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ABSTRACT

A\
JAll known globally convergent iterations for the solution of a nonlinear

operator equation f(x) = 0 are either non-stationary or use nonlinear informa-
tion. We ask whether there exists a globally convergent stationary iteration
which uses linear information. We prove that even if global convergence is
defined in a weak sense, there exists no such iteration for as simple a class
of problems as the set of all analyticvcomplex functions having only simple
zeros. We conjecture that even for the class of all real polynomials which
have real simple zeros there does not exist a globally convergent stationary

iteration using linear informationm.
\




1. INTRODUCTION

Suppose we solve a nonlinear operator equation f(x) = 0 by an iteration
which constructs a sequence of approximations {xi}. For most convergence
theorems it is assumed that f is sufficiently smooth and starting points
are "sufficiently close" to a solution a. In practice it is very hard to
verify the second assumption. One therefore wants to use iterations which
are globally convergent.

All known globally convergent iterations are either non-stationary or
use nonlinear information. For instance, Laguerre's iteration (see for
instance Ralston and Rabinowitz [78]) is globally convergent for the class
of all real polynomials having only real zeros. However this iteration
uses the degree of the polynomial whose zero is approximated. This means

that Laguerre's iteration uses nonlinear information (see Section 6). An

example of a non-stationary iteration using linear information which is

globally convergent for analytic operator equations may be found in Traub
and Wozniakowski [76].

However, most commonly used iterations are stationary and use linear
information. Therefore it is important to know whether there exist globally
convergent stationary iterations which use linear information. 1In this
paper we prove that for as simple a class of problems as the set of all
analytic complex functions with simple zeros there exists no such iteratiom.
We conjecture that the same negative result holds even for the class of all
real polynomials having real simple zeros.

We summarize the contents of the paper. 1In Section 2 we remind the

reader of the definitions of information and stationary iteration without




1.2

memory. In Section 3 we discuss the concept of global convergence. In
Section 4 we show that no stationary iteration without memory which uses
linear information can be globally convergent for the class of all analytic
complex functions. 1In Section 5 we extend this result to all stationary
iterations with or without memory using linear information. In Section 6
we pose a conjecture that for the class of all real polynomials with real
simple zeros there does not exist a globally convergent stationary iteration

using linear information.

B )
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2.1

2. STATIONARY ITERATIONS WITHOUT MEMORY

We recall the definition of information and stationary iteration. See

Traub and Wozniakowski [78]. For the reader's convenience, in Sections 2
to 4 we deal only with one-point iterations without memory. The extension
to the general case is given in Section 5.

Consider the solution of a nonlinear scalar equation
(2.1) fx) =0

for £ € § where J is a subset of a space H of functions f: D, cC-C. 1

solve (2.1) iteratively we need to know something about f. Let

Li: DL CHxXxC - C be a functional which is linear with respect to the
i

first argument, i.e.,

Li(c1f1+c2f2,x) = clLi(fl’x) + CZLi(fl’x) whenever x € D. N D , 1=1,2,...,n.

iy 2

Consider the linear information operator ®, m:r)‘:'l CHXC -~ Gn, defined as
(2.2) Rf,x) = [Ll(f,x) ,Lz(f,x),...,Ln(f,x)], vf €H, VEx € Dg-

Let x, be an approximation of a solution of (2.1). Let ¢: D C g™, g

be a functional. We construct the sequence of approximations x, by the

i
formula

(2.3 x5 = olxg5 UExp)).

The functional ¢ is called a one-point stationary iterative operator without
memory using a linear information operator M. For brevity ¢ is called an

iteration. Let 3 (M) be the class of all such iterationms.




2,2

Note that most iterations use values of f and its derivatives. A
linear information operator is a generalization of this. For example, the

information operator % used by Newton iteration

f(x
= x

141" *1 T F(x,

is R(£,x) = [£(x),f'(x)]. This operator is linear and ¢ € ¥(M).




3.1

3. WHAT DO WE MEAN BY GLOBAL CONVERGENCE?

Let J be the class of all functions f,f: Df C-',(E - @, analytic in Df

and having only simple zeros. Let S(f) be the set of all zeros of f.

Consider any iteration ¢ € &, where & is the class of all stationary

iterations without memory which use a linear information operator T per
iterative step, i.e., & = g@(m).

Which properties should ¢ have to be called a globally convergent itera-
tion? To motivate our definition consider first the problem f(x) = 0 where
f is defined in Df = {x: Ix-al < R(f)} and « is its unique simple zero.
Suppose we apply ¢ to this problem. Let r(f,p) be the maximal number such
that for any starting point X satisfying |x0-a| < r(f,p) the sequence

X1 " cp(xi,'ﬁ.(f,xi)) is convergent to a. Then the ball {x: Ix-a] < r(f,9)}

i+
is called the ball of convergence of ¢ for f. Of course, r(f,y) depends on

R(f) and in particular r(f,9) < R(f). Suppose there exists a positive
constant ¢ = c(p) such that r(f,9) = ¢ R(f) for any f. Then ¢ enjoys a type
of global convergence since the ball of convergence has radius proportional
to the radius R(f) of the domain D;. However for problems with R(f) = + =
we get r(f,p) = + © which means that any choice of a starting point Xy
yields convergence. This seems to be too strong. For R(f) = + « we would
like to have r(f,p) large but not necessarily equal to infinity. This is
the motivation of the following. Let K,L be two given constants such that

K20and 0 <L S+ ® Define R, = min{R(f),K|a| + L}. Now the existence

£
of a positive constant ¢ = c(¢p) such that r(f,p) 2 ¢ Rf implies a type of

global convergence . This discussion shows that we should compare r(f,®)

with Rf.




If f has more than one simple zero we proceed as follows. Let

disc(a.abf) be the distance of a,a € S(f), to the boundary OD_ of the

b3
domain Df. Define

Rg(a) = min{dist(e, o), K|a| + 1L}, ®R 20, 0<L s+ 9,

Let

BM,f) = U f{x: |x-af <b*R.(a)}
a€s (£)

where b 2 0. Note that if S(f) = {a} then Rf(a) = Rf. For any iteration ¢,

¢ € ¥®), we define a number c(p) such that

(1) for any £ € J and for any starting point X € B(c(p) ,f) the
sequence {xi}, Xip1 = PG m(f,xi)), is well-defined and
lim xi € s(f).

fme

(1i) for any ¢ > 0 there exist a problem f € § and a starting point
X € B(c(9) + €,f) such that either the sequence [xi] is not

well-defined or lim x, £ s(f). - ]

i
Note that for any iteration c(ﬁ)) €[0,1]. The set B(c(¢),f) is a con-
vergence domain of ¢ for the function f since taking any starting point
X, € B(c(9),f) we get convergence of {xi]. Note, however, that we do not

specify which element from S(f) is the limit of {xi].

Definition 3.1
We shall say that an iteration ¢, @ € §, is globally convergent for the

class J iff
c(p) > 0. 8




3.3

Definition 3.1 imposes only a weak condition on ®. However, we shall

show that for any iteration from %, c(9) = 0. This means that even in the

sense of Definition 3.1 there exists no globally convergent stationary

iteration using linear information for the class 3.

Rnds




4. MAIN RESULT

Theorem 4.1

No iteration ¢ from ¢ is globally convergent for the class .

Proof

; Suppose there exist M: Dy C® and P €3M with ¢ = c(p) > 0. Let

1 if ck 2 1,
a =
cL
7 (1-cK) if ck < 1.

Define f(x) = x-a. Then f € §, S(f) = {a} and R.(a) = K|a| + L. Let
xy = 0. Since x € B(c,f) = {x; ]x-al < ch(a)}, the sequence [xi],

Xipl = B(xg; m(f,xi)), tends to a, a # 0. Thus, there exists a unique

i+
integer k, k 2 1, such that

4.1 |xol,|x1|,...,|xk_1| <-;- and ]xkl 2%,

Consider a polynomial w of the form

n-k
4.2) w(x) = Z aixi"'l
i=(
which satisfies
4.3) M(f-w,x,) = R(f,x,) for j = 0,1,...,k=-1.

b 3

This is equivalent to the following homogeneous system of nek linear

equations

, n-k
(4.4) 2‘ liLs(xi+1,xj) 0 forsm 1. 2,,.onand §u 0,1,.00,k1,

i=0




—

Since we have more unknowns than equations, it is obvious that there

exists a non-zero polynomial w of the form (4.2). Then there exist
positive integers r, 1 Sr S nk+l, and p, 1 <p S r, and non-zero

zp+1,...,zr such that

w(x) = xp(x-z 1)-...-(x—zr).

p+
For € > 0, define

£ + w0 1f [x| <2,

f,(x) =
undefined 1f | 2~§.

From the general theory of algebraic functions (see for instance Wilkinson

[63]) it is known that for sufficiently small € there exist p simple

zeros Xl(e),...,hp(e) such that

O -

pt£(0)

4.5 A (e) =
i w(P)(o)

2
e £ o)

where ¢, is the i-th complex root of the equation xP = e. Note that

i

lim Xi(e) = 0, ¥i. Therefore for sufficiently small e, we get fc €3,
e-0

._ca
M (@M (&), k(&) €S(E) and 2:3 Rfe(li(e)) min{5,L}. Then the

starting point Yo = % = 0 belongs to B(c,fc). This means that the
sequence {yi}, Vi1 = 905 m(f‘,yi)), is well-defined. Observe that

m(f‘,x ) = M(f‘,yj) for j = 0,1,...,k-1 and Tp™x Therefore

o.
1" Plxgs m(f,xi)) for i = 0,1,...,k-1. From (4.1) we know

J

g1 ®

that |yk| = |xk| 2 % which means that Y does not belong to the domain

i+

D¢ - Thus 3(fe,yk) is not well-defined, see (2.2), which contradicts

c(p) > 0. ]




4.3

Theorem 4.1 says that there exists no globally convergent iteration
without memory using a linear information operator for the class J of analy-
tic complex functions having only simple zeros. This negative result also
holds for real problems. Let 31 be the class of real functioms f,

f: Df C R - R, analytic in DE and having an unique simple zero. Consider

real information operators, i.e., R(f,x) € Rn, vf € 31. ¥ € Dg'

Theorem 4.2

For any real linear information operator % there exists no iteration o

from 3(M) which is globally convergent for the class 31

Proof

Suppose that for a real linear information operator %, %: Dy = R" and
for p € 5(M), ¢ = ¢(9) > 0. Let f(x) = x-a be defined as in the proof of
Theorem 4.1. Since X = 0 € B(c,f), the sequence (xi}. X = w(xi; m(f.xi))

tends to a # 0. Therefore
4.6) x; = @(0; R(£,00) f 0.

Consider now a real polynomial w,

o P
G.7) wx) = z ax i+1,
i=0

satisfying
“.8) N(f-w,0) = N(£,0).

The equation (4.8) is equivalent to the following homogeneous system of n

real linear equations.




n
%.9) z aiLs(xi+1,x0) for s = 1,2,...,n.

i=0
It is obvious that there exists a non-zero real polynomial w of the form (4.7)
and satisfying (4.8). Let w(x) = xp(x~zp+1)-...-(x-zr> where 1 s r < 2n+l,

1<p - r and z, #0 for { = p+l,...,r. *Due to (4.7) p is odd.

Define
Ix, | |z .41 lz|
{ 21 ) %-1 ge0eey zr } ifp<r,
\_" -
lxll
= otherwise,
and
£ (x) +—iw(x) if |x| < T,
£ (x) =

undefined if |x| 2T

for ¢ > 0. For sufficiently small e, the solutions of fc(x) = 0 in the
complex plane are given by (4.5). Since p is odd, only one of ki(c) in
(4.5) is real. Thus, fc has a unique simple real zero, say A(e). Since

A\(e) tends to zero with e, lim R (A(e)) = min{l,L} and x, = 0 € B(c,f,)
€

0
e-0
for sufficiently small e¢. Therefore the sequence {xi], X" <p(x1; ﬁ(f‘.xi))

is well-defined. Observe that
x; = (03 m(fc.o)) = @(0; R(£,0)).

Due to (4.6) X ¢Df which means that x, is not well-defined. This
€

2

] ‘ contradiction ends the proof. a

|




5. THE GENERAL CASE

In Section 4 we showed that there exists no globally convergent one-
point stationary iteration without memory which uses linear information.
In this section we prove the same result for multipoint iterations with or
without memory.

Let LI’I‘Z""’I‘n be functionals defined as in Section 2. Then a multi-

point linear information operator : Dp CH X C - (]:n , 1s defined as

(5.1) RE,x) = [Ll(f,zl),Lz(f,zz),...,Ln(f,zn)], vf €H, ¥x € D¢

where
(5.2) z; = x and 211 =§k+1(z.1; Ll(f,zl) ,Lz(f,zz),...,l.k(f,zk)), k=1,2,...,n-1,

for certain functions §2,§3,...,§n. Note that if §k = x, k =2,...,n, then
R is a one-point linear information operator defined in Section 2.
For given integer m, let XgoX_psecesX o be distinct approximations of

a solution of f(x) = 0, £ € §. Suppose we construct a sequence of approxima-

tions by the formula

(5.3) X" q)(xi,xi_l,...,xi_m; ‘R(f,xi) ,m(f,xi_l),...,fﬂ(f,xi_m))

where @: Dco c G(m-l) (a+l) -+ € is a functional. Then ¢ is called a multi-

point stationary iteration operator with memory if m 2 1 and without memory

if m = 0 using a linear information operator M. For brevity @ is also called

an iteration. Let @m(or) be the class of all such iteratioms.

For particular N and m we get commonly used iterations. For instance,

m=1, R(f,x) = [£(x)] and




5.2

. P(x,y; m(f,x) am(f,a)')) L f (x)

o et
£(x)=-£(y)

is the secant iteration. An example of two-point stationary iteration with-
out memory is provided by Steffemsen iteration (see Steffensen [33]) which

is defined as follows

N(E,x) = [f(zl),f(zz)] where z, = x and z -f(z

2 = 2~£(zp)

and
2.~z

2
o(x; R(E,x) =z, - ??:IT:??;;T £(z,).

We extend the definition of global convergence as follows. Let M be a
one- or multipoint linear information operator and let m be an integer.
Recall that B(b,f) is defined in Section 3. For any iteration ¢, ¢ € gncn),

define ¢ = c(9) as a number that

(1) for any f € J and any choice of distinct starting points
XgsX_yseeesX_ from B(c,f) the sequence {xi],
X" ¢(x1,x1_1,...,xi_m; m(f,xi),ﬂ(f,xi_l),...,m(f,xi_m))

is well-defined and lim x, € S(f).
jo i

(11) for any ¢ > 0 there exist f € J and distinct points
XgsX_poeeesX o € B(c+e,f) such that either the sequence (xi}

is not well-defined or lim Xy € s(f).
{e

Definition 5.1

We shall say that an iteration 9 is globally convergent for the class J iff

c(op) >0 [ ]




Now let ¢ be the class of all stationary iterations with or without

memory which use a linear information operator R, i.e., & = &U ‘I’m(m).
m

Theorem 5.1

No iteration ¢ from (M) is globally convergent for the class J.

Proof
Apply the proof of Theorem 4.1 with starting points x-j = Wnim min {a,L},
j=0,1,...,my, and with n k in (4.2) replaced by n(m+k). | ]

Theorem 5.1 says that knowing only the value of a finite number of
linear functionals on f it is impossible to find a globally convergent sta-
tionary iteration for the class J. Therefore if we want to solve £(x) = 0
by a stationary iteration we have to assume that the starting points are
sufficiently close to a solution. By contrast it is known that for some
non-linear information operators there exist globally convergent stationary
iterations. An example is provided by Laguerre iteration. Also for linear

information operators there exist globally convergent non-stationary itera-

tions for the class J. An example may be found in Traub and Wozniakowski [76]

where global convergence of the sequence of interpolatory iterations I, is

k
proved. For this case, the k-th iteration requires the knowledge of k linear
functionals of f. Furthermore there exist globally convergent non-stationary

iterations which are based on the use of increasing size of memory. This

will be reported in Wasilkowski [79].




6. FINAL COMMENTS

In Section 5 we showed that no stationary iteration using linear informa-
tion is globally convergent for the class of analytic problems having simple
zeros. The existence of globally convergent iterations depends on the class
3 of functions whose zeros we want to approximate. For some simple classes
there exist well known globally convergent stationary iterations which use
linear information. For example if § is the class of real functions
f: R - R whose first derivative is monotonic then Newton iteration is
globally convergent.

For many interesting classes the existence of global convergent itera-
tions is unknown. Even for the cléss Il of all real polynomials with simple
real zeros this problem is open. All known globally convergent iterations
for the class Il are either non-stationary or use nonlinear information. For
example Newton iteration with a suitably chosen starting point, Bernoulli's
method and Laguerre iteration are globally convergent for [i. See for
instance Ralston and Rabinowitz [78]. Either implicitly or explicitly these
iterations use the degree k of the polynomial whose zero is desired.

Note that the degree k is nonlinear information. Indeed, suppose there
exists a function g (in general nonlinear) such that k = g(x; N(f,x)) where
R is a multipoint linear information operator. For any X there exists a
polynomial w of degree greater than one such that m(w,xo) = (), Taking
fe(x) = x + % w(x) we get m(fe,xo) = m(x,xo) and fe € Il for sufficiently
small ¢. Therefore g(xo,m(x,xo)) = g(xo,ﬂ(fe,xo)), but the degrees of the
polynomials x and fc(x) are different. This contradicts the assumption

k = g(x; N(f,x)), with N linear.




We believe that any globally convergent iteration for Il has to be non-
stationary or use nonlinear information. Therefore we propose the following

con jecture.

Conjecture 6.1

There exists no globally convergent stationary iteration using linear

information for the class of all real polynomials with simple real zeros.
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