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Abstract

The purpose of this research is to determine the funda-
mental performance improvement of an optimum array detector
versus a conventional beamformer detector in a jamming
environment. The fundamental performance improvement is
based on total knowledge of both the desired signal and the
jammers, and their respective locations in space. The
Jammers are modeled as a colored noise component in the
binary hypothesis detection problem. Mathematical tract-
ability is achieved by considering distributed measurements
in space and time across the array. Conditions are identified
which allow determination of the necessary eigenvalues and
eigenfunctions by inspection of the propagation functions of
plane wave jammers.

Performance improvement is given for several jamming
scenarios: two mutually orthogonal jammers, single jammer
(two spatial dimensions), band limited jammer, and single
jammer (one spatial dimension). The optimum detector performs
respectively 68dB, 60dB, 19.5dB, and 20dB better than the
beamformer for the jamming scenarios addressed and similar
parameters for each case. The maximum performance improve-
ment for the two mutually orthogonal jammers occurs when
twenty-five percent of the signal power projects in the
direction of each jammer. Maximum improvement for a single
Jammer occurs when fifty percent of the signal power projects

in the direction of the jammer. Performance improvement in
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the presence of a spatially bandlimited jammer is due
primarily to the degradation of the beamformer's perfor-
mance. For the scenarios examined, the optimum detector
provides significant performance improvement over the

conventional beamformer detector.
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PERFORMANCE IMPROVEMENT OF A CLASS

OF ARRAY PROCESSORS IN A JAMMING ENVIRONMENT

I. Introduetion

Recently much research has been devoted to the subject
of multiple sensor or array type antenna systems. This
interest has been generated by the ability of the adaptive
array antenna systems to provide rapid inertialess scanning
for high speed angular coverage, their large power handling
capability, and their usability in environments where actual
movement of the antenna is difficult or impossible (Gallop,
1971: 2). When using an array system (or any other antenna
system), the goal is to process the measurement provided by
the array to extract information contained in the received
signal as accurately as possible. Heretofore, the design of
a radio frequency (RF) communications receiving system has
been divided into two segments: the antenna system and the
communications processor. Typically, each of these segments
was designed and optimized separately. These two optimally
designed segments were then united to form a single system
which, due to the ad hoc nature of this design approach,
may have resulted in an overall sub-optimal receiver processor.

Such a design approach has been motivated by several
factors. First, the disciplines of antenna design and processor
design were treated as separate and quite distinct areas of
academic interest and application. Second, the optimum proces-

sor has sometimes led to computations which were unrealizable

1

S—— . —_— - - S— - i 2 a




e

from a hardware point of view. This limitation has been
somewhat overcome recently by technology with the advent of
practical applications of digital processing techniques,
surface acoustic wave devices, and charge coupled devices
(Dudgeon, 1977:98; Melen and Buss, 1977:327-328).

With the ability to design and potentially build optimum
receliver systems at hand, the increased performance gained
from the optimum system needs to be compared with the:
performance of the conventionally designed system. This
comparison then becomes a useful tool in assessing the cost
relationships related to the two design approaches.

Depending upon the type of signal to be detected by
the antenna array processor system, different criteria
exist for the performance comparison of the optimum and con-
ventional array systems. For the case of a deterministic
signal, the comparison of the output signal to noise ratios
(SNR) of each system results in a useful measurement of
performance improvement of the optimum antenna array proces-
sor over the conventionally designed system (Van Trees, 1968:99).
This ratio of SNR is the method adopted to evaluate the funda-
mental performance improvement of the optimum array processor
in this thesis.

Some work has been done in the area of determining the
performance of optimum adaptive array receivers. Gallop and
Nolte addressed the performance of an array receiver for a
signal of unknown spatial location in spatially uncorrelated

Gausslan noise. They demonstrated a trade~off among array




parameters and signal parameters relevant to the performance
{ of the detector (Gallop and Nolte, 1974:429-435). 1In his
dissertation, Gallop concluded that he was unable to calcu-
late performance analytically even from the closed form
expression for discrete sampling by a two or three sensor
array for a signal at an unknown location (Gallop, 1971:73).
Adams and Nolte studied the performance of the array for a
signal of known location but an uncertain waveform in the
presence of spatially uncorrelated noise. They found that
the detection performance was equal to the performance of
the scalar processor with input signal to noise ratio
increased by a scalar factor (Adams and Nolte, 1975:656-669).
Hodgkiss and Nolte addressed the performance degradation for
the array processor when uncertainty exists in the direction
{ of the signal, noise source, or both (Hodgkiss and Nolte,
1976:605-615). All of the performance results obtained by
the previous studies included the effects of unknown signal
properties (direction, power, etc.) as well as uncertainty in
the noise source properties. The inclusion of these uncertain
properties clouds the issue of fundamentally how much better
the optimum array receiver does perform over any other array
receiver in the presence of jamming.
Pasupathy developed a performance comparison between
an optimum and conventional array processor using a distri-
buted (spatially continuous) measurement to simplify the
mathematics associated with a discrete element array. His
work, however, addressed only one spatial dimension and one

noise model for a passive sonar signal problem and did not




include the effects of signal or noise uncertainty (Pasupathy,
+978:158-164).

Examination of the fundamental performance improvement
of an optimum array processor in the presence of spatially
correlated noise (jammers) is the central issue of this thesis.
The approach to be followed extends Pasupathy's work to two
spatial dimensions and examines several different jamming
environments. The performance of the optimum processor is
considered a benchmark since the signal of interest is assumed
to be fully known and thus represents the most improvement
which the optimum array processor can provide in the jamming
environment.

The following chapters will address the representation
of the jamming signals as spatially colored noise. A review
of detection theory will be followed by the performance
improvement results of the optimum array processor. Con-
clusions drawn from these results and any recommendation for

additional research will be presented in the final chapter.




IT. Statistical Representation of Jamming Signals

This chapter addresses four topics in developing the
statistical representation of jamming signals. These topics
are: (1) scalar field theory, (2) fields as random processes,
(3) second moment description of jammer fields, and (4) series
representation of jammers.

A. Scalar Field Theory

Before looking at any representation of a jamming signal
it is necessary to establish a notation convention which is
based on scalar field theory. Consider first the scalar

field given by:
u(t,x,y,z) = A(t,x,y,x)cos[.?nf‘ot-q)(t,x,y,'z)] (1)

which is a function of both time and space coordinates. This

expression can more easlly be written as:

u(t,x,y,x) = Re{U(t,x,x,z)exp[—J2nfot]} (2)
where
U(t,x,y,x) = A(t,x,y,z)exp[jo(t,x,y,2)] (3}

U(t,x,y,z) 1s called the complex envelope of the scalar field.
This representation is appropriate for both electric and
magnetic fields. For the purpose at hand, the representation
is of an electric field with units of volts/meter//ohm. It is
easy to see that the complex envelope contains all the infor-
mation of the field centered at fo.

Scalar field theory and the use of the complex envelope

ST ———————— o PO o saes y =3 - gy




permit a straightforward means of representing a signal
impinging on an array surface. Fig. 1 shows the signal
originating from a point source, propagating through space
and striking the array surface. When the distance between
the array surface and the point source is large enough then
the wavefront striking the array surface is a plane wave
(Gagliardi and Karp, 1967:13). For ease of notation it is
convenient to consider the field at a specific value of the
z coordinate, thus reducing the complex envelope represen-
tation to two spatial dimensions. With this notation in
mind, the complex envelope of the plane wave striking the

array is given by:

UCt,x,y) = A(t)exp[Jy(t)Jexp [J (v, x+v y)] ()
where

Ve ™ g%cose
and

v, = g%cosc}

where A is the wavelength of the plane wave given by:

C

where ¢ is the speed of light and fo is the frequency of the
wave. A(t) 1s the time varying amplitude of the plane wave
and Y(t) is the time varying phase of the plane wave. When

A(t) and yY(t) are constant for all values of t then the plane
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wave 1s said to be monochromatic. When the bandwidth, B,

is much less than the center frequency, fo’ the plane wave
is said to be guaci-monochromatic (Gagliardi and Karp,
1976:13-17). Otherwise the plane wave is n;n—monochromatic.

B. Fields as Random Processes

When the fields of interest are unknown, it is convenient
to model them as complex random processes in time and space.
The purpose of this section is to develop a notation for
these random processes.

Consider first a complex representation of the field:
U(t,T) = Ug(t,F) + JU (t,F) (6)

where UR(t,F) and UI(t,F) are the real and imaginary parts of
U(t,r). The notation r is the vector representation of the
point described by the coordinates x and y.

The first moment of the random field is defined as:

E[fu(t,r)]

E[UR(t,F)] + JE[U (t,F)]

MR (E,F) + JMp(£,7) & m(t,F) (7

Given the first moment of the random field, the second
moments can be obtained from the correlation functions,
E[UR(t,F)UR(tgF')] and E[UI(t,F)UI(tgF')], and the cross
correlation, E[UR(t,F)UI(tQF')]. Direct evaluation shows that
the same information 1s contained in the complex terms
E[U(t,F)U(t,Tr')] and E[U(t,T)U*(t, )] for complex envelopes.

When working with random fields typical assumptions are
that the real and imaginary parts have the same correlation

functions and that they are uncorrelated and have zero mean.
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Hence,

E[u(t,r)u*(t, 7 )]

R{L,», B PY)

2E[UR(t,P)UR(tgP')] (8)

where R(t,r,t,r') is the correlation function of the field
represented by U(t,r). Several cases of the correlation
function are of interest for later use:
(a) Temporally Stationary:
R(t,F,t,F') = R(F,P,1) : (9a)
where 1 = t-t!
(b) oSpatially Stationary:
R(t,r,t,r') = R(P-F',t,t') (9b)
(c) Coherence Separable

R(t,r,t',r') = R (t,t') R AF,T") (9¢)

where Rt(t,t') and RS(F,F') are the temporal and spatial
correlation functions respectively.

"C. Second Moment Description of Jammer Filelds

The question of how to model a jamming environment can be
considered from a number of aspects depending upon the infor-
mation avallable about the jammer. For the case at hand, con-
sider a set of point sources in the far field of the array
of which one of the point sources i1s the signal of interest
and the other point sources are jammers as shown in Fig 2.
Since the point sources are in the far field, this implies

that the wave fronts arriving at the array are nearly plane
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waves. The detection problem for the jamming environment
becomes one of deciding whether or not the desired signal
is present in the plane waves striking the array. In order
to solve this detection problem, it is necessary to look
at the second moment properties of the jammers.

To account for both jammers and the thermal noise of
the array (always present), the total noise interference 1is
considered to be a spatially non-white Gaussian noise composed
of an independent white component which is both temporally and

spatially stationary representing the thermal noise of the

array and a colored component representing the jammer (Van Trees,

1968:287-288). The use of a colored component representation
allows for the inclusion of several jammer scenarios without
significantly changing the detection problem for the array.

Generally, for the array problem, the noise term is given by:
n(t,7) = w(t,F) + n (t,F) (10)

This leads to the following general representation of the

noise covariance:

Ky(t,t',F,F")=N_6(t-t")6(r-F") + Ko(tst',T,T") (11)

where No is the one-sided spectral density of the white

component with units of watt/m?-sec. The use of the white
noise component to represent the thermal noise of the array
is physically pleasing since the thermal noise 1s a broad-

band noise which is typically independent and identically
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distributed from sensor to sensor in the array. Additicaially
KN(t,t', r,r') and KC(t,t',F,P') are the covariance functions
of the total noise and colored component respectively.

The task now is to form both the total noise and colored
covariances. After forming these covariances, an interpre-
tation of the various jamming scenarios and the types of
covariances they imply is necessary.

First, as mentioned before, a single Jjammer is represented
as a plane wave emanating from a point source in the far field.

The complex envelope representation of the plane wave Jjammer

is
J(t,x,y) = Q(t)eXp[J@(t)]exp[J(vXX+vyy)] (12)
_ cos® _ cos¢
where Ve ® and vy il )

are the spatial frequencies of the plane wave and 6 and ¢
are the incident angles measured relative to the array's x
and y axes respectively (See Fig 3). Eq (12) can be rewritten

as
J(t,x,y) = ?(t)exp[J(v£(+vyy)] (13)
where B(t) = Q(t)exp[Jg(t)]

and B(t) is a complex random process. If more than one
Jammer 1is present, then the total jamming representation,

JT(t,x,y), is:

12
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Figure 3.

Single plane wave arriving at the array
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JT(t,x,y) Ji(t,x,y) =

A B{t)exp[Jv, x+v ,v)] (14)

no~=
e

M=
[

i
where N is the number of jammers present and Vg and vyi
are the spatial frequencies of each individual jammer. It is
assumed that the jammers are uncorrelated, .independent and
identically distributed. Additionally, the expected value of
each individual jammer's complex random amplitude, ?i(t), is
zero. This leads to the realization that the covariance
function of the colored component is the autocorrelation
function. The real and imaginary parts of JT(t,x,y) have

the same correlation functions. It is also assumed that the

jammers are temporally stationary (recall Eq (9a)). Hence,

the general autocorrelation function for the N jammers is:
Rc(t,t' ’XSy’x' ,y' )=E[JT(t’x’y)Jl¥l(t',X"y' )]

N
Y

5 Ri(r)exp{J[vix(x—x')+v1y(y-y')]} (15)

i
where Ri(T) is the individual temporally stationary auto-
correlation functions of the time varying amplitudes of the
jammers. Note that the individual terms in Eq (15) are in
the form given by Eq (9c) for temporally and spatially separ-
able autocorrelation functions.

The total noilse autocorrelation is
N

RN(T,F—F')=N06(T)6(F-F')+ E

d Ri(r)exp{J[vix(x-x')+v1y(y-y')]}

(16)

1
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Note that the spatially colored component is also spatially
stationary due to the properties of complex exponentials.
This representation of the total noise autocorrelation is
very difficult to manipulate mathematically in the equations
associated with the signal detection problem. Thus, to

further reduce this problem, consider representing Ri(r) as:
Ry (1) = aiRJ(T) (17)

This says that all of the jammers have the same temporal
statistics but may have different average power levels. By

redefining the exponential in the colored component as:
exp[J (vy x+vy 0 ¥)] = ¢, () (18)
and
7 My =
exp[J(vy x'4vy y")] = ¢, (F") (19)

then Eq (16) becomes:

N
Ry (T, F-F )=l 8 (06 (F-F1 4R, (1) 3 oy 0, (F)oy (F1) (20)
whil ¢
- N - *, -
R (t,F-" '+ Ry(1) L 0,0, (F)o (F') (21)

i=1
Eq (20) is in the general form given for a separable kernel
by Van Trees (Van Trees, 1968:316) if the a, are the eigen-
values, the ¢1(F) are the eigenfunctions, and RJ(T) is a
constant. If RJ(T) is not a constant, the separable kernel
is still present for only the spatial part of the correlation

functions. To be able to use this interpretation, it is

15




necessary to develop an intuition about the kernels implied
by various jamming scenarios. This intuition is based on a
series representation of the jammers.

D. Series Representation of the Jamming Signals

In general the composite jamming signal can be represented
as a spatial Fourier series expansion at a fixed time. This

expansion is given by:

e}
J(x,y) = = J exp[JQEEX’rJnf,TT y] (22)

n=-—o

where the random variable Jn are given by

L/2 W/2 :
I w1 UE gty vYexnf- Jggﬂx Jggly]dxdy (23)
~N LW
=L - =N
o

When the L and W are large enough the {n are approximately
uncorrelated (Papoulis; 1965:456). Having the { uncorrelated
means that exp[] n2n x+j n2w y] approximates the eigenfunctions
of a continuous correlation function (Davenport and Root,
1958:97).

In general, a correlation function R(r,r') can be repre-

sented as a Karhunen-Loéve expansion:

R(F,F') = £ B,z (F)c(F") (24)
ing 3 i

where the B, are the eigenvalues and the ci(F) are eigen-

functions of the correlation function and a solution of:

16




L/2 W/2

* B0y (F) = 1 I RGE,E ey (Fa (25)
%3

An examination of Egq (24) indicates useful interpreta-

tions implied by several jammer scenarios. First, a single
Jammer or a single jammer which 1s significantly more power-
ful than the other jammers approximates the condition when
there is a single dominant eigenvalue. When there are.
multiple jammers which are approximately equal strengthed
and weak compared to the thermal noise of the array then all
of the eigenvalues =re equal and approximately equal to No'

| The condition of multiple jammers which are of different

| strengths and resolvable by the array implies that the

elgenvalues and eigenfunctions are finite in number.

The last scenairo which was described 1s the same
situation (finite number of eigenvalues and eigenfunctions)
that Van Trees requires to get his separable kernel f ' the
detection problem. Since it has been shown that the ~omplex
exponentials are the eigenfunctions when (J(x,y) 1s expanded
such that the Fourier coefficients are uncorrelated, then
the exponentials are also approximately the eigenfunctions
for the spatial correlation function of the plane wave
Jammer. This spatial correlation function is given by the

spatial part of Eq (21):

N
Ry (F,F') = 1§lai¢i<;>o:(;') (26)

17




To insure that the ¢i(5)are orthogonal the following

criterion must be satisfied
8 = sinc [EE (cosB, - cose')]sinc[zﬂ (cos¢,-cos¢" )] (27)
1 X i 3 X 1 j

where 61 and 83 are the angles associated with x and x'
respectively, and similarly for ¢i and ¢j and y and y'.
The term Gij is the Kronecker delta function. The sinc
function is obtained by rewriting the exponentials in Eq
(26) using Euler's equation and observing the following

definition of the sinc function

sinc(x) = Eiﬁ;—i (28)
Satisfying Eq (27) yields a finite set of orthogonal functions
which must be normalized by/%w to get the orthonormal eigen-
functions. (The set of functions obtained visually from the
correlation function given by Eq (26) may not be a complete
set of eigenfunctions 1n which case the set of functions
from Eq (26) would be an approximation of the set of eigen-
functions.) Thus when the ¢i(F) are normalized the resulting

correlation function is:

N *
R_(P-P') = LW I o,T,(F)T, (F") (29)
s o e i
i=1
” 01(5)
where Ti(r) = and a, are the eigenvalues. Eq (29) is
VLW

18




now the proper form for Van Trees's separable kernel. Thus,
when the form of the correlation of the N plane waves is
given by Eq (26) and the angular locations of the jammers
are restricted such that Eq (27) 1is true, then the eigen-
functions can be identified by inspection and used to
develop the separable kernel. When the jammers are not
plane wave jammers or they are not mutually orthogonal then
the eigenvalues and eigenfunctions must be computationally
found by solving Eq (25). The difficulty associated with
this computation motivates considering only plane wave
Jammers who satisfy the criterion of Eq (27) and are thus
nearly orthogonal to each other.

From the foregoing discussion, the concept of repre-
senting the jammers as a colored noise component of the
noise in the signal detection problem has been developed.
Assumptions which facilitate the use of this concept have
been established in preparation for addressing the signal
detection problem and the performance evaluation of the

optimum array receiver in the presence of jamming.

19
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ITI. Signal Detection Theory

This chapter briefly reviews the formalism associated with

a binary hypothesis detection problem and then identified the
general structure for both the optimum array processor and

the conventional array processor. The signal detecticn review

primarily summarizes the results found in Van Trees (Van Trees,

1968:287-333) for a signal with single temporal and two spatial

dimensions in the presence of spatially non-white gaussiannoise.

A. Review of Signal Detection Theory

The binary hypothesis problem regquires the processor to
decide which of two hypothesis has occurred based upon the

received wave form. The problem is expressed as:

]

Hl:r(t,x,y)

Ho:r(t,x,y) nttx:y)

where r(t,x,y) 1s the complex received signal, s(t,x,y) is the

known signal, and n(t,x,y) is the spatially non-white gaussian

s(t,x,y) + n(t,x,y) tc[O,T],xe[:%,%],yEE

5]

noise. The noise term consists of white and colored components

to represent the presence of thermal noise and Jamming signals

as previously discussed. The signal energy is given by:

T L/2 W/2 &
E= [ _{ 4 s(,xy)s (t,x,y)dtdxdy
- e

where the array is L by W and the observation interval is [0,T].

The optimum processor computes the likelihood ratio or, if

the likelihood ratio is reducible, the sufficient statistiec.

For

the purpose at hand, the sufficient statistic, 2(r), is given by:

20

SUER TR W




T L/2 W/2 *
#(ry = I I L r(t,x,y)g (t,x,y)dtdxdy (32)
Z 5

where g(t,x,y) 1s called the Fredholm resolvent and is the solu-

tion of the integral equation:

_ rL/2 W/ 3 By 2
s(t,.r) = é i & g(t',r')RN(T,r—r')dt'dr' (33)
2 =2

where RN(T,F-F') is the autocorrelation function of the noise.
Fig. 4 illustrates the processor.

Of course, once the optimum processor is developed, the
issue of interest 1is measuring the performance of the
optimum processor. This measure is obtained by calculating
the probability of a decision error for the processor. The
probability of error for a binary hypothesis problem, where

the hypotheses are equally likely, is:

P(error) = erfc(%) (34)
and
< .
erfc(x) " g S exp [:g—]dx (35)
X Jow

where d 1s the geometric distance between the means of the
densities scaled by the standard deviation and given by (Van
Trees, 1968:99):

i [E(zlﬂl)-E(zIHo)]2

| Var(2TH_) (36)

Since the erfc(x) is a monotonic function, a comparison of
different receivers need only involve the parameter d? (Van
Trees, 1968:37-38). The parameter d? is interpreted as the

output signal to noise ratio of the optimum detector (Adams,
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1973:16). This measure 1is valuable for evaluating receiver
performance when the signals are deterministic.

B. Optimum Array

In general to determine the sufficient statistic for
the opgimum array detector it is necessary to solve Eq (33)
and then substitute the resulting Fredholm resolvent in Eq
(32). However, for a continuous wave CW signal and CW
jammers there is no time dependence in either of these
signals. 1In other words, the desired signal has constant
amplitude as does each of the jammers. Constant amplitudes
for the jammers implies that the jammers temporal correla-
tion function RJ(T) is a constant, Jo. Using the CW signals
in Eq (33) yilelds:

L/2 u/2 e ;
I & EGEENR (F-FUetraE (37)
-2 =2

s(r) = Nog(t,r) * 4,
where RN(T,F-F') was replaced by [NOG(T)G(F—F')+JORS(F—F')].
Since there is no time dependence in RS(F—P'), the time

1htegration is performed first to give:

- : = L/2 W/2_ _ o & ;
s(r) = Nog(t,r) + J0 ﬂ & g(r')Rs(r-r')dr' (38)
-p =g
where
-, T —
g(r') = é g(t',r')at! (39)
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There 1s no time dependence in the left hand side of Eq (38)
thus there can be no time dependence on the right hand side

of Eq (38). The only way to realize the equality is for:
26,550 &P (40)
which then means
g(r') = Tg(r") (41)
Thus the Fredholm resolvent g(t,r) has been shown to be time

independent for CW signals and CW jammers. Eq (37) can now

be rewritten using this fact to give:

: i L/2 W/2 S
s(r) = N g(r) + 77 _é _& g(F')R_(r-r')dr' (42)
g 2

The solution of Eq (41) for g(r) when substituted into Eq (32)
ylelds the processor shown in Fig. 5.

In general the kernel, RS(F-F'), has an infinite number
of eigenvalues and eigenfunctions and yields the following
solution for g(r) (Van Trees, 1968:316):

© s

- : 1 %
g(PF) = T § === ¢(7) (43)
° ja1 B4*N,
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where the Bi are the eigenvalues and the ¢(r) are the eigen-

functions of RS(F—F'). The s; are given by:

B R
B, ® _i ﬁ;é s(r)g, (¥)dr (44)
2 2

/s

The use of an infinite number of eigenvalues does not represent
a viable scenario for a jamming environment. To get a viable
situation consider that RS(F—F') is a separable kernel and as

such has the following solution for g(r) (Van Trees, 1968:323):

el

h 1 5 N sisi & "
B =g |oP)-19, I gy 5 (P (45)

For the case of N nearly orthogonal jammers, it has been demon-
strated previously in Chapter II that for plane wave jammers
the spatial eigenfunctions and spatial eigenﬁalues can be
obtained by inspection from the spatial autocorrelation of
the jammers. Thus using these eigenvalues and eigenfunctions
in Eq (45) the spatial Fredholm resolvent for CW plane wave
Jammers is:
i 1 2 »N 5404 o+
g(r) = N [s(r)-TJo b E—Tﬁ_Ti(r)} (u6)
o 1<1 1" "o

where T(r) is as defined in Eq (29). Substituting tﬁis
definition into Eq (45) yields:

5404 ¢i(P)
1 %Wy W

g(F) = % 8(F)-J T :
(o]

(47)

N
z
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where the ¢1(F) ar;“as defined in Eq (18).

Once the Fredholm resolvent is known, the sufficient
statistic and the performance can be determined for the
optimum processor. 1In general, Eq (36) can be reduced to
a simpler'férm for the binary hypothesis problem since the

noise is zero mean. The substitution of Eq (32) in Eq (36)

yields:
2
? L{Q w/z R Sk ¥
A s(t,r)g (t,r)dtdr (48)
d2 -2 -2
o T L/2 W/2 # 3 ¥ L72 w/2
E[ & -t w ne,Pge(e,Fracar [ [ & o (g, g(tyr)dt dr
2 5 3
which becomes
2
m L * s ¥
1 sz ¥/2 s(t,r)g (t,r)dtdr
o L ¥
d2_ -2 —2
o TL/ZW/2T L/2 W/2 L & 3 i
o L ow & L & Rylr,r-r)gf (¢,F)g(t,P)atdt drdr'  (49)
g - 2 7
Using Eq (2" 1in Eq (49) yields
T L/2 W/2 s ey S =
g é _{ & s(t,r)g (t,r)dtdr (50)
2 =2

which is the general result for the performance measure of

the optimum detector. For the .CW plane wave case, where the
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Fredholm resolvent is given by Eq (45) and Eq (31) is true

{ for the CW signal, then the performance measure is:

(51)

The next sfep is to find the performance measure of the
conventional detector when it 1is operating in the same

Jamming environment.

C. Conventional Array Detector

The conventional array detector is one which is optimized
for performance in the presence of white noise only (Van
Trees, 1971:152). The development is along the same line of
thought as for the optimum array detector except the noise
does not have a colored component (which is likened to saying

{ that the amplitude of the CW jammer, J

o 1s zero). With

this in mind, Eq (37) becomes:
s(r) = N_g(Tr) - : (52)

Thus the Fredholm resolvent for the conventional array detector

is quite obviously
- 1 =~ '
g(r) = 7 s(T) (53)

The representation of the conventional detector 1s commonly
called a correlation receiver. The correlation receiver is
also termed a beamformer in the case of an array detector

(Gallop, 1971:57).
28
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Since the beamformer is optimized for white noise only,
it is interesting to note its performance in the presence
of the spatially correlated noise used to optimize the

optimum detector. This noise 1is given by:

i

R, (

N -t ) = NOG(F-F) + JORS(F-F') (54)

Substitution of Eq (54) into Eq (49) yields:

2
L/2 W/2

T *
I § J n )ar
A s(r)g (r)drdt]

g =g (55)

? ? L{Q ¥/2 ? L/2 W/2 ? L{Q Y/2
- . ; £y
Bt Nog(r)g*(r)dt dtdr+ 2 W S

a2 - -2 2

N =
N

s T - -
g(r)g (P')JoRs(r—r')dtdrdt'dr'

Using Eq (52) in Eq (55) results in the following expression:

2

R WE :
I' s(r)g (r)drdt (56)
B i {2 ¥/2 T TT L72 172 W/2 W/2
o & =k <N s(r)g* (r)drdtdt'+ &0 il ’H ‘E
2 ‘ ¥ ¥ B %
g(F)g" (F')J R (F-F')dtdt' dFdr"

Substituting for RS(F—F') (Eq (24)) and having the signal
again satisfy Eq (31), as done for the optimum detector, then
the following performance measure for the conventional detector

is obtained:
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E2
EN0+J0T

dZ . (57)

; Logs,?
i=1
Having the expression in Eq (57) permits comparison of the
conventional array detector with the optimum array detector
for various jamming scenarios.

This chapter has developed the tools necessary to evaluate
the performance of both the optimum and conventional array
detectors. The next chapter uses these tools to.develop an

insight into the performance improvement afforded by the

optimum array processor over the conventional processor.
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IV. Performance Improvement

This chapter will discuss the performance improvement
that the optimum array detector provides over the conven-
tional beamformer in a jamming environment composed of CW
plane wave signals. First, the method of comparing the
two detectors will be discussed. Next three jamming sce-
narios will cover two cases of multiple jammers and a
degenerate case of a single jammer requiring only one
spatial dimension for processing. The two multiple jammer
scenarios are first the case of N nearly orthogonal jammers
and second the case of N jammers which cannot be individu-
ally resolved by the array. The performance comparisons
made for each scenario will demonstrate the superior
performance of the optimum array detector over the conven-
tional beamformer.

A. Performance Measure

In order to compare the performances of the optimum and
conventional detectors it is necessary to develop a measure
of the improvement. One such measure is to simply compare
the output signal to noise ratios for each of the detectors.

This comparison 1is denoted g and 1s defined as
p o2 (58)

where dé 1s the output signal to noise ratio (performance
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measure) of the optimum array detector and d; is the output
signal to noise ratio of the conventional detector. Clearly
the regimes of p which are of greatest interest when p is
much greater phan one and when u is approximately equal to
one. The first regime (u much greater than one) indicates
that the optimum array detector performs much better than
the conventional detector. The second regime (up approxi-
mately equal to one) indicates that both the optimum and
conventlional detectors perform about the same.

Recalling Fgqs (51) and (57), which are the general
expressions for the performance measures of the optimum
and conventional detectors in the presence of CW plane wave

Jammers, the ratio p has the form:

2
JOT N SiB1

- D
N =1 N_+8
we-2—2o 171 o7y (59)
E2
N 2
EN. -+ g T Ea0s
0O 04,11
which can be rewritten
J. Bt J. N
e [1-52 zﬁ-i—ré- 1+ % I Bs,? (60)
o i=10 "1 o i=1
where
82
' = T — (55
*
L s(x,y)s (x,y)axdy
- S )




po

and
L/2 W/2
E = _i W s(x,y)s (x,y) T (62)
- AR

This normalizes the signal energy and leads to an expression
which is more easily interpreted. The expression in Eq (60)
is valid for comparing the performance of the optimum and
conventional detectors in an environment of CW jammers so long
as the colored noise component results in a separable kernel.
The discussions are all special cases of Eq (60).

B. N Nearly Orthogonal Jammers

The scenario involving N nearly orthogonal CW plane wave
jammers requires that the criterion established in Eq (27) be

met. With this criterion met, Eq (60) becomes:

N N
a=14+ {IW)*J°Cz =

o ‘N
i b T a2 (1 s 2) (63)
Na=15=1

(LWo  #N N | 42979 Ju 1 3

where the B, are LWo, (recall a, from Eq (29) and the s' are
il i i i

given by:
L W
sy = iin(vsx_vnx1)§ ain(vsy-vnyi)ﬁ (64)
E(vsx_vnxi) E(vsy-vnyi)
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where L S vsy’ Vo 8 and vnyi are the spatial frequencies

of the signal and jammer and are given by:

vy = 3 (65a)
s
_ cos¢
\)sy = —}\—- (65b)
s
: z cosei e
nxi v, :
- cosq>i (654)
Vnyi = X,

and the es, eni, ¢s and ¢ni are the incident angles rela-
tive to the array's x.and y coordinate (recall Fig. 3) for

the signal and Jammers. The eigenfunctions used to compute
the s& are given by Eq (29) as previously discussed. After
applying the assumption that the signal and jammers are at

the same.wavelength, As’ and recalling the definition of

sinc(x) in Eq (28), Eq (64) becomes

s& = sinc [%I(coses-coseni)] sinc[%ﬂ(cos¢s-cos¢ni)] (66)
s s

Thus the significant aspect of Eq (63) with regard to the

performance improvement is the value of the si’. The double
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1
number and serves to weight the terms involving the s&z.

sum coefficient of the s in Eq (63) is always a positive
Several observations can be made relative to the performance
improvement. v

First, when all of the s&z are zero, then the performance
indicator, u is unity. This situation occurs when the signal
is nearly orthogonal to all of the jammers. 1In this case,’
the conventional detector can detect the signal as well as
the optimum detector since the effect of the jammers has been
neutralized by the mutual orthogonality of the signal and
Jjammers.

Second, p 1is also unity if the s&z all sum to one. This
situation occurs if the signal is perfectly aligned with one
of the jammers. Then, in this case, both the optimum and
conventional detectors perform equally poorly.

The above discussion addressed the cases of equal per-
formance for the optimum and conventional detectors. These
cases are interesting, but the case of greatest interest is
that in which the optimum detector is clearly superior to'the
conventional detector (u is much greater than unity). To

look at this case, consider first, that due to the mutual

'orthogonality, the signal will project only on those jammers

who fall within the resolution range of the array when it's
main beam 1is directed at the signal. All other jJjammers will

have no effect upon the signal.
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For the case when there are two jJjammers close enough
for the signal to project on each of them, the Eq (63)

becomes:

272
(LW) Jo oy a5

¥ [(LWa1+N07 Y (e, 7)Y ] e (67)

2

2 2 2
(si + s} ) [ 1—(33 + sb)]

Eq (67) can be simplified greatly if the following realtion-

ships are assumed:

(68a)

and

gt i = sbz (68b)

Eq (68a) implies the two jammers are of equal strength. Egq
(68b) implies that the signal projects equally onto each
Jammer. Stated another way, the signal 1s angularly equi-
distant from each jammer in either the x or y dimension.

Then Eq (67) becomes:

(Lw)‘ngs a

N0 (LWo

u=1*+

2
1 xad
W [512(5 » 312)] (69)

=

or by letting Yy be given by
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oL 16(Lw) J2 [ ai ]

N, (LWa,+N ) (70)
then Eq (69) becomes
w14y [Siz(% - st )] (71)

r 2

where sl

is given by

siz = sincz[%g (coses—coseni)] sincz[¥g(cos¢s-cos¢ni) ] (72)

From Eq (72) and the assumptions made in Eq (68b), it is
clear that s&z is bounded by zero and one-half. Fig. 6 plots

Eq (71) as a function of siz. From Fig. 6, the maximum value

of y occurs when eh

2equals one-fourth and is given by

i 1+ .0625Y (73)

max

This situation represents the fact that the signal projects
twenty fiQe percent of its power in the direction of each
of the two jammers. For u to be much greater than unity,

it is necessary for the following condition to be true:
ysi2(% - s'2)>> 1 (74)
AR 1
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Recalling Eq (69), the condition described in Eq (74) occurs

when the following situation exists:

N
(o] ' 2
2 1 Sl M (75)

which says that twenty five percent of the thermal noise (No)
to interference power (JoalLW) ratio is much less than the

signal power in the interference direction. Thus by knowing
the thermal noise of the array, the array size, the inter-

ference power and the Adocation of the jammers in both spatial
dimensions, the signal location can be positioned to achieve
the criterion established in Eq (75). Alternately, knowledge

and ability to change any of the parameters permits the

optimum detector to be peaked for maximum performance improve-

ment for a given situation.

As an example, consider letting the ratio of the inter-
ference power to the thermal noise be 30dB and the value for
siz be 0.1, then the criterion in Eq (75) are satisfied and
substitution into Eq (69) indicafes that the performance
improvement of the optimum detector is on the'order of 68dB.

Computing dé using Eq (51) and dé using Eq (57) for the same

condition yields:

d; = 101dB (76a)
d; = 33dB (760b)
39
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These results are for a normalized signal energy and indicate
that the optimum detector is clearly better than the beam-
former.

Before concluding the mutually orthogonal jammer
scenario, an interesting degenerate case is the one for only
a single jammer present. For the single jammer, Eq (63)

becomes:

(LW)*a?J?2 % £
u = 1 + m S 1—5 (77)

where s' 2 is given by Eq (72) when the subscripts are deleted.
For the single jammer case, s' 2 is bounded by zero and one.

Fig. 7 plots the following function versus s' 2:
pe ) o« yrg’ S(1-n’ %Y (78)
where y' 1is the constant coefficient in Eq (77).

From Fig. 7, the maximum value occurs when s' ? equals

one-half and 1s given by:

u 1+ .25y (79)

max
This situation represents the fact that the signal projects
fifty percent of its power in the direction of the jammer

(Pasupathy, 1978:161). For u to be much greater than unity

it 1is necessary for the following criterion to be true:

Lo
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v! g*3(3-8'%) 2> 1 (80)

This condition occurs when

No

oEee—— 2 o
T °° ik (81)

which says the ratio of thermal noise to interference power

is much less than the signal power in the interference direction.

Using the same example as used previously for the two nearly
orthogonal jammers, the performance improvement of the optimum
detector over the beamformer is now 60dB. Again the example

was done for a unit energy signal.
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C. N Non-Resolvable Jammers

The next jamming scenario of interest 1s the scenario
in which the array cannot resolve the individual jammers
due to insufficient angular separation among the jammers.
This case corresponds to having a single spatially band-
limited jammer with N significant eigenvalues. If the N
Jammers are all of equal power then the eigenvalues can be
considered to be approximately equal. Thus the expression

for py given by Eq (60) becomes:
N . N '
2 8. (1=E 8.%) (82)

where n is the significant eigenvalue and the s& are as
previously defined in Eq (61) and Eq (44). ‘The notable
difference between this case and the case of N nearly

orthogonal jammers is the determination of the eigenfuncticns.
For the orthogonal jammers, the eigenfunctions were the weighted
exponential propagation functions of each Jjammer. For the band-
limited case, the eigenfunctions need to be computed. This
determination of the eigenfunctions must be done for specific
examples and cannot be done in general. However, by inter-
preting the summation of the siz as the signal power in the
interference beamwidth of the array (Pasupathy, 1978:161),

it 1s possible to develop an intuition about the performance
improvement of the optimum detector versus the conventional

detector. By redefining the summation of the s'? Eq (82) becomes

a s




i O 2 2
u_1+-(n+_No)To- g*{l-0*) (83)
where
N
o2 = I s;? (84)
1=1 .

Comparing Eq (83) with Eq (77), it is obvious that the two
equations are of the same form, differing only in the constant
coefficient. Thus, the same analysis is valid as was performed
for the single jammer in the previous section with some ampli-
fying observations regarding the physical interpretations.

When 0% is equal to one-half, u achieves its maximum value

and is given by:

nd

~ el

when n 1s much greater than the thermal noise, No' To inter-
pret Eq (85), it is necessary to look at d; and dé. These

quantities are gilven by

2 , 1 » o i
dg = N Jon >> N, o 5 (86a)
and
dé”NIJ Jns>>N, o =4 (86b)
o,"o o o’ 2
(55>)
o
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Evidently, dé is 1hdependent of n for the given situation
but dé depends inversely on the relationship between nJ0
and No' Thus the performance improvement indicated by

umax is primarily due to a degradation of the conventional
detector performance rather than an increase in the perfor-
mance of the optimum detector (Pasupathy, 1978:162). This
was not the case for the orthogonal jammer scenario. In
that scenario the performance improvement was tied to both
the improvement afforded by the optimum detector and the
degradation of the conventional detector.

To quantify this scenario in terms of performance improve-

ment as previously done, consider letting nJO be much greater
nd
o

No

equal to 0.1 the performance improvement is approximately

than N_, and the ratio be equal to 30dB, then for a o?
19.5dB when 2all of the assumptions and conditions are
substituted into Eq (83). The fact that this scenario has N
jammers is contained in the o? and variations in the results due
to a different number of jammers are attributed to variations in
¥,

D. Single Jammer, Single Spatial Dimension

The final jamming scenario is really a degenerate case of
the single jammer scenario discussed for two spatial dimen-
sions. This degenerate case 1s one in which it 1is necessary
to look only at a single spatial dimension. The degenerate
case comes about when either of the sinc functions in Eq (66)

is unity. This means that the signal and jammer are aligned in

one of the spatial dimensions. With this being the case, it

by




is necessary to look only at the single spatial dimension
to determine the performance improvement. Thus for the

one dimension case Eq (77) becomes:

L2a2J2
p=1+4 2 q®(1-q2) (87)
(La+Nom

where gq? is given by:

q? = sincz[%l(coses—cosen)] (88)

s
Again the same interpretations as made for the two dimension
single jammer case apply. Fig. 8 illustrates a specific
example of the one dimension case. Given that a, No’ AS, and
L are all fixed for the example, it 1s easy to see the effect
of different angular separations between the signal and the
jammer. Thus, Fig. 8 indicates the improvement for different
signal incident angles (es) to the array of the optimum
detector over the conventional detector. For example, given
that the array could be easlly reoriented so as to change the
incident angle of the signal, then knowledge of the angular
difference (A6) between the signal and jammer would indicate
which incident angle would provide the greatest performance
improvement. Also from Fig. 8 the performance improvement
for the example which has been used in all of the previous
scenarios 1s given to be approximately 20dB.

This chapter has succeeded in developing a performance
measure, y, which was used to evaluate three jamming scenarios.

The three jamming scenarlos were evaluated with a common
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example and 1t was shown that the optimum array detector
is significantly better than the beamformer. Additionally
physical interpretations were made to enhance the informa-
tion provided by the performance compariséns. The final

conclusions of this thesis and recommendations for additional

research are addressed in the next chapter.
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V. Conclusions and Recommendations

A. Conclusions

The preceeding discussion has developed three areas.
First, the representation of several jamming scenairos as
a colored noise component in the noise term of the binary
hypothesis detection problem. Second, a measure of perfor-
mance improvement, u, was developed by comparing the output
signal to noise ratios of the optimum and conventional array

detectors. Analysis of the performance improvement was

presented for the jamming scenarios of interest based on

total knowledge of the desired signal and the jamming signals.
This analysis developed relationships which identified the
parameters which the system designer could address to achieve
maximum improvement from the optimum array detector. Finally,
an exémple was presented for each scenairo'which showed that
the optimum array detector was significantly better than the
beamforher.

Several of the points previously made need to be reiterated.
First, for single jammers, the maximum performance improvement
is achieved by the optimum detector when fifty percent of the
signal power is projected in the jammer's direction. This is
also valid for multiple jammer situations when the'signal is
nearly orthogonal to all but one of the jammers. Secondly,
for single Jjammers and N nearly orthogonal jammers the thermal
noise/interference power ratio must be much less than the

signal power in the Jamming directlion to achleve significant
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performance improvements. In the case of the non-resolvable
Jammers it was seen that significant performance improvement
was largely due to degradation of the conventional detector
rather than the improved performance of the optimum detector.

These observations bring out two points which are appli-
cable to the array problem. First, the signal power and the
projection of the signal power in the interference (jamming)
direction significantly affect the performance of the detectors.
Secondly, the thermal noise, in the case of the non-resolvable
Jammers particularly, is a significantly contributing factor
in the performance of the detectors.

It is recognized that the criterion which allows the
single spatial dimension degeneration is probabilistically
very unrealizable. None the less, the single spatial dimension
provides the ability to get a "back of the envelope" approxi-
mation which, when compared to the two spatial dimension
results, provided the engineer with an insight into the problem
without a great deal of effort.

Finally, a single example was exercised for each secnario.
In this example the ratio of jammer interference power to
thermal noise was equal to 30dB and the pafameter related to
the projection of the signal onto the jammer was equal to 0.1.
The resulting performance improvements were 68dB, 60dB, 19.5dB,
and 20dB for the two orthogonal jammers, single jammer (two
spatial dimensions), spatially bandlimited jammer, and the single

Jammer, (single spatial dimension)respectively. The variations
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in the performance improvement are related to the complexity
of the individual jamming scenario. However, all of the
scenarios indicate that the optimum array detector is clearly
better than the beamfcrmer.

B. Recommendations

The previous work is based on full knowledge of the signal
and the jammers, particularly with regard to amplitude and
direction. This fact suggests that future research should
extend the assessment of performance improvement by relaxing
the assumptions which were made in this study. Specifically,
addressing the performance improvement for time varying
amplitudes for both the desired signal and jammers and the
inclusion of temporally dependent signals would be the next
logical extension of this research. Succeeding extensions
of the effort would include examination of signals with
random amplitude and random phase, and a relaxation of the
directional knowledge of the signal's location. Completion
of these research tasks would provide a relatively complete
picture of the performance improvement that an optimum array

detector can provide.
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