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ABSTRACT

We consider the usual n component monotone system in which each

component is either “on” or “o f f ”  at any time . That is , letting

if component i is on
x - ç

~O otherwise

and x (x1, ... , x )  , we suppose that there is a nondecreasing function

s~ such that

(1 if the system is on under state vector x
=

~O otherwise.

The function $ is called the structure function.

Consider now an arbitrary such system and suppose that the ith

component is initially on and stay on f or a random time T
1 

of which

point it goes off and remains off forever. The random times T
i

I = 1, .. ., n will be assumed to be independent and identically dis-

tributed continuous random variables. We are interested in studying the

properties of N , the number of components that are off  at the moment

the system goes off. In Section 1 we compute the factorial moments of

N in terms of the reliability function. In Section 2 we prove that

N is an increasing failure rate average random variable and we also

present a duality result. In Section 3 we consider the special structure

in which the minimal cut sets do not overlap and we prove a conjecture -~~~~

of El—Neweihi , Prosehan and Sethuraman which states that N is an

increasing failure rate random variable. In the final section we ~~~~~~~ ‘t~i ~~~~

consider the special case of nonoverlapping mm path sets. 
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ON THE NUMBER OF COMPONENT FAILURES IN SYSTEMS
WHOSE COMPONENT LIVES ARE EXCHANGEABLE

by

S. M. Ross , Mehrdad Shahshahani and Gideon Weiss

0. INTRODUCTION AND SUMMARY

We consider the usual n component monotone system in which each

component is either “on” or “of f” at any time. That is, letting

if component i is on
—

~O otherwise

and x = (x 1, .. ., x )  , we suppose that there is a nondecreasing function

$ such that

(1 if the system is on under state vector x
$(& —

~~~
~O otherwise.

The function $ is called the structure function. If X . , i = 1, ..., n

are assumed to be independent binary random variables with P{X~ = l} —

— 1 — P{X~ = O} then we define the reliability function r(E) by

r(~) P~$X) = 1) = E($(X)]

Consider now an arbitrary such system and suppose that the ith

component is initially on and stay on for a random time T
i 

of which

point it goes off and remains off forever. The random times Ti

i = 1, ... , a will be assumed to be independent and identically dis—

tributed continuous random variables (though as can easily be seen all

of our results will only depend on the fact that their joint distribution

is exchangeable).

4
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We are interested in studying the properties of N , the number

of components that are off at the moment the system goes o f f .  (That is ,

N is the number of component failures necessary to cause system failure

under the assumption that every time a component failure occurs the

failed component is equally likely to be any of the components that were

up at that time.) In Section 1 we compute the factorial moments of N

in terms of the reliability function. In Section 2 we prove that N is an

increasing failure rate average random variable and we also present a duality

result. In Section 3 we consider the special structure in which the

minimal cut sets do not overlap and we prove a conjecture of El—Neweihi,

Proschan and Sethuraman (2) which states that N is an increasing failure

rate random variable. In the final section we consider the special case

of nonoverlapping mm path sets. In this section we make extensive use

of the duality principle to extend many of the earlier results both of this

paper and of [2].
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1. FACTORIAL MOMENTS OF N

Let P denote the distribution of component “on” time and let

— 1 — F . If we let T denote the time at which the system goes

off then

T m T (N)

where T < T • •  < T are the order statistics of T , •..,  T(1)— (2) — (n) 1 n

Nov let ‘
~1~ ~~ ~k 

denote k independent (of each other and also of

the T~) random variables each having distribution F , and consider

P max Y < T . We have
(j—l ,... ,k ~ 

(Ni
t

P max Y < T 
N 

= ~ P~max Y < T 
~ 

N — i}P{N i}
(l~j<k ~ 1—1

(1)

— ~ P{max Y4 < T(j)}P{N — i}
i—i .5

where the last equality follows from the fact that knowing that N = I

gives us information about the identity of the components which fail

but by the symmetry (exchangeable) assumption this yields no information

about the times at which these failures occurred. Now, P max Y < T

is just the probability that a given set of k elements in a set of

n + k elements are all chosen within the first k + i — 1 selections

in a nonreplacement random selection scheme. Thus

4
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~i - i J  n! (k+i-l )~~ 
~1~j<k 

Y~ < T(j)~ = 

(k 
+ k ) — 

(n + k)! (I — 1)1

Substituting in (1) yields

(2) P 

~1~j<k 
~ T~~~

} 
= 
(n +k)! E[N(N + 1) (N + k — 1))

However we can also obtain an expression for P{max Y~ < T(N)
} by

conditioning on max Y. as follows:

P max Y < T 
N ~ PCT(N) > t}kF~

’
~~(t)dF(t)

~l~j<k ~

(3) =fr(~(t), .. .,

= kfr(p , 
~~~~~~~~ 

— p)
k_l

dp

where we have used the well—known fact (see [1] or (3]) that

P{T > t} = r(~ (t), ..., ~(t)) . Equating (2) and (3) yields

Theorem 1:

E[N(N + 1) •
~~~~ 

(N + k - 1) ] ~~ ~~~~ kfr(p)(1 - p)
k_l

dp

where r(p) — r(p,p, ... , p)

-5 --5
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2. INCREASING FAILU RE RATE AVERAGE (IFRA) AND DUALITY

The failure rate of a discrete positive random variable X is

defined as:

P(X — k)Ak — P(X > Ic — 1) , k = 1,2, ... .

X is called increasing failure rate (IFR) if A~ is nondecreasing in k

k
X is called IFRA if ~ A is nondecreasing in k . We say X is

j— l

SSLSP (has star—shaped log survival function) if {P(X > k)}
U1( 

is

nonincreasing In k • For continuous r.v. IPR ~ SSLSF -
~~~~ IFRA

in the discrete case we have:

Lemma 1:

IFR ~ SSLSF ~ IFRA

Proof:

We show first that:

— k
P(X > k) = iv ( 1 — A ) .

j—l

To see that we note that P(X > 1) = 1 — P(X — 1) — 1 — A
1 , 

and proceed

by induction to write:

P(X > k+1) - P(X ‘ k) - P(X= k+l)

k+l
— P(X > k) — Ai,+iP(X > k) — iv (1 — A 1)

j—l

4 - 

5 _ _ _ _ _ _ _ _ _



Now X is (a) IFR, (b) SSLSF or (c) IFRA respectively 1ff (a) 1 — A
k

(b) { iv (1 - A~)~
h/k 

, or (c) ~ (1 - A~) is nonincreasing in k
i—i i—i

equivalently 1ff for k — 1,2, ... , 1 — Ak+l is less than or equal to

k
(a) 1 — Ak , (b) iv (1 — , or (c) ~ (1 — X~ ) . Hence the

i—i i—i

lemma follows by comparison of the smallest term, the geometric mean,

and the arithmetic mean.R

In addition to the random variable N we shall look at random

variables N(O.) and N(l~) , i = 1, ..., n , which will be the number

of component failures until system failure in the n — 1 component

systems with respective structure functions $(O..;x) and $(lj;x)
t

By conditioning on the first component failure, or by conditioning

on whether component I fails among the first k or not we get for

-

P(N > k) = 
~ 
*P(N(0 .)> k- 1 )

(4)

= P(N(0 ) > k - 1) + 
n - k P(N(l ) > k)

n I a i

We use these two different representations to see that for every k

there exists an i for which:

(5) P(N(0
1
) > k) < P(N(l~) > k + 1)

In the following proof we shall use the inequality (see [3], page 217)

for O < a < l  , O < A < l  , O < y < x

1
$(01,x) — $(x 1, ..., x1_1~O~x~_1~ ... , x )

$(li,x) = +( x1, •..,  x
~~.i,

l,xj+1, .~~~~~~‘ x~~)

•

1 

S
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(6) X~x~ ÷ (1 - A~ )y
a 

> (Ax + (1 -

We shall also use the fact that, for a > 1 , a > x > 0

1/x(7) (a — x) is decreasing in x

which is easily seen by taking logarithms and writing

~ rn-i1 log a r X— l og. (a — x) = — 2.x x mrn]. ma

We now prove:

Theorem 2:

N is IFRA .

Proof:

We will show by induction on n that N has the stronger property

of SSLSF. For n = 1 , N = 1 and N is IFRA . We shall now show that

1 1
{P(N > k + 1)}k+i < {P(N >

while assuming that N(0.) and N(l
1
) are SSLSF; we choose I here

to satisfy (5).

We start by using (4) to write:

P(N > k) ~ P(N(0~) > k - 1) + n 
- k P(N(l

i
) > k) .

By the induction hypothesis the above is

4 - . .—— . .~~~ —-- .-—
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~ P(N(0~) > k) k 
+ 

n - k P(N(1~) > k + l)~~~

Since 
k 1 

< 
k ~. 

and P(N(O~) > k) < 1 the above set of in-

equalities can be continued as follows:

P(N(0.) > k)~~~ + 
n k P N l

1 
> k +

Now, by the inequality (6) applied to ~ = 
k

x = P(N ( l .) > k + 1) > P(N(0~) > k) = y

and

k+i

A (n_-_k’~ k

we have that the above is

S k+1 k+l

~~~ 
- (n 

; 
k)~~~)P(N(O)~~ > k) + (f l  

; 
k)~~~~P(N(l)~~ > k + l)

j

~~~
l .

Finally by (5) and by the fact that from (7)

1 1
(n-k)i~~> (n_ k_ l )i~~~~,

we see that the above is

4 - - ~  - 

5 5
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+ ~ P(N(0
1
) > ~~ + 

fl - k - 1 P(N(1
1
) > Ic +

k

— {P(N > Ic + 1)}k+1 •

A cut set is a set of components whose failure (of all components

in the set) ensures system failure. If a cut set has no proper subset

which is also a cut set then it is said to be a minimal cut set.

Similarly a minimal path set is a minimal (in the same sense as above)

set of components whose functioning ensures the system ’s functioning.

Hence if we sample components one at a time, without replacement ,

then N is the number of components that must be sampled until the set

of sampled components contains all the components of at least one

minimal cut set, or , equivalently,  at least one component of each

minimal path set.

Let us denote by N* the number of components that would have to

be sampled until we have sampled all of the components of at least one

minimal path set. Now as each of the n! outcomes of the order in which

the n components are sampled are assumed to be equally likely we can

associate with any particular outcome — say (11,i2, ... , , the

outcome (having equal probability of occurring) which reverses the sampling

order — that is 
~
1
n’
1
n—l’ 

... , i2,i1) . Now it is easy to see that

(i
1
, ... , i~) ~~~N — k ~~~~ (i , 

~~~~~~~~ ~~ 

* _ n k + l

for if the first k components ~~ • • •
~~ ~k 

contain a minimal cut set

and none of the first j components i~ , ..., i~ , j < k , do, then it

follows that components t
k+l’ • •.

~~ 

i~ does not contain a minimal path

4 -
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set but 
~~~ 

does for all j < Ic

Hence by the duality of outcomes (i1, ..., i5) and (i
5
, ...,

we see that

*P{N - k)- p{N n - k +1 } .

Since N* is an increasing failure rate average random variable by

exactly the same result as established this fact for N we have that

* 1/i(P{N > i)) is nonincreasing in i

or, equivalently,

Corollary 1:

(P(N < n + 1 — i})~~~ is nonincreasing in i

4 .
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3. NONOVEBLAPPING MINIMAL CUT SETS

In this section we suppose that the minimal cut sets have no components

in common. (In reliability terms such a system would be a series arrangement

of nonoverlapping parallel structures.) This case has previously been

studied in 121 where among other things, it was conjectured that N is

an increasing failure rate (IFR) random variable. We now prove this.

Theorem 3:

If the minimal cut sets do not overlap then N is an IFR random

variable in the sense that

P{N — k + 1 I N ~ k} is nondecreasing in k

Proof:

Let the cut sets be numbered 1, ..., r , with n1, ..., n

components respectively . Let be the index of the cut set in which

the kth component failure has occurred (k = 1,2, ..., a where

— 

~ 
, where we assume that component failures continue to happen

1=1

irrespectively of system failure). Let x~(k) be the number of components

from cut set j that have failed in the first k component failures.

We prove that N is IFR by induction on r . For r — 1 , N — a1

is constant and hence IFR . We now assume the theorem for r — 1 , and

in particular we assume that N’ the number of component failures until

the system composed of cut sets 2, ... , r with a2, ... , a fails

is IFR.

We note first that:

S - -- - - - -
4
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P ( N— k + l  I N > k )  - ~ 
P(D

k÷l 3 , x (k) - n  - i i  N > k )
i—i 

j

- Z a - k P(x~
(k) - fl

j 
- 1 I N > k)

i—i

since P(Dk+l - i I x~(k) — n~ — 1 , N > Ic) is independent of the event

N > k and is just the probability that the last component of set j

should fail.

Since is increasing in Ic , it is enough to show that for

all J P(x~(k) = fl
j 

— 1 1 N > k) is nondecreasing in Ic . Obviously

it is enough to look at j — 1 , and as P(x
1
(k) — n

1 
— 1 I N > k) — 0

for k — 0,1, ... , a1 
— 2 , we need only consider k > a

1 
— 1

We use the definition of N’ to write 
-

- P(x
1
(k) — n

1 — 

1 , N > k)
• 

- 
P(x1(k) — a1 

— 1 I N > k) = 
n
1
—i

~ P(x
1
(k) — i , N > k)

i—0

— 

P(x
1
(k) n

1
—l)P(N > k f x1(k) “n1 —1 ) P(x~(k) — n

1—1)P(N’ > k — n ~~+l)

~ P(x
1
(k) — i)P(N > k) I x1(k) = i) ~ P(x

1
(k) — i)P(N’ > Ic — i)

t—O i—0

To show that this is nondecreasiag it is enough to show that for

O < i < n
1 

- 1 < k

P(x
1
(k) — i)P(N’ > k — i)

P(x
1
(k) = a1 

— l)P(N’ > k — + 1)

is nonincreasing in k

- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - ,  . - - - - - -

- -_ - --
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The assumption that N’ is IFR implies that P(N’> k— i)/P(N’ > k— n
1
+1)

is nonincreasing in k . Finally,

• jn~~/ n — n ~ 
~i n

1 \ /n — n 1
P(x1(k) — i) 

~i
1)I,k — 

1
) kni — l)\k — n1 + 1

P(x
1
(k) — a1 

— 1) — 
/n\ (a

~k) I,~k

(n
1 — i )~ (k— n

1
+l)!( n — n

1
— k + n

1
—l )!

— 
i!(n

1 — i)! (k — i)!(n — a1 
— Ic + 1)!

and this expression is easily seen to be nonincreasing in k .U

Remark:

The same proof, with an obvious modification, would suffice to show

that N is IFR if system failure occurs the first time that

components from the ~~~ minimal cut set fail, for some I , where

r. < a . . (Such a system would be a series arrangement of nonoverlapping

of n
1 structures.)

_
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4. NONOVERLAPPING MINIMAL PATH SETS

There is no analogue to Theorem 3 in the case where the minimal

path sets do not overlap (such a system would be a parallel arrangement

of nonoverlapping series structures). For instance if a 10 and

1 is a minimal path set and components 2, ..., 10 consist of a

second minimal path set then

0 Ic = 0

P { N — k + 1 I N > k } = 2/10 k — l

1 0 — k  
2 < k < 9

*and so it is not nondecreasing. However it does follow that N (the

number sampled until a complete minimal path set is obtained) is increasing

failure rate in this case. Hence we have

Corollary 2:

& * *If the minimal path sets do not overlap then P(N — Ic + 1 I N >

is nondecreasing in k , or , equivalently,

P{N — i N < i + 1) is nondecreasing in i

In the case of nonoverlapping minimal path sets of sizes

n (a1, ... , nr) let us define P
1
(n) as the probability that the

minimal path set is the first minimal path set that is completely

sampled . This quantity P~ (ri) was extensively studied in (2] under

the interpretation that n~ was the size of the ith nonoverlapping

minimal cut set (and so could be thought of In [2] as the

probability that system failure is “caused” by the 1th minimal cut set).

.•~~~~~~.r ~~~~~~~~~ . --

~~~~ — — . ---_--S --_ -—-_- -- -_ --~~~~~~~~~~~~ - -_---- - - 5---. - -- 5— -- ______________
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Now let us define P~(n) as the probability that the ith minimal

path set is the last minimal path set to have had a component sampled

before the system failed (i.e., P~(n) is the probability that the

component whose failure causes system failure is from the jth minimal

path set).

Again by using the duality of ou tcomes (i1, ..., 1) and

(I , ..., j
1
) we immediately see that

=

(The reasoning is as follows: if all the components of the ~th minimal

path set have just been sampled then at that moment the set of remaining

components does not contain a component of the 1th minimal path set —

however the set of remaining components would have contained a component

of the 1th minimal path set one selection earlier.) Hence all the

properties for P
1
(n) derived in [2] also hold for P~(n) . For instance,

if we hold a1 fixed and think of P~(n) as a function of (a2, ... , nr)

then as shown in Theorem 4.8 of (2], this Is a Schur concave function

of (n2, ..., nr).

Duality also yields additional results about N — namely writing

N(n) as a function of ii — (a1, 
~~~~~

•‘  n~) and using the equivalence

* *between N(n) and N (a) it follows from the result about N (n)

given In Theorem 7.3 of [2] that

P{N(n) < I) is Schur concave in n

5- — --  -5- .---  -~~~~~~~~~~~~~--
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