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ABSTRACT

We consider the usual n component monotone system in which each

component is either "on" or "off" at any time. That is, letting

1 if component i 1is on
x, =

0 otherwise

and x = (xl, e xn) , we suppose that there is a nondecreasing function

¢ such that

1 if the system is on under state vector x
$(x) =

0 otherwise.

The function ¢ 1is called the structure function.

Consider now an arbitrary such system and suppose that the ith
component is initially on and stay on for a random time Ti of which
point it goes off and remains off forever. The random times Ti 5
i=1, ..., n will be assumed to be independent and identically dis-
tributed continuous random variables. We are interested in studying the
properties of N , the number of components that are off at the moment
the system goes off. In Section 1 we compute the factorial moments of
N in terms of the reliability function. In Section 2 we prove that
N 1is an increasing failure rate average random variable and we also

present a duality result. In Section 3 we consider the special structure

in which the minimal cut sets do not overlap and we prove a conjecture

of El-Neweihi, Proschan and Sethuraman which states that N is an
increasing failure rate random variable. In the final section we

consider the special case of nonoverlapping min path sets.

REPRUSUPEU———




ON THE NUMBER OF COMPONENT FAILURES IN SYSTEMS
WHOSE COMPONENT LIVES ARE EXCHANGEABLE

by

S. M. Ross, Mehrdad Shahshahani and Gideon Weiss

0. INTRODUCTION AND SUMMARY

We consider the usual n component monotone system in which each

component is either "on" or "off" at any time. That is, letting

1 if component i is on
X, =

0 otherwise

and x = (xl, ST xn) , we suppose that there is a nondecreasing function

¢ such that

1 if the system is on under state vector x
o(x) =

0 otherwise.

The function ¢ 1is called the structure function. If Xi KEatc 600 L PR

are assumed to be independent binary random variables with P{Xi =1} =

Py = 1 - P{Xi = 0} then we define the reliability function r(p) by

r(p) = P{¢(X) = 1} = E[¢(X)] .

Consider now an arbitrary such system and suppose that the ith

component is initially on and stay on for a random time '1‘i of which

point it goes off and remains off forever. The random times Ti s

i=1, ..., n will be assumed to be independent and identically dis-

tributed continuous random variables (though as can easily be seen all

of our results will only depend on the fact that their joint distribution

is exchangeable).




- We are interested in studying the properties of N , the number
of components that are off at the moment the system goes off. (That is,
N is the number of component failures necessary to cause system failure
under the assumption that every time a component failure occurs the
failed component is equally likely to be any of the components that were
up at that time.) In Section 1 we compute the factorial moments of N
in terms of the reliability function. In Section 2 we prove that N 1s an
increasing failure rate average random variable and we also present a duality
result. In Section 3 we consider the special structure in which the
minimal cut sets do not overlap and we prove a conjecture of El-Neweihi,
Proschan and Sethuraman [2] which states that N is an increasing failure
rate random variable. In the final section we consider the special case
of nonoverlapping min path sets. In this section we make extensive use
of the duality principle to extend many of the earlier results both of this

paper and of [2].




R e sba iy o o o tifogan et atboma, gt Coall d L o e

1. FACTORIAL MOMENTS OF N

Let F denote the distribution of component "on" time and let
F=1-F. If welet T denote the time at which the system goes

off then

T = T(N)

where T(l) j_T(z) slsts E-T(n) are the order statistics of Tl, seas Tn .

Now let Y ..oy Y~ denote k independent (of each other and also of

1’ k
the Ti) random variables each having distribution F , and consider
P max X, < B . We have
{3-1,...,k : ‘N)}

n
P{ max Y <T = ) P{max Y, < T, ., | N=1}P{N = i}
% 1<j<k 3 (N)} i1 i @

(1

n
= z P{max Y, < T

it j (i)}P{N =i}

where the last equality follows from the fact that knowing that N = i
gives us information about the identity of the components which fail
but by the symmetry (exchangeable) assumption this yields no information

about the times at which these failures occurred. Now, P max Y, < T(i)
1gisk I

is just the probability that a given set of k elements in a set of

n + k elements are all chosen within the first k + i - 1 selections

in a nonreplacement random selection scheme. Thus
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Ll o -
i &=

k

P max Y, < T =
Lo

Substituting in (1) yields

2y P Y, <T -——l‘!——E[N(N+1) cee (N+k~-1)] .
{12-?; i (N)} @+ 01

However we can also obtain an expression for P{max Y., < T(N)} by

3

conditioning on max Yj as follows:

k-1
P{ max Y, < T(N)} =fP{'r(N) > t}kF~ “(t)dF(t)

1<j<k I A
H = k=1
(3) =fr(F(t), eees F(t))KF (£)dF(t)
0
1
- kfr(p, vess P =~ p3% Lep
0

where we have used the well-known fact (see [1] or [3]) that

PAT > ¢t} = v(F(e), ..., F(e)) . Equating (2) and (3) yields

Theorem 1:

1
E[N(N + 1) == (N + k - 1)] -ﬁ‘-:!—“&kfr(p)(l - 33
0

where r(p) = r(p,p, «..., D) .

z
i - -‘*]
i s it Al 5y




2. INCREASING FAILURE RATE AVERAGE (IFRA) AND DUALITY

The failure rate of a discrete positive random variable X is
defined as:

P(X = k

N -1 ¢

"SI LSS S

X 1is called increasing failure rate (IFR) if A, is nondecreasing in k .

k
1 k

X 1is called IFRA if X Z Aj is nondecreasing in k . We say X is
j:

1/k o

SSLSF (has star-shaped log survival function) if {P(X > k)}
nonincreasing in k . For continuous r.v. IFR => SSLSF <= IFRA ;

in the discrete case we have:

Lemma 1:

IFR = SSLSF => IFRA .

Proof:

We show first that:

k
PX>k)= 7 (1-21,) .
3=1 :

To see that we note that P(X > 1) =1 -P(X=1) =1 - X, and proceed

1
by induction to write:

P(X>k+1) =P(X>k) -PX=k+1)

k+l
PX>k)= m (1-21,).
3=t :

=P(X > k) - >‘k+1




Now X i1s (a) IFR, (b) SSLSF or (c) IFRA respectively iff (a) 1 - A

k ’

k 1/k s

() { m (L -21,) » OF (e)f = z (1 - A,) 1is nonincreasing in k ;
1 k b

jsl j-l

equivalently iff for k =1,2, ... , 1 - Ak+l is less than or equal to
((k k
(a) 1 -1 , (b) m (1 -1)) 1/k , or (c) 1 z (1 - X,) . Hence the
& j=1 ] k ja1 i

lemma follows by comparison of the smallest term, the geometric mean,

and the arithmetic mean.l

In addition to the random variable N we shall look at random
variables N(Oi) and N(li) », =1, ..., n, which will be the number
of component failures until system failure in the n - 1 component
systems with respective structure functions ¢(Oi;§) and ¢(li;§_)+ =

By conditioning on the first component failure, or by conditioning
on whether component i fails among the first k or not we get for
5 I RS O e

1

P(N > k) = B P(N(Oj) ik = 1)

Il o~—s

ji=1

(4) : |
k n -

et P(N(Oi) >k - 1) + N P(N(li) > k) .

We use these two different representations to see that for every k

there exists an i for which:

(5) P(N(Oi) > k) 5_P(N(li) >k +1).

In the following proof we shall use the inequality (see [3], page 217)

for 0<a<1l,0<2<1l,0<y<x

+
¢(Oi[§) = ¢(x1, vy xi-l’o’xi-l’ vy xn)

$CLnx) = 0(xg, vevy Xy 101yXg 0y vee, x) .




‘! m ln--—---------!lll---fl-Il.'!.ll..ll..llllll'.‘!
7

(6) e (1 - 0% s Ox 2~ )92,

We shall also use the fact that, for a>1,a>x >0 :

(7) (a - x)l/x is decreasing in x

which is easily seen by taking logarithms and writing

1 log a v xm—l
% log (@ - x) = -—§—~ -3

n=1 ma®

We now prove:

Theorem 2:

N is IFRA.

| . Proof:

We will show by induction on n that N has the stronger property

of SSLSF. For n =1, N=1 and N is IFRA. We shall now show that 1

1 1

(P > k + DI < e > 11K

while assuming that N(Oi) and N(li) are SSLSF; we choose i here
to satisfy (5).

. °  We start by using (4) to write:

PN > k) = -:‘; PNGO) > k - 1) + “—;‘E PON(L,) > k)

By the induction hypothesis the above is

VNS R B N e ——




8
k—l k
%P(N(O Y ap) B oAk PON(L,) > k + gyts
Since k-1 < k and P(N(0,) > k) <1 the above set of in~-
k k+1 i =

equalities can be continued as follows:

e k

> e > kT L Bokpmay > k+ DY

Now, by the inequality (6) applied to a = i—%_f !

= P(N(1,) >k + 1) 1P(N(01) > k) =

and

we have that the above is

ll 1 -(5‘—;—“)“ PONGO,) > k) +(“;k)k PON(L) >k + 1)

Finally by (5) and by the fact that from (7)

} e

we see that the above is

g k+1 K+l

_1_
3 (n -k - 1)1<+1

=

n ’
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k
k+1 n-k-1 K+l
1{—;— P(N(Oi) > k) + S P(N(li) >k + 1)}
k_
= (PN >k + 1} . m

A cut set is a set of components whose failure (of all components
in the set) ensures system failure. If a cut set has no proper subset
which is also a cut set then it is said to be a minimal cut set.
Similarly a minimal path set is a minimal (in the same sense as above)
set of components whose functioning ensures the system's functioning.

Hence if we sample components one at a time, without replacement,
then N 1is the number of components that must be sampled until the set
of sampled components contains all the components of at least one
minimal cut set, or, equivalently, at least one component of each
minimal path set.

Let us denote by N* the number of components that would have to
be sampled until we have sampled all of the components of at least one
minimal path set. Now as each of the n! outcomes of the order in which
the n components are sampled are assumed to be equally likely we can
associate with any particular outcome - say (11,12, awloy 1n) s the
outcome (having equal probability of occurring) which reverses the sampling

order - that is (i iz,il) . Now it is easy to see that

podaigs wovs

*
(il, sovy in)-’N'kf-’(in, coay 11)-N =n-k+1

for if the first k components 11. ...,ik contain a minimal cut set

and none of the first j components il’ veuy 1, 5 J € k , do, then it

3

follows that components { does not contain a minimal path

ke1® o000 Ip




set but 1j+1’ Latels 1n does for all j < k .

Hence by the duality of outcomes (11. At in) and (in. cass 11)

we see that

PIN=k} = P{N =n -k +1}.

*
Since N is an increasing failure rate average random variable by

exactly the same result as established this fact for N we have that

*
(PIN > i})lli is nonincreasing in 1

or, equivalently,

Corollary 1:

(P{N<n+1- i})lli is nonincreasing in i .




3. NONOVERLAPPING MINIMAL CUT SETS

' " 11

In this section we suppose that the minimal cut sets have no components

in common. (In reliability terms such a system would be a series arrangement

of nonoverlapping parallel structures.) This case has previously been
studied in [2] where among other things, it was conjectured that N 1is

an increasing failure rate (IFR) random variable. We now prove this.

Theorem 3:

If the minimal cut sets do not overlap then N is an IFR random

variable in the sense that

PIN=k +1 | N > k} 1is nondecreasing in k .

Proof:

Let the cut sets be numbered 1, ..., r , with nl, oieiaty nr

components respectively. Let Dk be the index of the cut set in which

the kth component failure has occurred (% =1,2, ..., n where

r

n = Z n, o, where we assume that component failures continue to happen
i=1

irrespectively of system failur;). Let x,(k) be the number of components

i

from cut set j that have failed in the first k component failures.
We prove that N is IFR by inductionon r . For r =1, N= ny

is constant and hence IFR. We now assume the theorem for r - 1 , and

in particular we assume that N' the number of component failures until

the system composed of cut sets 2, ..., ¥ with LOTERRR nr fails

is IFR.

We note first that:




12

T

PN=k+1|N>k) = le P, =5 xj(k) =n -1 | N> k)
e
-jzln_kP(xj(k)-nj-l|N>k)
since P(Dk+1 = j | xj(k) = nj -1, N>k) is independent of the event

N > k and is just the probability that the last component of set j

should fail.

Since is increasing in k , it is enough to show that for

-k
all §. P(xj(k) =n - 1| N> k) 1is nondecreasing in k . Obviously

it is enough to look at j =1 , and as P(xl(k) o 1 | N>k) =0

for k =0,1, ..., n, - 2 , we need only consider k >n, - 1.

1 1

We use the definition of N' to write

P(xl(k) =n, - PN > k)

PGy(k) =n, =1 | N>%) = a1
I POk =i, N>k

1=0

P(x) (k) =n, - 1)P(N > k | x; (k) =n, - 1) 3 P(x; (k) =n, ~1)P(N' > k-n, +1)

= nl-l nl-l ¢
I PGy =P > k) | x (k) =4) ] PG (k) = PN >k - 1)
i=0 i=0

To show that this is nondecreasing it is enough to show that for

P(xl(k) = {)P(N' > k - i)
P(xl(k) =n, - 1)P(N' >k - n

+ 1)

1 1

is nonincreasing in k .




Y

The assumption that N' is IFR implies that P(N'>k-1i)/P(N'>k=-n,+1)

1
is nonincreasing in k . Finally,

n

a,\/n - n B 7 e | |
Plx, (k) = 1) (il)(k - 11) J (“1 5 1)(“ okc; Bl 1) ?

r i P(x, (&) =n, - D) (n) (2)

k
2k = (Vom . e
(nl 1)! (k ny + 1) !(n ny k + n, 1)!

'i!(nl-i)! (k-DI@-n - k+1)!

and this expression is easily seen to be nonincreasing in k .H

Remark:

The same proof, with an obvious modification, would suffice to show

that N is IFR if system failure occurs the first time that r
h

i

components from the it minimal cut set fail, for some i , where J

r, < n, . (Such a system would be a series arrangement of nonoverlapping !

T, of N

structures.)
' i

b




B T—— . ﬁ

14

4. NONOVERLAPPING MINIMAL PATH SETS

There is no analogue to Theorem 3 in the case where the minimal
path sets do not overlap (such a system would be a parallel arrangement
of nonoverlapping series structures). For instance if n = 10 and
1 is a minimal path set and components 2, ..., 10 consist of a

second minimal path set then

0 k=0
PIN=k+ 1| N>k} =¢2/10 k=1
1
Wmex ~=k=°9

*
and so it is not nondecreasing. However it does follow that N (the
number sampled until a complete minimal path set is obtained) is increasing

failure rate in this case. Hence we have

Corollary 2:

* *
If the minimal path sets do not overlap then P{N =k + 1 | N > k}

is nondecreasing in k , or, equivalently,
P{N=1i | N < i+ 1} is nondecreasing in i .

In the case of nonoverlapping minimal path sets of sizes

n = (nl, «+es n.) let us define Pi(B) as the probability that the

ith minimal path set is the first minimal path set that is completely

sampled. This quantity Pi(B> was extensively studied in [2] under

the interpretation that n, was the size of the ith nonoverlapping

minimal cut set (and so Pi(g) could be thought of in [2] as the
h

probability that system failure is '"'caused'" by the 1t

minimal cut set). |

- o




Ry

*
Now let us define Pi(g) as the probability that the ¢th

minimal
path set is the last minimal path set to have had a component sampled
before the system failed (i.e., P:(g) is the probability that the
component whose failure causes system failure is from the ith minimal
path set).

Again by using the duality of outcomes (il, AE O in) and

(in, ielets il) we immediately see that

*
P.(@) =P, (@) .

(The reasoning is as follows: if all the components of the ith minimal

path set have just been sampled then at that moment the set of remaining

h

components does not contain a component of the it minimal path set -~

however the set of remaining components would have contained a component

of the i

minimal path set one selection earlier.) Hence all the
properties for Pi(g) derived in [2] also hold for P:(g) . For instance,
if we hold n; fixed and think of P:(g) as a function of (nz, ety nr)
then as shown in Theorem 4.8 of [2], this is a Schur concave function
of (nz, Ve nr) 5

Duality also yields additional results about N - namely writing
N(n) as a function of n = (nl, “ibtely nr) and using the equivalence

* *
between N(n) and N (n) it follows from the result about N (n)

given in Theorem 7.3 of [2] that

P{N(n) < 2} 4is Schur concave in n .
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