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I. INTRODUCTION

This report describes one phase of the work done towards the development
of a general boundary-layer method for calculating three-dimensional boundary
layers on bodies of revolution at incidence. In this report we address our-
selves to the problem of computing boundary layers near the nose region and
with the onset of leading-edge separation; this is important for the calcula-
tion of transition by stability theory and for the prediction of downstream

“flow properties including possible separation.

It is well known that separation bubbles can develop near the forward
stagnation point of a thin, two-dimensional, plane airfoil at quite small
incidences. This phenomenon was first described by Jones1 and later Gault
carried out an extensive experimental study. Once separation occurs some new
features of the flow occur, including long and short bubbles, transition to
turbulence and bursting. A review of the developments has been written by
Tam‘3 and later Gaster4 reinforced Gault's conclusion that when separation
takes place a noticeable interaction takes place between the boundary layer
and the mainstream. The theoretical treatment of the interaction is of special
interest to aerodynamicists and an important contribution has been made by
Briley and McDona]d5 who interacted the boundary-layer and inviscid equations
over the majority of the flow field but used the full Navier-Stokes equations
in the neighborhood of separation. By these means they were able to avoid
the Goldstein singu]arity6 which is an inevitable feature of classical boundary-
layer theory at separation when the pressure gradient is prescribed. We are
interested, in this report, in the problem of leading-edge separation from a
rational standpoint in which it seems 1ikely that the angle of incidence, that
just provokes separation, tends to zero with the thickness ratio t of the
airfoil. Further it appears that while the boundary-layer assumption remains
true so Tong as separation does not occur, once it does the singularity inevit-
ably appears. The correct Timiting solution, as the Reynolds number based on
the leading-edge radius leads to infinity, is then of a different form and most
likely given by the Kirchhoff-Sychev theory7 in which a free streamline springs
from the airfoil at the maximum slip-velocity on the airfoil and may never

2

reattach. The present study is concerned mainly with determining the boundary-
layer properties when separation does not occur and to finding the critical
angle of incidence which just provokes separation.

1
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The corresponding problem for bodies of revolution has received less
attention but there have been a number of important studies by Wang on the
laminar boundary layers on prolate bodies of revolution which have an import-
ant bearing and to which we shall refer in detail throughout this report.
The results of his researches are summarized in a recent rev1ew8. For
example, he has showng’]o that, for the thickness ratio t = 1/4, separation
on the leeside of the line of symmetry occurs near the rear of the body for
angles of incidence o« < 40° but that at larger values of o« a new separa-
tion develops very near the nose. The reason is essentially similar to that
for two-dimensional flows, being due to the high curvature of the nose. There t
is a local velocity overshoot followed immediately afterwards by a short
adverse pressure gradient as the main stream returns to a value approximately
equal to that at an infinite distance upstream. If this gradient is insuf-

ficient to provoke separation, then the boundary layer continues to deveiop i
smoothly until, near the rear stagnation point, it encounters a sufficiently t
severe gradient to compel it to separate. Otherwise the boundary layer breaks ;

down near the nose and as in two dimensions no further progress appears to be
possible on a rational theory. It may well be that a freestream surface then
springs off the body but there is much less certainty than in two dimensions
about the flow properties once classical theory breaks down.

The remainder of the present report has been prepared in five sections.
The equations appropriate to prolate spheroids are considered in the follow-
ing section and for thin prolate spheroids in Chapter III: a coordinate
system appropriate to the nose region and transformations appropriate to the
line of symmetry are considered in subsections of Chapter II. Solution pro-
cedures are considered in Chapter IV where particular attention is devoted
to the "line of symmetry" equations for the finite- and zero-thickness cases.
Results are presented in Chapter V and discussed in Chapter VI.




II. FORMULATION FOR PROLATE SPHEROIDS

2.1 Basic Equations

For a prolate spheroid at incidence (see Fig. 1), the governing boundary-
layer equations for an incompressible laminar flow in a curvilinear ortho-
gonal coordinate system are given by the following equations: 3

2
b
T\J
. E
n

Figure 1. Notation for prolate spheroid at incidence.
Continuity
9 - 2 "
3;-(h2u) i (h]w) + 5 (h]hzv) 0 (2.1)
x-Momentum
2
Uu_du , W 3u ou 2 1 _3p 3
Pk SRy = WK, gty (2.2} ,
h] X h2 ) 3y K2 ph1 X ayz
6-Momentum
2
u_? W_ oW oW 1 _23p AW
==+ ==+ Vv ——uwk, = — + v (2.3)
hy ax " hy 3 Ay 2 Eﬁg'ae ;;2
Here h], h2 are metric coefficients defined by
2
L h, = t{1 —2)1/2 (2.4)
1 1 __52 4 :

where t denotes the thickness ratio (=b/a) of the elliptic profile. The
parameter K, is the geodesic curvature of the surface lines g(=x/a) = const.

and is given by




K, = tﬁ——ﬂ-—) 72 (2.5)
~¢

h]h2(1

The solution of the system (2.1) to (2.5) requires boundary conditions
and initial conditions. The boundary conditions are:

y=0, u=v=w=0; y~»o, u>u(x,0),  wwe(x,e) (2.6)

The velocity components Ug and W can be obtained from inviscid theory.
According to ref.14, they are given by

u
e
Uer = Volt) cosa cosp —Vgq(t) sina sing cose (2.7a)
e
—— = Vgn(t) sina sine (2.7b)
u 90
ref

Here B8 denotes the angle between the line tangent to the elliptic profile
and the positive g-axis. It is given by

1B i 2.8)
[+ (8 —1)1"7? =

COSB =

The parameters Vo(t) and Vgo(t) are functions of t, defined by

v (t) = e G ik ; - (2.9)
4(1 —t8) =2 mln+ (0 -HA0 - - 8y}/2y
2V _(t)
Vgo(t) = ——-i(—-—- (2.9b)
2Vo(t) -1

The initial conditions in the longitudinal direction can be calculated
by taking advantage of the symmetry conditions. Noting that the circumfer-
ential velocity in the boundary layer and the circumferential pressure gradi-
ent are identically zero on the line of symmetry, we differentiate this
equation with respect to o to obtain the so-called attachment-line equations

in the longitudinal direction:




Continuity
E 2 (h,u) + how, + 2= (h.hv) = 0 (2.10)
r X ‘2 T"e " ay V'1"2 ’
X-Momentum
: u_&,,\,?.ll.:_l__aamazu (2.11)
? 8-Momentum
! 2 2
ow w W 2 3w
u ] 6 6 1. 3°p 8
=2t 2=tV — —uw K, = —— B+ (2.12)
h1 X 9 ay p 2 ph2862 ayz

where Wy = aw/38. These equations are subject to the boundary

conditions:

| y =0, u,v,w=0; yre u-=ug, L (2.13)
The specification of the initial conditions in the circumferential direc-

tion is not quite so easy when body~oriented coordinates are used because of

the singularity in the properties of h,, h, and K, at the nose (x = -1).

A common approach used to circumvent this unpleasant geometric singularity is

to revert to an approximate procedure by first performing the integration

along the 1ine of symmetry from the stagnation point as near to the nose as

possible, then jumping around the body along the 1ine %, to the same value of

x on the leeward side (® = ™) as shown in Fig. 1. Afterwards the solution may

be extended to more general points on the body. Such a procedure, while effec-

tive at moderate values of o and/or t 1leads to difficulties and to inac-

E curacies as o increases and t -+ 0. These difficulties can be circumvented

as described in sections 2.2 and in Chapter III.

2.2 Nose Region Coordinates

} The difficulties and inaccuracies associated with generating initial
{ coriditions caused by the singularities due to his h, and K, in the cir-
!

cumferential direction can be avoided by using a suitable transformation near
x = =1. We define new velocity components I, W, V by

u="Ucose + Wsine (2.14a)




T

w =W cose —U sing (2.14b)

v=V/t (2.14c)
and new coordinates X,Y,Z by

X =S cose (2.15a)

Z =S sine (2.15b)

Y=/t (2.15¢)

Here S 1is a parameter which is a function of x, only, and defined in
(2.20) below.

The purpose of the above transformation is to convert the polar form of
the equations (2.1) to (2.3) near the nose into a quasi-rectangular Cartesian
form which is free of singularities. The basic reasoning behind this trans-
formation can be appreciated by noting the advantages of solving the Laplacian
near the origin in the form

i
-;2_ 3y2
compared with
2 2
3,13 Lz-?—
;;?' rFerT Wt

By means of this transformation it can be shown,after considerable algebra,
that equations (2.1) to (2.3) reduce to

Continuity
N (g—‘;-+%)+§¥—uux +WZ) = 0 (2.16)

X-Momentum
N(U%’-+W%—)+LN(WX—UZ)+V%=%’]+v§% (2.17)

Z-Momentum
N(ug—‘;(‘-+wg—'%)—Lu(wx—u2)+v§—$=§2+vﬁ§ (2.18)




Here 31 and EZ are pressure-gradient parameters defined by

aUe BUe
E] =N (Ue 57—-+ Ne Y + Lwe(WeX —-UeZ) (2.19a)
2 TR
82—N Ue?ﬁ(—+ Ne 82 '—LU (WX—U Z) (2.]9b)

The function S is obtained by integrating the expression

1 z
o 5 15;(1“ 1))] / (2.20)
—¢F

subject to S=0 at £=-1, and

ds
S

st2 2
i L-g—(ﬁg»f s (2.21)

Along the line of symmetry, (2.16) to (2.18) become:

Continuity:
ol v _
N (ax + wz) 3 LUX = 0 (2.22)
X-Momentum
2
) )
NU U+va$ Bt + v 5 (2.23)
oY
Z-Momentum
iy 5 W, azwz
— e i —— i *
N U=t Wy Lu(wzx u) +V = B + v avz (2.24)

where wZ denotes oW/3Z and the pressure-gradient parameters Bf and 83
are now

- e = Ze i &
=N, 5 ¢ ¥ N(Ue X +w2e) LUe(NZeX Ue) (2.25)

The appropriate boundary conditions are:

Y=0, U=V= NZ =0; Y+, U~ Ue(X), NZ > WZE(X) (2.26)




At the stagnation point So, where both U and W are zero, the governing
equations (2.22) to (2.24) and their boundary conditions (2.26) reduce to:

Continuity
; N(UX + NZ) + =0 (2.27)
E X-Momentum
? il azux
D = kk a8
NUX + ¥ 5V Bf* + v — (2.28)
iy aY
Z-Momentum
a. Al azwz
—— = *k 4
NwZ +V =V BS* + v aYz (2.29) :
Y = 0, UX = V = wz = 0; Y > o, UX = Uxe, NZ = wze (2-30)

; In (2.28) and (2.29), the pressure gradient parameters sf* and 35* are
3

= N2 . e
Bf* = NUXe’ BS* = NwZe (2.31)

2.3 Line of Symmetry Transformations

To solve the line of symmetry equations, we find it convenient to use a
transformation which we employed in our previous studies. For the nose-
region equations given by (2.22), (2.23), (2.24) and (2.26), we let

U

= J-ref
i s (2.32)

and introduce a two-component vector potential such that

U=§j"_

-3 =_@a_)
Y W y v (N Y No — LyX (2.33)

L oY

In addition, we define dimensionless y and ¢ by

v = A aeve F(Xon*) (2.34a)
¢ = M eve G(X,n*) (2.34b)
8




Here Uref and c are respectively a reference velocity and length intro-
duced for convenience of comparison with Ref. 14; both are unity throughout this
paper. The line of symmetry equations for the nose region may now be written as

X-Momentum
" i = ' Qﬂ_ w 3F) *
F"'+ F"(NG — LFX) N(F s F ax) 8 (2.35)
Z-Momentum
" 2 hi -2 - 3G' _ o 3F) _ o
G N(G')® + LF'(G'X — F') + G"(NG — LFX) = N (F' X G ax) By
(2.36)
Here primes denote differentiation with respect to n* and
W
F' = ULL_ 3 8 = = Z (2.37)
ref ref
The boundary conditions (2.26) become
Ue wZ
n* =0, F=F"'=G=G"'=0; n* > o, F'—»U—-——, G'=U——(2.38)
ref ref

At some distance away from the nose, we also find it more convenient to
express the governing equations (2.10) to (2.13) in terms of new variables
defined by

n =dref y (2.39)

\)S-l

where 51 is the arc length along the x-coordinate given by
X
51 = fh]dx (2.39b)
-1

Again we introduce a two-component vector potential that satisfies the con-
tinuity equation (2.10),

v Y Y
= ?i- = -Q—Q- - ﬂ v
hy = 35 wghy = 35, vnyn, = — (34 3) (2.40a)

together with dimensionless ¢ and § given by

¥ = /gy hyflx,n) ¢ = AU¢v8) hyg(x,n) (2.40b)

e




Equations (2.10) to (2.12) then can be written as

x-Momentum

' t L = ! .Bf_'_. u ﬁ

f1 4 m FEY o+ myfig + mg m7(f L ax) (2.41)
z-Momentum

gu|+ m]fg" + nggu + m3f|gl _m4(g')2 + m5 = m7 (f' %g——g" %) (2.42)

Here primes denote differentiation with respect to n, and the quantities
Ms «ees My denote the dimensionless parameters:

] e 5
™M =7~ 51K Y R o il o
2
s u_ W W
& & o e _be . 0
My = Mps o S (}ﬁ ax ' b, Kz”e”ee) (2.43)
ref |
e teta . |
6 U? F;'ax 8 7 h
ref
Also q
U 8
f!l = 50—, g' = — (2.44)
Uref Upef
The boundary conditions become:
u W
n=0, f=f=g=9¢'=0; n+w, fogf—= g =5 (2.45)
ref ref

10




IIT. FORMULATION FOR SLENDER PROLATE SPHEROIDS

As we shall see later, it is desirable and convenient to study the
boundary layers on very slender prolate spheroids, i.e., t -+ 0. To obtain
the governing equations appropriate for such bodies, we use the coordinates

(2.14) and (2.15) and define
_Y]—x?
p = T (3.1)

Then we take the limit t » 0, holding p and S finite. Again after a
considerable algebra, we obtain the following equations:

Continuity:
U, aW\, av
N (S ) - L) - (3.2)
X-Momentum
2
U aU U Fu']
N(uax+waz)+vaY+LW(wx uz) = % +vaY2 (3.3)
Z-Momentum
2
W oW oW B 23U
N(U;x—+waz) vW—Lu(wx—uz)-E2+va—Yz- (3.4)
Here
§ = 4 )1/2 expNi + p2 -1], (3.5a)
p
N=§, L = BAR =) (3.5b)
qui tp
'é' aUe BU
1= N[V 55 * W, a—z‘ + LW (WX —U2) (3.5¢)
oW oW
- i - .
32 N(Ue et Wy az) LU, (WX —U,Z) (3.5d)

and Ue is the limit as t > 0 of Uy cose + We sine, i.e.

n

I
}.
|




2
y = BXcosa_ _ , (1 _.EZ_L) sina (3.5e)
e , S
Syl +p
Similarly,
W = PZ cosn 2X§LQ i (3.5f)

e
S*ﬁ + p?
The boundary conditions satisfied by U, W, V are:
Y=0, U=V =W=0;
(3.6)

Y>> o u-» Ue’ W~ Ne \

These equations are explicitly independent of t and moreover are free of
singularities at p = 0. It can be expected therefore that the solution is
also quite smooth and in particular at the nose, now defined by X =Z =0
the numerical integration present no difficulties. It is interesting to
note from (3.5a) that a finite value of S corresponds to a finite value of
p, with S/p>1 as p -0, and hence from (3.1) to a distance from the
nose 0(t2). The set of equations (3.2), (3.3), (3.4) is appropriate there-
fore within a distance from the nose of general axisymmetric thin smooth bodies
of the order of the radius of curvature there.

To obtain the line of symmetry equations for the system given by (3.2)
through (3.4) and (3.6), we define

U= Uy (X,Y) + 0(z%) (3.7a)
V=V (X,Y) + 0(z%) (3.7b)
N=2Zexp(1 —\1 + pz)w](x,v) + 0(2%) (3.7¢)

We allow for negative values of X by permitting p to take negative values.
When p < 0, the sign of S in (3.5a) must be changed and generally X = S sgnp
in the limit Z > 0. Near the line of symmetry the longitudinal and transverse
components of velocity in the boundary layer are

u= U sgnp + 0(Z%) (3.8a)
pW
W= gz.(_—___] - uo) + 0(2%) v
1+ #1 * pz
12




respectively. We now substitute (3.7) into (3.2) to (3.4) and take the limit
Z >0, obtaining the equations

Continuity:
v " 2 aV
apo+ 1+p w]+¢+p2 aYO— R U, = 0 (3.9)
V‘|+p2+] Vp2+1+1
X-Momentum
2
u aU au 3"U
0 0 ) 0
—tee ot Vo 37 ef+v—;?- (3.10)
\h * p2 :
Z-Momentum
2
U, oM, oM, u? W2 o
h'o——ﬁ"'voaY = = Tl = 2t —
41+pE \h+pz 1+\h+p2 oY
(3.11)
with boundary conditions
Yo * Yoe LB
au
oe oe
5 (3.13a)
\‘1 + pz
2
oW u
oe le oe le
55 + erw]er (3.13b)
J]+p2 +p2 1+Ji+p2
|
Mo & p (3.13b)

13




and
Upe = BC0S2 — 2 sing (3.14a) ‘1
'41 & p2
(il + pE + 1) cosa + 2p sina (3.14b)
w] = : X
e
q] + pz
In order to place the above equations into a more convenient form (see
Chapter V), we now define n and V by J
n=—Yryy L (3.15a)
(1+p%) """ A

(1 +p2)l/4 b npUy
0 N 2(1 + p°)

(3.15b)

and write the continuity equation (3.9) and the two momentum equations (3.10)
and (3.11) as

Continuity
U 7
0,3V ,
3—p—+ a % a]UO + azw] 0 (3.16)
X-Momentum
2
aU ol o U
-0 O o -0
U° 5 + V'an Bf + an2 (3.17)
Z-Momentum 1
" , 22M, s
| 2 T— = B% + —— 3.18

Here ays 3, and a; are functions of p and are given by

= P L ¥ az=——_2__n+

a —
1 2
20+7) §24749 VieoZ

(3.19)
P

ag = —2—+
Vi +p2 W1 +pl e

14
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The pressure-gradient parameters in (3.17) and (3.18) are

oU oW,
= oe Yo o 12 le 2
BT 5 er p 85 er a3erw'le i er op * aZwle (3.20)

and the boundary conditions (3.12) remain unaffected, except now Y is
replaced by n. At the stagnation point, (3.16), (3.17) and (3.18) become

Continuity
Uy + 50 * aghy = 0 (3.21)
X-Momentum
2
U o U
3 o Ay 5 1
U Ve mlly ey o (3.22)
Z-Momentum
&
oW "W
2 .1 1
ahy + Vo= Byt v —3 (3.23)
an
where U] = auo/ap,
n=20, U, = V= W, =0
1 1
(3.24)
The pressure gradient parameters 31 and 32 are
A o s 2
8 = Uj,» B, = Mg, (3.25)
and
2 ;
U. = —cosa M, = (1 + §1 +p) cosa + 2p, sina (3.26)
le : e .
J' *P, sz + 1
with

P ™ 2 tana (3.27)

A ————————————re

-




IV. NUMERICAL METHOD

We use the Box method to solve the governing equations in Chapters II and
III. This is a two-point finite-difference method developed by Keller and
Cebeci. This method has been applied to two-dimensional flows as well as
three-dimensional flows and has been found to be efficient and accurate.
Descriptions of this method have been presented in a series of papers and

reports and a detailed presentation is contained in a recent book by Cebeci and

; Bradshaw]1. Therefore, only a brief description of it is presented below. J
4.1 Solution of the Line of Symmetry Equations: Finite-Thickness Case

f According to the Box method, we first reduce the equations (2.35) to

t (2.36) into a system of first-order equations. The system (2.35) to (2.36)
can either be expressed as five first-order equations or as six first-order
equations. For the line-of-symmetry equations, there is little advantage
(if any) between either choice. However, to get the solutions off the line
of symmetry, the choice of five first-order equations appears to be more con-
venient and more suitable for our numerical work. In our study we decided
to consider both choices. Here we shall describe the solution procedure for
the finite-thickness case when the system (2.35) to (2.36) is reduced to a
system of six first-order equations by introducing new dependent variables
U(Xsn*), V(X,n*), W(X,n*) and T(X,n*)

F' = U (4.1a)
Uu' = v (4.1b)
G' =W (4.1¢)
W =T (4.1d)
r ] e v = B_U. éf—
V' + V(NG — LFX) + B] N(U X _V aX) (4.1e)
T* — N2 + LU(WX — U) + T(NG — LFX) + &, = N(U BNt El  an
2 aX X
’ To solve the system (4.1) subject to
. Y ¥
n* =0, F:U:G:W:O; n* > o, U=Ue—, w='U—— (4.2)
ref ref

we first write finite-difference equations by considering one mesh rectangle

TFor convenience in referencing earlier papers or the box method we use in this
chapter a notation consistent with them. A partial reconciliation with that
of the remainder of this paper can be made by setting Upef = 1 but the V
used here should not be confused with the V defined in ?2.14c).

16




n*q

wor S
xn-]

Xn

Figure 2. Finite-difference notation for the Box scheme.

as shown in Fig. 2. We approximate (4.la,b,c,d) using centered difference
quotients, average them about the midpoint (Xp» n j -1/ 2) of the segment P,P,,
and approximate (4.1e,f) by centering them about the midpo1nt (X ]/2,nj 1/2)
of the rectangle P] 2 3P4 They are given below

h31(Fg "F§-1) = U§-1/2 (4.3a)
n3' ] ~ud4) = Vi, (4.30)
hg](Gg *‘G3-1) ™ “2-1/2 (4.3c)
hy O =) = 1, (4.3d)
hguv? RS (GV)J -1/2 ,_",(n(Fv)J 12 —e “”2)3-1/2 (FV)J o
i }/2"3 2 =iyl - RITY,,  (4.3)

“1(¢n _on 2\n n 2.1 a
hj (Tj Tj-'l) N" (W )J 1/2 + (L X -0 )(UN)J 12~ (U )j-'I/Z + N (GT)

j-172
* o ~UXD g = gl 1/2”; 12 * Uy }/2“'3l 172
R PURPELR 1251721 = S§ 12 (4.3f)
where with o =(N""2)/(x —x ) = N 1/2k;1
otz =l = W] 0 - [h31 (v;?" )N ](GV)j s

17

W ey ——




n-1 =1,n-1 n-1 N1

. Ln -1 - ](UN)j 2 - Ln- ](U )j 1/2 - ](GT)j e

The resulting difference equations given by (4.3) are nonlinear algebraic
equations which can be 1inearized by using Newton's method and then can be
solved by the block elimination method discussed in ref. 11.

The linearized difference equations for (4.3) can be expressed in the
following form, with 2 < j < J,

h.
8Fy = 8F5q =% (805 + sUy 4) = (rg)y (4.42)
sU; — 8U; 4 —;i (6U5 + 6U;_4) = (rg)y_q (4.4b)
asj —-GGj_1 —-;1 (ewj + 5wj_]) = (r])j (4.4c)
oWy — oWy 4 —;i (aTj + GTJ._]) = (rz)j (4.44d)
(51) 8Vy + (s, ) oVs_q * (53)jaFj + (54)j5Fj-1 + (Ss)jauj + (Sg) 3951
+ (S7)566; + (Sg)5665_y = (r3), (4.4e)
(By)y6T5 + (B)56T5 g + (B3)y8F; + (By)56F;_ 1 + (Bg5)58M; + (Bg)yoM;
+ (B7)50U5 + (Bg)joU;s_q + (Bg) 5865 + (Byg)4665 3 = (ry)y (4.4f)
Here
(57); = ;—j+ ;—N"Gg—;—(L"x" —un)F;.‘ —a—g F?j}lz
(Sp) = —:,—J_+ %—N"eg_]—;—(L’k"—an)Fg_] —; aan }/2
(83); = 3 [lag ="MW +aVI7] o]




(ry

(r

)

2);

n

[loy = L"X"W * o3 1/2]

-anU;

anug_1

;—N"V?

3 NI

Lokl — (%" —o JE0 = )

hj 2 i % *a J '|/2

o g A0 e . — " - =g Fq-]

A -1 n"j-1  “nj-1/2
%-[(an & Lan)Tg o Ty ]/2]

7 Loy —LMTY; + 0 7177 o)

_ang + ;—[(Lan - an)Ug a U j- ]/2]
'ang-] + ;— [L"x" — an)Ug_1 nY3- 1/2]
LMD+ 3 L o W+ anw;?:},zl
_L“Ug‘_] + ]2— L™ - an)W “nwg:}/zl
. N1}

T T

g 6] + h3 Wy

Wiy = + hJ‘TJ 12
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(4.6)




e
(r3). = R"

RS P S n n
§ = Ryorge — thy (V5 =¥y q) + N(GV);

nyn n
172 LK (Fv)J_]/2

2\n n n-1 n n -1
=LY 5 072 = (V50072 * Fiory2Yso172 = Viay2Fya2d

(rgdy = ST, = 3] - 700 - WA, + 0 -0 )(uw)’j‘_]/2

—" (U )j-]/z + N (GT)j-]/z + ( =~k )(FT)J 12 = @ [ wj ]/2 j-1/2

] n-1 ,n n-1 n-1 -n
| U M2t FyayeTyage ~ T2 el
L 1.n
Uglyy = Fig — J * b UJ 1/2

st o =1yn

For j =1, we use the wall boundary conditions and write

8U, =0 = (r,) !
: ‘ A, (4.72) ;
» 86y = 0= (r“?’).I 1
sWy = 0= (r4)1
and for j = J, we use the edge boundary conditions and write
8U, = 0= (r5)J
(4.7b)

GWJ =0 = (rG)J

The equations (4.4) for j =2, 3, ..., J and the boundary conditions
given by eq. (4.7a) for j =1 and by eq. (4.7b) for j = J, form a linear
system which is solved by the block-elimination method discussed in ref. 6.

Once the solution of the line of symmetry equations for the nose region
is obtained by the above described numerical method, we then solve the sys- i
tem (2.41) and (2.42) subject to (2.45) by a similar procedure.
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4.2 Solution of the Line of Symmetry Equations: "Zero"-Thickness Case

To solve the line of the symmetry equations (3.16) to (3.18) subject to
(3.12) for the "zero"-thickness case by the Box method, we reduce them to a
system of five first-order equations; we introduce new dependent variables
F(psn), G(p,n) and, with primes denoting differentiation with respect to n,
write (3.16) to (3.18) as

U' = F (4.8a)

g W= G (4.8b)

gg + V' 42U + ah, =0 (4.8¢)

! F' o+ gb —TF = U ag (4.8d)
2 5

T 2 i i}
G' + 85 — VG —U" —a,W + a3uw] = — (4.8e)
We now consider one mesh rectangle in the n, p plane similar to the one
shown in fig. 2 and write finite-difference approximations to (4.8) and get

-1,,n n S
h; (U5 —uj_]) = Fi12 (4.9a)
=1,n »
hy' (Wy —Ws_q) ej 1/2 (4.9b)
“Tm=n _ <0 n n
hJ (Vj = Vj—]) +(a-| + Gn)UJ 1/2 t az(w] )J 1/2 J ]/2 (4 9C)

n3 (F] = F]q) - (P340 = " W) = )1y (4:9)
ny' (6§ —634) ~ <GW3‘-1/2 = (WA)]q/2 — 230N Tq o + (@5 — /W)
‘3 - [y 12 U172 — Y5 1/2(”n)j 17217 T3 12 (4.9e)

where with o = 2/(p, —p, 1)
n-}/2 ”g:}/z S [h?(VS"] ’ng) : a?-1”2:}/2 +ap (W 15 1/2]
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-1 n 2\n n_ rp=lyen=1 _ n- o \N=1
[ n_ r=17en-1 _ .n-1
T2 =~ 72 (”“1)3 12~ (89" — [ (657 ~ 63 T)) - (@M, ]
n-1 _ n -1 n-1
~ ? );l 12 ¥ (83) (w1)‘1 ]/2 + ag (Uhl])J ,/2] ,
The resulting difference equations given by (4.9) are again nonlinear i

3 algebraic equations which are linearized by using Newton's method and are
solved by the block elimination method discussed in ref. 11.
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V. RESULTS

Results have been obtained and are presented for the solution of the
line-of-symmetry equations for the cases of finite thickness and "zero"
thickness and as a function of the angle of attack. The solution of the
equations off the l1ine of symmetry for both cases is still in progress and
will be reported later.

5.1 Asymptotic Theory for Zero-Thickness Case

It is appropriate to consider some general properties of the solution
before the presentation of the numerical results for the line-of-symmetry
equations for the zero-thickness case. The solution starts at the stagnation
point where we solve the equations given by (3.21) to (3.24) and the solution
is an example of the stagnation flow studied by Howarthlz. On the windward
side, p increases and the solution of (3.16) to (3.18) can be expected to
approach a simple asymptotic formas p > . Now as p + =, i.e. far from
the nose on the windward side, it is consistent to assume that all dependent
variables become independent of p and we have, with

V= -y (n), Wy — U, = ¥oln) (5.1)

and primes denoting differentiation with respect to n,

Up * %, = 0 (5.2)
\P"' + ¥ \yu e “/|)2 + (2 S].na)Z = 0 (5 3)
0 0’0 (] ;
where
?,00) = w100} <y (0} = 0 (5.4a)
and
wé(w) = 2 sina, Uo(w) = cosa (5.4b)

Thus the asymptotic solution on the windward side is essentially the same as
that for a forward stagnation point in two dimensions together with a trans-
verse boundary layer due to a uniform "cross-flow." The roles of cross-flow
and mainstream seem in fact to be reversed for our problem: W 1is the cross-
flow and is proportional to . when p >> 1 (see (3.8b)). Suitable prop-
erties of the asymptotic solution which may be compared with numerical results
include
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U (0) » 0.5788 (2 sina)'/? cosa (5.5)

Wy(0) > 1.2326 (2 sina)3/2 + 0.5788 cosa(2 sina)V/%  (5.6)

oy f (¥, = U )dn > 1.016 (2 sina)’? cosa (5.7)
0

b, = f(we - N1)dn + 4 t 0.6479 (2 sina)
0

1/2 (5.8)

as p > .

On the leeward side, we integrate in the direction of p decreasing and
once we are past the nose, so that p 1is negative, either 3U/3n vanishes
at some finite value ps(a) of p or it reaches a (negative) maximum (see
fig. 5) and then decreases again. In the first case a singularity develops
at p = pg (see ref. 12) and in the second the solution can be continued to
all negative values of p and there is a consistent asymptotic form which it
approaches. This form is in two parts. Near the body (n ~ 1) we write,
for large negative values of p

V = -¢°(n), W+ U, = ¢, (n) (5.9)

so that from (3.8b) -@6 gives the cross-flow velocity W. Then % satisfies
the same differential equations as ¥,» and U0 satisfies (5.2) and (5.3).
The boundary conditions are also the same as (5.4) but some comment is needed
about °6(°)' According to (3.14b) ¢6(w) should be equal to -2 sina but

it is well known that (5.2) and (5.3) does not then have a solution. The
soiution of this apparent contradiction is to be found in Proudman and
Johnson's study of the unsteady boundary layer near the rear stagnation point
of a two-dimensional bluff body13. This asymptotic solution may easily be
adapted to, our problem with p playing the roie of time. The appropriate
boundary condition to complete the specification of (5.10), (5.11) is then

¢6(m) = 42 sino (5.10)
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which means that near the body W/cose > 0 and so the boundary layer behaves
on the leeside and windward sides in essentially the same way — fluid is being
carried along the 1ine of symmetry and nearby the streamlines are curved away
from it so that fluid is also moving out of the symmetry plane. Also apart
from the obvious change in sign of Ué(O), the properties (5.5) to (5.8) are
! the same on the leeward side.

As n »> o, U0 + -cosa and hH + Uo + 2 sina whereas it should be
+ =2 sina. The adjustment of this boundary condition takes place over a
length scale in n which is an exponentially large function of p and in
which viscous forces can be neglected and Uo may be regarded as sensibly
constant. We write

£ = n exp(2p tana) (5.11)
V= 2 sinae™2P tanaF(E), N] + U° = -2 sinaF'(£) (5.12)

where primes now denote differentiation with respect to £. On substituting
into (3.16), (3.18) we obtain

(F = g)F“ = F'2 -1 (5.]3)
with boundary conditions

F' 1 as £ -+ =, F(0) =0 (5.14)

to match up with the prescribed mainstream conditions and with the inner solu-
tion (5.9) valid when n ~ 1 and hence when £ << 1. Specifically we notice
that F(0) = 0 implies F'(0) = -1. The solution of (5.13) is

F=g-2(1-e%) (5.15)

where ¢ is a constant dependent in some way on the history of the boundary
layer for finite p and determined by matching with the numerical computation.
Reference may be made to Proudman and Johnson's paper for details of the argu-
ments Teading to the choice of the scaling law (5.13) and discussion of vari-
ous alternatives.

A possible interpretation of this result is as follows. There is a curve
C on the paraboloid, symmetric with respect to the leeward line of symmetry
2 and open as p » -» on which the crossflow velocity is zero. The limiting
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streamlines of the boundary layer (or skin-friction lines) all start from the
stagnation point S0 and two of them are the windward &n and leeward 2
lines of symmetry. Limiting streamlines initially inclined close to on move
away from it as S increases ultimately asymptoting to C when 6 = 106°,
corresponding to the separation angle of a circular cylinder. The other limit-
ing streamlines also move away from the . and, once the nose is passed,
towards the & but eventually they must cross C when they turn back towards
. but never reaching it of course. Instead they either asymptcote to C

from the other side as p > -» or generate a separation line at finite values

of p.

A surface I can also be defined, standing on C, on which the cross-
velocity is zero. One of its principal properties is that its height increases
exponentially as p - -=. Streamlines in the boundary layer initially above
the 1imiting streamlines in the neighborhood of %, are directed away from
the paraboloid and this line and pass above z. Other streamlines also move
initially towards & and away from the body but once they cross I the cross-
flow velocity is reversed and they begin to move back towards L Further
if they are sufficiently near the body their outward motion is temporarily
also reversed, but not at z. Eventually they will again move away from the
body and are likely to end up asymptoting the inside of : or some separation
surface. Thus, the general shape of the streamlines is spiral although it is
unlikely that more than one revolution is completed. Complications can arise
if the streamlines form internal envelopes but evidence is lacking in support
of these possibilities.

5.2 The Two-Dimensional Airfoil

The equivalent results for the boundary layer near the nose of a two-
dimensional bluff body are obtained in a more straightforward way than for
bodies of revolution, but the fundamental equations take a little more space
to derive because a suitable reference is lacking. We begin by considering
the inviscid flow past an ellipse at an incidence o with circulation 2m«
(neglected in Chapter 2). We define (x,y) as Cartesian coordinates with
origin 0 at the center of the ellipse 0x along the major axis and Oy
aleng the minor axis. Then, according to complex variable theory, the
complex potential for attached flow is
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W= ze +¢z 'e + ik logz, z=r+ (5.16)

\H‘O

where w = ¢ + iy, ¢ 1is the stream function of the flow and z = x + iy.

In this solution the circle ¢ = A corresponds to the ellipse x = -(1 + c2)
cos6, y = (1 —-c2) sine and nondimensional variables are used so that the
fluid speed at infinity is unity and the major axis of the ellipse is

201 + ¢2).

We are specifically interested in the neighborhood of the nose (i.e.

x = -(1+ cz), y =0) when 0 < (1 —-cz) << 1. Let us write 1 —-c2 = 2¢,
so that t is the (small) thickness ratio of the ellipse and
o = -tg (5.17)

Near the nose x + 2 = tzgz, y = 2t25 on the ellipse, and the velocity of

sTlip round the ellipse is

ue(g) = _L:B_ (5.]8)

Vel +1

when ¢ = 0(1), where Bt = (20 —«). From thin airfoil theory we may take
k = o and we shall assume B > 0.

The boundary-layer equations needed to reduce this slip velocity to zero
at the ellipse are now easily obtained. We suppose, that the normal distance
Y from the ellipse and the streamfunction y are scaled with tv/2v where
v 1is the kinematic viscosity and arc length X on the ellipse with 2t2
so that

Nﬁ + 52 + —;-sinh']g (5.19)

With external velocity distribution given by (5.18) and with surface
distance given by (5.19), the governing boundary-layer equations are solved
by the Box scheme described in ref.11. The solution procedure starts at

N'-—'

X =

X =0 with £ =8 where

X=X —-Xo

with X0 computed from (5.19) by letting ¢ = 8. The integration, which
starts as the Hiemenz stagnation point flow, tends to the Blasius form on

the pressure side of the airfoil as X » +=, On the suction side X
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decreases and u, reaches a negative minimum value of -{1 + 82) at ¢ = -1/g,

i.e. just past the nose, and thereafter increases again to -1 as X » -=
(see fig. 3). Provided, therefore, that the integration does not break down
at a finite value of X, the solution on the suction side also takes on the
Blasius form as X » -». However, if the pressure gradient parameter g is
strong enough, the solutions indicate separation. This occurs if

g > g* = 1.155 (5.20)

For these values of B8, the solution is terminated at the separation point
i; shown in figure 4 as a function of 8. It is interesting to compare this
criterion for the onset of separation with the experimental data provided by
Gau]tz. For the NACA 663-018 airfoil with a leading-edge radius of curvature
corresponding to t = 0.20, incipient separation occurs when o = 7°, i.e.

B = 0.61. The most 1ikely explanation for the discrepancy with (5.20) is that
this airfoil is not exactly parabolic near the nose. Thus, if we define B8

by the position of the forward stagnation point, B =1 at o« =7° and if
we define it by the pressure minimum 8 = 1.45. A somewhat similar situation
occurs with the modified NACA-0010 airfoil. Here t = 0.16 and the corres-

ponding values of B8 are 0.43, 0.6 and 1.0.

u
e
1.0

1 = 1 | J

-12 -8 -4 4 8
X
-1.0L
Figure 3. Variation of u_ with X for 8 = 0.9.

e
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Figure 4. Variation of separation point with B&.

5.3 Numerical Results for the Line of Symmetry Flow

The numerical results obtained here are in good agreement with the earlier
results for finite thickness by Wang9 and in Hirsh and Cebeci]4 and for "zero"-
thickness by the asymptotic theory of Section 5.1. Figures 5 and 6 show, for
the zero-thickness case, the variation of the longitudinal and transverse
components of wall shear, namely u6(0) and Ni(o) with p for various
angles of attack. On the leeward side the longitudinal component of the wall
shear develops a maximum and a minimum for moderate but not too large values
of a. As a increases, the peak and dip in the wall shear on the leeward
side near the nose becomes more pronounced and at o = 41°, this component
of the wall shear actually vanishes at Ps = -1.38, terminating the computa-
tion. At larger values of o, it vanishes nearer the nose and indeed formally
we may expect that as o -+ 90°, separation takes place at p = 0. The vari-
ation of Ps with o 1is shown in figure 7. Also shown in figs. 5 and 6 are
the asymptotic values for Ué(O), N&(O) and o = 30° both on the windward
and leeward sides computed from (69) et seq. It is clear that the results are

consistent.
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Figure 7. The variation of separation poiiit pg on paraboloids of zero
thickness ratio with a.

The calculations for the leeward side also indicate that in the region
where Ué(O) exhibits a maximum and a minimum, the boundary-layer thicknesses
of Uo and w1 are nearly the same. After the dip in Ué(o) or rise in
Wi(O) (see fig. 6), the cross-flow component develops a very thick boundary
layer; the boundary thickness of the longitudinal component of the flow remains
nearly unchanged. Figure 8 shows that variation of the cross-flow profile
(3.8) on the leeward side Sw/Z for various values of p at o = 30°. The
double structure is developing quite strongly, the inner part asymptoting to
the 1imit (74), the outer part is obviously thickening rapidly but p is too
small for us to comment usefully on the relevance of (76), (80). In figure 9
we display the variation of the displacement thicknesses Ays 4, on the wind-
ward and leeward sides and compare with the asymptotic theory. The agreement
is good and we note in particular that A, increases rapidly as p decreases f
below Ps-

Figure 10 shows, for the finite-thickness case (t = 1/4), the variation
of the longitudinal local skin-friction coefficient, Ces for various angles
of incidence. These results agree well with those computed by Hirsh and
Cebeci]4 who considered only small angles of incidence and with those of Wang
who considered larger angles of incidence. The results also show, as in the
zero-thickness case, that the peak and dip in the skin-friction coefficient on

9
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P=0.1547

-

1.0 0.5 0 0.5 1.0
wS/Z

Figure 8. The profiles of the cross-flow velocity w at o = 30° for vari-
ous values of p: -0 -0-0 -0 are the asymptotic forms,
windward to the right and leeward to the left. The dependence of
w on Z/S has been scaled out.

the leeward side near the nose becomes more pronounced with increasing angle

of incidence and, the local skin-friction vanishes at approximately 42 degrees,

indicating separation. It is remarkable that this result is in excellent
agreement with the one computed by using the zero-thickness case. Further
comparisons and calculations will be made when the solutions are extended off
the Tine of symmetry for both zero and finite-thickness cases.
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| VI. DISCUSSION

; The principal result of this study is to bring out the difference between
nose-separation in plane and axisymmetric flows. In the first, separation
occurs at an angle of incidence =1.16t where t is a representative thickness
of the airfoil whereas in the second it occurs only for o« > 41° when

t << 1. Indeed from the earlier results at finite values of t, due to

wang15

we might expect that this is a minimum condition for all t. Care
must, of course, be taken in interpreting these contrasting conclusions. 1In
two-dimensional flows, there are essentially only separation points whereas

in three dimensions we have to consider separation lines and these may occur
near the nose at o < 41°. Indeed Nang15 has concluded from this study of

the prolate spheroid with t = 1/4 and a = 30° that there is a phenomenon
which he denoted by "open separation" in which the separation line is an
envelope of 1imiting streamlines on both sides (fig. 11).

A TSR T

Figure 11. Sketch of open separation.

It is possible that, as o - as(t), the upstream end of this line mbves
on to the leeward line of symmetry near the nose, with o > ag being the
condition for separation there. According to Wang15, the flow properties
between open separation and the leeward line of symmetry & are not fully under-
stood at present and the extension of the present theory to points off 2 may
be the simplest way of dealing with this region since there are no irregular-

ﬁ ities or small quantities in the governing equations.

The results obtained so far raise some interesting questions.
For one might suppose that when |p| >> 1, the mainstream flow consists of
a component, which is uniform at infinity and in the cross-plane of the body,
moving past a circular cylinder of very slowly varying radius. In addition,

there is a uniform component of velocity perpendicular to this plane. Very
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like the yawed-infinite-wing proLlem in fact! The windward asymptotic solu-
tion supports this view. Hence, i1 view of the independence princip]e]s, we
should be able to integrate the cross-flow equation (for w) independently
of those for when |p| >> 1 and since these lead to separation at o = 104°
(ref. 11) this point could give the asymptotic position of Wang's open-

separation line when o < 41° and |p| > =.

However, we are inclined to be cautious at present. For the singularity
in the cross flow at separation prevents the solution from being continued to
larger values of 6 whereas we know from the leeward line of symmetry solu-
tion that one can be found at 6 = n for all p. Further the use made of
the Proudman-Johnson theory in Section 5.1 suggests that there is an analogy
between the role of p in the present theory and of t in unsteady two-
dimensional theory. There has been some controversy in the past about the
values of unsteady boundary layers on the circular cylinder, particularly
as to whether they can develop singularities at finite times but it now seems
clear (ref.17) that they remain smooth, although growing exponentially near
the rear-stagnation point. Is the same situation true here? The main differ-
ences occur near the body when n ~ 1 and Uy # 1 so that the analogy fails
and if p A~ 1 when separation might take place on & if o is large enough.
If the analogy is nevertheless qualitatively acceptable, the conclusion is
that the flow is smooth over the nose region for all finite p but that
beyond a certain line, roughly given by the reversal of the cross-flow
component of the skin friction the cross-flow boundary layer increases rapidly
in thickness with p. On the other hand, the failure of the analogy when
n~ 1 may permit the existence of an open separation 1ine or even of a sepa-
ration tongue one end asymptoting to 6 = 104° as p2 + o and the other to
a larger value of .

This discussion seems to have relevance to yawed wings which are not
axisymmetric. The independence principle applies here too and suggests that
the boundary solution must be terminated at the separation of the cross flow.
We now wonder whether this is necessarily the case. Provided separation of
the boundary-layer component in the spanwise direction has not occurred near
the upstream wing-tip and the distance from the tip is finite, it may be
possible to carry out the integration beyond the cross-flow reversal right up
to the trailing edge. Of course, the cross-flow boundary layer then increases
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in thickness rapidly with p but the boundary-layer assumptions are still
valid so that we would be able, without any contradictions, to advance the
integration beyond the separation line in the form it is understood at
present. The avoidance of separation near the wing-tip might, however, not
be easy in practice, especially since an unyawed wing corresponds essentially
to setting o = 90°.

A final question raised by these studies concerns the flow near the nose
of smooth three-dimensional bodies, for example thin ellipsoids at incidence.
If the mainstream is symmetric about a plane of symmetry of the ellipsoid,
then the boundary layer on one of the lines of symmetry can be computed
using similar methods to those of this report and indeed our present results
can be regarded as limiting cases accordingly as the cross-section of the

ellipsoid is a circle (Section 5.1) or has an infinite major axis (Section 5.2).

Presumably the critical angle for nose separation varies from 41° to 0° as the
eccentricity of the cross-section increases from 0 to 1. It would be inter-
esting to know how close we must be to a two-dimensional form before separa-
tion occurs at relatively small angles of attack and indeed what is the effect
of an asymmetric mainstream so that there is no line of symmetry along

which the integration can be carried out independently of the rest of the

flow field.
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