
F —

AD AOb4 311 DOUGLAS AIRCRAFT Co LONG BEACH CALIF FIG 20/Is
STUDIES ON THREE—DIMENSIONAL BOUNDARY LAYERS ON BODIES OF REVOL——ETC (U)
AUG 18 T CEBECI. A K KHATTAB, K STEWARTSON N60921—77—C—OOfl

UNCLASSIFIED MDC J1985 NI.

I



IO  ~~~I .  L HU~~~~

_____  ~ I~~ ~ 2~2II l I I~~~~

I I ~~~~~~~~ HIII~
I _____ 1.8

I .25 1ff li~ IIflI~ . c

MICROCOPY RESOLUTION TEST CH*T
NATIONAL BUREAU OF STANDARDS-1963-~



•.1 L~

.~~~~ 

-
k--

-

~~~ 
V . 4

~V~

t’•. - - 
- ~b

~~~ - ~ ~~~~~~~
— ‘ 

~~~~~~~~~~~~

-
~~ ~~~~~~~~

~~~~~~y~-~ ~

>~

C-,
~ LU

-~~~~~ 
I

~ -r

O~~ UGLAS AIRCR~~FT Cø!I ’1RA~VV

Il1CDOT lP4~ELL

COR~~ORA7IO~v

Equations (2.10) to (2.12) then can be written as
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I. INTRODUCTION

This report describes one phase of the work done towa rds the development
of a general boundary-layer method for calculating three-dimensional boundary
layers on bodies of revolution at incidence . In this report we address our-
selves to the problem of computing boundary layers near the nose region and
with the onset of leading-edge separation ; this is important for the calcula-
tion of transition by stability theory and for the predicti on of downstream
flow properties incl uding possible separation .

It is well known that separation bubbles can develop near the forward
stagnation point of a thin , two-dimensional , plane airfoil at quite small
incidences. This phenomenon was first described by Jones 1 and later Gault2

carried out ~n extensive experimental study. Once separation occurs some new
features of the flow occur, including l ong and short bubbles , transition to
turbulence and bursting. A review of the developments has been written by
Tani3 and later Gaster4 reinforced Gault’s conclus ion that when separation
takes place a noticeable interaction takes place between the boundary layer
and the mainstream. The theoretical treatment of the interacti on is of special
interest to aerodynamicists and an important contributi on has been made by
Briley and McDonald 5 who interacted the boundary-layer and inviscid equations
over the majority of the flow field but used the full Navier-Stokes equations
in the neighborhood of separation . By these means they were able to avoid
the Goldstein singularity 6 which is an inevitable feature of classical boundary-
layer theory at separation when the pressure gradient is prescribed . We are
inte res ted , in this report, in the problem of leading-edge separation from a
rational standpoint in which it seems likely that the angle of incidence , that
just provokes separation , tends to zero with the thickness ratio t of the
airfoil. Further it appears that while the boundary-layer assumpti on remains
true so lon g as separation does not occur , once It does the singularity inevit-
ably appears . The correct limiting sol ution , as the Reynolds number based on
the leading-edge radius leads to infinity , is then of a different form and most
likely given by the Ki rchhoff-Sychev theory7 in V.,hich a free streaml i ne springs
from the airfoil at the maximum slip-velocity on the airfoi l and may never
reattach . The present study is concerned mainl y with determining the boundary-
layer properties when separation does not occur and to finding the critical
angle of Incidence which just provokes separation .

1
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The corresponding problem for bodies of revol uti on has received less
attention but there have been a number of important st udies by Wang on the
laminar boundary layers on prolate bodies of revol ution which have an import-
ant bearing and to which we shall refer In detail throughout this report.
The resul ts of his researches are sumarized in a recent review8. For
example , he has shown9’1° that, for the thickness ratio t = 1/4, separation
on the lees ide of the line of symetry occurs near the rear of the body for
angles of incidence a < 4Q0 but that at larger values of a a new separa-

tion develops very near the nose. The reason is essentially similar to that
for two-dimensional flows, being due to the high curvature of the nose. There
is a l ocal velocity overshoot followed ininediately afterwards by a short
adverse pressure gradient as the main stream returns to a value approximately
equal to that at an infinite distance upstream. If this gradient is insuf-
ficient to provoke separation , then the boundary layer continues to develop
smoothly unti l , near the rear stagnation point, it encounters a sufficiently
severe gradient to compel it to separate. Otherwise the boundary layer breaks
down near the nose and as in two dimensions no further progress appears to be
possible on a rational theory. It may well be that a freestream surface then
springs off the body but there is much less certainty than in two dimensions
about the flow properties once classical theory breaks down .

The remainder of the present report has been prepared in five sections.
The equations appropriate to prolate spheroids are considered in the follow-
ing section and for thin prolate spheroids in Chapter III: a coordinate
system appropriate to the nose region and transformations appropriate to the
l ine of syninetry are considered in subsections of Chapter II. Solution pro-
cedures are considered in Chapter IV where particular attention is devoted
to the “line of symetry” equations for the finite- and zero-thickness cases.
Resul ts are presented in Chapter V and discussed in Chapter VI.

2
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II. FORMULATION FOR PROLATE SPHEROIDS

2.1 Basic Equations

For a prolate spheroid at incidence (see Fig. 1), the governing boundary-
layer equations for an incompressible laminar fl ow in a curvilinear ortho-
gonal coordinate system are given by the following equations :

Figure 1. Notation for prolate spheroid at incidence .

Continuity

fr (h~u) + 
~~~~

- (h 1w) + ~~~~~
. (h 1h~v) = 0 (2.1)

x-Momen turn

(2.2)

0-Momentum

(2.3)

Here h1, h2 are metric coefficients defined by

h1 
jl + ~~(t

2 l)j  1/2 
h2 = t(l — ~2 )l/2 (2.4)

[ l — ~ J
where t denotes the thickness ratio (=b/a) of the elliptic profile. The

parameter (2 is the geodesic curvature of the surf ace lines F(=x/ a) = const.
and is given by

3
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2 1 2  (2.5)
h1h2 (l —

~~~~ 
) /

The solution of the system (2.1) to (2.5) requires boundary conditions
and initial conditions. The boundary conditions are :

y = 0, u = v = w = 0; y ~~, u -
~ 
ue(x

~
e), W + we(x,0) (2.6)

The velocity components Ue and We can be obtained from inviscid theory.
According to ref.l4 , they are given by

Ue
= V0(t) cosa COS8 

— V90(t) SIfla sifl8 cose (2.7a)

We 
= v90(t) sifla sine (2.7b )

ref

Here ~ denotes the angle between the line tangent to the elliptic profile
and the positive c-axis. It is given by

1/2

[1 + ~ (t —1)]

The parameters V0(t) and V90(t ) are func ti ons of t, def ined by

1V (t) = _ _ _ _ _  (2.9a)
° 

~(i — t2) — t2/2 1n~[1 + (1 — t ~)1”2J/[1 — ( 1  _ t 2 )~
/’2 ]~

2V (t)
V 0(t) = ° (2.9b )

2V0(t) — 1

The initial conditions in the 1ongiti~1ina1 direction can be calculated
by taking advantage of the syninetry conditions. Noting that the circumfer-
ential velocity in the boundary layer and the circumferential pressure gradi-
ent are identically zero on the line of syninetry, we differentiate this
equation with respect to e to obtain the so-called attachment-line equations
in the longitudinal direction : V

4
I
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Continuity

~~~~~~~~ 
(h2u) + h1w9 + 

~~~~~ 

(h1 h2v) 
= 0 (2.10)

x-Mornen turn

+ v ~~~= --j~--~~~+ vq (2.11)

0-Momentum

U 0 + 0 + v 
~~~~~~~

. — uw0 K2 = — + 
a W

0 (2. 12)

where w0 = ~w/~e. These equations are subject to the boundary
conditions :

y = 0, u ,v,w = 0; y u -+ ue~ 
w -

~ 
wee (2.13)

The specification of the initial conditions in the circumferential direc-
tion is not quite so easy when body-oriented coordinates are used because of
the singularity in the properties of h1, h2 and K2 at the nose (x = -1).
A common approach used to circumvent this unp leasant geometric singularity is
to revert to an approximate procedure by first performing the integration
along the line of symmetry from the stagnation point as near to the nose as
possible , then jumping around the body along the line to the same value of
x on the leeward side (0 = it) as shown in Fig. 1. Afterwards the solution may
be extended to more general points on the body. Such a procedure , while effec-
tive at moderate values of a and/or t leads to difficulties and to inac-
curacies as a increases and t -

~ 0. These diffi culties can be circumvented
as described in sections 2.2 and in Chapter III.

2.2 Nose Region Coordinates

The difficulties and inaccuracies associated with generating initial
conditions caused by the singula rities due to h1, h2 and in the cir-
cumferential direction can be avoided by using a suitable transformation near
x = -1. We define new vel ocity components Ii , W , V by

u = U cosO + W sine (2.14a )

5
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w = W cose — U sine (2.14b )

v = V/t (2.14c)
and new coordinates X ,Y,Z by

X = S cose (2.l5a)
Z = S sine (2.l5b)

Y = ~/t (2.15c)

Here S is a parameter which is a function of x, only, and defined in
(2.20) below.

The purpose of the above transformation is to convert the polar form of
the equations (2.1) to (2.3) near the nose into a quasi-rectangular Cartesian
form which is free of singularities. The basic reasoning behind this trans-
formation can be appreciated by noting the advantages of solving the Lap lac ian
near the origin in the form 

V

a 2 a 2

compared with

l a  1 a2

~~~

+ +

By means of this transformation it can be shown,after considerable algebra ,
that equations (2.1) to (2.3) reduce to

Continuity

N 
(~~~~

.+  
~

.) + }~~—L(UX + WZ) = 0 (2.16)

X-Momentum

N (U ~~~~+ W 

~
) + LW(WX — UZ) + V 

~~~~~

- = 
~l 

+ ~ U (2.17)

Z-Momentum

N (U .
~
. + ~ — LU (WX — UZ) + V = 

~2 + V (2.18)

6
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Here 
~l 

and are pressure-gradient parameters defined by

at) at)
= N (Ue ~~~~ 

We + LWe (WeX 
_ U

eZ) 
(2.l9a)

= N (u ~t 
+ W — LUe (W

~
X — UeZ) (2.1gb )

The function S is obtained by integrating the expression

~~ + ~2~~2 _ 1 ) )L~’2

t(l — 
~ 

)
subject to S = 0 at ~ = -1 , and

st2 2
(2.21)

Along the line of symmetry, (2.16) to (2.18) become:

Continuity :

N 
(
~~

- + w2) + ~~
. — LUX = 0 (2.22 )

X-Momen turn
2

(2.23)
aY

Z-Momentum

aW aW a2W
N (u _.~L+ w~) _LU (WzX —U) + V 8~ + V (2.24)

where W~ denotes aW/aZ and the pressure-gradient parameters 8t and

are now

= NU = N(U e ~ Ze + — LUe (W
~e

X — Ue ) (2.25)

The appropriate boundary conditions are :

Y = 0, U V = W~ = 0; V ~ ~~, U -
~
- Ue(X )

~ 
W~ -

~ 
W
~e (X) (2.26 )

7
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At the stagnation point S0 , where both U and W are zero , the governing
equations (2.22 ) to (2.24 ) and their boundary conditions (2.26 ) reduce to:

Continuity

N(Ux + W z ) + Vy = 0 (2.27 )

X-Momentum

aU a 2
ii

NU~ + V ~~~A- = + ~ ~~~~~~ (2.28) 
- 

-

Z-Momentum

a2W V

NW2 + V _ _
~~= 8 **+v —i- (2.29 )

Y O ~ U
~~~

V W
~~~

O ~~~~ U~~+ U~~ W
~~

+ W z~ 
(2.30 )

In (2.28 ) and (2.29), the pressure gradient parameters 
~~ 

and are

= NU
~e~ 8~* = NW

~e (2.31 )

2.3 Line of Symmetry Transformations

To solve the line of syninetry equations , we find it convenient to use a
L transformation which we employed in our previous studies. For the nose-

region equations given by (2.22), (2.23), (2 .24) and (2.26), we let

= 
~~~~~~ (2.32 )

and introduce a two-component vector potential such that

u = .
~

. 
, 

~~~~~ , v = — ( N~~- + N ~ — L*x) (2.33)

In addition, we define dimens ionless ~p and c~ by

* 
= /i[~fvc F(X ,n*) (2.34a)

= VlJref V
~ 

G(X ,~*) (2.34b)

8
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Here Uref and c are respectively a reference velocity and length intro-
duced for convenience of comparison with Ref. 14; both are unity throughout this
paper. The line of symmetry equations for the nose region may now be wri tten as

X-Momentum

F” + F”(NG — LFX ) = N (F’ ~~~~
— —  F” s-)-- 8 (2.35 )

Z-Momentum

F G” — N(G ’ ) 2 + LF’(G’X — F’) + G”(NG — LFX) = N (F’ ~~— —  G” 
~~~~~ 

6

(2.36 )
Here primes denote differentiation with respect to r~* and

w
r i —  U (~ I _  Z_
F U ‘ U tFref ref

The boundary conditions (2.26) become

U W
= 0, F = F’ G = G’ = 0; ~~~~ + 

~~~, F’ U 
e 

, G’ = ~ (2.38)
ref ref

At some distance away f rom the nose , we also find it more convenient to
express the governing equations (2.10) to (2.13) in terms of new variables
defined by

n =4

~~~~~~ y (2.39a)

where 
~l 

is the arc length along the x-coordinate given by

= fh1dx (2.3gb )

Again we introduce a two—component vector potential that satisfies the con-
tinuity equation (2.10),

uh2 = ~~
. 

, w0h1 = ~~- , vh1h2 — (
~

-+ 
~
) 

(2.40a )

together wi th dimensionless ~ and ~ given by

= V’4,ef~
)5l ‘2~~’”~ 

= 

~ ref”~l 
h1q(x ,n) (2.40b )

9
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Equations (2.10) to (2. 12) then can be written as

x-Momentum

f”’ + m1ff” + m2f”g + m6 
= m7(f’ ~ — — f” 

~~
.) (2.41 )

z-Momentunl

g”+ m1fg” + m2gg” + m3f’g ’ — m 4(g’)
2 + m5 = n17 (f’ }~-—g ” ~i) (2.42 )

Here primes denote differentiation wi th respect to n, and the quantities
..., m7 denote the dimensionless parameters:

m1 = ~- -— s1X2, m2 = h~
- m3 

=

s /u aW 142
m4 = m2, m5 = 2

1 
~~~ a? + — 

~~e1
~
bee) (2.43)

Uref 2

~l Ue 3Ue S
1m6 2  ~~~~~~ 

m7 = W_
ref

V Also
W

= 
~~

‘ = (2.44)
ref ref

The boundary conditions become :
U W

= 0 , f = f ’  = g = g ’ = 0; i~ 
- . 

~~~, f’ + ~ g ’ = ee (2.45)
ref ref

10
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III . FORMULATION FOR SLENDE1~ PROLATE SPHEROIDS

As we shall see later, it is desirable and convenient to study the
boundary l ayers on very slender prolate spheroids , i.e., t + 0. To obtain
the governing equations appropriate for Such bodies , we use the coordinates
(2.14) and (2.15) and define

~ 
~l — x 2 (3.1)

Then we take the limit t + 0, holding p ana S finite . Again after a
considerable al gebra , we obtain the following equations :

Continuity :

N 
~~~ 

+ .
~

-)÷ 
~~~

. — L (Ux + WZ) = 0 ( 3 . 2 )

X-Mornentum

N (U . + W 
~

-)+ V .~~ . + LW(WX — UZ) = 
~ l 

+ ~ ~~ (3.3)

Z-Mornenturn

N (u ~~~~+ W 
~~~~~~~ 

V ~~- — LU (WX — uz) = 
~ 2 

+ V ~ W (3.4)

Here

= 2 ~‘2 
expl4~ + ~ —1 ] ~ (3.5a )

(1 + p ) ’  +1

N = ~~ , L = ~~ ~~~~~~ , (3.5b)P L 2
V pS~Il + P

= N (Ue ~~ + W + LWe(WeX — Ue~ (3.5c)

= N (Ue ~~ + W .
~
) — LUe (W eX — UeZ) (3.5d )

and Ue is the limi t as t + 0 of Ue cose 
+ We sine , i.e.



V V — V~ V ~~~~~~~~~~~~~~ V V V V V ~~~ V 
-- - — V  - -

= pX cosa — 2 (1 — 
PX2L) s ifla (3.5e)e

Simi larly,

= 
pZ coscz + 2XZLp sina (3.5f)e~~~~~~~~-~-

The boundary conditions satisfied by U , 14, V are:

Y 0 , U = V = W = O ;

(3.6)
U + U e~ 

W + W

These equations are explicitly independent of t and moreover are free of
singularities at p = 0. It can be expected therefore that the solution is
also quite smooth and in particular at the nose, now defined by X = Z = 0
the numerical integration present no di fficulties . It is i nteresting to
note from (3.5a) that a finite val ue of S corresponds to a finite val ue of
p, with S/p -

~
. 1 as p -~

. 0, and hence from (3.1) to a distance from the
nose 0(t2). The set of equations (3.2), (3.3), (3.4) is appropriate there-
fore within a distance from the nose of general axisyninetric thin smooth bodies
of the order of the radi us of curvature there .

To obtain the line of symetry equations for the system given by (3.2)
through (3.4) and (3.6), we define

U = U~~(X ,Y) + 0(Z
2 ) (3.7a)

V = V0(X,Y) + 0(z 2 ) (3.7b)

W = Z exp(1 _ SJl + p2)W1 (X,V) + 0(Z3) (3.7c)

We allow for negative val ues of X by permitting p to take negati ve values.
When p < 0, the sign of S in (3.Sa) must be changed and generally X = S sgnp
in the limi t Z ~ 0. Near the line of symmetry the longitudinal and transverse
components of ~ie1ocity in the boundary l ayer are

u = U0 sgnp + 0(Z
2
) (3.8a)

and
= z (  pW 1 

— U + 0(z 3 ) (3.8b)
S\  F 2 0/

1 +V l  + p

12
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respectively. We now substitute (3.7) into (3.2) to (3.4) and take the limi t
Z + 0, obtaining the equations

Continuity :

~Ii + ~2 

~ 
+ ~2 !~Q._ ( _ _ _ _  

= 0 (3.9)p 
~l + p 2 + 1 

a

X-Momentum

U at) at)
° 

~
_2- + V ~~~~.= 8~~+ v —

~~~ (3.10)

~J l + p  a

Z-Momentum

U aW aW a 1
_ _ _ _ _  

l f y j .~~ 
0 + 1 — A U W  8*+ v —r 2 ap o a 1  2 U 2~ 

o o l  2 2
V l + p V l + p  l + V l + p  a

(3.11)

wi th boundary conditions

1 = 0 , U~~= V 0 = W 1 = O  (3.12)

V ÷ U0 U e W1 + W1
Here

U at)
= oe (3.l3a)ap 

V

Ii aW1 U2 142
= oe 

ap
e + oe 

— 

~oe1’
~1e~o 

+ le (3.l3b )

l + ~~~+ p ~

A = + p 
______ (3.l3b )

° l + p 2 
1 + p 2 + 1

~l + p 2

13
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and

Uoe = p.cosa — 2 ijn~ (3.14a)

+ p2

Wie = ~c~:~
I + p 2 + 1) cosa + 2p Sifla 

(3.14b )

~/i +

In order to place the above equations into a more convenient form (see
Chapter V ) , we now define i, and V by

n = ___________ — (3.l5a)
( l+ p )  ,

~~~~

(1 + 2~1/4 npU
V = V — 2 (3.15b)

2(l + p )

and write the continui ty equation (3.9) and the two momentum equations (3.10)
and (3.11) as

Continuity

at) —

~~~~~~ ~~~~~ a1U0 + a2W 1 = 0 (3.16)

X-Momentum
aU at) a2U

U0 ~~~~~~ V~~2.= 8~ + 
an~ 

(3.17)

Z-Momen tum

a~WaW1 2 2 — ~~~ — ~ + 1 (3 18)U0 ~ — — a 3U0W1+ a2W1 + 1) + V an — 
2

Here a1, a2 and a3 are functions of p and are given by

a = — — p - _ _ _ _ _ _ _

1 2(1 + ~2) 
~
Jp2 + 1 + 1 

‘ a2 
_

~~~~~~~~_:;:V;!
+ 1

(3.19)

a =  
_ _ _  

+ p

~ 
~~1 + p

2 
~~~~+ p 2

+ l

14
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The pressure-gradient parameters in (3.17) and (3.18) are

= 

~oe 
aU~~ 

= 

~oe — a3UOeWle + 
~oe 

awle + a2W~e 
(3.20)

and the boundary conditions (3.12) remain unaffected, exce pt now V is
replaced by ~~ . At the stagnation point, (3.16), (3.17) and (3.18) become

Continuity

U1 + ~~~~ ~ W1 = 0 (3.21 )

X-Momentum

2 all1 a2U1U.1 + V .
~~~~

— = + 

~ 
(3.22)

Z-Momentum
2aw a w . ,

a W 2 + V— ~-~~~ + V .~ (3.23)21 a~ 2 an’

where U1 = aU0/ap.

u1 = V = w 1 = o
(3.24)

U1 ~~ le W ÷ W 1

The pressure gradient parameters 
~i 

and are

= 

~1e’ ~2 
= a2W~e 

(3.25)

and

= cosa = 
(1 + + p

~) cosa + 2p~ 5ifla 
(3.26)le 

~~ 
e

with

p
0 

= 2 tana (3.27)
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IV. NUMERICAL METHOD

We use the Box method to solve the governing equations in Chapters II and
III. This is a two-point finite-difference method developed by Keller and V

Cebeci . Thi s method has been applied to two-dimensional flows as well as
three-dimensional flows and has been found to be efficient and accurate .
Descriptions of this method have been presented in a series of papers and
reports and a detailed presentation is contained in a recent book by Cebeci and

Bradshaw11 . Therefore, only a brief description of it is presented below.

4.1 Solution of the Line of Symmetry Equations: Finite-Thiçkness_Case

According to the Box method , we first reduce the equations (2.35) to
(2.36) into a system of first-order equations . The system (2.35) to (2.36)
can either be expressed as five first-order equations or as six first-order
equations. For the line-of-symmetry equations , there is little advantage
(if any) between either choice. However, to get the sol utions off the line
of symmetry, the choice of five first-order equations appears to be more con-
venient and more suitable for our numerical work . In our study we decided
to consider both choices . Here we shall describe the solution procedure for
the finite-thickness case when the system (2.35) to (2.36) is reduced to a
system of six first-order equations by introducing new dependent variables
U(X ,n*), V (X ,n*), W (X,n*) and T(X ,n*)

F’ = U (4.la)
U’ • V (4.lb)

= 14 (4.lc)
= T (4.ld)

v’ + V (NG — LFX) + 81 N(U .
~ - ....,V 

~~
-) (4.le)

— NW2 + Lu(wx — Ii) + T(NG — LFX) + = N(U ~~ — r (4.lf)

To solve the system (4.1) subject to
U W

F U G W 0 ;  ~~~~~~~~~ ~~~ e , W = ~~~
__ (4.2)

ref ref

we first write finite-difference equations by considering one mesh rectangle

tFor convenien ce in referencing earlier papers or the box method we use In this
chapter a notation consistent with them. A partial reconciliation wi th that
of the remainder of this paper can be made by setting Uref = 1 but the V
used here should not be confused wi th the V defined in (2.14c).
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Figure 2. Finite-difference notation for the Box scheme.

as shown in Fig. 2. We approximate (4.la,b ,c,d) usi ng centered difference V

quotients , average them about the midpoint (X~ n~_112) of the segment P1P2,
and approximate (4.le,f) by centering them about the midpoint (X~_1 /2)n~_1/2)
of the rectangle P1P2P3P4. They are given below

h~
1 (F~ —F~~1) = U~~~1/2 (4.3a)

h~
1 (U~ — U~~1) = V~~1/2 (4.3~)

h~
1 (G~ —G ~~1) = ~~~~~~~ (4.3c)

h~~(W~ 
~~~~~~~~~~~ 

= T~_ 112 (4.3d )

h~~(V~ — v~_1 ) + Nn(GV)~_1/2 
~~~~~~~~~~~~~~~~~~~~ 

— a~E (tJ2 )~_ 1/2

j-1/2 j-1/2 
_ V

~_112F~_112] - R~...112 (4.3e)

hj
1 (T~ —T~~1 ) — N~’(W

2)~ 1/2 + (L~x~ —a~)(UW)~ 1/2 1fl(~2)fl +

n n~, ~n r n—l n n—l n+ ~~ —L X ~~~~j—1/2 
_ a

fl~~ J_ 1 /2t)~_1/2 
+ U~,~1,2W~~1,2

+ Fn-l ~fl T~~l F” ~ — en-l
j-l/2’j-l/2 ‘j-l/2 j_1/2J — ‘j-l/2 .

where with a~ =(N
n_l /2)RX~ _ X n i ) = N

n_l /2k~
l

= ct~ E(FV ) .  1/2 — (~
2)~~/2] — rh

~
1
(Vr — V~~~) + N’

~
1 (GV )

~1/2

— L~~
1X~~

1 (Fv)~~ ,2] — 2(
~l )

fl.l/2
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n—i — ri ~n—1 , ‘~fl~l , r~~i , n 1  n l  n 1  , 2~n~lSi_ l i2 — a~L~FTJ~...112 
— ~UW~j — L j  ~T1 

— Tj — l ’ 
— N ~W ‘j—l / 2

+ ~~~~~~~~~~~~~ 
— L r

~~(u
2)~1/2 +

— L~~ X”~ (FT)~~ ,2] ...2(~~)
n_l/2

The resulting difference equations given by (4.3) are nonlinear algebraic
equa tions whi ch can be l inear ized by us ing Newton ’s method and then can be
solved by the block elimination method discussed in ref. 11.

The linearized difference equations for (4.3) can be expressed in the
following form, with 2 < j  < J ,

h.
~SFJ 

— .sF~_ 1 — ~~~~ (~sIi~ + ~U~~1) = (r5)~_1 (4.4a)

h
— ~U~_ 1 — ~~~~ (~U~ + ~sU~_ 1 ) = (r 6)j_1 (4.4b)

~~ ~~~~~ ~~~ (6W ~ + 

~~~~ 
= (r 1 )1 

(4.4c)

— oW~~1 
—

~~~~ (~T
1 

+ aT~~1) = (r2)~ (4.4d)

(S1 ~~~ + (52).~V .1 + (S3)1
dF~ + (S4)~~F~~1 + (S5).oU. + (s6)~6U~~1

+ (S7)1
oG~ + (S8)~~G~_1 = (r 3)1 

(4.4e )

+ (B2 )
1~

T~~1 + (~3 )
1

oF
1 

+ (~4 )
1~ F~~1 + (~5)j~Wj + (~6)1

6w~_1

+ (~7 )~ sU~ + (~8)jcSUj...1 + (89 )~~G~ + 10~j~~j- 1 = (r4 )j  (4.4f)

Here

= + ~ N~G~~~-(L
”X~
’ a~)F~’ — ~~~

. 
~~~~

(S2)1 
= —

~~~
- +  

~~N
nG l

_
~~ (Lrkr

~
_ a

n)F~~l 
—~- a~F~~~,2

(S3)J = 
~ [(a r —L~X”)V~ +

18
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(S4)1 
= 

~
- [(a n 

— LnXn)V~_1+ a~V~~ ,2]

—

~ 

— —a,~ 
~

= —a~U~~1

(S7)~ = ~~NnV~

= 
~
- N”V~~1

(
~ 

)
~ = ~~

_ + ~~ (N~G~ 
— (LnXn — a~ )F~ 

— a~F~~~12 )

~ 2~j 
= 

~~~ 
~
- (N~G~~1 

— (L nXn a)F~ afl F~~ /2 (4.5)

(B 3)~ 
= 

~~
- [(an 

— L~X~)T~ +

(B4)1 
= 

~
- [(a~ 

— L”X”)T~_1 + c1nT~
:
~,2]

(B5)1 
= _NnW~ + ~~ [cL~X~ — 

— anU
~~~/2)

(B6)1 
= _N nW~_1 + ~ - [(LnX n 

— an _ l  — anUj l/2]

(B7)1 
= -L~U~ + ~~ r(L~X~ — a~ )W~ + anW~~,2

]

(B8)~ 
= _L nU~_1 + ~~

_ E(L”X~ — a~)W~~1 + anW
~~~/2 ]

~‘ ‘
~~~~~~ 

— -

~~ 

‘
,
~

~ - 1 N~~”- 

~~~ j-1

and

(r 1 )~ 
= — +

(4.6)
(r2 )

1 
= W~~ 1 

— W ~ + h~~T~~112

V 
19
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(r3)1 
= ~~~~~~~ — (h~~~(V~ — V ~~~1

) + N~ (GV)~ _112 _ L r
~X~ (FV)~~112

2n n n-i n n-i_ ct
r[(U ~j—l/2 

— (FV)J_ 112 + F. 112V
1 1/2 — V 1_112F

1 112]}

(r4)1 
= S~~~~1~ 

_
{h;

1 (T~ — T~~ 1
) _ N n(W2)~~112 + (L”x~

_ 1 fl (~2)fl 
+ N~(GT)~~112 + (an — L ~)(FT )~ ~, 

— an[-W~~ ,2
Uj i,2

+ 
,,n— Wn 

+ ~n- T rfl rfluj...1/2 j—l/2 r j _ l/2 j— i/ 2  ‘j—l/2’ j—1/2

~ 
— n n + h - l nr j-l 
— 

j-1 
— 

j  j  1-1/2

(r6 )
11 = U~~~1 — U ~ +

For j = 1 , we use the wall boundary conditions and wri te

= 0 (r 1 )1

(4.7a)
6G1 = 0 = (r3)1

= 0= (r4)1

and for I = J, we use the edge boundary conditions and write

~U,~ = O =  (r~ )~
(4. 7b)

sW~ = 0 = (r5 )j

The equations (4.4) for I = 2, 3, ..., J and the boundary conditions
given by eq. (4.7a) for J = 1 and by eq. (4.7b) for j = J , form a l inear
system which is solved by the bl ock-elimination method discussed in ref. 6.

Once the solution of the line of symmetry equations for the nose region
is obtained by the above described numerical method , we then solve the sys-
tem (2.41) and (2.42) subject to (2.45) by a similar procedure.
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4.2 Solution of the Line of Symmetry - Equations : “Zero”-Thickness Case 

- -  _ _ _ _

To solve the line of the symmetry equati ons (3.16) to (3.18) subject to
(3.12) for the “zero”-thickness case by the Box method , we reduce them to a
system of five first-order equations; we introduce new dependent variables

‘ F(p,n), G(p,n) and , wi th primes denoting differentiation with respect to n,
write (3.16) to (3.18) as

U’ = F (4.8a)

= G (4.8b )

at)
— +  V’ + a1U + a2W1 = 0 (4.8c)

= U ~~!. (4.8d)F’ + B~ — V F  ap
a

G’ + — V G — U 2 — a2W~ + a3UW1 = U -
~~ —- (4.8e)

We now consider one mesh rectangle in the n, p plane similar to the one
shown in fig. 2 and wri te finite-difference approximations to (4.8) and get

h~~(U~ —U~~1) = F~~~112 (4.9a)

h~~(W~ — W~~~) = (4.9b)

h~~(V~ — V ~~~~
1
) ~~~~~ + a )Un + a~(W 1 )? = R

tI
~~ (4.9c )n j -1f2 j- l /2 j - l/2

2~n = 5n—l (4.9d )h~
1 (F~ — F~~1) — (FV~ 1/2 

— 
~~~~~ ~ ~j - l/2 1-1/2

h~~(G~ — G ~~1) — (GV)~ 1/ 2 
— (U2 )~ 1/2 — a ~ (W~)~~112 + (a~ — a ~/2)(UW 1)~~1,,2

n-i
+ ~ E( w

1
)
~
’
~~~ 

n— 11,~u1 1,2 — u ~~12 (w~)1 l/2~
= T~~112 (4.9e)

where with a~ = 2/(~~ 
— p~~1)

Rn-i n-i n—l n-l 
+ ~~~ (W )~~I

j-l/2 
= a~U1 1/2 

— [h
~~(Vr 

—V ~~) + a1 U1~ 1,2 1 j—l/2~
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= _~~~~~~ . (t)2)fl l  — (8~)~ 
— [h~~(F~~ — F~~~) — (Fv)

~1,2 +

= — —~
- (UW 1 )~:~/2 

— (a~)~ — [h~
1 (G~~

1 — G~~~) 
—

— (~2~f l l  
+ ,

. ~~n—l — n-i (W 2\n~ + a~~
1 “W ~n-l‘1—1/2 ~B2, a2 l’j - l/2 3 ‘~~ l’.j-l/2

The resulting difference equations given by (4.9) are again nonlinear
algebraic equations which are linearized by using Newton ’s method and are
solved by the block elimination method discussed in ref. 11.
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V. RESULTS

Resul ts have been obtained and are presented for the solution of the
line-of-symmetry equations for the cases of finite thickness and “zero”
thickness and as a function of the angl e of attack. The solution of the
equations off the line of symmetry for both cases is still in progress and
wi ll be reported later.

5.1 Asymptotic Theory for Zero-Thickness Case

It is appropriate to consider some general properties of the solution
before the presentation of the numerical results for the line-of-symmetry
equations for the zero-thickness case. The solution starts at the stagnation
point where we solve the equations given by (3.21) to (3.24) and the sol ution
is an example of the stagnation flow studied by Howarth’2. On the windward
side , p increases and the solution of (3.16) to (3.18) can be expected to
approach a simple asymptotic form as p + ~~~. Now as p ÷ ~~, i.e. far from
the nose on the windward side , it is consistent to assume that all dependent

V 

variables become independent of p and we have , with

V =  ~~~(n), 
~1 = (5.1)

and primes denoting differenti ation with respect to i~,

V 
u~ 

+ = 0 (5 .2)

~~~ + — ~~)2 + (2 sifla )2 = 0 (5.3)

where

= y~~(O) = u0(O) = 0 (5.4a)
and

~y~~(o) = 2 SIfict, 1J
0
(co ) = COSa (5.4b)

Thus the asymptotic solution on the windward side Is essentially the 3ame as
that for a forward stagnation point in two dimensions together with a trans-
verse boundary l ayer due to a unifo rm “cross-flow .” The roles of cross-flow
and mainstream seem in fact to be reversed for our problem : W is the cross-
flow and is proportional to when p >> 1 (see (3.8b)). Suitable prop-
erties of the asymptotic solution which may be compared with numerical results
incl ude
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lJ’(O) -
~
- 0.5788 (2 5ina )~

”2 coSct (5 .5)

W~(O) ÷ 1.2326 (2 slna)
3”2 + 0.5788 cosa(2 sina)1’~

’2 (5.6)

~l ~ e U0)d~ 1.016 (2 sina)~~
2 

COsa (5.7)
0

= f(W — W1 )dn + ~i 
+ 0.6479 (2 5ina )~~

2 (5.8)

as p -’-~~
.

On the leeward side, we integrate in the direction of p decreasing and
once we are past the nose, so that p is negative, either aU/an vanishes
at some finite value Ps(a) of p or It reaches a (negative) maximum (see
fig. 5) and then decreases again. In the first case a singularity develops
at 

~ 
= PS (see ref. 12) and in the second the solution can be continued to

all negative val ues of p and there is a consistent asymptotic form which it
approaches. This form is in two parts. Near the body (n 1) we write,

V for large negati ve values of p

V = -o0 (n), W1 + U0 
= •~(n) (5.9)

so that from (3.8b) -
~~~~~ gives the cross-flow velocity W. Then satisfies

the same differential equations as I’.~, and U0 satisfies (5.2) and (5.3).

V 
The boundary condi tions are also the same as (5.4) but some comment is needed
about o~,

(oo). According to (3.14b ) o~~(oo ) should be equal to -2 Sifl cz but
it is wel l known that (5.2) and (5.3) does not then have a solution . The
solu tion of this apparent contradiction is to be found in Proudman and
Johnson ’s study of the unsteady boundary layer near the rear stagnation point
of a two-dimensional bluff body 13 . This asymptotic solution may easily be
adapted to, our problem with p playing the role of time. The appropriate
boundary condition to complete the specification of (5.10), (5.11) is then

~~
‘ (oo ) = +2 sIfla (5.10)
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whi ch means that near the body W/cose > 0 and so the boundary layer behaves
on the leeside and windward sides In essentially the same way —fluid is being
carried along the line of symmetry and nearby the streamlines are curved away
from it so that fluid Is also moving out of the symmetry plane . Also apart
from the obvious change in sign of U~,(0), the properties (5.5) to (5.8) are
the same on the leeward side.

As r~ ÷ ~~, U0 + -COSa and W1 + U0 
÷ 2 sina whereas it should be

÷ -2 sina . The adjustment of this boundary condition takes pl ace over a
length scale in n which is an exponentiall y large function of p and in
which viscous forces can be neglected and U0 may be regarded as sensibly

V 
constant. We write

= n exp(2p tancx) (5.11)

V =  2 sinae 2
~ 

tanaF(~) W1 + U0 
= -2 sinaF’(~) (5.12) V

where primes now denote differentiation with respect to ~~~. On substituting
into (3.16), (3.18) we obtain

(F — ~)F” = F’
2 —1 (5.13)

with boundary conditions

F’ ÷ 1 as ~~ 
-

~ ~~~, F(O) = 0 (5.14)

V to match up with the prescribed mainstream conditions and with the inner solu-
tion (5.9) valid when i, “.. 1 and hence when ~ << 1. Specifically we notice
that F(O) = 0 implies F’(O) = -1. The soluti on of (5.13) is

F = ~ —~~~
- (1 _ e~~

C) (5.15)

where c is a constant dependent in some way on the history of the boundary
layer for finite p and determined by matching wi th the numerical computation.
Reference may be made to Proudman and Johnson ’s paper for details of the argu-
ments l eading to the choice of the scaling law (5.13) and discussion of vari-
ous al terna tives.

A possible interpretation of this resul t Is as follows. There is a curve
C on the paraboloid , symmetric with respect to the leeward line of symmetry

~. and open as p -
~
- -

~~ on which the crossflow vel ocity is zero. The limiting
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streamlines of the boundary layer (or skin-friction lines) all start from the
stagnation point ~ and two of them are the windward ~n and leeward i

lines of symmetry. Limiting streamlines Initially inclined close to Ln move
away from it as S increases ultimately asymptoting to C when e 106°,
corresponding to the separation angl e of a circular cylinder. The other limi t-
ing streaml ines also move away from the and , once the nose is passed,
towards the ~ but eventually they must cross C when they turn back towards

but never reaching it of course. Instead they either asymptote to C

1; from the other side as p ÷ -~~ or generate a separation line at finite val ues
of p.

A surface z can also be defined , standing on C, on which the cross-
velocity is zero. One of its principal properties is that its height increases
exponentially as p ÷ -~~~. Streaml ines in the boundary layer initially above
the limiting streamlines in the neighborhood of are directed away from
the paraboloid and this line and pass above ~~. Other streamlines also move
initially towards ~. and away from the body but once they cross ~ the cross-
flow velocity is reversed and they begin to move back towards Further
if they are sufficiently near the body their outward motion is temporarily
also reversed, but not at z. Eventually they will again move away from the
body and are likely to end up asymptoting the inside of E or some separation
surface. Thus , the general shape of the streamlines is spiral although it is
unl ikely that more than one revolution is completed. Complications can arise
if the streamlines form internal envelopes but evidence is lacking in support
of these possibilities .

5.2 The Two-Dimensional Airfoil

The equivalent results for the boundary layer near the nose of a two-
dimensional blu ff body are obtained in a more straig htforward way than for
bodies of revolution, but the fundamental equations take a littl e more space
to derive because a suitable reference is lacking . We begin by considering

- 

the inviscid flow past an ellipse at an incidence a with circulation 2rc
(neglected in Chapter 2). We define (x,y) as Cartesian coordinates with
origin 0 at the center of the ellipse Ox along the major axis and Oy
along the minor axis. Then , according to complex variable theory, the
complex potential for attached flow is 

V V V :V V±V± V

6 
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2
w = ~e

’ + c~~e
1 + i~c logc, z = + ~~

— (5.16)

where w = + i q~, ~p is the stream function of the flow and z = x + iy.
In this solution the circle ~ = e~~ corresponds to the ellipse x = -(1 + c2)
cose , y = (1 — c2) sine and nondimensional variables are used so that the
fluid speed at infinity is unity and the major axis of the ellipse is
2(1 + c2).

We are specifically interested in the neighborhood of the nose (i.e.
x = -(1 ÷ c2), y = 0) when 0 < (1 — c2) << l Let us write 1 — C 2 

= 2t,
so that t is the (small) thickness ratio of the ellipse and

e = -t~ (5.17)

Near the nose x + 2 = t2~~~, y = 2t2~ on the ellipse , and the velocity of
slip round the ellipse is

u (
~

) ~ (5.18)e

when ~ = 0(1), where Bt = (2a — ~~). From thin airfoil theory we may take
K = ct and we shal l assume B > 0.

The boundary-layer equati ons needed to reduce this slip velocity to zero
at the ellipse are now easily obtained. We suppose , that the normal distance
V from the ellipse and the streamfunction ~

p are scaled with tV~~ where
v is the kinematic viscosity and arc length X on the ellipse with 2t2

so that

x = ~~
- 

~/j  + ~2 + ~ sinh~~ (5.19)

With external velocity distribution given by (5.18) and wi th surface
distance given by (5.19), the governing boundary-layer equations are solved
by the Box scheme described in ref.ll. The soluti on procedure starts at
X =  0 with ~ = B where

= x —

wi th X0 computed from (5.19) by letting ~ = B . The integration , which

starts as the Hiemenz stagnation point flow, tends to the Blasius form on
the pressure side of the airfoil as X + +oo. On the suction side X
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decreases and ue reaches a negative minimum value of -(1 + 82) at ~ = -1/B ,

i.e. just past the nose, and thereafter increases again to -l as X -‘- -
~~

(see fig. 3). Provided, therefore, that the integration does not break down
at a finite value of X, the solution on the suction side al so takes on the
Blas ius form as X + -~~~. However, if the pressure gradi ent parameter 8 i s
strong enough , the solutions indicate separation . This occurs if

B > B* = 1.155 (5.20)

For these val ues of B, the solution is terminated at the separation point
shown in figure 4 as a function of B. It is interesting to compare this

criterion for the onset of separation with the experimental data provided by
Gaul t2. For the NACA 663-018 airfoil with a leading-edge radius of curvature
corresponding to t = 0.20, incipient separation occurs when a = 7° , i.e.
B = 0.61. The most likely explanation for the discrepancy with (5.20) is that
this airfoil is not exactly parabolic near the nose. Thus , if we define 8

by the position of the forward stagnation point , B = 1 at a = 7° and if
we define it by the pressure minimum B = 1 .45. A somewhat similar situation
occurs with the modified NACA-O0lO airfoil. Here t = 0.16 and the corres-
ponding values of B are 0.43, 0.6 and 1.0.

ue 

~ .0

— I I

-12 -8 -4 4 8

x

-1 .0

Figure 3. Variation of U
e 

wi th X for B = 0.9.
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5.3 Numerical Results for the Line of Symmetry Flow

The numerical results obtained here are in good agreement with the earlier
results for finite thickness by Wang9 and in Hirsh and Cebeci~

4 and for “zero”-
thickness by the asymptotic theory of Section 5.1. Figures 5 and 6 show, for
the zero-thickness case, the variati on of the longitudinal and transverse
components of wall shear, namely ti~,(0) and W~(O) with p for various
angles of attack. On the leeward side the longitudinal component of the wal l
shear develops a maximum and a minimum for moderate but not too large val ues
of a. As a increases, the peak and dip in the wall shear on the leeward
side near the nose becomes more pronounced and at a = 41°, this component
of the wall shear actually vanishes at p5 

= -1 .38, terminating the computa-
tion . At larger values of a , it vanishes nearer the nose and indeed formally
we may expect that as a + 90°, separation takes place at p = 0. The vari-
ation of p5 with a is shown in figure 7. Al so shown in figs. 5 and 6 are
the asymptotic values for U~(O), W~(O) and a = 30° both on the windward
and leeward sides computed from (69) et seq. It is clear that the results are
consistent.
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Figure 7. The variation of separation po :-1t Ps Ofl paraboloids of zero
thickness ratio with a.

The calculations for the leeward side also indicate that in the region
where U~(O) exhibits a maximum and a minimum , the boundary-layer thicknesses
of U0 and W1 are nearly the same. After the dip in U~(O) or rise i n
W~(O) (see fig. 6), the cross-flow component develops a very thick boundary
layer; the boundary thickness of the longitudinal component of the flow remains
nearly unchanged. Figure 8 shows that variation of the cross-flow profile
(3.8) on the leeward side Sw/Z for various values of p at a = 30°. The
double structure is developing quite strongly, the inner part asymptoting to
the limi t (74), the outer part is obviously thickening rapidly but p is too
small for us to comment usefully on the relevance of (76), (80). In figure 9
we display the vari ation of the displacement thicknesses ~~ on the wind-
ward and leeward sides and compare wi th the asymptotic theory. The agreement
is good and we note in particular that increases rapid ly as p decreases
below p

~
.

Figure 10 shows, for the finite-thickness case (t = 1/4), the variation
of the longitudinal local skin-friction coefficient, Cf~ for various angles
of incidence . These results agree wel l with those computed by Hirsh and
Cebeci 14 who considered only small angles of incidence and with those of Wang9

who considered larger angles of incidence . The results al so show , as in the

zero-thickness case, that the peak and dip in the skin-friction coefficient on
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Figure 8. The profiles of the cross-flow velocity w at a = 30° for vari-
ous values of p: - - - a - o are the asymptotic forms,
windward to the right and leeward to the left. The dependence of
w on Z/5 has been scaled out.

the leeward side near the nose becomes more pronounced with increasing angle
of inc idence and , the local skin-friction vanishes at approximately 42 degrees,
indicating separation . It is remarkable that this result is in excellent
agreement with the one computed by using the zero-thickness case. Further
comparisons and cal culations will be made when the solutions are extended off
the line of symmetry for both zero and finite-thickness cases.
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VI .  DISCUSSION

The principal result of this study is to bring out the difference between
nose-separation in plane and axisymmetric flows . In the first, separa tion
occurs at an angle of incidence =l.16t wtwre t is a representative thickness
of the airfoil whereas in the second it occurs only for a > 4 10 when

t << 1. Indeed from the earl i er results at finite values of t , due to
Wan g~~ we might expect that this is a minimum condition for all t. Care
must, of course , be taken in interpreting these contrasting concl usions. In
two-dimensional flows, there are essentially only separation points whereas
in three dimensions we have to consider separat~on lines and these may occur
near the nose at a < 410 . Indeed Wan g15 has concluded from thi s study of
the prolate spheroid with t = 1/4 and a = 3Q0 that there is a phenomenon
which he denoted by “open separation” in which the separation line is an
envelope of limiting streamlines on both sides (fig. U

Figure 11. Sketch of open separation.

V It is possible that, as a + a5 (t), the upstream end of this line rrbves
on to the l eeward l ine of symmetry near the nose, with a > a being the
condition for separation there. Accordi ng to Wang , the flow properti es
between openseparation and the leeward line of symmetry & are not fully under-

stood at present and the extension of the present theory to points off ~. may

be the simplest way of deal i ng wi th this region since there are no irregular-
ities or smal l quantities in the governing equations.

The results obtained so far raise some interesting questions.
For one might suppose that when I p i >> 1 , the mainstream flow consists of
a component, which is uniform at infinity and in the cross-plane of the body ,
moving past a circular cyl inder of very slowly varying radius . In addition ,
there i s a un iform co~iponent of velocity perpendicular to this plane . Very
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like the yawed-infinite-wing prollem in fact! The windward asymptotic solu-
tion supports this view . Hence, i~ view of the independence princi ple 16 , we
should be able to integrate the cross-flow equation (for w) independently
of those for when I~~~~ I >> I and since these lead to separation at e = 104°

— (ref. 11) this point coul d give the asymptotic position of Wang ’s open-
separation line when a < 41° and 

~PI

However , we are inclined to be cautious at present. For the singularity
in the cross flow at separation prevents the sol ution f rom being continued to
larger values of e whereas we know from the leeward line of symmetry solu-
tion that one can be found at e = ~ for all p. Further the use made of
the Proudman-Johnson theory in Section 5.1 suggests that there is an analogy
between the role of p in the present theory and of t in unsteady two-
dimensional theory. There has been some controversy in the past about the
values of unsteady boundary layers on the circular cylinder , particularl y
as to whether they can develop singularities at finite times but it now seems
clear (ref. 17) that they remain smooth, al though growing exponentially near
the rear-stagnation point. Is the same situation true here? The main differ-
ences occur near the body when n ‘

~
. 1 and u0 ~ 1 so that the analogy fails

and if p ‘~~ 1 when separation might take place on 9. if a is large enough.
If the analogy is nevertheless qualitatively acceptabl e, the conclus ion i s
that the flow is smooth over the nose region for all finite p but that
beyond a certain line , roughly given by the reversal of the cross-flow
component of the skin friction the cross-flow boundary layer increases rapidly
in thickness with p. On the other hand , the failure of the analogy when

‘
~
. 1 may permit the existence- of an open separation line or even of a sepa-

ration tongue one end asymptoting to e = 104° as p2 + and the other to
a larger value of e.

This discussion seems to have relevance to yawed wings which are not
axi syninetric. The independence principle applies here too and suggests that
the boundary soluti on must be terminated at the separation of the cross flow .
We now wonder whether this is necessarily the case. Provided separation of
the boundary-layer component in the spanwise direction has not occurred near
the upstream wing-tip and the distance from the ti p is finite , it may be
possible to carry out the integration beyond the cross-flow reversal right up
to the trailing edge. Of course, the cross-flow boundary layer then increases
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in thickness rapidly with p but the boundary-layer assumptions are still
val id so that we would be able , without any contradictions , to advance the
integration beyond the separation line in the form it is understood at
present. The avoidance of separation near the wing-tip might, however , not
be easy in practice, especially since an unyawed wing corresponds essentially
to setting a = 90°.

A final question raised by these studies concerns the flow near the nose
of smooth three-dimensional bodies , for example thin ellipsoid s at Incidence .
If the mainstream is symmetric about a plane of symmetry of the ellipsoid ,
then the boundary layer on one of the lines of symmetry can be computed
using similar methods to those of this report and indeed our present results
can be regarded as l imiting cases accordingly as the cross-section of the
ell ipsoid is a circle (Section 5.1) or has an infi ni te major axis (Section 5.2).
Presumably the critical angle for nose separation varies from 41° to 0° as the
eccentricity of the cross-section increases from 0 to 1. It would be inter-
esting to know how close we must be to a two-dimensional form before separa-
tion occurs at relatively small angles of attack and indeed what is the effect
of an asymmetric mainstream so that there is no line of symmetry along
which the integration can be carried out independently of the rest of the
flow field.
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