F/6 1272

SCIENCE APPLICATIONS INC ENGLEWOOD CO

AD=ADG4 334
PLANNING AS A PROCESS OF SYNTHESIS.(U)
DEC 78 M E ATWOODr P G POLSONs R JEFFRIES

SAI=-78=144=DEN

NOOO14=78=C=0165

—— e

N
-3

nmg

=

“»
o
=

L, B
= 0
lLLL ol -
e i
22 lig e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I%S-;i
: b

g

e

A\ -]
LEVEL(, P

ADAOG4 334

SClieNCe
APPICANONS c

D]

INCOROORTED se I

>z p (‘L”.A | \w :

o J ¢t ‘ C :

8 {5@
wl

-— !
s
=
: =
: r—

E
79 02 07 039
Approved for public release; distribution unlimited.
{

‘i

/2/

~ D C

: MHE@EM a[aﬂ

'°{ FFR 8 1079

PLANNING AS A |
UUE@(E:trm-U

2 PROCESS OF SYNTHESIS

Technical Report
SAI-78~144-DEN

December 1978

Michael E. Atwood
Science Applications, Inc.

Peter G. Polson and Robin Jeffries
University of Colorado

H. Rudy Ramsey
Science Applications, Inc.

Reproduction in whole or in part is permitted for
any purpose of the United States Govermment.

This research was sponsored by the Personnel and Training Fesearch
Programs, Psychological Sciences Division, Office of Naval Research,
under Contract No. NOO014-78-C-0165, Contract Authority Identification
Number, NR157-414.

Approved for public release; distribution unlimited.

y 4

y 4 Science Applications, Inc.
40 Denver Technological Centar West, 7935 East Prentice Avenue, Englewood, Colorado 80111, 303/773-6900
Other SAI Offices: Albuquerque, Ana Actiar, Actington, Atlants, 8 Chicago, Huntsville, La Jolls, Los Angeles, McLesn, Paio Alto, Santa Barbara, Sunnyvale, end Tucson,

UNCLASSIFIED
* SECURITY CLASSIFICATION OF THIS PAGE (When Data Zntered)
REPORT DOCUMENTATION PAGE Bz,ﬁg°c%$§gggg";om
1. REPORT NUMBER 2. SOVT ACCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER

S. TYPE OF REPORT & PERIOD COVERED

4. TITLE (and Subetere) SRR é
o i
y.

Planning as a Process of Synthesise /' Technical

?/ m P POR MBER |
@T«E}Tm E.| Atwood, Peter G.|Polson, / C ’N6¢0]4—78—C—p]6§L
RobinlJeffries.Jg,& H. Rudleamsey £ p

9. PERFORMING QRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Science Applications, Inc.
7935 E. Prentice Avenue > NR157-414

 Englewood, CO 80111
11. CONTROLLING OFFICE NAME AND ADDRESS \l
Personnel & Training Research Programs “ Decepuber—978 ? il

Office of Naval Research I NUmMBEROFAAeEs

Arlington, VA 22217 106
[T4, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

P e e e ettt e
1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

[76. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Planning
. Problem Solying
~_ Cognitive Psychology
. 3
b,

20. AlSTRACT@unm on reverse side if neceseary and Identify by block number)

This report describes a theoretical framework for investigating
human planning behavior and presents the results of two experiments in
the domain of software design. A plan is defined as a hierarchical
structure that underlies the solution to a problem; planning is the
process of constructing this structure. This framework assumes that:
" a plan is a series of abstractions of the final solution, ranging

-~~~ from schematic, high-level plans to detailed plans that are actually
transformed into a solution to the problem;~\(continued 2nd page)

L 1 .

FORM :
DD 1 42: 73 1473 EDITION OF | NOV 65 IS OBSOLETE 7 N i
SECURITY CLASSIFICATION OF 'rm§ PAGE (When Data Entered)

395 919 | 114

UNCLASSIFIED .

SECURITY CLASSIFICATION OMPAOCM.! Data Entered)

)
#20 (Continued): (b) a plan is constructed by a process similar to stepwise
refinement; £€) planning involves the utilization of previously learned
schemata; £d) various components of the plan, or even the entire plan, can
be retrieved from long-term memory and incorporated into a solution to the
problem; and (€) planning involves the synthesis of many types of knowledge
structures.

Our experimental results indicate that completed plans can be charac-
terized as procedural nets, but that plan structures can be constructed in
a variety of ways. Further, expert subjects differ from less experienced
subjects in the knowledge structures that can be retrieved from long-term
memory and incorporated into a plan. The implications of these results
on our theoretical framework and for future research are discussed.

ety for 2
' &,," ".I"/\,’ e sggﬂhﬂ

o g0 Section o
% o

059

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data intered)

ABSTRACT

This report describes a theoretical framework for investigating
human planning behavior and presents the results of two experiments in
the damain of software design. A plan is defined as a hierarchical
structure that underlies the solution to a problem; planning is the
process of constructing this structure. This framework assumes that:
(a) a plan is a series of abstractions of the final solution, ranging
from schematic, high-level plans to detailed plans that are actually
transformed into a solution to the problem; (b) a plan is constructed
by a process similar to stepwise refinement; (c) planning involves the
utilization of previously learned schemata; (d) various components of
the plan, or even the entire plan, can be retrieved from long-temm
memory and incorporated into a solution to the problem; and (e)
planning involves the synthesis of many types of knowledge strtuctures.

OQur experimetal results indicate that completed plans can be
characterized as procedural nets,:- but that plan structures can be
constructed in a variety of ways. Further, expert subjects differ from
less experienced subjects in the knowledge structures that can be
retrieved from long-term memory and incorporated into a plan. The
implications of these results on our theoretical framework and for
future research are discussed. .

Vool

R

Table of Contents

Introduction
Task Description
Theoretical Framework

Research on Planning: A brief Review

Method for Data Analysis

An Investigation of Planning Behavior
Experiment 1. The Problem Solving
Behavior of Experts
Experiment 2. Alternative Methods of
Protocol Collection

Conclusions

Appendix A — Software Design Practices

References

10
20
37
39

39

67

77
83
98

This report presents our initial attempts to formulate a
theoretical framework that characterizes planning in complex task
envirorments. We also report the results of two experiments using the
task of software design. The focus of this research is on how subjects
solve complex problems in damains that require the application of a
large amount of background knowledge. Such problems have been
characterized by Bhaskar and Simon (1977) as "semantically rich

domains."

If an individual is going to solve a complicated problem employing
a digital computer, that individual has to write a computer program.
If the program is of any complexity a person who simply starts writing
code without any preparation has 1little chance of generating a
successful solution, i.e., a working progran. A solution to the
problem must begin with the specification of a design for the program
— a plan for the ultimate solution. Thus, we are going to use the
task of software design to study planning in complex, semantically rich
domains.

Computer programming has another very interesting characteristic,
in that it is a general problem solving skill. 1In order to write a
program to solve a specified problem, it is required that one integrate
several quite different kinds of knowledge. Examples are expertise in
programming and one's understanding of the problem to be solved.

Minsky (1975) has argued that the solution to almost any kind of
challenging problem involves the integration of different viewpoints or
different kinds of knowledge. Minsky presents the following example
involving an automobile.

"Sometimes in 'problem solving' we use two or more
descriptions in a more complex way to construct an analogy or

NS S

to apply two radically different kinds of analyses to the
same situation. For hard problems, one 'problem space' is
usually not enough.

"Suppose your car battery runs down. You believe that
there is an electrical short and blame the generator.

“The generator can be represented as a mechanical
system; the rotor has a pulley wheel driven by a belt from
the engine. Is the belt tight enough? Is it even there?
f The output, seen mechanically, is a cable to the battery or _
‘ whatever. Is it intact? Are the bolts tight? Are the]
I brushes pressing the commutator?

"Seen electrically, the generator is described
differently. The rotor is seen as a flux linking coil,
. rather than as a rotating device. The brushes and commutator
! are seen as electrical switches. The output is current along
‘ a pair of conductors leading from the brushes through control
: circuits to the battery.
; "Thus, we represent the situation in two different frame
v systems." (Minsky, 1975, pg. 256).

L TR

The hard problems that Minsky refers to are, in effect, problems
whose solutions require two or more different perspectives and the

integration of two or more knowledge structures. In Minsky's example,

either representation may be adequate, but it is more likely that a
! successful solution will require simultaneous consideration, or

integration, of these representations. In addition, another type of

NN,

knowledge would be required. Minsky's representations are sufficient
to understand the problem; they are not sufficient, however, to
actually implement a solution. For example, the successful problem
solver would need to know how to ﬁighten a belt, how to measure current
flow, etc. Integration of this type of knowledge into the ultimate
solution is clearly required.

When we attempt to write a computer program we are in a very
similar situation. Knowledge of programming, per se, provides us with
a set of tools. These tools in themselves are not adequate. We have
to understand what they are going to be used for. Thus, we must

understand the problem to be solved using the computer; this is a

B o e e e

second type of knowledge. In summary, we are investigating planning
behavior in problems whose solution requires the integration of
multiple knowledge damains.

The remainder of this paper is organized into several sections.
We will begin with a discussion of the concept of planning. We then
describe the task domain of software design and our rationale for its
use in this research. Following this, we present a detailed discussion
of our theoretical framework that motivates the research reported in
this paper. Next, we present a brief review of previous research on
planning and problem solving with particular emphasis on tasks
requiring a large amount of background knowledge, that is, semantically
rich domains, and on issues involving expertise. Finally, we present
our experimental results and make conclusions derived therefram.

In an appendix to this paper, we present a brief summary of the
literature on software design. This section is intended to introduce
the reader to the concepts and tems involved in this area. 2n
interesting aspect of the task of software design, like chess and many
other real world tasks, is that this task has its own literature and we
will find that experts in this area can assist us in our psychological

analysis of performance on software design tasks.

PLANNING — A PRELIMINARY DEFINITION
This section presents our initial attempt to define the concept of
a plan and to distinguish this concept from the process of planning.
Our definition is not atheoretical, nor do we feel that an atheoretical

definition of plan is possible. Thus, the definition presented in this

section anticipates many of the theoretical arguments that we will

T PTY Y R TNT SRS T T

-

present later.

Following Miller, Galanter, and Pribram (1960) we will define a
Plan to be a hierarchical structure that underlies the sequence of
operations necessary to solve a problem. We define planning to be the
generation or specification of this hierarchical structure. Our
definition is obviously extremely general, and is consistent with
notions like "deep structure," “"case frame," "frame," "script," and a
number of similar concepts that are very popular in cognitive
psychology today.

In order to further elucidate our notions of "plan" and
"planning”, we would like to construct several illustrations. Imagine
a series of individuals arranged along a continuum according to their
software design skills, ranging from expert to novice. The basic
assumption in the literature today is that very different kinds of
cognitive structures underlie expert versus novice problem solving
behavior.

Let us consider the solution of some fairly straightforward
problem. If the expert has had a large amount of experience with this
specific type of problem, then the expert may retrieve its solution and
simply present it to us. One might almost be tempted to say that we

were looking at a retrieval process rather than a problem solving

process. On the other end of the continuum, the novice may have some
vague understanding of the knowns and unknowns involved in the problem,
but no knowledge of the structure of the sequence of the operations

that would actually solve this problem. ‘Therefore, the novice is
reduced to using some variation of trial-and-error search. Individuals

that are in the intermediate range of the continuum will actually

construct a solution to their problem. Although they don't have a
schema or plan memorized, their knowledge of the task domain is
sophisticated enough that they are able to generate a solution plan
ard, finally, a sequence of operations that will successfully solve the
given problem.

We assert that the expert retrieves a plan from long-term memory |

and then proceeds to execute this plan. Since such plans can be

represented as schemata, we would characterize this behavior as being

schema-driven. On the other end of the continuum, the behavior of the

‘e

Ve

novice essentially involves trial and error search. ‘There are no
underlying structures that provide guidance to this problem solving -
behavior, and, as a result', this person is very unlikely to find a

solution to the problem. For any interesting problem, the search space

is simply too 1large. ‘The individual with an intermediate amount of

knowledge about the task is not reduced to trial-and-error search.

This individual, however, is not able to retrieve an already

constructed plan. Thus, we will characterize this individual as

indulging in the activity of planning; he must construct a solution

plan.

In summary, we have characterized a plan as a hierarchical

structure that represents a sequence of actions and the process of
planning as the process of generating this hierarchical structure. 1In
the task domain to be used here, a computer program represents a
solution to the problem. A software design for this program is the

plan that underlies the solution. The process of actually constructing

a given design is a planning activity.

TASK DESCRIPTION

The experimental task used in the experiments to be reported in
this paper is software design. Software design is the process of
translating functional specifications into a structural description of
a computer system that will satisfy these specifications. There are,
in general, three components of this structural description. First,
the description takes the form of a "modular decomposition". That is,
the original functional specifications are decomposed into a collection
of modules, or substructures, each of which satisfies only part of the
original specifications. Second, these modules must communicate in
some way, and the designer must specify the interrelationships and
interactions of these modules. Third, design may include a definition
of the data structures that are required to satisfy the functional
requi rements.

It is convenient to think of the functional specifications as
specifying the properties that are desired. The design identifies the
functions that can satisfy these properties. In actual practice, a
design specifies what must be done in order to meet the functional
specifications. How these functions are to be accomplished is left to
the programmer.

In order to provide an example of a software design, consider the
following problem described by Wassermman (1977). The functional
specifications could be presented to the designer as follows:

"A medical center needs a master patient index. 'The master
patient index file will be kept on disc for fast on-line access. The

purpose of this index is to identify a patient. The following

specifications must be met.

1. Input and output will be performed at various

locations. Each location, and each person at a

location, should have different access privileges.

2. Each patient will be identified by a "patient unit

number"; if a number has not previously been assigned,

one must be assigned.

3. Each patient's identification will be confirmed by

asking questions about his personal background

(e.g., mother's maiden name) .

4. A mechanism must be provided for purging, to off-line

storage, patient files that are infrequently accessed

and for retrieving, fram off-line storage, files for

reactivated patients.

5. A daily record of all transactions should be written

on magnetic tape."

Notice that this description specified the functions that the
system must satisfy, but does not specify the form of the design. A

potential design for such a sytem (adapted from Wasserman) is

represented as:

i lbrnle,

Each of the rectangles names a module of the completed system.
. The lines connecting modules indicate interactions between modules. A
designer would also, given the above form of design, provide a
description of each module and assumed file structure. For example:

UNFILE: file of patient unit numbers

R e g

SEARCH: Search the data base for patient identification; obtain
identification if patient is not found in data base; update data base
] appropriately

VERIFY: request verification of patient identification

information

L serete

LOGON: detemmine user authorization to access data base etc.

Design, in its broadest sense, appears to be an excellent vehicle
for the study of planning in any kind of problem solving domain.
Design, whether it is concerned with construction of a building,
develomment of a complicated computer program, or a plan of action to
control a large industrial enterprise, is essentially a plan describing
the goals that are necessary to achieve the ultimate objective of the
plan and the operations necessary to achieve those goals. The design
is the plan or structure underlying a given computer program or
software system. In large, or even moderately large software systems,

software design is considered to be a separate task from other

programming activities. Designers produce high level descriptions of

the system to be implemented, and then these descriptions are given to
other individuals who will perform the actual implementation, i.e.,
programmers. Recall that earlier we characterized a plan as a
hierarchical structure underlying a sequence of operations or actions

that solve a given problem. The computer program is that sequence of

o

i N e ATANBEPALTL S

PO

actions; the design is the plan.

We have selected software design because we feel that it maximizes
our chances of understanding planning behavior. Another reason is that
programmers and systems designers have a common terminology for
describing elements of their solutions -- the technical vocabulary of
computer science. This common vocabulary simplifies data collection
and analysis and makes a much more rigorous interpretation of our
protocols possible. Both the experimenters, who are software designers
of various levels of expertise, and the subjects have a common and
reasonably well defined vocabulary for communicating the various
elements of this underlying hierarchichal structure. Third, it is
possible to present a wide range of problems in the context of the task
domain of software design. Finally, the task envirornment of software
design appears to be very compatible with the theoretical framework
that we are using. In addition, there 1is a large literature on
software design, and this literature provides additional insights into

the structure of this task and the necessary background information

required to construct a theory of human performance in this domain.

bt B i e ' e s

10

THEORETICAL FRAMEWCRK

In this section we present the theoretical framework underlying
our research on planning and software design. OQur thinking has been
very strongly influenced by two different literatures. The first is
the work on schema-based representations of knowledge. The second is
the work on planning that has been done in connection with numerous
robot projects. In addition, our framework is consistent with,
although not directly influenced by, some of the concepts derived from
formal literature on software design that will be reviewed in Appendix
A.

We begin this section by reiterating our definitions of plan and
planning. We then go on to outline our theoretical framework. Next we

present a fairly detailed discussion of a model of planning developed
by Sacerdoti (1975). We then present a more detailed articulation of
our theoretical ideas incorporating recent thinking on the
representation and utilization of knowledge. In the final section, we
will also briefly consider other theoretical work, although derived
from different sources, that has similarities to our own.

To recapitulate our earlier definitions, we defined a plan to be a
hierarchical structure that underlies any sequence of actions or
operations. Planning is the process of generating this hierarchical
structure. However, it is necessary that we distinguish between plan
generation and plan retrieval.

In work that we will review later, there is a growing consensus
that experts in a given domain have a large number of very specific

plans for the solution of problems in the damain in which they are

expert. In a situation where an individual is essentially executing a

13

pre-stored plan, we use the term plan exeuction. Although it may not
appear so at first glance, plan retrieval is a form of planning. The
plans being utilized by an expert are often extremely schematic and
their adaptation to a specific situation 1is a nontrivial process.
Still the solution plan is not being generated "from scratch." The
Planning process is greatly simplified due to the individual's
experience with similar tasks. Plan generation refers to a situation
where a novice or an expert is attempting to generate a new plan. In
the studies that we will report 1later in this paper, none of our
software designers were expert in the particular kinds of problems that
they were given in our experiments. Thus they were faced, in part,
with the task of generating a new plan.

In summary, a plan is a hierarchical structure that underlies the
solution to a problem. Planning can be divided into two classes of
processes. Plan retrieval is the process of making specific a
schematic solution to a given task or class of problems. Plan
generation is the process of generating a new plan for the solution to
a problem. The theoretical framework to be outlined below makes the
basic assumption that in a software design task the development of a
plan for a novel problem is, for the expert, in fact, a mixture of plan
generation and plan retrieval.

Software design can be considered a “"problem of arrangement." As
Greeno (1973) points out, the archetype of a problem of arrangement is
the anagram. In software design we think that the elements that are
being arranged are the subject's knowledge of specific kinds of
operations, such as input-output processes, sorting, management of

linked 1lists, and other such fairly specific concepts in the domain of

12

computer science. It is the proper arrangement of these known
elements, or processes, that a computer system can execute, that
defines the eventual solution to a given programming problem, and the
task of the designer is to arrange those elaments in the proper order.
The framework outlined below incorporates five basic assumptions about
planning behavior in complex tasks, in particular the task of software
design. We begin by summarizing these main points.

First, we propose that a complete plan is a series of abstractions
of the final solution to the problem ranging from very schematic or
high level plans to detailed plans that can actually be transformed
into a solution to the problem. Second, a plan is generated by a
process very similar to stepwise refinement. That is, plans are
generated primarily in a top-down and breadth-first manner, with each
level being more detailed than its predecessor. ‘Third, planning
involves the wutilization of previously learned schemata. These
schemata may be very general, such as the "input-process-output" schema
from computer science, or may include more specific schemata, such as
the subject's knowledge of how to manipulate elements that are
represented by a linked list. Fourth, various components of a total

plan, or even complete solution plans, can be retrieved from long term
memory and incorporated into the solution of a specific problem by the

process of plan retrieval. Finally, we assume that planning, in
complex tasks, involves the synthesis of many types of knowledge
structures.

Qur basic ideas about the planning process were stimulated by
Sacerdoti's (1975) description of NOAH. NOAH (Nets of Action

Hierarchies) is an integrated problem solving system that utilizes

-——-———-—“

13

stored information about the task domain to generate a complete plan
for the solution to a given problem. The system solves the problem by
creating a hierarchical structure that represents a solution plan for a
given problem at greater and greater levels of detail. The top node or
level in the hierarchy is a one step solution to the problem,
essentially a statement of the goal "solve the problem." The
successors of this top node are the major subgoals of the completed
plan. Successive levels of this hierarchy are more and more detailed
plans. The bottom level nodes are a solution to the task in temms the 1
primitive actions of the task domain. The nodes at any given level are
linked together by predecessor and successor relations that define a
partially ordered sequence of operations. Sacerdoti calls this
completed structure "a procedural net". In the discussion that follows
we will use the temms "procedural net" and "plan" interchangeably.

NOAH uses an iterative procedure in generating a plan to solve a
problem. Each cycle of the iteration begins with the expansion of each

node into its successors. These successors are a complete subplan for

achieving the goal defined by the parent. However, there is no

guarantee that the sequence of individual subplans is a correct
solution. The completion of one subplan in the sequence may make it

impossible to achieve a necessary step in a later subplan in the

series. A correct plan is generated from this sequence of subplans by
a collection of "critics". These critics make the plan consistent by
reordering the steps and eliminating redundant ones. In addition, the
critics attempt to deal with conflicting preconditions defined by
various subplans. The cycle then repeats with a new plan being

synthesized at the next greater level of detail. This iterative

| i

14

process generates a procedural net for the solution to the problem.

The process we have been describing is very closely related to the
notion of stepwise refinement and similar concepts that have appeared
in the software design literature. In the empirical work to be
reported later, the primary focus of our current research is the
dynamics of the planning process. We will argue that human problem
solvers develop plans in a manner that is similar to NOAH.

The basic assumption underlying NOAH is that one can create a
rough plan for solving a problem by ignoring much of the detailed
information contained in the original statement of the problem. This
rowgh, or abstract, plan is then refined into a more detailed, complete
plan to solve the problem. The notion of developing an initial
solution plan using a simplified version of the problem was first
proposed by Newell, shaw, and Simon (1963). This original proposal of
planning by abstraction is described by Newell and Simon (1972) in some
detail. This type of planning process has been very influential in
work that was published during the 1last few years in the robotics
literature and is most apparent in ABSTRIPS (Sacerdoti 1974), (cf.
Banerji and Ernst, 1977). Sacerdoti (1975) assumed that each node
describing a subgoal at a given level of abstraction contains all the
information necessary to construct a solution plan at the next level of
detail. We will not make use, however, of the particular
representation schemata that Sacerdoti incorporated into his system.
We will focus on the dynamics of the solution process as described by
Sacerdoti and turn to the literature on schema-based representations of

knowledge to deal with how the knowledge incorporated into the

procedural net is actually represented.

———

15

For different kinds of problems and subjects (e.g., novices and
experts), the possible representations of plans can vary both in the
nunbers of levels of abstraction as well as the generality of the plan
at any given level of abstraction. We propose that we can characterize
the subject's problem space at any given point in time as an incomplete
procedural net. We assume that the top node of the net corresponds to
the subject's representation of the goal to be achieved, that goal
being to solve the problem. The lowest level of the subject's
representation is the sequence of operations used to actually solve the
problem within the task domain. The intermediate level represents the

subject's understanding of both abstract plans and the particular
subgoal sequences that define the major steps in the process of solving

the problem.

It is important to realize that a subject's procedural net may be
incomplete and/or incorrect. In the extreme case of simple
transformation problems, the subjects' representation consists of the
top node (i.e., the goal stating "solve the problem"), and the two end
points of the move sequence, the initial situation and the goal state
of the problem. The 1lack of planning in such problems reflects the
fact that the subjects' understanding of the problem is very
incomplete. Their knowledge of the task does not permit them to
generate the hierarchical structure that underlies the sequence of
operations that will eventually solve the problem.

We will partition the various levels of a procedural net into
three types of plans -— abstract plans, detailed plans, and the

operation or move sequence level. The top levels of a procedural net

represent an abstract plan for solving the problem. These abstractions

T ——————

eliminate many of the details of the original problem in an attempt to
identify the major components or subproblems of the task as originally
stated. This identification, however, can be rather crude, and this
level of plan is not necessarily an accurate description of an
achieveable solution. For example, Sacerdoti points out that an
abstract plan may simply identify the major subproblems to be solved in
the process of achieving the stated solution. This initial abstraction
can ignore the very critical issue of the order in which the
subproblems must be attacked and solved.

The detailed plans are represented by the middle levels of the
net. These structures define the details of a solution to a problem.
It is this 1level that we feel most closely corresponds to the
structures generated by NOAH. In addition, we will argue later that
detailed plans are generated from information stored in long term
memory, and that they characterize the operations that will solve the
problem. The bottom level of a procedural net is the problem graph
defined by the primitive actions or operations of the problem. In the
domain of computer programming, the abstract plan and the detailed plan
are the software design. The complete design is turned over to a
programmer who generates the program, or the operation sequence level
of the net, and creates an operational or running program that solves
the given problem.

NOAH, like a large number of other formalisms characterizing
complex problem solving, assumes that a problem is solved by the

process of problem reduction. The problem as given is reduced by a
decomposition process into a manageable series of subproblems. The

“critics" in NOAH deal with interactions between solutions to

A e <~ p——

—

17

subproblems. The major difference between our theoretical thinking and
Sacerdoti's NOAH has to do with how we wish to represent the knowledge
that is incorporated into the completed plan.

We assume that the knowledge underlying the solution to a problem,

the knowledge incorporated into the procedural net, can be partitioned
into two categories. The first is information that a subject must have

in order to understand the description of the problem that is to be
solved —- the information necessary to understand the purpose of the
computer system that-is to be designed. This knowledge would include
the knowledge of topics 1like physics, chemistry, accounting,
statistics, or any substantive discipline that could utilize computer
programs to accomplish a task. The second category includes the
problem solver's knowledge of design techniques, general knowledge of
computer science, knowledge of specific processes like sorting or
memory management, and knowledge of the details of a specific computer
system. Our primary assumption is that the knowledge incorporated into
the procedural net which describes the design for a given system is a
synthesis of these two knowledge domains. An individual's knowledge of
the problem area is the basis for the understanding of the problem

statement and the identification of the major components of the
problem. This knowledge enables an individual to parse, or define, the

principal subproblems that must be solved in order to achieve the
solution of the given problem.

We will assume that an individual's knowledge of software design
and computer science can be roughly partitioned into three categories.
The first includes general knowledge about the overall process of

design and the particular kinds of resource allocation heuristics that

an individual uses to guide design behavior. Expert designers are well

aware of different kinds of design styles. Furthermore there are
probably significant, systematic differences in the kinds of resource
allocation decisions designers make. For example, "how detailed should
I make this design?", "should I optimize speed or storage
requirements?", etc.

The second category is a very generalized schema which frequently
takes the form of "input-process-output." For the overall process, or
any subprocess that is going to be part of a design, the designer must
specify the inputs to that routine or process, the process or the
manipulations to actually be performed by the computer, and then the
format of the results or the output. This schema itself is not the
solution to any programming problem; it is simply too general. This
schema 1is an agenda that must be completed before the design for a
given caomponent of the problem can be considered finished.

The third category of knowledge the software designer has is a
large collection of quite specific pieces of information involving
various kinds of techniques in computer science and the specific
computer system involved. An expert designer has at his command a
large amount of knowledge about specific techniques for sorting,
pattern matching, list management, storage management, etc. These
techniques are often stored in memory in the form of quite general
structures that then are adapted to a given problem environment.
Knowledge of the structure of the particular programming system
available to the designer, such as the operating system or the
programming language that the design is to be implemented in, is

represented similarly. This type of knowledge identifies any

S e e

19

constraints on the design that may be imposed by the enviromment that
the solution will actually be implemented in.

We assume that the top levels of the procedural net are generated
by a direct combination of an individual's knowledge of the problem to
be solved with the very general templates or schemata specified by the
particular implementation domain (e.g., software design). In our case,
recall that this schema is "input-process-output." This synthesis
results in a top level abstract plan that identifies the major
functional elements of the eventual design. The rest of the plan
consists of descendants of these initial nodes.

Once the major elements or subgoals of the abstract plan have been
identified, the expansion of these subgoals into detailed plans 1is in
large part controlled by the subject's knowledge of computer techniques

and design. At this point, the subject has identified what must be
done in order to solve the given problem and begins to focus on how

these subgoals can be accomplished. Once a given abstract subgoal has
been expanded into a detailed collection of subgoals, the expansion of
these detailed goals involves very specific schemata that describe how
the particular set of operations used to accamplish this subgoal are in
fact accomplished on a real computing system. Thus the construction of
the detailed plan essentially involves synthesizing and arranging of
elements that are retrieved fram long term memory. These are elements
of the subject's knowledge of very general classes of operations that
can be performed on digital computers, e.g., sorting, and the subject's

detailed knowledge of the particular computer system.

|
13
I

20

RESEARCH ON PLANNING: A BRIEF REVIEW

In this section, we are going to discuss a large number of topics
that are directly or indirectly relevant to the theoretical framework
that we outlined earlier. We are going to focus on three related
literatures. The first is the work in the area of artificial
intelligence that is closely related to NOAH. The second is the
psychological literature on planning. The third is the literature on
schema-based representations of knowledge. Although there is not a
large literature in psychology on planning, per se, it is clear that
given our very general definition of planning, that "plans" and
"planning" are very closely related to many topics that are central to
current interests in cognitive psychology. Finally, we will consider

the relations between problem understanding and problem solving.

RELATED WORK

Two projects have recently been reported in the artificial
intelligence 1literature that make assumptions about planning and
problem solving that are very similar to those that underlie both our
theoretical framework and NOAH. The first is a system that writes
computer programs -- Program Writer (Long, 1977). The second is a
problem solving system developed by Sussman (1977) -- PSBDARP (Problem
Solving By Debugging Almost Right Plans).

The Program Writer is an artificial intelligence program that

accepts high 1level specifications for a computer program in a limited

domain (withdrawals and deposits to bank accounts) and generates

appropriate algorithms and data structures to implement the program, or

to solve the problem. The central thesis of Long's (1977) work is that

st 2l g

21

writing a program requires several different types of information and
that the process of generating such a program involves stepwise
refinement, or iterating the solution through several levels of
abstraction.

Long assumes that the knowledge necessary to successfully generate
a program is stored in a collection of substructures that he refers to
as "models." Five models are involved in the current version of
Program Writer.- The first is the domain model, which contains
information about the application area (in this case, banking
transactions). For example, the domain model specifies such things as
that making a deposit implies that a person has money to be maintained
at the bank, that the person owns the money, etc. The remaining four
models are primarily concerned with the knowledge required to produce
functioning programs. The four models involved are: (1) the argument
passing and control model, (2) the data model, (3) the input/output
model, and (4) the target language model. The information contained in
these substructures is used to guide the program generation process,
which is wunder overall control of a design model. The design model
essentially uses the process of stepwise refinement to generate a
running program. Thus, Long's design model is his theory of
programming and problem solving.

In general, the assumptions underlying Long's Program Writer are
very similar to the ideas underlying\Sacerdoti's NOAH system and our
theoretical framework. All generate plans in a hierarchical, top-down
manner. Further, all develop a rough plan for solving a problem by
ignoring much of the detailed information in the original statement of

the task and then expanding this plan in more detail.

L T T— ““““...ll.Inl'.;_.“.,..___w»» s

22

Both Sacerdoti and long also incorporate some mechanism to assure
that the global constraints of the problem (essentially ignored in the
high level plans) are satisfied; in Sacerdoti's work these are the
critics and in Long's these are the models. Sacerdoti and Long make
very different assunptions about how knowledge is organized. Recall
that Sacerdoti assumed that the knowledge necessary to generate the
next level of the plan was contained in individual nodes associated
with each higher level goal. Long assumes, as we do, that knowledge is
organized into complex, schema-like structures -- the models.

Sussman (1977) has attempted to model the processes involved in
solving problems 1in electrical circuit design. Sussman's research is
concerned not only with how plans, or designs, are created, but also
with how incorrect plans are modified and, to a degree, with what types
of knowledge are involved in plan construction and modification.
PSBDARP (Problem Solving By Debugging Almost-Right Plans) is a system
that incorporates two stages that can be employed either independently
or in succession.

In the first stage, attempts are made to retrieve previously
generated solutions to problems that are similar or identical to the
current problem. If a solution to a similar problem is found, its
applicability to the current problem is evaluated. If it is judged
appropriate, the previous solution is applied; It it is ok
appropriate, an attempt is made to isolate and correct the
discrepancies ("bugs") that prevent successful application. Thus, this
stage involves the retrieval of existing solutions or solution schemata

and, if required, making modifications to these schemata.

The second stage is entered only if no applicable solution schema

23

is retrieved. In this stage, an attempt is made to decompose the given
problem into subproblems and, if this fails, to find an alternative
representation of the problem. In either case, the intent is to
produce a collection of subproblems that appear consistent with
existing solution schemata. Any bugs that are detected in the schemata
are resolved by recursive calls to PSBDARB.

In addition to previously generated, or known, solutions, Sussman
assumes that there are knowledge structures that also exist to describe
rules for making problem representaton changes and problem
decompositions. Like the solution schemata, this information is stored
or organized with respect to its applicability to certain types of
problems. These structures are the problem solving processes that are
incorporated into PSBDARP.

long's (1977), Sussman's (1977), and our work bear striking
similarities. Long (1977) assumes, as we do, that planning and problem
solving utilize a series of representations of the problem that involve
the specification of increasing levels of detail -- the process of
stepwise refinement. We share with Sussman the view that problem
solving in complex domains can be characterized as a problem of
arrangement. Many of the processes incorporated in Sussman's theory
are intended to tailor or modify previous knowledge so that it fits the
constraints of the current problem; that is, the emphasis is on
debugging.

While Long and Sussman are taking a fairly strict artificial
intelligence approach, Levin (1976) has attempted to develop a theory
of the software design process that is consistent with current thinking

in cognitive psychology. Levin assumes that design can be viewed as

r“'“‘

24

involving three fundamental processes -- "selecting problems to work
on, gathering needed information for the solution, and generating
solutions", (Levin, 1976, p. 2). Levin focuses on the problem
selection processes. He makes a distinction between global information
(strategies) and local information (constraints) and makes three
assertions concerning the problem selection process:

"l. Local constraints play an important role in problem
selection and account for a significant percentage of new
problem selections during design. (A local constraint is one
that has been introduced only within the scope of the most
recently selected problem).

2. As strategy and constraint information ages in
working storage, the probability that it will be used as a

problem source decreases.

3. The required presence of strategies in working
storage and prior use of local constraints limits the use of
strategies as a problem source." (pp. 10-11).

Levin is dealing with the information that controls the process of
stepwise refinement as the design iterates to greater and greater
levels of detail. In effect, he is attempting to provide a description
of how the information used in Long's (1977) models is utilized in the
process of solving the problem. He has decided to concentrate on the
resource limitations, in particular memory limitations, that dictate
rmuch, if not all, of human problem solving performance.

Levin then proceeds to develop a simulation model based on these
assunptions. This model takes as input the protocol of an experienced
designer working on a fairly complex problem and produces as output a
list of subgoals generated by the designer. It is not immediately
clear, however, whether this model accurately describes human behavior.
As Levin notes, the model is not able to evaluate decisions or
constraints or to determine the relative importance of one subgoal over

another. It processes the input protocols, but does not "understand"

25

the design task, and the concept of a goal is completely missing.

As used by Levin, the temm "strategy" refers to "plans for
achieving the solution to a problem. A strategy describes a sequence
of activities (subproblems), which when worked on may achieve a problem
solution" (p. 9). Levin further distinguishes between "local"
strategies and "global" strategies in a manner which corresponds
closely to NOAH's detailed and abstract plans. Further, these
strategies can be characterized as previously learned schemata that the
designer brings to bear on the design task. -Although Levin's concepts
are not entirely worked out, his model seems to be generally consistent

with the other research discussed in this paper.

PSYCHOLOGICAL RESEARCH QN PLANNING

There is a limited research literature in psychology that directly
relates to planning, but a very large literature that bears directly or
indirectly on the issues discussed in this paper. ‘The first is the
literature in the early and mid 1970's on problem solving processes in

transformation problems. The second is the characterization of the

problem solving behavior of experts in various problem domains. The
third topic is Newell and Simon's (e.g., 1972) work on planning by
r& abstraction which is a basic concept that is incorporated into NOAH,
: and which was discussed earlier.

Greeno (1974) and his students (Thomas, 1974; Egan and Greeno,

1974) argue that simple forward planning processes could account for

the performance of subjects on various transformation problems. Recall
that transformation problems are tasks in which the subject has a

definite start state and goal state, and the solution to the problem

T

26

involves the application of a 1limited number of well-specified
operations that transform the start state into intermediate states and,
finally, into the goal state. Examples of transformation problems are
water jug problems, river crossing problems, and the Tower of Hanoi.
These simple, puzzle-like tasks have been a major focus of modern work
in problem solving. Greeno and his students have argued that the
problem solving behavior of subjects working on river crossing tasks
(Thomas, 1974), and the Tower of Hanoi (Egan, 1973) can be explained by
various kinds of simple forward planning mechanisms. Atwood and Polson
(1976) and Jeffries, Polson, Razran, and Atwood (1977) have challenged
these conclusions. They developed three-stage quantitative models of
the move selection process that assume that subjects use only local
information in selecting the next move. They were able to account, in
particular for the water jug task, for all aspects of subjects'
behavior that Greeno and his colleagues had argued required assuming
some kind of planning process. Polson and his colleagues concluded
that since they could provide quantitative explanations for subjects'
performance in this class of task by assuming no planning processes,
the assumptions of Greeno and his colleagues must have been incorrect.

The "no planning" finding of Polson and his colleagues is easily
explained in the context of the theoretical paradigm presented in this
paper. The elementary puzzles that make up many of the transformation
problems that are frequently used in empirical studies are very
difficult for naive subjects. Although subjects understand the
characterizations of the goal and start states and the legal moves that

can be used to solve the problem, they have no knowledge of the

structure of the move sequence that will ultimately solve the problem.

In the terminology of the framework presented in this paper, these
subjects are unable to generate abstract and detail level plans that
underly the solution sequence. Thus, they are reduced to solving
problems of this <class by some type of means-ends driven
trial-and-error search. It is interesting to note that all successful
quantitative models of this class of tasks make similar "no planning"
assumptions (Simon and Reed, 1976; Atwood and Polson, 1976; Jeffries,
et al, 1977). In conclusion, elementary transformation problems are
difficult because a simple description of the rules of the problem
seems to give subjects little or no information about the structure of
the sequence of moves that will solve the task. This reduces the
subject to proceeding by some sort of sophisticated trial-and-error
search that is guided only by information about the next move.

Although several investigators have incorporated some type of no
planning assumption, none have argued that this is a general
conclusion. In fact, it is obvious that there must be some kinds of
planning behavior underlying successful solution of any really
challenging problem. The simple counterargument to straightforward
trial-and-error search schemes is that as the structure of the problem
becomes more complex, the search space grows explosively, even
exponentially, and trial-and-error search will not converge on a
solution in any reasonable period of time. Identical problems with the
explosive growth of the search space have forced designers of robot
systems to develop sophisticated planning processes so that computers

can solve problems in such a seemingly simple domain as maneuvering in

a three-dimensional world.

In the last few years, research on problem solving has been

28

concerned with tasks that are much more complicated than transformation
problems, and there has been a rapid develomment in the area of
comparing the peformance of novices and experts on non-trivial
problems. All of this research supports the general conclusion that
expert problem solving behavior is strongly schema-driven. That is, an
expert has a generalized plan or schema for a given problem or class of
problems and adapts the schema to solve the current problem. This is a
view of problem solving that is very similar to that incorporated into
Sussman's (1977) PSBDARB model.

The general paradigm in this research involves comparing the
performance of experts and novices on problems that both can solve and
then examining the differences in the processes by which they attack
the problem. The classical example of this style of research are the
studies of Chase and Simon (1973) and de Groot (1966). These studies
found that expert chess players differ from good amateur players not in
their ability to apply more eficient search and evaluation strategies
or to consider a larger number of alternative move sequences, but
rather that experts had memorized a much larger number of chess
patterns and the "correct", or most favorable, move associated with
each pattern. In other words, experts had stored a large number of
situation specific schemata. >y

Another study of expert problem solving behavior is Bhaskar and
Simon's (1977) study of an expert problem solver in the domain of
engineering thermodynamics. The problems given to the expert subject
were various thermodynamics problems from an undergraduate course for
which the expert was a teaching assistant. The expert subject's

problem solving behavior was striking in its regularity. The subject

e Y1 1w 2 A - T P

r — — j-—m

29

began by retrieving one of the few forms of the basic themocdynamics

equation and then modifying, or specializing, the equation to fit a
particular problem. A means-ends-like process was then used to fill in
the variables in the retrieved schema. 1In fact, the expert used this
"thermodynamics schema" even when another approach, with which the
subject was presumably familiar, would have made the problem easier to
solve. Additional processes used by the subject included the retrieval
of additional relevant equations and tables useful for detemmining the
values of specific quantities, the ability to deduce, from key words
and phrases, default values (frequently zero) for temms not explicitly
mentioned in the problem, and a fairly elaborate procedure to detect
errors and mistakes.

Larkin (1977), using a fairly difficult set of problems, has
compared the problem solving behavior of novices and experts on various
mechanics problems from an undergraduate physics textbook. Larkin
examined in some detail the behavior of a single expert subject. She
found that this expert constructed hierarchical solution plans, first
solving the problem in an abstracted form, then expanding this solution
to the level of detail necessary to solve the problem as given.
Larkin's main findings are that experts organize their knowledge into
“chunks" of related principles and equations, and that they begin
problem solving by attempting to find a match between a particular
chunk and the problem to be solved. No equations were written until a
satisfactory chunk was retrieved. The novices, on the other hand, were
more likely to begin writing equations almost immediately. Larkin

examined the distribution of times between mentioned equations. She

found that for experts, equations were mentioned in bursts, with

same-chunk pairs having very short interresponse times and with longer

interresponse times occuring between equations from different chunks.
For the novice, the distribution of interresponse times did not differ
for equations that were considered to have come from the same or
different chunks.

Finally, Hinsley, Hayes, and Simon (1976) have shown that even the
solution of elementary high school algebra problems seems to be
schema-driven. College subjects were given a collection of problems
from a high school algebra textbook. They were asked to classify these
problems into a number of subject-determined categories. The
classification process appeared to be quite reliable across subjects,
and classification seemed to be based on classes of problems as
specific as river problems, interest problems, etc. Furthemmore,
subjects were able to identify the problem class or the solution schema
appropriate to a given problem from the first two or three sentences of
the problem description.

In summary, current evidence strongly suggests that problem
solving in what Bhaskar and Simon (1977) call "semantically rich"
domains is strongly schema-driven. Expert subjects use pre-existing
plans that are adapted to the solution of the current problem. In all
of these studies, however, there is very little evidence or information

on the processes by which plans are synthesized.

KNOWLEDGE REPRESENTATION ISSUES

Although plans and planning are terms that are usually associated
with research on problem solving behavior, plans have also been

discussed in conjunction with comprehension and understanding. This

31

line of research is particularly relevant since, as we indicated above,
problem solving in semantically rich domains may be strongly
schema-driven. That is, we feel that the generation of a plan is
guided by schemata such as "input-process-output" in a manner very
similar to the way understanding of a narrative is governed by
macrostructures such as "setting-complication-resolution" (Kintsch and
van Dijk, 1975). Although we do not wish to equate planning and
comprehension, we feel that the interaction of the comprehension
processes with the relevant knowledge structures may be very similar to
the interaction of planning processes with task-appropriate knowledge.

Schank and Abelson (1977) have developed a set of concepts that
are analogous to many of the concepts developed in this paper. These
authors develop three concepts related to the notion of a plan --
scripts, plans, and goals. While these concepts do not map precisely
onto the theoretical framework discussed here, primarily because of
non-trivial differences between the tasks of planning and
understanding, their concepts are closely related to certain structures
in our theory.

Schank and Abelson define a script as a "predetemined,
stereotyped sequence of actions that defines a well-known situation"

(p. 4l1). We see a fairly direct correspondence between scripts and

the detailed plan level of a procedural net. These detailed plans, or
scripts, comprise a large part of a skilled software designer's
knowledge. These include such topics as sorting, merging, manipulating
linked 1lists, etc. In many cases, solving a software design problem
involves a fairly direct mapping of problem elements into a sequence of

subgoals at the detailed plan level. Once such a sequence of subgoals

32

has been correctly defined, the goals can be expanded on the basis of
this script-like knowledge.

The concept of a plan as described by Schank and Abelson is
somewhat different from the way we have used this termm. A plan, to
them, is "the repository for general information that will connect
events that cannot be connected by the use of a standard script" (p.
70) . A plan represents the actions underlying a set of goals; this
sequence of actions is more novel and less stereotyped than a script.
People do have pre-stored plans, but they are much less detailed than
scripts and require that much more information, especially more detail,
be filled in. We see a close analogy between our concept of an
abstract plan and Schank and Abelson's concept of a plan. In
generating an abstract plan, a person will modify some general schema
to fit the constraints of the current problem. This schema will be
applied in a manner that is somewhat different from the way it has been
used to solve previous, similar problems. In refining this plan, the
designer may invoke several script-like entities. These schemata will
require at most minor changes in order to be used in the current
situation.

Schank and Abelson are also concerned with the goals that underlie
particular plans. In some sense, the top level node of the procedural
net in our theoretical framework represents the goal being used to
guide the generation of the plan. Schank and Abelson, however, allow
for the existence of several concurrent goals. We admit that it is
probably inadequate to assume that we can represent this top level node
as simply "solve the problem." For example, as well as having the goal

of solving the problem, a designer may also decide to do so in the most

T ——

33

efficient way possible. The existence of multiple, possibly
conflicting, goals will be a necessary addition to our theoretical

framework and is expected to be a central focus in our future research.

PROBLEM SOLVING AS UNDERSTANDING

Greeno (1977, 1978) has attempted to develop the concept,
originally expounded by the Gestalt psychologists, that “problem
solving" is what is involved in the process of "understanding." In
this brief section, we would like to juxtapose Greeno's ideas with the
ideas of Schank and Abelson on understanding and planning in the domain
of text understanding. We feel that a reconciliation or unification of
these two seemingly different definitions of understanding may well
provide some useful insights into the problem solving processes
involved in semantically rich domains such as software design.

Greeno (1977) has attempted to develop the Gestalt psychologists'
notion of problem solving as a process of understanding in the context
of modern theoretical developments in the understanding of natural
language (e.g., Schank, 1972; Winograd, 1972). Greeno asserts that
"understanding is a constructive process, in which a representation is
developed for the object that is understood" (Greeno, 1977, p. 4).
Greeno makes it clear that understandinc involves the construction of a
representation that corresponds to the structure of the actual object
being perceived, the sentence being understood, etc. In his
discussion, Greeno develops three criteria for good understanding. The
first is that good understanding involves achievement of a coherent

representation. The second is that the representation generated by an

individual should correspond to the actual structure of the object that

34

is to be understood. The third criterion is that good understanding
has occurred to the extent that the to-be-understood object and its
components are related to previously existing knowledge (Greeno, 1977,
pp. 44-45).

In our introduction, we defined a plan as a hierarchical structure
that underlies the sequence of operations necessary to solve a given
problem. We argue that Greenc's definition of understanding directs
itself to the generation or discovery of the structure underlying the
solution of the problem, rather than a simple rote acquisition of the
sequence of operations that, in fact, would solve a given exemplar of a
class of tasks (cf., Wertheimer's (1945) discussions of "productive
thinking" and Duncker's (1945) distinction between "analytic" and
"synthetic" problem solving). In his development of a definition of
understanding, Greeno includes both the process of understanding a
problem as given and the processes involved in the actual construction
of a solution.

Schank and abelson (1977), on the other hand, clearly limited the
concept of understanding to the understander's identification of the
major subgoals and primary components of the story, the motivation of
the actors involved in the story, or the primary subgoals defined by a
problem contained in some textual description. They specifically
excluded the detailed kinds of problem solving processes that are
required to generate a complete plan or solution of a problem.
Following Schank and Abelson, we would like to separate the processes
of planning and understanding. While we agree that they are closely

related and are persuaded in many respects by Greeno's argument that

problem solving and understanding are identical processes, we agree

35

with Schank and Abelson that understanding involves identifying the
major subgoals or major elenénts of the object to be understood.

Thus, in our definition we want to restrict the temm
"understanding" to those processes that lead a subject to identify the
major relevant aspects of a problem description and that enable a
subject to bring to bear relevant, general aspects of his or her total
knowledge about the problem domain involved. We would like to reserve
the tems “planning” and "problem solving" to refer to those processes
which, as described by Sussman (1977), focus on issues involving
debugging, or modifying, these knowledge structures.

Earlier, we characterized software design as a problem of
arrangement. We feel that the process of understanding involves the
identification of the major elements of design and computer science
knowledge that are relevant to a particular task. 1In addition, the
process of understanding probably leads to an initial specification of
how the elements are to be arranged in an ultimate solution to the
problem. The remaining planning and problem Solving processes dominate
a majority of the skilled individual's time; they are the kinds of
debugging processes that are involved in fitting together the
script-like elements into coherent solutions to a given problem.

In summary, we feel that the process of generating an abstract
plan and the process of understanding, as described by Schank and
Abelson and others, are in fact very similar. At this level, we have
no conflict with Greeno's equating of problem solving and
understarding., Clearly, an effective, correct, useful abstract plan
must satisfy all three of Greeno's criteria for good understanding. On

the other hand, we feel that the process of articulating a detailed

36

plan that is consistent with the abstract plan is more similar to
Sussmann's characteriation of problem solving as a process of

debugging, or problem solving as a process of tailoring given elements

to fit a specific context.

T

37

METHOD QF DATA ANALYSIS

In the sections that follow, we present the results of two
experiments. These experiments involved the collection of verbal
protccols and written problem solutions. In some cases, we present our
representation of a subject's solution. Our representation involves
the elements of the solution that were identified by a subject and the
relations among these elements.

As we indicated in an earlier section, a software design requires
the explicit documentation of subgoals, which are represented as
functions, procedures, modules, etc. We identified these subgoals in
one of two ways. If a subject used a flowchart representation, we took
as subgoals any name or element that was enclosed in a single "box" of
the flowchart. If a subject used a "program design language" type of
representation, each element (or 1line) of the design that was later
expanded was taken as a subgoal. Our identification of subgoals is
consistent with the nommal usages of these types of design
documentation.

Our identification of the relations among subgoals is also
consistent with the nommal usages of the types of documentation
employed. Hierarchical relations are expressed through indentation,
with subordinate subgoals being indented farther to the right than the
superordinate subgoals, with explicit numbering of subgoals (e.g., 2.0,
2.1, 2.1.1) and through "calling seguences" and "control structures"
(subordinate subgoals are "called" by their superordinates).

The identification of subgoals and their relationships was also
aided by some of the subjects' comments. In comparison with the

problem behavior graphs presented by Newell and Simon (1972), our form

38

of representation is somewhat primitive. This representation, however,
is intended to be a highly objective summarization of a subject's overt
solution which does not include assumptions about the processes
involved or more covert elements of the solution. These

representations are intended only to be veridical descriptions of

subjects' solutions to software design problems.

39 3

AN INVESTIGATION OF PLANNING BEHAVIOR

EXPERIMENT 1 -- THE PROBLEM SOLVING BEHAVIOR OF EXPERTS

This experiment involved the collection of long, thinking out loud

protocols from three highly experienced computer scientists. The

problem given to our experts is shown in Figure 1. The subject is ‘
asked to design a page-keyed indexing system. ‘This problem was
selected because it is of moderate difficulty, understandable to
individuals with a wide range of knowledge of software design, and does
not require knowledge of highly specialized techniques that would be
outside the competence of our expert subjects. By understandable, we
mean that the nature of the task, the purpose of the program to be
written, would be clear to even a novice software designer. By
specialized techniques, we mean that the design of a useful page-keyed
indexing system does not require an expert to have detailed knowledge
of exotic techniques that are used in only very specialized areas of
computer science.

In our description of the behavior of the three expert subjects,
we will roughly classify various segments of the protocol as
representing different activities relevant to the construction of a
software design. The first part of every protocol contained a
discussion of the elements of the problem, pointing out various
schemata at different levels that would be relevant to the solution of

such a problem. Also, all of our expert subjects discussed design

strategies and design techniques. After mention of various alternative

design techniques and strategies, the expert would tell us the overall
method that he was going to use to solve the problem, and the remainder

of the protocol would conform to these stated intentions. In summary,]

o i

40

PAGE-KEYED INDEXING SYSTEM
BACKGROUND. !
A BOOK PUBLISHER REQUIRES A SYSTEM TO PRODUCE A PAGE-KEYED INDEX.
THIS SYSTEM WILL ACCEPT AS INPUT THE SOURCE TEXT OF A BOOK AND PRODUCE AS
OUTPUT A LIST OF SPECIFIED INDEX TERMS AND THE PAGE NUMBERS ON WHICH EACH
INDEX TERM APPEARS. THIS SYSTEM IS TO OPERATE IN A BATCH MODE.

DESIGN TASK.

YOU ARE TO DESIGN A SYSTEM TO PRODUCE A PAGE-KEYED INDEX. THE SOURCE
FILE FOR EACH BOOK TO BE INDEXED IS AN ASCII FILE RESIDING ON DISK. PAGE
NUMBERS WILL BE INDICATED ON A LINE IN THE FORM /*NNNN WHERE /* ARE MARKER
CHARACTERS USED TO IDENTIFY THE OCCURRENCE OF PAGE NUMBERS AND NNNN IS THE
PAGE NUMBER.

THE PAGE NWMBER WILL APPEAR AFTER A BLOCK OF TEXT THAT COMPRISES THE
BODY OF THE PAGE. NORMALLY, A PAGE CONTAINS ENOUGH INFORMATION TO FILL AN
8 1/2 X 11 INCH PAGE. WORDS ARE DELIMITED BY THE FOLLOWING CHARACTERS:
SPACE, PERIOD, CQMMA, SEMI-COLON, COLON, CARRIAGE-RETURN, QUESTION MARK,
QUOTE, DOUBLE QUOTE, EXCLAMATION POINT, AND LINE-FEED. WORDS AT THE END
OF A LINE MAY BE HYPHENATED AND CONTINUED ON THE FOLLONING LINE BUT WORDS
WILL NOT BE CONTINUED ACROSS PAGE BOUNDARIES.

A TERM FILE, CONTAINING A LIST OF TERMS TO BE INDEXED, WILL BE READ FRM
A CARD READER. THE TERM FILE CONTAINS ONE TERM PER LINE, WHERE A TERM IS
1 TO 5 WCRDS LONG.

THE SYSTEM SHOULD READ THE SOWRCE FILES AND TERM FILES AND FIND ALL
OCCURRENCES OF EACH TERM TO BE INDEXED. THE OUTPUT SHOULD CONTAIN THE INDEX
TERMS LISTED ALPHABETICALLY WITH THE PAGE NUMBERS FOLLOWING EACH TERM IN
NUMERICAL ORDER.

A NULL SOWRCE FILE INDICATES THAT PROCESSING IS COMPLETED. ERROR
MESSAGES AND A TERMINATION MESSAGE SHOULD BE WRITTEN TO THE OPERATCR'S
CONSQLE. EACH CQMPLETED INDEX IS TO BE STORED ON DISK FOR L[ATER LISTING.

Figure 1. The Page-Keyed Indexing Problem

41

these initial segments of the protocol involved the subjects retrieving

and instantiating a variety of knowledge structures, ranging fram

information about design strategies and resource allocation policies,

to schemata that described particular subdesigns for aspects of the
potential solution. In terms of classical work on problem solving, the
behavior in these initial segments of the protocols could be descriped
as preparation. |
The remainder of each of the protocols concerned the construction

of the actual software design. Various elements of our hypothesized

plan structure appeared in the protocols of all subjects. The subjects
differed in the order in which they constructed this hypothesized

structure. All subjects seemed to understand that the completed design
would be a structure like a procedural net, varying in levels of
abstraction, with the transition from one level to the next
characterized by terms 1like ‘step-wise refinement' or 'increasing
levels of detail'. Subjects differed widely in the processes they used

to construct this structure. Furthermore, they were quite explicit

about the processes they would use to synthesize the underlying

structure or procedural net.

ne final aspect of subjects' planning behavior should be
mentioned. All of our experts rapidly recognized that various elements
of the solution to the page-keyed index problem involved algorithms
that were well understood and that in many cases optimal algorithms
were known in the literature, Our subjects found the retrieval of such
algorithms difficult, because they had not bothered to commit all of
the details of the algorithm to memory. 1In normal circumstances they

would look up the details in an appropriate reference. This is one

42

artificial aspect of the design task as given to the subject, and
attempts to retrieve relevant details consumed an inordinately large
part of the protocols.

In summary, the protocols could be partitioned into two phases.
The first phase we will characterize as preparation, and the second
phase we will call planning. It is in the planning phase that the
subjects developed their actual design. The preparation phase involves
a careful reading and summarization of the problem description,
discussion of relevant techniques, and some discussion of the design
techniques to be used in solving the problem given in this particular

task.

The Behavior of S2. S2 is a Master's degree candidate in computer

science who is employed as a systems programmer. S2 has a great deal
of experience with various text processing applications, although §2
had not designed or written any typé of indexing program. In addition,
S2 1is interested in software design methods and techniques and
regularly reads the technical literature in this area.

The preparation phase of S2's protocol was relatively brief and
contained three principal elements: a brief statement of design
techniques, a rather clear statement of a schema within which he could
analyze the given problem into the elements necessary to derive a
software design, and a summarization of the problem as originally
given. S2 states that he intends to use a program design language of
his own that incorporates a large number of structured programming
techniques and that shows a 1lot of influence from the programming
language PASCAL. He also makes it clear that his design strategy is to

proceed in a top-down breadth-first fashion. S2 then given a very

NP ——

43

clear statement of his most abstract design schema:

"One thing that I believe absolutely has to be done is to

write a complete, detailed specification of what I consider

to be the user interface what the input-is going to be and

what the output is going to be. Once that's done, I then

attempt to analyze the problem of taking the input data and
transforming it into the output results in terms of what are

the primitive objects that I need to have."

We interpret this Qquote to instantiate a very general schema of the
form 'initialize-input-process-output'. We have given a graphical
representation of this schema in Figure Z. We feel that S2 was
instantiating his most abstract or high level design schema, and that
it would serve as a template for construction of the abstract plan as
well as more detailed elements of the final design.

The final element of S2's preparation phase was a careful analysis
of the problem as given and a summary of his understanding of the
problem. We show S2's analysis of the problem in Figure 3. Note that
it is simply a summarization of the major elements of the problem
statement and could be derived by an individual who was planning to
construct a page-keyed index by hamd as well as someone who was
planning to write a computer program to accomplish the same task.

S2 constructed the design to carry out the page keyed indexing
task in a strictly top-down breadth-first fashion. He used a program
design language to state the major elements of the design. S2 defines
his design larnguage in the following fashion:

"The items that I have on each line correspond to the

functions to be performed...and can be thought of as

procedure calls, so that at this point, my high-level design

is complete, and I now proceed to expand and elaborate the

procedures and modules which I have identified at this

level."

The statement above characterizes the nature of the software design

language; it was made after the subject has articulated the abstract

-

Figure 2.,

INITIALIZE

Abstract Design Schema Used by S2.

44

Figure 3.

GET THE TERMS |

LOOK AT PAGE |

INDEXER

FIND TERMS ON PAGE]

ADD PAGE NUMBER TO|
REFERENCE LIST

Abstract Problem Schema Used by S2.

45

Y

B e

46

2 though 6 in Figure 4, where we present S2's final design. Note that
§2 considers the high-level, or abstract, design to be camplete at this
stage. He then proceeds to articulate the details of the major
elements of the design that he has outlined. S2's summary is also
consistent with our assumption that each level of detail is a complete
solution to the problem. At this level, of course, the plan identified
consists of the major subgoals that are to be accomplished, but the
lack of detail prevents this level from being considered an
implementable solution. The remainder of S2's protocol is concerned
with expanding these goals into a detailed plan (which is the last
level shown in Figure 4), and bthen finally to the 1lowest 1level, the
operation sequence level.

We will only consider one part of the expansion into the lower
levels of the detailed plan. The case we will consider is the
expansion of the detailed plan 'INSERT TERM IN ORDERED TABLE' which is
the successor of the abstract plan 'READ TERMS'. (See Figure 4.)

The expansion of this detailed plan took a great deal of time,
about 30-40 minutes in a protocol which took approximately 3 hours, and
the subject was becaming very frustrated at this point. He commented
that:

"I feel like I'm getting slightly bogged down in the Insert

procedure. It is one that 1I've written probably 5, 6, 7

times before...Since I, as I am reproducing it exactly,

correctly from memory and it takes a great deal of effort, so

what I will do is to put down that the node is to be inserted

by a classical scheme and simply assume, at this point, that

this will be a reference to an existing algoritmm."

The subject was attempting to retrieve and reproduce a previously

written routine for inserting nodes in an ordered table. At this

point, planning effectively stopped and the subject's efforts were

47

-
'INITIALIZE GENERAL|
GLOBAL VARIABLES

8

INITIALIZE INPUT
BOOK TEXT
2

[INITIALIZE
/ X 9
INITIALIZE TERM|
]

READ TERMS

12

INSERT TERM IN
ORDERED TABLE

13
i READ A CHARACTER|

14

PROCESS PAGE
NUMBERS

5 15
PROCESS PAGE b\VchPARE CHARACTFR
| STRINGS

16
OUTPUT HEADER|

’ 6 17
CQUTPUT CROSS- FRINT CROSS- |
REFERENCE REFERENCE LIST)

18
{ OUTPUT TRAILER|

Figure 4. S2's Final Design

48

directed to the memory retrieval task. In fact, note that this process
apparently required so much effort that the subject eventually
detemmined that this exercise was unprofitable and decided to use a
“"classical scheme", which the subject had developed and used
previously, and returned to planning in other areas of the detailed
plan level. Notice that the existence of this routine was part of the
subject's software design knowledge, but the actual details of its
operation were not sufficiently well integrated that they could be
easily retrieved.

We argue that this segment of S2's protocol provides strong
support for our characterization of thé planning process at the
detailed plan level of the procedural net to be very closely analogous
to Sussman's (1977) characterization of problem solving as the
debugging of almost right plans. Planning at this level involves the
novel combination of well known elements, and these elements, which a
subject must retrieve from memory or from other sources, form the major
part, if not all, of the detailed plan and operation sequence levels of
the network. The top levels of the abstract plan involve the
decomposition of the problem into its major elements. The top levels
of the detailed plan are the decomposition of the elements of the
abstract plan into known algorithms or schemata for implementing
various subparts of the task ultimately to be accomplished. These
schemata are then retrieved and articulated in the context of the
problem to generate the remainder of the detailed plan level and the
operation sequence level of the network.

This protocol provides clear support for the theoretical framework

outlined in the previous section. The design was constructed with

-

v

clearly defined 1levels and was expanded in a top-down, breadth-first
manner. This form of expansion was readily apparent both in the
subject's comments and in the written solution. S2 numbered, on
separate pages, the modules or subroutines that were developed and it
was from this numbering that we derived the hierarchical structure of
our representation of this design, as shown in Figure 4. The results
obtained from the other two experts, however, differed from this
protocol in several aspects.

The Behavior of S3. S3 has degrees in physics and electrical

erngineering and about 15 years of programming and design experience.
Although S3 is aware of current developments in design techngiues, this
subject has no formal training in this area.

Again we can partition S3's protocol into two major segments: the
preparation phase followed by the construction of the actual plan. The
preparation phase of S3's protocol is quite long and discursive. It
includes an analysis of the problem as given, discussion of various
relevant pieces of software design information, and discussion of
particular algorithms or techniques that might be useful later in
solving the problem. We characterize the preparation phase of S3's
protocol as being 'opportunistic' in the sense used by Hayes-Roth and
Hayes-Roth (1978).

In contrast to the protocol of S2, the protocol of S3 is much more
difficult to interpret. S3 used a flowchart as the primary fom of
representation and the expansion of the design was frequently
"interrupt driven." As we will show below, the overall design does

show a top-down expansion, first to an abstract plan, then to a much

more detailed plan, and finally to the level of individual actions.

A A A P A 5 N

I, 5 vk A

50

The details of this expansion, however, differ from S2's in several
important aspects.

First, when elaborating the design at the abstract level, S3
followed the description of each abstract node with a brief sketch of
the potential descendants of this node. This enumeration seemed to be
driven by a schema for generic nodes of this type. For example, when
considering the "OUTPUT INDEX" node (see Figure 5) S3 mentioned
headings, tems being of variable lengths, different numbers of
references for each termm, and so on. The items mentioned seemed to be
guided by this subject's experience with writing output modules for
other programs. Each item was resolved in one of three ways; 1) the
item was seen as presenting no problem (an existing schema was
adequate); 2) the item was seen as presenting a problem and one or
more potential solutions were discussed (the schema needed a correction
in order to be applicable); and 3) the item was seen as presenting a
prcblem, but no solution was forthcoming (no appropriate schema was
found) . In this latter case, the item was flagged as a potential
problem and further consideration was postponed until the next level
was expanded.

The second strategy that seemed to drive S3's behavior, both in

this "pre-expansion" mode, and later, when actually elaborating the

»

detailed plan, was 4 "check for errors" rule. Whenever S3 generated a
data structure, read data, or instantiated a fairly standard procedures
(e.g., "compare words"), S3 immediately considered possible errors or
anomalous cases; for example, end of file, missing page numbers, or
extra blanks in tems. Corrections were dealt with in essentially the

same manner as described above. Several times, the solution to a

;—-—-————

-n

h.L_,

51

4
{INITIALIZE TERM POINTER]

S
READ TERM
] 6
: N]

|[READ TERM FILE——FUT TERM IN TABLE
3

ALFHABETIZE TABLE|

GET RID CF DUPLICATES|
9
/ READ BLOCK!
10
| IGET NEXT TEXT WCRD]

11

COMPARE FIRST CHARACTERS OF
TERM :WORD

12

FIND FIRST CHARACTER STARTING

/ / WITH LETTER
/ 20
/ / [INTITIALIZE TO FIRST WCRC
/ IN STRING
13
« GET NEXT TERM WORD IN|
2

/ STRING |
2 14
| INDEXER ——CONSTRUCT INDEX——COMPARE TEXT:TERM {CQYPARE TEXT:TERM)
| 15
{GET NEXT TEXT WORD
\ 16
\ GET NEXT TERM WGRD
\ | 13

\ INCREMENT TO NEXT TERM!
24 18
|GET NEXT TERM {END OF LIST
19

{ACTER
21,25

{PUT PAGE # IN INDEX

3 22
ISTORE INDEX———STCRE INCEX ON DISC|

Figure 5. S3's Final Design

44j----IIllIlllIllIllll..-.-.........l........lI.-.....l..l...ll................ll.!!

52

potential error required modification of a node that was the descendant
of a node other than the parent of the current node. Although S2
exhibited some of this "check for errors" type of behavior, this
strategy is much more pronounced in the protocol of S3.

S3 also shows evidence of two aspects of expanding a procedural
net, or design, that are not found in S2's protocol. First, in several
cases, S3 considers two alternative ways to produce a given result ard
delays choosing between them until some later node produces a

preference for one of the two methods. This is the software design
analog of Sacerdoti's (1975) "use imaginary objects" method to delay
binding of variables to values until a clear preference for one of the
candidates is established. Second, in S3's protocol, there are several

instances of backtracking. They are resolved either by revising or

<

augmenting an earlier node at the same level (e.g., adding an earlier
node to satisfy a precondition), or one case, by deciding that the

expansion was not working and scrapping all of the successors of a

i

given node and attempting a different decamposition.
Qur representation of S3's design is presented in Figure S5S.

Recall that S3 used a flowchart as the means of representing the

“

design. In this type of representation,"flow of control" and "control
structure" are emphasized more than they are in other fomms of
representation, such as that used by S2. Since "decision points" were
presented as separate "boxes" in S3's design, we have included them in
Figure 5. It should be noted, however, that S3 explicitly stated that
these elements of the design (nodes 18 and 19 in Figure 5) were not to

be expanded further and that no explicit instructions need be given

about these elements to those who would implement this design. Also

excluded from further expansion were two "initialization" routines

(nodes 4 and 20).

At first glance, S3's design does not appear to have been expanded
in a top-down breadth-first manner. Notice that nodes 13 through 16
and node 20 were expanded before the predecessor (node 23) and that
nodes 17 through 19 were generated before node 24. Although this
appears to be an example of bottom up expansion, S3's comments indicate
that this was an oversight rather than a deliberate form of expansion.

Throughout the experimental session, S3 expressed the philosophy
that design decisions should be deferred to the lowest possible level,
and referred to this strategy as "let George do it." After S3 had
generated nodes 13 through 20, this oversight was noted and the subject
commented :

"And here I find that I do this, probably because of the way

that I approach this, eventually this ‘let George do it'

rather collapses, and as I look back on what I have
tentatively written down, I find that I put things, indicated

the thing should be on one level, where conceptually they do

not belong, because of the detail involved with the type of

stuff that it's done. It just doesn't belong there. It

should be more by itself, that is to say, further down the
pike."
At this point, S3 introduced nodes 23 and 24 and indicated that they
were the successors of nodes 13 through 20.

The generation of node 20 is also contrary to a strict top-down
breadth-first expansion. This is a clear example of backtracking, as
was mentioned earlier. While expanding the node to "CET NEXT TERM", S3
noticed that some initialization was necessary for the "COMPARE TEXT
AND TERM" node and inserted an 1initialization routine. Notice,

however, that this addition was at the same level of the design as the

expansion that caused this backtracking behavior. S3's concern with

54

designing in definite levels of detail is apparent in the comment:
"Now we have several places that we could go to elaborate
further what's in these boxes, but I find it easier, until I
get lost in it, well not really 1lost, so much as really
embroiled 1in a particular problem, to stay at the same level
which would mean, at this point, rather than elaborating on
the boxes on the page, here, READ TERMFILE, to go back to the
higher level, move on to the next box, which is constructing

the index, which is really the implementation of that box at
the same level."

Clearly S3's expansion of the design is by levels of detail. The
only major aspect of this form of expansion that appears to be
contradictory to the theoretical framework outlined earlier is that
this expansion does not appear to be strictly top-down and
breadth-first. As we indicated above, however, this is primarily due
to an oversight on the subject's part, and the subject corrected this
oversight as soon as it was detected. Although the forms of expansion
observed in S2 and S3 appear, on the surface, to be different, this
difference appears to be due more to the ability to successfully
execute a common strategy for expansion rather than to fundamentally
different strategies. The behavior of S5, however, may indicate a
different strategy.

Behavior of 85. S5 is a doctoral student in computer science who

returned to graduate school after several years of experience as a
professional programmer and designer. S5 is extremely knowledgeable of
the literature of both the applied and theoretical aspects of computer
science, in particular, the area of software design. Like the other
two protocols, S5's can be partitioned into preparation and plenning
phases. S5 gave us one of the longest preparation phases. In this
phase, he articulated a particular theory of design. He then proceeded

to construct his design in the manner that he had described during the

55

preparation phase. As will be seen in the remarks below, and in the
description of S5's plan, the principle component of S5's approach was
an emphasis on efficiency of the program to be ultimately derived from
the design. That is, S5 evaluated the designs primarily on the basis
of storage requirements and execution speed.

S5 expressed the general philosophy that software designs should

not be done "from scratch." Since optimal designs for a large variety
of functions (e.g., sorts, merges, etc.) have been developed, S5
expressed the belief that the designer should find such designs and
incorporate them into the overall design, rather than "reinvent the
wheel" and, thus, incorporate sub-optimal designs for the necessary
functions.

When presented with the design task, S5 commented that optimal
designs for all of the functions that would probably be needed could

probably be found in reference books, especially in the series of books
by Knuth (e.g., 1968) on the "art of programming." Further, S5 noted
that a recent journal contained a proof, related to searching tree
structures, that led to the development of an optimal search strategy,
and that he would prefer to review this article before beginning the
design, since its incorporation would greatly aid overall efficiency.
For the purpose of this experiment, however, S5 agreed to perform the
design task "from scratch." Since our emphasis is on planning
behavior, rather than on optimal software design, we do not feel that
this shift in preferred strategies on the part of the subject adversely
affects our results. In summary, although S5 was not able to
incorporate previously developed optimal designs into the overall

design, there was still an extreme emphasis on efficiency that was not

T ST T R T

56

observed in the previous two subjects, This emphasis produced a type of
behavior that was different from the other expert subjects.

Two procedural changes were adopted prior to the collection of
this protocol. First, the problem was simplified somewhat. Our first
two expert subjects spent a great deal of time considering design
alternatives and Qquestions that were closer to the actual
implementation than to the plan for solving the problem. This included
such considerations as how to handle multiple instead of single blanks
between words, how to distinguish between a word hyphenated at the end
of a line and a word that contains a 1literal hyphen (e.g., 1line-
printer), etc. Since such considerations tended to cause the subjects

to spend a great deal of time on small, isolated aspects of the design
rather than on the planning aspects of design, we rewrote the problem
specification to eliminate those elements that were encountered by S2
and S3. ‘The simplified version of this problem is shown in Figure 6.
Except for details, this problem statement corresponds exactly to that
used earlier.

Second, we presented S5 with a list of "primitives" and requested
that the design be expressed in temms of these primitives. The subject
was told to assume that these primitives, which consisted of various
functions and routines, could be used in the design without being
described in detail. This was intended to prevent subjects from
attempting to retrieve the solutions to well known functions (see the
discussion accompanying Figure 4 in S2's protocol) and also to provide
some commonality in the language used by subjects to describe their

designs. These primitives, which are shown in Figure 7, were obtained,

in part, from the protocols of the other expert subjects and also from

T S W TR T

¥

PAGE-KEYED INDEXING SYSTEM
BACKGROUND.
A BOOK PUBLISHER REQUIRES A SYSTEM TO PRODUCE A PAGE-KEYED INDEX.
THIS SYSTEM WILL ACCEPT AS INPUT THE SOUWRCE TEXT OF A BOOK AND PRODUCE AS
OUTPUT A LIST OF SPECIFIED INDEX TERMS AND THE PAGE NUMBERS ON WHICH EACH
INDEX TERM APPEARS. THIS SYSTEM IS TO OPERATE IN A BATCH MODE.

DESIGN TASK.

YOU ARE TO DESIGN A SYSTEM TO PRODUCE A PAGE-KEYED INDEX. THE SOURCE
FILE FGR EACH BOOK TO BE INDEXED IS AN ASCII FILE RESIDING ON DISK. PAGE
NUMBERS WILL BE INDICATED IN THE FORM *NNNN WHERE "*" IS A MARKER
CHARACTER USED TO IDENTIFY THE OCCURRENCE OF PAGE NUMBERS AND NNNN IS THE
PAGE NUMBER. "*" IS A "RESERVED" CHARACTER AND IT WILL NOT APPEAR ANYWHERE ELSE
IN THE TEXT.

THE PAGE NUWMBER WILL APPEAR AFTER A BLOCK OF TEXT THAT COMPRISES THE
BODY OF THE PAGE. THE PAGE NUMBERS WILL BE IN ASCENDING ORDER, BUT NOT
NECESSARILY IN SEQUENTIAL ORDER. A BOOK MAY CONTAIN PAGES THAT CONSIST OF
ILLUSTRATIONS CR FIGURES. SINCE SUCH PAGES ARE NOT TO BE INDEXED, THEY ARE
NOT INCLUDED IN THE SOURCE FILE. NORMALLY, A PAGE CONTAINS ENOUGH
INFGRMATICN TO FILL AN 8 1/2 X 11 INCH PAGE. EACH PAGE OF TEXT IS
STORED AS A SINGLE RECORD. EACH WCORD IS PRECEDED BY A SINGLE BLANK
AND MAY BE FOLLOWED BY A SINGLE PUNCTUATION MARK. IN ADDITION, SINGLE
WORDS DO NOT CROSS PAGE BOUNDARIES AND THERE ARE NO HYPHENATED WORDS.

A TERM FILE, CONTAINING A LIST OF TERMS TO BE INDEXED, WILL BE READ FROM
A CARD READER. THE TERM FILE CONTAINS ONE TERM PER LINE, WHERE A TERM IS
1 TO 5 WORDS LONG. THE TERM FILE WILL BE INPUT IN ALPHABETICAL ORDER.

ALL TERMS START IN COLWMN 1 OF THE CARD AND WCRDS ARE SEPARATED BY
SINGLE BLANKS.

THE SYSTEM SHOULD READ THE SOWRCE FILE AND TERM FILE AND FIND ALL
OCCURRENCES OF EACH TERM TO BE INDEXED. THE OUTPUT SHOULD CONTAIN THE INDEX
TERMS LISTED ALPHABETICALLY WITH THE PAGE NUMBERS FOLLONING EACH TERM IN
NUMERICAL CRDER.

Figure 6. Simplified Version of the Page-Keyed Indexing Problem

58 :

a second experiment to be described later. These differences, however,
cannot explain the large differences between the behavior of S5 and
that of the other expert subjects.

In the majority of the preparation phase, S5 considered the design

problem as a whole, identified the constraints that would have to be

observed while doing the design (file sizes, record lengths, etc),
identified various parts of the design, and produced algorithms for, or
other descriptions of, these parts. The product at the end of this
phase was several pages of notes, rather than a completed design. The
decumentation of the complete design was the second segment of S5's
protocol.

The final design produced by this subject is shown in Figure 8.
This representation is taken from the second segment of S5's protocol,
in which the design was actually documented. ‘This documentation
presents the design in a strictly top-down, breadth-first manner, with
few exceptions, First, S5, like S3, did not explicitly describe a
single top level node, such as the "INDEXER" node incorporated by S2.
Since, in the design as presented, the top level node, or "main
routine” would contain only the control, or calling sequence, for the
routines at the next lower 1level, S5 apparently assumed that this
information did not need to be explicitly documented. This is a
reasonable assumption since subjects were told that the designs would
be implemented by "competent" programmers and the specification of the
calling sequence, which was sequential in this design, should be within
the programmers' level of ability. Similarly, S5 did not completely

expand all of the routines, or nodes, that were listed. Rather, it was

assuned that the programmers could perform certain functions, such as

F . ——

ACTIONS

INITIALIZE
INPUT

GET

READ

WRITE
OUTPUT
COMPARE
INSERT
DELETE
EXCHANGE
COPY

SORT

MERGE
CREATE
CONCATENATE
MATCH
PROCESS
CALL

Figure 7.

OBJECTS

VARIABLE
FILE
RECQORD
WCRD
TABLE
LIST

PAGE
CHARACTER

QUALIFIERS

NEXT
BEFCRE
AFTER
FIRST
LAST
PREVIOUS
CURRENT

List of Design Primitives Used by SS.

59

(BUILD LIST OF WORDS— WORD INTERFACE ROUTINES |

READ TERM FILE

—

'LIST MANIPULATION ROUTINES|

READ A PAGE

9
EXTRACT PAGE NWMSER]
10
[INDEXER [—READ PAGE FILE} {EXTRACT WORDS|

B\ 11
\\\ [KEEP BUFFER OF 5 WORLS)
1
‘\.\ MATCH WORDS} —{FIND|

5

\(SGRT QUTPUT
6

EDIT OUTPUT

Figure 8. S5's Final Dlesign

61

detailed instructions. Third, S5 presented the programmers with a far

more detailed description of the data structures involved than did the

other two expert subjects. This is most probably due to the fact that

he had designed a rather complex data structure, and the construction
of this structure was not assumed to be within the competence level of 1

the eventual programmers. 1

ki

When producing the design documentation, S5 expressed the
philosophy that "designs should always be presented to programmers in a
top-down manner so that they can understand it." This philosophy is
clearly evident in the structure of the design presented in Figure 8.
S5, however, does not apply this top-down philnsophy to the process of 1
constructing the design. This subject contended that designs should
"never be done top-down." ' i

The rationale behind this general approach to doing design tasks
is a strong emphasis ;Jn efficiency and optimality. S5 equated top-down
design with doing the design "from scratch." As was indicated above,

this subject was aware that optimal designs for a variety of functions

frequently encountered in software design tasks were available in !
reference books. S5 further explained that a design developed in a
top-down manner would probably result in modules at the lower levels
that could not be efficiently implemented in assembly language. This
emphasis on efficiency caused S5 to only briefly consider a high level
solution to this problem and then isolate the single component of the
completed design that was judged to most affect overall efficiency.
Intially, S5 considered the structure of the term file and page

file (the inputs to the problem) and the structure of the output file

(see Figure 6 for the description of the design problem). This subject

62

rapidly determined that the most important aspect of this problem, in
termms of efficiency, is the comparison of words in the term file with
words in the text file. Next, S5 designed a routine to perform this
process. This routine suggested that efficiency could be increased if
the term file were re-organized. The resulting file structure, which
involved a tree structure 1in which the top level was all words that
appeared first in terms, the next level was all words appearing second,
etc. (a doubly linked list) was developed next. Considering this data
structure suggested, to S5, that the routine to compare words could be
made more efficient if it were recursive.

The resulting routine, called "FIND", is shown in Figure 8. In
Figure 8, we also indicate the order in which each routine was
developed during the course of doing the design. Routines that are not
associated with a number were included in the documented version of the
design, but not mentioned during the initial development of the design.
Notice that the FIND routine is at the lowest level developed, at what
we would characterize as the "detailed" plan level. The next several
nodes considered seemed to be chosen because of their close
relationship to the FIND routine (i.e., BUILD TREE of terms and MATCH
WCRDS) . Thereafter, the design was expanded in a basically top-down
manner.

Clearly, the mode of expansion observec in this protocol differs
from that observed in the protocols of S2 and S3, although there are
many similarities in the final designs. The difficulty of interpreting
S5's protocol in termms of the theoretical framework presented earlier
led to a consideration of why such a mode of expansion would be used.

For example, is it possible to articulate the lower levels of a plan

=

T ————

T AT — T

T

,mf——————ﬁ

63

before considering the higher levels or is it only the case that this
particular subject omitted explicit discussion of the higher levels of
the plan before considering the lower levels?

Although we feel that plans are, in general, expanded in a
top-down fashion, we hypothesize two reasons why some other form of

expansion may be adopted. Both reasons are concerned with a generic
schema for the type of problem presented. In the first case, a well
developed schema is present, and in the secord, no schema exists. This
schema represents a previous integration of the relevant software
design and problem specific knowledge. Since the problems we are
dealing with are essentially "common sense" problems, we do not expect
large differences in subjects' problem specific knowledge. Similarly,
little difference should be observed, in subjects of comparable
experience levels, in general knowledge of computer science and
software design. |

If a subject, through previous experiences, had developed a
general schema for a given class of design problem it is unlikely that
overt planning behavior would be observed. Rather, a more general plan
could be retrieved from memory and the necessary corrections made to
this schema to solve the current problem. Consider, for example, the
task of constructing a page-keyed index with pencil and paper. In this
case, most subjects would likely turn to the first page of the text and
list the terms found there. ‘This behavior would be immediate and
little, if any, explicit consideration of plans for this behavior would
be apparent. As we have seen above, however, and as some reflection
makes obvious, a great deal of planning behavior is necessary. In a

"pencil and paper" environment, however, a well learned schema exists,

and this schema is quickly retrieved and applied. It seems reasonable
to expect that a similar phenamenon would occur whether the solution of
the task were to be expressed as a software design or implemented in
some other domain, if the corresponding schema existed. If this schema
indicates, as it apparently did for S5, that some element of the plan
was more essential to overall success than other elements, then we
would expect this element to be considered first.

In the second case, a subject may concentrate on the lower levels
of a plan because no schema exists and, in addition, the subject either
lacks the appropriate problem related knowledge or is unable to
integrate, even at a very high 1level, his software design and his
problem related knowledge. In this case, the subject does not actually
understand the problem to be solved, in the sense that well structured
definitions are formed for the elements of the initial and goal states
of the problem. Considering how some element, or function, could be
implemented, in this case, represents a subject's attempt to form a
better structured definition of the given problem. It is only after
this definition is satisfied that actual planning of a solution can
commence.

In the protocol just presented, we feel that it is the first

explanation that explains the initial expansion of a lower element of

the completed plan. SS5's emphasis on efficiency and the existence of a
well-developed schema prompted the identification and expansion of the
subproblem that, in terms of the final design, most determined overall
efficiency.

The Behavior of Expert Subjects: Summary. In the sections above,

we have considered, in some detail, the individual behavior of three

-

65

expert software designers on a single problem. In this discussion, we
have emphasized identifiable differences in behavior. In this section,
we will briefly consider the commonalities.

First, we assume that all three subjects share common background
knowledge about the problem, and that this knowledge is organized as we
have considered it 1in conjunction with discussing S2's protocol (see
Figure 2). 1In addition, we assume that there are few differences in
the form of the initial integration of relevant knowledge structures.
Notice that the final designs produced by all three subjects can be
described, at the top levels, as 'read temms, read page, find temms,
build index'. Nor do we assume that these subjects differed
substantially with respect to their software design knowledge.
Although S5 was the only subject to incorporate "sophisticated" data
structures and recursive procedures, the other subjects are aware of
these techniques, but did not consider them apprapriate, or necessary,
for this problem.

We argue that the only substantive differences across these
subjects' 1is due to the existence of previously developed, generic
problem schemata. This is most pronounced in the protocol of S5.
Recall, however, that S3 engaged in a type of "interrupt driven"
behavior, while S2 did not, suggesting that the generic schema
possessed by S3 was not quite as well developed as that of S2, whose
expansion was more systematic.

Clearly, there is much more information in these extensive
protocols than we have presented in this brief discussion. At this

point, the most significant conclusion that can be drawn from the

protocols is that the ability to construct plans, and the method by

e

66

which plans are expanded, is a function of previous experience. In
itself, this conclusion is not surprising. Cbviously, previous
experiences affect the ability to construct plans for a given class of
problems. [Less obvious, however, is the question of how experience
affects the construction of plans. We will consider this question in

the following section, where we discuss the behavior of less

experienced subjects.

67

EXPERIMENT 2 --— ALTERNATIVE METHODS OF PROTOCOL COLLECTION

One purpose of this experiment was to examine alternative methods
for the collection of experimental protocols. With one of our
experienced subjects (SS5), we introduced a list of primitives and
required that the lowest level of the design be expressed in temms of
these primitives. This manipulation, which did not appear to

significantly alter the behavior of this subject, was an initial

exploration of the use of "constrained" protocols. In the present
experiment, we compare written and verbal (or oral) protocols.

Although many investigators have advocated that thinking aloud
protocols are the preferred method for the study of problem solving
behavior (e.g., Newell and Simon, 1972), such protocols are difficult
to analyze. They first have to be transcribed, which can be very time
consuming. Next, they must be transformed into some form of
problem-behavior graph (viz,. Newell and Simon, 1972). A
problem-behavior graph is a theoretical interpretation of a subject's
protocol into a set of knowledge states and the sequence of transitions
between knowledge states. This is a subjective process, and the most
valid criticism of thinking aloud protocols is that they are very
difficult to reliably and objectively transform into some form of
problem-behavior graph.

There are numerous reasons for using thinking aloud protocols.

First, they provide a very rich source of information about a subject's

step-by-step processes in the course of solving a problem. Second, the
recording of protocols does not bias a subject towards any particular

method of solution and does not interfere with the solution process.

In our current research, however, we are attempting to develop

68

alternative procedures for the analysis of problem solving behavior.
Ideally, these procedures would provide us with much of the same
information that could be obtained from a verbal protocol, but would be
much simpler to analyze.

Subjects. Subjects were undergraduates enrolled in an "assembly
language" course at the University of Golorado - Boulder. Most
subjects were third year students and all had completed a mimimum of
two computer science courses. The mean number of courses completed by
this sample of 10 subjects was 2.8. Subjects were paid $5.00 for their
participation in this experiment. They were randomly assigned to one

of two experimental conditions, with five subjects in each condition.

Procedure. Subjects were given instructions appropriate to the

assigned experimental condition. Those in the "“verbal protocol"
condition were instructed to solve the design problem and to "think

aloud" while doing so. These subjects also produced written versions

of the solution. Subjects in the "written protocol" cordition were
instructed only to provide written solutions. All subjects were given
the simplified version of the page-keyed indexing problem shown in
Figure 6.

After completing their designs, subjects were instructed to write
a summary of their design and also a summary of the techniques and
procedures used to produce the design. Finally, they all completed a

questionnaire describing their background and experiences in computer

science.

Analyses. Our 1initial analysis considered only the design
sunmaries provided by subjects. The questions of primary interest were

to determine how much useable information was contained in such

69

sunmaries and to determine if there were any obvious differences as a
function of experimental condition.

Six of these summaries (three from each experimental condition)
emphasized the higher level components of the design and the
interactions or relations among these components. In general, the
content of these summaries were very similar to the initial
decompositions, which we characterize as the abstract plan level, of
the expert subjects. Four subjects either reiterated the entire design
or concentrated on the functions and procedures involved in the design
without specifying how these elements were related.

We initially expected that design summaries would focus primarily
on the abstract plan level developed by these subjects. This was true,
however, in only 6 of the 10 cases. This expectation was based, in
part, on the finding that subjects in text comprehension studies

produce sumnmaries that are consistent with the macrostructure
underlying the text (cf., Kintsch and van Dijk, 1978). In text
comprehension studies, however, subjects generally have well-developed
schemata for the types of text that are presented. Subjects in this
experiment, however, may not have well-developed schemata for software
design problems. We will return to this issue later when we consider
the designs produced by these subjects. In general, therefore, design
summar ies did not produce consistently useful information, although
some of the summaries did reflect subjects' abstract plans.

Examples of design summaries that were judged as presenting
reasonably well-defined abstract plans are presented in Figures 9 and
10. Notice that these summaries correctly identify the major functions

that must be to be accomplished, but do not provide any detail about

Housekeeping and Storage Initialization
Get terms to index
WHILE NOT END OF SOURCE FILE
Get & Parse Source Line
Do Until Page Delimiter Found
If Source Word in Index
Then Increment Count of Terms
END-UNTIL
Get Next Page First Line
Count Possible Stray Index Terms
If tems on this page
Store Page #
Increment Page #
END-IF
END-WHILE

Figure 9. A Design Summary

71

This is a top down design that deals
only with the information that is known at
one time.
First a table of terms is formed
! Then one page is accessed and
one word at a time is broken off
and looked for in the table
If it is found the rest of that
term is looked for
If a whole term is found then
a flag is inserted in the table
for that term
When the page number is found
it replaces all current special
symbols with the page number just found
When the last page has been scanned
then table is output.

Figure 10. A Design Summary

T

Two files are created initally (TERM) and (STORE)

a temm is read from & card and placed into the

file (TERM). This is repeated until all terms have been

read.

Now text is read from file (SOURCE) looking for
matches of tems (any occurrences of any term).
If a tem is encountered that temm is stored onto
file (STORE). This continues until an * is
encountered. When the * is found, the next
four characters are read into a variable (PGNUM)
We rewind (STORE) and proceed thru it one

term at a time. As each term is read,

its corresponding entry in (TERM) is located,
and PGNUM is inserted in appropriate text
format immediately following it. This process
continues until (STORE) is exhausted, at which
time we clear (STORE), PGNWM and begin

reading from (SOURCE) again. After (SOURCE)

is exhausted, we simply print out the file
(TERM) .

Figure 1l. A Design Summary

‘_ _ - ._ - AI .

are to be accomplished. In Figure 11, we present a design summary that
was Jjudged not to represent an abstract plan. In this case, some
procedural detail is involved, and the major functions that the design
is to perform are not as readily identifiable as they are in Figures 9
and 10.

We were also interested in detemmining whether the content of the
design sumamries was affected by the experimental conditions. Two of
us, who were unaware of the assigmment to experimental conditions and
who had not yet seen the actual designs, attempted to sort the
summaries. The content of these summaries, although far from uniform,
provided no information that would result in an accurate
classification. One of the raters, however, noticed a "surface", or
"format" property of the summaries and classified the summaries on this
basis. This lead to one classification at a chance level and one
perfect classification. Subjects in the written protocol condition
tended to express their summaries in a text fashion, while subjects in
the verbal condition tended to use a pseudo-programming language
description. Given the nearly equal content of these summaries, we are
not certain what implications, if any, this result has.

We also asked subjects to summarize the techniques and processes
used to perform this task. 2Again, we were interested in detemmining
how much information could be obtained by this procedure and
determining whether there were any differences due to experimental
condition.

Nine of the ten subjects described some form of top-down or
level-structured technique. Several subjects used the temm "top-down",

some made statements such as "I start with the really big parts and

don‘t worry about the small problems till later" or "I begin with
identifying a problem and breaking out specific functions that need to
be done -- the WHAT rather than the HON — Procrastination
Programming." The single exception to this type of description cited

only "intuitive reasoning." The majority of subjects, therefore, claim
to use a top-down mode of expansion and appear to be familiar with the

concept of levels of detail within a design. An examination of their
designs, however, indicates that they do not use these techniques
either consistently or successfully.

In general, and especially in comparison with the designs produced
by our expert subjects, none of the designs produced by this group of
subjects can be considered complete. That is, although most of these
subjects correctly identified the principal components of a complete
design, they did not completely specify all of the necessary functions
at the lower levels of the design. For example, while our expert
subjects would consider such functions as "build list" or "match words"
to be very complex, less experienced subects would use such functions
as primitives and would not describe the actual operations or details
involved.

Because of the nature of the problem involved, we would not expect

these subjects' knowledge about page-keyed indexes to differ

significantly from that of the expert subjects. It is reasonable,
however, to expect that there would be differences between the software
design knowledge of the two groups.

Seven of these subjects produced designs that can be characterized

as top-down and three attempted to write programs rather than designs.

In general, our less experienced subjects appear to do a very "quick

75

and dirty" top-down expansion of the design. Although these subjects
have done quite a bit of programming, they have had little, if any,
experience in designing systems that others would implement. They are
used to writing "quick and dirty" programs, running the programs to
locate errors, and then correcting the errors. In many respects, this
is similar to Sussman's (1973) HACKER system. While our expert
subjects had the requisite experience to do fairly clean expansions,
these subjects are used to generating quick and dirty designs that
capture the principal components of the problem but not necessarily the
interactions between of details of these components, and then doing
extensive modifications at the code, or operation sequence, level.

We interpret this result to mean that these subjects, through a
lack of experience, have not developed a sufficient set of critics,
debugging heuristics, etc., to "debug" plans or designs. In addition,
the failure to expand certain critical elements of the designs suggests
that these subjects, although they are well aware of the general
capabilities of computers, do not fully comprehend the difficulty

involved in certain operations or functions. Unlike the expert

subjects, these subjects do not have fairly well developed schemata for
given classes of design problems. As a result, they are unable to
completely construct a solution plan without obtaining feedback from
the attempted execution or implementation. This is very similar to the
operation of Sussman's (1977) PSBDARP (Problem Solving By Debugging
Almost-Right Plans).

It appears that the generation of plans is a schema-driven
activity. If a well-developed schema exists, as in the case of our

expert subjects, a plan can be developed. Some elements of the final

e A M A 55 PR T MNP M SRS L - e 3 s

76

plan may be stored directly in a schema, and other plans may be
constructed by modifying a more generic plan. Qur less experienced
subjects had schemata that covered only the higher levels of a pian.
Their lack of experience did not support schemata sufficient to develop
intermediate-level plans. In this case, they must rely on the feedback
obtained from attempting plan execution and modifying the plan, at some
level, to eliminate errors. In effect, when plans can no longer be
successfully developed, subjects resort to some type of depth-first,

failure-driven search for a solution.

A major purpose of this experiment was to examine alternative
methods for the collection of experimental protocols. In this regard,
this experiment was only partially successful. There were, in general,
no apparent differences in the written design solutions, design

summaries, or technique summaries obtained from subjects in either
experimental condition. In addition, the comments of subjects 1in the

verbal protocol condition did not appear to provide significantly more
information than was contained in the written descriptions. Although
these results are encouraging, the overall quality of the data obtained
was much lower than that obtained from the more experienced subjects.
Before concluding that equally useful information is obtained in both
written protocol and verbal protocol corditions, a replication with
more experienced subjects is required. The results of the current

experiment are, however, sufficiently encouraging to warrant such

additional studies.

B i o

Tl

CONCLUS IONS

The goal of the research described in this paper is to investigate
the problem solving processes used in complex tasks and to model the
manner in which these processes allow for planning behavior. Clearly,
this is an ambitious goal, and the research described in this paper is
only a first step toward this end. Intuitively, planning does occur in
complex tasks; although the effects of planning can be observed in
controlled situations, the types of plans that could be used are
difficult to taxonomize, and the cognitive processes underlying
planning behavior are not readily apparent. As first steps, therefore,
we attempted to select an appropriate task domain, to develop a
theoretical framework that could usefully guide our explorations, and
to devise experimental tasks that would pemit us to observe and
ultimately understand planning behavior.

The experimental task that was selected was software design. We
selected problems whose solution did not require extensive knowledge of
computer science techniques; that is, problems that could be solved by
a wide range of subjects. We selected the domain of software design
because we felt that planning behavior is 1likely to occur 1in these
types of problems. Any type of design is, essentially, a plan or
subgoal structure that describes how some complex task is to be
accomplished. 1In software design, people are accustomed to documenting
this subgoal structure and, across designers, a fairly common
terninology is used. The combination of a problem in which planning is

“uirw! w..h a task enviromment in which the documentation of plans is
wams very appropriate for investigations of planning behavior.

Yo wtartim moint for the develomment of a theoretical framework

v ahtforward translation of the concept of planning by

78

abstraction, as discussed by Newell and Simon (1972), and further
employed, in the domain of artificial intelligence, in Sacerdoti's
(1975) concept of a procedural net. Although a procedural net
corresponds most closely to what we refer to as detailed plans, we
assuned that detailed plans were derived from abstract plans and
further refined into the sequence of operations that actually implement
a solution to a problem.

There are three aspects of Sacerdoti's NOAH that are particularly
relevant to investigations of planning. These are: the final fomm of
the plan, the dynamics of plan construction, and the knowledge
structures that guide planning. In the paragraphs below, we will
discuss each of these aspects as they relate to planning in the context
of software design.

First, our theoretical framework predicts that the final form of a
software design can be characterized as a procedural net. As we
indicate in Appendix A, which reviews formal software design practices,
there is general agreement among computer scientists that software
designs take the form of a hierarchical structure. In addition, we
were able to represent the final designs of all of our expert subjects
in this manner. In its ability to characterize completed plans, we
swggest that the concept of a procedural net is both useful and
general.

The second aspect of a procedural net concerns the manner in which
plans are generated. As described by Sacerdoti (1975), procedural nets
must be expanded in a top-down, breadth-first manner. This is a very
strong claim and, as evidenced by our experimental results, is not, in
general, true. To be sure, some of the planning behavior that we

observed could be characterized in this manner. Other subjects,

79

however, constructed plans in very different fashions.

The third aspect concerns the organization of the knowledge that
guides planning. In NOAH, it is assumed that the knowledge necessary
to successfully decompose a given node is directly stored in that node.
This does not facilitate consideration of what is common among these
knowledge sources and how they are organized. For this reason, we did
not incorporate the NOAH knowiedge organization structure into our
initial theoretical framework. Rather, we attempted to extend this
concept to consider the types of knowledge that are involved in the
synthesis of a procedural net. We assune that these knowledge
structures are essentially families of hierarchical schemata. As such,
they represent well-learned techniques, patterns etc. In view of this,
we characterize planning as a process of synthesis which, in large
part, involves the novel combination of well-known elements.

As a result of this activity, we concluded that there is a great
deal of similarity between our framework and the HEARSAY-like model of
problem solving proposed by Hayes-Roth and Hayes-Roth (1978). Both
assume that behavior is determmined by the synthesis of diverse
knowledge structures. Originally, we identified two principal
knowledge structures -- one concerned with understanding and solving
the problem as given and the other concerned with developing a software
design to achieve a solution. A HEARSAY-like framework appears to
provide a convenient formalism for considering more detailed aspects of
these and other knowledge structures, and we intend tc pursue this
issue in future research.

A HEARSAY-like formalism may also be useful for resolving the

second aspect of a procedural net discussed above, i.e., the dynamics

of plan construction. Clearly, a plan can be generated in a large

80

nunber of ways. By postulating a number of knowledge structures, it
may be possible to describe different modes of expansion as different
selections from a common set of knowledge structures.

We also conclude, however, that a great deal of planning behavior
involves the retrieval and modification of previously internalized
schemata. In this regard, we feel that Sussman's (1977) PSBDARP
(Problem Solving By Debugging Almost-Right Plans) 1is particularly
relevant. As with the HEARSAY-like models, we feel that this type of
model is compatible with, and could usefully extend, our theoretical
framework.

The principal conclusion that we derive from our present studies
is that planning behavior is schema-driven. Plans are derived from a
subject's previous experiences in similar problems. Useable plans may
be directly accessed from an existing schema, an existimg glan may be
modified to better fit the current situation, or a plan, or subgoal
structure, may be constructed "from scratch." The protocols of our
three expert subjects show fairly clear differences in the overall
quality, completeness, or organization of these previously developed
schemata.

In interpreting the diverse types of behavior observed in our
expert subjects, we began with two assumptions. The first is that all
three subjects share a fairly common knowledge of the task enviromment
of software design. That is, we assume that there were not significant
differences in these subjects' expertise in this area. Second, we
assune that there were no differences in these subjects' "knowledge of
indexes for textbooks, which was the specific problem used.

We concluded, therefore, that the only substantive difference in

these subjects' behavior is due to general knowledge structures that

81

control the synthesis of the above types of knowledge. In particular,
we concluded that these knowledge structures are previously developed,
generic problem schemata that indicate how knowledge of software design
and indexers can and should be merged in order to produce an
appropriate design. In one of our subjects (S2), we feel that these
knowledge structures were sufficiently developed that they essentially
drove a top-down expansion. In the second subject (S3), these
knowledge structures were less well developed and, as a result,
backtracking was necessary in order to correct observed deficiencies in
the design. In the remaining expert subject (S5), we contend that
these knowledge structures were developed to such an extent that this
subject was able to retrieve a memory structure that essentially
described the entire design. In this case, this subject was then able
to isolate and expand the single module that most affected the
efficiency of the implementation, which, for this subject, was an
important aspect of a software design.

In our less experienced subjects, the appropriate schemata were
not completely developed. Although these subjects had schemata for the
higher levels of a plan, they lacked appropriate schemata for
developing more detailed plans., At this point, we argue, these
subjects ceased to plan and resorted to some type of depth-first,
failure-driven search for a solution. This type of behavior is common
in transformation problems, where it 1is unlikely that planning can
occur with naive subjects, and the search process is guided by a

means-ends heuristic. With the experimental problem used in these
studies, our less experienced subjects could identify some components
of the goal state and were attempting, at a very low level of detail,

to manipulate these components.

82

In summary, we have described an initial investigation of the
problem solving processes used in complex tasks. A possible criticism
of our current work is that we are concentrating on memory
] representation issues and not directly on problem solving, or knowledge

utilization, processes. While we do not accept a strict demarcation

between the areas of knowledge representation and knowledge

utilization, there 1is some truth to this criticisn. In previous work

on problem solving (e.g., transformmation problems), the effects of
knowledge representation issues have been minimal. Similarly, the
effects of knowledge utilization have little impact on many of the
studies of knowledge representation, such as the comprehension of short

stories. In more complex tasks, however, which Bhaskar and Simon

(1977) refer to as "semantically rich", questions of knowledge i
representation and knowledge utilization are highly interrelated.

We have characterized planning as a process of synthesis, or as
the "novel combination of well-known elements." Our current work,
therefore, focuses both on identifying these "well-known" elements and
the processes that guide their "combination."

On the methodological side, we have explored various procedures
for collecting protocol data. Complete protocols provide very rich,
extensive sources of information. In complex tasks, however, the

extensiveness of this form of data makes an objective analysis

extremely difficult. The development of empirical techniques to
simplify data collection and analysis, without reducing the quality of
the data that is obtained, is a desirable, if not necessary, component

of investigations of behavior in semantically rich domains.

APPENDIX A
SOFTWARE DESIGN PRACTICES
Within the last several years, several prescriptive techngiues for
software design have been proposed. In this section, we will review
some of the more prominent software design practices. This section is
not intended to be an exhaustive, in-depth review, but rather is

intended to provide the reader unfamiliar with this area with a general

overview of currently used design techniques and the concepts involved

in these techniques. Further, we will 1limit our consideration to.

software design techniques, per se, and exclude other software
development practices such as “structured walkthroughs" and "egoless
programming”, with which the reader may be familiar.

In our discussion of task domains, we characterized software
design as the process of translating functional specifications into a
structural description of a computer system that would satisfy these
specifications. A common assumption among all software design
techniques is that this description takes the form of a hierarchical
structure. The principal difference among the various techniques
concerns the manner in which this structure is expanded or generated.

We use the temm "software design technique" to refer to fairly
formal rules or guidelines for performing a software design. We
emphasize rules or guidelines to differentiate between these techniques
and the much less formal "techniques", such as "bottom-up" and
top-down" with which the reader may be more familiar. 1In this section,
we will first consider these less formal approaches and then consider
more procedural techniques.

A review of some of these less proceduralized techniques is

-x—

84

presented by Boehm (1975), who also considers the relative advantages
and disadvantages of thse techniques. The techniques considered by
Boehm are "bottom-up, two variations of "top-down", structured
programming", and "@el-drivm."

When using a bottom-up approach, a designer must first identify
those functions or routines whose develomment seems most "important" to
the overall design. "Importance" can be defined in tems of
efficiency, cost, develomment effort, etc. As the temm "bottom-up"
implies, these functions are at the lower levels of the hierarchical
structure that is being developed to represent the design. Once these
routines are developed, the designer develops a "test driver" to allow
testing of these modules and their interactions, a "computation
monitor" ' to control the order in which these functions are executed,
and any necessary input-output modules. Finally, input-output
"controllers", initialization routines, and similar procedures, are
developed and the entire design is then tested for errors.

In general, a bottom-up approach involves constructing 1low level
routines and then constructing "drivers" to control interactions
between the low level routines. There are two primary advantages to
this approach. First, "high risk" components (e.g., processing natural
language, real time sensors, etc.) can be identified early. If it is
determined that it is not feasible to implement these components as
originally specified, the design specifications can be changed before a
great deal of effort is expended. Second, the emphasis on the lower
levels encourages the development of reuseable modules that can be

applied to other designs with little or no modification.

A primary disadvantage of this approach is that very little

85

attention 1is given, early in the design process, to the interactions
between modules. It may well be the case that interactions between
modules present more problems than the development of the individual
modules. In addition, a bottom—-up approach does not give a great deal
of attention to overall system requirements, including user interfaces
and data structures and, in an effort to use the lower level camponents
that are already developed, the higher levels of the design may be
"patched up". As a result, the total design may be very difficult to
implement, understand, or modify.

The type of "top-down" design with which most readers will be
familiar 1is termed by Boehm as the "top-down stub" approach. In this
approach, the designer first considers the overall system requirements
and develops a top level program to meet these requirements. This top
level contains the necessary logic to control the lower level functions
which are initially represented as '"stubs". In successive design
steps, these stubs are then decamposed into control logic and necessary
subfunctions, which are also represented as stubs.

The advantages of a bottom-up approach, identification of high
risk components and develomment of reuseable modules, are disadvantages
of a top-down stub approach. In contrast, the advantages of this
approach are early attention to the interactions between modules and a
more coherently defined higher level in the design, which allows for
easier testing and maintainability. Neither of these two approaches,
however, expl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>