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ABSTRACT

All known globally convergent iterations for the solution of a nonlinear

operator equation f(x) — 0 are either non-stationary or use nonlinear informa-

tion. We ask whether there exists a globally convergent stationary iteration

which uses linear information. We prove that even if global convergence is

defined in a weak sense, there exists no such iteration for as simple a class

of problems as the set of all, analytic complex functions having only simple

zeros. We conjecture that even for the class of all real polynomials which

have real simple zeros there does not exist a globally convergent stationary

iteration using linear information.
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1. INTRODUCTION

Suppose we solve a nonlinear operator equation f(x) 0 by an iteration

which constructs a sequence of approximations [x1,). For most convergence

theorems it is assumed that f is sufficiently smooth and starting points

are ttsuff iciently close” to a solution ~~. In practice it is very hard to

verify the second assumption. One therefore wants to use iterations which

are globally convergent.

All known globally convergent iterations are either non-stationary or

use nonlinear information. For instance, Laguerre ’s itera tion (see for

instance Ralston and Rabinowitz (78)) is globally convergent for the class

of all r eal polynomials having only real zeros. However this iteration

uses the degree of the polynomial whose zero is approximated. This means

tha t Laguerre’s iteration uses nonlinear information (see Section 6). An

example of a non-stationary iteration using linear information which is

globally convergent for analytic operator equations may be found in Traub

and Woz’niakowski (76).

However, most coimnonly used iterations are stationary and use linear

information. Therefore it is important to know whether there exist globally

convergent stationary iterations which use linear information. In this

paper we prove that for as simple a class of problems as the set of all

analytic complex functions with simple zeros there exists no such iteration.

We conjecture that the same negative result holds even for the class of all

real polynomials having real simple zeros.

We s arize the contents of the paper . In Section 2 we remind the

reader of the definitions of information and stationary iteration without
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1.2

memory. In Section 3 we discuss the concept of global convergence. In

Section 4 we show that no stationary iteration without memory which uses

linear information can be globally convergent for the class of all analytic

complex functions. In Section 5 we extend this result to all stationary
I

iterations with or without memory using linear information. In Section 6

we pose a conjecture that for the class of all real polynomials with real

simple zeros there does not exist a globally convergent stationary iteration

using linear information.
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2. STATIONARY ITERATIONS WITh~~IT MEMORY

We recall the def inition of infor mation and stationary iteration. See

Traub and Wo~niakowski [78). For the reader’s convenience, in Sections 2

to 4 we deal only with one-point iterations without memory. The extension

to the general case is given in Section 5.

Consider the solution of a nonlinear scalar equation

(2.1) f(x) 0

for f E ~ where 
~3 is a subset of a spac4 H of functions f: C -. C. To

solve (2.1) iteratively we need to know something about f. Let

L~ : DL 
C H X ~ -. C be a functional which is linear with respect to the

i
first argument, i.e.,

L~ (c
1
f
1+c2f21x) c

1L~
(f 11x) + c2Li(f 1,x) whenever x E Df fl D~ , i l ,2,...,n.

1 2

Consider the linear information operator !R, ~R: D~ 
C 

~ ~~ C ~‘ C.~ defined as

(2.2) ~ (f ,x) [L 1(f ,x) ,L
2(f ,x),...,L ( f ,x)], ~1f ER , Wfx E Df.

Let x0 be an approximation of a solution of (2.1). Let ~p: %C C~~’ -. C
be a functional. We construct the sequence of approximations X j  by the

formula

(2.3) X
j+l 

— ~ (x~; ~(f~x~)).

The functional p is called a one-point stationary iterative operator without

memory using a linear information operator R. For brevity p is called an

iteration. Let ~
(
~
) be the class of all such iterations.

~~~~~~~ .-•— ~~-—~~~~



2.2

Note that mos t iterations use values of f and its derivatives. A

linear information operator is a generalization of this. For example, the

information operator ~ used by Newton iteration

f(x~)x ~~x -
i+l i f’ (Xi)

is ~t(f,x) — (f(x),f’(x)). This operator is linear and p E ~(~fl).

I
4 
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3.1

3 • WHAT DO WE MEAN BY GLOBAL CONVERGENCE?

Let 3 be the class of all functions f,f :  Df cC -, (I, analytic in Df
and having only simple zeros. Let S(f) be the set of all zeros of f.

Consider any iteration p E I, where ~ is the class of all stationary

iterations without memory which use a linear information operator ~ per

iterative step, i.e., ~

Which properties should p have to be called a globally convergent itera-

tion? To motivate our definition consider first the problem f(x) — 0 where

f is defined in Df [x: J x- c4 < R(f ) 3 and a is its unique simple zero.

Suppose we apply p to this problem. Let r(f,~) be the maximal number such

that for any starting point x0 satisfying 1x0-aI < r(f,q,) the sequence
— p(x~~fl(f,x~)) is convergent to a. Then the ball (x: Ix-a J < r(f,cp))

is called the ball of convergence of p for f. Of course, r(f ,cp) depends on

R(f) and in particular r(f,~) ~~R(f). Suppose there exists a positive

constant c c(p) such that r(f,cp) � c R(f) for any f. Then p enjoys a type

of global convergence since the ball of convergence has radius proportional

to the radius R(f) of the domain Df. However for problems with R(f) — + ~~

we get r(f,cp) — + ~ which means that any choice of a starting point x0

yields convergence. This seems to be too strong. For R(f) — + we would

like to have r(f,p) large but not necessarily equal to infinity. This is

• the motivation of the following. Let K ,L be two given constants such that

IC � 0 and 0< L ~~~~+ ~~. Define Rf min(R(f),K I a I  + L). Now the existence

of a positive constant c — c(p) such that r(f,cp) � c Rf implies a type of

global convergence p. This discussion shows that we should compare r(f,p)

with Rf~

4



If f has more than one simple zero we proceed as follows. Let

dist(ar~~D~) be th. distance of a,a € S(f), to the boundary ÔD
f of the

doma in Df. Define

— minCdist(a~ôD
f). IC~a~ + L), (K � O , 0 <L ~~+ co)

Let

B(b f) U fx: k-al < b R
f(a~3

where b ~ 0. Note that if S(f) a [a) then R
f

(a) R~. For any iteration ~~

p E $(~fl), we define a number c(cp) such that

(i) for any f E 3 and for any starting point x0 E B(c(p),f) the
sequence (x1,3, Xj41 ~ (x~; ~t(f,xi) ) ,  is well-defined and

his x~ € S(f).

(ii) for any a > 0 there exist a problem f E 3 and a starting point
E B(c (cp) + C , f) such that either the sequence (X

f
) is not

well-defined or lim x~, ~ S(f). 
- U

Note that for any iteration c(q,) E (0,1). The set B(c(p),f) is a con-

vergence domain of p for the function f since taking any starting point

E B(c(p) ,f) we get convergence of tx~3. Note, however , that we do not

specify which element from S(f) is the limit of [x1,3.

Definition i.l

We shall say that an iteration cp, p E ~~, is globally conver gent for the

class 3 iff

c (p)>O. U
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3.3

Definition 3.1 imposes only a weak condition on p. However, we shall

show that for any iteration from ~~, c (cp) — 0. This means that even in the
sense of Definition 3.1 there exists no globally convergent stationary
iteration using linear information for the class 3.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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4.1

4. MAIN RESULT

Theorem 4.1

No iteration p from ~ is globally convergent for the class 3.

Pr oof

Suppose there exist ~: D~~-. C~ and p ~~~ with c — c (p) > 0. Let

1 i

L2 ( l ’CK ) if cI( <

Define f(x) — x-a. Then f E 3, S(f) • [a) and Rf (a) K i a l  + L. Let

— 0. Since x0 E B(c ,f) lx;. Ix-al < cRf(a)), the sequence [X
i

) ,

cp(x~ ; ~t(f ,x~)), tends to a , a ~ 0. Thus , there exists a unique

integer Ic, k � 1, such that

(4 .1) x01,1x 11 ,...,Ix.1c1 1 <~~ and IX IcI �
~~~

.

Consider a polynomial w of the form

(4.2) w(x) — 

:~: 
a~x

1’
~~

which satisf ies

(4.3) ~t(f_w~x~) — ~ (f~x~) for j — 0 ,l,...,k-l.

This is equivalent to the following homogeneous system of u.k linear

equations

n~k 

a~L8(xt~~~x~) — 0 for s — i ,2 ,...,n and j  — 0,l,...,k-l.
i—0

:4
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4.2

Since we have more unknowns than equations, it is obvious that there

exists a non-zero polynomial w of the form (4.2). Then there exist

positive integers r, I. � r ~ nk+l, and p 1 � p ~ r, and non-zero

such that

w(x) —

For e > 0, def ine

[f(x) +~~w(x) if kI <
~~~
,

a

if jx j ~~~~

From the general theory of algebraic functions (see for instance Wilkinson

(63)) it is known that for sufficiently small a there exist p simple

zeros X1(e) , . .., X (c) such that

1

(4.5) )~(~) — 
p~f(0) ‘

~ 
+ O(e~)

(0)

where a1, is the i-th complex root of the equation x~ a. Note that

u r n  X1,(e) — 0, Wi. Therefore for sufficiently small a, we get f E 3,
e-’O
X1 (e),X2(c),...,X (a) E S(f ~) and him R4, ( X4 (e) ) a min~~,L). Then thep €‘40 a -

starting point y0 
— x0 — 0 belongs to B(c,f5). This means that the

sequence 
~~~~~~~~~~ 

y~~1 ~(y~; ~
R(f

~
,yj)), is well-defined. Observe that

for j  — 0,l,...,k-I. and y
~ 

— x0. Therefore

— Xi+l 
— p(x1,; ~t(f,x1,)) for i 

a 0,1,...,k-1. From (4.1) we know

that — �I- ~~~ which means that does not belong to the domain

Df • Thus 
~~~~~~~ 

is not well—defined , see (2.2), which contradicts

c (cØ>O. i
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4.3

Theorem 4.1 says that there exists no globally convergent iteration

without memory using a linear information operator for th. class 3 of analy-

tic complex function s havin g only simple zeros . This negative result also

holds for real problems. Let be the class of rea l. functions f ,

1: Df C R “ a, analytic in Df and having an unique simpl. zero. Consider

real information operators, i.e., ~ (f ,x) E R’~, Wf E 
~~~~~ 

Wa € Df .

Theorem 4.2

For any real linear information operator ~ there exists no iteration ~

from ~~%) which is globally convergent for th. class

Proof

Suppose that for a real Linear information operator ~~, ~t: D~ -. R~ and

for p E rnt) , c c (p) > 0. Let f (x) — x-a be defined as in the proof of

Theorem 4.1. Since x0 
— 0 E B(c ,f) ,  the sequence (x1,1, x1,~1 

— ~~~~ ~~~,x1,))

tends to a ~ 0. Therefore

(4.6) x
1 
a p(0; ~(f ,0)) ~ 0.

Consider now a real polynomial w,

2 Il
(4.7) w (x) a a1,x

i—a
satisfying

(4.8) ~R(f—v,0) — ~ (f ,0).

The equation (4.8) is equivalent to the following homogeneous system of a

real linear equations.

4



4.4

(4.9) ~ a~L5
(x 1”

~~,x0
) for s — l ,2 ,...,n.

i—a

It is obvious that there exists a non-zero real polynomial w of the form (4.7)

and satisfying (4.8). Let w(x) — x
~

(x_ zi,÷i)
~~
... (x_ zr) where 1 ~~r ~ 2n4-l,

1 �p  ~~r and 0 for 1, a pi-l,...,r.’Due to (4.7) p is odd.

Def ine

if p < r ,

~l I
L—r otherwise,

and 1f(~
c) 
+ ~v(x) if I x I  <

— (
j,

undefined if Ix I  � r

for a > 0. For sufficiently small a , the solutions of f~~(x) 0 in the

complex plane are given by (4.5). Since p is odd, only one of X1,(a) in

(4.5) is real. Thus, f~ has a unique simple real zero, say )(a). Since

)(e) tends to zero with a, him Rf ~~(a) ) — min [r ,L) and x0 0 E B(c,f )
c-sO a a

for sufficiently small a. Therefore the sequence [x1,), x~4,1 — p(~c1,; !lt(f ,x ) )

is well-defined. Observe that

x1 
— p(O; 

~~~~~~~ 
— p(0; ~ (f ,0)). -

Due to (4.6) x1 0 Df which means that x
2 

is not well-defined. This

contradiction ends the proof. I
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5.1

5. THE GENERAL CASE

In Section 4 we showed that there exists no globally convergent one-

point stationary iteration without memory which uses linear information.

In this section we prove the same result for multipoint iterations with or

without memory.

Let ~~~~~~~~~~~ be functionals defined as in Section 2. Then a multi—

point linear information operator ~t: D~ C H x tj. 1~~, is defined as

(5.1) ~R(f,x) — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Wf ER, Wa E Df

where

(5.2) a1 x and Z
k÷l ~~~k l (Z 1; Ll (f ,z l) , L2 (f ,z2) , . .. ,L.K (f ,zk) ) ,  k —

for certain functions 
~2’~3’•••’~n

• Note that if — x, k — 2,...,n, then

~ is a one-point linear information operator defined in Section 2.

For given integer m, let X
O~~
X
... l~~~

•• •I X
_m  

be distinct approximations of

a solution of f(x) — 0, f E 3. Suppose we construct a sequence of approxima-

tions by the formula

(5.3) X~÷1 — p(xi ,xi l, . ..I xi m ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where p: D
m 

C (I~~~’1) ~*1.) -, C is a functional. Then p is called a multi-

point stationary iteration operator with memory if m � l  and without memory

if m — 0 using a linear information operator tR. For brevity p is also called

an iteration. Let ~ (~) be the class of all such iterations.

For particular ~ and m we get coemonly used iterations. For instance,

rn — 1, ~ (f ,x) — ( f (x) ) and

L4 
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p(x ,y; ~t(f ,x) ,~~(f ., y)) — x — 
f (X :f (y) f (X

is the secant iteration. An example of two-point stationary iteration with-

out memory is provided by Steffensen iteration (see Steffensen (33)) which

is defined as follows

~(f ,x) ( f ( z
1
) , f (z 2)) where z~ — x and z2 — z1-f(z1)

and

cD(x; ~Jt(f ,x)) — Z~ f(z 1):f(z2) 
f (z 1).

We extend the definition of global convergence as follows. Let ~fl be a

one— or multipoint linear information operator and let m be an integer.

Recall that B(b,f) is defined in Section 3. For any iteration q, p E ~~~~~
define c — c(cp) as a number that

(i) for any f E 3 and any choice of distinct starting points
x03x 15...,x from B(c,f) the sequence

P(xi,xi~,, i, . . . ,x i m ; 
~
ft(f ,xj) ,

~
R(f ,xi i ) , . . . ,~%(f ,xj ))

is well-defined and u rn x1, E S(f).

(ii) for any a > 0 there exist f E 3 and distinct points

E B(c+e,f) such that either the sequence

is not well-defined or lim x1, 0 S(f) .

Definition 5.1

We shall say that an iteration p is globally convergent for the class 3 if f

S

4 - - —~~~--~~- ..- 
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5.3

Now let ~ be the class of all stationary iterations with or without

memory which use a linear information operator ¶~t, i.e., • —

Theorem 5.1

No iteration p from ~(~) is globally convergent for the class 3.

Proof

Apply the proof of Theorem 4.1 with starting points x-j — 4(infl) lain la ,L) ,

j — 0,1,...,in, and with n k in (4.2) replaced by n(n*k). I

Theorem 5.1 says that knowing only the value of a finite number of

linear functionals on f it is impossible to find a globally convergent sta-

tionary iteration for the class 3. Therefore if we want to solve f(x) — 0

by a stationary iteration we have to assume that the starting points are

sufficiently close to a solution. By contrast it is known that for some

non-linear information operators there exist globally convergent stationary

iterations. An example is provided by Laguerre iteration. Also for linear

information operators there exist globally convergent non-stationary itera-

tions for the class 3. An example may be found in Traub and Wo~niakowski (7 6)

where global convergence of the sequence of interpolatory iterations is

proved. For this case , the k- th iteration requires the knowledge of Ic linear

functionals of f .  Furthermore there exist globally convergent non-stationary

iterations which are based on the use of increasing size of memory. This

will be reported in Wasilkowski (79) .
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6.1

6. FINAL COMMENTS

In Section 5 we showed that no stationary iteration using linear informa-

tion is globally convergent for the class of analytic problems having simple

zeros . The existence of globally convergent iterations depends on the class

3 of functions whose zeros we want to approximate . For some simple classes

there exist well known globally convergent stationary iterations which use

linear informat ion. For example if 3 is the class of real functions

f :  R R whose f i rs t  derivative is monotonic then Newton iteration is

globally convergent.

For many interesting classes the existence of global convergent itera-

tions is unknown. Even for the class II of all real polynomials with simple

real zeros this problem is open. All known globally convergent iterations

for the class Ti are either non-stationary or use nonlinear information. For

example Newton iteration with a suitably chosen starting point, Bernoulli’ s

method and Laguerre iteration are globally convergent for Ti. See for

iirntance Ralston and Rabinowitz [783. Either implicitly or explicitly these

iterations use the degree k of the polynomial whose zero is desired.

Note that the degree k is nonlinear information. Indeed, suppose there

exists a function g (in general nonlinear) such that k — g(x; ~R(f,x)) where

~ is a multipoint linear information operator. For any x0 there exists a

polynomial w of degree greater than one such that ~t(w ,x0) — 0. Taking

x + w(x) we get ~ (f 5 ,x0) — ~ (x ,x0) and E 11 for suffic iently

small C. Therefore g(x 0,~t(x ,x0)) — g(x 0,~t(f ,x0) ) ,  but the degrees of the

polynomials x and f~
(x) are d i f fe ren t .  This contradicts the assumption

Ic — g(x;  ~l(f ,x ) ) ,  with ~t linear.

4
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6.2

We believe that any globally convergent iteration for El has to be non-
stationary or use nonlinear information. Therefore we propose the following

conjecture.

Conjecture 6.1

There exists no globally convergent stationary iteration using linear
information for the class of all real polynomials with simple real zeros . I

_____  _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
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