
1)J
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Use of this expression leads to the following interpolation formula for

F5(k1 ,~ ) :

S /

= 1.78 [i + (0.82 k1 ,2)2]

Both F1 and F2 are shown in figure 3. For the B = 0 component, wh ich is

the only one used in the present calculations , k1,5 can be replaced by

Calculations have been made on the basis of the amplitude and modified

e9 methods for Falkner-Skan boundary layers with the pressure-gradient parameter

B equal to 0 (flat plate) and 0.1. All of the numerical results were obtained

from the newly developed JPL stability and transition computer program BLSTR.

This program starts with a single damped eigenvalue , and first locates the

unstable region. Then, as it advances do~nstream , it adds and subtracts

frequencies as needed to cover only the unstable region and keep the number

of damped frequencies to a minimum. After the eigenvalues have been computed

at each Reynolds number, least-squares fits to Zn (A/A0) are used to evaluate

Zn (A/Ao)ma , the corresponding dimensionless frequency Fmax = (WV /Ut 2)
max~

and the bandwidth AF defined as the difference in F in the direction of de-

creasing F such that Zn (A/Ao) max - Zn (A/A0) = 1. The intera ction relation S

is evaluated for F and the disturbance amplitude computed . If the transition
max

criterion of Ad 
0.04 is not satisfied , the program advances to the next

Reynolds number . Typica l execution t imes on the medium-speed UNIVAC 1108

computer are about l7~ sec for each eigenvalue , and also a total of l~ sec to

do all of the transition-prediction calculations (neutral points, A/A0, (A/Ao)max~
A , Ad) for a dozen Reynolds numbers .

-‘.5
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The numerical results from stability theory for the two boundary layers

are given in figure 4. It is to be noted how close to a straight line are

the two envelope curves Zn (A/A o)ma for the larger amplifications . Figure 5

shows the disturbance amplitude Ad 
for the flat-p late boundary layer as a

function of Re~ for several turbulence levels and U 1L/v = 4 x 10’. The constant

C in the relation for A
d 
was evaluated once and for all by requiring that Ad 

=

0.04 at Re = 2.8 x i0~ with u1 ‘/U 1 = 0.001. Finally, figure 6 gives Re
~ 

as a

function of u1 ‘/U 1 for B = 0 and 0.1 according to the two prediction methods .

For the amplitude method , IJ 1L/v = 4 x 10’ as in figure 5. Furthe r comparisons

with experiment are needed to evaluate the worth of the two methods.

This paper presents the results of one phase of research carried out at

the Jet Propulsion Laboratory , California Institute of Technology , under Contract

No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

Jet Propu lsion Laboratory S

Pasadena , California 91103

September 10, 1976
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F t C .  2

STABILIT Y THEORY AND FLAT-PLATE TRANSITION EXPERIMENTS

u1 ‘/U1 Re
~ 

x lO~~ Zn (A/A ) A /A (0.001)

0.001 2.8 8.1 1.0

0.002 2.1 6.4 5.5

0.004 1.4 4.8 27

0.010 0.7 2.6  245

S - — S __ __ 5___ - S - ‘S —‘5- —. — —

f..
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PRESSURE FLUCTUATION
INTERPOLATION SPECTRA
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DISTURBANCE AMPLITUDE GROW TH
BLASIUS BOUNDARY LAYER
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EFFECT OF FREESTREAM TURBULENCE
ON TRANSITION-THEORY

AND EXPERIMENT
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Section IV

THE EFFECTS OF FINITE-AMPLITUDE DISTURBANCES
ON THE MEAN FLOW PROFILES IN A LAMINAR BOUNDARY LAYER

S 

I
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IV—3 THE EFFECTS OF FINITE—AMPLITUDE DISTURBANCE S

ON THE MEAN FLOW PROFILES IN A LAM I NAR BOUNDARY LAYER

BY

C. L. Me rki e

D. R. S. Ko

and

1. Kubota
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The use of the linear stabilit y characteristics of boundary layers to

indicate the location of transition from laminar to turbulent f low has

Proven to be one of the best avai lab le methods for predict ing transition
on bodies of general engineering interest. The underlying reason for

this success is almost certainly related to the superior theoretical
foundation of the stability approach as compared to that of other exist-
ing methods. Despite the relative success of the method , the actual
relationship between stability and transition is poorly understood , and
is generally incorporated in the predictions in an empirical manner in
conjunction with an implicit assumption that the ensuing nonlinear ai~p ii—
fication region which follows the linear growth reg ion is very brie f
and leads quickly to transition. The most stringent limitation on this
approach arises because there is no mechanism in the linear theory for
deducing when the disturbances become large enough that nonlinear
effects begin to be important. The present approach is directed towa rds
including the appropriate additional terms in the stability analysis
so that the effects of the disturbances and their growth can be deduced
directly from th~ stability analysis itself without recourse to addi-
tional considerations. Since only the leading—order finite-amplitude

S effects are included , the analysis .still requires an empirical calibra-
- 

tion to relate the finite -amplitude effects to the observed l ocation
of transition. The present approach also requires ~ knowledge of the
characteristics of the ini tial disturbance levels inside the boundary
layer , but their origin and character are not addressed in the current
study.

The extension of stability theory to includ e finite-amplitude disturban ces
starts from a formal perturbation expansion which includes the complete
nonlinear stability characteristics of the boundary l ayer. This expan-
sion procedure dem onstrates that, for a single-frequency disturbance ,
the leading-order effects of a finite -ampl itude wave result in a distortion

1 .  . - -~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S S SS ~~~~~~~ - — - - - - 5 5 ~~~ -S S - - S- ~~~~~~~ S~~~~~~~_ _ _ _ _ _
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of the mean flow profile. In par ticular , the distortion of the mean

flow profile is a phenomenon which is of second order , 0 ~, in the
disturbance ariiplitude , whereas , the nonlinear disturbance-disturbance

interact ion is of third order , 0(A3). These observations suggest
that the disto rtion of the mean flow profile can be accurately computed
while still retaining a linear equation system for the disturbances.
Extension of the analysis to more realistic multi -frequency and three-
dim ensional disturbance environments shows that although the nonlinear
disturbance-disturbance interactions now become of the same order as
the mean flow distortion (namely, order A2), the second-order accurate
description of the mean flow can still be obtained from a first-order
accurate (linear) representation of the disturbances (i.e., second-
order changes in the disturbance growth rate cause third-order changes
in the mean flow profiles). Such a simplification to a linear wave
system is , of course , fundamental to the analysis from the viewpoi nt
of computational economy . Further , the concept that the mean flow profile
distortions can be accurately computed from a linear disturbance analysis
is in general agreement with experimental evidence which has indicated
that the generation of harmonic disturbances is of only minor signifi-
cance in the transition process.

In contrast to these results for boundary l ayers, the analogous deduc-
tions for the more intensively—studie d Poiseui lle-flow case appear to
be considerably different. Although an identical expansion scheme has
been used for most nonlinear stability studies in Poiseuil le flows ,
the attention in this latter family of flows has been almost unanimously
focused on predicting the changes in the growth rate , and has required
a knowledge of both the mean flow, distortion and the wave-wave interaction.
Specifically, these analyses have been carried to third order , 0 (A3),
accuracy. The differences in the em phasis of the nonlinear approach in
these two situations conies not from the theory itself , but from the
comparison of the theory with experiment. In boundary layers , the pre-
dicted region in which disturbances are amplified is in very good agree-

S.-
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S ment with extensive experiment~l evidence. For Poiseui lle flow , trans~~ipn
to turbulenc e occurs below the critical Reynolds number at which distur-

bances first begin to be amplified , implying that amplification can take

place in this low Reynolds number regime . As a result of this discre-

pancy , the major impetus of nonlinear stability studies in Poiseui lle
flows has been towards modifying the qualitative results of linear

stability theory and using the nonlinear terms to show that regions which
are stable to infintesimal linear waves are unstable to finite-amplitude
waves. Such a qualitative change in the stability properties of boundary
layers is not needed , and would disagree with experiment if-found.

Some initial numerical results which are based on single two—dimensional
disturbances in boundary l ayers are presented to demonstrate the types
of mean flow distortions which can be generated by finite -amplitude
disturbances. The curvatures of the velocity profiles have been used
as particularly sensitive indices of the cumulative effects of the inter-
action between the disturbance and the mean flow. In the presence of
finite-amplitude disturbances , the curvature near the wall decreases
while that farther from the wall increases , eventually leading to a
point of inflection . Comparisons of zero-pressure-gradient boundary
layers with favorable and unfavorable pressure gradient cases indicates
that significant distortion begins at l ower values of the disturbance
amplitude when the pressure gradient is favorable as compared to when
it is unfavorable ; however , at all times, substantial interaction occurs
while the disturbance is very small (typically u’v ’ less than iO~~ times
the free-stream velocity squared). The current results suggest that either
the velocity profile curvature or the ratio of the disturbance -generated
Reynold s stresses to the local shea r stress could ser ve as effec ti ve
practical indicators of transition. Final ly, we note that the use of
a transition indicator which is based on the distortion of the mean
profiles by the disturbances in the l ami nar boundary layer seems par-
ticularly attractive for applications such as advanced laminar flow

S

i
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vehicles where extrapolation of the current transition data base to

higher Reynolds numbers , throug h the use of pressure gradient , heating

and suction is required. The reduced degree of reliance on the empirical

information in the transition analysis should increase the reliability

of this extrapolation.

F

_ _ _  _ _  ~~~~~~.
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Section IV

FLUCTUATIONS IN A BOUNDARY LAYER INTRODU CED BY
TRAVELING-WAVE IRROTATIONAL FREESTREAN DISTU RBANCES
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IV-4 FLUCTUATIONS IN A BOUNDARY LAYER INTRODUCED BY
TRAVELING—WAVE IRROTATIONAL FREESTREAM DISTURBANCES *

Harold L. Rogler
Department of Mechanical and Aerospace Engineering

Case Western Reserve University; Cleveland , Ohio 44106

INTRODUCTION TO IRRdTATIONAL DISTURBANCES

If you wave your hand above your desk , the fluctuations which are

generated arise from the bound circulation associated with any l ift  produced
by your hand (which migh t be represented as a shee t of vorticity or a
potential vortex), from the thickness of your hand (which m ight be represented

as a distribution of sources and sinks) , and fr om the trailing wake of
vorticity shed behind your hand as you unsteadily wave and alter that l i f t

(which might be modeled as a vortex sheet of varying strength or a set of
free vortices). The disturbances introduced by the thickness and bound

circulation effects are everywhere irrotational, while those introduced by

the trailing vorticity are effectively irrotational at some distance away

from the patches or layers of vorticity.
Irrotational fluctuations are also generated by a rotor blade translating

pas t a stator blade in a jet engine, by wavy walls , or by the small amplitude
waves at the surface of the ocean. A fish swimming through rapids is

subjected to irrotational fluctuations as it swims through water which is:

(1) flowing around rocks, (2) influenced by standing vortices or eddies

behind those rocks, or (3) influenced by eddies which are being convected

downstream. Of course it is possible that the fish swim (or airplanes fly)

through a patch of vorticity , but we are not concerned in this study with the

special effects arising from rotational disturbances .

In all these cases, the disturbances are induced by some surface or body

in the flow, by some arrangement of sources, sinks, doublets , monopoles , etc.,

by interfaces be tween stra t ified f luids, by bound circulations , and by
patches , sheets , rings, or layers of vorticity . If a plate is inserted into

a flow with freestream vorticity fluctuations and if these vorticity

*Thig work was supported by the Air Force Office of Scientific Research under
Grants APOSR—74—2577A&B. The support and encouragement by Dr. E. Reshotko
are gratef ully acknowledged. The author thanks Dr. J. Paul for the use of
his streamline plotting program.
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fluctuations are sufficiently far away from the plate such that the vorticity
does not convect into or diffuse into the boundary layer, then as far as the

boundary layer is concerned, these disturbances are irrotational.

HOW FAST DO IRROTATIONAL DISTURBANCES PROPAGATE?

The phase speeds of irrotational fluctuations are intimately connected to

the propagation speed of the source. If that source is the traveling, wavy—

wall of a wind tunnel, then the fluctuation propagates at that speed also.

In turbomachinery, the relative motion between blades would be important as

well as the convection of vortex sheets downstream. If the source is a set
of low—intensity vortices being convected with the mean flow, then the

propagation speed is the local mean velocity at the vortex centers. If the

source is a vortex street downstream of a bluff body, then the nonlinear
interactions between the vortices cause the vortices to propagate at a speed

either slower or faster than the freestream, depending on the case considered .

It is possible that the disturbances propagate upstream as well as downstream,

or they can be standing waves and not propagate at all . The respons e in the

boundary layer ts very sensitive to the phase speed , at least for some wave—

numbers and Reynolds numbers.

INVISCID INTERACTION OF AN IRROTATIONAL DISTURBANCE WITh A SEMI-INFINITE PLATE
S 

If the frees tream disturbance has the normal velocity

(a) A ky ik(x—ct)v (x ,y, t;k,c) — v(k,c)e e (1)

with (real and positive) wavenumber k and phase speed c, and a semi—infinite
plate is inserted into the flow along the x—axis with leading edge at the
origin, then by conf ormal mapp ing the inviscid , irrotational solution for all

amplitudes can be found which satisfies impermeability along the plate . The

streamline pattern for this flowfield is shown in Figure 1. This pattern

reflects only the disturbance flow; the uniform mean flow from left to righ t

is not included . 
S

Two features are importan t here. First note that the fluctuations

vanish beneath the plate . As far as the boundary layer developing on the

bo ttom side of the plate is concerned , any influence of the irrotational
fluctuation generated above the plate of the form ~~~~~~~~~~~ very probably
arises near the leading edge. Far—downstream of the leading edge on the

S. - .  - -~~~
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= 1/10k, 1/k, 10/k

~W~~~
W5:

~~~~~~~~~~~~~~

Figure 1. Disturbance streamlines of all irrotational free—

S stream disturbance generated by some source far—

above the plate which propagates along and inter-
acts with a semi—infinite plate. The source migh t

be a vortex sheet or a wavy wall.

5 - - - - - - S  -
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bottom side, there is no fluctuation. At the leading edge , a singularity
arises with Infinite speeds. Secondly , note on the top side of the plate
that a pattern rapidly develops which subsequently propagates along without
further significant change . This solution is called the “far—downstream”

solution and develops within a wavelength of the leading edge. On the bottom

side of the plate, the analogous far—downstream solution is identically zero.

To distinguish between whether you have a far—downstream solution as on

the top—side or on the bottom-side , you must know which side of the plate the
source of the fluctuation lies . It is not adequate to merely know the

amplitude of a sinusoidal freestream disturbance along the x—axis. If

vorticity disturbances or wavy walls exist both above and below the plate,

then as far as the far—downstream solutions are concerned, you must sort out

the contributions arising from above and below the plate.

The singularity at the leading edge and the complications of disturbances

generated by sources on the opposite side introducing fluctuations near the

leading edge as discussed before can be avoided by modifying the freestream

disturbance. If the irrotational fluctuation consists of a combination of

growing and decaying waves (in the y—direction)

A ky -ky
v (a) = v(e —

2
e ) 

e ct) = ‘
~~ sinh(ky) e~~~~~~

Ct) (2)

as shown in Figure 2, then the “far—downstream” solution again appears except

now it is valid everywhere along the x—axis, even upstream.

While perhaps appearing at first as a restrictive case of irrotational

fluctuations, eqn. (2) is the far—downstream behavior of many disturbances of

scientific and engineering significance. It is the irrotatlonal freestream

disturbance which will be used to introduce fluctuations in the boundary layer.

FORMULATION FOR ThE RESPONSE IN A BOUNDARY LAYER TO IRROTATIONAL FLUCTUATIONS
If the velocities and pressure are separated into mean and disturbance

components in the Navier—Stokes and continuity equations for a 2—D , incom-

pressible flow, and the disturbance velocities and pressure are further

separated into the two parts

v’ — v~~~—v , ~~
‘ — ~~~~~~~~ and p ’ —

f L.... change to the freestream disturbance caused by the bounda ry
layer and no—slip

L~_.. freestream disturbance which exists in the absence of the plate
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= 1/10k , 1/k , 10/k

~1ji~~~~
t 

~~~~~~~(a) ik(x—ct)u - cosh(ky)e nondimensionalized against

v (a) = siflh (ky)e ik(X_ ct) the maximum longitudinal

velocity along the x—axis

• Figure 2. Disturbance streamlines of an irrotational free—

stream disturbance generated by sources both

above and below the plate. These two sources

are out of phase by 180° and a purely longi-
tudinal fluctuation is produced along the x—axis.
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the parallel—flow representation of the boundary layer is introduced, and the
results are linearized, then the following nonhomogeneous equation results

5 

+ U(y)}- — v72 }V 2v — ii (y)~~ — [U(y) _ i~]f- V2V (a) ~~~(~)
av

which is of form iv —

The left—hand side is (the partial—differential forms of) the Orr—Souunerfeld

operator acting on the normal velocity. This normal velocity represents the

change to the freestreamn disturbance. The right—hand side is a forcing

function which depends on the structure of the freestream disturbance
v~~~(x ,y,t) as well as the mean velocity profile, U and U .  This forcing is

generally non—zero inside the boundary layer, but vanishes outside. The

equation is subject to the impermeability and no—slip conditions (v”O or

and ~v’/~y40 or av/aya.av~~~/ay at y40) and the conditions that the

freestream disturbances are recovered far—away from the plate (v’+v~~~ or v-’O

and av ’/a y+av~~~ /~ y or av/9y4o as y-~co) . Other conditions necessary to yield

a well—posed problem will be handled by periodic conditions in x and t as
specified later.

If the freestream disturbances are irrotat ional , V 2v~~~_O , then the
forcing function simplifies to~~v~~~=— v~~~/ax. Thus the forcing depends

on the variation of mean vorticity in the boundary layer~~(y)/ay——U and the

wall value of the longitudinal freestream fluctuation. S

Seeking solutions of the form v(x,y,t)”~(y)exp Eik(x—ct)]where • is complex,
-then the mathematical system which results for the freestream disturbance of

eqn. (2) is
S 

{[ii(y) — c] (D 2 — k 2) — 1J (y) + ~~ (D” — 2 k 2D2 +k~’)}+(y) — —ii (y)s inh(ky)
5 

yy

0

subject to •~ ø, D + k  at y— O and +40, D$-~O as y+”.

where Did/dy , R&*
_U ,,~S* /u, and U(y) Is the mean velocity nondimensionalized

with respect to U ,. The dimensionless wavenumber is related to the dimensional

wavelength and displacement thickness by k.2ir6*/). The phase speed is also

S nondimensionalized against U,,,.

In general , a numerical solution must be obtained because the coefficients

U(y) and U~~(y) are variable and are available only as data, However , two

analytical solutions have been obtained for simple velocity profiles .
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EXPLICIT SOLUTION WHEN U—l EVERYWHERE

If the mean flow is uniforms, as would arise if the top surface of the
plate were composed of a belt which moved along at the freestream speed , then
the equation reduces to ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An explicitkR6~
solution for + can be found and v t {s inh(ky)_$(y)}eik~~~~

t) formed as

v’ =ftea/ rsinh(ky) +
e
_kY 

- 

etk
~~~~

t) for c~ l
L 1— (l + 1R

6*
(l—c) /k)

6* is a dummy parameter kept only so that this result can be compared with
solutions where a boundary layer is present . When c=l , a modified form of
this solution results. The streamlines plotted in Figure 3 show that the
no—slip condition is satisfied through the creation of a vortex near the

wall. The importance of viscosity is dictated by the combination of S

parameters R
ó*(l—c)/k=R~

(l_c)/2
~
rEsf

~
. Note the dependence on phase speed even

with this simple mean velocity profile. Hence disturbances near the plate

traveling at speeds near the freestream, c—l , are highly viscous and have
relatively thick viscous layers .

PARTLY ANALYTICAL, PARTLY NUMERICAL SOLUTION WHEN U—CONSTANT AND
U =ANOThER CONSTANTyy

If the mean boundary layer is modeled by

U(y) = U0 and Uyy (Y) — U2 for y ~ 6 (inside the layer)

and U — 1 and U~~ — 0 for y > 6 (exterior to the layer)

where U0 and U2 are constants, then another explicit solution of eqn. (4) is
possible in the form

— e.~a/ [( ) A O
jY) ei~~~~~t)}

j —l

iaR 6~ (U —c) iaR6~~(U — c) r 4iU 2 
~~~~~~ ½

where 
~ 

± a2 + 2 ± 2 L1 + aR6*(Uo
_c) 2J when c#U
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Effect of ,o- sh~ final s/,.om/ines

RE ~~.(/- .c~/ k = /000

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Above the thin viscous layer , the
flow is irrotational V~~,=0

~~~~~~~~~~~

/
/
) 

_ _~~~~~~~~~~~~~~~~~~~~~

d

V2V2iji 0 (above pattern only)

R= —/ 0

Disturbance streamline pattern, Final streamline pattern
j,, for the flow established by consisting of a superposition of the

the no—slip condition freestream disturbance and the f low—
field illustrated on the left.

Figure 3. Disturbance streamline patterns for the flow near the wall
when the mean velocity is uniform everywhere, U — 1, for

several values of the parameter R R 6~~(1—c) /k ~ R
~

(l_ c)/2w.
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where the four constants A~ and the two constants C1 and C 2 from the exterior
solution are evaluated numerically from a 6x6 matrix. The system holds great

promise for economically revealing many features.

NUMERICAL SOLUTIONS WITH A BLASIUS MEAN BOUNDARY LAYER

With U(y) and U (y) represented as data for a Blasius layer, eqn. (4)
has the complexities and numerical instabilities of the eigenvalue problem

for the stability of a boundary layer . Here , a numerical solution is
obtained by an expansion in Chebyshev polynomials

N-i
$(n)  = ~ a T (ri)

n~ 0

where T ( ~ ) is the mth Chebyshev polynomial , a is the (unknown) mth coefficient ,
E 

~~~~~~
— 1 is the transformed y—coordinate with the range —l < r~ < 1 representing-ye

O ~ y ~ y ,  and is the “edge” of the boundary layer . A matrix (often
45x46) is set up representing the expansions of the differential equation and

conditions . Solutions are obtained efficiently for u ’ , v ’ , —u ’v ’, —~i’V’ dU/dy ,
dissipation, vorticity, kinetic energy, and pressure. Streamlines, equi—

vorticity contours, and pressure isobars are also drawn.

TYPICAL NUMERICAL RESULTS
The streamline patterns for several phase speeds are shown in Figure 4 on S

the right—hand side. A better view of what ’s going on follows, however , if
only the alteration to the freestream disturbance caused by the boundary layer
and no—slip condition are plotted (the impermeability condition is satisfied

by the freestream disturbance itself). This alteration is plotted on the
left—hand side. For the case of c—0.35, a double pair of rotating vortices

are formed, but when c—O.95 the structure has changed to a single pair of
vortices. When the freestream disturbances convect at the freestream speed ,

c—i , the third row of streamlines result . Note the change in patterns when

the phase speed is increased from 0.95 to 1.05.

The amplitude of the longitudinal disturbance velocity is plotted in

Figure 5 for various phase speeds. Again note the sensitivity to phase speed

near c—i. When c~’l, the amplitudes inside the boundary layer are small. The

Reynolds stress is plotted in Figure 6 which shows that a fairly constant

stress is produced . This constant stress continues far into the freestream ,

• ~~•••~~~~~
•••• S••-~~ •~~~•-~ .__

~_~ - - •_ — -

‘-S
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phase speed 0.35

phase speed 0.95

phase speed 1.0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~

phase speed 1.05

l::

tcj .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The streamlines for the flowfield The superposition of the freestream
representing the alteration of disturbance of Fig. 2 and the f low—
the freestream disturbance by the field ill ustrated on the lef t yields
no—slip condition and the mean the final dis turbance flow field with
boundary layer . streamlines as shown above .

Figure 4. Disturbance streamlines with a Blasius mean boundary layer

for various phase speeds and for k0 .2 and R
6~~

l0O0.
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where presumably it vanishes across another viscous layer. The energy

production and dissipation are plotted in Figure 7. The production for this

set of parameters (c”0.35 , R6
—l000.O and k0.2) has a maximum at n~l.5,

while the dissipation is largest in the viscous region near the wall.
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Section V

STABILITY OF A HEATED WATER BOUNDARY LAYER

FOR NON-UNIFORM WALL TEMPERATURE DISTRIBUTIONS
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V-l STABILITY OF A HEATED WATER BOUNDARY LAYER

FOR NON-UNIFORM WALL TEMPERATURE DI STRIBUTION S

A. Strazisar and B. Reshotko

Department of Mechanical and Aerospace Engineering
Case Western Reserve University

Cleveland, Ohio

ABSTRACT

The effect of non—uniform wall temperature distributions on the

stability of a heated fiat plate laminar boundary layer in water is studied

experimentally. The experiment is performed in a closed circuit low

turbulence water tunnel with free stream turbulence intensities of

0.1—0.2%. Temperature—compensated hot film anemometry is used to measure S

the mean flow field as well as the spatial growth characteristics of

sinusoidal velocity disturbances introduced into the boundary layer using

a vibrating ribbon.

Two types of non—uniform wall temperature distributions are studied:

step changes in wall temperature of the form T—T 0 for x < x ,

T -T — ~T for x > x ; and power law wall temperature distributions of
V —

the form T (x) — T = Ax11. In order to isolate the effects of the para—
V

meters n and x on the boundary layer stability, the local wall temper-

ature at a reference location, T (x ) — T , is held constant as n andw ref

x are varied . In the present work X
f 

— 5.5 inches , which is the center

of the region in which stability characteristics are measured. The non—

dimensional location of a step chenge in wall temperature is specified by

-
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the parameter S = x /xa ref
A similarity solution of the boundary layer momentum and energy

equations for power law wail temperature distributions, valid for fluid

property variations, is obtained using a modified Howarth—Dorodnitsyn

transformation. The resulting ordinary differential equations are inte-

grated numerically. An approximate solution of the boundary layer

equations for step changes in wall temperature, valid f or constant fluid

properties, is obtained by assuming that the thermal boundary layer

thickness is small compared to the velocity boundary layer thickness. A

closed form solution of the resulting equations is obtained in terms of

incomplete gamma functions.

Mean temperature profiles measured with the hot film anemometer

operating as a resistance thermometer are compared to predicted profiles

for various values of n and S in Figures 1 and 2, where H = (T—T,,,)/ (T
~
_T)

and r~ = y/U5/vx. The case S = 0 corresponds to uniform wall heating

beginning at the leading edge, while S — 1 corresponds to a step change

in temperature at X
ref 

= 5.5 inches. The case n = - .5 corresponds to

input of a finite amount of heat at the leading edge followed by an

adiabatic wall. For free stream velocity distributions of the form

U
e 

— C
m
, this case occurs whenever n — (m+l)/2. For values of

n < — (n*l)/2 the direction of heat transfer changes sign, as shown in

Figure 1 for n — —0.6.

Both analytic and experimental results indicate that the mean

velocity profile is virtually independent of variations in n and S over

the range of wall temperatures used in the present work. For values
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of n in the range -0.5 < n < 1.0, the wall shear stress and profile form

factor vary by less than 1.5% at a fixed wall temperature level.

Growth rate characteristics of ribbon—generated disturbances in

the boundary layer are determined in the following manner. The Reynolds

number R15~ U 6*/v is first determined using the displacement thickness,

15*, of the mean velocity profile measured at X f• At a fixed Reynolds

number and ribbon frequency thc~ disturbance amplitude is then measured

at five stations between x — 5 in. and x = 6 in. The amplitude recorded

at each station is the peak amplitude, defined as A(x) = [u’(rt x)/U] , S

found by searching through the boundary layer in the y—direction. The

idA 15*
spatial disturbance growth rate, —~~~ — (~~ ~

—) j— , is then calculated
.4. x ref 6*

using the slope of a polynomial curve fit of the A(x) data. By repeating

the above process for several different frequencies the disturbance

growth rate vs. frequency characteristics are determined for a fixed

Reynolds number and temperature distribution.

Disturbance growth rate characteristics for uniform wall temper-

ature distributions, n = 0, at R6~ 
— 800 are shown in Figure 3. The

solid lines are smooth curves drawn through the measured points, ci is

defined as ci — 2irf’v/U
2
, and f is the ribbon frequency. These results

provide a measure of the effectiveness of uniform wall heating in the

reduction of disturbance growth rates at a fixed Reynolds number.

Stability characteristics for varying values of n, with R
6~ 

— 800,

• T(X f
) — T — 5°F are shown in Figure 4. Experimental data points are

not shown for the sake of clarity, while unheated results have been

included as a reference. For n < 0 the maximum disturbance growth rates

f~5

—-

~

----• S - •~ SSSS ~~~5~~~~~~~~~~ -
~~
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and the band of frequencies which receive amplification are both reduced

relative to the uniform wall temperature case. For n — 1 the maximum

disturbance growth rate is greater than that for n = 0, and the band of

amplified frequencies has increased relative to the uniform wall temper-

ature case. The results shown here are typical of those obtained at

T (x ) — T — 3°F and 8°F as well. The behavior of the maximum growth
w ref

rate as a function of n and T (x ) — T Is shown in Figure 5.w ref
The effect of varying S at R

15~ 
= 800, with T(X ef) 

— T = 3°F ,

is shown in Figure 6. The results shown here are similar to those obtained

at T (x ) — T = 5°F as well. The maximum disturbance growth ratew ref

displays a minimum between S = 0 and S = 1 for each temperature level,

as shown in Figure 7. This minimum occurs near the minimum critical

Reynolds number of the unheated boundary layer. The measured value of

(R
6~
) is 400, which corresponds to S = .25, while the predicted

A T O
parallel—flow value of (R15~

) = 520 corresponds to S = .42.

~T—0
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Section V

TRANSITION IN AN AXISYMMETRIC BOUNDARY LAYER
WITH WALL HEATING
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TRAN SlTIO:~ IN AN AXISThMETRIC ROUI- DARY LAYER

WITH WALL HEATING

Rece n t numer ical ca lcul ations of bounda ry 1ayei.~ s tabi l i ty h~ivc

suggested the poss ib i l i ty  of obtaining t rans i t ion  at very high Reynolds

numbers In water by using wall h ea t ing .  The f low—tube  experiment ~s

intended to check these predictions , and to determine the f eas ib i l i ty

of using heat combined with favorable pressure gradient to delay

t ransition on submerged bodies.

The f low tube is basically an inside—out analog of the boundary

layer over a submerged bod y of circular cross—section moving through

the water.  A f ree—stream flow with very low dis turbance levels is

provided through a 24—inch diameter , 12—foot long se t t l ing  chamber

(scc f igure  1). This flow then passes through a 34.5 to 1 smooth

contraction into a 4—inch diameter circular tube. The boundary layer

in the 4—inch tube remains thin relative to the tube diameter throughout

the length of the tube (6* < 0.05 D).

Heat is applied to the inside wall of the flow tube by means of

electric strip heaters wrapped around the outside. These heaters are

servo—controlled using thermocouples near the Inside wall of the tube.

Thus the inside wall temperature is maintained at pre—selected values.

The length of the tube is divided into 20 sections whose wall temperatures

are controlled independently . Thermocouples are also located on the

outside wall of the tube at about thirty locations along its length.

The temperature difference between the inside and outside wall at a

given location provides a measurement of the heat flux into the boundary

layer. Since this heat flux will increase by a factor of about ten at

the region of transition, it is easy to locate transition with temperature
measurement. There is no instrumentation penetrating the inside wall

of the tube which could trip the boundary layer. The wall roughness is

less than four micro—inches and the waviness is less than one mil per inch.
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Th ree d i f f e ren t  flow tube test sections are being used . The f i r s t

is 20 feet  in length  and u n i f o r m  in diameter .  This tube will simulate

a nearly zero pressure gradient boundary layer .  (Displacement e f f e c t

y ields a very weak favorable gradient.) At the niaximum flow velocity of

90 feet per second , the length Reynolds number of this tube is 125

million. The second and third flow tube will be of non—uniform diameter

to simu late two axisytmnetric shapes of practical  interest. The longest

of these tubes will be 44 feet  in length.

The experiment is located at the Hydro—Mechanics Laboratory of

Colorado State University.  This site was chosen over several other

possibilities for the following reasons . Although the water is not

recirculated , the run t ime is ef fec t ive ly  unlimited . The lab draws

its water directly from a large reservoir through a 24—inch diameter

pipe. The total  pressure at the entrance of the settling chamber is

about ninety psig . Thus even at a test section velocity of 90 feet per

second , the test section pr essur e is about 35 psig and the possibility

of cavitation can be ignored. The longer run time and higher total

pressure are the chief advantages of this faci l i ty relative to others.

The f i rs t  series of measurements in the experiment was a careful

documentation of the flow in the settling chamber and test section

without wall heating . The test section in this case was a 4—foot  straight

tube with several types of instrumentation. A pitot—rake was located near

the downstream end to check the uniformity of the free—stream mean

velocity. A cylindrical hot film sensor was used to measure freestream

turbulence intensity and to determine the intermittency in the boundary

layer. This probe was used to measure the transition Reynolds number

in the absence of heat, which will be discussed below. Two flush—mount

wall pressure transducers were also used to locate transition in the
tube. An accelerometer was mounted on the outside wall to measure the

vibration spectrum.

A hot film probe was also used to survey the flow in the settling
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chamber one foot upstream of the contract ion . Mean velocity prof i l -es ,

turbulence levels , and turbulence spectra were measured for  various

configurat ions of turbulence mana gcment devices. The devices used

include 1/8 inch cell aluminum honeycomb , 10 pores per inch porous foam ,

and wire screen of 34 and 60 mesh per inch . For each turbulence

management configuration , the set t l ing chamber flow was documented at

several test section velocities. In addition , the unheated t ransi t ion

Reynolds trimber was measured in the flow tube at 1 flow velocity .  Since

this t r ans i t i on  Reynolds number has been measured in other faci l i t ies,
it is a good indication of the quali ty of the f-reestream flow. A plot

of unheated t ransi t ion Reynolds number versus settling chamber conf i gu-

ration is shown in figure 2. The “best” configurations are seen to

produce transition at Reynolds numbers close to 5 million. This is very

close to the highest value achieved in the air flow tube facility of

C. S. Wells.

Hot film surveys show that the boundary layer in the settling

chamber becomes turbulent at test section velocities above 30 feet

per second . Since the boundary layer at the downstream end of the

contraction must be thin and disturbance—free , a boundary layer suction

section was installed between the settling chamber and the contraction.

This section uses a 4—inch length of porous wall to remove the entire

turbulent boundary layer. Measurements have shown that even at the

maximum test section velocity , the boundary layer at the entrance of the

contraction can be made laminar with the appropriate amount of suction.

The turbulence levels in the contracUon entrance are considerably

lower than the original goal of about 1 per cent. At a test section

velocity of 45 feet per second , a turbulence level in the settling chamber

of 0.2 per cent is typical for the best configurations. This configuration

makes use of 1—inch of porous foam followed by two sections of honeycomb

and then three screens. Preliminary results using a 3—inch thickness of

porous foam show even lower turbulence levels.
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S 

Some tests  with wall heating were made on the 4—foot flow tube,

The results of these were not strongly positive — only a small increase

In transition Reynolds number was seen. However, the heating and

temperature  measuring system on the tube were very crude. Heat was not

applied far enough upstream in the tube and the suction section was not

yet available. At the date of this writing, the 20—foot straight flow

tube is being installed . Early results with this tube may be available

at the time of this meeting.

~ •5
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Section V

PRESSURE FLUCTUATIONS IN THE TRANSITION REGIONS
OF FOREBODIES OF REVOLUTION
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V—3 Extended Abstract of Paper for

“LOW- SPEF~D BOUNDARY-LAYER TRANSITION WORKSHOP: II”

Santa Monica , Ca l i fo rn i a

13-15 September 1976

PRESSURE FLUCTUATIONS IN THE TItANSITION REGIONS
OF FOREBOD IE S OF REVOLUTION

by

Thomas T. Huarig

David W. Taylor Naval Ship Research and Development Center

Bethesda , Mary land

The transition resulting from the growth of Tolln ein-Schlichting
disturbances na tura l ly present in a laminar boundary layer is defined
as natural .  Natural  t ransi t ion should be distinguished from transition
tri ggered by laminar  separation . If laminar separation occurs , eit her
as a result  of a severe adverse pressure gradient due to bod y shape or
by the use of an ar t i f ic ia l  turhu l~ ncc stimulator , t ransi t ion w i l l
usua l ly  occur at a very short distance downstream of the flow reattach-
ment ,

In the present investi gation , the amplitude of the wall-pr essure
f luc tua t ions  during natural t ransi t ion and fol lowing laminar separatinn
due both to adverse pressure gradient and to two-dimensional  t r ip wires
was measured by microp hones located in the t rans i t ion  reg ions; these
measurements were extended downstream into the ful ly-established
turbulent  boundary layer.  The f luc tua t ing  pressure on the model sur-
face was sensed through an 0 .794-mm-diameter p inhole which led to a
small cavi ty enclosed by the protective cap and the microp hone diap hragm.
The microphone system used had sa t i s fac tory  response characteris t ics
betwcen 10 Hz and 10 KHz .

The wind tunnel in the Anechoic Flow Fac i l i ty  of the Center has a
2 .438 meters x 2.438 meters test section . The free-strean i-ms turbu-
lence levels  in the test section. w i t h  a model in p lace were found to be
0.075, 0.090, 0.100, and 0.12-0.15 percent for U0 = 24.4, 30.5, 30.8
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and 45.7 meters/sec , r e spec t ive ly .  By int egrating the measured noise
spectrum leve ls  in the  test section frou 0 to 10 , 000 Hz to background
acoust ic  noise at 30 .5 meters/ sec  was found to be 93 dB:re 0.0002
dyn/c m2, which  correspond s to an equival en t m s  turbulence level of
0 .007 percent .

The model , which  consisted of the forebody , together wi th  a
paral le l  middle  body and a s t reamlined a f te rbody , was supported by a
single s t reamlined strut located roughly at the middle  of the model .
Three small  guide s t ru ts  were used at the ta i l  of the afterbody to
increase the ri g i d i t y  of the model .

Two series of forebodies of revolut ion were selected for this  inves-
tigation . One of the series , desi gnated ‘ For ebody T ,” had a natural
transition reg ion , and the other series , designa ted “Forebody S,” had
laminar separation which triggered transition . Two-dimensional rough-
nesses (trip wires) , located at various positions upstream of natura l
t rans i t ion and laminar separat ion, were a lso investigated. Figure 1
shows the geometries of the forehodies used and the computed pressure
coe f f i c i en t .  Fi gure 2 shows typical histogram of microphone output .

The growth of Tol lmein-Schlich t ing  disturbances in boundary layers
is approximat ed by the spat ia l  s tabi l i ty  charts for the Falkner-Skan
boundary ]aycr profile prepared by Wazzan , Okamura , and Smith. Smith ’s
spatial ampl i f ica t ion  ratio was chosen as a simple yardstick to corre-
late the i n s t ab i l i t y  charac-teristics of the boundary layer wi th  various
measured stages of transition. Whereas the amplification ratio is calcu-
lated fror~ linear stability theory , the latter stage of transition is a
nonlinear process and is three-dimension~d in nature. The calculated
spatial amplification ratios A(x) in the natural transition reg ions of
Forebodies T-3 , T-6 and T-8 correlated with  the flow regimes measured
by f lush-mounted ho t - f i lms arc shown in Fi gures 8 , 10 and 11 in the
paper by Power *. The measured flow regimes of 1-8 do not agree w i t h
calculated amplification ratios. The t rans i t ion  characterist ics mea-
sured in the present wind tunnel do agree well with towing tank results.

Figure 4 shows the correlation between the measured wal l -pressure
f luc tua t ions  and calculated Smith spatial amplification ratios A(x) in
the na tura l  t r ans i t ion  regions of Forebodies T-3 and T-6. The pressure
fluctuations are small for A < e9 to the posi t ion of e13 where the f low
has j u s t  beco me fully turbulent according to the outputs of h o t - f i l m
probes . The measured wal l -pressure  f l u c t u a t i o n s  approach those of a
fu l l y - e s t ab l i shed  turbu l ent boundary layer at approximately e18 . How-
ever , no large wall-pressure fluctuations in the transition regions of
Forebodies T-8 was measured . S

*
Power , ~T . 1., “A Comparison Betwe en Measured ~md Computed Locations
of T r a n s i t i o n  on N i n e  Forchodics of R e v o l u t i o n ,” paper presented at
Rand’ s Workshop I I , 1976

7- _5_ ~_~_SS ~~~~5~~~~~ 5 — - - — - -
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The chardctcri cii c lengths 1~ and A , ~h ich is the d e a d — a i r  bubb le
leng th , are ~.ho~•.n in Figure 5. The data of Gaster and Arakeri for A
are also in~ ludeJ in Fi gure 5. As showi ; in F igure  6 , enormous pressure
fluctuations were ucasured in the  re g iovL~ of flow reattachmcnt to). lowing
lam inar sep:trat io~ on Forebodies S—2 , S-i , and S..7. If the distance is
nicasured from the sop ra t ion  point , S— S.~,, and is nond iucnsiorializcd by
a charaetcris~ ic l eng th  ~~, the distance between the point of maximu;:~
wall-pressur~~f1uctuation and the separation point , then the measured
va lue  of 41p ’ ~~ (pU 0 2 /2)  possess a simi lar  form with respect to the
quantity (S—S 5)R. The velocity fluctuations in the shear layer right
above the cnd of the dead-air region were found by Caster to be ex t remely
hi gh (fii~’2 /U0 is about 0.16). Conseq uen t ly ,  the pressure fluctuations
are exp ected to be ex trem ely hig h there, al thoug h direct measuremen ts
have not been made.

The turbulent stiinulators used were single circular wires of four
different diameters : -0.05, 0.127, 0.254 , and 0.508 mm — locat ed at
different axial position s on the Forebodies T-3 and S-2. Figure 7 shows
the loca t ions of incep tion of in termi tt ent ~dis turbanccs measured by hot—
f i lm probes and maxi mum wall  pressure f luc tua tions , respectively ~/d
and ~/d , for four wire s of large R K , and the apparent amplification
factor in terms of [A1nAJ K for wires having RK in the range 25 < RK < 100.
Here , 

~K = u~K/v is the wire Reynolds number based or~ the velocity u~
at the tip of roughness height K. The values of [~ lnA ] K were ob tained
by correlating the measured wall-pressure fluctuations with and without
trip wires. Preston ’s minimum R j~ of 400 to 600 is a satisfactory
criterion to determine the range of t Lp wire R K ’s which are effective
in causing rap id transition . No trace of hi gh pressure f luctuat ions
due to the t r i p wire was measured a f te r  200 wire diameter downstream of
the wire . The Smith and Clu tter criterion of a maximum value of R k of 25
so as not to prematurel y trip t ransi t ion agrees sat isfactori ly with the
present results. For the RK range 25 < RK < 100 , transition will move
U~ Stream.

Cavitation inception of naval vehicles will be controlled by the
unsteady pressure fluctuations in regions of natural transition or laminar
separa tion , superimposed upon the potential-flow static pressure. The
location and magnitude of the high pressure fluctuations in the transition
regions have profound implications relative to model/full-scale cavitation-
inception scaling, boundary-layer self-noise scaling , and other naval
applications related to transition phenomenon .

AC KNOW U:DC E~IENTS

This work was funded by the David W. Taylor Naval Ship Research and
Developmen t Center (DTNSPJ)C) under its Independent Research Program,
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Figure i— a Surface Profiles and Pressure Coefficients of
Three Forebod ies w ith Natura l Transition
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Section V

A COMPARISON BETWEEN MEASURED AND COMPUTED LOCATIONS OF TRANSITION

ON NINE FOREBODIES OF REVOLUTION
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Extended Abstract of Paper for

V—4 ‘tLOW-SPEED BOUNDARY-LAYER TRANSITION WORKSHOP: II”

Santa Monica , California

Sept 13-15 , 1976

A COMPARISON BETWEEN MEASURE D AND COMPUTED LOCATION S OF TRANSITION
ON NINE FOREBODIES OF REVOLUTION

by
John L. Power

Drag and transition data are given for nine submerged axisyinmetric
bodies . The bodies have vastly different forebody geometries ranging
from very fine to very blunt profiles and include two flat-faced forebodies.
The experiments were performed in a towing basin at speeds between 0.5 and
5.1 rn/ s and at a water depth of 2.7 metres. The experimental arrangement
is shown in Figure 1. The models were approximately 7 metres long ~nd had amaximum diameter of 0 .62 metres. Constant volume was maintained by varing
the length of the parallel middle body.

The geometries of the forebodies were altered by changing two parameters ,
the length/maximum diameter ratio and the prismatic coefficient . The
profiles of four of the nine forebodies are shown in Figure 2. These
forebodies have length-diameter ratios of 0.5, 1.00, 1.82 and 3.00 with a
constant prismatic coefficient of 0.667. The computed pressure distributions
on these forebodies are shown in Figure 3.

The contours of a second set of five forebodies are shown in Figure 4.
These shapes are much blunter than those shown in Figure 2 and include two
flat-faced bows. The increased bluntness was obtained by increasing the
value of the prismatic coefficient. The computed pressure distributions
on these bodies are shown in Figure 5.

The extents of the laminar, transitional and turbulent flow regimes
were determined by qualitative analysis of the signals from several constant-
temperature hot films flush mounted on each forebody. Selection of the hot
film locations was assisted by using transition calculations, computer
pressure distributions and the Curle-Skan laminar separation criterion.
The active elements of the hot films were approximately 1.6 millimeters

• long. They were mounted on the end of small cylinders which were glued
into pre-drilled holes in the models .

As shown in Figure 6 analysis of the hot film probe outputs revealed
four types of boundary layer flow : (1) laminar flow , where the hot-film

S signals were of steady amplitude ; (2) a smooth wave-like disturbance;
(3) an intermittent turbulent bursting flow; and (4) a fully-turbulent
flow of random nature.
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Figure 7 gives a summary of the forebody properties and locations of
transition or laminar separation for the nine models. The locations given
for laminar separation are those computed using the Curle-Skan modified
Thwaites criterion. The transition locations were determined from the
analysis of the hot film records.

Laminar separation was predicted for five of the nine models. Hot
film probes were placed immediately before and after these predicted
locations. In all cases, the probe before the separation location predicted
laminar flow (Type 1) and the probe after the separation location indicated
turbulent flow (Type 4). It was concluded that laminar-separation initiated
turbulence and the location of the laminar separation is closely predicted
by the modified Thwaites criterion.

The flow regimes for the four forebodies on which laminar separation
did not occur are given in Figures 8, 9, 10, and 11. The experimental data
are compared with predicted spatial amplification ratios of disturbances as
calculated by the Smith-Garnberoni method. In.Figures 8 and three
predictions corresponding to spatial amplification ratios of e~, e

11, and
are compared with the measured values from models 4620-3 and 4. For

both models, the inception of intermittent turbulent bursting of transition
and the e11 curves agree quite well. The e9 curves appear to coincide with
the measured inception of Typ e 2 wave like disturbances. The e13 curves
correlate very well with the measured inception of fully-turbulent flows.

In Figure 10 five predictions corresponding to spatial amplification
ratios of e5, e7, e9, e~

1- , and e’3 are compared with the measured results
from model 4620-6. For this model the e9 curve is located close to the
inception of intermittent turbulent bursting of transition while the e11
curve is located well into the turbulent bursting region. For the lower
Reynolds numbers, the e’3 curve correlates with locations near the end of
the turbulent-bursting region and at the higher Reynolds numbers , this curve
moves well into the fully turbulent (type 4) region. The e5 curve correlates
well with the inception of type 2 wave like disturbances.

In Figure 11, prçdictions corresponding to spatial amplification ratios
of e3, e5, e7, e9, e1

~~, and e13 are compared with measured results from model
4620-8 (a flat-faced model). The correlation between these predictions and
the measured results is radically different from the correlations obtained
with the three models previously discussed. Here the e3 curve correlates
with the inception of wave-like disturbances. The e5 curve is located at
the end of the wave-like disturbance region and near the start of the
turbulent bursting region. The start of fully turbulent flow occurs
between the e5 and e7 curves. The e7 and all higher exponent curves lie
well within the fully turbulent region.

Also shown in Figure 11 are transition data obtained by T. Huang1
in a low-turbulence wind tunnel using Model 4620-8. The wind tunnel data
are in substantial agreement with the towing tank data. Huang also measured

S4•
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the transition flow regimes on Models 4620-3 and 8. These data are not
shown but similar agreement between towing tank and wind tunnel results

S 
were found for these models.

Figure 12 gives the results obtained from the drag measurements. For
each model, the computed residual drag coefficients and EHP ratios are given.
Model 4620-3 and 6 show the lowest drags and Model 4620—7 shows the
highest drag. There is a difference of approximately 4 percent in EHP
required for these two extremes.

Ref. 1: Huang, T.T., “Pressure Fluctuations in the Transition Regions of
Forebodies of Revolution.” Low-Speed Boundary-Layer Transition Workshop: II,
Rand Corp., Santa Monica, California (Sept . 1976) .
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Figure 7

Forebody Properties and Location of Transition
or Laminar Separation

Location of Transition
Model L

E/D i 
CPE or Laminar Separation

1 0.500 0.667 L. S., x&/D = 0.472

2 1.000 0.667 L. S. x
~
/D = 0.894

3 1.820 0.667 Trans., 1.47< x
2
/D<l .60 S

4 3.000 0.667 Trans., 1.07< x~
/Dc3.3O

1.000 0.850 L. S., x&
/D = 0.371

6 1.820 0.850 Trans., 0.57< x
~
/D<1 .04

7 0.500 0.850 L. S., x&
/D = 0.184

8* 1.216 0.823 Trnas., 0.07< xL
/D<O.70

9* 1.000 0.933 L. S., x
~
/D = 0.202

D — 0.624 m, Volume/D3 6.786

- ~node1 maximum diameter

- location of transition or laminar separation

* flat faced model

- - - -  - .  - - - S - -
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Figure 12

Values of Residual Resistance Coefficient

I _ _  
C x 1 03

lIodel LE /Li CPE (107CRLc2x10’) 
1
~~

’Z4IN

1 0.500 0.667 0.75 0.25 1.024

2 1.000 0.667 1.50 0.24 1.024

3 1.820 0.667 2.73 0.20 1.000

4 3.000 0.667 450 0.20 1.016

5 1.000 0.850 1.18 0.23 1.016

6 1.820 0.850 2.14 0.20 1.000

7 0.500 0.850 0.59 0.28 1.039

8 1.216 0.823 1.48 0.21 1.008

9 1.000 0.933 1.07 0.26 1.031

I
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Section VI

THE COMBINED EFFECTS OF PRESSURE GRADIENT AND HEATING

ON BOUNDARY-LAYER STABILITY AND TRANSITION

__________________________________
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vI—l THE CO~1BTNED EFFECTS C F PRESSURE GRADIENT AND h EATIN G

ON BOUNDARY—LAYER STABILITY AND TRANSITIONt

*by A. R. Wazzan and Carl Gazicy, Jr.

The Rand Corporation
Santa Monica, California

itt is well known that major parameters affecting transition from

laminar to turbulent flow include pressure gradient and heat transfer .

It is also commonly accepted that some insight into the effect of these

parameters on transition can be obtained , at least in the case of boundary

layer flows , from a study of the effect of these parameters on the stabil-
ity of boundary layers to small disturbances (Tollinien—Schlichting waves).

Previous calculations 0) on the effect of heat transfer on the stability
characteristics, and in particular the critical Reynolds number R rjt~ 

of

laminar water boundary layers show that surface heating stabilizes the

flow whereas cooling destabilizes it. In flat plate flow , e.g., with

T = 60°F, Rcrit increases by about thirty fold for a wall temperature uf

~ 135°F. In stagnation flow (Hartree 8 = 1.0) complete stabilization is

obtained with increasing T
~ 
whereas In flat—plate flow (8 = 0) and separating

boundary layers (8 —0.1988), R rjt exhibits a maximum with increasing

surface temperature. These results show that heating has a strong effect

on stability and that this stabilizing (destabilizing) effect is strongly

dependent on the Interaction between the pressure gradient and the surface

temperature distribution . To ascertain the nature and extent ~f this

interac tion, further stability calculations , at other values of Hartree B,
are desirable. In addition , such detailed calculations would ‘ e useful
In assessing the effect of heating on the stability and transiti~on over
bodies of practical interest (e.g., bodies of revolution where the local
pressure gradient and boundary layer can be approximated by an appropriate

wedge flow). For these reasons, we computed the spatial stability (R
criti

spatial amplification rates, etc.) for the following two—dimensional

wedge flows: B — —0.15, —0.10, — .05, 0, 0.10, 0.20, 0.30, and 0.40 (at

T — T 0, 5, 20 , and 30°F) fcr T — 67°F.

*Univcrsity of California , Los Angeles; Consultant, the Rand Corporation.

~P.
.
~per presented at Lhc Low—Speed Boundary—Layer Transition Workshop H,

The Rand Corporation , Santa Monica, Setptembcr 13—15,1976.
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The variation of the following boundary—layer characteristics ,

O*/x/i~T, O/x/~~~, Cf
/2/~~~, and Nu!i~

c
~ 

Pr
~
”3 with (T — T )

are shown in Fig. 1. R6~ 
with (T

W 
— T

e
) is shown In Fig. 2. The

effect of surface heating~~n
t
boundary—1ayer stability is die primarily to

the variation of viscosity with temperature. The results are thus depend-

ent no’ only on the temperature difference (T — Te) but also on the

temperature level, Te• 
This is evident in Fig. 2 where previous results

for T
e 

= 60°F are shown in comparison with the present results for Te 
=

67°F. Even this relatively slight change in ambient temperature results

in an appreciable difference in the rate of change of viscosity with

temperature, and consequently on the predicted stability.

Rayleigh theorems f or inviscid instability state that for a boundary—

layer flow, the necessary and sufficient condition for amplified and

neutral. inviscid instability is that U”(y) must vanish somewhere in the

boundary layer , i.e., the mean velocity profile must be inflected . In

addition , some correlation appears to exist between R it 
and the location

of the inflexion point.~
2
~ In fact, in adiabatic flows, T T , R

w crit
decreases as the location of the inflexion point moves away from the wall.

That is, in adiabatic flows, R it 
decreases as B becomes more negative.

In flows with favorable pressure gradient (8 ~ 0) where the profiles are

not inf lected , the boundary—layer characteristic of great importance to

its stability characteristics is U”(y) and to a lesser extent

In adiabatic flows it is known that for 8 ~ 0, where U” (0) ~ 0, R it
for B < 0 is smaller than R

it 
for B > 0. In fact, when a U”(y) distribu-

tion Ia the result of pressure gradient effects only (adiabatic flows)

a strong correlation exists between R rjt and 8 or U”(y) or simply U”(O)

or the shape parameter -H.~
2’3~ R

~~jt 
exhibits a simple va~riation with

or with H; R
it 

increases as H decreases (Fig. 3) or as U”(O)

decr eases and/or becomes increas ingly more negative. This dependence on

U” or H, in fact, is to be expected . An inspection of the Orr—Sorimerfeld

equation shows the boundary—layer characteristics that directly influence
the cigen valycs , and hence R j~

, are U”(y) and U(y) with U”(y) being
the dominant term. Therefore, It may be assumed tha t the heating of water

boundary layers , wh ich produces variation in H similar to those produced
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ISOTHERMAL WEDGE FLOWS
WAZZA l, OKAMURA , AND SMITH (1968)

o FLAT PLATE W ITH SUCTION AND BLOW ING
TSOU AND SPARROW (1970)
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Fig.3—Criticol Reynolds number as a function of the boundary—layer shape
parameter , isothermal wedge flow s and flat plate w ith suction and blowing 
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through the e f f e c t  o~ pressure gradient alone , leads to In creasee
stabil i ty and par t icular ly to increasing critical Reynolds number.

This assumption , however , is found to be only partially true, Figs. 4

and 5. These figures show that with initial heating H decreases and

R increases in agreement with the trend observed in Fig. 3. How-
crit

ever , Figs . 4 and 5 show that although H decreases monot onica iLy with

increasing surface temperature , R ,5* exhibits a maxtmuin (at 1~.ast
cr it 

-for flows with  B < 1.0). The difference in the variation o~ cr1 t
with H, when produced through the effect of pressure gradient alone

(adiabatic flows) or through the combined e f fec t s  of pressur e gradient

and surface heating, can be qualitatively understood through an examina-

tion of the Orr—Sommerfeld equation.

In the adiabatic case, only U” and U appear in the Orr—Soinmerfeld

equation and hence the monotonie variation of R6~ with U” or H. In
crit

the nonadiabatic case, the small disturbance equation is a modified Orr—

Sommerfeld equation that contains not only U” and U but also p, ii ’ , and

p”. This alters the nature of the problem in two ways. In the adiabatic

case the pressure gradient affects R6~ mainly through the mean veloc—
crit

ity or the term U” (which can be represented by some function of H),

whereas in the nonadiabatic case heating affects R6* not only through
crit

the mean velocity or the U” term (which can still be represented by some

function of H) but also through the terms ~~, ii’ , and i” that appear in

the new Orr—Sommerfeld equation. Second, the nature of the eigen function

$ (and consequently all eigen values and properties depending on the eigen
values such as R ) is different in the two cases. In the adiabaticcrit
case, the differential equation for 4) (the Orr—Soinmerfeld equation) in—
cludes onl y the function 4) and even the derivatives 4)” and 4)”, whereas

in the nonadiabatic case, the differential equation for 4) (the iuodified
0r~—Sommerfeld equation) includes not only 4) and the even derivatives 4)”
and 4)” but also the odd derivatives 4)’ and 4)”. Therefore , in the case
of hea ting, although U” or H still characterize the boundary layer, they
do not present a complete relationship between the mean flow and the

eigen function 4), and hence R6* . Physically, this may be interpretedcr1 t
as follows: with heating, initially I! decreases rapidly (indicating a

decrease in momentum loss) (Fig. 6) and R6* 1 
increases. However, with 

—--_________ -~~~~- - - ------ --_ _ _
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_~~~_ 
T~, T~,°F

A -0.15 0,5,20,30
- . 0 -0.10 0,5,20,30

z -0.05 0, 5.20, 30
0 0 0, 5, 20, 30
v 0.10 0.5.20.30

10~ - * 0.20 0,5,20,30,50,80, 110
Re 8, ~ 0.40 0,5,20,30,50,80,110

tnt
— ISOTHERMAL WEDGE F LOW S

WA ZZAN, OKAMURA, AND SMITH (1968)

I I I I I I I I I I I I
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

H.j-

Flg.4— Critical Reynolds number for heated wedge flows in water
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---ISOTHERMAL \'lEDGE fLOWS 
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Fig. 5- Previous results for heated wedge flows in water 
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Fig. 6—Vor ation of the boundary—layer shape parameter H with
surface tempera ture for three wedge flows, T e = 600 F
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still increased heating, H continuec ~o decrease but  at a much slower

rate (Fig. 6). In the meantime, ~i, ii ’ , and 1f’ continue to vary appre-

ciably with increasing T
~
. In fact ~i, which has a destabilizing effect ,~

4
~

continues to decrease monoronically with heating whereas p ’and p ”,

and in part icular ~i ’ (O) and ~i ”( O ) ,  which have a stabilizing e f f e c t ,~~
4
~

reverse their trend in variation with temperature (change from increasing

with T
~ 

to decreasing with T) near the temperature where R i
~ 

exhibits

a maximum for wedge flows with f~ < 1.0. Therefore, for high heating

rates the variat ion of H with T becomes negligible and the variation

of p, p ’, i~
” with T dominate the effect of heating on R

it
. Therefore,

at high heating rates it is expected that R6~ will exhibit a maximum
crit -

with Tw
In the case of B = 1.0, the maximum in Re with T is not ob-

crit w
served because the unstable zone (region contained within the neutral

curve) is rather limited , and in the initial stages of heating when H

is fast decreasing with T the unstable zone is fast  approaching a point.

In fact, just at about the temperature when the variation of H with T

begins to slow down considerabl y and ~
j , 31 ’ , and ~~

“ begins to dominate ,

the unstable region shrinks to zero and the flow becomes totally stable.

In spite of this entire discussion of the relative importance of H

and/or the p. u ’ , and II” terms on the stability characteristics of a

given boundary layer , Figs. 4 and 5 show that over the large range of
H values, a decrease in H results in increased stability, e.g., increas-
ing R6*cr1 t

Of more practical importance than the variation of R with sur—
crit

face temperature is the effect of heat transfer on transition i.n boundary—

layer flows. Although the transition process is a fairly comp .ex one,

and the relation between transition and linear stability theory is at

best only qualitatively understood , it appears that in certain instances

linear instability theory is capable of providing limits on the transition

Reynolds number. ~~ These limits must be the critical Reynolds number

as a lower bound , and the Reynolds number where the most dangerous
cr1 t

dis turbance (or frequency)  a t t a i n s  a given ampli tude , say A , or when the
distu ~bance wi th  in i t ia l  amp].itude A , is amplified by a certain a A/A

0
.

The relation between t ransi t ion  and this amp] ifica tion  rat io  may be
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established as follows. A disturbance growing according to linear

theory , sooner or later reaches a state where (1) the linear theory

ceases to be va lid , and nonlinear processes commence; (2) the boundary

layer becomes loca lly turbulent——turbulent spots are formed and .grow and

increase in number; and (3) these spots spread into the neighboring

laminar flow until the mean flow becomes fully turbulent. Therefore,

satisfactory assessment of the beginning of transition for approximately

two—dimensional. boundary layers requires at least three e1em~nts:~
5
~

(a) adequate knowledge of the input disturbance and the corre..pond ing

boundary—layer receptivity ; (b) knowledge of the development of the mean

profiles and access to their stability characteristics ; (c) information

on the length of the nonlinear processes and secondary instability as

dependent on pressure gradient, heat transfer, etc. Since the information

required in element (a) often is not available in the literature, one

usually characterizes a disturbance in terms of of the ratio of its

amplitudes (A
~2

/A
~~
) at two locations, x1 

and x2.
According to KlebanoH et ~~~~~~~ stage (1) is reached , for a f la t

plate , whee’ the rma velocity fluctuation u’ in the boundary layer
reaches (u ’/U) ~~ . .015, but that the f irst appearance of turbulence
spots is expected at (u ’ /U) 0.2. That is , beyond the onset of non-

linear ity an amplif ication fac tor of 10 to 15 times (~e ) is required .
Liepmann~

7
~ hypothesized that at the breakdown to turbulence the Reynolds

stress t ~ —pg, due to the amplified f luctuat ions u ’, becomes comparable
in magnitude to the maximum mean laminar shear stress , = 

~ ~~“~~‘ ~~
the boundary layer.

t /T
L ~ ~~~~

— {kb (u ’/U )2[a(x)]2) (1)

where

b — v ’iu ’ (2)

and

k — ?Vn/uv (3)
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wher~ u and v are the velocities in the x and y direction , respectively .
For a given fr equency w~ the amplification a is given by

a(x,w*) = exp[_R
L 
J

(czj/R)(U /IJ )dx] (4)

where RL frees tream leng th Reynolds number , R
L 

(U,,L / v ) ,

a
1 

= spatial amplification rate,

x = x*/L,

= nondimensional frequency = u U2 Iv , and

L — characteristic length.

Smith~
8
~ reduced Liepmann’s criterion for transition to an explicit

dependence on the local laminar skin fr iction coeff icient, th~ dIsturb-
ance input at the neutral point ~~~ and the total amplification ratio

(A,~~/A~~) where n refers to the - neutral point and t to the transition

point. Smith studied available information on transition of attached

boundary layers where the freestream turbulence level was low. Assuming

linear theory valid up to the transition point, Smith showed tha t the
ratio of the disturbance amplitude at transition Ax~ 

to that at the

neutral point A,A is given by (Axe/Ax ) a(x~ ,w )  e9. Later, more
accu:a te calcu1a tions~

9
~ showed (A

~ 
/A
~ 
) e10. In any event, since

t n 2 5in the nonlinear zone the amplification to transition is ~e , we find

tha t for low frees tream disturbance levels the linear TS amplif ica tion
of abou t e7~

5 does control to a large extent the major par t of the

development of the disturbance to the beginning of transition and that

element (b), of the transition process , paragra ph 1, page 11. appears,
at least in this case, to dominate elements (a) and (c).

In spite of the dom.~nant role of element (b), however , the role of
element (a) remains extremely important. For example, when Spangler

and Wells 00) minimized sound disturbances in their measurements of

transition in a low- speed boundary—layer channel, their R
~ 

exceeded
..- t

five millions! These results, where a mixture of vorticity and sound
disturbances are present, cannot be predicted using at~y of the present
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available forecasting techniques. 
(11) 

Hence a knowledge of the receptivity

of the boundary layer to vorticity and round disturbances is needed for

further progrcs~ , and much attention need be given element (a). In the

absence of such information and in view of the fact tha t the TS mechanism

may desc r ibe , in the absence of the e f fec t s  of surface roughness , vibration ,

and sound , the substantial grnwth of disturbances up to the emergence of

the final three-dimensional turbulent spots and wedges and the beginning

of transition , it is not unreasonable to employ , for the present, linear

theory as outlined by Smith in bracketing the Reynolds number at  the

beginning of transition Rt_B for two—dimensional and axisymmetric

boundary—layer flows (in axisymmetric flows x is replaced by s, the dis-

tance measured along the body surface).

Ther efor e, in certain boundary—layer flows where the linear mechanism
dominates the growth of disturbances to transition, the transition Reynolds

number can be bound by R
~ 

on the lower side and by (R
~
) on the upper

crit e9
side. Hence, a plot of R and (R

~
) for two—dimensional wedge flowsXcrit

with and/or without heating (as shown in Fig. 7) can perhaps be used as a

guideline i’i bracketing R on a body of revolution, for example.Xtrans
This can be accomplished by computing for the body of revolution H vs. Re.

If this locus of R vs. H falls between the two curves labeled R
~ andx crit

(Rx)9 in Fig. 7, then the flow over the body may be considered to be
completely laminar. If the locus of R

~ 
vs. H crosses the (R,~)9 curve,

then it is assumed to undergo transition at the R of the int~rsectionx
point. If the locus lies very close to the 1

~ crit 
curve , then the body

is overhea ted, whereas if the locus lies very close to the (R
~
) 
~ 

curve,

then more heating would be preferable (to maintain laminar flows . These

remarks, of course , may not hold completely since , as stated earl ier , in
heated flows H alone does not totally control the stability, and hence
the transition behavior of the body. Further confidence in this analysis

can be gained as some measurements of R
~ 

vs. H become available
trans

and are used to check the validity of the trends indicated in Fig. 7.

b’ - _  -~~~~~~~ :--
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LANINARIZATION OF WATER BOUNDARY LAYERS
OVER BODIES OF REVOLUTION
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VI-2 LAMINARIZATION OF WATER BOUNDARY LAYERS OVER BODIES

of REVOLUTION

A.M.0. Smith and A.R. Wazzan
ENERGY AND KINETICS DEPARTMENT

University of California
Los Angeles

I. INTRODUCTION

This paper is in the nature of a progress report and description of

the objectivesof a contract with the Navy (N000024-76-C-7O71). The three

main task statements of the contract are:

A. Establish and evaluate design configurations

B. Determine the effect of pressure gradient, body shape , surface heating

rates, wall temperature distribution and suction on boundary layer

stability and transition characteristics.

C. Calculate and analyze the effects of free stream turbulence, wall rough-

ness , vibration and acoustics disturbances.

Statement B mentions the effect of pressure gradient. The effect is

being examined in two ways (1) by the systematic family of bodies to be

described and (2) by study of the two dimensional wedge flow family. Some

of the results of this study will be reported separately in Wazzan ’s and

Gazley ’s paper. Concerning Item C, while we are interested in the subject

and it is important, the main responsibility for studying the problem has

been given to Dr. Leslie Mack under subcontract.

Therefore our attention here will be with a family of bodies that we

have developed and are now studying. All the transition studies have used

the e9 method. Hence the value of this study stands or falls with the

accuracy of the e9 method, which is reviewed in the Wazzan-Gazley paper.



—205—

Since no shortcut transition method has been found for bodies of revolution,

the systematic family of shapes at least offers the chance for interpolation.

The study is engineering oriented, trying to show general answers based on

the state of the art of the theory rather than trying to advance a special

piece of theory - Les Mack ’s part being an exception. The project started

about Feb. 1 and lasts for a year, so it is a bit more than halfway through.

Also it might be said that the work is not necessarily new . Many similar

studies have been made but results are not available in the public domain.

Furthermore , it is hoped that the studies will be more systematic and

comprehensive than those of the past . Therefore comprehensiveness and

general availability are the justification for this investigation.

II. ThE FAMILY OF BODIES

We will first describe the general characteristics of the whole family

and then in III describe certain specific attributes found so far. The

family of six bodies is shown in Figures 1 through 6. The famiJy is

capable of giving some idea of the effect of fineness ratio, pressure

gradient and prismatic coefficient upon performance. Except for PR-9 all

are derivaties of the Reichardt body, hence the names. Since there was much

interest in a 9:1 fineness ratio body, REIK-9, Fig. 1, was chosen as one of

the bodies, the 9 being for fineness ratio. Figures 1-6 are complete in a

sense. They show the shape, the velocity distribution, the prismatic

coefficient, volume , and the basic defining equations. The basic defining

equations are not written in terms of x/& but instead use the coordinate

system shown on the body. A tail fáiring is added to the basic body. The

junction point and the length are noted in the drawing. After working Out

the shapes in these simple coordinates the bodies were then scaled into the

x/L system. Since Reichardt ’s body was defined by one simple equation,

-
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except for the tail, this course was followed for all the others except

PR-9. For the bodies with favorable pressure gradient like REIK-4 a

considerable number of modification methods were examined but since we do

not know exactly what we want as a pressure distribution, the simplest factor,

(1 + ax) that gave reasonable shape variations was chosen. REIK-9 and

REIK.2 show the effect of thickness ratio. REIK-2, 3, 4, and 5 show the

effect of pressure gradient, REIK-4 and 5 show the effect of pressure gradient

and thickness.

PR-9 does not fall into the RElIC-family. There is so much advantage to

high prismatic coefficients that it was decided to see what can be done by

heat in overcoming adverse pressure gradients. A cylindrical body always

has adverse gradients at the nose, which normally are ruinous to laminar

flow. The goal therefore was to take a desirable practical shape and see

whether it is possible by judicious use of heat to overcome the injurious

effects of the adverse nose gradients. The nose is a modified leminiscate

The junction point is noted. The leminiscate matched values and first and

second derivatives at the junction point. This body is of 9:1 fineness ratio.

Velocity distribution for all the bodies were calculated by Hess’s

Higher Order Neumann Method.

III. SPECIFIC BODIES

Because of Navy interest and because of uncertainties about scaling, a

basic condition for calculation was g 6.86 x 106 per ft. This number

corresponds to 75 fps in 67°F fresh water. 67°F fresh water was used because

that is representative of a towing tank. Also a specific length was used,

9.5625 ft., giving a length Reynolds number of 65.6 x i06.
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A. REIK-9

Figures 7, 8, 9 and 10 are representative results for this body. The

object was to stabilize the boundary layer to get laminar flow clear back

to separation. Because the velocity distribution is almost perfectly flat,

cold transition is about that of a flat plate, i.e., RSTr = 5 x 106. This

number is for tn A//t0 = 9. Now in order to have a margin of safety and to

stay in the linear range of Tollmien-Schlichting disturbances, when we are

looking for heat requirements we have chosen to try to hold the amplification

ratio below e7. Figures 7 and 8 are two results. Figure 7 is the first try

and Fig. 8 the fourth and successful try. What kind of heat distribution to

use is an unknown science. Such considerations as the growth of T-S waves

cold , where they begin growing, whether they stop growing, shape factor and

the like all enter in. The first heat distribution saw the growth of T-S

waves begin at about S = 0.35 ft. and the growth exceeded the desired 7.0.

Then after two intermediate tries VAR IV , Fig. 8 was tried and the goal of

was successfully met.

It has generally been more convenient and realistic to specify heat

input rather than wall temperature. Figure 9 shows results for the two

cases just studied. Note that the beginning of heating in VAR IV was

slightly further ahead than in VAR I. Examination of the amplification

curves indicated more heat was needed forward and less after. Figure 10

shows the wall temperature distribution for the two cases as well as the

total heat.

Out of curiosity for what it might show we devised a dimensionless

heating coefficient , CM, (H for heat) defined as follows :

CH 
Q — (energy in to water) 

(ft - lbs/sec)
l/2pV (Vol) 
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Values are shown on Fig. 9.

A different kind of result is shown in Fig. 10. Assuming RIC = U
k

k/v = 25

we calculated allowable heights of discrete roughness for REIK-9 moving at

= 6.86 x 106/ft = 75 fps. The values are very small. Heat, as you

see , hurts slightly. However at 1/4 speed, i.e., about 19 fps, roughness

can be considerable. The most sensitive part of these bodies is just behind

the stagnation point, where there is a minimum. Now it is found that this

minimum always seems to be ahead of the point where heat is first applied .

Therefore the heat does not affect the minimum and the minimum can be

determined by cold calculations alone, see Fig. 10.

B. REIK-2

While calculations have been done, it is a rather uninteresting body

again having 8 = 0 over most of its length. Therefore it will not be

discussed further, except to say that if the flow is laminar to x/2 = 0.7

at R
R = 20 x 10

6 separation calculates to be at x/L = 0.96.

C. REIK-3, 4

Some calculations have been done, but work on these bodies is mostly

in the future. REIK-2,3,4,5 form a family having increasingly favorable

pressure gradients. For the four respectively, they develop maximum

Hartree B’s near x/9~ = .7 of 0, 0.1 2 and 0.3 approximately. However,

none of these 8’s are sufficiently high to ge~ i.; real extent of laminar

flow at high Reynolds numbers, without the assistance of heat.

D. RElIC-S 
-

Because it is doubtful that the full study will be completed because of

time and money limitations we have chosen to look at extremes so as to 3ee

what the boundaries are. Then later as time and money allow we can fill in

with intermediate cases. One might say we are aiming for two-point interpola-
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tion and then late r as conditions allow, proceed to three-point. Therefore 

even though not identified with any practical concept we looked n~xt at 

REIK-5. 

Only two heat distribution tries were made. While the fa :orable pres-

sure gradient alone will not give an extended run of lam~.na~ flow, it does 

indeed help. As a result the fiLst try led to excessive stability and a 

second try was made. The result is shown in Fig. 11 . It is still too stable 

7 but the amplification is near enough e that this try has been taken as final, 

although we know that better can be done. The heating distribution, temper-

ature, and shape factor are shown in Fig. 12. The heat intensjty is much 

less than that found needed for REIK-9. Also the total heat requirement 

is low although the body has a much larger volume. Notice that the shape 

factor becomes very low, 2.32. Also that CH = .0078, or less than 1/4 of 

that on REIK-9. This body was deliberately made thick, knowing that 

separation would occur at the tail. The tail would either have to be 

lengthened or su~tion would have to be used to prevent separation. At 

Rl = 20 x 106 and laminar flow to x/l = 0.70 separation occurs at x/l = . 825. 

Some of the boundary layer parameters for the cold case are shown in Fig. 13. 

A roughness calculation was done for the cold case to compare with the 

REIK-9 . No surprises were expected but one was found. On REIK-9 the 

minimum is very far forward and after that the allowable value slowly but 

1/4 definitely grows. (On a flat plate it would grow as x ) . On REIK-5 

there is ind~ed a minimum very near the nose but a large portion of the 

body has a higher but nearly constant level. The reason is that an 

expanding body thins the boundary layer. Hence bodies like this should 

be slightly more sensitive to roughness than a straight Reichardt type. 
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E . PR-9

This shape has adverse gradients near the nose. Now the name of the

gam e is to see what can be done with heat. Notice on Fig. 15 that B

reaches a value of -.135 near the nose. This figure shows the third try.

Notice that = 20 Kw/ft2 near the nose and that wall temperatures reach

nearly 600°R. Figure 16 shows amplification growth, which is a little too

much. To try to reduce it slightly the last part of the heat distribution

was held constant at 2.5 Kw/ft2, instead of reducing linearly to zero at

6.5 ft. Compare Figs 15 and 17. This small change led to large changes

in the wave growth. The maximum was reduced more than desired from

in A/Ao equal to 7.9 in Fig. 16 to 3.9 in Fig. 18. Hence according to our

calculation heat is making a poor shape work. But a larger quantity is

necessary than for a good shape. For REIK-9, CH = 0.0334, for PR-9,

CH 
= 0.0671. That is, for the same fineness ratio body, over twice as

much heat was necessary to fix up the poorly shaped body. For REIK-5

which has the most favorable shape CH 
= 0.0078. It is easily shown that

the following formula applies.

Q AVAILABLE 
= 

- 

~th • 

D Vol
Q NEEDED 

~ 
CH

where Q is the heat rate, 
~th 

the thermal efficiency of the engine that

runs the device and flp the propeller efficiency. The ratio of course

must be greater than unity.

IV. SURFACE SMOOThNESS

The last item we present is our work on the subject of allowable surface

roughness. First we will discuss Westinghouse ’s recommended line , see

Fig. 19. Westinghouse has assumed that surface smoothness acts the same

way as discrete roughness, that is a small roughness develops an unsteady

wake behind it. They basically use the number R.K - 25. Then to relate 

~~- - -
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surface smoothness to this number they estimate that there will be a reasonable

number of roughnesses which are 5 times the statistical RMS value. Then

they assume that the velocity in the boundary layer at the top of the

roughness is 1/S of the velocity at the edge. Putting all together they

get(U,,,/v x RMS < 25 but actually they use 20. This is their line on Fig. 19.

Now it can be shown that if we follow their basic R.k 
assumption more

carefully we get the(U~/vY
3”4 line. Let us assume that R.K is to be a

constant, say 25, and for simplicity let us look at a flat plate flow.

The flow will be as sketched below. A boundary

- 4)
- 

WALL 
- 

____________________________

layer approaches the roughness as shown. The roughness is very low in

the boundary layer so the profile will be assumed to be straight in this

region, an excellent assumption. Then we can write, for a flat plate

k ( ~~~~~~~ ) =kU
,[~~

._ 
F ’ ’ (O)  = .332kU~,[~~

Now using R
k ~~~~~~~~~ 

— 25 we can introduce the above expression for u.K
to obtain

— 
.332 k2U 

— 25

Now if we solve for k we find

1/4k 8.68 x (
~)

J
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The difference from Westinghouse analysis is that we solved for u.K

instead of assuming it. The(U/v)~~
’
~line in Fig. 19 was simply put

through the same point as Westinghouse at li/v = 106. Hence the authors

feel that at higher Reynolds numbers per foot, the Westinghouse criteria

is unduly conservative.

However, we are not sure the above is the right approach. The surface

may be so smooth that no unsteady wakes are formed. Then a slightly rough

surface “tickles” the boundary layer somewhat like small external turbulence

does. If that is the case, in view of stability theory the characteristic

Reynolds number would be a thickness Reynolds number like R0 instead of

a length Reynolds number. Now R8’ s~i According to this theory then,

a line should slope as (U
~c,
/v)’1”2 . This is the third line plotted in

Fig. 19. There is hardly any data to verify these lines. The NACA points

are those cited by Westinghouse. At Douglas about 1956 we roughened a surface

with several grades of sand paper, measured the roughness with a profilometer

and found the effect on transition. The tests were far better designed than

those of the NACA. The points are shown. The point at U~,,/v — 1.1 x 106

did not affect transition. The other two seem to confirm the (U,,~/vY~~
2

slope but there is too little data to be sure. In any case the(ç/vY ’

curve is not right.
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Section VI

A STUDY OF HEAT ADDITION EFFECTS ON LAMINAR

WATER BOUNDARY LAYERS OF AXISYMMETRIC BODIES
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VI-3 LOW—SPEED BOUNDARY LAYER TRANSITION WORKSHOP
(Sept. 13—14, 1976: Rand Corp.)

A STUDY OF HEAT ADDITION EFFECTS ON LAMINAR,
WATER BOUNDARY LAYERS OF AXISYMMETRIC BODI E S

by

Joseph J. Eisenhuth
Applied Research Laboratory

The Pennsylvania State University
P. 0. Box 30

State College, PA 16801

Summary of Presentation

The presently popular subject of stabilizing boundary layers by the addition

of heat at the wall has received attention at the Applied Research Laboratory (ARL),

Penn State. The primary interest here has been in the prediction of the heat

necessary, from a designer’s point of view, to forestall transition on axisymmetric

bodies and in the estimation of the accompanying mean—flow boundary layer character- -

istics that result. The focal point in this investigation has been the implementation

of a code to provide a solution, by numerical integration means, of the boundary

layer equations and in getting the kind of correlation of critical Reynolds number

that would permit bypassing the very involved stability calculations in making

simple estimates of transition.

Basic Equations and Computer Code

The basic boundary layer equations for axisyimnetric - flow are shown in Slide 1

and are derived for an incompressible flow with heat addition at the boundary. In

the development of the equations, effects such as buoyancy and dissipation of energy

by friction are ignored. The boundary conditions are shown at the bottom of the

slide.
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To put the equations in a form suitable for solution, a stream function, P~
and a nondimensional normal distance, fl, are defined in Slide 2. In addition,

the M, R, and 0 parameters, which will appear in the resulting equations, are also

defined. M is the standard Falkner—Skan parameter, R is a radius gradient para-

meter which results from the axisymmetric case, and 0 is just the normalized

temperature difference.

The resulting equations with boundary conditions are shown in Slide 3. These

ordinary differential equations are explicitly independent of x and the velocity

and temperature profiles that result are given by similar type solutions. The

primes indicate derivatives with respect to r~; the bars over the physical

quantities show normalization with respect to the free—stream quantities, P is

the free—stream Prandtl number; C~, is the specific heat at constant pressure;- k

is the thermal conductivity.

The code for the solution of the two—dimensional version of the mean—flow

equations appearing in Slide 3 is presented in Reference 1 as part of a more

general computer code. In this solution the method of Nachtsheiin and Swigert

(Reference 2) was adapted for the numerical integration process and was found

to be satisfactory. In the present study, the code for the two—dimensional

equations was extended to the axisyimnetric case and was further altered to

provide cert’in boundary layer information that wasn’t explicitly calculated

in the original version.

Critical Reynolds Number Correlation

Stability information in terms of the critical Reynolds number, ~~~- “ crit
is available for two—dimensional flow both for the case of the unheated boundary

with pressure gradient and for the flow over a flat plate with heating at the

wall. The results of the unheated case are found in Reference 3 as the critical

Reynolds number versus the Pohlhausen parameter A — ~ , and the heated case
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results were obtained from Reference 1 as critical Reynolds number versus temperature

difference. A and ~T were translated into the shape parameter H = 6*10 so that in

each case R~* could be plotted against H. The curves in Slide 4 are the result.
crit

It can be seen that the correlation is quite good, indicating that the stability

of the laminar boundary layer is strongly dependent upon H, regardless of whether

it is obtained by favorable pressure gradient or by heat. A similar correlation

is reported in Reference 4.

This correlation provides the basis for the development of the type of design

information which will be presented here. Although based on two—dimensional

stability information, the correlation is considered valid for the axisymmetric

case because the stability equations are the same for both cases.

Computed Results

There are a variety of ways to present results depending upon the user’s

needs. Slide 5 presents curves showing the effect of pressure gradient and

temperature on the shape parameter for the two—dimensional case (R 0). If one

wishes to obtain a certain shape factor, one need only interpolate between the

curves of constant M to determine the temperature difference necessary to do so.

If one would rather work in terms of an effective M, the additional curve of H

versus M in Slide 5 could be used along with the idea of the shape factor—stability

correlation to generate the curves shown in Slide 6. With the curves of Slide 6,

one need only interpolate between curves to arrive at a temperature difference

to produce a chosen effective pressure gradient parameter. In lieu of trying to

work with temperature as an additional parameter, it was felt that the effective N

could be used in some simplified transition prediction method. As an example of

local shear stress and local heat flux values that result from a choice of

stability level, Slides 7 and 8 are presented for the specific values of Ue — 50

ft/sec, x • 4.0 ft, and again the two—dimensional case. The values of shear stress

and heat flux can be scaled from these curves for other values of x and
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Slides 9 and 10 are presented to show the effect of having different

ambient temperatures. The interest in this kind of effect stemmed from consider-

ations of a water tunnel test program in which the Reynolds number range could be

extended by heating the tunnel water. Slide 11 is developed to provide values

of temperature difference to maintain a certain level of effective M. In this

case the Meff = 0.3 level represents close to the maximum heat that can be added

before the critical Reynolds number will start decreasing.

Slides 12 and 13 are presented to show the difference between the two—

dimensional and axisymmetric cases. Similar plots can be shown for other

values of R. Slide 14 is similar to Slide 11 in that it shows the temperature

difference necessary to maintain a certain level of stability, In this case for

various values of R and M. The level chosen here was again close to the maximum

heat that can be added before the critical Reynolds number will again decrease.

Laminar Separation Limits

An attempt was made to obtain some limits, with regard to the various

parameters, beyond which laminar separation would occur. Slide 15 represents one

way of pr - . : ing this information. Values of R and M below and to the left of the

curves repre~~n~ separated flows. Another presentation of this same information

is found in Slide 16. It can ~ie seen that temperature difference has relatively

little effect on laminar separation. This is consistent with the calculations

reported in Reference 5 for the two—dimensional case and are shown as the curve

marked “Rand”. Although showing slightly more effect of temperature, the Rand

calculations also indicate the minor role of heating in the prevention of laminar

separation.

Transition Criteria

A purpose in employing the R * — H correlation was in be ing able to use6 crit
the effective M to enter experimental transition curves based on unheated operation.

- - -~~~ 

-

~~~~~
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Presumably , theoretical stability information for the unheated case might also be

reduced to a form that would make use of the effective Falkner—Skan parameter.

Aspects of this work are still in progress, so only a first attempt at developing

some simplified transition curves is presented.

It would seem logical that the parameters that affect H and thus R6*crit
would also be controlling as far as transition is concerned. The first attempt

therefore made use of the parameters M and R. Reference 6 provides transition

inf ormation for severa l bodies over a range of Reynolds numbers. The geometric

character istics and the potential flow calculations for one of these bodies were

used to generate R and M distributions along the body length. Combining this

information with the experimental transition curve given for that body, a plot

like the one shown in Slide 17 is possible. Very little variation of M along the

body occur s and the major parameter appears to be R. This is similar to the kind

of criterion used in Reference 7 except that instead of R a parameter , (D/ r)(d r/di)

is used. It is anticipated that M can be an equally effective parameter in

influencing transition and that bodies with greater variations in M would show

different trends. In other words, there should be some cross curves of constant

M appearing in a general plot for all types of bodies.

- -—-----

~ 

— ---- —------ - -  - - -
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VI—4 DESIGN OF A LAMINA R , LOW-DRAG RESEARCH VEH ICLE

R. S. Scotti , B. H. Carmichael , and D. A. King,
Autonetics Group , Rockwell International , Anaheim , CA

An effort , sponsore d by DARPA , is underway to perform the preliminary
design of a low-drag research vehicle with a l aminar forebody at a transition
length Reynolds numbe r to minimum pressure of 250 x 106. Boundary layer
stability is to be maintained by exploiting the effects of favorable pressure
gradient (shape) and distributed surface heating. The present level of under-
standing of these two effects, particularly in combination , does not allow
for their simultaneous optimization wi thout subjective inputs.

The accepted procedure for determining body shape to maintain (or
stabilize) l aminar boundary layer flow is one of iterative numerical compu-
tational trials. The flow field and corresponding stability characteristics
must be computed for each trial shape. The addition of surface heating adds
new dimensions to the task of optimizing vehicle contours by introducing
several new variab les such that the best unheated contour is probably not
the best heated contour.

A nume r ical study is bei ng performe d at Autone tics follow ing the above
iterative approach . Guidance and overall direction is being provided by
extensive experience with laminar fl ows possessed by the second au thor, by
up-to-date results of laminar flow research , and by intuition . The follo~,ingspecific criteria in order of decreasing importance are applied in the
process of evaluating candidate designs:

In regard to shape,

1. Primary objective is to achieve a transition Reynolds number (based
on length and local free-stream velocity) of 250 x io6. Design is
to be conservative as judged by all available transition predictive
methods . ‘ Conservative ” is quantified by the next item.

2. Al low for flexibility of both vehicle operating conditions and test
plan. The design must acconuiiodate surface temperature distributions
such that,

0 < M(x) 
~~ 

t
~
Tmax (X)

where 
~
Tmax (x ) is In excess of that pre di cted to completely damp

growth of all small disturbances . Moreover, the design must allow
for a progressive approach to the Re.1. objective by means of a
systema tic var iat ion of both veh icle speed an d surface temperature
field from lower operational transit ion Reynolds number to 250 x 106.
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3. Maintain a prismatic coefficient which provides sufficient volume ,
particularly in the vehicle nose region , to practically accon~nodatethe surface heat exchanger . Also , low sensitivity to angle of
attack is to be sought in a rounded nose design.

In regard to size,

4. Maximize test time for a bouyancy-driven vehicle operating from a
fixed release depth , while minimizing the effects of residual
unsteadiness (acceleration) during “test” and the problem of
broaching at the surface.

5. Minimize the effects of surface roughness and waviness within
acceptable and reasonable (from the point of view of fabrication)
limi ts.

6. Maintain contact wi th feasible/practical engineering practices in
terms of

-transportability
-maneuverability
-producibility

The stabi l iz i ng in f l uences of a loca l favora bl e pressure grad ient are
controlled by~ vehicle contour and fineness ratio. Those of surface overheat -

are apparently controlled by both the magnitude and the gradient of the
temperature field. In the present study all four variables, i.e., contour ,
fineness ra tio, magnitude of and gradient of temperature are being investi-
gated.

Results in the form of boundary layer flow and corresponding stability
characteristics are presented for several promising shapes. These are
compared to those of other, ear li er conce ptual designs In Figures l and 2--
the fi rst being a plot of some vehicle shapes and corresponding pressure
coefficients , while the second displays the boundary layer shape factor,
H = ~5*/O, over the surface of several vehicles. Also shown in Figure 1 (in
brackets ) are the disturbance ampl itude ratios as computed by Prof. F. Wazzan
for the most ampl ified Tollmien-Schlichting waves in the boundary layer of
each body . Indications are that a fair measure of boundary layer stability
Is provided by the magnitude and history along the vehicle surface of the
shape factor H.

The vehicle contour designated as AH-12, which has a rounded nose like
the AH-9 (as compared to the pointed AH-8) and a fineness ratio of 4.0 (as
compared to 5.0 for the vehicles shown on Figure 1) apparently offers
signifi cant Improvements in terms of the criteria listed above over others
previously studied. Final refinement of this design Is In process.

I--
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Section VI

AXISYMMETRI C VEHICLE SYSTEM DESIGN FOR
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VI—5 AXISYMMETRIC VEHICLE SYSTEM DESIGN FOR TOTAL PROPULSION POWER OPTIMIZATION

F. R. Goldscbmied
Westinghouse Research Laboratories
Pittsburgh, Pennsylvania 15235

The design objective is the power minimization for a given useful hull

volume and operating speed, since it is the total propulsion—power of the under-

seas vehicle that is considered, rather than the drag of the bare hull. The

design system optimization includes also the fins (to provide the desired degree

of stability and maneuverability) with their drag and the propulsor with its

efficiency.

Two design optimizations have been approached :

a) Utmost expioitation of laminar boundary—layers, whenever mission

and economic constraints appear to allow it.

b) Assumed all—turbulent boundary—layers, when no useful laminar

extent can be expected.

The design method is based on the optimum integration of hull design,

boundary—layer control (single suction slot) and stern jet propulsion, as pre-

sented by Goldechmied. A 60” test model is shown in the wind—tunnel in Fig.

1. Laminar transition is shown at 70% chord by the China Clay technique. The

suction slot is visible at 83% chord; the BLC flow is ducted out through the

hollow support strut. The experimental pressure distribution at ±6° angle of

attack is shown in Fig. 2.

The laminar/turbulent axisymmetric transition prediction method is that

given by Goldschmied.~
2
~

At the length Reynolds Number of 10~ , assuming the same tail—fins

drag 
~CD — 0.003 and the same propulsor efficiency of 85% for all cases , the

following evaluation can be made:

a) Optimized theoretical all—turbulent Parsons/Goodson/Goldschmied~3~
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1—36 body with tail fins and stern wake propeller: power coefficient

CHP = 0.0295 (Hull CD — 0.022).

b) Wind—tunnel test of all turbulent vehicle, with tail—fins and

ducted impeller: power coefficient C~~ 0.0145.

c) Optimized theoretical laminar Parsons/Goodson/Goldschmied~
3
~

X—35 body with tail— fins and stern wake—propeller: power coefficient CHP
0.0120 (Hull CD = 0.0071).

d) Wind—tunnel test of laminar (72% length) vehicle, with tail—fins

and ducted impeller: power coefficient C~ , 0.0106.

It can be readily seen that the system design approach has yielded

a 51% power reduction for the all—turbulent case and a 12% power reduction

for the laminar case. Furthermore, it is quite significant that the all—

turbulent vehicle requires only 21% more power than the laminar X—35 body.

The power coefficients are plotted against length Reynolds number in Fig. 3.

Considerably better results may be obtained from a numerical optimi-

zation study ; mathematical models are available for the hull geometry, the single

suction—slot, the axial pump and the stern propulsive jet. For instance, five

parameters may be allocated to the hull profile, two parameters to the suction

slot, two parameters to the pump and one parameter to the jet; the ten parameters

may then be simultaneously optimized by the methods of Ref. 3, subject to a set

of suitable constraints.
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SIMPLE RELATIONS FOR THE STABILITY OF HEATED LAMINAR BOUNDARY

LAYERS IN WATER: MODIFIED DUNN-LINN METHOD

J. Aroesty , W. S. King, G. M. Harpole,
W. Matyskiela, A. R. Wazzan, C. Gazley, Jr.

The Rand Corporation
Santa Monica, California

ABSTRACT

We have developed a modification of Liii’s method which can be used

to estimate the minimum critical Reynolds number of a heated laminar

boundary layer in water. This method is both simple and surprisingly

accurate. As in Liii’s original work , the method is most app licable

when c -
~~ 0, a -

~~ 0 and aRe ÷ ~. The internal details of the method do

not agree entirely with exact analyses in other ranges of these param-

eters but the few required constants have been chosen so that pre-

dictions of minimum critical Reynolds number are consistent with re-

sults of more elaborate numerical integration of the Orr—Summerfeld

equations (Fig. 1).

This method , which we have labeled the “modified Dunn—Lu method ,”

can be used with confidence in engineering studies of laminar boundary

layer control in water. The details of the method are reported in

Ref. 1 and a summary of the equations used to estimate minimum critical

Reynolds number is given below:

v(c)(l — 2A ( c)) = .58

liii” ~Cc wv( c) =
Uc

A =  .4~ [l-
~~~~~~

] + .5 [l -~~~~)]~

_ 28u’ (O)~.t(0)(Re
~~
) — 4
critical c

The parameters v, A , and Re5~ depend on the characteristics of the
velocity profiles u(n) and u”(~) and the viscosity u evaluated at the
wall and the critical layer.
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Primary and Secondary Instabilities in
Unstably Stratified Shear Flows

by

R.E. Kelly and R.M. Clever
Mechanics and Structures Department

School of Engineering and Applied Science
University of California , Los Angeles , Cal. 90024

It has been known for many years that instability in an un-

stably stratified shear flow (due , say, to heating from below) can

occur in a manner quite dissimilar to that characteristic of - the

homogeneous case. For the latter case , Tollmien—Schlichting waves ,

which are two—dimensional in the plane of the flow , constitute the

initial instability. For the unstably stratified case , however ,

disturbances can first appear which are periodic in a plane normal

to the flow and which exhibit no streamwise waviness. These distur-

bances induce a distortion of the mean flow, however , and are there-

fore three—dimensional in this sense.

We call these buoyancy-driven instabilities longitudinal “rolls ”

or “vortices ” , in order to distinguish them from the hydrodynamically-

driven waves. In appearance , they are similar to Görtler vortices , -

and so it was appropriate that Görtler wrote the first review paper

on their occurrence (Ref. ].) . This paper contains most of the ref-

erences to the (mainly qualitative) experimental work on this insta-

bility done in the period 1920-1940. More recent experimental work

concerns the case of a very large Prandtl number fluid (Ref. 2; the

results are pertinent to convection in the earth ’s mantle), the ef-

fects of shear upon doubly-diffusive instability (Ref. 3), and con-

vection in the thermal-entry flow (Ref. 4,5). However , analogous
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work has been done in connection with free convection flows occur-

ring on heated inclined surfaces , where similar rolls are observed

for sufficiently large angles of inclination away from the vertical

(Refs. 6-9). The experiments for fully developed flows indicate

that the main effect of the shear , at least for low values of the

Reynolds number (Re), is to organize the convection in the manner

described above (i.e., as spanwise periodic longitudinal rolls).

This conclusion agrees with the theoretical results for fully

developed flows, e.g., Couette flow (Ref. 10—11) and Poiseuille

flow (Ref. 12). These analyses indicate that, for small amounts

of shear , all disturbances are stabilized by the shear except for

the longitudinal roll disturbance which, because it is independent

of the streamwise coordinate , cannot be influenced by the shear.

Thus, it will become unstable as soon as the Rayleigh number (Ra)

exceeds the critical value (Ra
e 1708 for a flow contained between

two rigid horizontal surfaces). For such flows , therefore, only

the Rayleigh number is important for finding the condition under

which the flow becomes unstable due to buoyancy. The Reynolds,

Froude, and Richardson numbers are not pertinent to predicting the

onset of the longitudinal convective mode of instability for fully

developed flows. Naturally , they are pertinent to predicting the

onset of the two—dimensional shear instability which can occur at

higher values of the Reynolds number with ~~ <

Whether or not a similar conclusion holds for the case of an

unstably stratified boundary layer still is an unanswered question

(the experiments of Strazisar et al. (Ref. 13) concern a stably
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stratified boundary layer). The theoretical analysis of the stabil-

ity of such a boundary layer is complicated by the fact that non-

parallel flow effects are likely to play an important role in de-

termining the neutral stability curve of the longitudinal roll

mode. Again, an analogy with G&tler vortices can be made, in which

case the wost critical disturbance on the basis of a parallel flow

analysis turns out to have an infinite wavelength (see Fig. IX.4 of

Ref. 14). This is in contrast to shear instabilities, partly be-

cause the longitudinal mode has no frequency and is therefore inde-

pendent of time along the neutral curve. Thus, the parallel flow

stability equation becomes purely diffusive at the edge of the

boundary layer. By including one nonparallel flow term (correspond-

ing to the vertical velocity) at lowest order for the heated in-

clined plate stability problem, Haaland and Sparrow (Ref. 15) were

able to obtain a finite wavelength for the critical disturbance .

Such a simple solution is unlikely for the case of a Blasius-like

boundary layer because the vertical velocity at the edge of the

boundary layer is in a direction opposite (outwards) to that of

the free convection boundary layer (inwards). The importance of

effects associated with streamwise variations might explain why

the experimental critical Rayleigh numbers for the thermal entry

flow as reported by Kamotani and Sparrow (Ref. 5) are so far above

the theoretical predictions of Hwang and Cheng (Ref. 16), who did

a “local ” parallel flow stability analysis. If such effects are

important at lowest order , then the Reynolds and Prandtl numbers

will become important in determining the neutral stability of the

rolls.
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Other theoretical work on the problem of thermal convection

in a shear flow has concerned the unstably stratified Ekman bound-

ary layer flow (Ref. 17) in order to understand the “cloud band”

structure often observed in the earth ’s planetary boundary layer

(Ref. 18). Numerical work has been done which indicates how the

rolls distort the mean velocity profile (Refs.. 19-21) and how the

disturbance field develops in time (Ref. 22).

At UCLA, our research has concentrated upon determining what

happens to the rolls as the Rayleigh number increases beyond the

critical value for the case of Couette flow (with a Prandtl number

of 0.7). It is known for the case without shear (Ref. 23) that

convective rolls can themselves become unstable and lead to three-

dimensional and possibly unsteady flow as the Rayleigh number so

increases. For the case when shear is present , the development of

three—dimensionality (in the sense now that the roll becomes wavey

in the streamwise direction) means that the perturbed roll can ex-

tract energy from the mean flow. Although the rolls occur origi-

nally due to buoyant effects , their secondary instability can be

controlled by hydrodynamic effects and might lead therefore to a

more severe disruption of the basic flow than provided by the rolls

themselves. In this sense, the rolls can be viewed as introducing

a “thermal roughness ” into the flow, with possibly all the conse-

quences that more ordinary roughness elements provide.

The analysis is a numerical one, based on use of the Galerkin

method , as discussed in Ref. 23. It consists of the following steps:

(1) Calculate the disturbance field associated with the rol].s(
’in-

cluding distortion of the mean velocity) for arbitrary Rayleigh
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numbers;

(2)- perturb the resulting (nonpianar) velocity and temperature dis-

tributions by a three-dimensional ,time-dependent disturbance and

find a neutral curve for the secondary instability as a function

of the Rayleigh and Reynolds numbers;

(3) calculate the secondary disturbance energy equation so as to

understand the mechanism causing the secondary instability .

The results will soon be submitted for publication and are

not presented here in detail. However , they can be summarized

as follows.

A secondary instability is possible which is very much depen-

dent upon the Reynolds number. As Re increases to about 100, the

value of Ra - Ra
c 
at which the secondary instability occurs de-

creases to about 60, i.e., it occurs when Ra is about 3.5% above

the critical value when Re > 100. The most unstable secondary

disturbance travels with a wavespeed equal to the mean of the basic

flow (for the antisynunetric Couette flow investigated , it was sta-

tionary). A second mode is possible which propagates relative to

the mean of the basic flow , but it occurs only for larger values

of Ra
~~~

Rac.

The eigenvalue calculations indicate therefore that shear can

destabilize the rolls. The energy calculations indicate that dis-

tortions of the basic flow , both in the plane of the f low and nor-

mal to it, act as a major source for disturbance energy . Thus ,

the idea of the rolls acting as a source of “thermal roughness ”

seems to make sense. However , this does not imply that an imme-

diate breakdown into turbulence would occur. An early observation

I -. -. -

~ 
~~~~~~~~~~~~~~~~~
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of wavey rolls in Poiseuille flow was made by Avsec (Ref. 24);

the rolls are well-defined and are certainly not turbulent. For

the case of free convection flow in an inclined, differentially

heated box, Hart (Ref. 8) shows that the rolls must become quite

distorted before “turbulence ” occurs (see his Fig. 3; still, the

turbulence occurs for values of Ra much less than those necessary

for ordinary “turbulent” convection in a horizontal container).

The situation there is probably similar to that observed in connec-

tion with Taylor vortices (Ref. 25), in which a sequence of states

must be completed before the flow becomes turbulent. A similar

sequence probably occurs for the kind of unstably stratified shear

flows discussed here. However , the range of Rayleigh number neces-

sary for the completion of the sequence might be very much depen-

dent upon the Reynolds number. Thus, the neutral curves which de-

fine the sequence of states might bunch together as the Reynolds

number increases , allowing transition to occur for very modest

Rayleigh numbers at high enough Reynolds numbers. The best way

to explore this possibility is by means of a carefully controlled

experiment.

Acknowledgment

The research summarized at the end of this paper has been

supported by the U.S. Army Research Office under Grant DA-ARO-D-

3l—124—72—G 168 .

- . - 

.

. ii- - - 

-



—279—

References

1. Gortler, H., “Analogie zwischen der Instabilit~ten laminaren
Grenzschichtstr~mungen an konkaven Wanden und an erw~ rmter
W~nden,” Ingenieur-Archiv V. 28(1959), pp. 71-78.

2. Richter, F.M. and B. Parsons , “On the Interaction of Two
Scales of Convection in the Mantle ,” 3. Geophys. Res. v. 80
(1975) , pp. 2529—2541.

3. Linden , P.F., “Salt Fingers in a Steady Shear Flow,” Geophys.
Fluid Dynamics v. 6 (1974) , pp. 1—27.

4. Ostrach , S. and Y. Kamotani , “Heat Transfer Augmentation in
Laminar Fully Developed Channel Flow by Means of Heating from
Below,” 3. Heat Trans. (Tran s. ASME, Ser. C), v. 97 (1975),
pp. 220—225.

5. Kamotani, Y. and S. Ostrach , “Effect of Thermal Instability
on Thermally Developing Laminar Channel Flow,” ASME Paper
76—HT—R (1976).

6. Lloyd, J.R. and E.M. Sparrow , “On the Instability of Natural
Convection Flow on Inclined Plates ,” 3. Fluid Mech. v. 42
(1970), pp. 465—470.

7. Sparrow, G.M. and R.B. Husar , “Longitudinal Vortices in Natur-
al Convection Flow on Inclined Plates,” 3. Fluid Mech. v. 37
(1969), pp. 251—255.

8. Hart, J.E., “Stability of the Flow in a Differentially Heated
Inclined Box , ” 3. Fluid Mech. v. 47 (1971) , pp. 547-576.

9. Hart, J.E., “Transition to a Wavy Vortex Regime in Convective
Flow between Inclined Plates,” 3. Fluid Mech. v. 48 (1971) ,
pp. 265—271.

10. Deardorff , J.W., “Gravitational Instability between Horizontal
Plates with Shear ,” Phys. Fluids v. 8 (1965), pp. 1027—1030.

11. Gallagher, A.P. and A. McD. Nercer, “On the Behavior of Small
Disturbances in Plane Couette Flow with a Temperature Grad-
ient,” Proc. Roy. Soc. (A), v. 286 (1965), pp. 117—128.

12. Gage, K.S. and W.H. Reid, “The Stability of Thermally Strati-
fied Plane Poiseuille Flow,” 3. Fluid Mech ., v. 33 (1968),
pp. 21—32.

13. Strazisar , A.J., J.M. Prahl, and E. Reshotko, Experimental
Study of the Stability of Heated Laminar Boundary Layers in
Water, Case Western Reserve Univ. Fluid, Thermal, and Aero—
space Sci. Rep. FTAS/TR-75-ll3 (1975).

______________________ - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—280—

14. Rosenhead , L. (ed.), Laminar Boundary Layers, Oxford (1963).

15. Haaland, S.E. and E.M. Sparrow , “Vortex Instability of Natural
Convection Flow on Inclined Surfaces ,” Int. 3. Heat Mass Trans.
v. 16 (1973), pp. 2355—2367.

16. Hwang , G.J. and K.C. Cheng, “Convective Instability in the
Thermal Entrance Region of a Horizontal Parallel-Plate Channel
Heated from Below ,” J. Heat Trans. (Trans. ASME, Ser. C) v. 95
(1973), pp. 72—77.

17. Asai, T. and I. Nakasuji , “On the Stability of Ekman Boundary
Layer Flow with Thermally Unstable Stratification ,” J. Meteor.
Soc. Japan v. 51 ( 1973) ,  pp. 2 9 — 4 2 .

18. Kuettner , J.P., “Cloud Bands in the Earth’s Atmosphere: Observa-
tion and Theory ,” Tellus v 23 (1971), pp. 404—425.

19. Ogura, Y. and A. Yagihashi , “A Numerical Study of Convection
Rolls in a Flow between Horizontal Parallel Plates ,” J. Meteor.
Soc. Japan v. 47 (1969), pp. 205—217.

20. Mori, Y. and Y. Uchida, “Forced Convective Heat Transfer between
Horizontal Flat Plates,” Int. J. Heat Mass Trans. v. 9 (1966),
pp. 803—817.

21. Hwang, G.J. and K.C. Cheng, “A Boundary Vorticity Method for
Finite Amplitude Convection in Plane Pc,iseuille Flow ,” Devel.
in Mechanics v. 6 (1971), pp. 207—220.

22. Lipps , F.B., “Two-Dimensional Numerical Experiments in Thermal
Convection with Vertical Shear,” 3. Atm. Sci. v. 28 (1971),
pp. 3—19.

23. Clever , R.M. and F.H. Busse, “Transition to Time-Dependent -
Convection ,” J. Fluid Mech. v. 65 (1974), pp. 625—645.

24. Avsec , D., “Sur les Formes Ondul~es des Tourbillons en Band~sLongitudinales ,” Comptes Rendus Acad. Sci. v. 204 (1937), pp.
167—169.

25. Coles, D., “Transition in Circular Couette Flow,” 3. Fluid
Mech. v. 21 (1965), pp. 385—425.



— 281—

ROUGHNESS EFFECTS ON TRANSITION ON AN ELLIPSOID
-PRELIMINA RY RESULTS—

by

M. M. Reischman & 6. L. Donohue
Naval Undersea Center

San Diego, California 92132

Presented at the RAN D Low Speed Transition
Workshop

Santa Monica , CA

September 1976

_ 
_ _  

_ I
- — — - - -  — — ---- --.---.---——-~~~~ ——.— . 

- - — .~



—282—

The adverse effect of surface roughness on a stabilized boundary layer is

well known, but quantitative data is lacking. The research discussed herein is

centered on obtaining transition data on a constant—pres5ure body with wall heating

and a variety of surface roughnesses. The transition l~cation will be deternined

by laser anemometer measurements made in the NUC low--turbulence water tunnel,

capable of a model length Reynolds numbers of 7X106. Surface roughness of 8, 32,
64 and 120 micro—inch will be tested with surface overheats of 5 and 10°F being

applied. The purpose of this paper is to discuss the experimental facility being

used and to present preliminary results of transition neasurements performed on

smooth and roughened, 9:1 ellipsoids of revolution at a~~ient wall temperature.

It is important that the experiments be carried Out in a well—characterized

experimental facility. The NUC water tunnel has a turbulence level of less than

0.2Z over the entire speed range of 0—16 rn/sec. Transition Reynolds numbers of

approximately 2 — 3 x io
6 
are observed for this frees:r~a~ turbulence level. The

freestream velocity, acoustic and vibration variations iave been well—characterized

in terms of level and spectra. The test section configuration is an open—jet

type, with a jet diameter of approximately 300 mis. m e tunnel is a recirculating

type with an essentially infinite run time.

Transition location is determined by analysis of laser anemometer measurements

of velocity fluctuations made near the body surface at sequential arc length

locations. Determination of the freestreani velocity for each location (X/L
2)

at which the turbulence level exceeds some prescribed value (—1%) defines the

transition Reynolds number,
2

A nine—to—one ellipsoid of rcvolution (50 mm maxi~~~ diameter) was chosen
as the basic test body due to its previously well—characterized behavior and

Its hydrodynamic simplicity. The body has an essentially zero pressure gradient

history for a large portion of its length, with a mini ai region of adverse

pressure gradient over the afterbody. The confounding ci transition delay due to

pressure gradient with the effects of wall heating and rQughness is minimized.

Two models have been constructed thus far. The first is the baseline model. It

Is a smooth (surface roughness of 8 microinches tins) anz cized aluminum body

instrumented with internally—mounted thermistors for the easurement of the axial

temperature distribution. The body is heated via an axis~-ntnetric parallel-flow

heat exchanger using hot water pumped in from outside t~ e tunnel as the working fluid .
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The temperature distribution can be controlled by varying the heating fluid

mass flow rate, inlet temperature and flow direction. Figure 1 shows the

model configuration. The second body is identical to the first except for

material (stainless steel) and surface roughness. The first roughened model

has a lath—machined 120 rms finish (two— dimensional distributed roughness).

The succeeding models will have the same overall configuration but with 64, 32

and 16 rms microinch finishes.

Test results obtained thus far are preliminary in nature and do not include

the effects of wall heating. Partial results of the flow field characterization

measurements are shown in Figure 2, which also describes the body geometry. The

calculated Ue/U~ and C as a function of x are done at a ReL 6.5Xl06, thep 
6 2

measured data points were taken at 4.3XlO . Considering the Re difference, all

measurements are within experimental error of the predicted values.

Transition measurements made thus far are summarized in Figu .e 3. The solid

and dashed curves represent the transition measurements obtair~ed in the NASA—Ames

and Northrop Aircraft wind tunnels on a similar 9:1 ellipsoidal model. The

turbulence level for those measurements was reported to be 0.02 and 0.12%

respectively. The data points for a smooth body of revolution in the NUC water tunnel

(turbulence level~~ 0.2%) are in r~~~nable agreement with these data. A transition

value predicted by an McDonnell—Douglas analysis using the Transition Analysis

Program System (TAPS) code is also shown. This code uses a spatial linear

stability analysis to predict transition.

The limited data taken on the roughened model under the same freestream

conditions is described by the closed data points in Figure 3. The k/9 values

at the measured transition point (X/L2) range from .021 to .041 values smaller
than one might expect to trigger transition according to Ko and Kosecoff (1).

If one selects kb of 0.2 (see ref. (1)) as a value which will “tickle” a

laminar boundary layer and ultimately result in transition, the corresponding
axial locations are 3—7 me from the nose. It should also be noted that the data

reported here qualitatively agree with the surface smoothness data presented by
Smith (2).
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