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SIMPLE MODELS IN STOC}LASTIC PRODUCTION PLANNING

by

Suresh P. Sethi and Gerald L. Thompson

ABSTRACT

A simp le stochastic production-inventory model with quadratic cost

functions is analyzed in detail. The inventory process is assi.m~ed to be

driven, by a white noise process resulting into an Ito stochastic differential

equation . Both fini te and infinite horizon versions of the problem are

treated by a methodology based on the theory of stochastic integrals and

d i f fe rentials . Particular attention is given to illustrate the methodology,

which is quite general and capable of dealing with more complicated problems .

The paper concludes with some remar1~s in connection with the rela tionship

of the results of this paper to the results in the deterministic case.

Key Words

Production planning
Stochastic optima l control theory
Ito stochastic differential equation .



SIMPLE MODELS IN STOCHASTIC PRODUCTION PLANNING

by

Suresh P. Sethi and Gerald L. Thompson

1. INTRODUCTION

In an earlier paper [4], we considered a production-inventory

model which determines production levels over time to minimize a discounted

quadratic loss function. The loss f unction was defined in terms of the

deviations of production and inventory levels from their rated or fac tory-

optimal values. In this paper, we discuss simple stochastic extensions

of our earlier paper. We will obtain closed-form solutions for both finite

and infinite horizon versions of the stochastic production-inventory model.

2. THE ~)DEL

Consider a factory producing a homogeneous good and having an inventory

warehouse. Define the following quantities:

x(t) — inventory level at time t (state variable)

u(t) — production rate at time t (control variable)

S — the constant demand rate at time t; S > 0

T length of planning period

xl — factory-optimal inventory level

— factory-optimal production rate ‘

L.i ~~~~~

— initial inventory level .

.

h — inventory holding cost coefficient --

c • production cost coefficient

~

- , - ..~ • - - •~‘
p — the constant discount rate; p ~ 0,
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H — salvage value per unit terminal inventory

z(t) — the standard Wiener process; see (i]

— the constant diffusion coefficient; see (1].

We now state the conditions of the model. The first condition is the stock-

flow equation stated as an Ito stochastic differential equation (see (1,2,3]):

dx — (u-S)dt + ~~z, x(0) x0 . (1)

We note that process dz(t) can be formally expressed as ~(t)dt, where ~(t) is

considered to be the white noise process [1]. It can be interpreted as “sales

returns,” “inventory spoilage,” etc. which are random in nature. The second is the

objective function:

mm E(j’ e~~t[c(u_u 1)
2 + h (x-x1)

2]dt + e~~
T Bx(T)J . (2)

Note that we do not restrict the production rate to be nonnegative as required

in our earlier paper [4]. In other words , we permit disposal (i.e. u < 0).

While this is done for mathematical expediency , we will state conditions under

which a disposal is not required. Note further that the inventory level is

allowed to be negative , i.e., we permit backlogging of demand .

3. ThE H~Z4ILTON-JACOBI EQUATION

The solution of the above model will be carried out via the development

of the Hamilton-Jacobi equation satisfied by a certain ‘value function. ’ To

simplify the mathematics , we asauae that

x l ul O and h c — i .  (3)

This assi pt ion results in no loss of generality as the following analysis can

be extended in a parallel manner for the case without (3). With (3), we
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restate the stochas tic production p lanning problem:

max E(I 
- (u 2+x2 ) e~~tdt + Be~~Tx(T) ] , (4)

subject to the Ito equation

dx (u-S)dt + cdz, x(O) x0. (5)

Let V(t,x) denote the expected value of the objective function from

time t to the horizon T with x(t) — x and using the optimal policy

from t to T. The function V(t,s) is referred to as the value function and

it can formally be defined as

T
V(t,x) — max EEl - (u2+x2)e Ptdt + Be PTx(T)] (6)

given x(t) — x; clearly -

V(T ,x) — Bxe~~T. (7)

By the principal of optimality, we can write

V(t,x) — max E(-(u2+x2)e~~
tdt + V(t4dt, x+dx)]

— max [_ (u2+x2)e Ptdt + E V(t+dt, x+dx)]. (8)

Note that we have used dx and dt in place of 6x and 8t for convenience.

We can expand V(t+dt, x+dx) using Taylor’s expansion:
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V(t+dt, x+dx) — V(t,x) + V~dt + V~dx + ~ V x (dX) 2

+ higher order terms. (9)

Note that we have retained the term (dx)2. This is an important departure

from the deterministic situations. Substituting for dx from (5) and

replacing

(dz)2 by dt (10)

derived in the Ito theory (1,3], we can write (9) as

V(t~~t, ~~~x) — V(t,x) + (Vt + V
~
(u
~
S) + a2 V~~)dt

+ a V
~
dz + higher order terms. (11)

Taking the expectation, we are left with

EV (t+dt , x+dx) — V(t,x) + (V
~ 
+ V (u-S) + ~ a2 V~~)dt

+ higher order terms, (12)

Since E(CV
~
dz) — 0.

Substituting (12) in (8) and cancelling V(t,x) on both sides yields

0 — inax(-(u2+x2) e~~
tdt + (V

~ 
+ V

~
(u.S ) + f a2V )dt

+ higher order terms] (13)

Dividing by dt and taking the limit as dt -. 0, we obtain the Hamilton-

Jacobi-Bellman equation

0 — max(_ (u2+x2).~~t +V~ + V
~

(u
~
s) + a2Vxx]. (14)
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It is now possible to maximize the expression inside the bracket with

respect to u by taking its derivative with respect to u and setting it to

zero. This procedure yields

V e Pt -

x 
. (15)

Substituting (15) into (14) yields the following Hamilton-Jacobi equation

~ 2 pt
— + - x~e P~ + V t - S V + ~ a

2V .  (16)

This is a partial differential equation which mus t be satisfied by the value

function V(t,x) with the boundary condition (7).

It is important to remark that if production rate were restricted to be

nonnegative, then (15) would be changed to

V e pt

u — max [0, X (17)

Substituting (17) in (14) would give us a partial differential equation which must be

ntmierically solved for this case. tJe shall not consider (17) further in this

paper.

We now turn to solving (16) in the next section.

4. SOLUTION FOR THE UNDISCOUNTED FINITE HORIZON CASE

Although (16) with the boundary condition (7) can be solved, it is

ctmiberscsne. To simplify matters, we ass~mte that

p — 0  (18)

for the finite horizon case. For this case, we must solve nonlinear second-

order partial differential equation 

-,-~~~~ ~~~~~ -~~~~-“-~~~-. - .~~ -
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o — !~— - x2 + V~ 
- sv,~ + f a2 V , V(T,x) — Bx. (19)

To solve this equation , we let

V(t,x) — .~(t)x
2 + R(t)x + M(t). 

. 

(20)

Then

+ *~ +

- V
~~~~

2Qx+R . (21)

V — 2Q
U

where ~ denotes dY/dt. Substituting (21) in (19) and collecting terms

gives

x2(4 + - 1] + x(~ + RQ - 2SQ] + + - RS + a2Q — 0. (22)

Since (22) must hold for any value of x , we must have

Q — l - Q 2 , Q(T)— O  (23)

I — 2SQ - RQ , R(T) — B (24)

I — RS - R2/4 - a2Q, M(T) — 0, - (25)

where the boundary conditions for the system of simultaneous differential

equations (23), (24) and (25) are obtained by comparing (20) with the boundary

condition B(T,x) — Bx of (19).

To solve (23) we expand ~/(l-Q
2) by partial fractions to obtain

9 [~ J_~+ ~J~~] - 1  2 1-Q 1+Q ‘ . - - . -

which can be easily integrated. The answer is - —

• .~~~~~~~~~~~~~~~~~~~~~ .. . :. -—-,. - -~~~- -~~-~~~~~~~ -~~~~~~ . - . - --- . - --
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Q.’~~~ 
(26)

where,

y — e
2(t_T) 

. (27)

Since S is assumed to be constant, we can reduce (24) to

R°+ R°Q 0 , R°(T) B - 2S

by the change of variable defined by R° 
- — ft - 2S. Clearly the solution

is given by

T T
log — - 

~~~t t

which can be further simplified to obtain

R — 2S + 2(B..2S)/~ . (28)

Having obtained solution for ft and Q, we can easily express (25) as

1.1(t) — - f (RS - R2/4 - a2Q]dt. (29)

The optimal control is defined in (15), which under the assumption

(18) of p — 0 and the use of (26) and (28) yields

u~ — V
~
/2 — Qx + R/2 — s + (Y_l)Xy

+
+
(
~
_2S)/;;.

~ (30)

Remarks .

1) The optimal production rate in (30) equals the demand rate plus a cor-

rection term which depends on the level of inventory and the distance from horizon.

Since (y-l) < 0 for t < T, it is clear that for the lower values of x, 

_
_ _
~i_ •_ _

~ 
.- ---  

. 
-
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the optimal production rate is likely to be positive. However, if x is very

high, the correction term will become smaller than -S and the optimal control

will be negative. In other words, if inventory level is too high , the factory

can save money by disposing a part of the inventory resulting in lover holding

costs.

2) If the demand rate S were time-dependent, it would have changed the

solution of (24). Raving computed this new solution in place of (28), we can

once again obtain the optimal control as u~ — Qx + R/2.

3) Note that when T -
~~ ~~~, 

y -~~ 0 and

*u ~~~S — x .  (31)

But the undiscounted objective function value (4) in this case becomes (-~
)

Clearly, any other policy will render the objective function value to be -
~~~~.

In a sense, the optimal control problem becomes ill-defined. One way to get out

of this difficulty is to impose a nonzero discount rate. This will be carried

out in the next section.

5. SOLUTION OF THE DISCOUNTED INFINITE HORIZON CASE

when p > 0, it is convenient to express the value function V(t,x)

in time—t dollars, i.e.,

W(t,x) — V(t,x)e~
t. (32)

With this definition of W(t,x), we can easily convert (14), (15) and (16),

respectively , as follows:

0 — inax(-(u2+x2) - pW + W~ + W~(u-S) + ~ a
2W~~], (33)

u W
~

/2

0 — W~I4 - x2 - pW + W~ - SW~ + ~ a WU 
(34)
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To solve (34), we let

W(t,x) — Q(t)x2 + R(t)x + M(t)  (35)

and with a procedure similar to that used in deriving (23)-(25), we can show that

that Q(t), R(t), and M(t) satisfy the following system:

~~~~l + pQ -Q2 , Q(T) 0

I — pR + 2SQ - RQ , R(T) B (36 )

M~ ’p M + R S - R2/4-c?Q , M(T)— 0.

It can be shown that the solution for Q(t) is given by

m e(mrm2)T - m
Q(t) — 

~(m1_m2~T - 
m2 e(ml_m 2)t 

‘

where,

— ~ 
- 

2 and m2 — (38)

are the roots of 1 + pQ - Q2 — 0. It is clear that as T

Q-.m1 , (39)

since (m1-m2) < 0. This is what is to be expected since m1 is the stable

root.

We note some simple identities that m1 and m2 satisfy which will be

used later. First the equation

m2 -~~ n — 1  (40)
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holds for m being either m1 or m2. Writing (40) for m2 and dividing by

gives

1 - --
~~~

— - -
~~~~>~~~~. (41)

2

Writing (40) for m
1 and dividing both sides by m1-p gives

— m1~p 
•
(42)

Then, since m2 > 0, and the product of m1 and m2 is -I we have

(43)

The last identity needed is

m~~ir i+pm1~~~i~~~
—Q (44)

which can be obtained by writing (40) for m1, solving for m~ and using

(43).

We now make an important observation. When T — ~~~, it is obvious that

W(t ,x) — W(x) (45)

is explicitly independent of t~ This is because W is expressed in time-t

dollars. This means W~ — 0, which reduces (34) to

0 — W~/4 . - x
2 

- SW + f a2W~~. (46)

The solution of (41) takes the form

W (x) Qx2 + R x + M  (47)

_ _  _ _ _  . - - - .--.---,~~~~~~.
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where Q, R and M ar e constants to be determined. It is not difficult to

conc lude f rom (36) that Q, R, and N satisfy

l + p ~~-~~
2 - O  (48 )

pR + 2SQ - R Q O  (49)

pM + RS - R2/4 - a2Q — 0. (50)

Of the two roots of Q for the quadratic equation (48), we have already

shown , by a limiting argument that

Q m 1. (51)

It is easy to show using (42) that

R — 2Sm1/(m1-p) — 2Sm~ 2S(pm1+l) . 
. (52)

and

M — (R2/4 - RS + a2Q] / p — [m~S 2
(m~-2) + a2m1]/p  (53)

From (33),. we can obtain the optimal production rate

m S
u — m1x + m~-p 

— m~S + m1x — (1- ~~)S - -
~~ x . (54)

Here the optimal policy is to produce a positive fraction (1 - 

~~
) times the

2
current demand plus a correction term - (1/m2)x involving the inventory level x.

Thus it is optimal to produce a high level when inventory is low, and to produce

at a low level when inventory is high.

Condition for Disposal

From (54) , it is possible to derive necessary and sufficient conditions

for disposal or negative production to be optimal. We have
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< 0 <~~ m~S + m1x < 0
(55)

x 1<. ‘ > — > - m . > OS i.

We can also use (44) to write the condition (55) for a disposal to be ~ptimal as:

* x 1u < 0 <
~
> - (p + —) . (56)

1

Condition (52) may be compared with the one derived for the deterministic case

in (41. Obviously, a disposal would be optimal if the inventory level is too

high compared to the demand rate. This makes intuitive sense.

Relationship with the Deterministic Turnpike

From our earlier paper [4] we know that ~c — -p5 is the turnpike level

for the inventory level and u — S is the turnpike production rate for the speci~~

‘problem of this sec tion with a — 0. We now show that even with a # 0, the

optimal production rate is S when the observed inventory level is x — -p5.

This is done by substituting x — -pS in (54) and (40) to obtain

u~’ — (m~ - ~n1)S — S

St~~arizing we have

u~ — S when x — -pS . (57)

This means that the trajectory for the optimal inventory level woLld be a dif-

fusion process about x — -pS (see Figur e 1). In this sense , x — -p5 can be

considered to be the turnpike inventory level for the stochas tic production

planning problem dealt with in this sec tion.
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~~~~

1

~

: 

Level 
—

Turnpike Level

Fig. 1. A Sample Path for Optimal Inventory Level

The sample path in Figure 1 shows a path with high initial inventory,

which increases (due to sales returns) up to the disposal level. Between points

a and b , production is negative, which means we dispose of inventory. However,

the inventory continues to increase until it drops back at point (b). Disposal

activities help bring back the inventory to lower levels. Further on the path

the inventory declines randomly to the turnpike level -pS and remains in that

vicinity with high probability.

The fact that the turnpike level is negative is because x1 — 0 was

assumed in (3). When x1 is sufficiently positive the turnpike level , x1 
- pS ,

will become positive. Details are omitted here. The deterministic case is

treated in (4].

6 • EXTENSIONS AND CONCLUDING REMARKS

We have analyzed a simple stoc~tas tic production planning in detail. We

have deliberately chosen a simple problem to introduce the stochastic control

theory methodology, which may not be generally familiar. The methodology is

based on the theory of stochastic differential equations developed by Ito.
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In our future papers , we shall analyze more complicated s tochastic

production—inventory problems . These will include problems which assume

time-dependent demand or a constant diffusion coefficient, which may also

be a function of the inventory level.
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