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Abstract

The purpose of this researc h is to determ ine the funda-

mental per formance improvement of an opt imum array detec tor

versus a convent ional beamformer detector in a jamming

environment . The fundamental performance improvement is

based on total knowledge of both the desired signal and the

jammer s, and their respective locations in space. The

jammers are modeled as a colored no ise component in t he

binary hypothesis detection problem . Mathematical tract—

ability is achieved by considering distributed measurement s

in space and t ime across the array . Condit ions are ident if ied

which allow determination of the necessary eigenvalues and

eigenfunctions by inspection of the propagation functions of’

plane wave jammers .

Performanc e improvement is given for severa l jamming

scenarios: two mutually orthogonal jammers , single jammer

(two spat ial dimens ions ) , band limited jammer , and single

jammer (one spatial dimension). The optimum detector performs

respectively 68dB, 60dB , 19.5dB , and 20dB better than the

beamformer for the jamming scenar ios add resse d and similar

parameters for each case. The maximum performance improve-

ment for the two mutually orthogonal jammers occur s when

twenty—five percent of the signal power projects in the

direction of each jammer. Maximum improvement for a single

jammer occurs when fifty percent of the signal
S power projects

in the direction of the jammer. Performance improvement in

V
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the presence of a spatially bandlimited jammer is due

primarily to the degradation of the beamform er ’s per for-

mance. For the scenar ios examined , the optimum detector

provides significant performance improvement over the

conventional beamformer detector.
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PERFORMANCE IMPROVEMENT OF A CLASS

4 OF ARRAY PROCESSORS IN A JAMMING ENVIRONMENT

I. Introduction

Recently much research has been devoted to the subject

of multiple sensor or array type antenna systems . This

interest has been generated by the ability of the adaptive

array antenna systems to prov ide rapid inert iales s scann ing

for high speed angular coverage , their large power handling

capability, and their usability in env ironments where actual

movement of the antenna is difficult or impossible (Gallop ,

1971: 2). When using an array system (or any other antenna

system ) , the goal is to process the measurement provided by

the array to extract information contained in the received

signal as accurately as possible . Heretofore , the design of

a radio frequency (RF) communicat ions rece iving syst em has

been divid ed into tw o segments: the antenna system and the

communications processor. Typically, ea ch of these segmc~its

was designed and optimized separately. These two optimally

des igned segments were then unite d to form a single system

which , due to the ad hoc nature of this design approach ,

may have resulted in an overall sub—optimal receiver processor .

Such a design approach has been motivated by several

factors. First, the disciplines of antenna design and processor

design were treated as separate and quite distinct areas of

academ ic interest and application. Second , the optimum proces—

sor has sometimes led to computations which were unrealizable

3.
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from a hardware point of view. This limitation has been

( somewhat overcome recently by technology with the advent of

practical applications of digital processing techniques ,

surface acoustic wave devices , and charge coupled devices

(Dudgeon, 1977:98; Melen and Buss , 1977:327—328).

With the ability to design and potentially build optimum

receiver systems at hand , the increase d performance gained

from the optimum system needs to be compared with the-

perf ormance of the convent ionally designed system . This

comparison then becomes a useful tool in assessing the cost

relationships related to the two design approaches.

Depending upon the type of signal to be detected by

the antenna array pro cessor system , different criteria

ex ist for the performance comparison of the opt imum and con-

( ventional array systems . For the case of a deterministic

signal, the comparison of the output signal to noise ratios

(SNR) of each system results in a useful measurement of

performance improvement of the opt imum antenna array proc es-

sor over the convent ionally designed syst em (Van Trees , 1968 : 99 ) .

This ratio of SNR is the method adopted to evaluate the funda-

mental performance improvement of the optimum array processor

in this thesis.

Some work has been done in the area of determining the

performance of optimum adaptive array receivers . Gallop and

Nolte addressed the performance of an array receiver for a

signal of unknown spatial location in spatially uncorrelated

Gaussian noise. They demonstrated a trade—off among array
I f

2
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parame ters and signal parameters relevant to the perf ormance

f of the detec tor (Gallop and Nolte , l97~1 :1429—1435). In his

dissertation , Gallop concluded that he was unable to calcu-

late performance analytically even from the closed form

ex press ion for discret e sampl ing by a two or three sensor

array for a signal at an unknown location (Gallop, 1971:73).

Adams an d No lt e s tudied the performance of t he arra y for a

signal of known location but an uncertain waveform in the

presence of spatially uncorrelated noise. They found that

the detection performance was equal to the performance of

the scalar processor with input signal to noise ratio

increased by a scalar factor (Adams and Nolte , 1975:656—669).

Hodgklss and Nolte addressed the performance degradation for

the array processor when uncertainty exists in the direction

( of the signal , noise sourc e, or both (Hodgkiss and Nolte ,

1976:605—615). All of the performance results obtained by

the previous studies included the effects of unknown signal

properties (direction , power , etc.) as well as uncertaint y in

the noise source properties. The inclusion of these uncertain

propert ies clouds the issue of fundamentally how much bett er

the opt imum array rece iver does perform over any ot her array

receiver in the presence of jamming .

Pasupathy deve loped a performance comparison between

an optimum and conventional array processor using a distri-

buted (spatially cont inuous) measurem ent to simpl i f y  the

mathematics associated with a discrete element array . His

C 
work , however , add ressed only one spat ial dimens ion and one

noise model for a passive sonar signal problem and did not

3 5.
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include the effects of signal or noise uncertainty (Pasupathy,

£978:l58—1614).

Examination of the fundamental performance improvement

of an optimum array processor in the presence of spatially

correlated noise (jammers) is the central issue of this thesis.

The approach to be followed extends Pasupathy ’s wor k to two

spatial dimensions and examines several different jamming

environments. The performance of the optimum processor is

considered a benchmark since the signal of interest is assumed

to be fully known and thus represents the most improvement

which the optimum array processor can prov~ dc in the jamming

environment .

The following chapters will address the representation

of the jamming signals as spatially colored noise. A review

( of detection theory will be followed by the performance

improvement results of the optimum array processor. Con-

clusions drawn from these results and any recommendation for

additional research will be presented in the final chapter.

C
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II. Statistical Representation of Jamming Signals

This chapter addresses four topics in developing the

sta tist ica l representat ion of jamming signals. These topi cs

are : (1) scalar field theory, ( 2) f ields as random p rocess es ,

(3) second moment description of jammer fields , and (14) series

representation of jammers.

A. Scalar Field Theory

Before looking at any representation of a jamming signal

it is necessary to establish a notation convention which Is

based on scalar field theory . Consider first the scalar

field given by:

u(t ,x,y,z )  = A ( t ,x ,y,x)cos [2~ f0t—~ (t ,x,y z) ]

{ which is a function of both time and space-coordinates. This

ex press ion can more eas ily be wr itten as:

u(t ,x ,y,x ) = Re{tJ(t ,x ,x,z)exp [—j2rr f0tj )  (2)

where

U(t ,x ,y,x) = A(t ,x ,y, z)exp [j4(t,x ,y,z)] (3)

U(t ,x ,y,z) is called the complex envelope of the scalar field.

This representation is appropriate for both electric and

magnetic fields. For the purpose at hand , the represent ation

is of an electric field with units of volts/meter//~’Fii~. It is

easy to see that the complex envelope contains all the infor—

mation of the field centered at f0.

Scalar field theory and the use of the complex envelope

5
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permit a straightfor~:ard means of representing a signal

( impinging on an array surface. Fig. 1 shows the signal

or iginat ing from a point source, propagating through space

and striking the array surface. When the distance between

the array surface and the point source is large enough then

the wavefront strIking the array surface is a plane wave

(Gagliard i and Karp , 1967:13). For ease of notation it is

convenient to consider the field at a specific value of the

z coordinate , thus reducing the complex envelope represen-

tation to two spatial dimensions . With this notation in

mind , the complex envelope of the plane wave striking the

array is given by:

U(t,x,y) = A(t)exp [jlP (t))exp [i(v
~
x+v

~
y)] (~ )

where
( 2’ff

= —~.cosO

and

vy = •?*cos#

where A is the wavelength of the plane wave given by:

• A (5)

where c is the speed of light and f0 is the frequency of the

wave . A(t) is the time varying amplitude of the plane wave

and ~p(t) is the time varying phase of the plane wave . When

A(t) and ~p(t) are constant for all values of t then the plane

6 
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wave is said to be monochromatic . When the bandwidth , B,

is much less than the center frequenc y , f0, the p lane wave

is said to be quasi—monochromatic (Gagliardi and Karp ,

1976:13—17). Otherwise the plane wave is non—monochromatic.

B. Fields as Random Processes

When the fields of interest are unknown , it is convenient

to model them as complex random processes in time and space.

The purpose of this section is to develop a notation for

these random proc esses.

Consider first a complex representation of the field:

U ( t ,~~) = UR (t ,
~~
) +. jU1(t,~~

) (6 )

where U~ (t ,~~) and u1(t ,i~) are the real and imaginary parts of

U (t ,~~). The notation i is the vector representation of the

4 point described by the coordinates x and y.

The first moment of the random field is defined as:

E[U(t,~~)] = E[UR (t ,
~~
)] + jE[U1(t,~~fl

= M~ (t ,~~) + jM1(t ,~~) ~ M(t ,~~) (7)

G iven the firs t moment of the random field , the second

moments can be obta ined from the correlat ion funct ions ,

E[U
R

(t ,i)UR(t’,Ft)] and E[U1(t ,i)U1(t’,~~’) ] ,  and the cross

correlation, E[U~ (t ,i) U1(t’,i’ )J . Direct evaluation shows that

the same information is contained in the complex terms

EEU(t ,F)U(t’,i~’)]andE[U(t ,~~)U*(t’,~~’)] for complex envelopes.

When working with random fields typical assumptions are

that the real and imaginary parts have the same correlation

C functions and that they are uncorrelated and have zero mean .

8
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Hence ,

E[U(t,~~)U~ (t’, ~~
‘ )]  = R(t ,r,t’,i’)

= 2E[UR (t ,
~~

)U R(t’,~~’)J 
(8)

where R(t ,~~,t’,i’) is the correlation function of the field

represented by U(t,F). Several cases of the correlation

function are of interest for later use:

(a) Temporally Stat ionary :

= R ( ~~, ?, t)  (9a)

where T = t—t ’ -

(b) Spatially Statinnary :

J1(t ,i~,t’,i~’) = R(F—i ’ ,t,t ’ )  (9 b )

(c )  Coherence Separable

= Rt(t ,t’) R5(~~,F’) (90)

where Rt (t ,t ’ )  and R5(~~,~~’) are the temporal and spatial

correlation functions respectively .

C. Second Moment Description of Jammer Fields

The question of how to model a jamming environment can be

considered from a number of aspects depending upon the infor-

mation available about the J ammer. For the case at hand , con-

sider a set of point sources in the far f ield of the array

of which one of the point sources is the signal of interest

and the other point sources are jammers as shown in Fig 2.

Since the point sources are in the far field , this implies

that the wave fronts arriving at the array are nearly plane

___  - - - - __ ___ _±_ _ - -5 - - — 
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waves. The detection problem for the jamming environment

4 becom es one of deciding whether  or not the desired signal

is present in the  plane waves s t r i k ing  the array . In order

to solve th is  de tec t ion  problem , it is necessary  to look

at the second moment properties of the jammers.

To accoun t for  bot h jammers an d the thermal no ise of

the array (a lways  p r e s e n t ) ,  the to ta l  noise in te r fe rence  is

considered to be a spat ia l ly  non—white  Gauss ian  noise composed

of an independent white component which is both temporally and

spat ia l ly  s ta t ionary  represent ing the thermal  noise of the

array and a colored component represent ing the j ammer (Van Trees ,

19 6 8 : 2 8 7— 2 8 8 ) .  The use of a colored component representa t ion

allows for the inclusion of several j arnrner scenarios wi thout

significantly changing the detection problem for the array .

( Genera lly,  for t he array prob lem , the noise term is given b~j:

n(t,i)  = w ( t ,~~) + n0 (t ,i )  (10)

This leads to the fol lowing general representa t ion  of the

noise covariance:

K N (t ,t ’  ,i ,i ’  ) =N 06 ( t — t ’ ) 5 ( i — ~ ’) + K c (t ~ t ’  ~~~~~~ (11)

where N0 is the one—sided spectral density of the white

component with units of watt/m2—sec. The use of the white

noise component to represent the thermal no ise of the array

is physically pleasing since the thermal noise is a broad-

band noise which is typically independent and identically

11
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S d i s t r ibu ted  from sensor to sensor in the array . Additi .~.;ally

K N ( t , t ’ , i ,F’) and KC (t ,t ’ ,
~~
,
~~
’) are the covariance functions

of the to ta l  noise and colored component respect ive ly .

The task now is to form both the total noise and colored

covar ian ces . A fter form ing t hese covar ianc es , an inter pre-

tation of the various jamming scenarios and the types of

covariances they imply is necessary .

First , as mentioned before , a single jammer is represented

as a plane wave emanating from a point source in the far field.

The complex envelope representation of the plane wave ~ammer

is

J(t ,x,y) = A(t)exP[i
~~
(t)]exP [J (v

~
x+v

~
Y)] (12)

where = 
c~ sO and \)y 

=

are the spat ial  f requencies  of the plane wave and 0 and q

are the incident angles measured relative to the array ’s x

and y axes respectively (See Fig 3). Eq (12)- can be rewr it t en

as -

J (t ,x ,y) = B(t)exP[J(v
~

X+v
~
Y)] (13)

where B(t) = A(t)exp [j~,(t)]

and B(t) is a complex random process. If more than one

jammer is present , then the total jamming representation ,

JT(t ,x ,y), is:

C
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41 J (t ,x , y)  = Z J (t ,x ,y) = E Bçt)exp[j(v x+v .y)] (114 )
i=l i= l’  x

where N is the number of jammers present and Vxi and v~~
are the spat ia l  f requenc ies  of each ind iv idua l  j ammer.  It is

assumed that the jammers are uncorrelated , independent and

iden t i ca l ly  d i s t r i bu t ed . A d d i t i o n a l l y ,  the expected  value of’

each individual jammer ’s complex random amplitude , 
~i

( t ) ,  is

zero. This leads to the realization that the covariance

function of the colored component is the autocorrelation

funct ion. The rea l an d imag inar y part s of JT(t ,
~~

,y ) have

the same corre lat ion func t ions .  It is also assume d that the

j ammers are temporal ly s ta t ionary  ( recal l  Eq ( 9 a ) ) .  Hence ,

the general autocorrelation function for the N jamniers is:

( RC (t ,tt ,X , y , X~ ,y~ )=E[JT(t ,x ,y )J
~~
(t1,Xr,y 1)]

N
= Z R1(T)exp{j{v1~ (x_x ’) +v ~ ( y — y ’) ] }  (15)

i=1 y

where R1(-r ) is the individual temporally stationary auto—

corre lat ion funct ions of the t ime varying amplitu des of t he

jammers . Note that the individual terms in Eq (15) are in

the form given by Eq (9c) for temporally and spatially separ-

ab le autocorrelat ion funct ions .

The tota l no ise autocorrelat ion is

N
RN (T,

i_ i ’ )=N06(’r)~~(~ —~~’ )+ E R i(i)exp{j[vi~
(x_x ’ )+v1 (y—y ’)])

i=l
(16)

c



Note that the spatially colored component is also spatially

{ stationary due to the properties of complex exponentials.

This representation of the total noise autocorrelation is

very difficult to manipulate mathematically in the equations

associated with the signal detection problem . Thus , to

further reduce this problem , consider representIng Ri(T) as:

= 
~i

RJ (T) (17)

This says that all of the jammers have the same tem pora l

statistics but may have different average power levels. By

redefining the exponential in the colored component as:

exP[i(vixx+v iyY)] = ~~~F) (18)

and

exP[i(vixx ’+v iyY’)] 
= 

~i
( F ’ )  ( 19)

then Eq (16) becomes:

N 
*

R N ( T ,~~
_ i ’ ) = N  6 ( T ) ô ( ~~_ i ’ ) + R J ( T )  z ~~~~~~~ ‘~~(F’) (20)

i=l

wL - 
~:

(21)

Eq ( 20) is in the general form given for a separab le kernel

by Van Trees (Van Trees , 1968:316) if the are the eigen—

values , the ~~(F) are the eigenfunctions , and R~ ( r )  is a

constant . If R~ (’r) is not a constant , t he separable kernel

is still present for only the spatial part of’ the correlation S

functions . To be able to use this interpretation , it is

H 15
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necessary to develop an intuition about the kernels implied

by various jamming scenarios. This intuition is based on a

series representation of the jammers.

D. Series Represen ta t ion  of the  Jamming Signals

In general the composite jamming signal can be represented

as a spatial Fourier series expansion at a fixed time . This

— expansion is given by:

J (x ,y) = 

n~~—°° 
~~~~~~~~~~~~~~~~~ y] (22)

where the random variable are given by

L/2 W/2
J = ~ ~ J (x ,y)exp[_j~~~ x_j~l~2Ly]dxdy (23)
- -L -W

2 2

( When the L and W are large enough the are approximately

uncorre la ted (Papoul is , 19 6 5 : 1 456 ) .  Having the 
~n uncorrelated

means that exp[j !2~iLx+j ~~2Ly] approximates the eigenfunctions

of a cont inuous corre lat ion funct ion (Daven por t and Root ,

1958:97).

In genera l, a correlation function R(i~,i’) can be repre-

sented as a Karhunen—Lo~ve expans ion:

R ( i ,F ’)  = z 8~~~~~~~~~(F’) (214)
n= 1

where the 81 are the eigenvalues and the ~~(F) are eigen—

functions of the correlation function and a solution of:

C
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L/2 W/2 
* 

V

(. 8i~ i
(
~~
) = ‘ ‘ n(~~, ) ( ~~’)d~~’ (2~ )

-L -W
2 2

An examination of Eq (214) indicates useful interpreta-

tions Implied by several jammer scenarios. First , a single

jamrner or a single jammer which is significantly more power-

ful than the other’ jammers approximates the condition when

there is a single dominant eigenvalue . When there are

multiple jarnmers which are approximately equal strengthed

and weak compared to the thermal noise of the array then all

of the eigenvalues -re equal and approximately equal to N0.

The condition of multiple jammers which are of different

strengths and resolvable by the array Implies that the

eigenvalues and e igenfunc t ions  are f i n i t e  in number .

The last scenairo which was described is the same

situation (finite number of eigenvalues and eigenfunctions)

that Van Trees requires to get his separable kerne l f the

detection problem . Since it has been shown that the ‘omplex

exponentials are the eigenfunctions when (J(x,y) is expanded

such that t he Four ier coef ficient s are uncorre lated , then

the exponentials are also approximately the eigenfunctions

for the spatial correlation function of the plane wave

jammer. This spatial correlation function is given by the

spatial part of Eq (21):

N 
*R ( i i’ )  = a • (~~)4 (p’) (26)

8 1=]. ~ i
(,

17 
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To insure that the ~~(F)are orthogonal the following

criterion must be satisfied

= sine [~~~
-
~~~ 

(cos0~ - cos0~~)]sinc[~~ (cos~ 1-cos~~~)] (27)

where 01 and 0~ are the angles associated with x and x ’

respectively, and similarly for and and y and y ’ .

The term S . is the Kronecker delta function. The sineij

function is obtained by rewriting the exponentials in Eq

(26) using Euler ’s equation and observing the following

definition of the sin2 function

sin c (x )  = 
sin x ( 28)

Satisfying Eq (27) yields a finite set of orthogonal functions
1

which must be normalized ~~~~~ to get the orthonormal elgen—

function-s . (The set of functions obtained visually from the

correlation function given by Eq (26) may not be a complete

set of eigenfunc tion s in which case the set of funct ions

from Eq (26) would be an approximation of the set of eigen—

funct io n s . )  Thu s when t he 
~~~~~~~~~~~~~ 

are normalized the resulting

corre lat ion funct ion is:

- -  N 
-R (r—r ’) = LW E cL4 Ti ( r ) T i (r ’) ( 29)

S 1=1 •
~

where T1(~~) = and a ., are the eigenvalues. Eq (29) is

(
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now the proper form for Van Trees ’s separable kernel. Thus ,

( when the form of the correlation of the N plane waves is

given by Eq (26) and the angular locations of the jammers

are restricted such that Eq (27) is true , then the eigen—

functions can be identified by inspection and used to

develop the separable kernel. When the jammers are not

plane wave jammers or they are not mutually orthogonal then

the eigenvalues and eigenfunctions must be computationally

found by solving Eq (25). The difficulty associated with

this computation motivates considering only plane wave

jammers who satisfy the criterion of Eq (27) and are thus

near ly ortho gona l to each ot her.

From the foregoing discussion , the concept of repre-

senting the jammers as a colored noise component of the

( noise in the signal detection problem has been developed.

Assumptions which facilitate the use of this concept have

been established in preparation for addressing the signal

dete ct ion problem and th e performance eva luat ion of the

optimum array receiver in the presence of jamming .

_
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III. Signal Detection Theory

( This chapter briefly reviews the formalism assocIated with

a binary hypothesis detection problem and then identified the

general stru cture  for both the opt imum arra y pro cessor an d

the conventional array processor. The signal detection review

primar ily summar izes the resu lts foun d in Van Tr ees (Van Trees ,

19 68 :28 7— 333 )  for a signal with single temporal and two s’patial

dimensions in the presence of spatially non—white gaussian noise.

A. Review of Signal Detection Theory

The binary hypothesis problem requires the processor to

decide which of two hypothesis has occurred based upon the

received wave form . The problem is expressed as:

H1: r(t ,x ,y ) = s(t ,x ,y ) + n (t ,x ,y) tc[O ,T], xc[Z~,~.],yc[ .~j~.]

H0: r ( t ,x ,y ) = n (t ,x ,y) (30)
(

where r (t ,x ,y ) is the com p lex rece ive d signa l, s(t ,x , y)  is the

known signal, and n(t,x,y) is the spatially non—white gaussian

noise. The noise term consists of white and colored components

to represent the presenc e of thermal no ise and jamm ing signal s

as previously discussed . The signal energy is given by:

T L/2 W/2 
*

E = ~ s(t ,x ,y)s (t,x ,y)dtdxdy (31)

2 2

where the array is L by W and the observation interval Is [0,T].

The optimum processor computes the likelihood ratio or, if

the likelihood ratio is reduci b le , the sufficient statistic. For

the purpose at hand, the sufficient statistic , &(r), is given by:

(_

I_  _  

0 

- - _



T L/2 W/2 
*£ (r )  = ~ r (t ,x ,y)g (t,x ,y)dtdxdy (32)

where g(t ,x,y) is called the Fredholm resolvent and is the solu-

t ion of the integral equat ion:

T L/2 W/2
s(t ,i~) = ~ g (t’,~~’)R (T ,~ —~~’)dt’di ’ (33 )

2 —2

where R N ( T ,~~
_ i ’ )  is the autocorre la t ion  func t ion  of the noise.

Fig. LI illustrates the processor.

Of course , once the optimum processor is developed , the

issue of interest is measuring the performance of the

optimum processor. This measure is obtained by calculating

the probability of a decision error for the processor. The

probability of error for a binary hypothesis problem , where

the hypotheses are equally likely, is:

P (er ror)  = er fc(~~) (3 14)

and

e r f c (x )  ~~
° 

~~~ exp [.~.]dx (35)x

where d is the geometric distance between the means of the

densities scaled by the standard deviation and given by (Van

Trees , 1968:99):

d 2 ~ [E ( .~. I H 1) — E ( z . ~ H 0 ) ] 2  -

Var(LJH0) (3 6 )

Since the e r f c ( x )  is a monotonic funct ion , a comparison of

d i f ferent  receivers need only Involve the parameter d 2 (Van

Trees , 19 68: 37—3 8) .  The parameter d 2 is interpreted as the

out put signal to noise ratio of the optimum detector (Adams ,

21
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1973:16). This measure is valuable for evaluating receiver

performance when the signals are deterministic.

B. Optimum Array

In general to determ ine the su fficient stat ist ic for

the opt imum array detector  it is necessary to solve Eq (33)

and then substitute the resulting Fredhoim resolvent in Eq

(32). However , for a continuous wave CW signal and CW

jammers there is no time dependence in either of these

signals. In ot her wor ds, the desired signal has constant

amplitude as does each of the jammers . Constant amplitudes

for the jamrners implies that the jammers temporal correla-

t ion funct ion RJ(T) is a constant , J0. Using the CW signals

in Eq (33) yields:

T L/2 1,1/2
s(~~) = N0g(t,~~) + Jo ~ L ~ 

g (t’ )R5(i—i~~)dt ’dF ’ (37)

-~~~ -~~

.

where RN (T,~
_
~
’) was replaced by

Since there is no time dependence in R5(F— ~ ’) ,  the time

integrat ion is performed f irst to give:

L/2 W/2 -

s(~ ) = N0g( t ,~~) + J0 ~ ~ ~(~~‘)R 5(i— ~ ’)di ’ (38)
—2 —2

where

T
= ~ g(t’,i’)dt’ (39)

23 
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There is no time dependence in the left hand side of Eq (38)

( thus there can be no time dependence on the right hand side

of Eq (38). The only way to realize the equality Is for :

g(t,~~) = g(F) (140)

which then means

= Tg(~~’ )  ( 141)

Thus the Fredholm resolvent g(t,i) has been shown to be time

independent for CW signals and CW jammers . Eq (37) can now

be rewritten using this fact to give :

L/2 W/2( s(~~) = N0g(~~) + TJ0 L ~ g(~~’)R5(F—F’)dF’ (~42)

2 2

The solution of Eq (‘41) for g(i~) when substituted into Eq (32)

yields the processor shown In Fig. 5.

In general the kernel , R~ (F— ~~’), has an infinite number

of eigenvalues and eigenfunctions and yields the follow ing

solution for g(F) (Van Trees, 1968:316):

g(~~) = TJ0 Z $+N ~~~ ( 14 3 )

____ - - 

1=1 1 
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where the 81 are the eigenvalues and the t (F) are the eigen—

funct ions of R5(~ —i’ ). The S
j 
are given by:

L/2 W/2 
*

= _L - 
- •-
_

~~~ s(i~)~ 1(i)d~ 
(1414)

~~

. 

~~~

.

/

The use of an inf inite number of eigenvalues does not represent

a viable scenario for a jamming environment . To get a viable

situat ion cons ider that R5(~ —~~’) is a separable kernel and as

such has the following solution for g(~~) (Van Trees , 1968:323):

1 N s 8
= 

~~ 
[s F _TJ

0 1=1 8~+N0 
ci(~)] (~I5)

For the case of N nearly orthogonal jammers , it has been demon-

strated previously in Chapter II that for plane wave jammers

the spat ial eigenfunct ions and spat ial eigenvalues can be

obtained by inspection from the spatial autocorrelation of

the jammers . Thus us ing these elgenvalues and elgenfunct ions S

in Eq (115) the spatial Fredholm resolvent for CW plane wave

jammers is : - 
-

= 

~~ 
[s(~~)_TJo i l  :~ +~ 0

Ti (
~~ J 

(146)

where T(~~) is as defined in Eq (29). SubstItuting this

definition into Eq (‘45) yIelds:

r N s a
g(~~) = 1 s (i)—J T Z ~ 1 ( 147)N 0 L 

° 1 1 a1+N0 ,,

~~~~~ 
j

(S.
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where the ~~~~ are as defined in Eq (18).

( Once the Fredholm resolvent is known , the suff ic ient

statistic and the performance can be determined for the

optimum processor. In general, Eq (36) can be reduced to

a simpler form for the binary hypothesis problem since the

noise is zero mean . The substitutIon of Eq (32) In Eq (36)

yields:

2

IT L/2 W/2 
* 1

L ~ s(t,F)g (t,~~)dtd~ j ( 148)
A2... — 2 —2
~o r T L/2 W/2 T L/2 W/2

El ~ ~ n(t ,F)~ ’(t,i~)dtd~ ~ ~ r~~(t t ~rO~~(t ’3 r ’) d t ’d r ’j
I- ~~~

•-
_

~~~

which become s - 
S

2_  

~~~~ 

L~ç2~~1/2 s t ,  g*(t,~ )dtd;~ ]

d0- T 1,12 W/2 T L/2 W/2

~ L ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 1 4 9)

-~~~~~~-~~~

Using Eq (? In Eq (119) yields

T L/2 W /2
= ~ ~ s(t ,~~)g (t ,~~)dtdF (50)

2 —2

which is the general result for the performance measure of

the optimum detector. For the - CW plane wave case , where the
S 

S 
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Fredhoim resolvent is given by Eq (~I 5)  and Eq (31) is true

for the CW signal, then the performance measure is:

J T  N 3
2

8
d 2 = 

E 
— 

0 1 1 (5 1)o N0. - 
N0 i=l

The next ste p is to find the performance measure of the

conventional detector when it is operating in the same

jamming env ironment .

C. Conventional Array Detector

The convent ional  array detector  is one which is opt imized

for performance in the presence of white noise only (Van

Trees, 1971:152). The development is along the same line of

thought as for t he opt imum array detector  exce pt the no ise

doe s not have a colored component (wh ich is likened to say ing

that the amplitude of the CW jammer , Jo, is zero) .  With

this In mind , Eq (37) becomes:

s(~~) = N0g(i) - 
. - (5 2)

Thus the Fredholm resolvent for the conventional array detector

is quite obviously

g(~;) = 
~~
_ s(~ ) (53)

The representation of the conventional detector Is commonly

called a correlation receiver. The correlation receiver is

(

S also termed a heamformer in the case of an array detector

V (Gallop, 1971:57).
28



Since the beamformer is opt imized for whi te noise only ,

4.. it is interest ing to note its per formanc e in th e pre sence

of the spat ially correlated no ise u sed to opt imize the

optimum detector. This noise Is given by:

RN
(i_i

~
’) = N06(i~—i~) + J R ( i— F ’ )  (514 )

Substitution of Eq (514 ) into Eq (149) yIelds:

2

IT L/2 W/2 
*

L ~ s(~~)g (~~)dFdt

d 2 - L -
~~~~~~~

-
~~~~ (55)

C 
- 

T T L/2 W/2 T L/2 W/2 T L/2 W/2

L ~ N0g(~~)g*(F)dtIdtdr+ ‘ L _
~~~ ~~ L _

~~~

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

g(~~)g*(~~I )J0R5(~ —~ ’ )dtd~ dt ‘dr ’

Using Eq (52) In Eq (55) results in the following expression:

2
rT L/2 w/2 - - 1
I ~ ~ ~ s(r)g (r)drdt I (56I ° -L

d2~~~
L 

~~~~c 
- 

T T L/2 W/2 T T L/2 L/2 W/2 W/2
~ s(i~)g*(F)dFdtdt I+ S I ~

~~~~~~~~~~~~~ ~~~

. 

~~~

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SubstItuting for R5(~ —~~’) (Eq (214)) and having the signal

again satisfy Eq (31), as done for the optimum detector , then

the following performance measure for the conventional detector

is obtained :

(
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d 2 = (57)( c EN +J T~~~ 8.S 2
0 0 i.l l

Having the expression In Eq (57) permIts comparison of the

conventional array detector with the optimum array detector

for various d amming scenarios.

This chapter has developed the tools necessary to evaluate

the performance of both the optimum and convent ional array

detectors . The next chapter uses these tools to develop an

insight into the performance improvement afforded by the

opt imum array processor over the conventional processor.

(
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IV. Performance Improvement

This chapter will discuss the performance improvement

that the opt imum array detec tor provides over the conven-

tional beamfornier in a jammIng environment composed of CW

plane wave signals. First , the method of comparing the

two detectors will be discussed. Next three jamming sce-

narios will cover two cases of multiple jarnmers and a

degenerate case of a single jammer requiring only one

spatial dimension for processing . The two multiple jammer

scenarios ar e fir st the case of N nearly ort hogona l jammer s

and second the case of N jammers which cannot be individu-

ally resolved by the array . The performance comparisons

made for each scenar io will demonstrate the super ior
( performance of the optimum array detector over the conven-

tional beamformer.

A. Performance Measure

In order to compare the perf ormance s of the opt imum and

conventional detectors It is necessary to develop a measure

of the improvement . One such measure is to simply compare

the out put s ignal to noise rat ios for eac h of the detectors.

This compa rison is denoted ~j an d is defined as

(58)
d~

where d~ is the output signal to noise ratio (performance

( S ~

3].



measure) of the optimum array detector and d~ is the output

signal to noise ratio of the conventional detector. Clearly

the regimes of i~
i which are of greatest interest when u is

much greater than one and when i’ is approximately equal to

one. The first regime (~i much greater than one ) indicates

that the optimum array detector performs much better than

the conventional detector. The second regime (ii approxi-

mately equal to one ) Indicates that both the optimum and

conventional detectors perform about the same.

Recalling Eqs (51) and (57), which are the general

expressions for the performance measures of the optimum

and conventional detectors- in the presence of CW plane wave

jaminers, the ratio ‘~i has the form: 
S

( E J0T N

~o 
N0 1=1 N0+81 (5)

E2

N
EN + J T E 8~s~0 0 1=1

which can be rewritten

I J N 8 s ~ 2 l I  J N 1
— 

N0 1
E
1N0+~jj[

1 + 
~~ 

60

where

8
,2  

~61I L/2 W/2 
*L ~ s(x ,y) s (x ,y)dxdy

( I
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and

IL/2 W/2 
* 1

E = ~ s (x ,y)s (x,y ) I T (62)

L 2  2 J

This normalizes the signal energy and leads to an expression

which is more easily interpreted. The expression in Eq (60)

is valid for comparing the performance of the optimum and

convent ional detectors in an environment of CW jammers so long

as the colored noise component results in a separable kernel.

The discussions are all special cases of Eq (60).

B. N Nearly Orthogonal Jammers

The scenario involving N nearly orthogonal CW plane wave

jammers requires that the criterion established in Eq (27) be

met . With this criterion met , Eq (60) becomes:

( 
N N ct~~ IN N 1

= 1 + (LW)2 J2 

I=lj=l ~~~~ 1+N )N Li~l~
2 (1_

j~~l
5
~~2)j (6 3 )

where the 81 are LWa1 (recall a1 from Eq (29) and the s~ are

given by:

= [sinC
\)sx

5
~~nxi)~ ] [ 

~~~~~~ 
] (6~4)
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where v~~ , v 5~,, ‘~nxi’ 
and ‘

~nyi  are the spatial frequencies

of the signal and jammer and are given by :

= 
co:8 (65a)

v3~ 
= 
co:4 (65 b )

cosO
‘
~nxi. 

= 
I (65c)

cos4 1v~~ 1 (65 d )

( 
and the O~~, 0ni’ ~ 

and 4ni are the inc ident angles rela-

tive to the array ’s x and y coordinate (recall Fig. 3) for

the signal and jammers . The eigenfunctions used to compute

the s’~ are given by Eq (29) as previously discussed . After

applying the assumption that the signal and jammers are at

the same wavelength , A~ , and recalling the definition of

sinc(x) In Eq (28), Eq (614) becomes

sinc 
[~

.!L(cosO
5
_cosO~ j)] sInc[~~ (c os~ 5_cos~~ i)] (66)

Thus the significant aspect of Eq (63) with regard to the

performance Improvement is the value of the s~
2 . The double

314 -
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sum coefficient of the s’1
2 in Eq (63) is always a pos it ive

number and serves to weight the terms involving the

Several observations can be made relative to the performance

improvement .

First , when all of the 5~~~~2 are zero , then the performance

indicator , j.t is unity. This situation occurs when the signal

is nearly orthogonal to all of the jammers. In this case ,

the convent ional detector can detect the signal as well as

the opt imum detector s ince the effect of the jammers has been

neutralized by the mutual ort hogonality of the signal and

j ammers . -

Second, ~i is also unity if the ~~, 2 all sum to one . This

situat ion occurs If the signal Is perfectly aligned with one

of the jammers . Then,in this case , both the optimum and

( conventional detectors perform equally poorly.

The above discussion addressed the cases of equal per-

formance for the optimum and conventional detectors . These

cases are Interesting, but the case of greatest interest is

that in which the opt imum detector is clearly super ior to the

conventional detector (p is much greater than unity). To

look at this case , cons ider f irst , that due to the mutual

orthogonality , the signal will project only on those jammers

who fall within the resolution range of the array when it’s

main beam is directed at the signal . All other jammers will

have no effect upon the signal .

(
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For the case when there are two jammers close enough

( for the signal to pro ject on each of them , the Eq (63)

becomes :

(Lw)2 J2 r a1 a2 1
P = 1+ N 

° 
LILWa1+N O 

+ (LWa2+N0) J (a~ +a 2 ) (67)

2 

+ 
~~~~ 

~ [ l— (s!~ + s2)]

Eq (67) can be simplified greatly if the following realtion—

shIps are assumed :

a1 = a2 (68a)

and

= s~~ (68 b )

Eq (68a) implies the two jammers are of equal strength. Eq

(68b) implies that the signal projects equally onto each

jammer. Stated another way , the signal Is angularly equi-

distant from each jamrner In either the x or y dimension.

Then Eq (67) becomes:

- 1 + :)2J
~~

6 

{

LW:~+N O 
[s

t~ 2 ( ~~ - ~l2)]} 
(69)

or by letting ‘
~
‘ be given by

_____-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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l6(Lw)2J,,~ ~_ _ _ _ _ _ _ _  
1( N~ [(LWa1+N0) J (70)

then Eq (69) becomes

p = 1 + y [~~~~~~2 (1 — s~~2)] (71)

where 5~~2 is given by

= sInc 2[~iL (cosOs_cosOni)] sinc2[~_ (cos~ s_cos~nj) ] (72)

From Eq (72) and the assumptions made in Eq (68b), it is

clear that ~~~~~~ is bounded by zero and one—half. Fig. 6 plots

Eq (71) as a function of 5~~~2~~ From Fig. 6, the max imum value

of p occurs when s~
2equals one—fourth and is given by

~
‘max 

= 1 + .0625y (73)

This situation represents the fact that the signal projects

twenty five percent of Its power In the direction of each

of the two jammers. For p to be much greater than unity,

it is necessary for the following condition to be true :

— ~~ t2 )>> 1 ( 7 14 )

(
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Recalling Eq (69), the condition described In Eq (714 ) occurs

when the following situation exists:

14J0i1LW << ~~~i 2 << 1 (75)

which says that twenty five percent of the therma l noise (N
0)

to interference power- (J0a1LW) ratio is much less than the

signal power in the interference direction. Thus by knowing

the thermal noise of the array , the array size , the inter-

ference power and the ~1ocation of the jammers in both spatial

d imens ions , the s ignal locat ion can be pos it ioned to achieve

the criterion established in Eq (75). Alternately , knowledge

and ability to change any of the parameters permits the

optimum detector to be peaked for maximum performance improve—

ment for a given situation.

As an examp le, consIder lett ing the rat io of the inter-

ference power to the thermal noise be 30dB and the value for

be 0.1, then the criterion in Eq (75) are satisfied and

subst itut ion into Eq (69) indicates that the performanc e

improvement of the optimum detector is on the order of 68dB.

Comput ing d~ using Eq (51) and d~ using Eq (57) for the same

condition yields:

= 101dB (76a)

= 33dB (76b)

~~~~ 

- -  - - - -—
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.-- - _ _ _

39 

_

5 , :_  
- -

~~~~ 

- - - - -- -

~~~~~~~~~~~

~-



These results are for a normalized signal energy and indicate

4 that the optimum detector is clearly better than the beam—

former.

Before concluding the mutually orthogonal jammer

scenario, an interesting degenerate case is the one for only

a single jammer present . For the single jammer , Eq (6 3 )

become s :

I(LW)2a2J 2 1 1 1
p = 1 

~[(LW +N )~ J ~ ~
L1
~’ 2i

where s’ 2 is given by Eq (72) when the subscripts are deleted.

For the single jammer ca se, s’ 2 is bounded by zero and one .

Fig. 7 plots the following function versus s’ 2~

- t
p = 1 + y ’s’ 2 (1 5

1 2 )  (78)

where y ’ is the constant coefficient in Eq (77).

From Fig. 7, the maximum value occurs when s’ 2 equals

one—hal f and is given by:

1
~max = ~ + .25y ’ (79) -

This situation represents the fact that the signal projects

fifty percent of its power in the d irect ion of the jammer

(Pasupathy , 1978:161). For p to be much greater than unity

it is necessary for the following criterion to be true :

140
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,~~, ~~~t2 (] ..~~~ I 2)  > >  1 (80)

This condition occurs when -

~ < s’2 <- 1 (81)

which says the ratio of thermal noise to interference power

is much less than the signal power in the Interference direction.

Using the same example as used previously for the two nearly

orthogonal jammers , the performance improvement of the opt imum

detector over the beamformer Is now 60dB . Again the example

was done for a unit energy signal.
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C. N Non—Resolvable Jamniers

& The next jamming scenario of interest is the scenario

in which the array cannot resolve the individual jammers

due to insufficient angular separation among the jammers.

This case corresponds to having a single spatially band—

limited jammer with N significant eigenvalues. If the N

j ammers are all of equal power then the eigenvalues can be

considered to be approximately equal. Thus the expression

for p given by Eq (60) becomes:

p = 1 + (+N )N 
[!l 

s~ 2(l_~ s~ 2)] (82)

where ri is the significant eigenvalue and the 5’
j 
are as

- - ( previously defined in Eq (61) and Eq (1411). -The notable

difference between this case and the case of N nearly

orthogonal jammers is the determination of the elgenfunctlons.

For the orthogonal jammers , the eigenfunctlons were the weighted

exponential  propagation funct ions  of each j ammer. For the band-

limited case , the eigenfunictions need to b.e computed. This

determination of the eigenfunctlons must be done for specIfic

examples and cannot be done in general. However, by inter-

preting the summation of the ~~~~ as the signal power in the

Interference beamwidth of the array (Pasupathy , 1978:161),

it Is possible to develop an intuition about the performance

Improvement of the optimum detector versus the conventional

detector. By redefining the summation of the s’~ Eq (82) becomes
H
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r4 2J2
- p = 1 + (~ +N )N0 

a2 (l—a 2) (83)

where

N
a2 = ~ s~~ (814)

- 
1=1

Comparing Eq (83) with Eq (77), it Is obvious that the two

equations are of the same form , differing only in the constant

coefficient . Thus, the same analysis is valid as was performed

for the single jammer In the previous section with some ampli-

fying observations regarding the physical interpretations.

When a2 is equal to one—half , p achieves its maximum value

and Is given by:

(

1’max .25 (85)

when ri is much greater than the thermal noise , N0. To inter-

pret Eq (85), It is necessary to look at d~ and d~~. These

quantities are given by

d~ ~~~
— J0ri >> N~ , a

2 = (86a)

and

2 1d0 - N0 TiJ0 J0n >> N0, 0
2 = ~~

. (86b )
2N0

(
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Evidently , d~ is independent of ri for the given s i tua t ion

but d~ depends inversely on the relationshIp between flJ0

and N 0 . Thus the per formance  improvement indicated by

1’max is primarily due to a degradat ion of the convent ional

detec tor  performance ra ther  than an increase in the  perfor-

mance of the optimum detector (Pasupathy , 1978:162). This

was not the case for the orthogonal jammer scenario. In

that scenario the performance improvement was tied to both

the improvement a f forded  by the optimum detec tor  and the

degradation of the conventional detector.

To quantify this scenario in terms of performance Improve-

ment as previously done , consider letting nJ0 be much greaterr1J
than N0, and the ratio be equal to 30dB , then for a

equal to 0.1 the performance Improvement is approximate ly

( 19.5dB when all of the assumptions and conditions are

substituted into Eq (83). The fact that this scenario has N

jammers is contained In the a 2 and variations in the results due

to a different number of jammers are attributed to variations in

D. Single Jammer, Single Spatial Dimension

The final jamming scenario is really a degenerate case of

the single jammer scenario discussed for two spatial dimen-

sions. This degenerate case is one in which it is necessary

to look only at a single spatial dimension . The degenerate

case comes about when either of the sine functions in Eq (66)

is unity. This means that the signal and jammer are aligned in

one of the spatial dimensions . With this being i~ Ae case, it

~~~~ 
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is necessary to look only at the single spatia l dimens ion

to determine the performance improvement . Thus for the
4..

one dimension case Eq (77) becomes:

L2ci2J 2
= 1 + 

(La+N YFç 
q2 (l— q2) (87)

where q2 is given by:

q2 = sinc 2[~~L(cos O 5
_cos O~~)] (88)

Again the same interpretations as made for the two dimension

single jammer case apply. Fig. 8 illustrates a specific

example of the one dimension case. Given that a, N0, A 5, and

L are all fixed for the example , it is easy to see the effect

of different angular separations between the signal and the

jammer. Thus, Fig. 8 indicates the Improvement for different

signal incident angles (O s) to the array of the optimum

detector over the conventional detector. For example, given

that  the array coul d be eas ily reor iented so as to change the

incident angle of the signal, then knowledge of the angular

difference (~ 8) between the signal and jammer would Indicate

which incident angle would provide the greatest performance

improvement . Also from Fig. 8 the performance improvement

for the example which has been used i n all of the previous

scenarios Is given to be approximately 20dB.

This chapter has succeeded in developing a performance

measure , p, which was used to evaluate three jamming scenarios.

The three jamming scenarios were evaluated with a common

(~~ 1
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example and it was shown that the optimum array detector

is significantly better than the beamformer. Additionally

physical interpretations were made to enhance the informa-

t ion prov ided by the performanc e compar isons. The f inal

conc lusions of this thes is and recommendat ions for addi t ional

research are addressed in the next chapter.

(
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V. Conclusions and Recommendations

( S

A. Conc lus ions

The precee ding discussion has deve loped three areas .

First , the representat ion of several jamming sc enairos as

a colored no ise com ponent In the no ise t erm of the binary

hypothesis detection problem . Second , a measure of perfor-

mance improvement , p, was developed by comparing the output

signal to noise ratIos of the opt imum and convent ional array

detectors . Analy sis of the performance improvement was

presente d for the jamming scenar ios of interest base d on

total knowledge of the desired signal and the jamming signals.

This analysis developed relationships which identified the

parameters which the s~,stem designer could address to achieve

( maximum improvement from the optimum array detector. Finally,

an example was presented for each scenairo which showed that

the optimum array detect or was significantly better than the

beamformer .

Several of the points previously made need to be reiterated.

First , for single jammers , the max imum performance improvement

Is achieved by the optimum detector when fifty percent of the

signal power is projecte d in the jammer ’s direction. This Is
V 

also valid for multiple jammer situations when the signal is

nearly orthogonal to all but one of the jammers. Secondly,

for single jammers and N nearly orthogonal jammers the thermal

noise/interference power ratio must be much less than the

signal power in the jamming direction to achieve significant
( 



performance improvements. In the case of the non—resolvable

jammers it was seen that significant performance improvement

was largely due to degradat ion of the convent ional detector

rather than the improve d performance of the opt imum detector.

These observations bring out two points which are appli-

cable to the array problem . First , the signal power and the

project ion of the signal power in the interference (jamming )

direction significantly affect the performance of the detectors.

Secondly, the thermal noise , in the case of the non—resolvable

jammers particularly, is a significantly contributing factor

in the performance of the detectors .

It is recognized that the criterion which allows the -

single spatial dimension degeneration is probabilistically

very unrealizable. None the less , the single spatial dimension

provides the ability to get a “back of the envelope” approxi-

mat ion which, when compared to the two spatial dimension

results , provided the engineer with an insight into the problem

without a great deal of effort . 
V

Finally, a single example was exercised for each secnario .

In this examp le the rat io of jammer interference power to

thermal noise was equal to 30dB and the parameter related to

the projection of the signal onto the jammer was equal to 0.1.

The resulting performance improvements were 68dB, 60dB, 19.5dB ,

and 20dB for the two orthogonal jammers, single jammer (two

spatial dimensions), spatially bandlimited jammer, and the single

jammer , (single spatial dimension)respectively. The variations

. 5 - .  S - 5 ~~~~ 
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In the performance improvement are related to the complexity

of the Individual jamming scenario. However , all of the

scenarios indicate that the opt imum array detector is c lear ly

better than the beamfcrmer.

B. Recommendat ions

The previous work Is based on full knowledge of the signal

and the jammers , particularly with regard to amplitude and

direction. This fact suggests that future research should

extend the assessment of performance improvement by relaxing

S the assumptions which were made in this study . Specifically,

add ress ing the performance improvement for t ime varying

amplitudes for both the desired signal and jammers and the

Inclusion of temporally dependent signals would be the next

V logical extension of this research. Succeeding extensions

of the effort would include examinat ion of signals with

random amplitude and random phase , and a relaxation of the

directional knowledge of the signal’s location. Completion

of these research tasks would provide a relatively complete

picture of the performance Improvement that an -optimum array

detector can provide.
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