
AD—AO&e 33’. SCIENCE APPLICATIONS INC ENGLEIOAD CO

—

F/G 12/2
PLANNING AS A PROCESS OF SYNTHESIS.(u)
DEC 78 N C ATWOOD . P 5 POLSON. P JEFFRIES 78 c—oie’

UNCLASSIFIED SAI—78—II.4—OEN NI.

flT!.t~LR1I 1F
~ Q.1U

_DOPnE ouruIin•. • .flIOSW[L EJflU OF.
_

LDPI jAju~~gwI2~~~~[1flI~4

__ ~~~~~~~ 112.2L

I I I ~~ OO~

11111’ .25 IIIll~ Hill

MICROCOPY RESOLUTION TEST CI4~~T
NATIONAL BUREAU 01 STAN0ARDS -1963-~

LEVEL’~’

sc ie~ ce
Appli CallONs

INCORpORateD

H

79 O.~ (17 039
Approved for public release; distribution unlimi ted.

4L . . ______ ______

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —-- .~~~~~~~~~~ - - —~---—--~~~



-. -
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~1

:L TL?
~~ fl

j f~ ~FR 8 1979 J
PLANNING AS A Li1it t~gu-u-~çlJ

PROCESS OF SYNTHESIS C

~~chnical Rep~rt
~~I—78—l44-DEN

1~ cenber 1978

Michael E. Ats~ odScience Applications, Inc.

Peter C. Pblson and Robin Jeffries
Lk*iversity of Colorado

N. Rudy Ramsey
Science Appl ications, Inc.

Reproduction in ~~ole or in pert is permitted for
any purp se of the tki ited States Coverrment.

This research ~as s~~nsored by the Personnel and Training Research
Prog rams , Pe~~hological Sciences Division, ~~fice of Naval Research ,
under Contract ~b. N00014—78-c-O] 65, Contract Authority Identification
Number , WU57—414.

proved for p.zblic release; distr ibution unl imited .

Science App lications , Inc.
40 Denver Technological Center West, 7935 East Prent ice Avenue , Englewood, Colorado 80111, 303/7734900

0th.. SAt Of ~~~~ AIbu~u.rqu. . A.. Aib t, Mtø~~si~, Mh.it~. S~.tsit. CNc.io. I~usts,tfls , t.s ase.~ Lss *n,.1.s . ~ sLwi, PM A1Is~ $$.tI Sill. ,.. $u.w~y.aS.. ..id 1us$.. .

4 ~~~~~~~~~~~~~~~~~~~~ . ,— - . ~~~~ -~~~- —

~~~~~~~~~~~~~~ ~
___ _e_____ ~~~~~~~~~ -—--- --- —j--

PF.~ —~
‘ -•“ ;: - •—

~~~~~~~ 
- - -

UNCLASSIFIED
SECURITy CLASSIFICAT ION OF ‘t’H IS PAGE (1Th.n Oat. &it.r.d)

DEDt
~~~~~ 

IILA EkII AI I n I J o&t-~~ RE/ID INSTRUCTIONSr ~Jr. I I#’~~~~IJ~~% i” I ?~ I ~~~~~ BEPORE COMPLETING PORM
I. REPORT NUMBER 2. 3OVT ACCESSION NO 3. RECiPIENT’S CATA LOG NUMB ER

4. TI t1.E (usd S.jblUl.) 5. TYPE OF REPORT S PERIOO COVERED -
Planning as a Process of Synthesisi j”

1
(?Iechnicai ~ep’~~t,~ 7
,p 5~ PERFOR M ING ORG. PORTRTh4IER

t~ (1~ ~~~~~~~~~~~ 7—7. AU1’NOR(aj ___________ \..... , 1.. GSUTflAET B “ ilER(a)

~~~~~~~~~~~~~~~~~ 
Peter G.IPo1son~( ~~ ~~~Ol4-78-c-~165

L PERFORMING ORGANIZATION NAM E ANO ADDRESS t O. PROGRAM ELEMENI PROJECT , TASIC
A REA S WORIC UNIT NUMBERS

Science Applications , I nc. R 57 4 47935 E. Prentice Avenue —

Enatewood._CD_80111 _________________________
II. CONTROLIJNG OFFICE NAME ANO AOOREU ,

.. . I ~~~~~~~~~~~~~~ ,
Personnel & Training Research Programs 

~~ 
Dec~~ a~-.4978 / ‘.“

ice o ava esearc
Arlington , VA 22217 106

14. MONITORING AGENCY NAME S ACORESS(U d1tf.t... from C~ntrolli n4 OWe.) IS. SECURITY CLASS. (of hi. r port)

UNCLASSIFIED
13& OECLASSIFICArIoN/OO W NGRAOING

SCHEDULE

5. DISTRISUTION STATEMENT (of thi. R.pcl ’i)

Approved for public release; distribution unlimi ted.

I?. DISTRIBUTION STATEMENT (oi A. ab.ir ci .nt.tod In Block 20, i i &If.r.n t from R.pot’t)

II. SUPPLEMENTARY NOTES

19. KEY WORD S (Coniffiv. on tot .... .id . ii n.c..aaty atd idmUi~~ b~ block nu~ib..)

Planning
Problem Sol ving

N~~ogni ti ye Psycho 1 ogy

20. Aes TRACT ’
~’ç~~ esnu. us r.vs$.. aid. If n.e..l ~~~ ..d id.ntit~’ b~ block n~~b.t)

This report descri bes a theoreti cal framework for investi gating
human planning behavior and presents the results of two experiments in
the domain of software design. A plan is defined as a hierarchical
structure that underlies the solution to a problem; planning is the
process of constructing this structure. This framework assumes that:

a plan is a series of abstractions of the final solutiun , ranging
from schematic , high—level plans to detailed plans that are actually
transformed Into a solution to the problem; -~~ (continued 2nd page)

DD ~~~~~~~~ 1473 EDITION O F I P 4 O V SS IS OSSOLE,’ E

SECURITY CLASSIF ICATION OF THIN PAGE (Wi ,.. Oat. Belated)

‘~Yi) ~~
- . - - - —-- --- ~~~~~~~ ~~~~~~~~ - - - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j



- -~~ 
-

~~ -* --- ~~~~~
-

~~~~~~~~~~
-— -~~ w-

UNCLASSIFIEQ
SECURITY C1..ASIIPICATION O~~’T’N1(PAQ1(W1tin Oat. £nI .ied)

#20 (Continued): (b5~a plan is constructed by a process similar to stepwise
ref inement;—’~ ’1 planning invol ves the utilization of previously learned
schemata;~~~) various components of the plan , or even the entire plan , canbe retrieved from long-term memory and incorporated into a solution to the
problem ; and (~ej planning involves the synthesis of many types of knowledge
structures.

Our experimental results indicate that completed plans can be charac-
terized as procedural nets, but that plan structures can be constructed in
a variety of ways. Further, expert subjects differ from less experienced
subjects in the knowledge structures that can be retrieved from long-term
memory and i ncorporated into a plan. The implications of these results
on our theoretical framework and for future research are discussed.

I

- ~~~~~
--

$.• S1Ct~~’
0
0

• _
~ ‘ ~ -

\

~~~~~~~~~~~~~~~ 
‘ 1 . ’

~~~~~~~~~~~~~ C~$_

r7

~1•

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W7ImI Data ~nt.red)

~~~~~~~~~
_
~~~~~~

_ _ _ _
~~~~~~~~~~~

-
~~~~~~~~~~I~~_ _ ~~~~ ~~ - -— —~~~~~

- - -
~~

-
~~~~~~~~~~~~~~

- -- 
~~~~

-—
~~~~~~~~~~~~~~~~~



- — - -- . 

~~1

ABSTRACT

This re~~rt describes a theoretical frane~ork for Investigating
human planning behavior and presents the resul ts of t~~ exper iments in - -

the domain of soft~~re design. A plan is defined as a hierarchical
structure that underlies the solution to a problem; planning is the
process of constructing this structure. This fremew~rk assumes that:
(a) a plan is a series of abstractions ~f the fi nal solution , ranging
from schematic , high—level plans to detailed plans that are actually
transfo rmed into a solution to the problem; (b) a plan is constricted
by a process similar to stepwise refinement; (c) planning involves the
utilization of previously learned schemata; Cd) various com~~nents of
the plan , or even the entire plan , can be retrieved fran long—term
memory and incorperated Into a solution to the problem; and (e)
planning involves the synthesis of many types of knowledge strtuctures.

().ir experlinetal results indicate that completed plans can be
characterized as procedural nets , but that plan structures can be
constructed in a var iety of ~~ys. Ftlrther, expert subjects diffe r from
less experienced subjects in the knowledge structures that can be
retrieved from long— term memory and incorp rated into a plan. The
implications of these resul ts on our theoretical freme~~ rk and for
fut ure research are discussed .

4 A.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~-.- — -- - —  i’ zzL~~~
_
~
__

~~~~ 
-. 

~~~~~~~~~

Table of Contents

Introduction 1

Task Description 6

Theoretical Fraine~~rk 10

Research on Planning : A brief Rev iew 20

Method for Deta Analysis 37

An Investigation of Planning Behav ior 39

Experiment 1. The Probl em Solving 39

Behavior of Experts

Exper iment 2. Alternative Methods of 67

Protocol Collection

Conclusions 77

Appendix A — Softs~are Design Practices 83

References 98

4
-

- ..,. — .

_ _

~~~~~~~~~~~~~~

-

~~~~~~~~~

. ~~~ ~~~~~~~~~~~~~~~~~~

1

This repurt presents our initial attempts to fo rmulate a

theoretical frame~~rk that characterizes planning in complex task

environments. We also rep.rt the results of t~~ exper iments using the

task of soft~are design. The focus of this research is on how subjects

solve complex problems in domains that r equire the application of a

large anount of background knowledge. Such problems have been

characterized by ~~askar and Simon (1977) as “ semantically rich

dana ins.”

If an individual is going to solve a complicated problem employing

a dig ital computer , that individual has to write a computer progran .

If the progran is of any complexity a person who simply starts writing

code without any prepa ration has l ittle chance of generating a

successful solution , i.e., a ~~rking program. A solution to the

problem must begin with the specification of a design for the program
— a plan for the ultimate solut ion. Thus , we are going to use the

task of softwere design to sti.dy planning in complex , semantically rich

domains.

Computer prograiining has another very interesting characteristic,

in that it is a general problem solving skill. In order to write a

progran to solve a specified problem , it is r equired that one integrate

several quite different kinds of knowledge. Examples are expertise in

progra~ining and one’s understanding of the problem to be solved.

Minsky (1975) has argued that the solution to almost any kind of

challenging problem involves the Integration of diffe rent viewpoints or

different kinds of knowledge. Minsky presents the following example

involving an automobile.

“Sometim~~ In ‘probl em solving ’ we use t~~ or more
descriptions in a more complex ~~y to construct an analogy or

L
- -

~~~~~~~~~~~~~~ 

--  -



2 II

to apply two radically different kinds of analyses to the
same situation. For hard problems , one ‘problem space’ is
usually not enough.

“Suppose ynur car battery r uns down . You believe that
there is an electrical short and blame the generator.

“The generator can be represented as a mechanical
system; the rotor has a pulley wheel driven by a belt from
the engine. Is the belt tight enough? Is it even there?
The output , seen mechanically, is a cable to the battery or
whatever . Is it intact? Are the bolts tight? Are the
brushes pressing the canmutato r?

“Seen electrically, the generator is described
differently. The rotor is seen as a fl ux linking coil ,
rather than as a rotating dev ice. The brushes and commutator
are seen as electrical switches. The output is current along
a pair of conductors leading from the brushes through control
ci rcui ts to the battery.

“Thus, we represent the situation in two different frame
systems.” (Minsky , 1975, pg. 256) .

The hard problems that Minsky refers to are, in effect, problems

whose solutions r equi re two or more different perspectives and the

integration of two or more knowledge structures. In Minsky’s example,

V either repr esentation may be adequate, but it is more likely that a

successful solution will require simul taneous consideration , or

integration, of these representations. In addition , another type of

knowledge would be required. Minsky’s representations are sufficient

to understand the problem; they are not sufficient, however, to

actually implement a solution. For example, the successful problem

solver would need to know how to tighten a bel t , how to measure current

flow, etc. Integration of this type of knowledge into the ultimate

solut ion is clearly requi red .

~‘t~en we attempt to write a computer program we are in a very

similar situation. Knowledge of programming , per se, provides us wi th

a set of tools. These tools in themselves are not ad equate. We have

to understand what they are going to be used for. Thus , we must

understand the problem to be solved using the computer ; this is a

4

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


3 V

second type of knowl edge. In sumnary, we are investigating planning
behavior in problems whose solution requires the integration of

multiple knowledge domains.

The remainder of this paper is organized into several sections.

We will begin with a discussion of the concept of pl anning. We then

describe the task domain of software design and our rationale for Its

use in this research. Following this, we present a detailed discussion

of our theoretical framework that motivates the research reported in

this paper. Next , we present a brief review of previous research on

planning and problem solving wi th particular emphasis on tasks

requiring a large amount of baci~~round knowledge, that is, semantically

rich domains, and on issues involving expertise. Finally, we present

our exper imental resul ts and make conclusions derived therefrom.

In an appendix to this paper , we present a brief sunmary of the

literature on software design. This section is Intend ed to Introd uce

the reader to the concepts and terms involved in this area . An

interesting aspect of the task of software design, like chess and many

other real world tasks, is that this task has its own literatur e and we

will, find that experts in this area can assist us in our psychological

analysis of perfo rmance on software design tasks.

PLAMJIM~ — A PRELIM INARY DEFINITI(~J

This section presents our initial attempt to define the concept of

a plan and to distinguish this concept from the process of planning.

Qir definition is not atheoretical , nor do we feel that an atheoretical

definition of plan is possthle. Thus , the definition presented in this

section anticipates many of the theoretical argunents that we will

4

~~~~~~~ V ~~~V - — V V ~~~~~~~~~~ J

4

present later.

Following Miller , Galanter , and Pribram ( 1960) we will define a

plan to be a hierarchical structure that underlies the sequence of

operations necessary to solve a problem. We define planning to be the

generation or specification of this hierarchical structure. C~ir
definition is obviously extr emely general , and is consistent with

notions like “deep structure,” “case frame,” “frame,” “script ,” and a

nunber of similar concepts that are very popular in cognitive

psychology today.

In order to further elucidate our notions of “plan” and 3

“planning” , we would like to construct several illustrations. Imagine

a series of individuals arranged along a continuun according to their

sof tware design skills, ranging from expert to novice. The basic

assunption in the literature today is that very different kinds of

cognitive structures underlie expert versus novice problem solving

behavior.

Let us consider the solution of some fairly straightforward

problem. If the expert has had a large amount of experience with this

specific type of probl em, then the expert may retrieve its solution and

simply present it to us. Cne might almost be tempted to say that we

were looking at a retrieval process rather than a problem solving

process. ~~ the other end of the continuun , the novice may have some

vague understanding of the knowris and unknowns involved in the problem, V

but no knowledge of the structure of the sequence of the operations

that would actually solve this problem. Therefore , the novice is

reduced to using some variation of trial—and--error search . Individuals

that are in the intermediate range of the continuun will actually

4 V ‘---—



r

5

V construct a solution to their problem. Although they don ’t have a

schema or plan memorized , their knowledge of the task domain is

sophisticated enough that they are able to generate a solut ion plan

and , finally, a sequence of operations that will successfully solve the

V j iven problem.

We assert that the expert retrieves a plan from long—term memory

and then proceeds to execute this plan. Since such plans can be

represented as schemata , we would characterize this behav ior as being

schema—driven. ~~~i the other end of the continuun , the behav ior of the

novice essentially involves trial and error search. There are no

underlyi ng structures that provide guidance to this problem solving

behavior, and , as a resul t , this person is very unlikely to fi nd a

solution to the problem. For any interesting problem, the search space

is simply too large. The individua l with an intermediate amoun t of

knowledge about the task is not reduced to trial—and—erro r search.

This ind ividual , however , is not able to retrieve an already

constructed plan. Thus , we will characterize this individual as

indulging in the activity of planning ; he must construct a solution

plan.

In sunmary, we have characterized a plan as a hierarchical

structure that represents a sequence of actions and the process of

planning as the process of generating this hierarchical structure. In

the task domain to be used here , a computer program represents a

solution to the problem. A software desig n for this program is the

plan that underlies the solution. The process of actual ly constructing

a given design is a planning activity.

4 -

—-



~~~~~—~~~-- -~~~ V~~~~~~~~~~~~~~

6

V TASK DESCRIP’FION

The exper imental task used in the experiments to be reported in

this paper is software design. Software design is the process of

translating functional specifications into a structural description of

a computer system that will satisfy these specifications. There are ,

in general , three components of this structural description. First ,

the description takes the form of a “modular decomposition” . That is,

the original functional specifications are decomposed into a collection

of modules, or substructures, each of which satisfies only part of the

original specifications. Second , these modules must communicate in

some way, and the designer must specify the interrelationships and

interactions of these modules. Third , design may inclid e a definition

of the data structures that are required to satisfy the functional

requi rements.

It is convenient to think of the functional specifications as

specifying the properties that are desired. The design identifies the

functions that can satisfy these properties. In actua l practice , a

design specifies what must be done in order to meet the functional

specifications. W w these functions are to be accompl ished is left to

the programmer. -

In order to provide an example of a software design , cons ider the

following problem described by Wesserman (1977) . The functional

specifications could be presented to the designer as follows :

“A med ical center needs a master patient index. The master

patient index file will be kept on disc for fast on—line access. The

purpose of this Index is to identify a patient. The following

specifications must be met.

~1

-~~~~~ -- V~~~~~~~~~~~~~~~ L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V -
--

~~
-—.--

~~~~~~~ -~~~~~~ 
-
~~~~~~~

7

1. Input and output will be performed at various

locations. Each location, and each person at a

location, should have different access privileges.

2. Each patient will be identified by a “patient un it

nunber” ; if a nunber has not previously been assigned ,

one must be assigned .

3. Each patient’s identification will be confirmed by

asking questions about his personal background

(e.g., mother ’s maiden name) .

4. A mechanisn must be provided for purging , to off—li ne

storage, patient files that are infrequently accessed —

and for retrieving , fran off—line storage, files for

reactivated patients.

5. A daily record of all transactions should be written

on magnetic tape.”

Ibtice that this description specified the functions that the

system must satisfy, but does not specify the form of the design. A

potential design for such a sytem (adapted fran Wasserman) is

represented as:

1 2

L.~_i t~sioii I

8

Each of the rectangles names a module of the completed system.

The lines connecting modules indicate interactions between modules. A

designer would also , given the above fo rm of design , provide a

description of each module and assuned file structure . For example:

~ IFILE : file of patient unit nunbers

SEARCH: Search the data base for patient identification; obtain

identification if patient is not found in data base; up~ate data base

appropriately

VERIFY: request verification of patient id entification

information
)

L~~ON: determine user authorization to access data base etc .

t~sign , in its broadest sense, appears to be an excellent vehicle

for the stt.d y of planning in any kind of probl em solving domain.

Design, whether it is concerned with construction of a building,

developnent of a compl icated computer program , or a plan of action to

control a large industrial enterprise , is essentially a plan describing
3

the goals that are necessary to achieve the ul timate object ive of the

plan and the operations necessary to achieve those goals. The design

is the plan or structure underlying a given computer program or

sof tware system. In large, or even moderately large software systems ,

software design is considered to be a separate task from other

prograsning activities. Designers produce high level descriptions of

the system to be implemented, and then these descriptions are given to

other indiv iduals who will perform the actual implementation, i.e.,

programmers. Recall that earlier we characterized a plan as a

hierarchical structure underlying a sequence of operations or actions

that solve a given problem. The computer program is that sequence of

_ _ _

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


9

actions; the design is the plan.

We have selected software design because we feel that it maxim izes

our chances of understanding planning behavior. Another reason is that

prog rammers and systems designers have a common term inology for

describing elements of their solutions —— the technical vocabulary of

computer science. This common vocabulary simplifies data collection

and analysis and makes a much more rigorous interpretation of our

protocols possible. Both the exper imenters , who are software designers

of various levels of expertise , and the subjects have a common and

reasonably well defined vocabulary for communicating the var ious

elements of this underlying hierarchichal structure. Third, it is

possible to present a wide range of problems in the context of the task

domain of software design. Finally, the task envirorxnent of software

design appears to be very compatible with the theoretical framework

that we are using. In addition, there is a large literature on

software design, and this literature provides additional insights into

the structure of this task and the necessary background information

requi red to construct a theory of hunan performance in this domain.

V

-

~~

•~~~~~ •V ~~~~~~~~~ V ~~~~~~~~~~~~~~~~~ V VV V± I~~~ ~~~V V~~~~~~ ~~~~~~~~~~~~~~~~~

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~ V

10

THEORETICAL FRAM~ 1CRK

In this section we present the theoretical framework underlying

our research on planni ng and software design. c*ir think ing has been

very strongly influenced by two differen t literatures. The first is

the work on schema—based representations of knowledge. The second is

the work on planning that has been done in connection with nunerous

robot projects. In addition , our framework is consistent with,

al thoi.gh not directly influenced by, some of the concepts derived from

formal literature on software design that will be reviewed in Appendix

A.

We begin this section by reiterating our definitions of plan and

plann ing . We then go on to outline our theoretical framework . Next we

present a fairly detailed discussion of a model of planning developed

by Sacerdoti (1975). We then present a more detailed articulation of

our theoretical ideas incorporating recent thinking on the

representation and utilization of knowledge. In the fina l section , we

will also briefly cons ider other theoretical work , aithoigh derived

from different sources , that has similarities to our own .

To recapitulate our earlier definitions, we defined a plan to be a

hierarchical structure that underlies any sequence of actions or

operations. Planning is the process of generati ng this hierarchical

structure. ~bwever , it is necessary that we distinguish between plan

generation and plan retrieval .

In work that we will review later , there is a growing consensus

that experts in a given domain have a large nun ber of very specific

plans for the solution of problems in the domain in which they are

expert. In a si tuation where an ind ividua l is essentially executing a

4 • V V ~~~~~ VV V~~~~

- V 4
- -~~~~~~-— — I



11

pre—stored plan , we use the te rm plan exeuction. Aithoigh it may not

appear so at first  glance , plan retrieval is a form of planning. The

plans being utilized by an expert are often extremely schematic and

their adaptation to a specific situation is a nontrivial process.

Still the solution plan is not being generated “from scratch. ” The

plann ing process is greatly simplified due to the individual’s

experience with similar tasks . Plan generation refers to a situation

where a novice or an expert is attempt ing to generate a new plan. In

V 
the stt.~ies that we will report later in this pape r , none of our

software designers were expert in the p art icular  kinds of problems that V

they were given in our experiments. Thus they were faced, in pa rt ,

wi th the task of generating a new plan.

In sunmary, a plan is a hierarchical structure that underlies the

solution to a problem. Planning can be divided into two classes of

processes. Plan retrieval is the process of making specific a

schematic solution to a given task or class of problems . Plan

generation is the process of generating a new plan for the solution to

a problem . The theoretical framework to be outlined below makes the

basic assuuption that in a software design task the developnent of a

plan for a novel problem is , for the expert, in fact , a mixture of plan

generation and plan retrieval .

Software desig n can be cons idered a “ problem of arrangement.” As

Greeno (1973) points out , the archetype of a problem of arrangement is

the anag ram. In software design we think that the el ements that are

being arranged are the subject ’s knowl edge of specific kind s of

operations, such as input—output processes, sorting , management of

li nked lists, and othe r such fa i r ly  specific concepts in the domain of

4 -

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



12

computer science. It is the proper arrangement of these known

elements, or processes, that a computer system can execute, that

defines the eventual solution to a given progranmirg problem, and the

task of the designer is to arrange those elements in the proper order.

The framework outlined below incorporates five basic assunptions about

planning behavior in complex tasks , in particular the task of software

design. We begin by sunmarizing these main points.

First, we propose that a complete plan is a series of abstractions

of the final solution to the problem ranging from very schematic or

high level plans to detailed plans that can actually be trans fo rmed

into a solution to the problem. Second , a plan is generated by a

process very similar to stepwise refinement. That is , plans are

generated primarily in a top—down and breadth—first manner, with each

level being more detailed than its pr edecessor. Third , plann ing

involves the utilization of previously learned schemata. These

schemata may be very general, such as the “input—process—output” schema

fran computer science, or may include more specific schemata , such as

the subject’s knowledge of how to manipulate elements that are

represented by a linked list. Fourth, various components of a total

plan, or even complete solution plans, can be retrieved from long term

memory and incorporated into the solution of a specific problem by the

process of plan retrieval. Finally, we assune that planning , in

complex tasks , involves the syn thesis of many types of knowledge
V structures.

C)jr basic ideas about the planning process were stimulated by

Sacerdoti’s (1975) description of NOAH. NOAH (Nets of ~ction

Hiera rchies) is an integrated problem solving system that utilizes

_ _



V 

V V

13

stored information about the task domain to generate a complete plan

for the solution to a given problem. The system solves the problem by

creating a hierarchical structure that represents a solution plan for a

given problem at greater and greater levels of detail. The top node or
V 

level in the hierarchy is a one step solution to the problem,

essentially a statement of the goal “solve the problem.” The

successors of this top node are the major subgoals of the completed

plan. Successive levels of this hierarchy are more and more detailed

plans. The bottom level nodes are a solution to the task in terms the

primitive actions of the task domain. The nodes at any given level are

linked together by predecessor and successor relations that define a

partially ordered sequence of operations. Sacerdoti calls this

completed 
V 
structure “ a procedural net” . In the discussion that follows

we will use the terms “procedural net” and “plan” interchangeably.

NOAH uses an iterative procedure in generating a plan to solve a

problem. Each cycle of the iteration begins with the expansion of each

V node into its successors. These successors are a complete subplan for

achieving the goal defined by the parent. Fbwever, there is no

gua rantee that the sequence of ind ividual subplans is a correct

solut ion. The completion of one sub plan in the sequence may make it

impossible to achieve a necessary step in a later sub plan in the

series. A Correct plan is generated fran this sequence of subplans by

a collection of “critics” . These critics make the plan consistent by

reordering the steps and eliminating redundant ones. In addition, the

critics attempt to deal with conflicting preconditions defined by

various subplans. The cycle then repeats with a new plan being

synthesized at the next greater level of detail. This iterative

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~



v-, 
~~ 

-

~~ 

- - — -  
— 

- -I:

3
14

process generates a procedural net for the solution to the problem. 
V

The process we have been describing is very closely related to the

notion of stepwise refinement and similar concepts that have appeared

in the software design literature. In the empirical work to be

reported later, the primary focus of our current research is the

dynamics of the planning process. We will argue that hun an problem

solvers develop plans in a manner that is similar to NOAH.

The basic assunption underlying NOAH is that one can create a

rough plan for solving a probl em by ignoring much of the detailed

information contained in the original statement of the problem. This

rough, or abstract, plan is then refined into a more detailed, complete

plan to solve the problem. The notion of developing an initial

solution plan using a simplified version of the problem was first

proposed by Newell, ~~aw, and Simon (1963). This original proposal of

planning by abstraction is described by Newell and Simon (1972) in some

detail. This type of planning process has been very influential in

work that was published during the last few years in the robotics

l iteratur e and is most appa rent in ABSTRI~S (Sacerdoti 1974), (cf.

Banerj i and Ernst, 1977) . Sacerdoti (1975) assuned that each node

describing a subgoal at a g iven level of abstraction contains all the

info rmation necessa ry to construct a solution plan at the next level of

detail. We will not make use , however , of the particular

representation schemata that Sacerdoti incorporated into his system.

We will focus on the dynamics of the solution process as described by

Sacerdoti and turn to the literature on schema—based representations of

knowledge to deal with how the knowledge incorporated into the

procedural net is actually represented.



15

For different kinds of problems arid subjects (e.g., novices and

experts), the possible representations of plans can vary both in the

nunbers of levels of abstraction as well as the generality of the plan

at any given level of abstraction. We propose that we can characterize

the subject’s problem space at any given point in time as an incomplete

procedural net. We assun e that the top node of the net corresponds to

the subject’s representation of the goal to be achieved , that goal

being to solve the problem. The lowest level of the subject’s

representation is the sequence of operations used to actually solve the

problem within the task domain. The intermediate level represents the

subject’s understanding of both abstract plans and the particular

subgoal sequences that define the major steps in the process of solving

the problem.

It is important to realize that a subject’s procedural net may be

incomplete and/or incorrect. In the extreme case of simple

transfo rmation problems , the subjects’ representation consists of the

top node (i.e., the goal stating “solve the problem” ) ,  and the two end

points of the move sequence, the initial situation and the goal state

of the problem. The lack of planning in such problems reflects the

fact that the subjects’ understanding of the problem is very

incomplete. Their knowledge of the task does not permit them to

generate the hierarchical structure that underlies the sequence of

operations that will eventually solve the problem.

We will partition the various levels of a procedural net into

three types of plans — abstract plans, detailed plans , and the

operation or move sequence level. The top levels of a procedural net

represent an abstract plan for solving the problem. These abstractions

4 - -

—~~~~~ ~~~ -~~~~ ~~~~~~~~~~~~~~~ VV V ~V V V ~~ ~~~~~~~~~~~  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A



16

eliminate many of the details of the orig inal problem in an attempt to

identify the major components or subproblens of the task as originally

stated. This identification, however, can be rather crude, and this

level of plan is not necessarily an accurate description of an

achieveable solution. For example, Sacerdoti points out that an

abstract plan may simply identify the major subproblems to be solved in

the process of achieving the stated solution. This initial abstraction

can ignore the very critical issue of the order in which the

subproblans must be attacked and solved.

The detailed plans are represented by the middle levels of the

net. These structures define the details of a solution to a problem.

It is this level that we feel most closely corresponds to the

structures generated by NOAH. In addition, we will argue later that
J

detailed plans are generated fran info rmation stored in long term

memory, and that they characterize the operations that will solve the

problem. The bottom level of a procedural net is the problem graph
3

defi ned by the primitive actions or operations of the problem. In the

domain of computer programming, the abstract plan arid the detailed plan

are the software design. The complete design is turned over to a

prog r ammer who generates the program , or the operation sequence level

of the net, and creates an operational or running program that solves

the given problem.

NOA H, like a larg e nunbe r of other formalisns characterizing

complex problem solving, assunes that a problem is solved by the

process of problem red uction. The probl em as given is red uced by a

decomposition process into a manag eable series of subproblems . The

“critics” In NOAH deal with interactions between solutions to

4 ~~~~~~~~~~~~~~~ ~~~~~~ —



- - V •V ~~~ V._~~~~~.___~;:V•~•T_ ~~~~~~ V ~~~~~~~~~~~~~~

17

subproblems. The major differenc e between our theoretical thinking and

Sacerdoti ’s NOAH has to do wi th how we wish to represent the knowledge

that is incorporated into the completed plan.

We assune that the knowledge underlying the solution to a problem ,

the knowledge incorporated into the procedural net, can be partitioned

into two categories. The first is information that a subject must have

in order to understand the description of the problem that is to be

solved — the information necessary to understand the purpose of the

computer system that is to be designed. This knowledge would include

the knowledge of topics like physics, chemistry, accounting,

statistics, or any substantive discipl ine that could utilize computer

programs to accomplish a task. The second category includes the

problem solver’s knowledge of design techniques, general knowledge of

computer science, knowledge of specific processes like sorting or

memory management, and knowledge of the details of a specific computer

system. air pr imary assunptiori is that the knowl edge incorporated into

the procedural net which describes the design for a given system is a

synthesis of these two knowledge domains. An ind ividual ’s knowledge of

the problem area is th~ basis fo r the understanding of the problem

statement and the identification of the major components of the

problem. This knowledge enables an individua l to pa rse , or define , the

principal subproblens that must be solved in order to achieve the

solut ion of the given problem.

We will assune that an individual’s knowledge of software design

and computer science can be roughly partitioned into three categories.

The first includes general knowledge about the overall process of

design arid the particular ki nds of resource allocation heuristics that -

-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


- ~~I~~~~~LJ L I ..n ~~~~~~ -
- -

18

an ind ividua l uses to guide desig n behavior. Expert designers are well

aware of different kinds of design styles. F\.irthe rmore there are

probably significant, systematic differences in the kinds of resource

allocation decisions designers make. For example, “how detailed should

I make this design?” , “should I optimize speed or storage

requi rements?”, etc .

The second category is a very generalized schema which frequentl y

takes the form of “input—process—output.” For the overal l process , or

any subprocess that is going to be part of a design , the designer must

specify the inputs to that routine or process, the process or the)
manipulations to actually be performed by the computer , and then the

format of the resul ts or the out put . This schema i tself is not the

solution to any programming problem; it is simpl y too general . This

schema is an agend a that must be completed before the design for a

given component of the problem can be considered finished .

The third category of knowledge the software designer has is a

large collection of quite specific pieces of information involving

various kinds of techniques in computer science and the specific

computer system involved. An expert designer has at his command a

large amoun t of knowledge about specific techniques for sorting ,

pattern matching, list management, storage management, etc. These

techniques are often sto red in memory in the form of quite general

structures that then are adapt ed to a given problem enivirorinent.

Knowledge of the structure of the p art icular prog ramming system

available to the designer, such as the operating system or the
V

progr amming language that the design is to be implemented in , is

represented similarly. This type of knowledge identifies any

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



-~~~~ -~u

19

constraints on the design that may be imposed by the envirorinent that

the solution will actually be implemented in.

We assune that the top levels of the procedural net are generated

by a direct combination of an individual ’s knowledge of the problem to

be solved with the very general templates or schemata specified by the

particular implementation domain (e.g., software design). In our case,

recall that this schema is “input—process—output.” This synthesis

results in a top level abstract plan that identifies the major V

functional elements of the eventual design. The rest of the plan

consists of descendants of these initial nodes.

Q~ce the major elements or subgoals of the abstract plan have been

identified , the expansion of these subgoals into detailed plans is in

large part controlled by the subject’s knowledge of computer techniques

az-si design. At this point, the subject has identified what must be

done in order to solve the given problem and begins to focus on how

these subgoals can be accomplished . C~ce a g iven abstract subgoal has

been expanded into a detailed collection of subgoals, the expansion of

these detailed goals involves very specific schemata that describe how

the particular set of operations used to accomplish this subgoal are in

fact accomplished on a real computing system. Thus the construction of

the detailed plan essentially involves synthesizing and arranging of

elements that are retriev ed fran long term memory. These are elements

of the subject’s knowledge of very general classes of operations that

can be performed on digital computers, e.g., sorting, and the subject’s

detailed knowledge of the particular computer system.

LV~~V V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V VV ~~~~~~~~



F-- - 
~~~~— ~~~~~~~~~~~~~~~~~~~~~~~ V V  ~~~ 

-

20

RESEARCH ON PLANNING: A BRIEF R EVI EW

In this section, we are going to discuss a large nun ber of topics

that are directly or indirectly relevant to the theoretical framework

that we outlined earlier. We are goi ng to focus on three related

literatures. The first is the work in the area of artificial

intelligence that is closely related to NOAH. The second is the

psychological literature on planning. The third is the literature on

schema—based representations of knowl edge. Al though there is riot a

large literature in psychology on planning, per Se, it is clear that

given our very general definition of planning, that “plans” arid

“planning” are very closely related to many topics that are central to

current interests in cognitive psychology. Finally, we will consider

the relations between problem understanding and problem solving.
$

RELATED ~)RK

Two projects have recently been reported in the artificial

intelligence literature that make assunptions about planning and
p

problem solving that are very similar to those that underlie both our

theoretical framework and NOAH. The f i rs t is a system that writes

compute r programs —— Program Wr iter (Long , 1977). The second is a

problem solving system developed by Sus~ nan (1977) — PSBDAR P (Problem

Solving By ~~btigging Almost Right Plans) .

The Program Writer is an artificial intelligence program that

accepts high level specifications for a computer program in a limited

domain (wi thdrawals and deposits to bank accounts) arid generates

appropriate algorithns and data structures to implement the program , or

to solve the problem. The central thesis of Long’s (1977) work is that

4 - V~~ - ~~~~~~~~ VV ~~~~~~ _ - -

- _____ ~~~~~~
V~~~~ •~~~~~~~~~~ V~~~~~~~~

-

21

writing a program requires several different types of information and

that the process of generating such a program involves stepwise

refinement, or iterating the solution through several levels of

abstraction.

Long assunes that the knowledge necessary to successfully generate

a program is stored in a collection of substruc t ures that he refers to

as “models.” Fi ve models are involved in the current version of

Program Writer. The f irst is the domain model, wh ich contai ns

info rmation about the application area (in this case , banking

transactions) . For example , the domain model specifies such things as

that making a deposit implies that a person has money to be maintained

at the bank, that the person owns the money , etc . The remaini ng four

models are primarily concerned with the knowledge required to produce

functioning programs. The four models involved are: (1) the argunent

passing and control model, (2) the data model, (3) the input/output

model , and (4) the target language model. The information contained in

these substructures is used to guide the program generation process,

which is under overall control of a design model. The design model

essentially uses the process of stepwise refinement to generate a

running program. Thus, Long’s design model is his theory of

programming arid problem solving.

r In general, the assunptions underlying Long’s Program Writer are

very similar to the ideas underlyi ng Sacerdoti ’s NOAH system and our

theoretical fr amework . All generate plans in a hierarchical, top—down

manner. airther, all develop a rough plan for solving a problem by

ignoring much of the detailed information in the original statement of

the task and then expanding this plan in more detail .

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



- .---- - -~

22

Both Sacerdoti and Long also incorporate some mechanisn to assure

that the global constraints of the problem (essentially ignored in the

high level plans) are satisfied; in Sacerdoti’s work these are the

critics and in Long’s these are the models. Sacerdoti and Long make

very different  assunptions about how knowledge is organized. Recall

that Sace rdoti assuned that the knowledge necessary to generate the

next level of the plan was contained in individua l nodes associated

with each higher level goal. Long assunes, as we do, that knowledge is

organized into complex , schema—like structures —— the models.

Sus~nan (1977) has attempted to model the processes involved in

V solving problems in electrical circuit design. Sus~nan’s research is

concerned not only with how plans, or designs, are created, but also

with how incorrect plans are modified arid , to a degree, with what types

of knowledge are involved in plan construction and modification.

PSBDAR P (Problem Solving By ~~bugginig Almost—Right Plans) is a system

that incorpurates two stages that can be employed either independently

• or in succession.

In the first stage, attempts are made to retr ieve previously

generated solutions to problems that are similar or identical to the

current problem. If a solution to a similar problem is found, its

applicability to the current problem is evaluated. If it is jndged

appropriate, the previous solution is applied; if it is not

appropriate , an attempt is made to isolate and correct the

discrepancies (“bugs”) that pr event successful application. Thus , this

stage involves the retrieval of existing solutions or solution schemata

and, if required, making modifications to these schemata.

The second stage is entered only if no applicable solution schema

4 V



V V -
~~~~~~~~~

--
- V

23

is retrieved. In this stage, an attempt is made to decompose the given

problem into subproblems and, if this fails, to fi nd an al ternative

representation of the problem. In either case, the intent is to

produce a collection of subproblems that appear consistent with

existing solution schemata. Any bugs that are detected in the schemata

are resolved by recursive call s to PSBD~RB.

In addition to previously generated , or known, solutions, Sussnan

assunes that there are knowledge structures that also exist to describe

rules for making pr oblem representato n changes and problem

decompositions. Like the solution schemata, this information is stored V

or organized with respect to its applicability to certain types of

problems. These structures are the problem solving processes that are

incorporated into PSBDARP.

tong ’s (1977), Sussnan’s (1977), and our work bear striking

similarities. Long (1977) assunes, as we do, that planning and problem

solving utilize a series of representations of the problem that involve

the specification of increasing levels of detail —— the process of
stepwise refinement. We share with Sussznan the view that problem

• solving in complex domains can be characterized as a problem of

arrangement. Many of the processes incorporated in Sussnan ’s theory

are intended to tailor or modify previous knowledge so that it fits the

• constraints of the current problem; that is, the emphasis is on

debugging.

~hile tong and Sussnan are taking a fa i r ly strict ar t i f ic ia l

intelligence approach, Levin (1976) has attempted to develop a theory

of the software design process that is consistent with current thinking

in cognitive psychology. Levin assunes that design can be viewed as

4

-
~~~-—~~~~~~~ - V~~~~~ -- - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p ~~~~~~~~~~~~~~ V • • 
V 

~~~~~~~~~~~~~~~~ 
~V=V~~

VV
~~ -~~~~

24

involving three fundamental processes —— “selecting problems to work

V on, gathering need ed information for the solution, and generating

solutions” , (Levin , 1976, p. 2). Levin focuses on the problem

selection processes. He makes a distinction between global info rmation

(strategies) and local information (constraints) and makes three

assertions concerning the problem selection process:

“1. Local constraints play an important role in problem
select ion and account for a significant percentag e of new
problem selections during design. (A local constraint is one
that has been introduced only within the scope of the most
recently selected problem).

2. As strategy and constraint information ages in
working storage, the probability that it will be used as a
problem source decreases.

3. The required presence of strategies in working
storage arid prior use of local constraints limits the use of
strategies as a problem source.” (pp. 10—11).

Leviri is dealing with the information that controls the process of

stepwise refinement as the design iterates to greater and greater

V
levels of detail. In effect, he is attempting to provide a description

of how the information used in tong ’s (1977) models is utilized in the

process of solving the problem. He has decided to concentrate on the

resource limitations , in part icular memory limitations, that dictate

much , if not all, of hunan problem solving performance.

t.evin then proceeds to develop a simulation model based on these

assunptions. This model takes as input the protocol of an experienced

designer worki ng on a fa i r ly complex problem and produces as output a

list of subgoals generated by the designer. It is not immediately

clear, however, whether this model accurately describes hunan behavior.

As Levin notes , the model is not able to evaluate decisions or

constraints or to determine the relative importance of one subgoal over

• another. It processes the input protocols, but does not “understand”

L V~~~~VV ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V -~~~~~~~~~~~~

25

the design task, and the concept of a goal is completely missing.

As used by Levin, the term “strategy” refers to “plans for

achieving the solution to a problem. A strategy describes a sequence

V of activities ( subproblems) , which when worked on may achieve a probl em

solut ion” (p . 9 ) .  Levin fur ther distinguishes between “local ”

strategies arid “global” strategies in a manner which corresponds

closely to NOAH’s detailed and abstract plans. Further , these

strategies can be characterized as previously learned schemata that the

designer brings to bear on the design task. Although Levin ’ s concepts

are not entirely worked out , his model seems to be generally consistent

with the other research discussed in this paper.

PSYCHOL~~ICAL RESEARCH (14 PLANN I~~

There is a limited research literature In psychology that directly

relates to planning, but a very large literature that bears directly or
• indirectly on the issues discussed in this paper. The first is the

literature in the early and mid 1970’ s on problem solving processes in

transformation problems. The second is the characterization of the

problem solving behavior of experts in various problem domains. The

thi rd topic is Newell and Simon’s (e.g., 1972) work on planning by

abstraction which is a basic concept that is incorporated into ~~~~
• and which was d iscussed earlier.

Greeno (1974) and his sti.dents (Thomas, 1974; Fqan arid Greeno,

1974) argue that simple forward planning processes could account for

the performance of subjects on various transformation problems. Recall

that transfo rmation problems are tasks in which the subjec t has a

def i n ite sta rt state arid goal state , and the solution to the problem

4



26

involves the application of a l imi ted  nun ber of well—specified

operations that transform the start state into intermediate states and ,

finally, into the goal state. E~amp1es of transformation problems are

water jug problems, river crossing problems, and the Tower of Hanoi.

These simple, puzzle—like tasks have been a major focus of modern work

in problem solving . Greeno and his students have argued that the

problem solving behav ior of subjects worki ng on river crossing tasks

(Thomas , 1974),  and the Tower of Hanoi (Egan , 1973) can be explained by

various kinds of simple forward planning mechanisns . Atwood and Polson

(1976) arid Jeffries , Poison , Ra zran , and Atwood (1977) have challenged

these conclusions. They developed three—stage quantitative models of

the move selection process that assune that subjects use only local

information in selecting the next move. They were able to account, in

particular for the water jug task, for all aspects of subjects’

behavior that Greeno and his colleagues had argued required assuninig

some kind of planning process. Poison and his colleagues concluded

that since they could provide quantitative explanations for subjects’

performance in this class of task by asstining no planning processes,

the assunptions of Greeno and his colleagues must have been incorrect.

The “no planning” finding of Poison and his colleagues is easily

explained in the context of the theoretical paradigm presented in this

pap er .  The elementary puzzles that make up many of the transformation

problems that are frequently used in empirical stud ies are very

difficult for naive subjects. Although subjects understand the

characterizations of the goal arid start states and the legal moves that

can be used to solve the problem , they have no knowledge of the

structure of the move sequence that will ultimately solve the problem.

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


27

• In the terrninolegy of the framework presented in this paper, these

subjects are unable to generate abstract and detail level plans that

underly the solution sequence. Thus, they are reduced to solving

• problems of this class by some type of means—ends driven

trial—and—error search. It is interesting to note that all successful

quantitative models of this class of tasks make similar “no planning”

assunptions (Simon and Reed, 1976; Atwood and Poison, 1976; Jeffries,

et al, 1977). In conclusion, elementary transformation problems are

difficult because a simple description of the rules of the problem

seems to give subjects little or no information about the structure of

the sequence of moves that will solve the task. This reduces the

subject to proceeding by some sort of sophisticated trial—and—error

search that is guided only by information about the next move.

Although several investig ato rs have incorporated some type of no V

V planning assunption , none have arg ued that this is a general

conclusion. In fact, it is obvio us that there must be some kinds of

planning behavior underlying successful solution of any really

challenging problem. The simple counterargument to straightforward

• trial—and—error search schemes is that as the structure of the pr oblem

becomes more complex , the search space grows explos ively, even

exponentially, and trial—and—erro r search will not converge on a

solution in any reasonable period of time. Identical problems with the

explosive growt h of the search space have forced designers of robot

systems to dev elop sophisticated planning processes so that computers

• can solve problems in such a seemingly s imple domain as maneuvering in

a three—dimensional world.

In the last few years, research on problem solving has been

28

concerned with tasks that are much more complicated than transformation

problems, and there has been a rapid developnent in the area of

comparing the pe fo rmance of novices and experts on non—trivial

problems. All of this research supports the general conclusion that

expert problem solving behavior is strongly schema—driven . That is , an

expert has a generalized plan or schema for a g iven problem or class of

problems and adapts the schema to solve the current problem. This is a

view of problem solving that is very similar to that incorporated into

Sussman ’s (1977) PS~DARB model .

The general paradigm in this research involves comparing the

performance of experts and novices on problems that both can solve and

then examining the differences in the processes by which they attack

the problem. The classical example of this style of research are the

studies of thase and Simon (1973) and de Groot (1966). These studies

found that expert chess players d i f fe r from good amateur players not in

• their ability to apply more eficienit search and evaluation strategies

or to consider a larger number of alternative move sequences, but

rather that experts had memorized a much larger number of chess

patterns and the “correct”, or most favorable, move associated with

each pattern. In other words, experts had stored a large number of

Situation specific schemata.

• Another study of expert problem solving behavior is Bhaska r and

Simon’s (1977) study of an expert problem solver in the domain of

engineering thermod~~amics. The problems g iven to the expert subject

were vat ious thermodynamics problems from an undergraduate course for

which the expert was a teaching assistant. The expert subject’s

problem solving behavior was striking in its regularity. The subject

4 V
~~~~~~~~~~~~~~~~~ 

- V

— - ~~~_ _~~ ~• ~~ _~~~~ _ V 
. - -~~~~~~~~~ :r: •~~~V~• ~~~~~~~ ,~~~~~~~~~~~~~ •_V ._V_~V V VV• • • • •



29

began by retrieving one of the few forms of the basic thermod ynamics

equation and then modifying, or specializing, the equation to fit a

particular problem. A means—end s—like process was then used to f i l l  in

the variables i n the retriev ed schema. In fact , the expert used this

“ thermodynamics schema” even when anothe r approach , wi th which the

subject was presumably famil iar , would have made the problem easier to V

solve. ~dditional processes used by the subject includ ed the retrieval

of additio nal relevant equations and tables useful for determining the

values of specific quantities , the ability to deduce, from key words V

arid phrases , default  val ues ( frequentl y zero) for terms not expl icitl y

mentioned in the problem, and a fairly elaborate procedure to detect V

errors and mistakes.

Larkin (1977), using a fairly difficult set of problems, has

compared the problem solving behavior of novices and experts on various

mechanics problems from an undergraduate physics textbook. Larkin

examined in some detail the behavior of a single expert subject. ~ie

found that this expert constructed hierarchical solution plans, first

solving the problem in an abstracted form, then expanding this solution

to the level of detail necessary to solve the problem as given.

Larkin’s main findings are that experts organize their knowledge into

“chunks” of related principles and equations, arid that they begin

problem solving by attempting to find a match between a particular

chunk and the problem to be solved. ~.b equations were written until a

satisfactory chunk was retrieved. The novices, on the other hard , were

more likely to begin writing equations almost immediately. Larkin

examined the distribution of times be tween mentioned equations. ~~e

found that for experts, equations were mentioned in bursts, with

4



30

same-chunk pairs having very short interresponse times and with longer

interresponse times occuririg between equations from different chunks.

For the novice , the distribution of interresponse times did not d i f fe r

for equations that were considered to have come from the same or

diffe rent chun ks .

Final ly, Hinsley, Hayes, arid Simon (1976) have shown that even the

solution of elementa ry high school algebra problems seems to be
-j

schema—driven . College subjects were given a collection of problems

from a high school algebra textbook. They were asked to classify these

problems into a number of subject—determined categories. The

classification process appeared to be quite reliable across subj ects,

and classification seemed to be based on classes of problems as

specific as river problems , inte rest problems , etc . F\irthermore ,

subjects were able to identify the problem class or the solution schema

appropr iate to a given problem from the fi rst two or th r ee sentences of

the problem descript ion.

In summary, current evidence strongly suggests that problem

solving in what Bhaska r and Simon (1977) call “semantically rich”

domains is strongly schema—driven . Ex pert  subjects use pre—existing

plans that are adapted to the solution of the current problem. In all

of these studies, however, there is very little evidence or information

on the processes by which plans are synthesized .

~‘JOtNLE~~E REPRESENTATION ISSUES

Although plans and planning are terms that are usually associated

with research on problem solving behavior, plans have also been )

discussed in conjunction with comprehension and understanding. This

4



V 

~~~~~~~~~~~~~~~~~~ 
—

31

line of research is particularly relevant since, as we indicated above ,

problem solving in semantical ly rich domains may be strongly

schema—dri ven . That is , we feel that the generation of a plan is

guided by schemata such as “ i nput—process—output ” in a manner very

similar to the way understanding of a narrative is governed by

macrostructures such as “ setting—complication—resolution” (Kintsch and

van Dijk, 1975). Although we do not wish to equate planning and
V

comprehension, we feel that the interaction of the comprehension

processe~ with the relevant knowledge structures may be very similar to

the interaction of planning processes with task—appropriate knowledge.

Schank arid Abelson (1977) have developed a set of concepts that

are analogous to many of the concepts developed in this paper. These

authors develop three concepts related to the notion of a plan ——
scri pts , pl ans , and goals. ~*xile these concepts do not map pr ecisely

onto the theoretical framework discussed here , primarily because of

non—trivial differences between the tasks of pl anning arid

understanding, their concepts are closely related to certain structures

in our theory.

Schank and Abelson define a scr ipt as a “ predetermined,

stereotyped sequence of actions that defines a wel l—known s i tuat ion”
(p. 41). ~~ see a fai rly direct correspondence between scripts and

the detailed plan level of a procedural net. These detailed plans, or

scripts, comprise a large part of a skilled software designer’s

knowledge. These include such topics as sorting, merging, mani pulating

linked lists, etc. In many cases, solving a software design problem

involves a fairly direct mapping of problem elements into a sequence of

subgoals at the detailed plan level. Cnce such a sequence of subgoals

4

~

•

V

- V V~~~~~

VV

32

has been correctly defined, the goals can be expanded on the basis of V

this script—like knowledge.

The concept of a plan as described by Schank and Abel son is

somewhat different from the way we have used this term . A plan , to
)

them, is “ the repository for general information that will connect

events that cannot be connected by the use of a standard script ” (p.

70). A plan represents the actions underlying a set of goals; this
)

sequence of actions is more novel and less stereotyped than a script.

People do have pre—stored plans, but they are much less detailed than

scripts and require that much more information, especially more detail ,

be filled in. We see a close analogy between our concept of an

abstract plan and Schank and Abelson’ s concept of a plan. In

generating an abstract plan , a pe rson will modi fy some general schema

to fit the constraints of the current problem. This schema will be

applied in a manner that is somewhat d i f fe rent from the way it has been

used to solve pr evious , similar problems . In refining this plan, the

designer may invoke several script—like entities. These schemata will

require at most minor changes in order to be used in the current

situation.

Schank and Abelson are also concerned with the goals that underlie

particular plans . In some sense , the top level node of the procedural

net in our theoretical framework represents the goal being used to

guide the generation of the plan. Schank and Abelson, however , allow

for the existence of several concurrent goals. We admit that it is

probably inad equa te to assume tha t we can represent this top level node

as simply “ solve the problem. ” For example , as well as havi ng the goal V)

of solving the problem, a designer may also decide to do so in the most

4
V • -.-.—-

~~.-
•_

~~~~~~~~~~ 
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V -—-~~-~



• • • •~~~~~~~~~~~~~~~~~~~ . •

33

efficient way possible. The existence of multiple, possibly

conflicting, goals will be a necessary addition to our theoretical

framework and is expected to be a central focus in our future research.

~ OBLEM SOLVING AS UNDERSTANDING

Greeno (1977, 1978) has attempted to develop the concept ,
• originally expounded by the Gestalt psychologists, that “problem

solving” is what is involved in the process of “understanding.” In

this brief section, we would like to juxtapose Greeno’s ideas with the

ideas of Schank and Abelson on understanding and planning in the domain

of text understanding. We feel that a reconciliation or unification of

these two seemingly different definitions of understanding may wel l

provide some useful insights into the problem solving processes

V involved in semantically rich domains such as software design.

Greeno (1977) has attempted to develop the Gestalt psychologists’ V

notion of problem solving as a process of understanding in the context

of modern theoretical developnents in the understanding of natural

language (e.g., Schank, 1972; Winograd, 1972). Greeno asserts that

“ understanding is a constructive process , in which a representation is

developed for the object that is understood” (Greeno, 1977, p. 4).

Greeno makes it clear that understandin involves the construction of a

V representation that corresponds to the structure of the actual object

being perceived , the sentence being understood, etc. In his

di scussion, Greeno develops three criteria for good understanding . The

first is that good understanding involves achievement of a coherent

representation. The second is that the representation generated by an

individua l should correspond to the actual structure of the object that

4 

V — •  V :

~~~~~~~~

V

_ V~~~~ V •~~ • V~~~~~~~~~~~ V V V V ~~~~~
V V
~~~~



- ~_~V ~~~~~~~~~~~~~~~ V V V V V

34

is to be understood. The third criterion is that good understanding

has occurred to the extent that the to—be— understood object and its

components are related to previously exist ing knowledge (Greeno , 1977 ,

pp. 44—45).

In our introduction, we defined a plan as a hierarchical structure

that underlies the sequence of operations necessary to solve a g iven

problem. We argue that Greeno’s definition of understanding directs

itself to the generation or discovery of the structure underlying the

solution of the problem, rather than a simple rote acquisition of the

sequence of operations that, in fact, would solve a given exemplar of a

class of tasks ( cf., Wertheimer’s (1945) discussions of “productive

thinking” and Duncker ’s (1945) distinction between “analytic” and

“synthetic” problem solving). In his developnent of a definition of

understanding, Greeno includes both the process of understanding a

problem as given and the processes involved in the actual construction

of a solution.

Schank and Abelson (1977), on the other hand, clearly limited the

concept of understanding to the understander ’s identif ication of the

major subgoals and primary components of the story, the motivatio n of

the acto rs involved in the sto ry , or the primary subgoals defined by a

problem contained in some textua l description. They specifically

excluded the detailed kind s of problem solving processes that are

required to generate a complete plan or solution of a problem.

Following Schank and Abelson, we would like to separate the processes

of planning and understanding. While we agree that they are closely

related and are persuaded in marty respects by Greeno’s argument tha t

problem solving and understanding are identical processes , we ag ree

4 • V •CV ~ ~~~V •~~~~ V Vfl V• - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~~~~~~ VV .i ~~~~~~~~~



35

with Schank and Abelson that understanding involves identifying the V

major subgoals or major elements of the object to be understood.

Thus, in our definition we want to restrict the term

“ uiderstard irig” to those processes that lead a subject to identify the

major relevant aspects of a problem description and that enable a

subj ect to bring to bear relevant, general aspects of his or her total

knowledge about the problem domain involved . We would like to reserve

the te rms “pla nn ing ” and “ problem solving” to refe r to those processes I
which , as described by Sus~tian (1977) , focus on issues involving

debugging, or modifying, these knowledge structures.

Earlier, we characterized software design as a problem of

arrangement. We feel that the process of understanding involves the

identification of the major elements of design and computer science

knowledge that are relevant to a particular task. In addition , the

process of understanding probably leads to an initial specification of

how the elements are to be arranged in an ultimate solution to the

• problem. The remaining planning and problem solving processes dominate

a majority of the skilled individual’s time; they are the kinds of

debugging processes that are involved in fitting together ~~
V the

script—like elements into coherent solutions to a given problem.

In summary, we feel that the process of generating an abstract

plan arid the process of understanding, as described by Schank arid

Abelson and others, are in fact very similar. At this level, we have

no conflict with Greeno’s equating of problem solving and

understanding. Clearly, an effective, correct, useful abstract plan

must satisfy all three of Greeno’s criteria for good understanding. Cfl

the other hand, we feel that the process of articulating a detailed

4 -

V V V

- V ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ V V —— V • V —— •• •~



36

plan that is consistent with the abstract plan is more similar to

Sussmann’s characteriation of problem solving as a process of

debugging, or problem solving as a process of tailori ng g iven el ements

to fit a specific context.

I

I )

~~~~~~~~~~~~~~~~ V V • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~VVVV V~~~~~~~~~~~

~ ’

37

METhOD OF DATA ANALYS IS

In the sections that follow, we present the results of two

experiments. These experiments involved the collection of verbal

protocols and written problem solutions. In some cases, we present our

representation of a subject’s solution. ~~r representation involves

the elements of the solut ion that were identified by a subject and the

relations among these elements.
V As we indicated in an earlier section , a software design requires

the explicit documentation of subgoals, which a re represented as

functions, procedures, modules, etc . We identif ied these subgoals in

one of two ways. If a subject used a flowchart representation , we took

as subgoals any name or element that was enclosed in a single “box” of

the flowchart. If a subject used a “ program design language” type of

representation , each element (or line) of the design that was later

expanded was taken as a subgoal. Oir identification of subgoals is

consistent with the normal usages of these types of design

documentation.

(Xir identification of the relations among subgoals is also

consistent with the normal usages of the types of documentation

employed. Hierarchical relations are expressed through indentation,

with subordinate subgoals being indented farther to the right than the

superordinate subgoals, with explicit numbering of subgoals (e.g., 2.0,

2.1, 2.1.1) and through “calling seguences” and “cont rol struct ur es”

(subordinate subgoals are “called” by their superordinates).

The identification of subgoals and their relationships was also

aided by some of the subjects’ comments. In comparison with the

V problem behavior graphs presented by Newell and Simon (1972), our form

4 _

V

-

. V ~~~~~~~~~~~~~ -~•

— ~~~~~~~~ V V~~~• ~~~

38

of representation is somewhat primitive. This representation, however,

is intended to be a highly objective summarization of a subject’s overt

solution which does not include assumptions about the processes
involved or more covert elements of the solution. These
representations are intended onl y to be veridical descriptions of
subjects’ solutions to software design problems.

3

-~~~~~~~—

rr

39

AN INVESTIGATION OF PLANN ING BEHAVIOR

EXPER IM~ 4T 1 -- THE PROBLEM SOLVING BEHAVIOR OF EXPERTS

This experiment involved the collection of long , thinking out loud

• protocols from three highly experienced computer scientists. The

problem given to our experts is shown in Figure 1. The subject is

asked to design a page—keyed indexing system. This problem was

selected because it is of moderate difficulty, understandable to

individuals with a wide range of knowledge of software design , and does

not require knowledge of highly special ized techn iques that would be
V outside the competence of our expert subjects. By understandable, we

mean that the nature of the task , the purpose of the pr ogram to be

written, would be clear to even a novice software designer. By

specialized techniques, we mean that the design of a useful page-keyed

ind exing system does not require an expert to have detailed knowledge

• of exotic techn iques that are used in only very specialized areas of

computer science.

In our description of the behavior of the three expert subjects,

we will roughly classify various segments of the protocol as

representing different activities relevant to the construction of a

software design. The first part of every protocol contained a

discussion of the elements of the problem, pointing out various

• schemata at different levels that would be relevant to the solution of

such a problem. Also, all of our expert subjects discussed design

strategies and design techniques. After mention of various al ternative

design techniques and strategies, the expert would tell us the overall

method that he was going to use to solve the problem, and the remainder

of the protocol would conform to these stated intentions. In summ ary,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



40

PAGE-KEYED INDEXING SYST~I8ACXG~OUND.A BOOK PUBLISHER REQUIRES A SYST~~1 TO PRODt~ E A PAGE—KEYED INDEX.THIS SYSTEN WILL ACCEPT AS INPUT THE SOURCE TEXT OF A BOOK AND ~~ODL~ E ASV 

OL~ PUT A LIST OF SPECIFIED INDEX TERMS AND THE PAGE NtJ’IBERS ON WHICH EACH
INDEX TERM APPEARS. THIS SYSTEN IS TO OPERATE IN A BAICH MODE.

DESIQ’~ TASK.
YOU ARE TO DESIGN A SYSTEN TO ~~OD~~E A PAGE-KEYED INDEX. THE SOURCE V

• FILE FOR EACH BOOK TO BE INDEXED IS AN ASCII FILE RESIDING ON DISK. PAGENIIIBERS WILL BE INDICATED ON A LINE IN THE FORM /*NNNN WHERE /* ARE MARKER• CHARACTERS USED TO IDENTIFY THE OCCURRENCE OF PAGE NU4BERS AND NNNN IS THEPAGE NU4BER.
THE PAGE NUIBER WILL APPEAR AFI’ER A BLOCK OF TEXT THAT CCt’IPRISES THE

BODY OF THE PAGE. NORMALLY, A PAGE CONTAINS ENOWH INFG~MATtON TO FILL AN8 1/2 X 11 INCH PAGE. WCR~~ ARE DELIMITED BY THE FOLWNING CHARACTERS:
SPACE, PERIOD, CaIMA, SEMI-COLON, COLON, CARRIAGE-RETURN, QUESTION MARK, 

VQUOTE, ~~1~LE QUOTE, EXCLAI’IATION ~~INT, AND LINE-FEED. WORDE AT THE END
OF A LINE MAY BE HYPHENATED AND CONTINUED ON THE FOLIfl~1ING LINE BUT WORCG
WILL NOT BE CONTINUED ACROSS PAGE BOUNt~RIES.A TERM FILE, CONTAINING A LIST OF TERMS TO BE INDEXED, WILL BE READ FRC1~A CARD READER. THE TERM FILE CONTAINS ONE TERM PER LINE , WHERE A TERM IS1 TO 5 WORDS LONG.

THE SYSTEM SHOULD READ THE SOURCE FILES AND TERM FILES AND FIND ALLOCCURR ENCES OF EACH TERM TO BE INDEXED. THE O(J1’PUT SHOULD CONTAIN THE INDEXTERMS LISTED ALPHABETICALLY WITH THE PAGE NU’lBERS FOLLCWING EACH TERM INN1I.IERICAL ORDER.
A NULL SOURCE FILE INDICATES THAT ~~OCESSING IS CCI4PLETED. ERROR

MESSAGES AND A TERMINATION M~~SAGE SHOULD BE WRITTEN TO THE OPERATOR ‘S
CONSOLE. EACH CCI4PLETED INDEX IS TO BE STCRED ON DISK FOR LATER LISTING.

Figure 1. The Page-Keyed Indexing Problem

L _ .1V 
• • - V • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~

--
~~~~ 

V

r ~V _

41

these initial segments of the protocol involved the subjects retrieving

and instantiating a variety of knowledge structures, ranging from

info rmation about desig n strategies and resource allocation policies,

to schemata that described particular subdesigns for aspects of the

potential solution. In terms of classical work on problem solving , the

V behavior in these initial segments of the protocols could be described

as preparation .

The remainder of each of the protocols concerned the construction V

of the act ual software design. Various elements of our hypothesized

plan structure appeared in the protocols of all subjects. The subjects
differed in the order in which they constructed this hypothesized

structure. All subjects seemed to understand that the completed desig n

would be a structure like a procedural net , va rying in levels of

abstraction , with the transition from one level to the nex t

characterized by terms like ‘step—wise refinement’ or ‘increasing

levels of detail ’. Subjects differed widely in the processes they used

V
to construct this structure. Furthermore, they were quite explicit

about the processes they would use to s~rithesize the underlying

V
structure or procedural net.

Crie final aspect of subjects’ planning behavior shoul d be

mentioned . All of our experts rapidly recognized that various elements

of the solution to the page—keyed index problem involved algorit~ins

that were well understood and that in many cases optimal algorit~ins

V were known in the literature. Cur subjects found the retrieval of such

algoriti-ins difficul t, because they had not bothered to commit all of

the details of the algorithn to memory. In normal circumstances they

would look up the details in an appropriate refe rence. This is one

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~ 
-
~~~~ ~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

42

a r t i f ic ia l  aspect of the design task as g iven to the subject, and

attempts to retrieve relevant details consumed an inordinately large

part of the protocols.

In sunmary , the protocols could be partitioned into two phases.

The first phase we will characterize as preparation, and the second

phase we will call planning. It is in the planning phase tha t the

subjects developed their actual design. The prepa ration phase involves

a careful reading and summarization of the problem description,

discussion of relevant techniques, and some discussion of the design

techniques to be used in solving the problem given in this p ar t icular

task.

The Behavior of S2. S2 is a Master’s degree candidate in computer

science who is employed as a systems prog ranmer. S2 has a great deal

of experience with various text processing appl ications , although S2

had not designed or written any type of indexing progran. In addition,

S2 is interested in software design methods and techniques and

regularly reads the technical literatur e in this area . 
V

The preparation phase of S2’s protocol was relatively brief and

contained three principal elements: a brief statement of design

techniques, a rather clear statement of a schema within which he could

analyze the given problem into the elements necessa ry to derive a

software design , and a summarization of the problem as originally

give-i. S2 states that he intends to use a prog ran design language of

his own that incorporates a large number of structured progranming

technique s and that shows a lot of infl uence from the prog ranming

language PASCAL. He also makes it clear that his design strategy is to

proceed in a top-down breadth—first fashion. S2 then given a very

4 ~~~~~~~~~~~~~~~~~~~

- ~~~~~~ -—~~~~~~~~~~~~~~ ~~~~~~~~~~ -—



- - - - ~~ 
-

~~~ --

43

clear statement of his most abstract design schema:

“Cr~e thing that I believe absolutely has to be done is to
write a complete , det ailed specification of what I consider
to be the user interface what the input V~ 5 going to be and
what the output is going to be. Q-ice that’s done , I then
attempt to analyze the problem of taking the input data and
transforming it into the out put resul ts in terms of what are
the primit ive objects that I need to have. ”

We interpret this quote to instantiate a very general schema of the

form ‘initialize—input—process--output’. We have given a graphical

representation of this schema in Figure 2. We feel that S2 was

instantiating his most abstract or high level design schema , and that

it would serve as a template for construction of the abstract plan as - •

well as more detailed elements of the final design.

The final element of S2’s preparation phase was a careful analysis

of the problem as given and a summary of his understanding of the V

problem. We show S2’s analysis of the problem in Figure 3. Note that

it is simply a summarization of the major elements of the problem

statement and could be derived by an individual who was planning to

construct a page—keyed index by hand as well as someone who was

planning to write a computer progran to accompl ish the sane task.

S2 constructed the design to carry out the page keyed indexing

task in a strictly top-down breadth—first fash ion. He used a pr ogr an

desig n language to state the major elements of the design. S2 defines

his desig n language in the following fashion:

“The items that I have on each line correspond to the
functions to be pe r fo rmed.. .and can be thought of as
procedure calls , so that at this p oint , my h igh—level design
is complete, and I now proceed to expand and elaborate the
procedures and modules which I have identified at this
level .“

The statement above characterizes the nature of the software design

language; it was made after the subject has articulated the abstract

~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~ VV ~~V .



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- - 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~

44

Fi gure 2. Abstract Design Schema Used by S2.

- - V ~~~~~~~~~~~~~~~~~~~~ V V

• ~V V~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 
— — - V V VV___~V~~ V~~~~ V~~V~ V•~~~ V - V

~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~ AW PAGE N~~B E R T O~

Figure 3. Abstract Problem Schema Used by S2.

4

_____________________________________________ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ V • V • • •~~~••



- - 
•
~~~~~~~~~~~~~ 

• .. •~.

46
V

2 though 6 in Figure 4, where we present S2’s final design. Note that

S2 considers the high—level , or abstract, design to be complete at this

stage. He then proceeds to articulate the details of the major

elements of the design that he has outlined. S2’s summary is also

consistent with our assumption that each level of detail is a complete

solution to the problem. At this level, of course, the plan identified

consists of the major subgoals that are to be accomplished , but the
V

lack of detail prevents this level from being considered an

impl ementable solution. The remainder of S2’s protocol is concerned

with expanding these goal s into a detailed plan (which is the last

level shown in Figure 4) , and then finally to the lowest level , the

operation sequence level .

We will only consider one part of the expansion into the lower

levels of the detailed plan. The case we will consider is the

expansion of the detailed plan ‘ INSERT TERM IN ORDER ED TABLE’ which is

the successor of the abst ract plan ‘READ TERMS ’ . (See Fig ure 4.) V

The expansion of this detailed plan took a great deal of time , -)

about 30—40 minutes in a protocol which took approximately 3 hours , and

the subject was becoming very frustrated at this point . He commented

that :

“I feel like I ’m getting sl ightly bogged down in the Insert
procedure. It is one that I ’ve writ ten probably 5 , 6 , 7
times before.. .Since I, as I am reproducing it exactly,
correctly from memory and it takes a great deal of e f for t , so
what I will do is to pit down that the node is to be inserted
by a classical scheme and simply assume, at this point, that
this will be a reference to an existing algorit~in.”

The subject was at temptin g to retrieve and reproduce a previously

written routine for inserting nodes in an ordered table. At this

point, planning effectively stopped and the subject’s efforts were

~~~~ ~~~~~~~~_~~~~~~~~ V
__ 

:1V
V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VIJ



- • _V__~~ ~~~~~ ~~~ — ~~~~~~~~~~ • 
__~~~~~ V -

r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

47

________________________ 7
INITIALIZE GENER~L~/ GLOBAL VAR IABLES

/ _ _ _
B

/ ~tNITIALIZE INPUT~/ //‘LBOOI< TEXT

~~~~~~~~~~~~~~~~~~~~~~~~~~~

I~:ITIALIZE
Ot!FPUT FELE I V

11

/ R EAD TERM

/ R EAD TERMS
12/

~iNSERT TERM INI

/

ORDERED TABLE

V

A CHARACTER ! V

INDCXER READ PAGE
14

PR~~ESS PAGE
NUIBERS

• PR(XESS PAGE CaIPARE cHARA::FR

\ orsrpuT HEADERS
V

4 17
\1ouTPu’r CROSS- rRINT CROSS-
~REFERE~CE PEFERE~~E LISTj

N_ _

18
OUTPUT TRAILER ~

Figure 4. S2’s Fi nal ~~sign

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



48

di rected to the memory retrieval task. In fact , note that this process

a ppa rently required so much effort  that the subject eventually

V determined that this exercise was unprofitable and decided to use a

“classical scheme” , which the subject had developed and used

previously, and returned to planning in other areas of the detailed

plan level. Notice that the existence of this routine was part of the

subject’s software design knowledge, but the act ual details of its

operation were not suffic ientl y well integ rated that they could be

easily retrieved.

We arg ue tha t this segment of S2’ s protocol prov ides strong

support for our characterization of the planning process at the

detailed plan level of the procedural net to be very closely analogous

to Sus~nan ’s (1977 ) characterization of problem solving as the

debugging of almost right plans. Plann ing at this level involves the

novel combination of well known elements, and these elements, which a

subject must retrieve from memory or from other sources, form the major

part , if not all , of the detailed plan and operation sequence levels of

the network. The top levels of the abstract plan involve the V

decomposition of the problem into its major elements. The top levels

of the detailed pla n are the decomposition of the elements of the

abst ract plan into known algoritlin s or schemata for implementing

vario us subparts of the task ultimately to be accomplished . These

schemata are then retrieved and articulated in the context of the

problem to generate the remainder of the detailed plan level and the

operation sequence level of the network.

V This protocol provides clear support for the theoretical franework

outlined in the previous section. The design wa3 constructed with



• ~~~~~V V • V• • V • — •

49

clearly defined levels and vas expanded in a top—down , bread th—firs t

manner. This form of expansic~n was readily apparent both in the

subject’s comments and in the written solution. S2 numbered , on

separate pages , the modules or subroutines that were developed arid it

was from this numbering that we derived the hierarchical structure of

• our representation of this design, as shown in Figure 4. The results

obtained from the other two experts, however, differed from this V

protocol in several aspects.

The Behavior of S3. S3 has degrees in physics and electrical

engineering and about 15 years of progranrning and design experience.

Although S3 is aware of current developnents in design technqiues, this

subject has no formal training in this area.

Again we can partition S3’s protocol into two major segments: the

preparation phase followed by the construction of the actual plan. The

preparation phase of S3’s protocol is quite long and discursive. It

incli.ides an analysis of the problem as g iven , disc ussion of various

relevant pieces of software design information, and discussion of

pa rticular algorithns or techniques that might be useful later in

solving the problem. We characterize the pr epa ration phase of S3’s

protocol as being ‘opportunistic ’ in the sense used by Ha yes—Roth and

Hayes—Roth (1978).

In contrast to the protocol of S2, the protocol of S3 is much more

d i f f icu l t to inte rpret . S3 used a flo~~hart as the pr imary form of

representation arid the expansion of the design was frequently

“interrupt driven .” As we will show below , the overal l design does

show a top—down expansion, first to an abstract plan, then to a much

more detailed plan, and finally to the level of individual actions.

4

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••


- - -~~~~~~~~~~

1
50

V The details of this expansion, however, differ from S2’s in sever al

important aspects.

Fi r st , when elaborati ng the design at the abstract l evel , S3

followed the description of each abstract node with a brief sketch of

the potential descendants of this node. This enumeration seemed to be

d riven by a schema for generic nodes of this type . For exampl e , when

considering the “ OUTPUT INE€X ” node (see Figure 5) S3 mentioned

headings , terms being of va riable lengths , d i f fe rent numbers of

V
references for each term, and so on. The items mentioned seemed to be

guided by this subject’s experience with writing output modules for

other programs. Each item was resolved in one of three ways; 1) the

item was seen as presenting no problem (an existing schema was

adequate); 2) the item was seen as pr esenti ng a problem arid one or

more potential solutions were discussed (the schema needed a corr ection

in order to be applicable); and 3) the item was seen as presenting a

problem, but no solution was forthcoming (no appropriate schema was

found). In this latter case, the item was flagged as a potential

problem and further consideration was postponed until the next level

was expanded.

The second strategy that seemed to drive S3’s behavior, both in

this “pre—expansion” mode, and later , when actually elaborating the

detailed plan, was ~‘“check for errors” rule. ~4~enever S3 generated a

data structure , read data , or instantiated a fa i r ly standard procedures

(e.g., “compare words”), S3 immediately considered possible errors or

anomalous cases; for exampl e , end of f i l e , missi ng page numbe rs , or

extra blanks in terms. Corrections were dealt with in essentially the

same manner as described above. Several times, the solution to a

4

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V V~~~~V V ~~~~~~~~



V VV

51

_______________________________ 4
INITIALIZE TERM FOINTEP~5
i~EAD TERM

1 6V 
RE~\D TERM FILE—L~Jr TERM IN TABLF ~7

ALPHABETIZE TABLE
8

/ GE T RID CF D(JPLICA’I’ES
/ 

_ _ _ _  9I ~~~AD BLLXK !

NEXT TEXT WCRD1

/ CCtIPARE FIRST CHARACTERS OF]

// iL TERM :WORD
/ / 12

/ / 
/ 

FIND FIRST CHARACTER STARTI~~/ fL~ WITH LETI’ER

1
/  / ItN ~TIALIZE TO FIRST WORE

20
~/ / / / ~ JN SIRING

_ _  

-~~~ // / / 2  2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ l4
LN~ EXER H~~~~ STRUCT 

_ _ _ _ _ _ _ _ _ _ _ _

NEXT TERM~~~~~~~~~~~~~~~~~~~DOF~~~~~~

\ 21,25
ii~~

ii
~
i PAGE # IN INDEX~

3 22
STORE INDEX STORE INDEX ON DISC1

Figure 5. S3’s Final tesign

4

~~~~~ V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~~~ • V ~L ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ V

52

potential error required modificat ion of a node that was the descendant

of a node other than the parent of the current node. Although S2
V

exhibited some of this “check fo r errors” type of behavior, this

strateg y is much more pronounced in the protocol of $3.

S3 also shows evidence of two aspects of expanding a procedural

net , or design , that are not fo und in S2 ’s protocol. First , in several

cases, S3 considers two alternative ways to produce a given result arid
V delays choosing between them until some later node produces a

pr efe rence fo r one of the two methods. This is the software design

analog of Sacerdoti’s (1975) “use imaginary objects” methcd to delay

binding of variables to values until a clear preference for one of the
V

candidates is established. Second, in S3’s protocol, there are several

instances of backtracking. They are resolved either by revising or

augmenting an earlier node at the same level (e.g., adding an earlier

node to satisfy a precondition), or one case , by deciding that the

expansion was not working and scrapping all of the successors of a
V

given node arid attempting a different decomposition.

c~ir representation of S3’s design is presented in Figure 5.

Recall that S3 used a flowohart as the means of representing the

design. In this type of representation ,”flow of control” and “ control

structure” are emphasized more than they are in other forms of
V

representation , such as that used by S2. Since “decision points” were

presented as separate “boxes” in S3’s design , we have incloded then in

Figure 5. It should be noted, however, that S3 explicitly stated that

these elements of the design (nodes 18 and 19 in Figure 5) were not to

be expanded further and that no explicit instructions need be given

about these elements to those who would implement this design. Also

4

V -- -- ~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



53

exchided from further expansion were two “initialization ” routines

(nodes 4 and 20).

At first glance, S3’s design does not appear to have been expanded

V in a top-down breadth—first manner. Notice that nodes 13 through 16

and node 20 were expanded before the predecessor ( node 23) and that

nodes 17 through 19 were generated before node 24. Although this

appears to be an example of bot tom up expansion , S3’s comments indicate

that this was an oversight rather than a deliberate form of expansion .

Throughout the experimental session , S3 expressed the philosophy

that design decisions should be deferred to the lowest possible level,

and referred to this strategy as “let George do it.” Afte r S3 had

generated nodes 13 through 20, this oversight was noted and the subject

commented:

“And here I find that I do this, probably because of the way
that I approach this, eventually this ‘let George do it’
rather collapses, and as I look back on what I have
tentatively written down , I find that I put things , indicated
the thing should be on one level, where conceptually they do
not belong, because of the detail involved with the type of
stuff that it’s done. It just doesn ’t belong there. It
should be more by itself, that is to say, further down the
pi ke .”

At thi s point, S3 introduced nodes 23 and 24 and indicated that they

were the successors of nodes 13 through 20.

The generation of node 20 is also contrary to a strict top-down

breadth—first expansion. This is a clear example of backtracking, as

was mentioned earlier. While expanding the node to ~T NEXT TERM” , S3

noticed that some in itial i zat ion was necessa ry for the “CCtIPARE TEXT

AND TERM” node arid inserted an initial ization routine. Notice,

however, that this addition was at the same level of the design as the

expansion that caused this backtracking behavior. S3’s concern with 

A V V V ~~~~~~~~~ ~~--



-~ - V - • • • 
-- 

~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~

)

54

designing in definite levels of detail is apparent in the comment:

“Now we have several places that we could go to elaborate
further what’s in these boxes, but I find it easier, until I
get lost in it, well not really lost, so much as really
embroiled in a particular problem, to stay at the sane level
which would mean, at this point, rather than elaborating on
the boxes on the page, here, READ TEPMFILE , to go back to the
higher level, move on to the next box, which is constructing
the index, which is really the implementation of that box at
the sane level.”

Clearly S3’s expansion of the design is by levels of detail. The

only major aspect of this form of expans ion that appears to be

contrad ictory to the theoretical framework outlined earlier is that

V this expansion does not appear to be strictly top-down arid

breadth—fi rst. As we indicated above, however, this is primarily due

to an oversight on the subject’s part, and the subject corrected this

oversight as soon as it was detected. Although the forms of expansion

observed in S2 and S3 appear, on the surface, to be different, th is

difference appears to be due more to the ability to successfully

execute a comm on strategy for expansion rather than to fundamentally

different strategies. The behavior of S5, however, may indicate a

dif fe rent strategy.

Behavior of S5. S5 is a doctoral stndent in computer science who

returned to graduate school after several years of experience as a

professional programmer arid designer. S5 is extremel y knowl edgeable of

the literature of both the applied arid theoretical aspects of computer

science, in particular, the area of software design. Like the other

two protocols, S5’s can be partitioned into preparation and pl ann ing

phases. S5 gave us one of the longest preparation phases. In this

• phase, he articulated a particular theory of design. He then proceeded

to construc t his design in the manner that he had described during the

4 -

- - 4 
~~—-~~~~

---
~~

• • • • • •



55

preparation phase. As will be seen in the remarks below, and in the

description of S5’s plan, the principle component of S5’s approach was

an emphasis on efficiency of the program to be ultimately derived from

the design. That is, S5 evaluated the designs pr imarily on the basis

of storage requirements and execution speed .

S5 expressed the general philosophy that software designs should

not be done “from scratch.” Since optimal designs for a large variety

of functions (e.g., sorts, merges, etc.) have been developed, S5

expressed the bel ief that the designer should find such designs and

incorporate them into the overall design, rather than “reinvent the

wheel ’t and , thus, incorporate sub—optimal designs for the necessary

functions.

When presented with the design task, S5 commented that optimal

designs for all of the functions that would probably be needed could

probably be found in reference books , especially in the series of books

by ~nuth (e.g., 1968) on the “art of programming.” Further, 55 noted

that a recent journal contained a proof, related to searching tree

structures, that led to the developnent of an optimal search strategy,

and that he would prefer to review this article before beginning the

design, since its incorporation would greatly aid overal l efficiency .

For the purpose of this experiment, however, S5 agr eed to perform the

design task “from scratch.” Since our emphasis is on planning

behavior , rather than on optimal software design, we do not feel that

this shift in preferred strategies on the part of the subject adversely

affects our results. In summary , although S5 was not able to

incorporate pr eviously developed optimal designs into the overall

design, there was still an extreme emphasis on efficiency that was not

4

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ —-~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



56

observed in the previous two subjects, This emphasis produced a type of

behavior that was different from the other expert subjects.

~~o procedural changes were adopted prior to the collection of

this protocol. First, the problem was simplified somewhat. (~ir first

two expert subjects spent a great deal of time considering design

alternatives and questions that were closer to the actual

implementation than to the plan for solving the problem. This inchxied

such considerations as how to handle multiple instead of single blanks

between words, how to distinguish between a word hyphenated at the end

of a line and a word that contains a literal hyphen (e.g.,  li ne—

printer) , etc. Since such cons iderations tended to cause the subjects

to spend a g reat deal of time on emall , isolated aspects of the desig n

rather than on the planning aspects of design, we rewrote the problem
1

specification to eliminate those elements that were encountered by S2 - 

-

and Si. The simplified version of this problem is shown in Figure 6.

Except for details, this problem statement corresponds exactly to that

used earlier.

Second , we presented S5 with a list of “primitives” and requested

that the design be expressed in terms of these primitives. The subject

was told to assume that these primitives, which con~isted of various

functions arid routines, could be used in the design without being

described in detail . This was intended to prevent subjects from

attempting to retrieve the solutions to well known functions (see the

discussion accompanying Figure 4 in S2’ s protocol) and also to provide

some commonality in the language used by subj ects to describe their

designs. These pr imitives, which a re shown in Figu r e 7, were obtained ,

in part, from the protocols of the other expert subjects and also from



-— ~~~~~~~~~~ ~~~~~~~~~~~~~

57

PAGE-KEYED INDEXING SYST~IEACKOROUND.
A BOOK PUBLISHER REQUIRES A SYST~ 1 TO ~~ODWE A PAGE-KEYED INDEX.

THIS SYST~ 4 WILL ACCEPT AS INPUT THE SO~.RCE TEXT OF A BOOK AND ~~ODOCE AS
ourwr A LIST OF SPECIFIED INDEX TERMS AND THE PAGE NLIIBERS ON WHICH EACH
INDEX TERM APPEARS. THIS SYST~ 4 IS TO OPERATE IN A BATCH MODE .

DESIGN TASK.
YOU ARE TO DESIGN A SYST~ 4 TO ~~OD (~ E A PAGE-KEYED INDEX. THE SOIRCE

FILE FOR EACH BOOK TO BE INDEXE D IS AN ASCII FILE RESIDING ON DISK. PAGE
NLt~1BERS WILL. BE INDICATED IN THE FORM ~~~~~ WHERE “*“ IS A MARKER
CHARACTER USED TO IDENTIFY THE OCCURRENCE OF PAGE NII’IBERS AND NNNN IS THE
PAGE NUIBER. “ *“ IS A “RESERVED” CHARACTER AND IT WILL NOT APPEAR ANYWHERE ELSE
IN THE TEXT .

THE PAGE NIRIBER WILL APPEAR AFTER A BLOCK OF TEXT THAT CC1~IPRISES THE
BODY OF THE PAGE. ThE PAGE NUIBERS WILL BE IN ASCENDING ORDER , BUT NOT
NECESSARILY IN SEQUENTIA L ORDER. A BOOK MAY CONTAIN PAGES THAT CONSIST OF
ILLU~~~ATIOt$ CR FIGURES. SINCE SUCH PAGES ARE NOT TO BE INDEXED, THEY ARE
NOT INCLIJDED IN THE SOURCE FILE . NORMALLY , A PAGE CONTAINS ENOUCH
INFORMATION TO FILL AN 8 1/2 X 11 INC H PAGE. EACH PAGE OF TEXT IS
STORED AS A SINGLE RECORD. EACH WORD IS ~~ECEDED BY A SINGLE BLANK
AND MAY BE FOLLO.’~ED BY A SINGLE PUNCT~~TION MARK . IN ADDITION , SINGLE
WORDS DO NOT CROSS PAGE BOUN~~RIES AND THERE ARE NO HYPHE~~TED WORDS .

A TERM FILE , CONTAINING A LIST OF TERMS TO BE INDEXED , WILL BE READ FRCN
A CARD READER. THE TERM FILE CONTAINS ONE TERM PER LINE, WHERE A TERM IS
1 TO 5 WORDS LONG. THE TERM FILE WILL BE INPUT IN ALPHABET ICAL ORDER.
ALL TERM S START IN COLIIIN 1 OF THE CARD AND WORDS ARE SEPARATED BY
SINGLE BLANKS.

THE SYST~ 1 SHOULD READ THE SOURCE FILE AND TERM FILE AND FIND ALL
OCCURRENCES OF EACH TERM TO BE INDEXED. THE OUTPUT SHOULD CONTAIN THE INDEX
TERMS LISTED ALPHABETICALLY WITH THE PAGE NU4BERS FOLLO,JING EACH TERM IN
NUIER ICAL ORDER.

Figure 6. Simplified Version of the Page-Keyed Ind ex ing Problem

V

~

V

~ 

~~~~~~V V _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A


r’~~ i — —
—

—

~~

-
~~~~~~~~~~ iui~~~~

)

58

a second experiment to be described later. These differences, however,

cannot explain the large differences between the behavior of $5 and

that of the other expert subjects.

In the majority of the preparation phase , S5 considered the design

problem as a whole, identified the constraints that would have to be

observed while doing the design (file si zes , record lengths, etc) ,

identified various parts of the design, and produced algoritlitis for, or

other descriptions of, these parts. The product at the end of this

phase was several pages of notes, rather than a completed design. The

dccizuentation of the complete design was the second segment of S5’s

~1protocol.

The final design produced by this subject is shown in Figure 8.

This representation is taken from the second segment of S5’s protocol,

in which the design was actually documented. This documentation

presents the design in a str ictly top—down , breadth—first  manner , wi th

few exceptions, First, S5, like S3, did not explicitly describe a

single top level node, such as the “INDEXER” node incorporated by S2.

Since , in the design as presented , the top level node , or “main

routine” would contain onl y the control , or calling sequence , for the

routines at the nex t lower level , S5 apparently assumed that this

info rmation did not need to be expl icitl y documented . This is a

reasonable assumption since subjects were told that the designs would

be implemented by “competent” progratuners and the specification of the

calling sequence, which was sequential in this design , should be within

the programmers’ level of ability. Similarly, S5 did not completely

expand all of the routines, or nodes, that were listed . Rather, it was

assumed that the programmers could perform certain functions , such as

4 
- 

~~~~~~~~~~~~~~ 
-
~~

-...-. - - _
~~~~

_
~~~~~~~~

~

-- - -

~

.

~

--- -- -

~

—— - - -~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

59

ACTIONS OBJEC~~ QUALIFIERS

INITIALIZE VARIABLE NEXT
INPUT FILE BEFORE
GET RECORD AFTER
READ WORD FIRST
WRITE TABLE LAST
OITrWr LIST PHEVI OW
CCMPARE PAGE CURRENT
INSERT CHARACTER
DELETE
EXCHANGE
COPY
SORT
MERGE
CREATE
CONCATE~~TE
MATCH
PHOCESS
CALL

Figure 7. List of ~~sign Primitives Used by S5.

4

- -
~~~~~~~

- --
~~~~~~~~~~~~~~

-
~~~~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ — - — — -—~~~~~ - _—  - - — - ~~~~~~-~~~~--— -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



60

‘BUiLD LIST OF WOR~~—~ WORD INTERFACE ROUTINES

TERM FILE~~~~~~~

~~~~E A D A P ~~~
/

,~~~~~~~ &RACT PAGE I
~
S
~~1

INDEXER R EAD PAGE FILE~~~~ LEXTRACT WCRDSI

5

FIND,

SORT OUTPUTJ
6

LEDIT OUTPUT !

Figure 8. S5’s Final ~~sign

4 . .~~ _- .- . - - .—-—~—- - — _ - —

__ _ _ _ _ _

61

detailed instructions. Third , $5 presented the programmers with a far

more detailed description of the data structures involved than did the

other two expert subjects. This is most probably due to the fact that

he had designed a rather complex data structure, and the construction

of this structure was not assumed to be within the competence level of

the eventual programmers.

when producing the design documentation, S5 expressed the

philosophy that “designs should alwa~.s be presented to prog rammers in a

top—down manner so that they can understand it.” This philosophy is

clearly evident in the structure of the design presented in Figure 8.

S5, however, does not apply this top-down philosophy to the process of

constructing the design. This subjec t contended that designs should

“never be done top-down.”

The rationale behind this general approach to doing design tasks

is a strong emphasis on efficiency and optimality. S5 equa ted top—down

design with doing the design “from scratch.” As was indicated above,

this subject was aware that optimal designs for a variety of functions

frequently encountered in software desig n tasks were available in

reference books. S5 further explained that a design developed in a

top—down manner would probably resul t in modules at the lower levels

that could not be efficiently implemented in assembly language. This

emphasis on efficiency caused S5 to only briefly cons ider a high level

solution to this problem and then isolate the single component of the

completed design that was judged to most affect overall efficiency.

Intial ly, S5 considered the structure of the term file and page

file (the inputs to the problem) and the structure of the output file

(See Figure 6 for the description of the design problem). This subjec t

~~~~~~~~~~~
_ -~~~~~~~~~~~ - - --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— _ . - -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -


r~~~~~~~~ ,
- — -~~~~~~

-
~~~~

- -: - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-
~~~~~~~

-
:
.— - ------ -

~~~~~

62

rapidly determined that the most important aspect of this problem , in

terms of efficiency, is the comparison of words in the term file with

words in the text file. Next, S5 designed a routine to perform this

process. This routine suggested that efficiency could be increased if

the term f i le  were re—organiz ed . The resulting f i le  st ructur e , which

involved a tree structure in which the top level was all words that

appeared first in terms, the next level was all words appearing second ,

etc. (a doubly linked list) was developed next. Considering this data

structure suggested, to S5, that the routine to compare words could be

made more efficient if it were recursive.

The resulting routine, called “FIND” , is shown in Figure 8. In

Figure 8, we also indicate the order in which each routine was

developed duri ng the course of doing the design. ~~utines that are not

associated wi th a number were included in the documented version of the

design, but not mentioned during the initial developnent of the design.

Notice that the FIND routine is at the lowest level developed , at what

we wo uld characterize as the “detailed” plan level. The next several

nodes considered seeiied to be chosen because of their close

relationship to the F IND routine (i.e., BUILD TREE of terms and MATCH

WORDS). Thereafter, the design was expanded in a basically top-down

manner.

Clearly, the mod e of expansion observe . in this protocol differs

f rom that obse rved in the protocols of S2 and S3, altho ugh there are

many s imilari t ies in the final designs. The d i f f icu l ty of interpreti ng

S5’s protocol in terms of the theoretical framework presented earlier

led to a consideration of why such a mode of expansion would be used .

For example , is it possible to ar t iculate  the lower levels of a plan

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _



63

before considering the higher levels or is it only the case that this

particular subj ect omitted explicit d iscussion of the highe r levels of

the plan before consideri ng the lower levels?

Al though we feel that plans are , in general , exp anded in a

top—do wn fashion , we hypothesize two reasons why some other form of

expansion may be adopted. Both reasons are concerned with a generic

schema for the type of problem presented. In the first case, a well

developed schema is present, and in the second , no schema exists. This

schema represents a previous integration of the relevant software

design and problem specific knowledge. Since the problems we are

dealing with are essentially “common sense” problems, we do not expect

large differences in subjects’ problem specific knowledge. Similarly,

little difference should be observed, in subjects of comparable

experience level s , in general knowledge of computer science and

software design.

If a subj ect , through pr evious experiences , had developed a

general schema for a given class of design problem it is unlikely that

overt planning behavior would be observed. Rather , a more general plan

could be retrieved from memory and the necessary corrections made to

this schema to solve the current problem. Consider, for example, the

task of constructing a page—keyed index with pencil and paper. In this

case, most subjects would likely turn to the first page of the text and

list the terms found there. This behavior would be immediate and

little, if any, explicit consideration of plans for this behavior would

be apparent. As we have seen above, however , and as some reflection

makes obvious, a great deal of planning behavior is necessary. In a

“pencil and paper” envirorinent, however, a well learned schema exists,

4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  - _ _ . ~~~~~ —~~
_
~~~


64

and this schema is quickly retrieved and applied . It seems reasonable

to expect that a similar phenomenon would occur whether the solution of

the task were to be expressed as a software design or implemented in

some other domain , if the corresponding schema existed. If this schema

indicates, as it apparently did for S5, that some element of the plan

was more essential to overall success than other elements, then we

would expect this element to be considered first.

In the second case, a subject may concentrate on the lower levels

of a plan because no schema exists and , in addition , the subject either

lacks the appropriate problem related knowl edge or is unable to
.1

integrate , even at a very high level , hi s software design and his

problem related knowledge. In this case, the subject does not actually

understand the problem to be solved, in the sense that wel l structured

definitions are fo rmed for the elements of the initial and goal states

of the problem. Considering how some element , or function , could be

implemented, in this case, represents a subject’s attempt to form a

better structured definition of the given problem. It is only after

this definition is satisfied that actual planning of a solution can

commence.

In the protocol just presented , we feel that it is the fi rst

explanation that explains the initial expansion of a lower element of

the completed plan. S5’s emphasis on efficiency and the existence of a

well—developed schema prompted the identification and expansion of the

subproblen that, in term s of the final design, most determined overall

efficiency.

The Behavior of Expert Subjects: Summary. In the sections above,

we have considered, in some detail , the individual behavior of three

4

_ _ _

- - A

_ -
~

- .

65

expert software designers on a single problem. In this discussion, we

have emphasized identifiable differences in behavior. In this section,

we will briefly consider the ccznmonalities.

First, we assume that all three subjects share common background

knowledge about the problem, and that this knowl edge is organized as we

have considered it in conjunction with discussing S2’s protocol (see

Fig ure 2) . In addition , we assume that the re are few d i f fe rences in

the form of the initial integration of relevant knowledge structures.

Notice that the final designs produced by all three subjects can be

descr ibed , at the top levels , as ‘read term s, read page , find terms ,

build index’. Nor do we assume tha t these subjects differed

substantially with respect to their software design knowledge.

Although 55 was the only subject to incorporate “ sophisticated” data

structures and recursive procedures, the other subjects are aware of

these techniques , but did not consider them appropriate , or necessary,

for this problem .

We argue that the only substantive differences across these

subjects’ is due to the existence of pr ev iously developed , generic

problem schemata. This is most pronounced in the protocol of S5.

Recall, however, that S3 engaged in a type of “ interrupt driven”

behavio r , while S2 did not , suggesting that the generic schema

possessed by S3 was not quite as well developed as that of S2 , whose

expansion was more systematic .

Clearly, there is much more information in these extensive

protocols than we have presented in this brief discussion. At this

point, the most significant conclusion that can be drawn from the

protocols is that the ability to construct plans, and the method by

4

-— ~~--- -~~~~~~.~~~~~~~~ - - -~~~~~~~~~ -- - . -~~~~~~ .- ---- _-- ------- -~~~--~~~- -- -~~~~~~~
-——-- -

~~
-- --“ --

~
- - — — - -—

r’~
— -_ - - -

~

— .
—-

~~~
-——

--_--—~~ - - ,  _. -~-

66

which pl ans are expanded , is a function of pr evious experience. In

i tsel f , this conclusion is not surprising. Cbviously, previous

experiences affect the ability to construct plans for a given class of

probl~ns. C~ess obvious, however, is the question of how experience

af fects the construction of plans. We will consider this question in

the following section , where we discuss the behavior of less

experienced subjects.

4 ~~~~~~~~~~~~~~~~~~~~ - - . . -- ~~~~~~~ -

— — ~
_ - - --- -_--—~~~ —-- - -  —-——--  —



V .  — V

67

EXP ERIM~~T 2 -- ALTERNATIVE METHODS OF PROTOCOL COLLECTION

One purpose of this experiment was to examine al ternative methods

for the collection of experimental protocols. Wi th one of our

experienced subjects (S5) , we introduced a list of pr imitives and

r equi red that the lowest level of the design be expressed in terms of
V 

these primitives. This manipulation , which did not appear to

significantly alter the behavior of this subject, was an initial

exploration of the use of “constrained” protocols. In the present

experiment, we compare written and verbal (or oral) protocols.

Al though many investigato rs have advocated that thinking aloud

protocols are the preferred method for the study of problem solving
behavior (e.g., Newell and Simon , 1972), such protocols are d i f f icu l t

to analyze. They first have to be transcribed, which can be very time

consuming. Next, they must be transformed into some form of

• problem—behavio r graph (viz ,. Newell and Simon, 1972). A

problem—behavior graph is a theoretical interpretation of a subject’s

protocol into a set of knowledge states and the sequence of transitions

between knowledge states. This is a subjective process, and the most

valid criticisn of thinking aloud protocols is that they are very

difficult to reliably and objectively transform into some form of

problem— behavio r graph .

There are numerous reasons for using thinking aloud protocols.

Fi r st , they provid e a very rich source of info rmation about a subject’s

step—by—step processes in the course of solving a problem. Second , the

recording of protocols does not bias a subject towards any particular

method of solution ~nd does not interfere with the solution process .

In our current research, however, we are attempting to develop

4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~
* V V • •

~
_

~
• . . -_

68

alternative procedures for the analysis of problem solving behavior.

Ideally, these procedures would provide us with much of the same

V info rmation that could be obtained from a verba l protocol , b ut would be

much simpler to analyze .

Subjects. Subj ects were under~g radua tes enrolled in an “assembly

language” course at the thiversity of Colorado — Boulder. f~bst

subj ects were third year students and all had completed a rnim imizn of

two computer science courses. The mean numbe r of courses completed by

this sample of 10 subjects was 2.8. Subjects were paid $5.00 for their

part ic ipat ion in this expe r iment. They were randomly assigned to one

of two experimental conditions, with five subjects in each condition.

Procedure. Subjects were given instructions appropriate to the

assigned experimental condition. Those in the “verbal protocol”

condition were instructed to solve the design problem and to “think

aloud” while doing so. These subjects also produced written versions

of the solution. Subjects in the “written protocol” condition were

instructed only to provide written solutions. All subjects were given

the simplified version of the pag e—keyed indexing problem shown in

Figure 6.

After completing their designs , subjects were instructed to write

a summary of their design and also a summary of the techniques and

procedures used to produce the design. Finally, they all completed a

questionnaire describing their background and experiences in computer

science.

Analyses. Our init ial  ana].ysis considered only the design

summa ries provided by subjects . The questions of pr imary interest were

to determine how much useable info rmation was contained in such



— — ----i-—
~~~~ 

-
~~~~~~~~~~~~~~~~ 

V- V -  
~~~~~~~~~~~~~

69

summa ries and to determine if there were any obvious differences as a

function of experimental condition.

Six of these sunrnaries (three from each experimental condition)

emphasized the higher level components of the design and the

interactions or relations among these components. In general , the

content of these summaries were very similar to the initial

decompositions, which we characterize as the abstract plan level, of

the expert subjects. Four subjects either reiterated the entire design

or concentrated on the functions and procedures involved in the design

without specifying how these elements were related.

We initially expected that design suninaries would focus primarily

on the abstract plan level developed by these subjects. This was true,

however, in only 6 of the 10 cases. This expectation was based , in

part, on the finding that subjects in text comprehension studies

produce summaries that are consistent with the macrostructure

underlyi ng the text (cf., Kintsch and van Dijk , 1978). In text

V comprehension studies, however , subjects general ly have well—developed

schemata for the types of text that are presented . Subjects in this

experiment, however, may not hav e well—developed schemata for software

design problems. We will return to this issue later when we consider

the designs produced by these subjects. In general, therefo re , design

summaries did not produce consistently useful info rmation , al though

some of the summaries did reflect subjects’ abstract plans.

Examples of design summ aries that were judged as presenting

reasonably well—defined abstract plans are presented in Figures 9 and

10. Notice that these summaries correctly identify the major functions

that must be to be accomplished , but do not provide any detail about

4

- - —~~~~ ~~ V V~~~~~ V~ - ~~~~~~~~~~~~~~~~~~~~ -— V . ~~~~~~~~~~~~~~~~~~~~~ —-.V - • V - V
_
~~~~~ -  ~~~~~

V - .•
~~~~~


• — -=.-
~~~

• - - - - - -. - 
V~~~~~~~~

I.

70

Ho usekeeping and Storage Ini t ial izat ion
Get terms to ind ex

WHILE NOT END OF SOIRCE FILE
Get & Parse Source Line

Co Until Page ~~limiter Found
If Source ~brd in Index

Then Increment Coun t of Terms V

END -UNTIL
Get Next Page First Line
Count ~~ssible Stray Index Terms
If terms on this page

Sto re Page #V Increment Page #
END—IF

END-WHILE

Figure 9. A Design Summary

(

V.

4 ... ..- —,.~— •-—._ — —

•V ~~~~~~~~~~~~~ •~~~~~~~ V • V V - V ~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



71

This is a top down desig n that deals
only wi th the information that is known at
one t ime.

First a table of terms is formed
Then one page is accessed and

V one word at a time is broken off
and looked fo r in the table
If i t is fo und the rest of that
term is looked for

If a whole term is found then
a flag is inserted in the table
for that term

~t~en the page number is fo und
it replaces all current special
symbols with the page number just found
~hen the last page has been scanned
then table is output .

Figure 10. A Design Summary

4

- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- - - -—



- -

I

72

Two files are created initally (TERM) and (STORE)

a term is read from a card and placed into the
f i le  (TERM). This is repeated until all terms hav e been
read.
Now tex t is read from file (SOURCE) looking for
matches of terms (any occurrences of any term).
If a te rm is encountered that term is stored onto
file (STORE). This continues until an * is

V 
encountered, when the * is found, the next
fou r characters are read into a variable ( PONUM )
We rewind (STORE) and proceed thru it one
term at a time. As each term is read ,
its correspond ing entry in (TERM ) is located,
and ~ NUM is inserted in appropriate text
fo rmat immediately following it. This process
continues until (STORE) is exha usted , at which V

time we clear (STORE) , E~&M and beginreading from (SOURCE) again. After (SOURCE)
is exhausted , we simply print out the f i le
( TERM) .

Figure 11. A Design Summary

t

— — - ~~ ~~~~- - V - -~~~~~~~~~~~~~~~~~~~~~~~ • V - —— V -— -V --—- -— V 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
- V - V

- - --—•- -•

73

a re to be accomplished . In Figure 11, we present a design summary that

was judged not to represent an abstract plan. In this case , some

procedural detail is involved, and the major functions that the design

is to perform are not as readily identifiable as they are in Figures 9

and 10.

We were al so interested in determining whether the content of the

design sunamries was affected by the experimental conditions . P.~o of

us , who were unaware of the assigrinent to experimental conditions and

who had not yet seen the actual designs , attempted to sort the

summaries. The content of these summaries, although far from uniform,

provided no information that would resul t in an accurate

classification. One of the raters, however, noticed a “surface” , or

“format” property of the summaries and classified the summaries on this

basis. This lead to one classification at a chance level and one

perfect classification. Subjects in the written protocol condition

tended to express their summaries in a text fashion, while subjects in
V

the verbal condition tended to use a peeudo-programming language

description. Given the nearly equal content of these summaries, we are

not certain what implications, if any, this result has.

We also asked subjects to summarize the techniques and processes

used to perform this task. Pgain , we were interested in determinin g

how much information coul d be obtained by this procedure and V

determining whether there were any differer~ces due to experimental

condition.

Ni ne of the ten subjects described some fo rm of top—down or

level—structured technique. Several subjects used the term “top-down” ,

some mad e statements such as “I start with the really big parts and

4

• V - V - V V ~~~~--. -V -.~~~~~~~~~ V~~~~~~~~~ V V V V • 1 1 V V V ~~~~~~~~~~~~~~~~~~~ V~~~ ~~~~~~~~~~~~~~~

--

I

74

don’t worry about the snall problems till later” or “I begin with

identifying a problem and breaking out specific functions that need to

be done —— the W}iT rather than the HG.~J — Procrastination

Programming.” The single except ion to this type of description cited

only “ intuitive reasoning.” The majority of subjects, therefore, claim

to use a top-down mode of expansion and appear to be familiar with the

concept of levels of detail within a design. An examination of their

designs, however, indicates that they do not use these techniques

either consistently or successfully.

In general , and especially in comparison with the designs produced

by our expert subjects , none of the designs prod uced by this group of

subjects can be considered complete. That is, although most of these

subjects correctly identified the pr incipal components of a complete

design , they did not completely specify all of the necessary functions -
V

at the lower levels of the design. For example, while our expert

subjects would consider such functions as “build list” or “match words”

to be very complex , less experienced subects would use such functions

as primitives and would not describe the actual operations or details

involved .

Because of the nature of the problem involved , we would not expect

these subjects’ knowledge about page—keyed indexes to differ

significantly from that of the expert subjects. It is reasonable,

however , to expect that there would be differences between the software

design knowledge of the two groups.

Seven of these subjects produced designs that can be characterized

as top-down and three attempted to wri te programs rather than designs.

In general , our less experienced subjects appear to do a very “quick

4 ~~~

--

V 75

and di rty” top-down expansion of the design. Although these subjects

have done qui te a bit of prog ramming , they have had l i ttl e, if any,

experience in designing systems that others would implement. They are
V used to writing “quick and dir ty” programs , running the programs to

locate errors , and then correcti ng the errors. In many respects, this

is similar to Sus~ nan ’s (1973) HACKER system. wh i le our expert

subjects had the requisite experience to do fairly clean expansions,

these subjects are used to genera ting quick and dirty designs tha t

captur e the principal components of the problem but not necessarily the

interactions between of details of these components, and then doing

extensive modifications at the code, or opera tion sequence, level.

We interpret this result to mean that these subj ects , through a

lack of experience, have not developed a sufficient set of critics,

debugg ing heuristics, etc., to “debug ” plans or des igns. In addition ,

the failure to expand certain critical elements of the designs suggests

tha t these subj ects , al though they are wel l aware of the general

capabilities of computers, do not fully comprehend the d ifficulty

involved in certain operations or functions. Unlike the expert

subj ects, these subjects do not have fairly well developed schemata for

given classes of design problems. As a result, they are unable to

completely construct a solution plan without obtaining feedback from

the attempted execution or implementation. This is very similar to the

operation of Sus~~an ’s (1977) PSBDAR P (Problem Solving By Debugging

Almost—Right Plans).

It appears that the generation of plans is a schema—driven

~ict ivi ty . If a well—developed schema exists, as in the case of our

exper t subj ects , a pla n can be developed . Some elements of the f in ~1

V-~~~~~~
±: .~~~ V~~~ V J

V V V

V

76

plan may be stored directly in a schema , and other plans may be

constructed by modifying a more generic plan. On r less experienced

V subjects had schemata that covered only the higher levels of a plan.

Their lack of experience did not support schemata sufficient to develop

intermediate-level plans . In this case , they must rely on the feedback

obtained from attempting plan execution and modifying the plan , at some

level , to eliminate errors . In effect , when plans can no longer be

successfully developed , subjects resort to some type of depth—first ,

failure-driven search for a solution.

A major purpose of this experiment was to examine alternative

methods for the collection of experimental protocols. In this regard ,

this experiment was only par t ia l ly successful . There were, in general ,

no apparent differences in the wri tten des ign solutions , des ign

summaries, or techn ique summaries obtained from subjects in ei ther

experimental condition. In addition , the comments of subj ects in the

verbal protocol condition did not appear to provide sign if ican tly more

information than was contained in the wrItten descriptions. Al though

these resul ts are encouraging , the overal l quality of the data obta thed

was much lower than that obtained from the more ex perienced subjects.

Before concluding that equally useful info rmation is obtained in both

writ ten protocol and verbal protocol conditions, a repl ication wi th

more experienced subjects is required . The resul ts of the current

experiment are , however , suff ic ient ly encouraging to warrant such

additional studies.

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - - -



- JJV_J 
~~~~~~~~~~~~~~~~~~

77

CONCLIE IONS

The goal of the research described in this pape r is to investigate

the problem solving processes used in complex tasks and to model the

manner in which these processes allow for planning behavior. Clearly,

this is an ambitious goal , and the research described in this paper is

only a f i r s t step toward this end . Intuitively, planni ng does occur in

complex tasks ; although the effects of planning can be observed in

controlled situations, the types of plans tha t could be used are

d i f f i c u l t to taxoncmize, and the cognitive processes underlying

planning behavior are not readily apparent. As f i r st steps , therefore ,

we attempted to select an appropriate task domain , to develop a

theoretical framework that could usefully guide our explorations, and

to devise experimental tasks that would permit us to observe and

ultimately understand planning behavior.

The experimental task that was selected was so ftware design. We

selected problems whose solution did not requi re extensive knowledge of

computer science techniques; tha t is , problems that could be solved by

a wide range of subjects. We selected the domain of software desig n

because we felt that planning behavio r is likely to occur in these

types of problems. Any t ype of design is , essentially, a plan or

subgoal structure that describes how some complex task is to be

accompl ished . In so f tware design , peopl e are accustomed to documenting

th i s subgoal structure and , across designers , a f a i r ly common

!.V r~~~lio ~~~~ g’/ is used . The combination of a problem in which planning is

V a -ask envirorin ent in which the documentation of plans is

• - iq~~j appropr iate for investigations of planni ng behavior.

~~r the developn en t of a theoretical f ramework

• v ~~~~~~~ -r ans1 V~t lon of the concept of planni ng by

- - - —- — — — ~~~
-
~~

- -- —~~~

78
V

abst raction , as discussed by Newell and Simon (197 2), and fu r ther

employed, in the domain of artificial intelligence, in Sacerdoti’s

(1975) concept of a procedural net. Although a procedural net

corresponds most closely to what we refe r to as detailed plans , we

assumed that detailed plans were derived from abstract plans and

further refined into the sequence of operations tha t actually impl ement

a solution to a problem.

There are three aspects of Sacerdoti’ s NOAH tha t are particularly

relevant to investigations of planning. These are: the final form of

the plan , the dynamics of plan construction , and the knowledge

structures that guide planni ng. In the paragraphs below , we will

discuss each of these aspects as they relate to planning in the context

of software design.

First, our theoretical framework predicts that the final form of a

software design can be characterized as a procedural net. As we

— indicate in Appendix A, which reviews formal software design practices,

there is general agreement among computer scientists that software
V

designs take the form of a hierarchical structure. In addition, we

were able to represent the final designs of all of our expert subjects

in this manner. In its ability to characterize completed plans, we —

suggest that the concept of a procedural net is both useful and

general .

The second aspect of a procedural net concerns the manne r in which

plans are generated. As described by Sacerdoti (1975), procedural nets

must be expanded in a top—down, breadth—first manner. This is a ve ry

strong claim and , as evidenced by our experimental results, is not, in

general , t rue . ‘lb be sure , some of the pl anning behav ior that we

observed could be characterized in this manner. Other subjects,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ V~~~~~~~~~~~~~~~~ V V V V ~~ V~~VJ

—
~~~~~~~~~~~~~~~ V V _,,_~~V ; V V. V V

79

however, constructed plans in very different fashions.

The third aspect concerns the organization of the knowledge that
V 

guides planning . In NOAH, it is assumed that the knowledge necessary

to successfully decompose a given node is directly sto red in that node.

This does not facilitate consideration of what is common among these

knowledge sources and how they are organized . For this reason , we did

not incorporate the NOAH knowledge organization structure into our

initial theoretical framework. Rather , we attempted to extend this

concept to consider the types of knowledge that are involved in the

synthesis of a procedural net. We assume that these knowl edge

structures are essentially famil ies  of hierarchical schemata . As such ,

they represent well—learned techniques, patterns etc. In view of this, V

we characterize planning as a process of synthesis which, in large

part, involves the novel combination of well—known elements.

As a result of this activity, we concluded that there is a great

deal of s imilari ty between our framework and the HEARSAY—like model of

problem solving proposed by Ha yes-Roth and Ha yes—Roth (1978) . Both

assume that behavior is determined by the synthesis of diverse

knowledge structures. Orig inally, we identified two principal

knowledge structures —— one concerned wi th understanding and solving

the problem as given and the other concerned with developing ~ software

design to achieve a solution. A HEARSAY—like framework appears to

provide a convenient formalisn for considering more detailed aspects of

these and other knowledge struc tures , and we intend to pursue this

issue in futur e research .

V A HEARSAY—like forma 1i~~ may also be useful for resolving the

second aspect of a procedural net discussed abov e , i .e. ,  the dyn amics

of plan construction. Clearl y, a plan can be generated in a larg e

4

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~ V V _ • V V~~~~~~~ 

V

- — ~V - — V ~~~~~~ V - V ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

80

numbe r of ways. By postulating a number of knowl edge struc tures , it

may be possible to describe different modes of expansion as different

selections from a common set of knowledge structures.

We also conclude , however , that a g reat deal of planning behavior

involves the retrieval and modification of previously internalized

schemata. In this regard, we feel that Sus~nan ’s (1977) PSB~~RP

(Problem Solving By Debugging Almost-Right Plans) is p art icular ly

relevant. As with the HEARSAY—like models , we feel that this type of

model is compatible with , and could usefully extend , our theoretical

framework.

The principal conclusion that we derive from our present studies

is that planning behavior is schema—driven. Plans are derived from a

subject ’s prev ious experiences in similar problems . Useable plans may

be directly accessed from an exist ing schema , an existin ~ plan may be
V modif ied to better fit the current situation, or a plan , or subgoal

structure , may be constructed “from scratch.” The protocols of our

three expert subjects show fa i r ly clear differences in the overal l

quality, completeness, or organization of these previously developed

schemata.

In interpreting the diverse types of behavio r observed in our

expert subj ects , we began with two assumptions. The f irst is that all

three subjects share a f a i r ly common knowledge of the task envirorinent

of software design. That is , we assume that there were not signif icant

differences in these subjects’ expertise in this area. Second , we

assume that there were no differences in these subjects’ - knowl edge of

indexes for tex tbooks , which was the specific problem used.

We conclud ed , therefore , that the only substantive d i f fe rence in

these subjects’ behavior is due to general knowledge structures that

4

_

_ _ _-—

V 81

V

control the synthesis of the above types of knowl edge. In particular ,

we concluded that these knowledge structures are previously developed,

generic problem schemata that indicate how knowledge of software design

and indexers can and should be merg ed in order to produce an

appropriate design. En one of our subjects (S2) , we feel that these

knowledge structures were sufficiently developed that they essentially

drove a top-down expansion. In the second subject (S3) , these

knowledge structures were less well developed and , as a result,

backtracking was necessary in order to correct observed deficiencies in

the design. In the remaining expert subject (S5), we contend that

these knowledge structures were developed to such an extent that this

V subject was able to retrieve a memory structure that essentially

described the entire design. In this case , this subject was then able

to isolate and expand the si ng le module that most affected the

efficiency of the impl ementation , which , for this subj ect , was an

V important aspect of a software design.

In our less experienced subjects, the appropriate schemata were

V not completely developed . Although these subjects had schemata for the

higher levels of a plan, they lacked appropriate schemata for

developing more detailed plans. At this point, we argue, these

subj ects ceased to plan and resorted to some type of depth—first ,

failure—driven search for a solution. This type of behavior is common

in trans formation problems , where it is unl ikely that planning can

occur with naive subj ects , and the search process is guided by a

means—ends heuristic . With the experimental problem used in these

studies, our less experienced subjects could identify some components

of the goal state and were a t tempting, at a very low level of detail ,

to manipulate these components.

- - —

- ~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

82

En summary, we have described an initial investigation of the

problem solving processes used in compl ex tasks . A possible critic i~n

of our current work is that we are concentra ti ng on memory

representation issues and not directly on problem solving, or knowledge

utilization, processes. While we do not accept a strict demarcation

between the areas of knowledge representation and knowledge

utilization , there is some truth to this criticisn . En previous work

on problem solving (e.g., transformation problems), the effects of
V

knowledge representation issues have been minimal . Similarly, the

effects of knowl edge utilization hav e little impact on many of the

studies of knowledge representation, such as the comprehension of short

stories. In more complex tasks , however , which Eha ska r and Simon
V

(1977) refer to as “semantically rich” , questions of knowledge

representation and knowledge util ization are highly interrelated .

V
We have characterized planning as a process of syn thesis , or as

the “txvel combination of well—known elements.” Cur current work ,

therefore, focuses both on id entifying these “ well—known” elements and

the processes that guide their “combination.”
V

Q-i the methodological side, we have explored various procedures

V for collecting protocol data. Complete protocols provide very rich ,

extensive sources of information. En complex tasks, however , the

extensiveness of this form of data makes an objective analysis

extremely d i f f i cu l t . The developaent of empirical techniques to

simplify data collection and analysis, without reducing the quality of
V the data that is obtained , is a desi r able , if not necessary, component

of investiga tions of behav io r in semantically rich domains.

‘ V

L4
__ -4

83

APPENDIX A

SCiIWARE DESIGN ~~ACTICES

Within the last several wars, several prescriptive technqiues for

software design have been proposed . In this section , we will rev iew

some of the more prominent software design practices . This section is

not intended to be an exhaustive, in—depth review, but rather is

intended to provide the reader un familiar with this area with a general

overview of currently used design techniques and the concepts involved

in these techniques. Further, we will limit our consideration to.

software design techniques, per se, and exclude other software

developnent practices such as “ structured walkthroughs” and “egoless

programming”, with which the reader may be familiar.

In our discussion of task domains, we characterized software

design as the process of translating functional specifications into a V

structural description of a computer system that would satisfy these

specifications. A common assumption among all software desig n

techniques is that this description takes the form of a hierarchical

structure. The principal difference among the various techniques

concerns the manner in wh ich this structure is expanded or generated . V

We use the term “ sof tware design technique” to refer to fa i r ly

formal rules or guidelines for performing a software design. We

emphasize rules or guidelines to differentiate between these techniques

and the much less fo rmal “ techniques” , such as “bottom—up ” and

top-down” with which the reader may be more f ami l i a r . En this section ,

we will first consider these less formal approaches and then consider

more procedural techniques.

A review of some of these less proceduralized techniques is

- - LV .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~

84

presented by Boehm (1975) , who also considers the relative advantages

and disadvantages of thse techniques. The techniques considered by

Boehm are “bottom—up, two variations of “top—down” , structured

prog rammi ng ” , and “model—driven .”

When using a bottom—up approach, a designer mus t first identify

those functions or routines whose developuent seems most “important” to

the overall design. “Importance” can be defined in terms of

eff iciency, cost , developn en t effort , etc . As the term “bottom—up”

implies, these functions are at the lower levels of the hierarchical

structure that is bei ng developed to represent the design. (Y~ce these )
routines are developed, the designer develops a “ test driver ” to allow

testing of these modules and their interactions , a “ computation

monitor” - to control the order in which these functions are executed,

and any necessary input—output modules. Finally, input—output

“controllers” , initialization routines, and similar proced ures , are

developed and the entire design is then tested for errors.

En general , a bottom—up approach involves constructing low level

routines and then constructing “drivers” to control interactions

between the low level routines. There are two primary advantages to

this approach. First, “high risk” components (e.g., processing natural

lang uag e, real time sensors, etc.) can be identified early. If it is

dete rmined that it is not feasible to implement these components as

orig inally specified, the design specifications can be changed before a

great deal of effort is expended. Second , the emphasis on the lower

levels encourages the developnent of reuseable modules that can be

applied to othe r designs wi th l i t t le or no modi f ica t ion .

A pr imary disadvantage of this approach is that very little

4



85

attention is given, early in the design process, to the interactions

between modules. It may well be the case that interactions between

modules present more problems than the developnent of the ind ividua l

modules,. In addition, a bottom—up approach does not give a g rea t deal

of attention to overall system requirements, including user interfaces
V and data st ructures and , in an effort  to use the lower level components

that a re already developed , the highe r level s of the design may be

“patched up”. As a resul t , the total desig n may be very d i f f i cu l t  to

impl ement , understand , or modify.

The type of “ top—down ” desig n wi th which most readers will  be V

familia r is term ed by Boel-in as the “top-down stub” approach . In this V

approach, the designer first considers the overall system requirements

and develops a top level program to meet these requirements . This top

level contains the necessa ry log ic to control the lower level functions

wh ich are in i t ia lly  represented as “ stubs” . En successive design

steps , these stubs are then decomposed into control logic and necessary

sub functions , which are also represented as stubs.

The advantages of a bottom—up approach, identification of high

risk components and developnent of reuseable modules , are disadvantages -:

of a top—down stub approach. In contrast, the advantages of this

approach are early attention to the irLteractions between modules and a

more cohe rently def ined higher level in the design, which allows for

easier testing and maintainability . Neither of these two approaches,

however, expl icitly considers the possibility that the user’s

requirements are not properly stated in the original problem statement,

al though obvious discrepancies could be detected earlier and wi th less

effort wi th a top -down approach .

a
4

- .



V~~~~~~~ -~~~ V .  
~~~ 

_ V~~~~ • V

86

There are several variations of a “top-down problem statement”

approach, each restricted to a specific problem domain. This

restriction is due to the fact that such approaches general ly invol ve

special ized languages for expressing the design requirements and the
V final design. Gne example of this approach is IS~~S (e.g., Teichroew

and Sayani, 1971) and its Problem Statement Language. Other examples,

such as ISI~ (Hamilton and Zeldin , 1976) also employ specialized

languages that, through the allowed constructs, enforce the use of what

are considered “good” design practices in a particular domain. For

example , the language may allow only certain types of interfaces

between modules.

This approach has all of the advantages of the top-down stub

approach plus more expl icit consideration of user requirements. The

primary disadvantage is the limited application areas of any version of

this approach.

We have mentioned the top-down probl em statement approach
V primarily for the sake of completeness. This approach provides a large

number of aids to the designer and restricts the types of decisions
V

that the designer can make. Since we are interested in observing

planni ng behavio r in the context of software design , these restrictions

make this approach unsui table for our present pur poses. For

investigating the effects of various types of problem solving aids ,

however , this ma y be an appropr iate area of study.

The “ structured programming ” approach to desig n is a direct

extension of s tructured programming concepts (e.g. , Dahl , Dijk stra , and

Hoare, 1972) to the design process. The principal concepts are the use

of ~‘ierarchical , modular s tructures , the use of only “structured”

V VA

87

control structures, and the requirement that each module have a single

input and output. This approach is compatible with the other

approaches mentioned in this section and is especially useful when
V

demonstrations of desig n “ corr ectness” are important.

“l’bdel—driven design” attempts to relate the “requirements that

are to be satisfied with the “properties” of the computer system

involved, frequently through a matrix representation. Design generally

proceeds in a top-down fashion , but the use of such a matrix al lows the

V
early identification of high risk components that may be best developed

in a bottom—up fashion. This technique has not been extensively used V

and appears to describe the management of desig n act ivities more than

the actual processes involved in design.

Other fairly general design techniques have also been mentioned in

the software design literature. “Middle-out” design requires the

designer to identify and initially develop the most “ important” routine

or function; in this regard , this approach is similar to a “bottom—up”

approach. The primary difference is that this routine need not be the

the lowest level of the final design. Rather than being f unction

oriented , as in bottom—up design, the identified routine could be

control—oriented , input—oriented, etc. In general , this routine is

selected because of constraints on the final implementation, such as

hardware constraints, user interface considerations, etc.

Like a bottom—up approach , designing middle-out tends to lead to

the early identification and developnent of high risk components. The

principal disadvantage is that the remainder of the design may be V

“patched up” to work wi th the first routine developed so that this high

risk component will not have to modified . Also like a bottom-up

I

— - — ~~~
— —

~~~~~ -———



-~~~~~~~~ ~~~~~~~~ - -~~~~

88

approach, this technique may involve the modification and use of

previously developed modules. The actual advantages and disadvantages

of this approach depeno on where in the final design structure the

V 
in itially developed mod ule falls, since a middle—out approach could, V

conceivably, proceed in a strictly top-down or bottom—up fashion.

With interactive systems, design may proceed in either an

“inside—out” or “ outside-in” manner . An inside-out approach beg ins

with a description of basic implementation envirorinent abilities and
V 

functions and attempts , through adding highe r level modules , to match

these basic abilities and functions to user requirements. k~

outside-in approach, on the other hand , begins with a description of

the user requirements and attempts to work down toward the available

capabilities. While an inside-out approach leads to the developnent of

a very eff icient design in terms of hardware and software, an

outside-in approach tends to insure that the initial statement of user

requirements is practical , and , if this is not the case, leads to an

early reformulation of these requirements.

Qie purpose of this review is to introduce some of the desig n

practices and techniques tha t subjects in ou r experiments might employ.

In this regard , model—driven and top-down problem statement approaches

are not of particular interest and we have included them primarily for

the sake of completeness. The emphasis of these two approaches, on

management and limited application domains , as well as the use of

specialized languages and desig n aids suggests that these approaches

would not be useful in cha racterizing subjects’ behav ior in the type of

desig n task involved in the research reported in this pa per. En

addition , we do not consider the “structured programming” appr oach to

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



89

design to be unique, since the emphasis is on constraints that the

design must satisfy and not on how the design should be expanded. In

general these constraints could be applied ~o any of the other

approaches described above.

The remaining approaches bottom—up, top-down stub (which we will

refe r to as “ top-down ”) , middle—out , inside—out , and outside-in should

be useful in characterizing subjects’ behavior. We wo uld not expect ,

however, that a g iven subject would always select one of these

approaches and ignore the others. For example , if a subject has had a

great deal of experience in a given application domain, and has

developed several possibly relevant modules, this may lead to the

selection of a bottom—up or middle-out approach so that these

previously developed modules can be reused. Cri the other hand , if the

designer expects that the interactions between modules may be a crucial

issue , a top-down approach could be selected . In general , the approach

that is selected is influenced by the designer ’s previous experiences

and the nature of the current design problem.

These approaches describe how design should be done at a very

general level. They do not specify the actual steps involved in

constructing a design in any formal of procedural way. In addition ,

they do not provid e explicit crit.~ria along which the final design or
V 

the current state of a developing design can be evaluated.

Within the past few years, however, software design techniques

have been proposed that provide both procoduralized descriptions of how

the design process should proceed and criteria for evaluating designs.

These techniques dictate to the designer , in some de tail , how a design

should be expanded. Consequently, wha t we may , at f i r s t g lance ,

-~~~~~ -~~~~~~~~~~— - — - -

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


—
- -

—~~~---- ~~~~~~~~~~~~~~~~~~~~~

90

interpret as planning behavior on the part of the designer may actually

be the sequential appl ication of a well learned set of procedures or

rules. En effec t, these techniques r epresent schemata for how designs

should be accomplished , regardless of the par t icu lar appl ication domain

involved.

Cne of these techniques is “Structured Design.” The initial

emphasis of “Structured Design” , as advocated by Stevens, Myers, and

Constantine (1974), Myers (1975) and Yourdon and Constantine (1975) is

on the flow of äata through the system being designed. The design

problem is first restated in terms of a “data flow” or “ bubble chart ”

that identifies the major functions involved in t ransforming the

“ input” data into the appropriate “output” data.

Following this step, afferent (incoming) and efferent (outgoing)

V data flow boundaries are identified . When data first enters the system

it is classified as “input” . After several processing steps, however,

it becomes more “abstract” and is less easily characterized as input.

Similary, “output” data, at some earlier point, is less easily

charcterized as “output ” . Using the data flow chart, the “point of

highest abstraction” can be identified for both input and output data .

The function that connects these two points is called the “central

transform .”

At this point, a design decision is made. If the data flow graph

produces a central transform that splits an input stream into several

disc rete output streams (an “cB” relationsh ip) , then “ t ransaction

analysis” is the appropriate design technique ; if the structure is

essentially linear (and “AND” relationship), then “transfo rm analysis:

is called for.

4

L~~ VV - — ----
~
- - -—

V V ~~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

._ -- V V ~~~~~~~~~~~~~~~~ -


~~~
N
~~

NG
M

A
~ ~~~~~

~

UNCLASS IFIED 5A I 78 14’4 DEN

• a44 _ _ _ _ _ _ _ _ _ _ _ _ _ _  __

I U
END

DATE
I FILS(O

I 4 - - 79.
DDC



I I~ ~~ II 2.8 II~I 2.5
I.u L u~~ ~~~

~~

.

, 
~~~~~ IIIlI~ow ‘ ‘111ff 1.25 fluI~ IloI~6

.r.

MICROCOPY RESOLUTION TEST CH~5~T
NATUMAAL BUREAU O~ STANDARDS-I963-~

91

In transform analysis, each function in the data flow chart is

identified as a “source” , “sink” , or “transformer” of data. Next, the

f unctions of all id entified modules and their interfaces are described .

Level by level and breadth—first , each mod ule is expanded into its

sub functions by applying the following steps : each identified

transfo rm can be treated as a “ central transfo rm ” , “source” modules may

be deccxnp~sed into transforms and afferent mod ules , until the ul t imate

physical input is r eached , and “ sink” mod ules are decanpased into

transforms and efferent modules.

In transaction analysis, design centers on the “ transaction

center. ” Fi rst , fo r each transaction , a transaction mod ul e is created

to pe rfo rm the indicated process. Each transaction module is furthe r

decanpesed into “action” modules tha t indicate the actions involved in

the transaction , and each action mod ul e is fur ther decctnposed into

“detail” mod ules, which ind icate the detailed steps involved in the

various actions .

Reg ardless of which type of analysis is used , the principa l

criteria along which designs are evaluated are “coupling” and

“cohesion.” Coupling is a measure of the interdependence bet~~en

modules. Coupling is to be minimized (ind epend ence is to be

max imized) , and certain types of coupling are more desirable than

others. For ex~nple, shared data should be “local” to the coupled

modules rather than “ common” or “global ” . Cohesion is the degree to

which a g iven module perfo rms a single, well—specified objective , and

high cohesio n is desired.

The approach advocated by Jackson (1975, 1977) beg ins by

considering the structure , rather than the flow of data. This approach

L4 _
_ _- __ __

92

is much more “algorithnic” than structured design in that there are no

decision paints encountered in the design process. Jackson assunes

that the structure of the desig n must corresp,nd , in a one—to—one

fa shion , with the structure of the data .

Both the input and output data structures are r epresented in terms

of three constructs —— sequence , iteration , and selection. These

constructs , that are derived fran the concept of “ structured

prog ranming ” are considered ad equa te to represent both data structures

and designs. If the structures of both the input and output data

correspand exactly, there is no problan; if they do not correspand ,

then a “structure clash” exists. This structure clash is resolved by

“prog ran inversion” , which may involve the use of intermediate data

files, coroutines, or reversing the calling order between mod ules.

Q~ce the data structures are defined , the design structure is

created from then . The purpase of a design is to produce a mapping

between the input data and output data. The design is created by

inc1u~ing a selection , sequence , or iteration canpanent for each

correspond ing component in the data structures.

Warnier ’s (1974) “Log ical Construction of Progr ams” (LCP) approach

is very similar to that of Jackson. Warnier’s approach, however, is

somewhat more algorit~snic. The first step in LCP is to reformulate the

data structure, producing , in most cases, a hiera rchy. Each

decanpasition paint in this hierarchy is represented either as

“repeated information” or “alternate possibilities” (similar to

Jackson ’s i teration and selection) , and data itens within each level of

the hierarchy are presented sequentially. cn the basis of this

structure, a skeleton progran structure, outlining the flow of

L .

-~ ~- _ _ _ _ _

F ~~
-

~~
.—* ---

93

execution, is created .

when the skeleton structure is completed , the operations or

actions that are required by each part are listed. These functions are

then sorted on the basis of the function they perform (input , output ,

calculation , etc.) and assigned to the proper part of the skeleton.

Following , this , the skeleton structure, which now represents the

design, is verified by comparing it with the analyzed data structures.

The three design techn iques outl ined immed iately above present

fairly formal and proced ural ized approaches to pe r forming a design

task. As the reader may have noticed , there are several similarities

between the techniques involved in structured desig n and the

theoretical frane~~rk that we present in the main body of this report.

For exanple, both indicate that desig ns are expanded in a top—do~~ ,

breadth—first manner. In addition , what we identified as a very

general “ input—process—output” schema is evidenced in structured

desig n ’ s emphasis on afferent , effe rent , and transfo rm modules , and the

decomposition of “action” modules into “detail” modules is consistent

wi th our assunption that there are multiple levels of detail in a plan

or procedural net.

An additional softwere design procedure, term ed “stepwise

refi nement” by Wirth (1971), also deserves consideration. There are

several striking similarities between this approach and the theoretical

frane~ork presented in this report. This approach is less procedural

than the fo rmal desig n techniques described immediately above, but

prov ides more detail about how a desig n should be expanded and

evaluated than the less formal approaches discussed earlier in this

section. Several variations of this approach will be considered

j

94

briefly. j

In stepwise refinement, the designer starts at the top level of

the design, which is essential ly a statement of the goal “solve the

problem ” . Design then proceeds in a breadth—first , level—by—level

manner. These levels can be differentiated with respect to the amount

of detail involved. At the early levels, the designer does not

consider specific prog ranming languages or other aspects of the

envirorzn ent in which the solution will be implemented. As Ledgard

(1973, pp. 45—46) points out , this stage of the design m ight contain

statements l ike “ compute the nth pr ime nunber ” , “f i nd the roots of the

equation” , or “process the payroll”. We s~ uld characterize this as the

abstract plan level. Thward the lower levels of the design , the

operation sequence level, the design ~~rks in terms of the

implementation envirorinent. The intermediate levels of the design , the

detailed plan level, represent a transition between these very general

and very specific expressions .

As just described , the process of stepwise refinement is similar

to the processes that we assune underlie the expansion of a procedural

net. Al thoi~ h one approach is based on theoretical assunptions and the

other on the pragmatic considerations involved in developing reliable

softwer e, the underlyi ng concepts are quite similar. Altho~~h, several

variations of stepwise refinement have been propo sed , they all adhere

to these basic concepts.

The main contribution made to desig n methodolog ies by Parnas is

associated with the phrase “info rmation hiding ” (Parnas, 1972) . Parnas

arg ues that the pr imary cr i ter ion for a modular decomposition is that

every module can be characterized by its “ knowledge of a design

4

~

-

~

—-

~

- . .-
~~~~~~~~~~~~~~~~~



-~ -~ ---
- . ~~~~~~~~~~ ..

95

technique, which it hides from all others. ” In general , Parnas’

technique is similar to the usual procedures of stepwise refinement

outl ined above.

Ledgard (1973) ex tends the definition of stepwi se refinement by

incorporating Mill’s general top—down concepts (e.g., Mills, 1971) and

Dijkstra’s definition of structured programming . This technique ,

called “meta—stepwise refinement” by Peters and Tripp (1977) provides a

clear expression of the general concepts underlying stepwise

refinement. Ledgard’s approach has six primary characteristics (pp.

46—47) . First , the designer must develop a clear understanding of the

problem before proceeding. Second, the initial stages of the design

are independent of considerations of the impl ementation envirorinent;

such considerations are only inclnded at lower levels. Third , design

is done in discrete levels, altho i~ h L.edgard admits the possibili ty

tha t it ma y be useful to “ look ahead” to the probable functions of a

lower level . That is , some desig n decisions may he based on the

practical i ty or risk of the ul timate functions or modules that may be

required by these decisions . Four th , “the programmer concentrates on

critical , broad issues at the initial levels, and postpones details

until lower levels.” Fifth , the desig ner must ensure tha t each level

represents , at the appropriate level of detail , a correct solution to

the problem. Finally, each level is generated by “successive

refinement” of the pr eceding level .

Liskov (1972) presents cri teria for selecting an appropriate

“level of abstraction” fo r each level in a design. According to

Liskov, the first step in a design is to reformulate the problem into a

set of abstractions that are necessary and sufficient to satisfy the

4



:i L_ -__.__ _ _
~

_ _~ 
— — 

-‘-- -
-

.

96

system constraints and then to make these abstractions more concrete ,

in the sense of expressing them in terms of impl anentable functions .

Liskov identifies several types of abstractions tha t are to be used in

deciding on appropr iate modular decompositions.

“Goal directed programming ” , as advocated by Cichelli and Cichelli

(1977) al so extends the concept of stepwi se refinement. The addition

made by this technique is the concept of an expl icit statement of the

goal to be achieved by the design. This approach involves stating the

goal to be achieved, deriving an assertion that will be a f f i rmed  when

the goal is true , and then deriving a logical condition from this

assertion tha t will become true when the assertion becomes true . By

iterating these stepa , the or ig inal goal is decomposed into subgoals.

At a general level , this techn ique is similar to the use of a

means—end s analysis heuristic. Like structured design , the principal

criteria along which desig ns are evaluated are cohesion and coherence.

The emphasis on using onl y i teration , selection , and sequence

constructs and the stipulation that desig n structure should correspond

to data structure is similar to the approaches of Jackson and Warnier .

Al though this review is brief , it is intended to provide the

reader with some feel for the diversity of techniques that could be

applied in a softwere design task . In addition , this review may aid

the reader in interpreting some of the softwere designs tha t were

produced in the experiments reported in this paper. Structured design

and the techniques advocated by Jackson and Wa rnier are , to a designer

who rigorously follows one of these approaches , schemata for how a

desig n task should be perfo rmed . As such , what could be considered to

be planning behavior on the part of the designer may reflect the

4 
—. ~~~~~~~~~~~~~~ -. - -

~ 



V - -

97

successful appl ication of the procedures called for by these

approaches.

~~p—down , bottom—up , and the related very general design

approaches are essentially strategies for the construction of pl ans , in

the context of design. At a very general level , they indicate the

types of plans that are allowable or that may be useful . They do not ,

however , indicate how these plans are to be constructed.

The remaining approaches considered in this section , which a re all

variants of a stepwise refinement approach , are somewhat more expl icit

about the criteria that should be used to evalua te pl ans , or designs , V

than are the more general approaches. Although they give guidelines

fo r expanding a design , they do not prescribe formal procedures.

4 

~~__ _  I__ ~~~ ____~~~~~~~~_~~~ _ _ _ V



98

REFERE~~ES

Atwood , M. E ., & Poison , P. G. A process model for water jug problems .
Cognitive Psychology, 1976, 8, 191—216.

Banerji, R. B., & Ernst , G. W. A comparison of three problem solving
methods. Proceedings of the International Joint Conference on
Artificial Intelligence, Cambridge, Massachusetts, 1977, 442—449.

Bhaskar, R., & Simon, H. A. Problem solving in semantically rich
domains: An example fran engineering thermodynamics. Cognitive
Science, 1977, 1, 193—215.

Boehrn, B. W. Software design and structur ing . In E. !browitz (Ed.),
Practical strategies for developing large software systems.
Reading , Massachusetts : Addiso n—Wesley, 1975, 104—128.

Q-iase, W. C., & Simon , H. A. Perception in chess. Cognitive
Psychology, 1973 , 4 , 55—81. )

Cichelli, R. 3., & Cichelli, M. 3. Goal directed progranming , SIGPLAN
Notices, 1977 (July) , 12(7), 51—59.

t~hl, 0. J., Dijkstra, E. W., & Hoare, C. A. R. Structured
prog r amming. New York:  Academic Press , 1972.

de Groot , A. D. Percept ion and memory versus tho ught : Some old ideas
and recent f indings.  In B. Kleirinuntz ( E d . ) ,  Problem solving:
Research, method, and theory. New York:  Wiley , 1966.

Cuncker , K. Q~ problem solving . Psychological monographs, 1945, 58,
No. 5 (Whole No .  270).

Egan , D. F. The structure of experience acquired while learni ng to
solve a class of problems (Unpublished docto ral dissertation) Ann
Arbor, Michigan: University of Michigan , Depar~ nen t of
Psychology, 1973.

Egan , D. E.,  & Greeno , 3. G. Theory of rule induction: I~ owledge
acqui red in concept learning and problem solving. In I.. Gregg
(Ed . ) ,  Knowledge and cognition. Hillsdale , New Jersey: Eriba un ,
1974 .

Greeno , J. G. The structure of memory and the process of solving
problems. In R. 1... Solso (Ed. ) , Contemporary issues in cognitive
psychology. Washington, D. C.: Winston, 1973.

Greeno, J. G. Hobbits and orcs: Acquisition of a sequential concept
Cognitive Psychology, 1974, 6, 270—292.

I

VI V V

~

V _ _ _



Creeno, 3. G. Process of understanding in problem solving. In N .3.
Castellan, D. B. Pisoni and G. R. Potts (Eds.), Cognitive
theory, Vol. 2. Hillsdale, New Jersey: Erlbaun, 1977, 43—82.

Creeno , 3. G. Nat ures of problem solving abilities. In W. K. Estes
(Ed.) , Handbook of learning and cognitive processes, Vol. 5.
Hillsdale, New Jersey: Erlbaun , 1978 , 239—270.

Hayes-Roth, B., & Hayes—Roth, F. Cognitive processes in planning
(Technical Report No. RAND N—1O268-OM~). Santa Monica,
California: Rand Corporat ion , August 1978.

Hi nsley, D. A., Hayes, J. R. ,  & Simon , H. A. From words to equations :
Meaning and representation in algebra word problems (CIP Working
Paper No . 331). Pittsburgh , Pennsylvania: Carneg ie—Mellon
University , c~~tober 1976.

Ham ilton , M.,  & Zeld in , S. Integrated softwa re developuent
system/higher order software concept ua l description (Technical
Report  B~Q4 76 0329 F ) .  Fort t4orinouth, New Jersey: U. S. Army
Electronics Command , 1976.

Jackson , M. A. Pri nciples of prog ram design. New York : Academic
Press, 1975.

Jackson , M. A. The Jackson design methodology. In P. Freeman & A. I.
Wasserman (Eds.) , Tutorial on software design techniques. ~~~Beach, California: IEEE Computer Society, 1977, 219—234.

Jeffries, R., Poison , P. G., Razran , L., & Atwood , M. E. A process
model for missionaries—cannibals and other river crossing
problems. Cognitive Psychology, 1977, 9, 412—440.

Ki ntsch , W. ,  & van Dijk , T. A. Comment on se rapelle et on resune des
hi stories. Langages, 1975, 40 , 98—116.

Ki ntsch , W.,  & van Dij k , T. A. ‘Ibward a model of text comprehension
and product ion. Psychological Rev i ew, 1978, 85, 363—3 94.

Knuth , D. The art of programming: Vol. 1. Fundamental algorithms.
Reading, Massachusetts : Addison—Wesley , 1968.

Larkin, 3. H. Problem solving in physics (Technical Report ) .
Berkeley, California: University of California , Depar~nent of
Physics, July, 1977.

Ledgard , H. F. The case for structured programm ing . Bit , 1973 , 13 ,
45—47.

Levin, S. I.. Problem selection in software design (Technical Report
No . 93). Irv ine , Cal ifornia:  ~~par~ nent of Information and
Computer Science , University of California , November 1976.

4

_ _ _  I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



100

Liskov , B. H. A desig n methodology for reliable software systems.
AFIPS Conference Proceedings , 1972 , 41 (Part 1) , 191—199 .
Reprinted in P. Freeman & A. I. Wasserman (Eds.) Tutorial on
software design techniques. Long Beach, California: IEEE
Computer Society, 1977, 53—61.

Long, W. 3. A program writer (Technical Report N o . MIT/L.CS/’IR-187) .
Cambridge , Massachusetts : Massachusetts Institute of ‘1~chnology,
Laboratory for Computer Science , November 1977.

Miller , C. A., Galanter , E., & Pribr am , D. H. Plans and the structure
of behavior. New York: Holt , Ri neha rt , and Winston, 1960.

Mill s, H. D. Ibp—down progratuning in large systems. In R. Rustin
(Ed. ) , Debugg ing techniques in large systems. Englewood Cliffs,
New Jersey: Prentice Hail, 1971.

Mi nsky , M. A framework for representing knowl edge. In P. H. Winston
(Ed.) The psychology of computer vision. New York:  McGraw Hill , V

1975.

t4yers, G.J. Software reliability: Principles and practices. New
York: Wiley, 1975.

Newell , A., Shaw, 3. C., & Simon, H. A. (less playing programs and the
problem of complexity. IBM Journal of Research and Developnent,
1958, 320—335. (Repr i~ ted in E. A. Feigenbaun & J. Feldman
(Eds4 , Computers and thought. New York: Mc-Graw--Hill , 1963.)

Newel l , A., & Simon i. A. Human Problem Solving. ~~g1ewood Cliffs ,
New Jersey: Pr€~-ntice Hall, 1972.

Peters, L. 3., & Tr ipp , I.. L. Comparing software desig n methodologies. 3
Datamation, November 1977 , 89—94.

Parnas , D. L.. ~~ the cri teria to be used in decomposing systems into
mod ules. Communications of the ACM, 1972 , 15, 1053—1058.

Sacerdoti , F. D. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 1974, 5, 115—135.

Sacerdoti, F. D. A structure for plans and behavior. (Technical Note
109). Menlo Park, California: Stanford Research Institute,
August 1975.

Schank , R. C. Conceptual dependency: A theory of natural language
understanding. Cognitive Psychology, 1972 , 4 , 552—631.

Schank , R. C., & Abelson , R. P. Scripts, plans, goals and
understanding: An inquiry into human kriolwedge structures.
Hii.lsdale, New Jersey: Erlbaun, 1977.

4

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



101

Simon, H. A., & Reed, S. K. Modeling strategy shifts in a problem
solving task Cognitive Psychology, 1976, 8, 86—97.

Stevens, W. P., Myers, G. 3. & Constantine, L. L. Structured design.
IBM Systems Journal, 1974 , 13, 115—139.

Sus~ nan , G. 3. A computational model of skill acquisition (Technical
Report  No. 297). Cambridge , Massachusetts : Massachusetts
Institute of Technology, Art i f ic ia l  Intelligence Laboratory,
1973.

Sussnan, G. 3. Electr ical design: A problem for art if icial
intelligence research. Proceedings of the International Joint
Conference on Artificial Intelligence, Cambridge, Massachusetts,
1977, 894—900.

Teichroew, D., & Sayani , H. Automation of system building.
Datamation, 1971, August, 25—30.

Thomas, J. C., Jr. An analysis of behavior in the hobbits—orcs
problem. Cognitive Psychology, 1974, 6, 257—269.

Warnier , 3. D. Logical construction of programs. Leiden, Netherlands:
Stenpert Kroese, 1974.

Wasserman , A. I. Case stt~ ies in software design. In P. Freeman &
A. I. Wasserman (Eds.) , Tutorial on software design techniques.
Long Beach, California: IEEE Computer Society, 1977.

Wertheimer, M. Productive thinking. New York:  Harpe r—Row , 1945.
(Revised 1959) .

Wi nograd , T. A pr ogram for understanding natural language. Cognitive
Psychology, 1972, 3, 1—191.

Wi r th , N. Program developn ent by stepwise refinement . Communications
of the ACM, 1971, 14 , 221—227.

Yourdon , E. ,& Constantine, L. L. Structured design. New York:
Yourdon, Inc., 1975.

4



F’ ~V • •  
V~~~~~~~~~ V 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V j y

J~~~k ~~~. i~~r Y ~ L r ~ 1 L ’ . L~:c~-~ r - ~

)VC ~~t. ~ ~
• V . ’ • V V

~~~/ r - .. ~~~~~ - • .  -~.)

U.S .  ~. ~va1. ~~ ~r :11e~ tr Scicol V~~~ E,: .~~T o , ~~~ ~~~

- 1~~:1!.•rcy ,  C~ ~~94 3
1 Ci i, I , L ~~~~~~~~~~~~ L’~. i.:~ T.

L~’. kiobcrt h’ -~ ux - Ei’J . ~~~. ~~~~~~~ V .- .;

C~~1~ ~.— 7 1  ~~~~~~~~ ~~~~ ~c;r
,y ~

~~ k! ~~~L U I F , E  . ; ; ._ V i..
V
~~, - i ~ .~ 1L ~~2

~r t ~ nci c , iL ~2 c?1 ’
1 i. r .  L L i i ~ L.

~:r . J~~~z ~ . Duv ~ Fr i~~-c .i ’~aL Ci ;  L . V .  • • ~~ i~~~~ V~~~

Chi .~t , Hui~~ r~ c tn r s  L~ bor~ t ory  ~~ u c ct i o n  V~~~•~~ 
V k r ~~1r~~~

~~~~ Trai~irv~ . r qu i p n e n t  Cr n t ~’r ~- i v ~ i. ~r~ irtin~ 
~~~~~~~~~~~~~ t.;

;V
~~~ • V

~ 3A
(Code N — 2 1 c) F~ r~~ col -~ , L’L ~~~
~ r 1-rmndo , F lor ida 32 813

1 CA PT ~~ch9rd L. V C I ~~~~fl

D r . l ij chard Ei~~ter US~ ~‘r i n ci s 1:~ r~ cr~ (L~~~— L~.)
D~~p~ r tm ent of Ad~:thi~~t rat i , e j~~~”p3 ~~ (J ‘~~~~~~ iO~~V , ~Y (~~5O 1
N - - v~~L Post~~r~ du .~ t .e School
E o nt e r e y , CA 9~~940 2 Dr . ,I~: ~es ~c~Jr~ th

:.~~.y i~-~r sonne: ~-~ D C e n tr r
D R . PAT FErERIcO Cocc ~i6
~~~~~ p~~~~~~ ;~ j~ ~.L• D C~ i-i TE R S - i r  G~ er~o , CA 92 1~~2
.S A U 1I~ GO , C~’ 92152

1 DR.  ; 1L !.IAS ~.C i’ V i A C U ~.
C DI ~ Jo~ ri Fe r ’~uson , i- sc , US~I LR U C

~~‘i~ i ~~t i i c~i1 R ’CD Co~ rnind ( Cod’s ~4 14 ) U i V ~ f~S I T Y  C~i ~1T E (~~G~
N l t ! O f lV 3 l ~~~~ -~odlo~~l Ccnt..~ r 3~~~9 0 ‘U ~~~A ~T~~~E~[

~ct~ csJa , ~ D 2001 fl P~rT~eU~ JH , }~ 152 13

D r .  Jo~m r’crd 1 Co~~~~r~~ir.’~ Ct ’f ~ ccr
N a v y  P~ r~ or .nel R-~D Center  U . S .  ~ -1v~~j  I~

p
~u~ious ~~ ooI.

I 

~~ n Diego , CA 921 52 Ccrcn ’~~o , ~A ¶~2 1~~5

D r .  St~ ie i~:rris I Co~rr.~~id j  Cf f~ c~~r
c-~’~ L522 ~o i o l  rle -’ 1.th .~- -o rc r ~

• V • ~~~~
[ C~’nter

P.n~;ieola FL 3250i ~ t r .ri : Lior~ry
Sz~n L~i -~~ ) , C~- 92 1 5 2

LC~ 7 C~vr 1es W . Hu t .chir i~
~~~~ ~ir Svzt ’~s Conrn3nd 1 ::~~;r ~ ~-:. oic l H~ L~ c ir.d
U i~-. J~’ff”r~’on H ~~ ;~ 1 Code ~

11 J~~t’f9r ~ r~r~ ~~vi z Hiohw ~y Y ’ !.ic:~~1. . V t - 2.C ~l C. ’r ’ t2 r

r1. i rI~ tc .1, VA 2O~~~) ~~~~~~~~~~~~~~~~~~ ,

Icr:’.~n J. :~-~ ‘r’
~~~ ‘ ic-~ of -~v -~ r~~~~n t c cj  fl :~ r~ing
:. ;, ~ ‘-j r  ~~~~~~~~~~~~~~~~ ~

‘
~~~~~: (7~)

~!:~~~cr~, T~. ~~~~~~

4 V V . ~ V V •~~~~~~~V

V ~~~V ~~•V ~V
_ V ~~~~~~~~~~~~~~~~~

-
~~~ 

~~~~~~~~~~~~~~


~ ~~- - - ~~~~~ V V V ~~~~~~~ -,

s V
~~Vy

L~~p’f P i u l ~~~~~~ US~ 1 i~; f . 2 . ~C L O ~~~~
~~~, 

t - I j c ’ 7 ~ S r i V c’~ ~orPs ~~~~~~ ~ r’- .~:~2:’
Cods’ 7 1 -~~. .~~or .  ~j : ’ ”f l  S~ V r € ~~~~ t

rV , ,
~~V - . .U of t - r d i c i r : t ’ Sij r~ cry  r . : $ G , ~ fl~~ ~‘ (

~1 id
U .  S. D~ p ’.rt~~’nt of th~ N~~’iy

~V~~~ S~~~j f l~~~t Of l , CC 20 : 12 1 Sc i - ~-n ’~~r i c  C i r .- ’~tor
- V~~

’f
~~~cc of ::-~~i . ~~~~~~~~~ rV ~ h

L .tbr ~’try j~~~t i i j c’ (.iri ~.co~ ~r C / ’ O~<Y.)

:~~~zy Per cor in cl R2 D Cc~n t er ~
- ~‘r io - n ~~ b : :oy

~on Dic~ o , CA 92 152 A r C S~-r . ~~~~~~~~~~ ~-

6 Co~ r~ in cin -~ O f f ic er 1 H~’~ d , hcse:~rch , D~ ’ielop :~.’nt , ~nd ~Lud ies
~-tvaI . R~ s~~ rch Labora tory (G P 1 O 2 X)
Code 2527 Of f i ce of the Cct i~~f of i~~v~il ~~r~ tior .s
Wa sh ingt on , DC 20390 ~~3h i n~ ton , LC 203 7)

JOHN OLSEN 1 S cic nt i f i c ~~ vi~ or to the C:: ief of
CHIE F OF NA VA L EDUCA TI ON ~ 1-a val P~ rzo~nel (I ’~ r s— Cr)

T H A I Hfl!G SU P POR T ~~‘i~il b ur eau of t~~ ’scnnel
P~ NS A CCLA , FL 32509 Roo’i 14410 , ~r l in~ ton ~~n~ x

~azb ing ton , DC 20370
Psycho1o~ ist
O~1R Era rich Off ice 1 D R . i~IC~~ i D A . POLL.4 K
1495 Sui~wier Streat ~:~DE~’;IC C V ~V V P L r I N G C t : i r t . R
E~oston , i - A 02210 U . S . ~~V A L ~C;c :~SL

:D 21 14 02
P~ yc~o logi~ t -

CI! R Eranc~’t O f f i ce 1 f r . Arnold i~uben ~ tei n
536 S. Clark Street ;.~~ Vi i1 Per sor~~oi Suppo rt ir ’c~ nology
Chic .n~ o , IL 60605 a i~ l ~‘ V~~ t~~~r i O l Coo~~~nJ (‘) V~~i 2 4 1 4)

hO~~ l
1 O u L ~, Cry ~~t~~i ~~~~~ 5

O f f i ce o f ~ i val Research 222 1 J e f f .~rFon L-~~.”s 1~1~~ i V,nY
Code 200 Ar1 in ~ tcn , -

~~~ 20360
Ar l ir ~ ton , VA 22217

1 0:’. ~orth  S c o nJ . a nV I

O f f i ce of j~~val Resea r ch Cn i~~f of ’ - .a’.’~.l r.~ u c a t i c r ~ ~~~~~~ i r a in i r .~ 
V

Code L 13 7 C o i - ~ i~— S
~03 . Cuincy SStreet i~.-’S, Pcn~ac oi~~, FL 325C~
Arli~~ton , VA 22217

1 ~~~. ~~~. SJC;~ V
~~~i :

Pcr~or.ne1 2 Tr~ inin~ Rc~~e a r V ~ n Pr - r~~;s . SU~~F~~:-S i’ , C~ L-E 20 1
(Code 14~ C) ~~~ ~~~ O - ..L ½ 0 C~ t c ~~

Office of’ N-’iv~’l Research L . ~~O , L~ 92 l’5 2
i r l t r . : to n , V! 22217

1 Lr . i’cb - - rt S’~i tn
Pryc~ o1oCi3t C : t ~~.” at ~~i~ f ~~~~~~~~ C : ’ ~ticns
C~ V I C E C-~ : V ~ V;. L ~~~~~ ~C~~~r F A ; C ! i
2.” OLD ~~~~ t [~

V~~~

~~A L) V , V .V V
~~~~ .~~ :tO ~~. ,

L~. ‘ L)( V~~
V ’ 

~~~ 1 S T - ~ ENCILA I t )

4 ‘

~~ . ~~~~~~ ~~~~~

V ~~~~~~~~~~~~~~~~~~~ V ‘
~~~~~~~~~~~~~~~~

_—
~~~~~~~~~

~~~~~~~~~~~~~~~~

---— 
~

- - -
~~~~
-

~~~~~~



A n y

D r .  A l f ~~~i f .  &:ode 1 ~~~ f i-
i’r~~in~. n- ’ ~n .aj y sj ~ ‘~ ~,/ a 1u 1 t i o n  Jro up  t.r tr . : I .j~~r - r y

c/c •~~‘C:~~:.~
[V ,~ pt  of  the N -’~r y i - C  ~r~L: ~ A 7t h  Ar ~.:,
Or land o , FL 32813 ~~~~~~~ ~~~~~~ L cr k

CD~ Ch~ r 1~ s J. r’n e i~’’n , Ji~. t-~SC , U S?~ 1 1’~ ci r’.ic~~l D i r ~~~tor

~~ —~d fiu~~i n F i o t o r s  En~~i nr e n in ~ t~i.v.  U. S. A r . -:y r r c ~~r c1 In it ~uL,~ fcr t~~i’

Sa’n 1 Air  De’ielop-i -~nt  Cent~:r E~~uo t c r - . 1. arr ~ ~c.: i ~ er:~~s

~~reinster , PA 13971$ ~0’T 1 ~ i.’~ ::~~o~~t r  Av ~ nt~•.
Alc xan ’iri :~ , VA 22~ 33

~~~. Gary Thornron
Na val Ocean Systens Center 1 HO (J SAREU ~ & 7th Ar my
Code 71 32 ODCS OFS
San Diego , CA 92 152 U SAAHE Ur Dir~-otor of GED

AP O N ew f crk 09403

1 C~~. H A L P ~I DU.SE K
U . S. f l . i ’~ ~SS.~P.RCIi I;~ST l T UfE
5001 EISE~- ~~~ AV~I~UE
ALr XAND~IA , V A 22333

1 Dr . Ed Johnson
Army Rese~reh institute
7 001 ~~~~~~~~~~~~~~~~~~~~~~~ H.vd .
.~J.exar.dnia, VA 22333

1)r. f.i ch~ c 1. K:iol~ n
U . s . ~~~~ h::~~.Ar ’C :~

~~~~~~ r I T L f E
500 1 ~l ’ .i~ 1.NL~.t~ ~~~~~~~
AL~ XA i ~Dc~~A , V~ 22333

1 Dr . Ni~ton S. Katz
in ~i iv i c u a l  V

r~~~i 1ii~~ A .2<il l
~.v~’i.uat iort T t .cn n i c - l  ~r~~a
U.S. Ari : .’ r 5 ~~’.ro.~1 J~~”,t~~t u t e
5~~-0L E.i~~~:~o;.- -~r Av~nu•’~

V.~ 223 :~~ 
V

1 Dr .  F~i rcl~1 ~~~. O ’ N ~? i1 , Jr .
~TT~~: ~~~:j _ ~~
~- ‘:- C1 ~~~~~~~~~~~ AVz ~~iJr,

~L -  Xf l .Di i l i  , VA 223 3

1 D 1 r ~:2t or , i r , ~ r .in~ ~~~.. ;r- ~

U.. -~. J rny ~~- n : r  ~~~ d - ~ t - r
A i S: Dr .  ~~,~~r ni1. l

E- ;r.j~ ’~ir. - .‘r rLs .Dn , ~

-~~~~ V ‘ ‘ _ . .•—

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~VV ~~~~~~~~~~~ V V~~~~ V

’

V ~~~~~~~~~~~ - -

V
-

~~~~~~ - 
—_--l_ -- - 

~~~~~~~~~~~~ 
—

P. r l y A i r ’ Forcr:

C r . J~~~~ n N~i rU 1 I i - . J . A. ~C~~~~L~~~~~~)
V

~~ .S. !.r ~~~ y ~ t se~r r cn In~~t t tu t e .~:

~~~~ ~i o - n h o w e r ? / t ~nue ~ ~IG~r — ~~iT~ V . ’C~~. ~~~~ - i ~
x.-~ndr iu  , VA 22333

1 CL~~. i~~~~V : : c ~~~~~

C L I  Li~~::~:.-:: (‘~‘~ jC~i~.
Ar~ : L/i LiA~ i ‘r

~~~~’ 1 : V ~~~ :~~G C i V .  V

~.j L L i A ~~.~ . f L , ~Z ‘:52214

1 RP~~~ V~ r ch ~~~~~
H~ndoipn AFD , TX 72 114 6

1 Dr . L~ r t y Rockway (A L . h i~L/ T T)
Low r y Aj -’}j
Cu lor ado 60230

1 Jack A. Thorpe , Capt , USAF
Progr a~i :-~n~~ er
L i f e Science- s Directorat ’~

V At ~’OSH
Pol lin ’~ AFi3 , DC 20332

1 l~rj 2 f l K . ~~tc rs , LCOL , (i.S A F
- 21r University

Vont gcm ery , AL ~51 12

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _



- - -- - —V__________ — — — 
V

C-~- : ;1Gj oi- j

1 i~i r c - cto r , u f f ~~ r of I a~ po:- - -r Ut il~ z~~t i~ n 1 ~ j V • ~~~~~ C -~V , ; Y , C~ J ‘~~H , L . , t r i n e  Co r p~ (~- 2 u )  ~.~~L : .- !~. -~i u!- L :~~r.: ~~~~~~~~~ 1 2 - P _ 1/ ~ 2)
~- C ~ ~~~~~ 2009 u Cc - ~~i ~~~~~ l u
Cu i n t i eo , ‘IA 221 3 1$ ~ ~~~~~~~~~~~~ f~ ~~- ‘- -~C~~

1 ~- L ’Dt ~C
C u - ~r : r ico  V~r r L n ~ Corps E~ase
Ci mt i c o , VA 221 3 14

1 D R .  ; . .L .  SLAF? ~OSi~Y
SCIE ~ TIFlC i~DVISCR (COD E R D — i )
}
~Q , U . S .  SAi ~1NE CORPS
~, 1iuoro ~; , DC 20380 )

I

k

.1

_ _ _ _   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ V~~~~~~~~~~~~~~~~~~~ •


_ _ _ _ _ _ _ _ _ -
_~~~~~~~~~~~~ __~~~~~~~~~~ _~~~~~~~~~~~~~~~~

_
—--- — — V

~
‘_

~~
V

_ _ _ _ _

Ut rv r Dot) Ci’: ’

D r . ~~~~~~~~~~~~~ 1 ‘Cr’ . S 1 ’-~:1 (. t : ~.p -~ -r. V

~~~~~~~~~~~~~~~~~ P~ CJr ~CLi A CEV -CY f~ ~~~~~~ ~ -:~~i L~ ~-r o r-:- .~~

11400 ,. ~~~~~ FL V D . f. .-~r~~on -~ ~n~~z i ’ ut ~ ~f ~:~~‘t ~ or.
,~i . L T ~~~~IV C VA 2220 9 1 ’Y) ~n ~~r~et I . -.

~ ~ j n ’, t on , CC 2 O2 ’ .~
$2 D~ fer.cc j)~ e-u ;ier.t~~tj on  Center

Car’-ron ~t -it ion , I l c~~. 5 1 Dr .  J c s cp ~i 1. Lt p~ on
i t lex ~in i r i c  , VA 22 3 1 14  L) i i i s icn  ~f 

~cie r~cc uc~i t j G ~i

A t t n : ‘rc i-:con ~~~~~~~~~~~

~r ion— ~l 
S

~~~ j V ~~~~ C~~ ~ound .itiOn
Dr . D ext er F i atcher ~‘.ac nin ’~toi , DC 20550
A D VA I ~C~ D h~~~ A R C~i PR O JE CTS AG~ SCY
11400 .~.iLSCN BLVD . 1 Dr. Josept~

;V ;I r k o w L t z
AhLI 1GION , VA 22209 Office of Research -and L’evelop~~r.t

Cent ra l I n te l l ig en c e Pg~ ncy
N i l i t a r y P .ssi s tan t for Train in3 and ~csh ir .~~ton , DC 20205

P~rsonne1 cchnolo~ y V

Off i ce of the Un der Secre tary nf Cct ’ense 1 D r . Jcnn ~ays
V

fer Research & En 3ineer in ~ Nat iona l I n s t i tu t e of ~ducat ion
F.oom 30 129 , The Pentagon 1200 19th Street N’~1

~:~ shin ~ ton , DC 20301 %~~shj n ~ ton , DC 2020 C
V

1 ~Jational I nt i t u t e of ~ducat ion
1200 19th Street ~~
~ ish in gtcn , DC 2C 208

1 Dr. An drew R. t~!olnar
Science ~.cucation Dcv .

and Reze -~ rch
N at ional Science F o u n t -~tion
~ashi n~ ton , DC 20 55:)

1 Dr . H. ~a 1l?ce Sinaiko
Pro~ ra~ Di r ec to r
Na r .power ~‘s’~r~roh ‘~r.d A-c7 icory Sar -it ces
S.~i i t h~ oni~ r~ i n s r . i tu t i o r .
201 :-;art~. Pt~ t ~~~t rc ct

Alexandria , V~ 223114

1 Dr . Thon~s C . Sticht
Lasic ~~< i . D S Pro’ ~ra~r

~~rV~~r-
~~~~l I r . r ’t~~~ut e  Of :.J~~O~~t i Of l

12~~D i’j t~~ s t r e et  s ’.’.

- Is.~ir~~ton , DC 2 C20~

1 Cr. ~os’.ph L. Ycun~ , Dir~:otor

~-.- .~ ary & Co~~~tiv~ ~rcc’:.~~es
:::‘ t V i o r .~ .l t ’ c r~n o. .’ t i o n

~~~~ 20553

_ _ _ _

________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a

on Govt Non Cc~vt V

P t ’ - ~~. f A i L A . ALLUIS1 1 C:i~ r i . -~ :.v~ r~ L ib r ~ ry
V : V ~~ I. CF P ’ LLk ’C L CG ’L L~ . ‘

~~ r~one I c u ~ .—
CC Dr 2rY,’ L i , ut ~o i cn c ~~u
-
~ L U ~:- -.. : : ;N l C i : UN L V é r ~SITi .t r -~t f or d
NC~~~LU. , VA 2~.50~ Lon don E 15 2LJ

: 3LA Z\ 0
Dr. Jc-1.n h . And er son
D ’ - p~~rt ~~c-ti t of t ’sycho 1o~y 1 Dr. ~.illia .i Ch~ se
t h r n e-~~~ie f.elion University D, - V p c r ~~~

V
~.e~~~ t. o f P~~ycr .olo~~y

~it~ sb urg$i , PA 15213 C;tr~e:ic :ei ori Un i v er s i t y
P i L t sb ur~:n , FA 1521 3

D R . $~IC HAE L Afl :OOD
SCi~ ::Cr. APPL I CATIO NS IU STITUT E 1 Dr. N ich el ine Chi
140 D ENV ER TECH. CE~.i~ R HEST Lu arn in g R & 0 Center
7935 E. Ft~ENTICE AV ~~ UE U n i v e r s i t y of P i t t sb u r g h
£~ GLEt.OOD , CO eO llO 3939 O’flara Street

P it tsburgh , PA 1521 3
1 p sycholo~ ical research un i t
Ccpt . of Defense (Army Cff i ee) 1 Dr. A l l an t~. Collins
Campbe ll Park OffI ces Bolt Eer an ek ~ Ne~n~n , Inc.
Canberr a ‘CT 2600 , Australia 50 Eculton Stree t

Cambri d ’~e , i-~a 02138
Dr . N icholas A. E~ond
Dept. of Psycholot~y 1 Dr. ~‘er editr. Crawford
S-tcramen to State Co11e~e D epart aten t of’ ~r:~~ine~ rir~ P.d~~inist r at ion I
600 Jay St reet George ~.ast1in ~ tCn Uni versity
Sacrame nto , CA 95819 - Suite 805

• 2101 L Street Ii. ~~~.

Dr. Lyle Bourne ~
Vashj n gt on , DC 20037

Depar tm e nt of Psychology
Ur .iver s i t y of Colorado 1 Dr. Huber t Cr eyfu s
~ou1der , CC 80302 Dep ar t m ent of ’ k~hi lo sophy

Univers i ty of California
Dr. K.~r .neth Eowles h erk e ly , CA 911120
Institute for Information Sciences
Universi’~y of Californi-a at San Diego 1 NAJO~ I. N. EVOf- IC
La Jolla , CA 9203’! CANADIA N FCPC~S PE~S. APPL~~D ~~SL~AECH110 7 ‘V ~~ J~ R OA D
Dr. John S. Erown TOkOi~L’O , CN T AII I I J , C A r A D A
X~~ OX Palo Al to Research Center
3333 Coyote Road 1 Dr. Ed Fei~ enba um
P alo A l t o , CA 914301$ D ep ar tm e n t o f Co itpu~ er Scic-r.ce

Stanford Un ive r s i ty
DR . C. VICTOR PU~ D~~ S0N Stanford , CA 9~305
NICAT INC.
u:~iv~~Si’ri PLA ZA , SUITE 10 1 Mr . Wal lace Feur zeig
11 (2 50. s-rA TE si. Col t E era nek & Ne~~i~n , Inc .
C~ E$1 , UT d1$~ 57 50 •Th~ ton St.

Cao~bridge , NA 02135

4
.

-~-~~ -~~~~~~~~~- -

L _ _ _ _ _ - _________________

-- —
~~~ -~~~ -- V -‘- ‘ - ‘ V - V

;-.on ovt Ne-I Govt

D r .  V~cto:’ Fie-ids 1 Nr . U~ry ir v1 r .~
[-~pt. of ~:iycraLor’y D.-t t ’. Sc U ’nc”o Li i i o i or t
‘ t~ c’i.-ry Colle’~e i’-ohnc~o~’y ~ c~t ’ i~~ce~~ Corp o r at i on  - 

-

cr ’~ ’iill e , ED 22. 50 2’:11  ~lf~ iC? r l v~1.

~—~nta ;~ciic -~ C.’. u- ’1133
D r .  ~dw i n  A .  Fl ci :r.in
A - lv - ’r nced i~~~”~ rc-h i~csour cos Organ . 1 c~. L~~i~~NcE ~~~. Jcl::.Co~.

~~~~ Si x t e e n t h  S t rt e t  LA ~ N iiLC ~ J~ r: N -~CN ?~ A~~UC . , INC.

~il:er Sprir .~, Et) 20910 ~U i ~~ 502
2001 5 ~~‘l~r. Li’ t’C.~

C r . John R. Frederiksen I~ASi~I N G f C N , DC 20C39

~olt H°r~tnek & Newman
S C) -~cu l t o n Street 1 Cr . Wil son A. Judd
Cambrid -~e , ~!A 02138 i- lcConnel i—D cu;la s

r ’tronae ics Co. East
Dii . ROBERT GLASER Lowry AE~
LHDC Denver , CO 30230
UNIVERSITY OF PITTSBURGU
3q39 O’HARA STRE~ F 1 Dr. Arnold F. Kor .arick-
P I TTS D U R G H , PA 15213 Honeywell , !nc.

2i~OO Rid ~c-way Pkwy
Dr. Ira Goldstein Ninneapolis , ~~~~~ 5541~
X~.R0X ~a1o Al to Research Center
33 33 Coyote Road 1 D r . Steven ~~~. Keele
Palo Al to , CA 943014 De 7t . of ’ Psych ol ogy

U n i v a r s i t y of Cre~ori
DR. JAMES G. GR~ ENO Eu~ ene , OR 91 1403

V LRDC
UNI’i~ RSI TY OF PLTTS~URGR 1 Cr. ~alter Kints ch

~~39 O’ HARA sT~E~
’
~

Oopar tmen t of Psychology
PIT TSEU.WH , PA 15213 University of Colorado

B oulder , CC -30702
2 Dr. Barbara Hayes—Roth

The sand Corporation I Dr. David K~eras
1700 ~ain Street C.~p-~rtment of Psyahology
Santa 1onic~ , CA 90 1406 U n i v er s it y a t ’ t-r ’IZOfl ~

Te~ ccn , A Z ~Si 2 1
Library
Fii ri R RC/ Wes ter n Division 1 :‘:-r . ~- ar in Kro ’ er
27é~S7 E-erwiek Drive

1117 ~ia Goiet a
Ca rc~el , CA 9392 1 Ra~ oz Vero~’~ ~r t a t es , CA ~.~ 2 714

Cr. Carl Hunt 1 LCCL. C.R .J. L j L ~ (J~
D”pt. of Prychology ~~~~~ N:L -~Hi-L :2 ~~SLAi (Ci~
i -I iv e r s i t y O f ‘

~V a S n i n~~~tan $ V V
, I !~~~iL ~~ ~~~~

£E’-r ~t t l e , ~ !. ‘~S 1O5 1”l V L ~~ V .~~ L ~i i3 VE
C i~~i - l . A , C V A D , ~ l~1A Oi(2

4

_ _ _
-— —~~~~~~~~--- - - - — - -~~

_ _ _ _

$

:;o~ ~ovt V Nan N o y t

Cr. Jill Larkin 1 L’r. ~~- y ’ ~ r A - r t
t t a ~~~~ i t u r ~ c~ ~-‘a: .n ~~l o ’ y

o/ o Phycic s [V-” r a r t - ’ --~nt A r ’ t i L ic i - U ~~~~~~~ L U ~ ~o - L-~~
U n i ’.’Ir s lty ot ’ C u l i t ’c r n ii 5~~ 1~~~~n 3 L c ’y
~‘r~:eLy, CA 914720 Ci~.~uid’~ , t A C 2 1 ~~

Cr. Al an Les~old 1 Dr. J~mes A. ~~- 1.zon
p

LF ~rn in .~ H~D Center Porti~ nd ~t3te Lni’i~rcr~y
U n i v t ~r si t y of’ P it t s5ur~ h ~- .O. ~ox 751
Pittobur~h , PA 15260 Portl’-ind , ~ ~7207

Cr. ~obert A. Levit 1 HR. LUIGI PE.iiULLC

~‘tn~~er , hehavioral Sciences 21431 t. ECU~ CCC STREET -)

The EL N Corporation ANL1NGTOI-I , VA 2?207
7915 Jones E~r aroh Drive
t”cClean , VA 22101 1 DR . PETER POLS’ ~

DEPT . OF PSYCEC~C-GY
Dr. Robert R . Hackle UNIVERSITY OF C0LOI~ADO
Hu~nan Factors Research , Inc. BOULC~~ , CO 30302
57~C) Cortcna Drive
Santa B arb ar a fl’~search Pk. 1 D R . DlA ~-N~ i’!. RA ’ISEY—KL ZE
Goleta , CA 93017 R—K t~~~.A~ Ch - ‘. SYST EN Ds5tG1-~

3 1 4 7 :t iDG~E0N T D RIV E
Dr. Nàrk L’.iller H A L I E U , CA 9O2~ 5
Systtns and information Sciences Laborat 3
Central Research Labor atories 1 Dr. Peter B. Re ad
TEXAS It STRU~t ENTS , INC. Social Scionce Eesearch Council
t’ail Station 5 605 Third Avenue
Post Office Box 5936 New York , N Y 10016
Da llas , IX 75222

1 Dr. Fred Peif
Cr. Richard B. V.illward SESAME
Dept. of Psychology d o Physics Department
Hunter Lab. Univrrsity of C~t l i f o rn ia
Brown University Eerkely, CA 914720
t~rovidenco , RI 829 1 2

1 Dr. ‘~rnst Z. Rothkopf
Dr. Allen Hunro Bell i .aoorator ics
Un iv . of So. California 600 ‘ount - i i ri Av~ nu~
i:eh.~.vioral Technolo~y Lab3 Nurray HilL , N J 0797 14
3717 South HOpe Street
Los Angeles , CA 90007 1 Dr.~~ il~n Schoenfold

-
~D r . Conald A N or ma n c/c Ph Y ~~tCs Cep~ir t ~’ie-nt

D~’pt. of P~ycholn~ y C—009 Uni-i~ rzity of Colifcrnt-i
U n i v . of Ca.~i for n i a , San Dle~ o Ee r ki ~ly , C.~ 9 14720
L.a Joili , CA 92097

4

-
~~~ 

_~~~~~~~~ . ~~~~~~~~~~~~ 
V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

N~n (Iovt Ncn ~ov t

1 [~~: - . . ~~
- V~~~~~~h 1  J. ~~1DEL 1 D r .  ~‘irl U n r .

::.~:~ , U C  110:-AL ‘r;-~~~V~~CL Q GY URGU P Ce~~t .-r t o r  r .•s-~~rcn an L earn ir ~
1~(1 T.~:c~nin

2~~0 ~~~. 
V
~~t S~~P •cTC V ST. U n i v - r ~~it V y of :- ‘~~~1 ~ n

A L c ’ ’ A N D i ~IA , Vi’. 223114 A~an ;-rbc ’, t . ~ 4~~1 0 14

1 [j r . R icha rd  Sno’~
~~~~~~ of L’V C I U C - 2 t l O f l

Nt ~ n f ’ord U n i v er s i t y
Stan~ord , CA 914 235

1 D r . Robcrt. St~ rnberg
Dept. of Psychology
Yale University
Box h A , Yale Stat io n
New H aven , CT 06520

I DR. A L B E R T STEVENS
R C L C P E R A U E K & tLEt ’~EAN , I t I C .
SC - I CULT CN STREE T
C;~ F~ICGE , HA 02138

1 DR. PATRICK SUPPES
IN:i ILTUTE FO~ ~.~TH~J-ATICA L STUDIES IN

ThE SCUIAL SC1~.NCES
ST AN ~”C!~D U NI VERSITY
ST A N F O R D , CA 9 14305

1 Dr. John Thomas
lU~ Thomas J. Watson Research Cent e r
P.O. Box 218
Yor~<town Helgh.ts, N Y 10593

1 D R . P~:H R Y Th O RN D Y K E
~A i ~~ CCR P i1 R A T ION

17~~~~ :f . IN .$T REE T

~A r- ~-rA ~ONICA , CA 901406

1 Dr. t~ento~ J. Uniert:ood
Cr et . of Ps ycrolo~ y
~.ort~ -sestern University
Ei’nston , IL ~22O 1

I Dr . C’~’vj d J. ~ciss
~~~ ~niott Halt
UI~~’i rs I t y  a t  N i r .r.~~zo ta
7~ E .  Hi’i .~r Poa~tLr .n f ’apo l i s , t4N 55L55

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _


